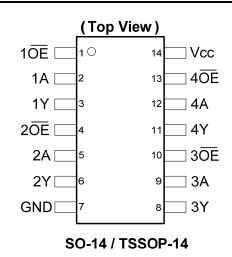


QUADRUPLE 3-STATE BUFFERS OE LOW


Description

The 74HC125 provides provides four independent buffer gates with 3-state outputs. Each buffer has a separate enable pin that if driven with a high logic level places the corresponding output in the high impedance state. The device is designed for operation with a power supply range of 2.0V to 6.0V.

Features

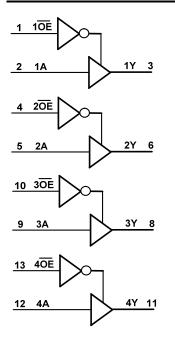
- Wide Supply Voltage Range from 2.0V to 6.0V
- Sinks or sources 4mA at V_{CC} = 4.5V
- CMOS low power consumption
- Schmitt Trigger Action at All Inputs
- ESD Protection Exceeds JESD 22
 - 200-V Machine Model (A115-A) .
 - 2000-V Human Body Model (A114-A) .
 - Exceeds 1000-V Charged Device Model (C101C)
- Range of Package Options SO-14 and TSSOP-14
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Pin Assignments

Applications

- General Purpose Logic
- Wide array of products such as:
 - PCs, Networking, Notebooks, Netbooks
 - Computer Peripherals, Hard Drives, CD/DVD ROM
 - TV, DVD, DVR, Set Top Box

Notes:


- No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
 See http://www.diodes.com for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Descriptions

Pin Number	Pin Name	Function
1	1 0E	Data Enable Input (active low)
2	1A	Data Input
3	1Y	Data Output
4	20E	Data Enable Input (active low)
5	2A	Data Input
6	2Y	Data Output
7	GND	Ground
8	3Y	Data Output
9	3A	Data Input
10	30E	Data Enable Input (active low)
11	4Y	Data Outp
12	4A	Data Input
13	40E	Data Enable Input (active low)
14	V _{CC}	Supply Voltage

Logic Diagram

Function Table

Inp	Output	
ŌE	Α	Y
L	Н	Н
L	L	L
Н	Х	Z

Absolute Maximum Ratings (Note 4) (@T_A = +25°C, unless otherwise specified.)

Symbol	Description	Rating	Unit
ESD HBM	Human Body Model ESD Protection	2	KV
ESD CDM	Charged Device Model ESD Protection	1	KV
ESD MM	Machine Model ESD Protection	200	V
Vcc	Supply Voltage Range	-0.5 to +7.0	V
VI	Input Voltage Range note 3)	-0.5 to +7.0	V
I _{IK}	Input Clamp Current $V_{I} < -0.5V$ or $V_{I} > V_{CC} + 0.5V$	±20	mA
lok	Output Clamp Current $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$	±20	mA
lo	Continuous Output Current -0.5V < V _O V _{CC} +0.5V	+/- 25	mA
Icc	Continuous Current Through V _{CC}	50	mA
I _{GND}	Continuous Current Through GND	-50	mA
TJ	Operating Junction Temperature	-40 to +150	°C
T _{STG}	Storage Temperature	-65 to +150	°C
Ρτοτ	Total Power Dissipation	500	mW

Notes: 4. Stresses beyond the absolute maximum may result in immediate failure or reduced reliability. These are stress values and device operation should be within recommend values.

5. Input Voltage cannot exceed V_{CC} to the extent the Maximum clamp current is exceeded.

Recommended Operating Conditions (Note 6) (@T_A = +25°C, unless otherwise specified.)

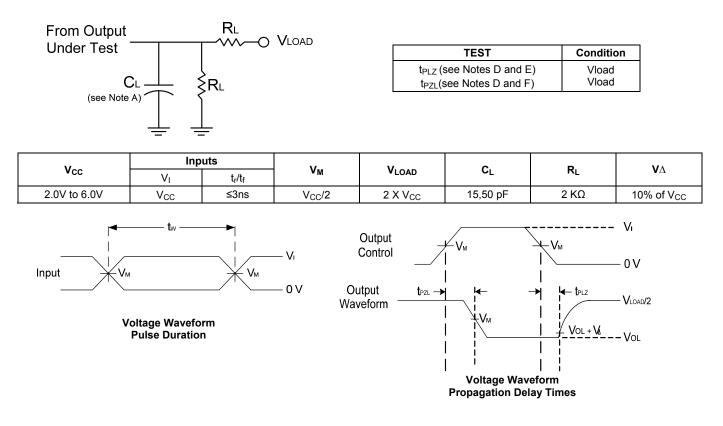
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply Voltage		2.0	6.0	V
VI	Input Voltage		0	Vcc	V
Vo	Output Voltage		0	Vcc	V
		V _{CC} = 2.0V		625	
Δt/ΔV	Input Transition Rise or Fall Rate	V _{CC} = 4.5V		140	ns/V
		V _{CC} = 6.0V		85	
T _A	Operating Free-Air Temperature		-40	+125	°C

Note: 6. Unused inputs should be held at V_{CC} or Ground.

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Sumbol	Parameter	Test Conditions	V	T _A = -40°	C to +85°C	T _A = -40°C	to +125°C	Unit
Symbol	Farameter	Test Conditions	Vcc	Min	Max	Min	Max	Unit
			2.0V	1.5		1.5		
V _{IH} High-level Input Voltage		4.5V	3.15		3.15		V	
	Voltage		6.0V	4.2		4.2		
			2.0V		0.5		0.5	
VIL	Low-level Input voltage		4.5V		1.35		1.35	V
	Volkago		6.0V		1.8		1.8	
		I _{OH} = -20μA	2.0V	1.9		1.9		v
High-level Output		I _{OH} = -20μA	4.5V	4.4		4.4		
	High-level Output Voltage	I _{OH} = -20µА	6.0V	5.9		5.9		
		I _{OH} = -4.0mA	4.5V	3.84		3.7		
		I _{OH} = -5.2mA	6.0V	5.34		5.2		
		I _{OL} = 20μA	2.0V		0.1		0.1	
		I _{OL} = 20μA	4.5V		0.1		0.1	
V _{OL}	Low-level Output Voltage	I _{OL} = 20μA	6.0V		0.1		0.1	V
	Voltage	I _{OL} = 4mA	4.5V		0.33		0.44	
		I _{OL} = 5.2mA	6.0V		0.33		0.44	
I _{OZ}	Z State Leakage Current	$V_0 = 0 \text{ to } 6.0V$ $V_1 = GND \text{ or } 6.0V$	6.0V		± 5.0		± 10	μA
II.	Input Current	V _I = GND to 5.5V	6.0V		± 1		± 1	μA
Icc	Supply Current	V_{I} = GND or V_{CC} , I_{O} = 0	6.0V		20		40	μA

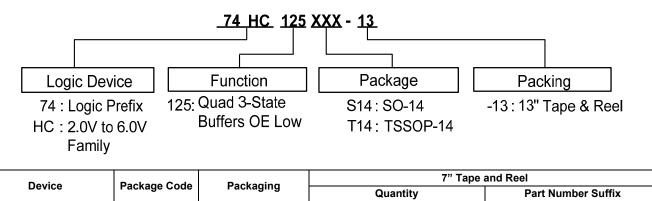
Switching Characteristics


Symphol	Deremeter	Parameter Test	N/		T _A = +25°C		-40°C to +85°C	-40°C to +125°C	Unit
Symbol	Parameter	Conditions	Vcc	Min	Тур.	Max	Max	Max	Unit
	Description	Figure 1	2.0V	_	30	100	125	150	
t _{PD}	Propagation Delay A _N to Y _N	Propagation Figure 1	4.5V	_	11	20	25	30	ns
	Delay AN IO IN	C _L = 50 pF	6.0V	—	9	17	21	26	
	Figure 4	Figure 1	2.0V	_	41	125	155	190	
$\begin{array}{c} t_{EN} & \underline{Enable Time} \\ \overline{OE}_N \text{ to } Y_N \end{array}$	Figure 1 C _L = 50 pF	4.5V	_	15	25	31	38	ns	
		6.0V	_	12	21	26	32		
		Eiguro 1	2.0V	_	41	125	155	190	
t _{DIS}	Disable Time	Figure 1 C _I = 50 pF	4.5V	_	15	25	31	38	ns
	OE to Y _N	CL = 50 pr	6.0V	_	12	21	26	32	
t _t Transition time	Liguro 1	2.0V	_	14	60	75	90		
	Transition time	Figure 1 C _L = 50 pF	4.5V	_	5	12	15	18	ns
		CL - 50 pF	6.0V	—	4	10	13	15	


Operating Characteristics (@T_A = +25°C, unless otherwise specified.)

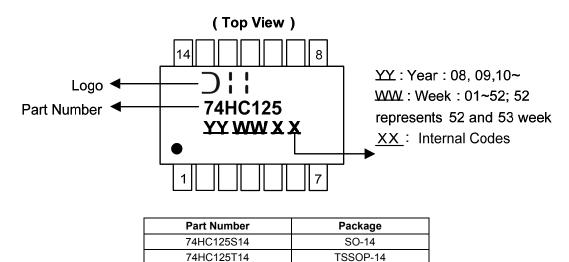
	Parameter	Test Conditions	V _{CC} = 6V Typ	Unit
C _{pd}	Power Dissipation Capacitance per Gate	f = 1MHz	22	pF
CI	Input Capacitance	$V_I = V_{CC} - or GND$	4	pF

Parameter Measurement Information



Notes: A. Includes test lead and test apparatus capacitance.

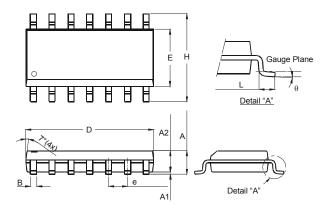
- B. All pulses are supplied at pulse repetition rate \leq 1 MHz.
- C. The inputs are measured one at a time with one transition per measurement.
- D. For the 3 state device t_{PLZ} and t_{PZL} are the same as $t_{\text{PD}}.$
- E. t_{PZL} is measured at V_M.
- D. t_{PLZ} is measured at V_{OL} +V_{Δ}.


Ordering Information

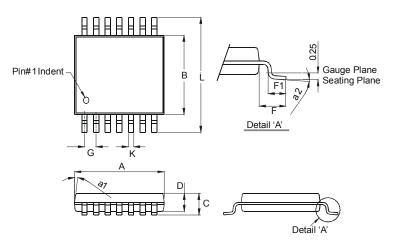
		•		Quantity	Part Number Suff
Lead-free Green	74HC125S14-13	S14	SO-14	2500/Tape & Reel	-13
Lead-free Green	74HC125T14-13	T14	TSSOP-14	2500/Tape & Reel	-13
-					

Marking Information

(1) SO-14, TSSOP-14



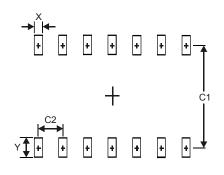
Package Outline Dimensions (All dimensions in mm.)


Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for latest version.

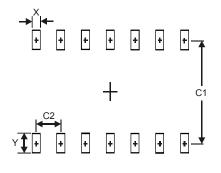
Package Type: SO-14

	SO-14				
Dim	Min	Max			
Α	1.47	1.73			
A1	0.10	0.25			
A2	1.45 Typ				
В	0.33	0.51			
D	8.53	8.74			
E	3.80	3.99			
е	1.27	Тур			
н	5.80	6.20			
L	0.38	1.27			
θ	0°	8°			
All Di	mensions	s in mm			

Package Type: TSSOP-14


	TSSOP-1	4				
Dim	m Min Max					
a1	7° (4X)				
a2	0°	8°				
Α	4.9	5.10				
в	4.30	4.50				
C	_	1.2				
D	0.8	1.05				
F	1.00	Тур				
F1	0.45	0.75				
G	0.65	Тур				
κ	0.19	0.30				
L	L 6.40 Typ					
All Dir	nension	s in mm				

Suggested Pad Layout


Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for latest version.

Package Type: SO-14

Dimensions	Value (in mm)
Х	0.60
Y	1.50
C1	5.4
C2	1.27

Package Type: TSSOP-14

Dimensions	Value (in mm)
Х	0.45
Y	1.45
C1	5.9
C2	0.65

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2013, Diodes Incorporated

www.diodes.com

Sample &

Buy

NA555, NE555, SA555, SE555

SLFS022I-SEPTEMBER 1973-REVISED SEPTEMBER 2014

xx555 Precision Timers

Technical

Documents

1 Features

- Timing From Microseconds to Hours
- Astable or Monostable Operation
- Adjustable Duty Cycle
- TTL-Compatible Output Can Sink or Source Up to 200 mA
- On Products Compliant to MIL-PRF-38535, All Parameters Are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters.

2 Applications

- Fingerprint Biometrics
- Iris Biometrics
- RFID Reader

3 Description

Tools &

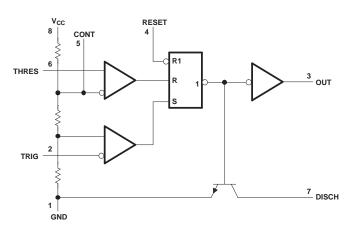
Software

These devices are precision timing circuits capable of producing accurate time delays or oscillation. In the time-delay or mono-stable mode of operation, the timed interval is controlled by a single external resistor and capacitor network. In the a-stable mode of operation, the frequency and duty cycle can be controlled independently with two external resistors and a single external capacitor.

Support &

Community

20


The threshold and trigger levels normally are twothirds and one-third, respectively, of V_{CC} . These levels can be altered by use of the control-voltage terminal. When the trigger input falls below the trigger level, the flip-flop is set, and the output goes high. If the trigger input is above the trigger level and the threshold input is above the threshold level, the flipflop is reset and the output is low. The reset (RESET) input can override all other inputs and can be used to initiate a new timing cycle. When RESET goes low, the flip-flop is reset, and the output goes low. When the output is low, a low-impedance path is provided between discharge (DISCH) and ground.

The output circuit is capable of sinking or sourcing current up to 200 mA. Operation is specified for supplies of 5 V to 15 V. With a 5-V supply, output levels are compatible with TTL inputs.

PART NUMBER	PACKAGE	BODY SIZE (NOM)							
	PDIP (8)	9.81 mm × 6.35 mm							
WEEE	SOP (8)	6.20 mm × 5.30 mm							
xx555	TSSOP (8)	3.00 mm × 4.40 mm							
	SOIC (8)	4.90 mm × 3.91 mm							

(1) For all available packages, see the orderable addendum at the end of the datasheet.

4 Simplified Schematic

2

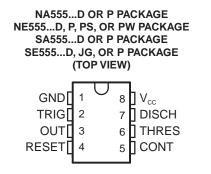
Table of Contents

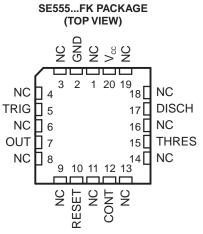
1	Feat	tures 1
2	Арр	lications1
3	Des	cription 1
4	Sim	plified Schematic1
5	Rev	ision History 2
6	Pin	Configuration and Functions 3
7	Spe	cifications 4
	7.1	Absolute Maximum Ratings 4
	7.2	Handling Ratings 4
	7.3	Recommended Operating Conditions 4
	7.4	Electrical Characteristics 5
	7.5	Operating Characteristics 6
	7.6	Typical Characteristics 7
8	Deta	ailed Description9

	8.1	Overview	9
	8.2	Functional Block Diagram	9
	8.3	Feature Description	9
	8.4	Device Functional Modes	12
9	Арр	lications and Implementation	13
	9.1	Application Information	13
	9.2	Typical Applications	13
10	Pow	ver Supply Recommendations	18
11	Dev	ice and Documentation Support	19
	11.1	Related Links	19
	11.2	Trademarks	19
	11.3	Electrostatic Discharge Caution	19
	11.4	Glossary	19
12	Mec	hanical, Packaging, and Orderable	
		rmation	19

Copyright © 1973–2014, Texas Instruments Incorporated

5 Revision History


Ch	nanges from Revision H (June 2010) to Revision I	Page
•	Updated document to new TI enhanced data sheet format.	1
•	Deleted Ordering Information table.	1
•	Added Military Disclaimer to Features list.	1
•	Added Applications.	1
•	Added Device Information table.	1
•	Moved T _{stg} to Handling Ratings table	4
	Added DISCH switch on-state voltage parameter	
•	Added Device and Documentation Support section.	19
•	Added ESD warning.	19
	Added Mechanical, Packaging, and Orderable Information section	



www.ti.com

6 Pin Configuration and Functions

NC - No internal connection

	Pin Functions								
	PIN								
NAME	D, P, PS, PW, JG	FK	I/O	DESCRIPTION					
	N	0.							
CONT	5	12	I/O	Controls comparator thresholds, Outputs 2/3 VCC, allows bypass capacitor connection					
DISCH	7	17	0	Open collector output to discharge timing capacitor					
GND	1	2	_	Ground					
NC		1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19	_	No internal connection					
OUT	3	7	0	High current timer output signal					
RESET	4	10	I	Active low reset input forces output and discharge low.					
THRES	6	15	I	End of timing input. THRES > CONT sets output low and discharge low					
TRIG	2	5	I	Start of timing input. TRIG < 1/2 CONT sets output high and discharge open					
V _{CC}	8	20	_	Input supply voltage, 4.5 V to 16 V. (SE555 maximum is 18 V)					

Pin Functions

Specifications 7

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT		
V _{CC}	Supply voltage ⁽²⁾			18	V		
VI	Input voltage	CONT, RESET, THRES, TRIG		V _{CC}	V		
I _O	Output current		±225	mA			
		D package		97			
0	Declars the median of $(3)(4)$	P package		85	°C/W		
θ_{JA}	Package thermal impedance ⁽³⁾⁽⁴⁾	PS package		95			
		PW package		149			
0	Package thermal impedance ⁽⁵⁾⁽⁶⁾	FK package		5.61	°C/W		
θ _{JC}	Package therman impedance (*/(*)	JG package		14.5	°C/W		
TJ	Operating virtual junction temperature			150	°C		
	Case temperature for 60 s	FK package		260	°C		
	Lead temperature 1,6 mm (1/16 in) from case for 60 s	JG package		300	°C		

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values are with respect to GND. (2)

Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient (3) temperature is $P_D = (T_J(max) - T_A) / \theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

The package thermal impedance is calculated in accordance with JESD 51-7. (4)(5)

Maximum power dissipation is a function of T_J(max), θ_{JC}, and T_C. The maximum allowable power dissipation at any allowable case temperature is $P_D = (T_J(max) - T_C) / \theta_{JC}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

The package thermal impedance is calculated in accordance with MIL-STD-883. (6)

7.2 Handling Ratings

PARAMETER	DEFINITION	MIN	MAX	UNIT
T _{stg}	Storage temperature range	-65	150	°C

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V	Supply voltage	NA555, NE555, SA555		16	V	
V _{CC}	Supply voltage	SE555	4.5	18	8 V	
VI	Input voltage	CONT, RESET, THRES, and TRIG		V_{CC}	V	
lo	Output current			±200	mA	
		NA555	-40	105		
-		NE555	0	70	°C	
IA	Operating free-air temperature	SA555	-40	85		
		SE555	-55	125		

4

7.4 Electrical Characteristics

 $V_{CC} = 5 V$ to 15 V, $T_A = 25^{\circ}C$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SE555		NA555 NE555 SA555			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX	
THRES voltage level	V _{CC} = 15 V		9.4	10	10.6	8.8	10	11.2	V
	$V_{CC} = 5 V$		2.7	3.3	4	2.4	3.3	4.2	V
THRES current ⁽¹⁾				30	250		30	250	nA
	V _{CC} = 15 V		4.8	5	5.2	4.5	5	5.6	
TRIG voltage level		$T_A = -55^{\circ}C$ to $125^{\circ}C$	3		6				V
The voltage level	$V_{CC} = 5 V$		1.45	1.67	1.9	1.1	1.67	2.2	v
	V _{CC} = 5 V	$T_A = -55^{\circ}C$ to $125^{\circ}C$			1.9				
TRIG current	TRIG at 0 V			0.5	0.9		0.5	2	μA
RESET voltage level			0.3	0.7	1	0.3	0.7	1	V
KESET Voltage level	$T_A = -55^{\circ}C$ to $125^{\circ}C$				1.1				v
RESET current	RESET at V _{CC}			0.1	0.4		0.1	0.4	mA
RESET current	RESET at 0 V			-0.4	-1		-0.4	-1.5	ШA
DISCH switch off-state current				20	100		20	100	nA
DISCH switch on-state voltage	$V_{CC} = 5 \text{ V}, \text{ I}_{O} = 8 \text{ mA}$						0.15	0.4	V
	V _{CC} = 15 V		9.6	10	10.4	9	10	11	
CONT voltage (open circuit)		$T_A = -55^{\circ}C$ to $125^{\circ}C$	9.6		10.4				V
	V _{CC} = 5 V		2.9	3.3	3.8	2.6	3.3	4	v
		$T_A = -55^{\circ}C$ to $125^{\circ}C$	2.9		3.8				
	V 45.V 1 40 mA			0.1	0.15		0.1	0.25	-
	$V_{CC} = 15 \text{ V}, \text{ I}_{OL} = 10 \text{ mA}$	$T_A = -55^{\circ}C$ to $125^{\circ}C$			0.2				
	\/ 15\/ L 50 mA			0.4	0.5		0.4	0.75	
	$V_{CC} = 15 \text{ V}, \text{ I}_{OL} = 50 \text{ mA}$	$T_A = -55^{\circ}C$ to $125^{\circ}C$			1				
	\/			2	2.2		2	2.5	
Low-level output voltage	$V_{CC} = 15 \text{ V}, \text{ I}_{OL} = 100 \text{ mA}$	$T_A = -55^{\circ}C$ to $125^{\circ}C$			2.7				V
	$V_{CC} = 15 \text{ V}, I_{OL} = 200 \text{ mA}$			2.5			2.5		
	$V_{CC} = 5 \text{ V}, \text{ I}_{OL} = 3.5 \text{ mA}$	$T_A = -55^{\circ}C$ to $125^{\circ}C$			0.35				
				0.1	0.2		0.1	0.35	
	$V_{CC} = 5 \text{ V}, \text{ I}_{OL} = 5 \text{ mA}$	$T_A = -55^{\circ}C$ to $125^{\circ}C$			0.8				
	$V_{CC} = 5 \text{ V}, \text{ I}_{OL} = 8 \text{ mA}$	1		0.15	0.25		0.15	0.4	
			13	13.3		12.75	13.3		
	$V_{CC} = 15 \text{ V}, \text{ I}_{OH} = -100 \text{ mA}$	$T_A = -55^{\circ}C$ to $125^{\circ}C$	12						
High-level output voltage	$V_{CC} = 15 \text{ V}, \text{ I}_{OH} = -200 \text{ mA}$			12.5			12.5		V
			3	3.3		2.75	3.3		
	$V_{CC} = 5 \text{ V}, \text{ I}_{OH} = -100 \text{ mA}$	$T_A = -55^{\circ}C$ to $125^{\circ}C$	2						
		V _{CC} = 15 V		10	12		10	15	
	Output low, No load	$V_{CC} = 5 V$		3	5		3	6	
Supply current		V _{CC} = 15 V		9	10		9	13	mA
	Output high, No load	$V_{CC} = 5 V$		2	4		2	5	

(1) This parameter influences the maximum value of the timing resistors R_A and R_B in the circuit of Figure 12. For example, when $V_{CC} = 5 V$, the maximum value is $R = R_A + R_B \approx 3.4 M\Omega$, and for $V_{CC} = 15 V$, the maximum value is 10 M Ω .

NA555, NE555, SA555, SE555

SLFS022I-SEPTEMBER 1973-REVISED SEPTEMBER 2014

7.5 Operating Characteristics

 V_{CC} = 5 V to 15 V, T_A = 25°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS ⁽¹⁾	:	SE555		i	NA555 NE555 SA555		UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
Initial error of timing	Each timer, monostable ⁽³⁾	$T_A = 25^{\circ}C$		0.5	1.5 ⁽⁴⁾		1	3	%
interval ⁽²⁾	Each timer, astable ⁽⁵⁾			1.5			2.25		%
Temperature coefficient of	Each timer, monostable ⁽³⁾	$T_A = MIN \text{ to } MAX$		30	100 ⁽⁴⁾		50		ppm/
timing interval	Each timer, astable ⁽⁵⁾			90			150		°C
Supply-voltage sensitivity of	Each timer, monostable ⁽³⁾	$T_A = 25^{\circ}C$		0.05	0.2 ⁽⁴⁾		0.1	0.5	%/V
timing interval	Each timer, astable ⁽⁵⁾			0.15			0.3		%)/V
Output-pulse rise time		C _L = 15 pF, T _A = 25°C		100	200 ⁽⁴⁾		100	300	ns
Output-pulse fall time		C _L = 15 pF, T _A = 25°C		100	200 ⁽⁴⁾		100	300	ns

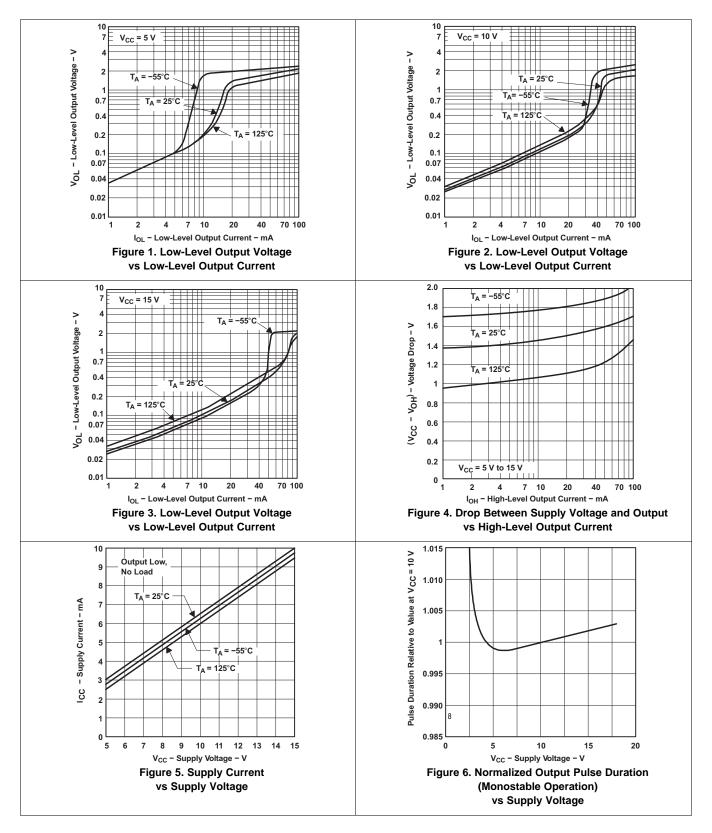
(1) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

(2) Timing interval error is defined as the difference between the measured value and the average value of a random sample from each process run.

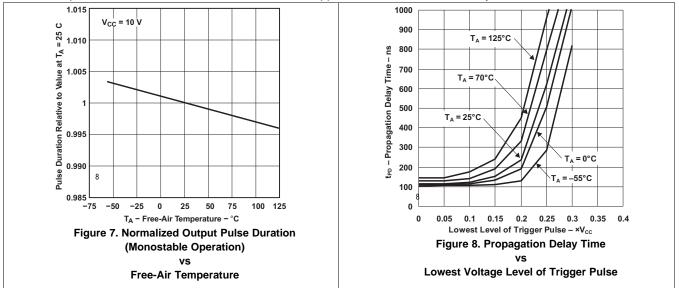
(3) Values specified are for a device in a monostable circuit similar to Figure 9, with the following component values: $R_A = 2 k\Omega$ to 100 k Ω , $C = 0.1 \mu$ F.

(4) On products compliant to MIL-PRF-38535, this parameter is not production tested.

(5) Values specified are for a device in an astable circuit similar to Figure 12, with the following component values: $R_A = 1 \ k\Omega$ to 100 k Ω , $C = 0.1 \ \mu$ F.


6

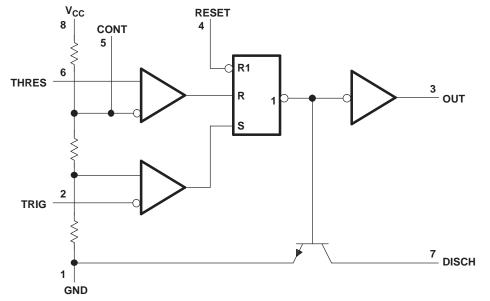
www.ti.com


7.6 Typical Characteristics

Data for temperatures below -40°C and above 105°C are applicable for SE555 circuits only.

Typical Characteristics (continued)

Data for temperatures below -40°C and above 105°C are applicable for SE555 circuits only.



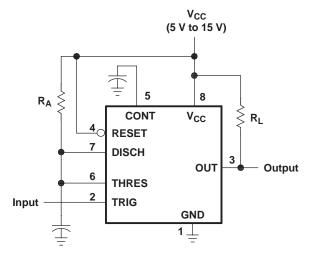
8 Detailed Description

8.1 Overview

The xx555 timer is a popular and easy to use for general purpose timing applications from 10 μ s to hours or from < 1mHz to 100 kHz. In the time-delay or mono-stable mode of operation, the timed interval is controlled by a single external resistor and capacitor network. In the a-stable mode of operation, the frequency and duty cycle can be controlled independently with two external resistors and a single external capacitor. Maximum output sink and discharge sink current is greater for higher VCC and less for lower VCC.

8.2 Functional Block Diagram

- A. Pin numbers shown are for the D, JG, P, PS, and PW packages.
- B. RESET can override TRIG, which can override THRES.


8.3 Feature Description

8.3.1 Mono-stable Operation

For mono-stable operation, any of these timers can be connected as shown in Figure 9. If the output is low, application of a negative-going pulse to the trigger (TRIG) sets the flip-flop (\overline{Q} goes low), drives the output high, and turns off Q1. Capacitor C then is charged through R_A until the voltage across the capacitor reaches the threshold voltage of the threshold (THRES) input. If TRIG has returned to a high level, the output of the threshold comparator resets the flip-flop (\overline{Q} goes high), drives the output low, and discharges C through Q1.

Feature Description (continued)

Pin numbers shown are for the D, JG, P, PS, and PW packages.

Figure 9. Circuit for Monostable Operation

Monostable operation is initiated when TRIG voltage falls below the trigger threshold. Once initiated, the sequence ends only if TRIG is high for at least 10 µs before the end of the timing interval. When the trigger is grounded, the comparator storage time can be as long as 10 µs, which limits the minimum monostable pulse width to 10 µs. Because of the threshold level and saturation voltage of Q1, the output pulse duration is approximately tw = 1.1R_AC. Figure 11 is a plot of the time constant for various values of R_A and C. The threshold levels and charge rates both are directly proportional to the supply voltage, V_{CC} . The timing interval is, therefore, independent of the supply voltage, so long as the supply voltage is constant during the time interval.

Applying a negative-going trigger pulse simultaneously to RESET and TRIG during the timing interval discharges C and reinitiates the cycle, commencing on the positive edge of the reset pulse. The output is held low as long as the reset pulse is low. To prevent false triggering, when RESET is not used, it should be connected to V_{CC}.

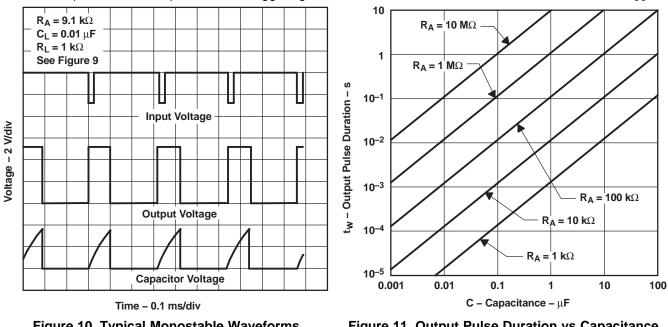
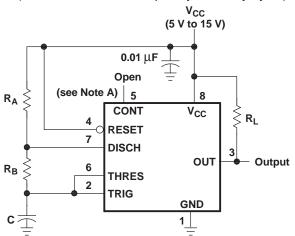
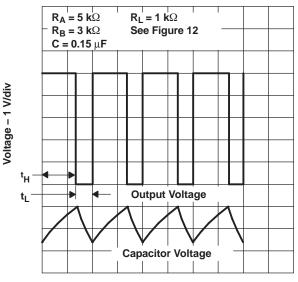


Figure 11. Output Pulse Duration vs Capacitance



Feature Description (continued)

8.3.2 A-stable Operation


As shown in Figure 12, adding a second resistor, R_B , to the circuit of Figure 9 and connecting the trigger input to the threshold input causes the timer to self-trigger and run as a multi-vibrator. The capacitor C charges through R_A and R_B and then discharges through R_B only. Therefore, the duty cycle is controlled by the values of R_A and R_B .

This astable connection results in capacitor C charging and discharging between the threshold-voltage level (\approx 0.67 × V_{CC}) and the trigger-voltage level (\approx 0.33 × V_{CC}). As in the mono-stable circuit, charge and discharge times (and, therefore, the frequency and duty cycle) are independent of the supply voltage.

Pin numbers shown are for the D, JG, P, PS, and PW packages. NOTE A: Decoupling CONT voltage to ground with a capacitor can improve operation. This should be evaluated for individual applications.

Figure 12. Circuit for Astable Operation

Time – 0.5 ms/div

Figure 13. Typical Astable Waveforms

Figure 12 shows typical waveforms generated during astable operation. The output high-level duration t_H and low-level duration t_L can be calculated as follows:

$$t_{\rm H} = 0.693 \left({\rm R}_{\rm A} + {\rm R}_{\rm B} \right) {\rm C}$$
 (1)
 $t_{\rm L} = 0.693 \left({\rm R}_{\rm B} \right) {\rm C}$ (2)

Other useful relationships are shown below:

 $period = t_{H} + t_{L} = 0.693 \left(R_{A} + 2R_{B} \right) C$ (3) 1.44

$$\approx \frac{1}{(R_{A} + 2R_{B})C}$$
(4)

Output driver duty cycle = $\frac{t_L}{t_H + t_L} = \frac{r_B}{R_A + 2R_B}$

Output waveform duty cycle =
$$\frac{t_{H}}{t_{H} + t_{L}} = 1 - \frac{R_{B}}{R_{A} + 2R_{B}}$$
 (6)

Low-to-high ratio =
$$\frac{t_L}{t_H} = \frac{R_B}{R_A + R_B}$$
 (7)

(5)

Feature Description (continued)

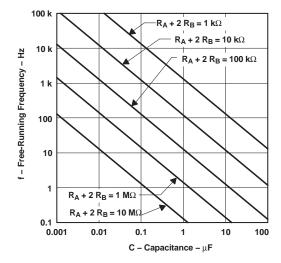


Figure 14. Free-Running Frequency

8.3.3 Frequency Divider

By adjusting the length of the timing cycle, the basic circuit of Figure 9 can be made to operate as a frequency divider. Figure 15 shows a divide-by-three circuit that makes use of the fact that re-triggering cannot occur during the timing cycle.

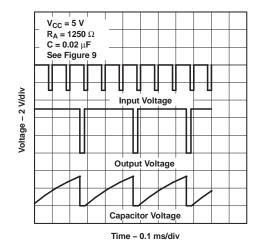


Figure 15. Divide-by-Three Circuit Waveforms

8.4 Device Functional Modes

RESET	TRIGGER VOLTAGE ⁽¹⁾	THRESHOLD VOLTAGE ⁽¹⁾	OUTPUT	DISCHARGE SWITCH		
Low	Irrelevant	Irrelevant	Low	On		
High	<1/3 V _{CC}	Irrelevant	High	Off		
High	>1/3 V _{CC}	>2/3 V _{CC}	Low	On		
High	>1/3 V _{CC}	<2/3 V _{CC}	As previously established			

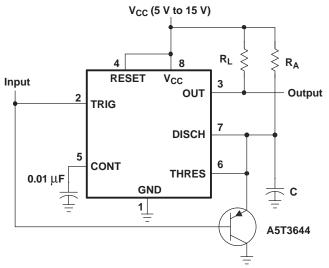
Table 1. Function Table

(1) Voltage levels shown are nominal.

9 Applications and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.


9.1 Application Information

The xx555 timer devices use resistor and capacitor charging delay to provide a programmable time delay or operating frequency. This section presents a simplified discussion of the design process.

9.2 Typical Applications

9.2.1 Missing-Pulse Detector

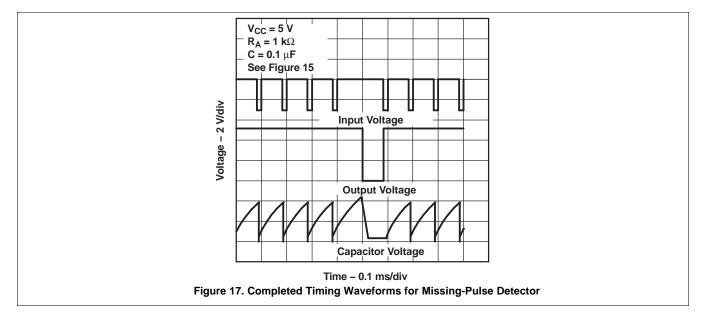
The circuit shown in Figure 16 can be used to detect a missing pulse or abnormally long spacing between consecutive pulses in a train of pulses. The timing interval of the monostable circuit is re-triggered continuously by the input pulse train as long as the pulse spacing is less than the timing interval. A longer pulse spacing, missing pulse, or terminated pulse train permits the timing interval to be completed, thereby generating an output pulse as shown in Figure 17.

Pin numbers shown are shown for the D, JG, P, PS, and PW packages.

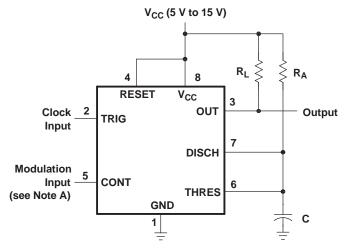
Figure 16. Circuit for Missing-Pulse Detector

9.2.1.1 Design Requirements

Input fault (missing pulses) must be input high. Input stuck low will not be detected because timing capacitor "C" will remain discharged.


9.2.1.2 Detailed Design Procedure

Choose R_A and C so that $R_A \times C > [maximum normal input high time]$. R_L improves V_{OH} , but it is not required for TTL compatibility.


Typical Applications (continued)

9.2.1.3 Application Curves

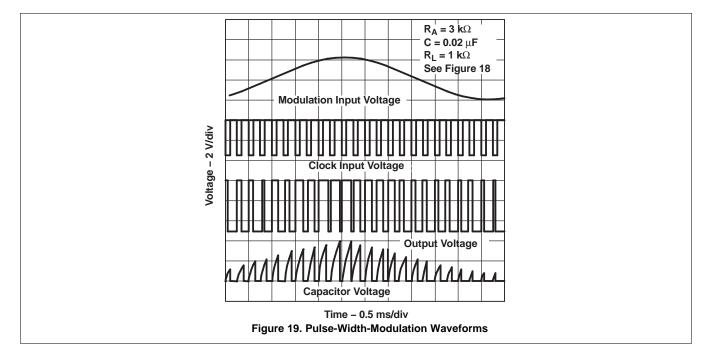
9.2.2 Pulse-Width Modulation

The operation of the timer can be modified by modulating the internal threshold and trigger voltages, which is accomplished by applying an external voltage (or current) to CONT. Figure 18 shows a circuit for pulse-width modulation. A continuous input pulse train triggers the monostable circuit, and a control signal modulates the threshold voltage. Figure 19 shows the resulting output pulse-width modulation. While a sine-wave modulation signal is shown, any wave shape could be used.

Pin numbers shown are for the D, JG, P, PS, and PW packages.

NOTE A: The modulating signal can be direct or capacitively coupled to CONT. For direct coupling, the effects of modulation source voltage and impedance on the bias of the timer should be considered.

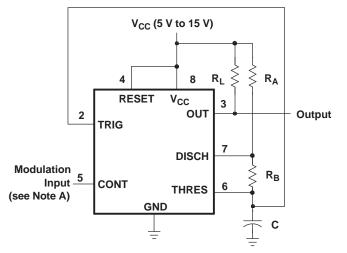
Typical Applications (continued)


9.2.2.1 Design Requirements

Clock input must have V_{OL} and V_{OH} levels that are less than and greater than 1/3 VCC. Modulation input can vary from ground to VCC. The application must be tolerant of a nonlinear transfer function; the relationship between modulation input and pulse width is not linear because the capacitor charge is based RC on an negative exponential curve.

9.2.2.2 Detailed Design Procedure

Choose R_A and C so that $R_A \times C = 1/4$ [clock input period]. R_L improves V_{OH} , but it is not required for TTL compatibility.


9.2.2.3 Application Curves

9.2.3 Pulse-Position Modulation

As shown in Figure 20, any of these timers can be used as a pulse-position modulator. This application modulates the threshold voltage and, thereby, the time delay, of a free-running oscillator. Figure 21 shows a triangular-wave modulation signal for such a circuit; however, any wave shape could be used.

Typical Applications (continued)

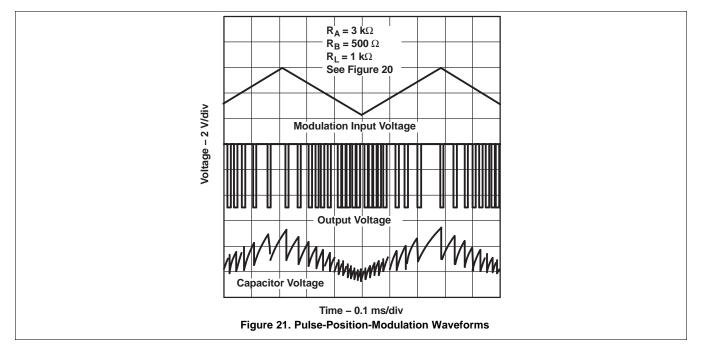
Pin numbers shown are for the D, JG, P, PS, and PW packages.

NOTE A: The modulating signal can be direct or capacitively coupled to CONT. For direct coupling, the effects of modulation source voltage and impedance on the bias of the timer should be considered.

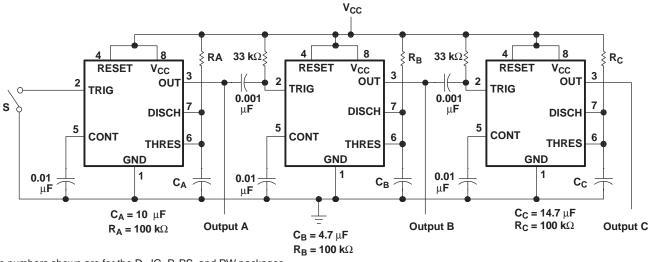
Figure 20. Circuit for Pulse-Position Modulation

9.2.3.1 Design Requirements

Both DC and AC coupled modulation input will change the upper and lower voltage thresholds for the timing capacitor. Both frequency and duty cycle will vary with the modulation voltage.


9.2.3.2 Detailed Design Procedure

The nominal output frequency and duty cycle can be determined using formulas in A-stable Operation section. R_L improves V_{OH} , but it is not required for TTL compatibility.


Typical Applications (continued)

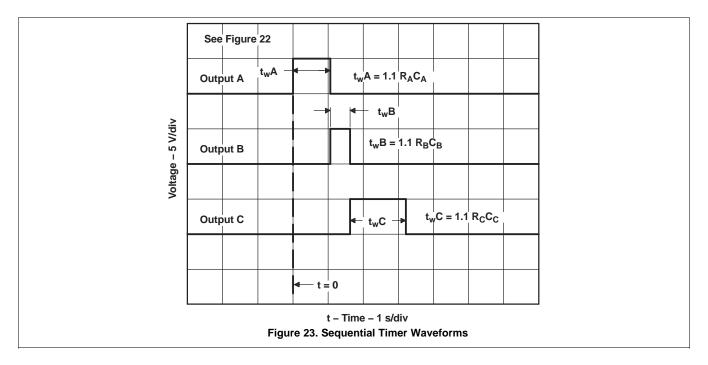
9.2.3.3 Application Curves

9.2.4 Sequential Timer

Many applications, such as computers, require signals for initializing conditions during start-up. Other applications, such as test equipment, require activation of test signals in sequence. These timing circuits can be connected to provide such sequential control. The timers can be used in various combinations of astable or monostable circuit connections, with or without modulation, for extremely flexible waveform control. Figure 22 shows a sequencer circuit with possible applications in many systems, and Figure 23 shows the output waveforms.

Pin numbers shown are for the D, JG, P, PS, and PW packages. NOTE A: S closes momentarily at t = 0.

Typical Applications (continued)


9.2.4.1 Design Requirements

The sequential timer application chains together multiple mono-stable timers. The joining components are the 33- $k\Omega$ resistors and 0.001- μ F capacitors. The output high to low edge passes a 10- μ s start pulse to the next monostable.

9.2.4.2 Detailed Design Procedure

The timing resistors and capacitors can be chosen using this formula. $t_w = 1.1 \times R \times C$.

9.2.4.3 Application Curves

10 Power Supply Recommendations

The devices are designed to operate from an input voltage supply range between 4.5 V and 16 V. (18 V for SE555). A bypass capacitor is highly recommended from VCC to ground pin; ceramic 0.1 μ F capacitor is sufficient.

11 Device and Documentation Support

11.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER SAMPLE & BUY		TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
NA555	Click here	Click here	Click here	Click here	Click here
NE555	Click here	Click here	Click here	Click here	Click here
SA555	Click here	Click here	Click here	Click here	Click here
SE555	Click here	Click here	Click here	Click here	Click here

Table 2. Related Links

11.2 Trademarks

All trademarks are the property of their respective owners.

11.3 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

29-Mar-2019

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
JM38510/10901BPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510 /10901BPA	Samples
M38510/10901BPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510 /10901BPA	Samples
NA555D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	NA555	Samples
NA555DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	NA555	Samples
NA555DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	NA555	Samples
NA555P	ACTIVE	PDIP	Ρ	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	N / A for Pkg Type	-40 to 105	NA555P	Samples
NA555PE4	ACTIVE	PDIP	Ρ	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 105	NA555P	Samples
NE555D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	NE555	Samples
NE555DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	NE555	Samples
NE555DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 70	NE555	Samples
NE555DRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	NE555	Samples
NE555DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	NE555	Samples
NE555P	ACTIVE	PDIP	Ρ	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	N / A for Pkg Type	0 to 70	NE555P	Samples
NE555PE4	ACTIVE	PDIP	Ρ	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	NE555P	Samples
NE555PS	ACTIVE	SO	PS	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		N555	Samples
NE555PSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	N555	Samples
NE555PSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	N555	Samples

PACKAGE OPTION ADDENDUM

29-Mar-2019

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
NE555PSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	N555	Sample
NE555PW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	N555	Sample
NE555PWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	N555	Sample
NE555PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	N555	Sample
NE555PWRE4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	N555	Sample
NE555PWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	N555	Sample
SA555D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	SA555	Sample
SA555DE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	SA555	Sample
SA555DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	SA555	Sample
SA555DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 85	SA555	Sample
SA555DRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM -40 to 85		SA555	Sample
SA555DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	SA555	Sample
SA555P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	SA555P	Sample
SA555PE4	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	SA555P	Sample
SE555D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	SE555	Sample
SE555DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	SE555	Sample
SE555DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	SE555	Sample
SE555DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	SE555	Sample

29-Mar-2019

Orderable Device		Package Type	Package Drawing	Pins	-	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SE555FKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SE555FKB	Samples
SE555JG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	SE555JG	Samples
SE555JGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	SE555JGB	Samples
SE555P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	SE555P	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

29-Mar-2019

OTHER QUALIFIED VERSIONS OF SE555, SE555M :

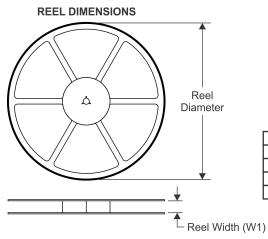
Catalog: SE555

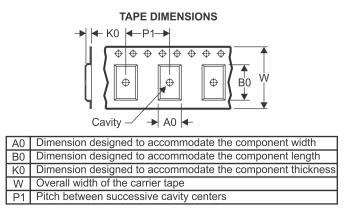
Military: SE555M

• Space: SE555-SP, SE555-SP

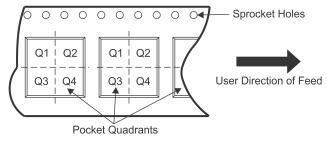
NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product


- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

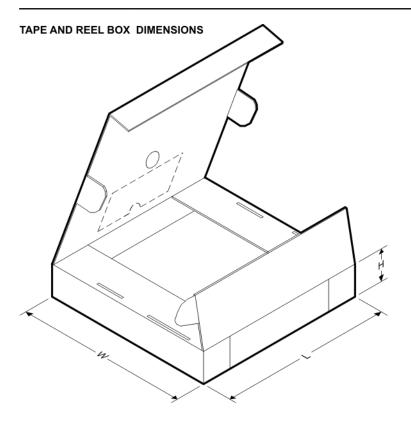

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

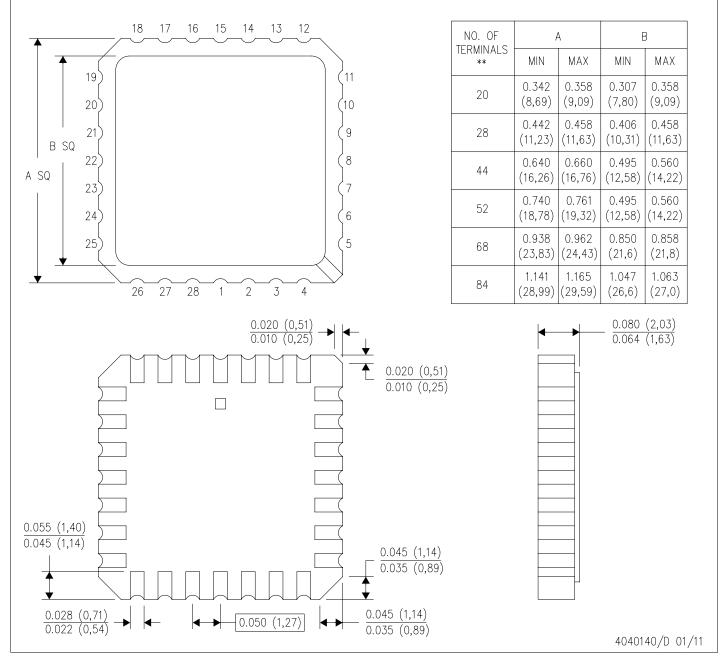
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
NA555DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
NA555DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
NE555DR	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
NE555DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
NE555DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
NE555DR	SOIC	D	8	2500	330.0	15.4	6.4	5.2	2.1	8.0	12.0	Q1
NE555DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
NE555DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
NE555PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
SA555DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SA555DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SE555DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SE555DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

Texas Instruments

www.ti.com

PACKAGE MATERIALS INFORMATION


27-Jun-2019

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
NA555DR	SOIC	D	8	2500	367.0	367.0	35.0
NA555DR	SOIC	D	8	2500	340.5	338.1	20.6
NE555DR	SOIC	D	8	2500	364.0	364.0	27.0
NE555DR	SOIC	D	8	2500	340.5	338.1	20.6
NE555DR	SOIC	D	8	2500	367.0	367.0	35.0
NE555DR	SOIC	D	8	2500	333.2	345.9	28.6
NE555DRG4	SOIC	D	8	2500	340.5	338.1	20.6
NE555DRG4	SOIC	D	8	2500	367.0	367.0	35.0
NE555PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
SA555DR	SOIC	D	8	2500	340.5	338.1	20.6
SA555DRG4	SOIC	D	8	2500	340.5	338.1	20.6
SE555DR	SOIC	D	8	2500	350.0	350.0	43.0
SE555DRG4	SOIC	D	8	2500	350.0	350.0	43.0

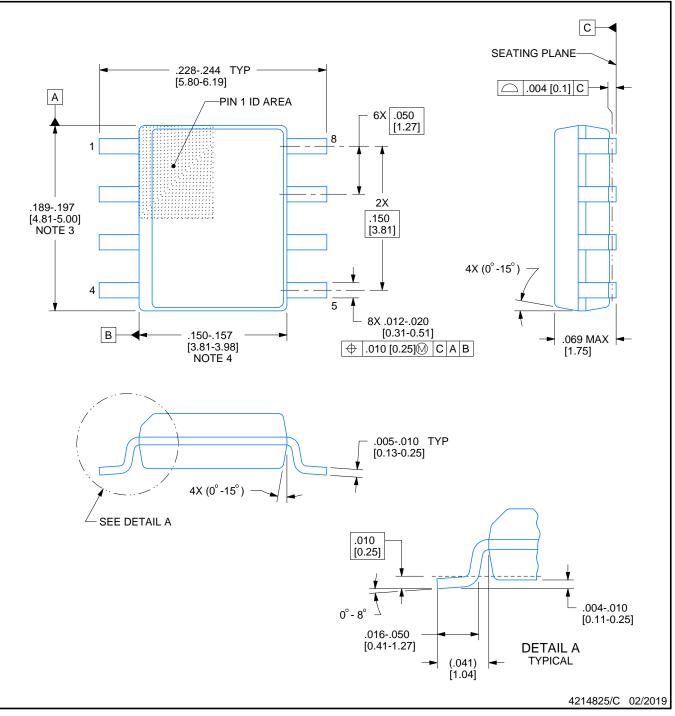
LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004


D0008A

PACKAGE OUTLINE

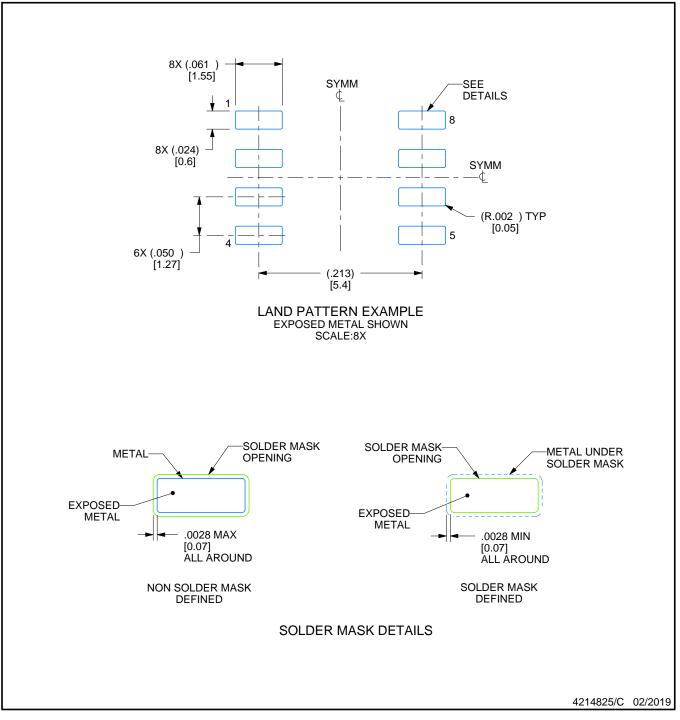
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.



D0008A

EXAMPLE BOARD LAYOUT

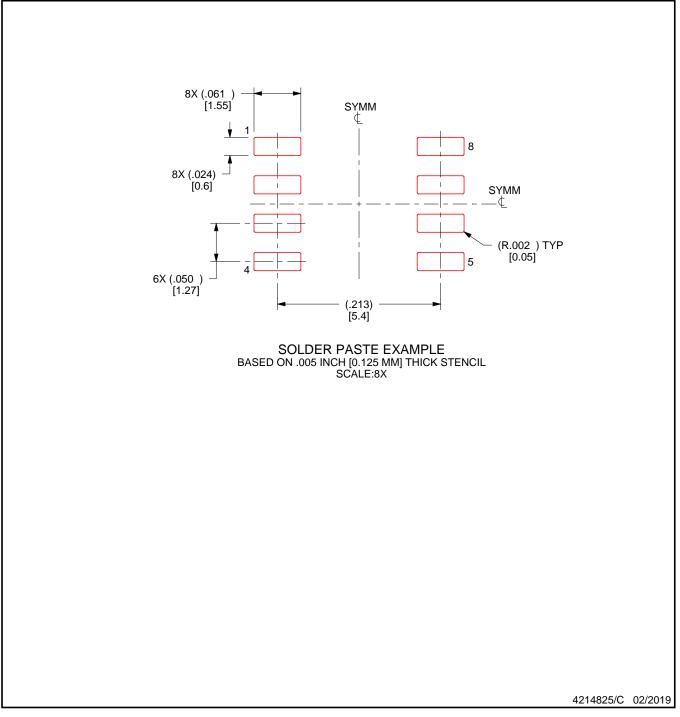
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



D0008A

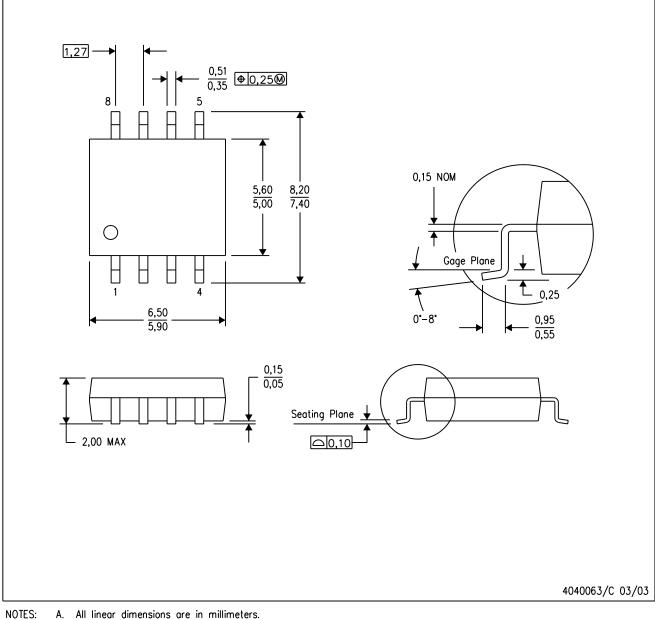
EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

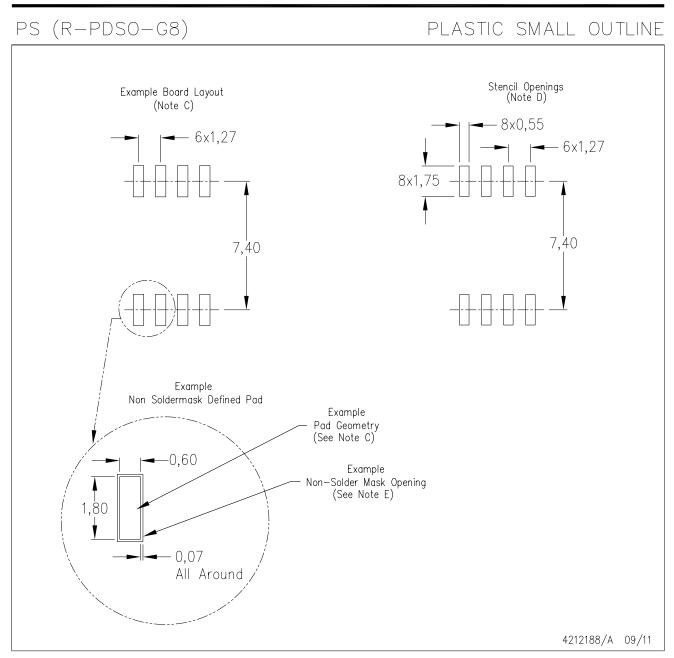
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

PS (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE



A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

NOTES:

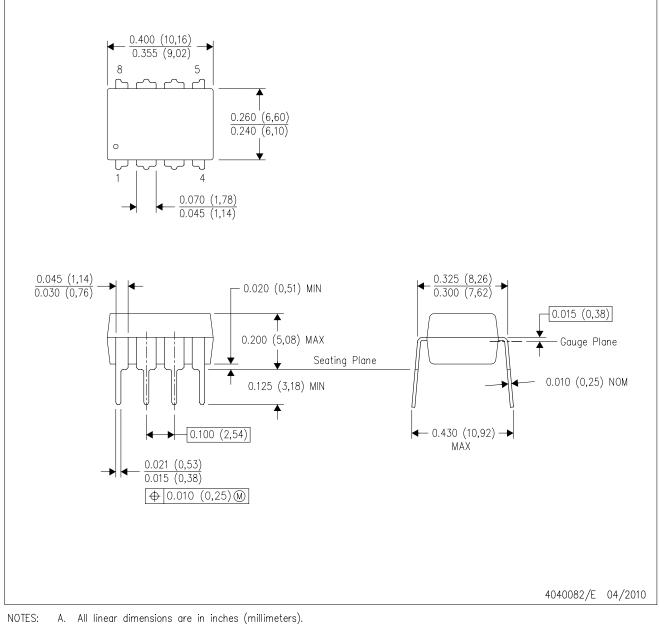
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



MECHANICAL DATA

MCER001A - JANUARY 1995 - REVISED JANUARY 1997

CERAMIC DUAL-IN-LINE

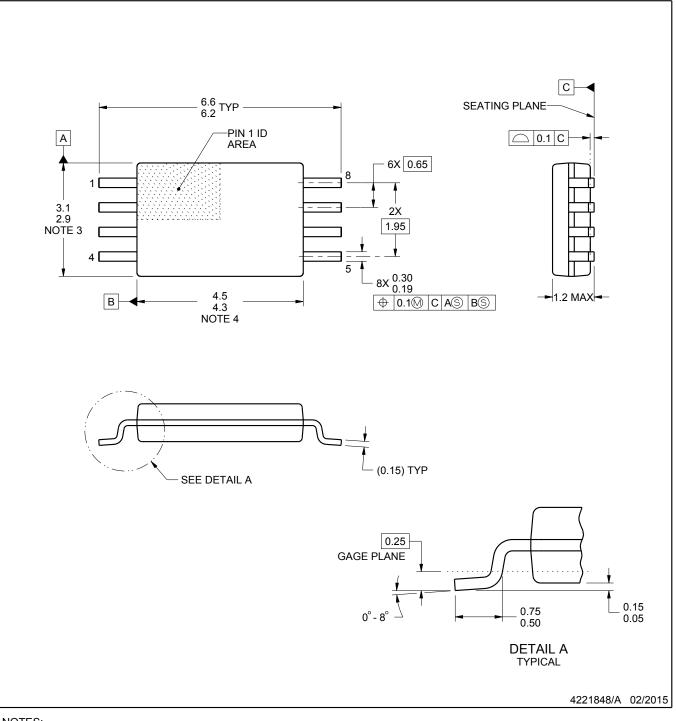

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.


PW0008A

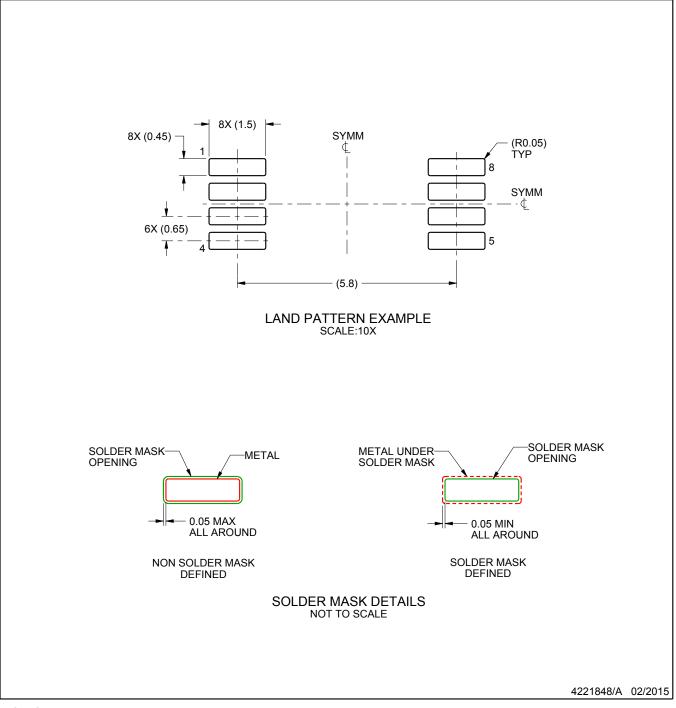
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.



PW0008A

EXAMPLE BOARD LAYOUT

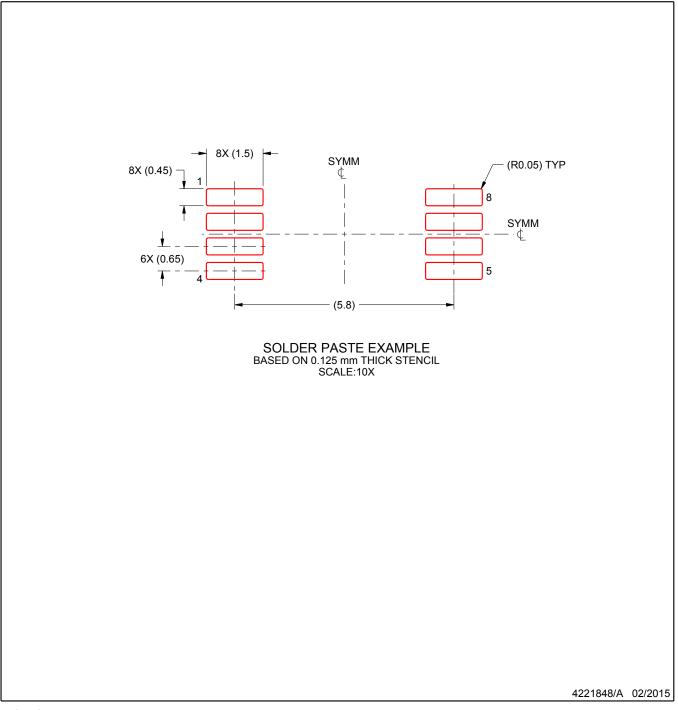
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0008A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated

Sample &

Buy

SN54HC595, SN74HC595

SCLS0411-DECEMBER 1982-REVISED SEPTEMBER 2015

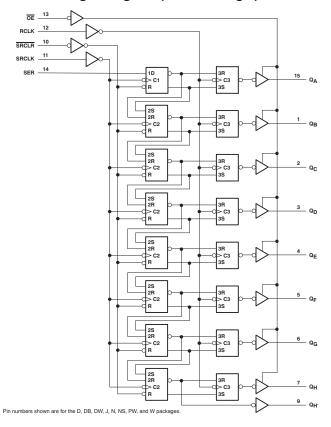
SNx4HC595 8-Bit Shift Registers With 3-State Output Registers

1 Features

- 8-Bit Serial-In, Parallel-Out Shift
- Wide Operating Voltage Range of 2 V to 6 V
- High-Current 3-State Outputs Can Drive Up to 15 LSTTL Loads
- Low Power Consumption: 80-µA (Maximum) I_{CC}
- t_{pd} = 13 ns (Typical)
- ±6-mA Output Drive at 5 V
- Low Input Current: 1 µA (Maximum)
- Shift Register Has Direct Clear
- On Products Compliant to MIL-PRF-38535, All Parameters Are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters.

Applications 2

- **Network Switches**
- **Power Infrastructure**
- LED Displays
- Servers


3 Description

The SNx4HC595 devices contain an 8-bit, serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has parallel 3state outputs. Separate clocks are provided for both the shift and storage register. The shift register has a direct overriding clear (SRCLR) input, serial (SER) input, and serial outputs for cascading. When the output-enable (OE) input is high, the outputs are in the high-impedance state.

Device	Inform	ation ⁽¹⁾
--------	--------	----------------------

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN54HC595	LCCC (20)	8.89 mm x 8.89 mm
5103400395	CDIP (16)	21.34 mm x 6.92 mm
	PDIP (16)	19.31 mm × 6.35 mm
	SOIC (16)	9.90 mm x 3.90 mm
SN74HC595	SOIC (16)	10.30 mm x 7.50 mm
	SSOP (16)	6.20 mm x 5.30 mm
	TSSOP (16)	5.00 mm x 4.40 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

2

Table of Contents

Features 1	9.2 Functional Block Diagram 12
Applications 1	9.3 Feature Description 13
Description1	9.4 Device Functional Modes 13
Revision History	Application and Implementation 14
Device Comparison Table	10.1 Application Information 14
Pin Configuration and Functions 4	10.2 Typical Application 14
Specifications	Power Supply Recommendations 16
7.1 Absolute Maximum Ratings	Layout 16
7.2 ESD Ratings	12.1 Layout Guidelines 16
7.3 Recommended Operating Conditions	12.2 Layout Example 16
7.4 Thermal Information	Device and Documentation Support 17
7.5 Electrical Characteristics	13.1 Documentation Support 17
7.6 Timing Requirements 7	13.2 Related Links 17
7.7 Switching Characteristics	13.3 Community Resources 17
7.8 Operating Characteristics	13.4 Trademarks 17
7.9 Typical Characteristics 10	13.5 Electrostatic Discharge Caution 17
Parameter Measurement Information 11	13.6 Glossary 17
Detailed Description 12 14	Mechanical, Packaging, and Orderable
9.1 Overview 12	Information 17

4 Revision History

1

2

3

4

5

6

7

8

9

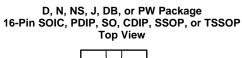
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

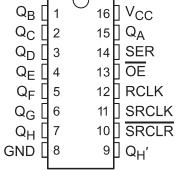
Changes from Revision H (November 2009) to Revision I

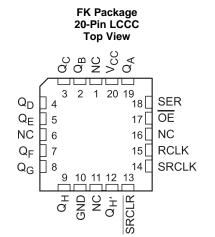
•	Added Applications section, Device Information table, Pin Configuration and Functions section, ESD Ratings table,	
	Thermal Information table, Feature Description section, Device Functional Modes, Application and Implementation	
	section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and	
	Mechanical, Packaging, and Orderable Information section	1
•	Deleted Ordering Information table.	1
•	Added Military Disclaimer to Features list.	1

Product Folder Links: SN54HC595 SN74HC595

Copyright © 1982-2015, Texas Instruments Incorporated


Page




5 Device Comparison Table

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN54HC595FK	LCCC (20)	8.89 mm x 8.89 mm
SN54HC595J	CDIP (16)	21.34 mm x 6.92 mm
SN74HC595N	PDIP (16)	19.31 mm × 6.35 mm
SN74HC595D	SOIC (16)	9.90 mm x 3.90 mm
SN74HC595DW	SOIC (16)	10.30 mm x 7.50 mm
SN74HC595DB	SSOP (16)	6.20 mm x 5.30 mm
SN74HC595PW	TSSOP (16)	5.00 mm x 4.40 mm

6 Pin Configuration and Functions

Pin Functions

PIN									
NAME	SOIC, PDIP, SO, CDIP, SSOP, or TSSOP	LCCC	I/O	DESCRIPTION					
GND	8	10	_	Ground Pin					
OE	13	17	Ι	Output Enable					
Q _A	15	19	0	Q _A Output					
Q _B	1	2	0	Q _B Output					
Q _C	2	3	0	Q _C Output					
Q _D	3	4	0	Q _D Output					
Q _E	4	5	0	Q _E Output					
Q _F	5	7	0	Q _F Output					
Q _G	6	8	0	Q _G Output					
Q _H	7	9	0	Q _H Output					
Q _{H'}	9	12	0	Q _H ' Output					
RCLK	12	14	Ι	RCLK Input					
SER	14	18	Ι	SER Input					
SRCLK	11	14	Ι	SRCLK Input					
SRCLR	10	13	I	SRCLR Input					
		1							
NC		16		No Connection					
		11	_						
		16							
V _{CC}	—	20		Power Pin					

Copyright © 1982–2015, Texas Instruments Incorporated

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	7	V
I _{IK}	Input clamp current ⁽²⁾	$V_{I} < 0 \text{ or } V_{I} > V_{CC}$		±20	mA
I _{OK}	Output clamp current ⁽²⁾	$V_O < 0$ or $V_O > V_{CC}$		±20	mA
lo	Continuous output current	$V_{O} = 0$ to V_{CC}		±35	mA
	Continuous current through V _{CC} or GND			±70	mA
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

7.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101, all $pins^{(2)}$	1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			SN	SN54HC595		SN	74HC59	5	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		2	5	6	2	5	6	V
		$V_{CC} = 2 V$	1.5			1.5			
V _{IH}	High-level input voltage	$V_{CC} = 4.5 V$	3.15			3.15			V
		$V_{CC} = 6 V$	4.2			4.2			
	Low-level input voltage	$V_{CC} = 2 V$			0.5			0.5	
V_{IL}		$V_{CC} = 4.5 V$			1.35			1.35	V
		$V_{CC} = 6 V$			1.8			1.8	
VI	Input voltage		0		V_{CC}	0		V_{CC}	V
Vo	Output voltage		0		V_{CC}	0		V_{CC}	V
		$V_{CC} = 2 V$			1000			1000	
Δt/Δv	Input transition rise or fall time ⁽²⁾	$V_{CC} = 4.5 V$			500			500	ns
		V _{CC} = 6 V			400			400	
T _A	Operating free-air temperature		-55		125	-40		85	°C

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

(2) If this device is used in the threshold region (from $V_{IL}max = 0.5 V$ to $V_{IH}min = 1.5 V$), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at $t_t = 1000$ ns and $V_{CC} = 2 V$ does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

SN54HC595, SN74HC595

SCLS0411-DECEMBER 1982-REVISED SEPTEMBER 2015

www.ti.com

7.4 Thermal Information

				SN74AH	ICT595			
THERMAL METRIC ⁽¹⁾		D (SOIC)	D (SOIC) DB (SOIC) N (PDIP)		NS (SO) PW (TSSOP)		UNIT	
		16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	
$R_{\theta J A}$	Junction-to-ambient thermal resistance	73	82	57	67	64	108	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS		v	Т	_A = 25°C		SN54H	C595	SN74H0	C595	LINUT	
PARAMETER	IE	V _{cc}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT		
			2 V	1.9	1.998		1.9		1.9			
		I _{OH} = -20 μA	4.5 V	4.4	4.499		4.4		4.4			
			6 V	5.9	5.999		5.9		5.9			
V _{OH}	$V_{I} = V_{IH} \text{ or } V_{IL}$	$Q_{H'}$, $I_{OH} = -4 \text{ mA}$	4.5 V	3.98	4.3		3.7		3.84		V	
		$Q_A - Q_H$, $I_{OH} = -6 \text{ mA}$	4.5 V	3.98	4.3		3.7		3.84			
		Q _{H'} , I _{OH} = −5.2 mA	6 V	5.48	5.8		5.2		5.34			
		$Q_A - Q_H$, $I_{OH} = -7.8$ mA	οv	5.48	5.8		5.2		5.34			
	$V_{I} = V_{IH}$ or V_{IL}			2 V		0.002	0.1		0.1		0.1	
		I _{OL} = 20 μA	4.5 V		0.001	0.1		0.1		0.1		
			6 V		0.001	0.1		0.1		0.1		
V _{OL}		$Q_{H'}$, $I_{OL} = 4 \text{ mA}$	45.14		0.17	0.26		0.4		0.33	V	
		$Q_A - Q_H$, $I_{OL} = 6 \text{ mA}$	4.5 V		0.17	0.26		0.4		0.33		
		$Q_{H'}$, I_{OL} = 5.2 mA	- 6 V		0.15	0.26		0.4		0.33	+	
		$Q_A - Q_H$, $I_{OL} = 7.8 \text{ mA}$	0 0		0.15	0.26		0.4		0.33		
l _l	$V_{I} = V_{CC} \text{ or } 0$		6 V		±0.1	±100		±1000		±1000	nA	
I _{OZ}	$V_{O} = V_{CC} \text{ or } 0, Q_{A}$	$V_{O} = V_{CC} \text{ or } 0, Q_{A} - Q_{H}$			±0.01	±0.5		±10		±5	μA	
I _{CC}	$V_{I} = V_{CC} \text{ or } 0, I_{O} = 0$		6 V			8		160		80	μA	
Ci			2 V to 6 V		3	10		10		10	pF	

Copyright © 1982–2015, Texas Instruments Incorporated

7.6 Timing Requirements

over operating free-air temperature range (unless otherwise noted)

			T _A = 25°C		25°C	SN54H	C595	SN74H	C595	
			V _{cc}	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V		6		4.2		5	
f _{clock}	Clock frequency	,	4.5 V		31		21		25	MHz
			6 V		36		25		29	
			2 V	80		120		100		
		SRCLK or RCLK high or low	4.5 V	16		24		20		
	Pulse duration		6 V	14		20		17		
t _w	Pulse duration		2 V	80		120		100		ns
		SRCLR low	4.5 V	16		24		20		
			6 V	14		20		17		
		SER before SRCLK↑ SRCLK↑ before RCLK↑ ⁽¹⁾	2 V	100		150		125		
			4.5 V	20		30		25		
			6 V	17		25		21		
			2 V	75		113		94		
			4.5 V	15		23		19		
	Cat up time		6 V	13		19		16		
t _{su}	Set-up time		2 V	50		75		65		ns
		SRCLR low before RCLK↑	4.5 V	10		15		13		
			6 V	9		13		11		
			2 V	50		75		60		
		SRCLR high (inactive) before SRCLK↑	4.5 V	10		15		12		
			6 V	9		13		11		
			2 V	0		0		0		
t _h	Hold time, SER	after SRCLK↑	4.5 V	0		0		0		ns
				0		0		0		

(1) This set-up time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

SN54HC595, SN74HC595

SCLS041I-DECEMBER 1982-REVISED SEPTEMBER 2015

www.ti.com

SRCLK	mmmmmm
SER	
RCLK	
SRCLR	
ŌE	
QA	
QB	
QC	
QD	
QE	
QF	
QG	
Q _H	
Q _H ,	

NOTE: XXXXXXX implies that the output is in 3-State mode.

Figure 1. Timing Diagram

Copyright © 1982–2015, Texas Instruments Incorporated

7.7 Switching Characteristics

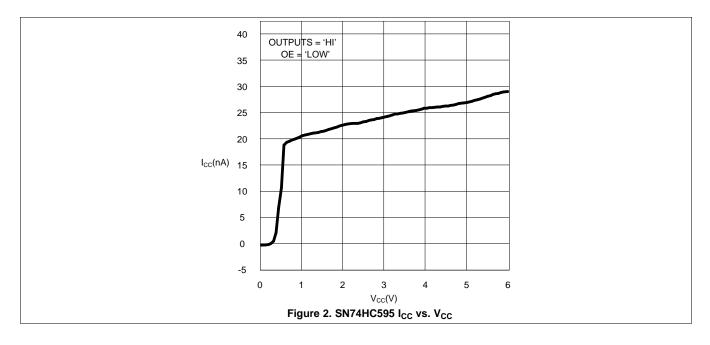
Over recommended operating free-air temperature range.

PARAMETER	FROM	то	LOAD	V.	TA	= 25°0	0	SN54H	C595	SN74HC595		UNIT
FARAIVIETER	(INPUT)	(OUTPUT)	CAPACITANCE	V _{cc}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
				2 V	6	26		4.2		5		
f _{max}			50 pF	4.5 V	31	38		21		25		MHz
				6 V	36	42		25		29		
				2 V		50	160		240		200	
	SRCLK	Q _{H'}	50 pF	4.5 V		17	32		48		40	
				6 V		14	27		41		34	
t _{pd}			50 pF	2 V		50	150		225		187	ns
	RCLK	$Q_A - Q_H$		4.5 V		17	30		45		37	
				6 V		14	26		38		32	
				2 V		51	175		261		219	
t _{PHL}	SRCLR	Q _{H'}	50 pF	4.5 V		18	35		52		44	ns
				6 V		15	30		44		37	
				2 V		40	150		255		187	
t _{en}	OE	$Q_A - Q_H$	50 pF	4.5 V		15	30		45		37	ns
				6 V		13	26		38		32	
				2 V		42	200		300		250	
t _{dis}	OE	$Q_A - Q_H$	50 pF	4.5 V		23	40		60		50	ns
				6 V		20	34		51		43	1
				2 V		28	60		90		75	- ns
		$Q_A - Q_H$	50 pF	4.5 V		8	12		18		15	
				6 V		6	10		15		13	
t _t				2 V		28	75		110		95	
		Q _{H'}	50 pF	4.5 V		8	15		22		19	
				6 V		6	13		19		16	
				2 V		60	200		300		250	
t _{pd}	RCLK	$Q_A - Q_H$	150 pf	4.5 V		22	40		60		50	ns
F -				6 V		19	34		51		43	
				2 V		70	200		298		250	
t _{en}	OE	$Q_A - Q_H$	150 pf	4.5 V		23	40		60		50	
				6 V		19	34		51		43	
				2 V		45	210		315		265	
t _t		$Q_A - Q_H$	150 pf	4.5 V		17	42		63		53	ns
				6 V		13	36		53		45	-

7.8 Operating Characteristics

 $T_A = 25^{\circ}C$

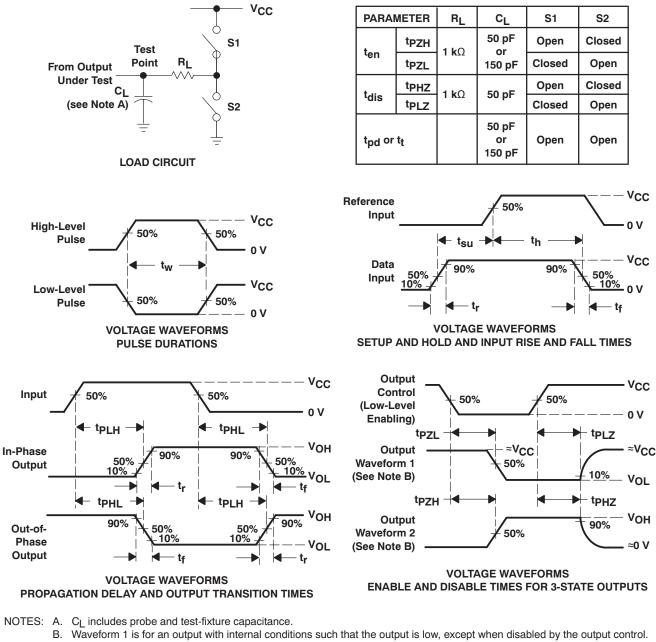
	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load	400	pF


SN54HC595, SN74HC595

SCLS0411-DECEMBER 1982-REVISED SEPTEMBER 2015

www.ti.com

7.9 Typical Characteristics



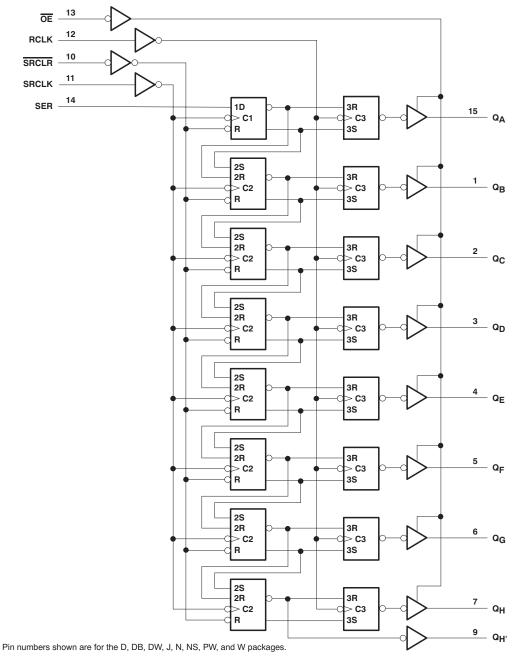
Copyright © 1982–2015, Texas Instruments Incorporated

SN54HC595, SN74HC595 SCLS041I – DECEMBER 1982–REVISED SEPTEMBER 2015

8 Parameter Measurement Information

- Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following
- characteristics: PRR \leq 1 MHz, Z_Q = 50 Ω, t_f = 6 ns, t_f = 6 ns.
- D. For clock inputs, f_{max} is measured when the input duty cycle is 50%.
- E. The outputs are measured one at a time, with one input transition per measurement.
- F. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- G. t_{PZL} and t_{PZH} are the same as t_{en} .
- H. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 3. Load Circuit and Voltage Waveforms


Detailed Description 9

9.1 Overview

The SNx4HC595 is part of the HC family of logic devices intended for CMOS applications. The SNx4HC595 is an 8-bit shift register that feeds an 8-bit D-type storage register.

Both the shift register clock (SRCLK) and storage register clock (RCLK) are positive-edge triggered. If both clocks are connected together, the shift register always is one clock pulse ahead of the storage register.

9.2 Functional Block Diagram

Copyright © 1982-2015, Texas Instruments Incorporated

9.3 Feature Description

The SNx4HC595 devices are 8-bit Serial-In, Parallel-Out Shift Registers. They have a wide operating current of 2 V to 6 V, and the high-current 3-state outputs can drive up to 15 LSTTL Loads. The devices have a low power consumption of 80- μ A (Maximum) I_{CC}. Additionally, the devices have a low input current of 1 μ A (Maximum) and a ±6-mA Output Drive at 5 V.

9.4 Device Functional Modes

Table 1 lists the functional modes of the SNx4HC595 devices.

		INPUTS			FUNCTION
SER	SRCLK	SRCLR	RCLK	OE	FONCTION
Х	Х	Х	Х	Н	Outputs $Q_A - Q_H$ are disabled.
Х	Х	Х	Х	L	Outputs $Q_A - Q_H$ are enabled.
Х	Х	L	Х	Х	Shift register is cleared.
L	Ť	Н	Х	Х	First stage of the shift register goes low. Other stages store the data of previous stage, respectively.
Н	Ť	Н	Х	Х	First stage of the shift register goes high. Other stages store the data of previous stage, respectively.
Х	Х	Х	¢	Х	Shift-register data is stored in the storage register.

Table 1. Function Table

10 Application and Implementation

10.1 Application Information

The SNx4HC595 is a low-drive CMOS device that can be used for a multitude of bus interface type applications where output ringing is a concern. The low drive and slow edge rates will minimize overshoot and undershoot on the outputs.

10.2 Typical Application

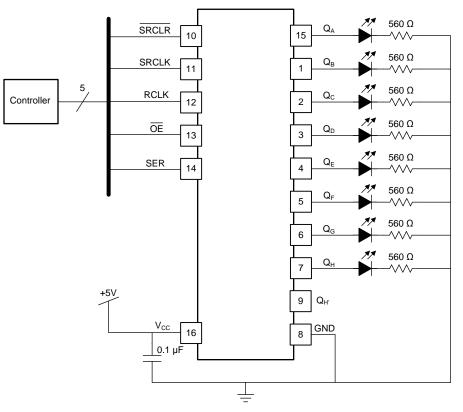
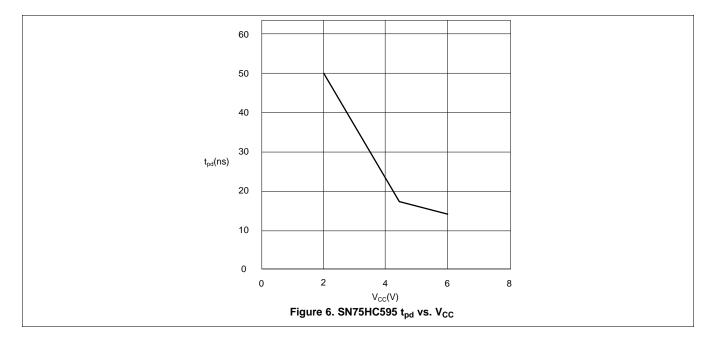


Figure 5. Typical Application Schematic

10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.


10.2.2 Detailed Design Procedure

- Recommended input conditions
 - Specified high and low levels. See (V_{IH} and V_{IL}) in the *Recommended Operating Conditions* table.
 - Specified high and low levels. See (V_{IH} and V_{IL}) in the *Recommended Operating Conditions* table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}
- Recommend output conditions
 - Load currents should not exceed 35 mA per output and 70 mA total for the part
 - Outputs should not be pulled above V_{CC}

Typical Application (continued)

10.2.3 Application Curves

11 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 µf is recommended; if there are multiple V_{CC} pins, then 0.01 µf or 0.022 µf is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 µf and a 1 µf are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

12 Layout

12.1 Layout Guidelines

When using multiple-bit logic devices, inputs should never float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Figure 7 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the output section of the part when asserted. This will not disable the input section of the I/Os, so they cannot float when disabled.

12.2 Layout Example

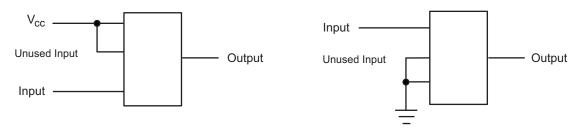


Figure 7. Layout Diagram

13 Device and Documentation Support

13.1 Documentation Support

13.1.1 Related Documentation

For related documentation, see the following:

Implications of Slow or Floating CMOS Inputs, SCBA004

13.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN54HC595	Click here	Click here	Click here	Click here	Click here
SN74HC595	Click here	Click here	Click here	Click here	Click here

Table 2. Related Links

13.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.4 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

13.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-86816012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 86816012A SNJ54HC 595FK	Samples
5962-8681601EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8681601EA SNJ54HC595J	Samples
5962-8681601VEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8681601VE A SNV54HC595J	Samples
5962-8681601VFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8681601VF A SNV54HC595W	Samples
SN54HC595J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54HC595J	Samples
SN74HC595D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DBRE4	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DBRG4	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DRG3	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples

PACKAGE OPTION ADDENDUM

24-Aug-2018

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74HC595DT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DWRE4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595N	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	N / A for Pkg Type	-40 to 85	SN74HC595N	Samples
SN74HC595NE4	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	SN74HC595N	Samples
SN74HC595NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595PWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SNJ54HC595FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 86816012A SNJ54HC 595FK	Samples
SNJ54HC595J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8681601EA SNJ54HC595J	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

24-Aug-2018

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

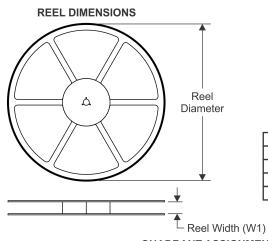
OTHER QUALIFIED VERSIONS OF SN54HC595, SN54HC595-SP, SN74HC595 :

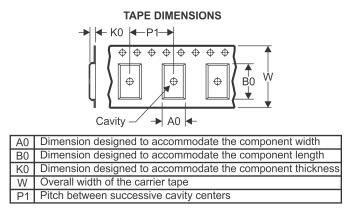
- Catalog: SN74HC595, SN54HC595
- Enhanced Product: SN74HC595-EP, SN74HC595-EP
- Military: SN54HC595
- Space: SN54HC595-SP

NOTE: Qualified Version Definitions:

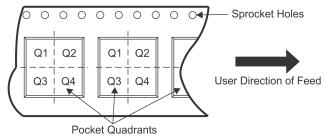
• Catalog - TI's standard catalog product

24-Aug-2018


- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

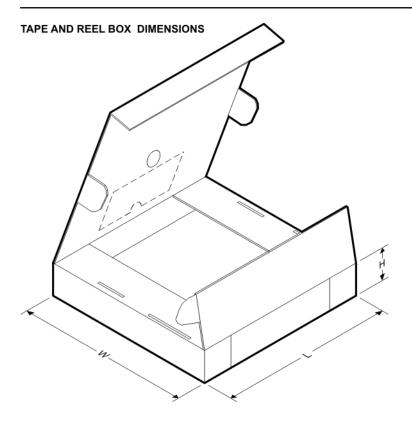

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

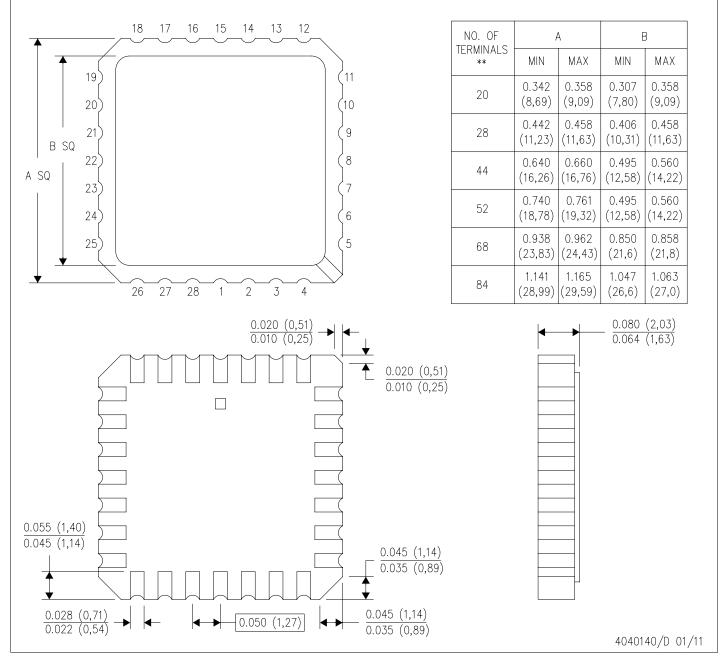
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HC595DR	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC595DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC595DRG3	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC595DRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC595DRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC595DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
SN74HC595DWRG4	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
SN74HC595PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74HC595PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74HC595PWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

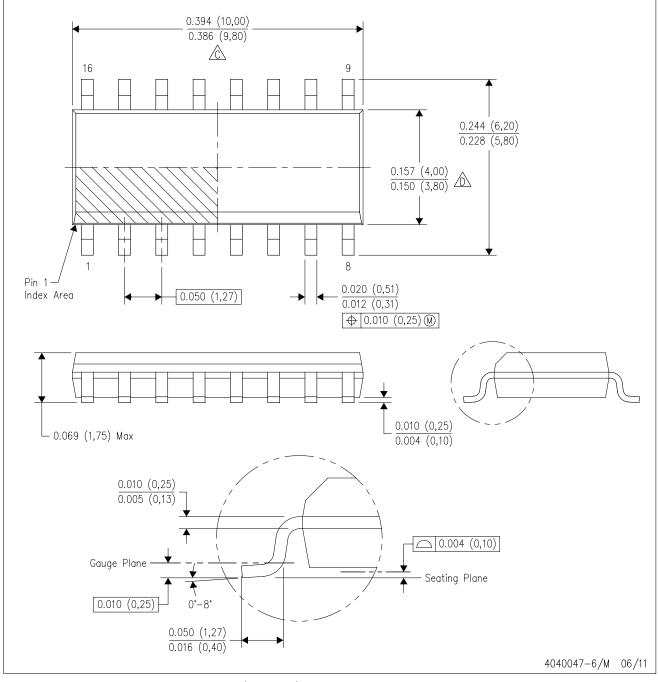

10-Jul-2019

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HC595DR	SOIC	D	16	2500	364.0	364.0	27.0
SN74HC595DR	SOIC	D	16	2500	333.2	345.9	28.6
SN74HC595DRG3	SOIC	D	16	2500	364.0	364.0	27.0
SN74HC595DRG4	SOIC	D	16	2500	333.2	345.9	28.6
SN74HC595DRG4	SOIC	D	16	2500	367.0	367.0	38.0
SN74HC595DWR	SOIC	DW	16	2000	350.0	350.0	43.0
SN74HC595DWRG4	SOIC	DW	16	2000	350.0	350.0	43.0
SN74HC595PWR	TSSOP	PW	16	2000	367.0	367.0	35.0
SN74HC595PWR	TSSOP	PW	16	2000	364.0	364.0	27.0
SN74HC595PWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).


B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

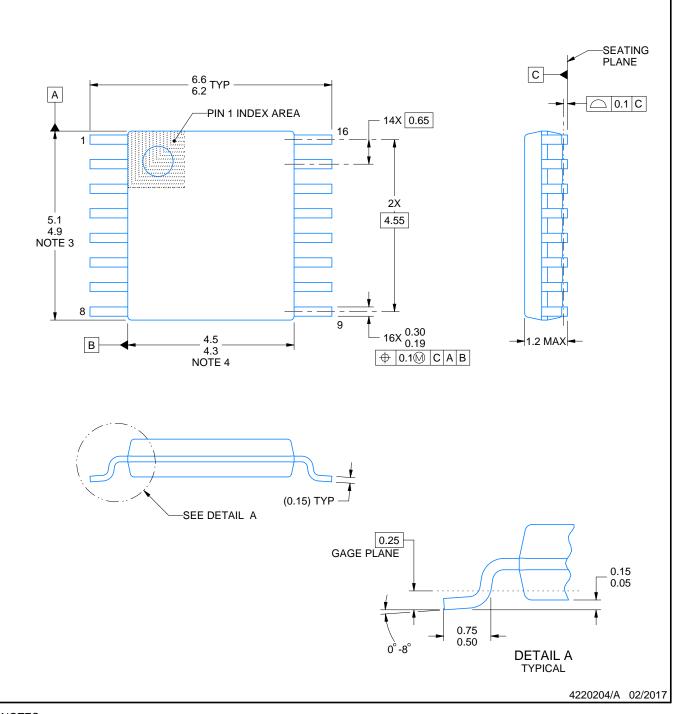
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


PW0016A

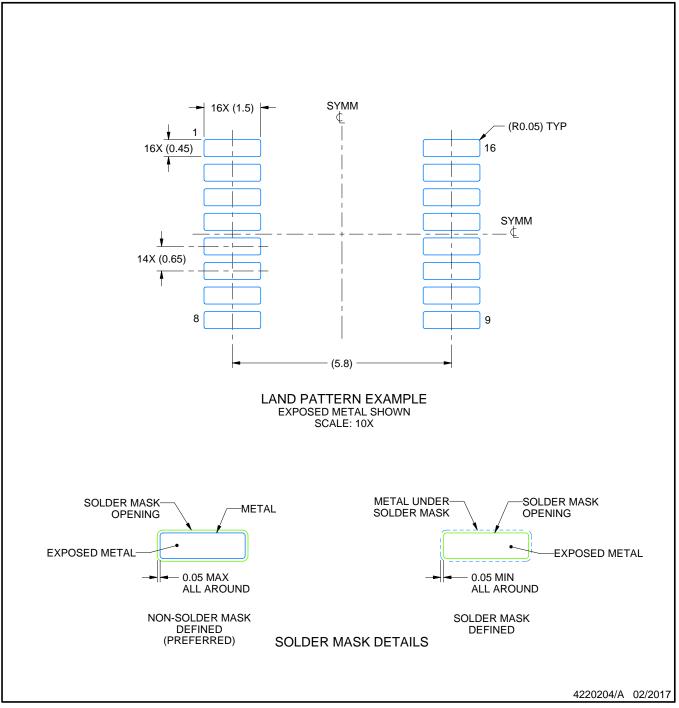
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

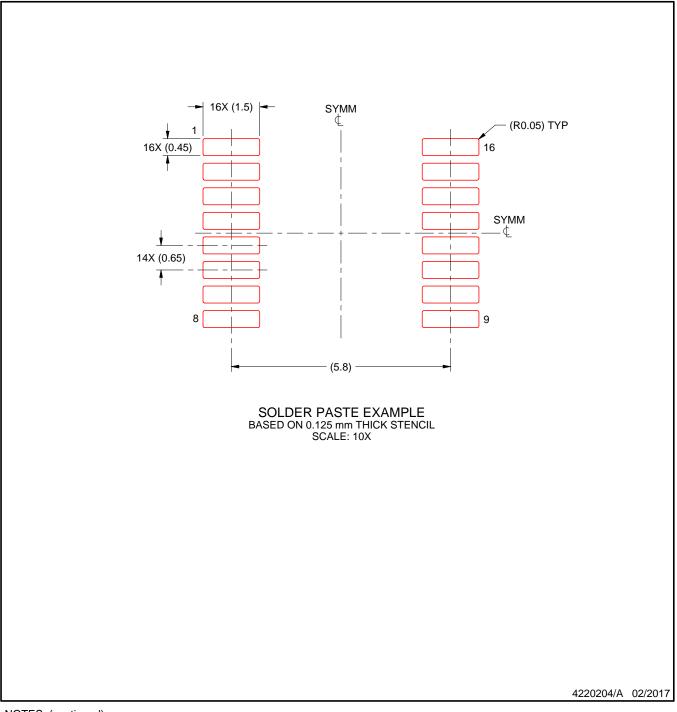
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

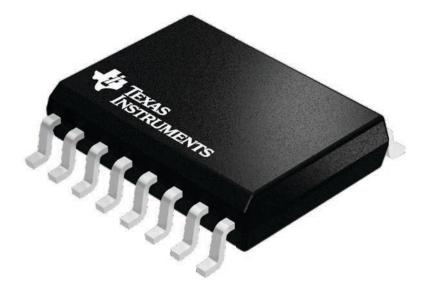
NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DW 16

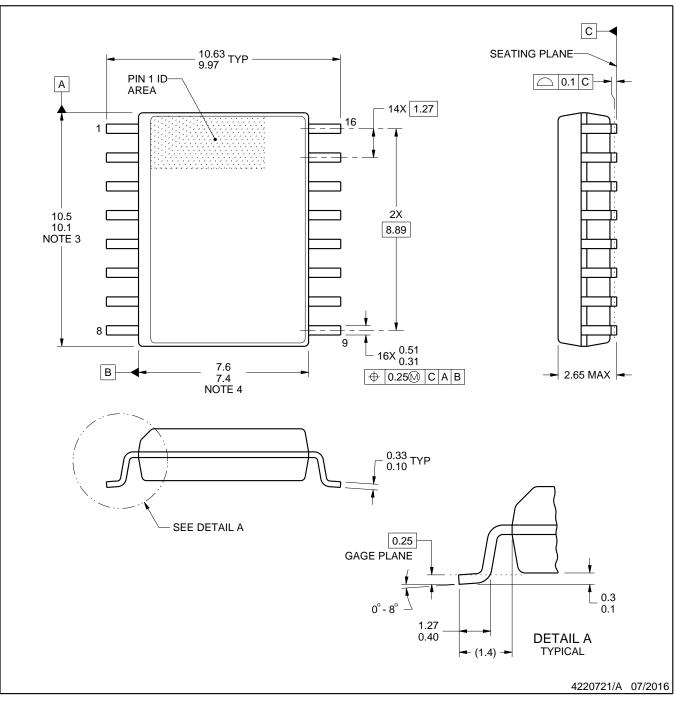

GENERIC PACKAGE VIEW

SOIC - 2.65 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

7.5 x 10.3, 1.27 mm pitch

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DW0016A

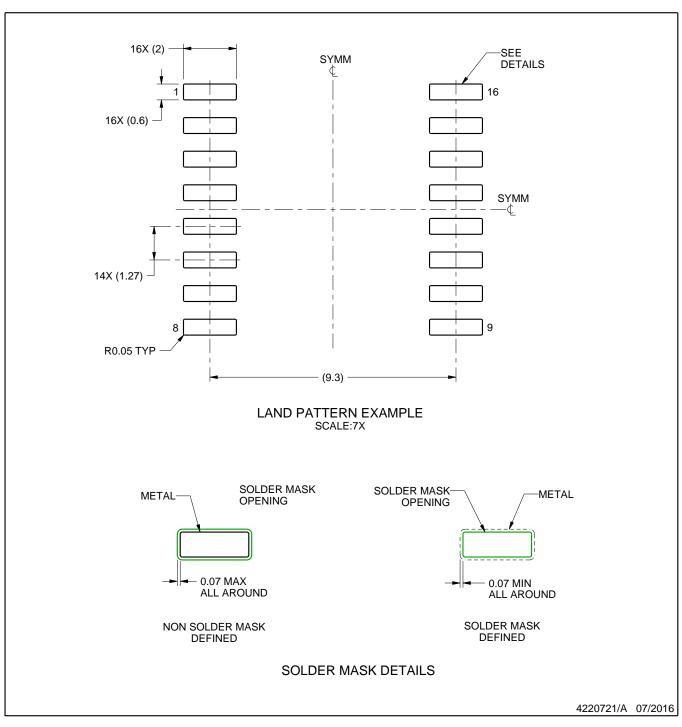
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.



DW0016A

EXAMPLE BOARD LAYOUT

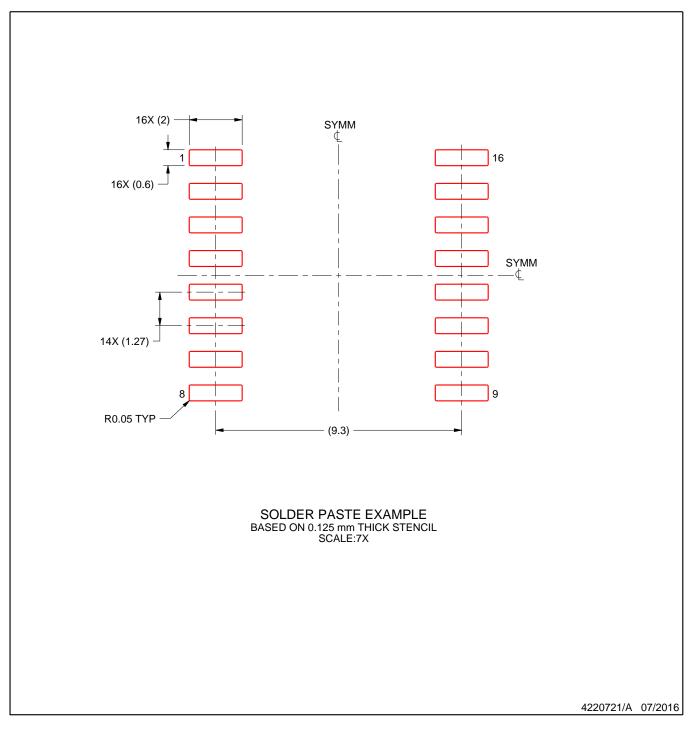
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



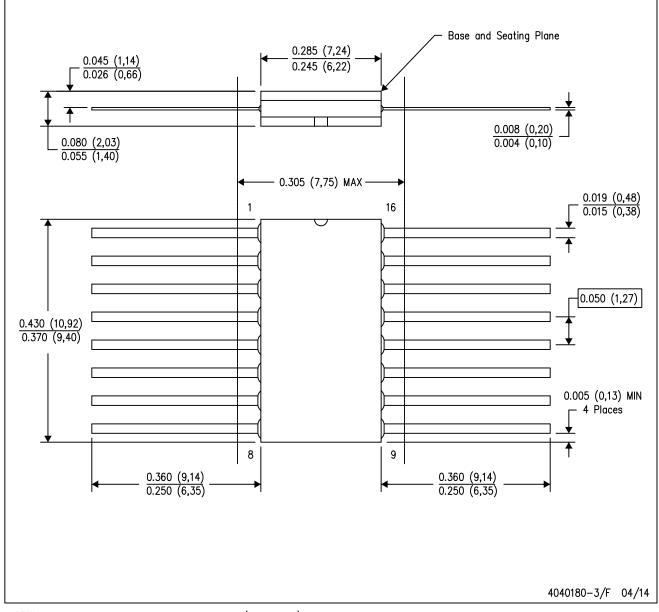
DW0016A

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

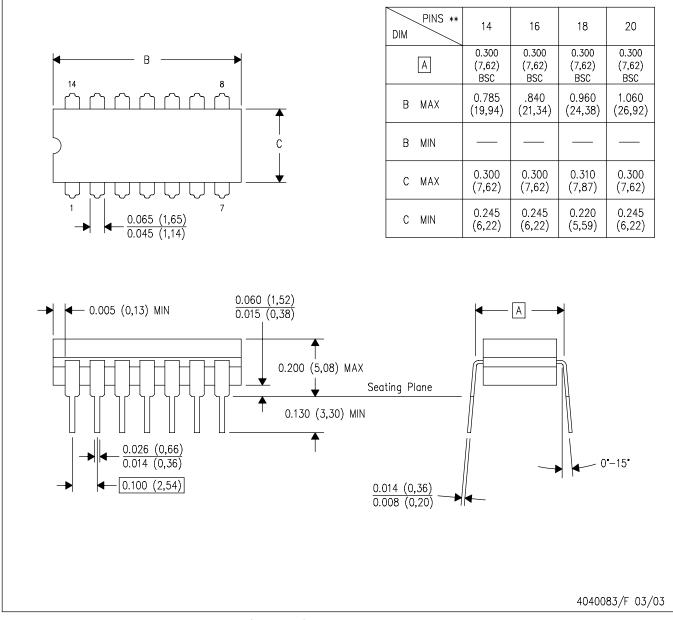
NOTES: (continued)


8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK



- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP2-F16

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

MECHANICAL DATA

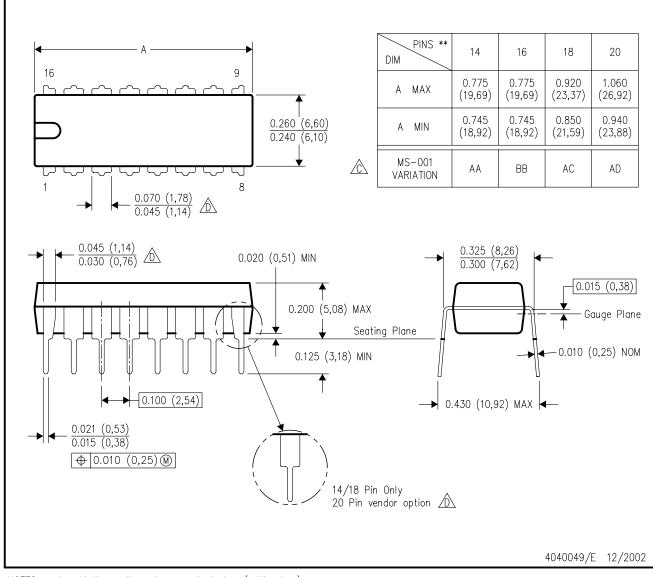
MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.


- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

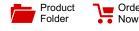
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated

Order

ULN2803A

SLRS049H-FEBRUARY 1997-REVISED FEBRUARY 2017

ULN2803A Darlington Transistor Arrays

1 Features

Texas

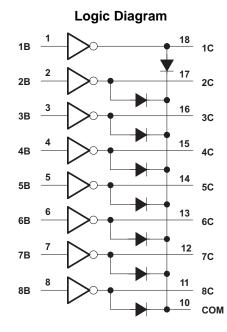
Instruments

- 500-mA-Rated Collector Current (Single Output)
- High-Voltage Outputs: 50 V
- **Output Clamp Diodes**
- Inputs Compatible With Various Types of Logic

Applications 2

- **Relay Drivers**
- Hammer Drivers
- Lamp Drivers
- Display Drivers (LED and Gas Discharge)
- Line Drivers
- Logic Buffers
- **Stepper Motors**
- **IP** Camera
- HVAC Valve and LED Dot Matrix

3 Description


The ULN2803A device is a 50 V, 500 mA Darlington transistor array. The device consists of eight NPN Darlington pairs that feature high-voltage outputs with common-cathode clamp diodes for switching inductive loads. The collector-current rating of each Darlington pair is 500 mA. The Darlington pairs may be connected in parallel for higher current capability.

Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers. The ULN2803A device has a 2.7-kΩ series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
ULN2803ADW	SOIC (18)	11.55 mm × 7.50 mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

1	Fact	hurao 1
•		tures 1
2	Арр	lications 1
3	Des	cription 1
4	Rev	ision History 2
5	Pin	Configuration and Functions 3
6	Spe	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 4
	6.5	Electrical Characteristics5
	6.6	Switching Characteristics 5
	6.7	Typical Characteristics 5
7	Para	ameter Measurement Information
8	Deta	ailed Description
	8.1	Overview
	8.2	Functional Block Diagram9

	8.3	Feature Description	9
	8.4	Device Functional Modes	. 9
9	App	lication and Implementation	10
	9.1	Application Information	10
	9.2	Typical Application	10
10	Pow	er Supply Recommendations	12
11	Lay	out	12
	11.1	Layout Guidelines	12
	11.2	Layout Example	12
12	Dev	ice and Documentation Support	13
	12.1	Receiving Notification of Documentation Updates	13
	12.2	Community Resources	13
	12.3	Trademarks	13
	12.4	Electrostatic Discharge Caution	13
	12.5	Glossary	13
13		hanical, Packaging, and Orderable mation	13

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

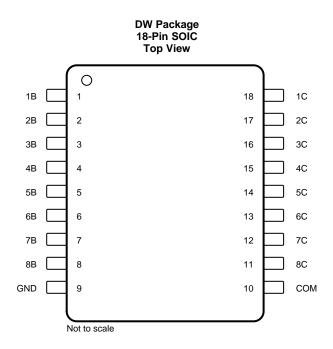
Cł	hanges from Revision G (January 2015) to Revision H	Page
•	Deleted obsolete orderable ULN2803AN and removed all references to N package	1
•	Added Storage temperature, T _{stg} in Absolute Maximum Ratings	4
•	Deleted V ₁ from Recommended Operating Conditions	4
•	Added Ambient temperature, T _A in Recommended Operating Conditions	4
•	Changed coil supply voltage specifications in Design Parameters	11
•	Added Receiving Notification of Documentation Updates section and Community Resources section	13

Changes from Revision F (January 2014) to Revision G

•	Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Typical Characteristics, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section.	Modes, Application and Implementation ce and Documentation Support section, and 1 Page jes
CI	nanges from Revision E (July 2006) to Revision F Page	,
•	Updated document to new TI data sheet format - no specification changes 1	
•	Deleted Ordering Information table	

Product Folder Links: ULN2803A

STRUMENTS


EXAS

Page

2

5 Pin Configuration and Functions

Pin Functions

	PIN	TYPE	DESCRIPTION		
NAME	NO.	TYPE	DESCRIPTION		
1B	1				
2B	2				
3B	3				
4B	4		Channel 4 through 0 Dealington have invest		
5B	5B 5		Channel 1 through 8 Darlington base input		
6B	6				
7B	7				
8B	8				
1C	18				
2C	17				
3C	16				
4C	15				
5C	14	0	Channel 1 through 8 Darlington collector output		
6C	13				
7C	12				
8C	11				
GND	9		Common emitter shared by all channels (typically tied to ground)		
COM	10	I/O	Common cathode node for flyback diodes (required for inductive loads)		

TEXAS INSTRUMENTS

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

at 25°C free-air temperature (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V _{CE}	Collector-emitter voltage		50	V
VI	Input voltage ⁽²⁾		30	V
	Peak collector current		500	mA
I(clamp)	Output clamp current		500	mA
	Total substrate-terminal current		-2.5	А
TJ	Junction temperature	-65	150	°C
T _{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, unless otherwise noted, are with respect to the emitter/substrate terminal GND.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD) Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V	
	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CE}	Collector-emitter voltage	0	50	V
T _A	Ambient temperature	-40	85	°C

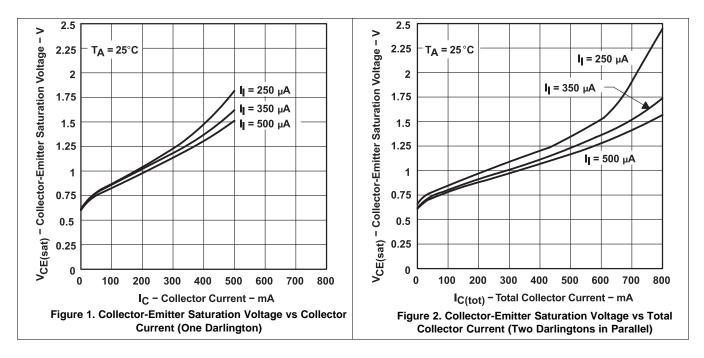
6.4 Thermal Information

		ULN2803A	
	THERMAL METRIC ⁽¹⁾	DW (SOIC)	UNIT
		18 PINS	
$R_{ hetaJA}$	Junction-to-ambient thermal resistance	66.4	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	29.5	°C/W
$R_{ heta JB}$	Junction-to-board thermal resistance	33.0	°C/W
ΨJT	Junction-to-top characterization parameter	6.0	°C/W
Ψјв	Junction-to-board characterization parameter	32.5	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	°C/W

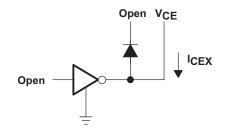
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

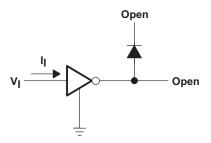
at T_A = 25°C free-air temperature (unless otherwise noted)


	DADAMETED	TEST CONDITIONS		UL	UNIT		
	PARAMETER			MIN	TYP	MAX	UNIT
I _{CEX}	Collector cutoff current	V _{CE} = 50 V, see Figure 3	$I_{1} = 0$			50	μA
I _{I(off)}	Off-state input current	V _{CE} = 50 V, T _A = 70°C	I _C = 500 μA, see Figure 4	50	65		μΑ
I _{I(on)}	Input current	V _I = 3.85 V,	See Figure 5		0.93	1.35	mA
	V _{I(on)} On-state input voltage V _{CE} = 2 V, see Figure		I _C = 200 mA			2.4	
V _{I(on)}			I _C = 250 mA			2.7	V
		See Figure 0	I _C = 300 mA			3	
	Collector-emitter saturation voltage	I _I = 250 μA, see Figure 7	I _C = 100 mA		0.9	1.1	
V _{CE(sat)}		I _I = 350 μA, see Figure 7	I _C = 200 mA		1	1.3	V
		I _I = 500 μA, see Figure 7	I _C = 350 mA		1.3	1.6	
I _R	Clamp diode reverse current	V _R = 50 V,	see Figure 8			50	μA
V _F	Clamp diode forward voltage	I _F = 350 mA	see Figure 9		1.7	2	V
Ci	Input capacitance	$V_{I} = 0,$	f = 1 MHz		15	25	pF

6.6 Switching Characteristics


 $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	$V_{S} = 50 \text{ V}, \text{ C}_{L} = 15 \text{ pF}, \text{ R}_{L} = 163 \Omega,$		130		-
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 10		20		ns
V_{OH}	High-level output voltage after switching	$V_S = 50 \text{ V}, I_O = 300 \text{ mA}, \text{ see Figure 11}$	$V_{S} - 20$			mV


6.7 Typical Characteristics

7 Parameter Measurement Information

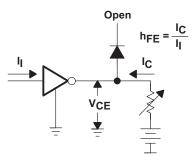
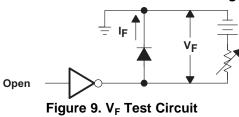



Figure 7. h_{FE}, V_{CE(sat)} Test Circuit

Open V_{CE}

Figure 4. I_{I(off)} Test Circuit

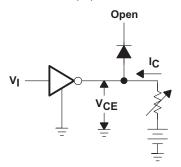


Figure 6. V_{I(on)} Test Circuit

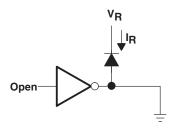
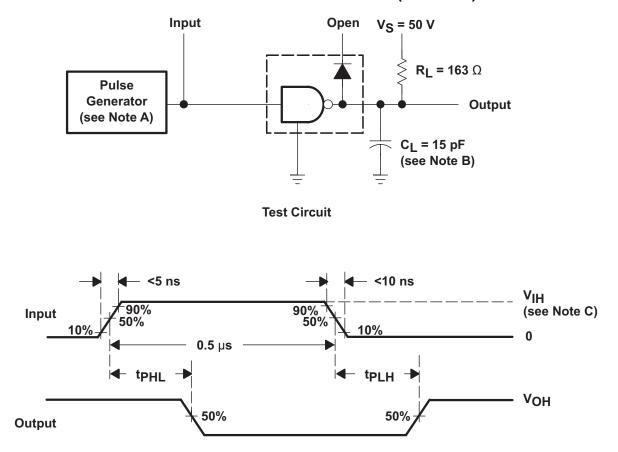
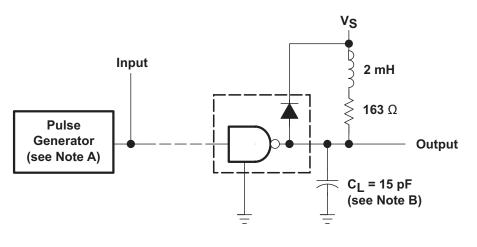



Figure 8. I_R Test Circuit

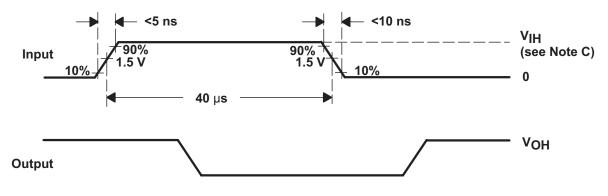
6

Parameter Measurement Information (continued)


Voltage Waveforms

- A. The pulse generator has the following characteristics: PRR = 12.5 kHz, Z_0 = 50 Ω .
- B. C_L includes probe and jig capacitance.
- C. V_{IH} = 3 V

Figure 10. Propagation Delay Times


TEXAS INSTRUMENTS

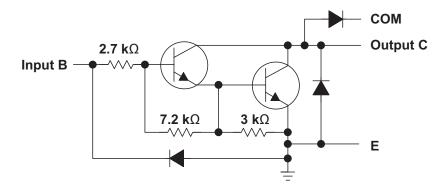
www.ti.com

Parameter Measurement Information (continued)

Voltage Waveforms

- A. The pulse generator has the following characteristics: PRR = 12.5 kHz, Z_0 = 50 Ω .
- B. C_L includes probe and jig capacitance.

C. V_{IH} = 3 V


8 Detailed Description

8.1 Overview

This standard device has proven ubiquity and versatility across a wide range of applications. This is due to its integration of 8 Darlington transistors that are capable of sinking up to 500 mA and wide GPIO range capability.

The ULN2803A is comprised of eight high voltage, high current NPN Darlington transistor pairs. All units feature a common emitter and open collector outputs. To maximize their effectiveness, these units contain suppression diodes for inductive loads. The ULN2803A has a series base resistor to each Darlington pair, thus allowing operation directly with TTL or CMOS operating at supply voltages of 5 V or 3.3 V. The ULN2803A offers solutions to a great many interface needs, including solenoids, relays, lamps, small motors, and LEDs. Applications requiring sink currents beyond the capability of a single output may be accommodated by paralleling the outputs.

8.2 Functional Block Diagram

8.3 Feature Description

Each channel of ULN2803A consists of Darlington connected NPN transistors. This connection creates the effect of a single transistor with a very-high current gain. The very high β allows for high output current drive with a very-low input current, essentially equating to operation with low GPIO voltages.

The GPIO voltage is converted to base current through the 2.7-k Ω resistor connected between the input and base of the predriver Darlington NPN.

The diodes connected between the output and COM pin are used to suppress the kick-back voltage from an inductive load that is excited when the NPN drivers are turned off (stop sinking) and the stored energy in the coils causes a reverse current to flow into the coil supply through the kick-back diode.

In normal operation, the diodes on base and collector pins to emitter will be reverse biased. If these diode are forward biased, internal parasitic NPN transistors will draw (a nearly equal) current from other (nearby) device pins.

8.4 Device Functional Modes

8.4.1 Inductive Load Drive

When the COM pin is tied to the coil supply voltage, ULN2803A is able to drive inductive loads and suppress the kick-back voltage through the internal free wheeling diodes.

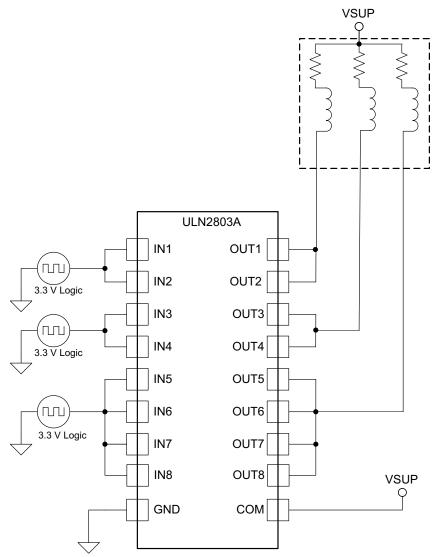
8.4.2 Resistive Load Drive

When driving resistive loads, COM can be left unconnected or connected to the load voltage supply. If multiple supplies are used, connect to the highest voltage supply.

TEXAS INSTRUMENTS

www.ti.com

9 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

ULN2803A will typically be used to drive a high voltage and/or current peripheral from an MCU or logic device that cannot tolerate these conditions. The following design is a common application of ULN2803A, driving inductive loads. This includes motors, solenoids, and relays. Each load type can be modeled by what is seen in Figure 12.

9.2 Typical Application

Copyright © 2017, Texas Instruments Incorporated

Figure 12. ULN2803A as Inductive Load Driver

Typical Application (continued)

9.2.1 Design Requirements

For this design example, use the parameters listed in Table 1 as the input parameters.

DESIGN PARAMETER	EXAMPLE VALUE
GPIO voltage	3.3 or 5 V
Coil supply voltage	12 to 50 V
Number of channels	8
Output current (R _{COIL})	20 to 300 mA per channel
Duty cycle	100%

9.2.2 Detailed Design Procedure

When using ULN2803A in a coil driving application, determine the following:

- Input voltage range
- Temperature range
- Output and drive current
- Power dissipation

9.2.2.1 Drive Current

The coil current is determined by the coil voltage (VSUP), coil resistance, and output low voltage (V_{OL} or $V_{CE(SAT)}$).

 $I_{COIL} = (V_{SUP} - V_{CE(SAT)}) / R_{COIL}$

9.2.2.2 Output Low Voltage

The output low voltage (V_{OL}) is the same thing as $V_{CE(SAT)}$ and can be determined by Figure 1, Figure 2, or *Electrical Characteristics*.

9.2.2.3 Power Dissipation and Temperature

The number of coils driven is dependent on the coil current and on-chip power dissipation. To determine the number of coils possible, use Equation 2 to calculate ULN2803A on-chip power dissipation P_D .

$$P_{D} = \sum_{i=1}^{N} V_{OLi} \times I_{Li}$$

where

- N is the number of channels active together.
- V_{OLi} is the OUT_i pin voltage for the load current I_{Li}. This is the same as V_{CE(SAT)}

To ensure the reliability of ULN2803A and the system, the on-chip power dissipation must be lower that or equal to the maximum allowable power dissipation (P_D) dictated by Equation 3.

$$\mathsf{PD}_{(\mathsf{MAX})} = \left(\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}\right)_{\theta_{\mathsf{JA}}}$$

where

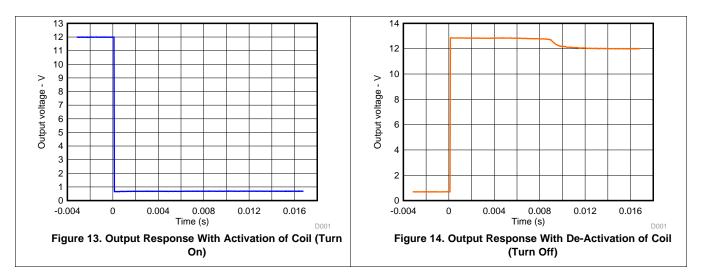
- T_{J(MAX)} is the target maximum junction temperature.
- T_A is the operating ambient temperature.
- θ_{JA} is the package junction to ambient thermal resistance.

TI recommends to limit ULN2803A IC's die junction temperature to <125°C. The IC junction temperature is directly proportional to the on-chip power dissipation.

(3)

(2)

(1)


ULN2803A SLRS049H – FEBRUARY 1997 – REVISED FEBRUARY 2017

www.ti.com

9.2.3 Application Curves

The following curves were generated with ULN2803A driving an OMRON G5NB relay – V_{in} = 5.0 V; V_{sup} = 12 V and R_{COIL} = 2.8 $k\Omega$

10 Power Supply Recommendations

This part does not need a power supply; however, the COM pin is typically tied to the system power supply. When this is the case, make sure that the output voltage does not heavily exceed the COM pin voltage. This will heavily forward bias the flyback diodes and cause a large current to flow into COM, potentially damaging the onchip metal or overheating the part.

11 Layout

11.1 Layout Guidelines

Thin traces can be used on the input due to the low current logic that is typically used to drive ULN2803A. Take care to separate the input channels as much as possible, as to eliminate crosstalk. TI recommends thick traces for the output, in order to drive high currents as desired. Wire thickness can be determined by the trace material's current density and desired drive current.

Because all of the channels currents return to a common emitter, it is best to size that trace width to be very wide. Some applications require up to 2.5 A.

11.2 Layout Example

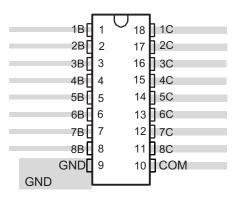


Figure 15. Package Layout

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

15-Oct-2015

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
ULN2803ADW	ACTIVE	SOIC	DW	18	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ULN2803A	Samples
ULN2803ADWG4	ACTIVE	SOIC	DW	18	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ULN2803A	Samples
ULN2803ADWR	ACTIVE	SOIC	DW	18	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ULN2803A	Samples
ULN2803ADWRG4	ACTIVE	SOIC	DW	18	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ULN2803A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

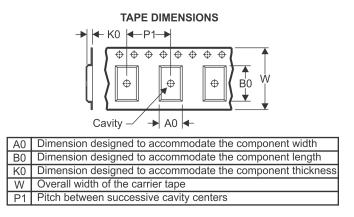
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

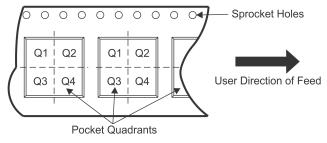
15-Oct-2015

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

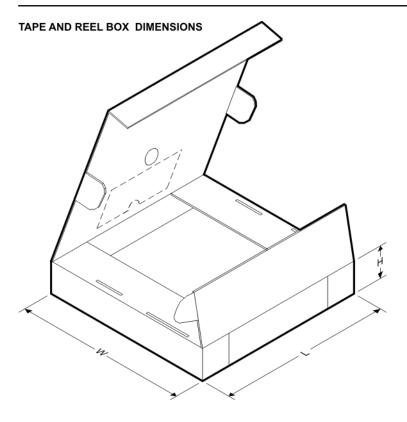
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal	
-----------------------------	--

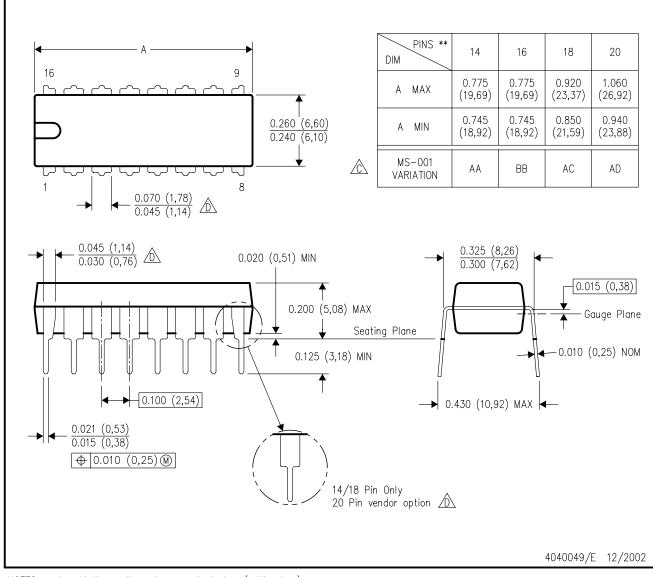

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ULN2803ADWR	SOIC	DW	18	2000	330.0	24.4	10.9	12.0	2.7	12.0	24.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jun-2019

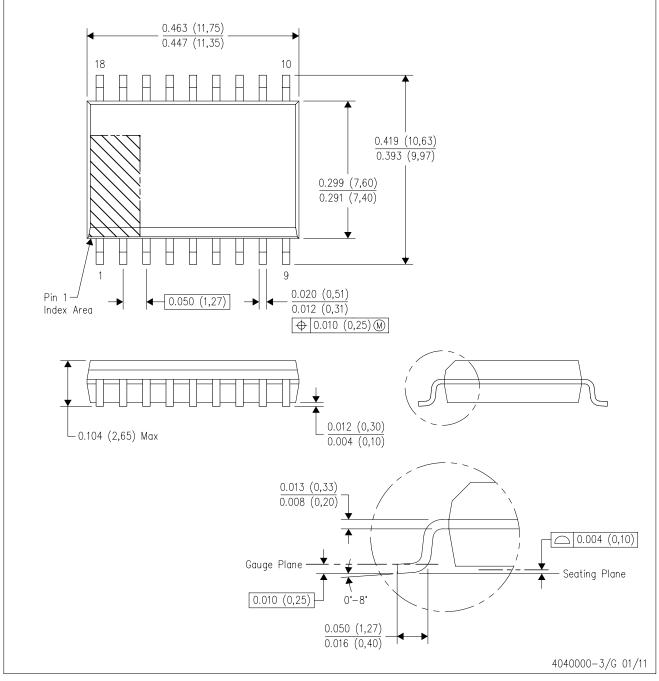

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ULN2803ADWR	SOIC	DW	18	2000	370.0	355.0	55.0

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

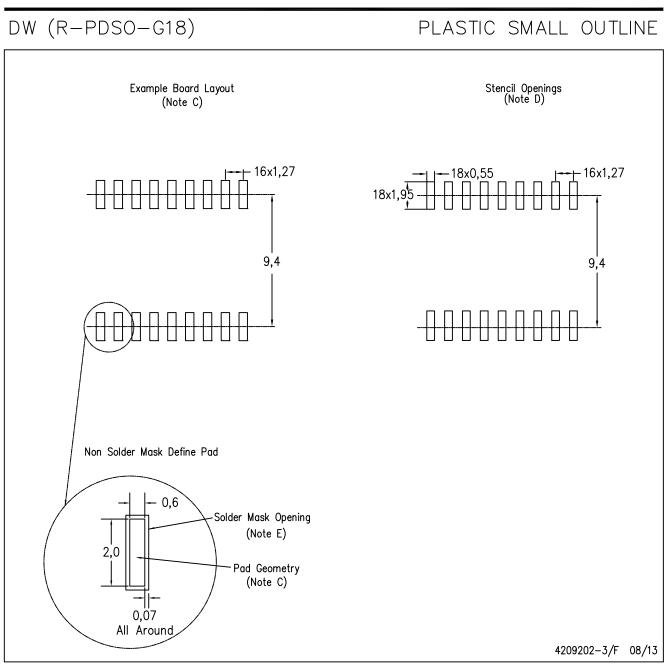

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G18)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AB.

LAND PATTERN DATA

NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated

Order

Now

Support & 2.0 Community

ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A

SLRS027P - DECEMBER 1976 - REVISED AUGUST 2019

ULN200x, ULQ200x High-Voltage, High-Current Darlington Transistor Arrays

Features 1

Texas

- 500-mA-Rated Collector Current (Single Output)
- High-Voltage Outputs: 50 V

INSTRUMENTS

- **Output Clamp Diodes**
- Inputs Compatible With Various Types of Logic
- **Relay-Driver Applications**

2 Applications

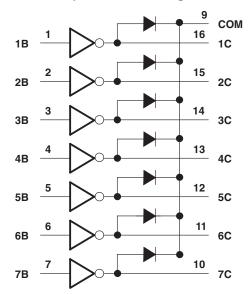
- **Relay Drivers**
- Stepper and DC Brushed Motor Drivers
- Lamp Drivers
- Display Drivers (LED and Gas Discharge)
- Line Drivers
- Logic Buffers

3 Description

The ULx200xA devices are high-voltage, high-current Darlington transistor arrays. Each consists of seven NPN Darlington pairs that feature high-voltage outputs with common-cathode clamp diodes for switching inductive loads.

The collector-current rating of a single Darlington pair is 500 mA. The Darlington pairs can be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers. For 100-V (otherwise interchangeable) versions of the ULx2003A devices, see the SLRS023 data sheet for the SN75468 and SN75469 devices.

The ULN2002A device is designed specifically for use with 14-V to 25-V PMOS devices. Each input of this device has a Zener diode and resistor in series to control the input current to a safe limit. The ULx2003A devices have a 2.7-kΩ series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices.


The ULx2004A devices have a 10.5-kΩ series base resistor to allow operation directly from CMOS devices that use supply voltages of 6 V to 15 V. The required input current of the ULx2004A device is below that of the ULx2003A devices, and the required voltage is less than that required by the ULN2002A device.

Device	Information ⁽¹)
--------	---------------------------	---

PART NUMBER	PACKAGE	BODY SIZE (NOM)
ULx200xD	SOIC (16)	9.90 mm × 3.91 mm
ULx200xN	PDIP (16)	19.30 mm × 6.35 mm
ULN200xNS	SOP (16)	10.30 mm × 5.30 mm
ULN200xPW	TSSOP (16)	5.00 mm × 4.40 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Block Diagram

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1	Features 1									
2	Арр	lications 1								
3	Description 1									
4	Rev	ision History 2								
5	Pin	Configuration and Functions								
6	Spe	cifications 4								
	6.1	Absolute Maximum Ratings 4								
	6.2	ESD Ratings 4								
	6.3	Recommended Operating Conditions 4								
	6.4	Thermal Information 4								
	6.5	Electrical Characteristics: ULN2002A 5								
	6.6	Electrical Characteristics: ULN2003A and ULN2004A								
	6.7	Electrical Characteristics: ULN2003AI 6								
	6.8	Electrical Characteristics: ULN2003AI 6								
	6.9	Electrical Characteristics: ULQ2003A and ULQ2004A								
	6.10	Switching Characteristics: ULN2002A, ULN2003A, ULN2004A								
	6.11									
	6.12	Switching Characteristics: ULN2003AI								
	6.13	Switching Characteristics: ULQ2003A, ULQ2004A 8								
	6.14	Typical Characteristics8								

7	Para	ameter Measurement Information	10
8	Deta	ailed Description	12
	8.1	Overview	12
	8.2	Functional Block Diagrams	12
	8.3	Feature Description	13
	8.4	Device Functional Modes	13
9	Арр	lication and Implementation	14
	9.1	Application Information	14
	9.2	Typical Application	14
	9.3	System Examples	17
10	Pow	ver Supply Recommendations	18
11	Lay	out	18
	11.1		
	11.2	Layout Example	18
12	Dev	ice and Documentation Support	19
	12.1	Documentation Support	19
	12.2	Related Links	19
	12.3	Community Resources	19
	12.4	Trademarks	19
	12.5	Electrostatic Discharge Caution	19
	12.6	Glossary	19
13	Mec	hanical, Packaging, and Orderable	
	Info	rmation	19

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision O (January 2016) to Revision P	Page
Changed ULN200xA Minimum Temperature Rating from -20 C to -40 C in the Absolute Maximum Ratio	atings table 4
Changes from Revision N (June 2015) to Revision O	Page
Changed Pin Functions table to correct typographical error	
Changes from Revision M (February 2013) to Revision N	Page
• Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Devi Modes, Application and Implementation section, Power Supply Recommendations section, Layout sec and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	ction, <i>Device</i>
Deleted Ordering Information table. No specification changes.	1
Moved Typical Characteristics into Specifications section.	
Changes from Revision L (April 2012) to Revision M	Page
Updated temperature rating for ULN2003AI in the ORDERING INFORMATION table	1
Changes from Revision K (August 2011) to Revision L	Page
Removed reference to obsolete ULN2001 device	1

Copyright © 1976–2019, Texas Instruments Incorporated

Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A

2

5 Pin Configuration and Functions

D, N, N 16-Pin SOIC		
58 [68 [78 [16] 1C 15] 2C 14] 3C 13] 4C 12] 5C 11] 6C 10] 7C 9] CO	М

Pin Functions

P	IN	I/O ⁽¹⁾	DESCRIPTION
NAME	NO.	10()	DESCRIPTION
1B	1		
2B	2		
3B	3		
4B	4	I	Channel 1 through 7 Darlington base input
5B	5		
6B	6		
7B	7		
1C	16		
2C	15		
3C	14		
4C	13	0	Channel 1 through 7 Darlington collector output
5C	12		
6C	11		
7C	10		
COM	9	_	Common cathode node for flyback diodes (required for inductive loads)
E	8		Common emitter shared by all channels (typically tied to ground)

(1) I = Input, O = Output

6 Specifications

6.1 Absolute Maximum Ratings

at 25°C free-air temperature (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Collector-emitter voltage			50	V
	Clamp diode reverse voltage ⁽²⁾			50	V
VI	Input voltage ⁽²⁾			30	V
	Peak collector current, See Figure 4 and Figure 5			500	mA
I _{OK}	Output clamp current			500	mA
	Total emitter-terminal current		-2.5	А	
		ULN200xA	-40	70	
т	Operating free air temperature range	ULN200xAI	-40	105	°C
T _A	Operating free-air temperature range	ULQ200xA	-40	85	
		ULQ200xAT	-40	105	
TJ	Operating virtual junction temperature			150	°C
	Lead temperature for 1.6 mm (1/16 inch) from case for 10 seconds			260	°C
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.

6.2 ESD Ratings

			VALUE	UNIT
Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V	
V _(ESD)	discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC}	Collector-emitter voltage (non-V devices)	0	50	V
TJ	Junction temperature	-40	125	°C

6.4 Thermal Information

			ULx200x					
THERMAL METRIC ⁽¹⁾		D (SOIC)	N (PDIP)	NS (SO)	PW (TSSOP)	UNIT		
		16 PINS	16 PINS	16 PINS	16 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	73	67	64	108	°C/W		
R _{0JC(top)}	Junction-to-case (top) thermal resistance	36	54	n/a	33.6	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	n/a	n/a	n/a	51.9	°C/W		
ΨJT	Junction-to-top characterization parameter	n/a	n/a	n/a	2.1	°C/W		
Ψјв	Junction-to-board characterization parameter	n/a	n/a	n/a	51.4	°C/W		

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Submit Documentation Feedback

6.5 Electrical Characteristics: ULN2002A

 $T_A = 25^{\circ}C$

	DADAMETED		TESTO		UL	N2002A								
	PARAMETER	TEST FIGURE	IESIC	ONDITIONS	MIN	TYP	MAX	UNIT						
V _{I(on)}	ON-state input voltage	Figure 14	$V_{CE} = 2 V$,	I _C = 300 mA			13	V						
V _{OH}	High-level output voltage after switching	Figure 18	$V_{\rm S}$ = 50 V, I _O	= 300 mA	V _S - 20			mV						
			I _I = 250 μA,	I _C = 100 mA		0.9	1.1							
V _{CE(sat)}	Collector-emitter saturation voltage	Figure 12	I _I = 350 μA,	I _C = 200 mA		1	1.3	V						
	voltage		$I_{I} = 500 \ \mu A$,	I _C = 350 mA		1.2	1.6							
V _F	Clamp forward voltage	Figure 15	I _F = 350 mA			1.7	2	V						
		Figure 9	V _{CE} = 50 V,	$I_I = 0$			50							
I _{CEX}	Collector cutoff current	F inance 4 0	V _{CF} = 50 V,	$I_1 = 0$			100	μA						
		Figure 10	Figure 10	Figure 10	Figure 10	Figure 10	Figure 10	Figure 10	$T_A = 70^{\circ}C$	V _I = 6 V			500	
I _{I(off)}	OFF-state input current	Figure 10	V _{CE} = 50 V,	I _C = 500 μA	50	65		μA						
II.	Input current	Figure 11	V _I = 17 V			0.82	1.25	mA						
		Einen 44	V _R = 50 V	$T_A = 70^{\circ}C$			100	•						
I _R	Clamp reverse current	Figure 14	V _R = 50 V				50	μA						
C _i	Input capacitance		V ₁ = 0,	f = 1 MHz			25	pF						

6.6 Electrical Characteristics: ULN2003A and ULN2004A

 $T_A = 25^{\circ}C$

		TEST	TEAT OF		ULN	12003A		ULN	2004A		
	PARAMETER	FIGURE	TEST CC	NDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
				I _C = 125 mA						5	
				I _C = 200 mA			2.4			6	
. /	ON-state input	_	V 0.V	I _C = 250 mA			2.7				
V _{I(on)}	voltage	Figure 14	$V_{CE} = 2 V$	I _C = 275 mA						7	V
				I _C = 300 mA			3				
				I _C = 350 mA						8	
V _{OH}	High-level output voltage after switching	Figure 18	$V_{\rm S}$ = 50 V, I _O	= 300 mA	V _S -20			V _S - 20			mV
			$I_I = 250 \ \mu A$,	I _C = 100 mA		0.9	1.1		0.9	1.1	
V _{CE(sat)}	Collector-emitter saturation voltage	Figure 13	$I_{I} = 350 \ \mu A$,	I _C = 200 mA		1	1.3		1	1.3	V
			$I_I = 500 \ \mu A$,	I _C = 350 mA		1.2	1.6		1.2	1.6	
	0 H + + + #	Figure 9	$V_{CE} = 50 V,$	$I_1 = 0$			50			50	
I _{CEX}	Collector cutoff current	Figure 10	V _{CE} = 50 V, T _A = 70°C	$I_1 = 0$			100			100	μA
		Figure 10	$T_A = 70^{\circ}C$	$V_I = 6 V$						500	
V _F	Clamp forward voltage	Figure 16	I _F = 350 mA			1.7	2		1.7	2	V
I _{I(off)}	Off-state input current	Figure 11	V _{CE} = 50 V, T _A = 70°C,	I _C = 500 μA	50	65		50	65		μA
			V _I = 3.85 V			0.93	1.35				
l _l	Input current	Figure 12	V _I = 5 V						0.35	0.5	mA
			V _I = 12 V						1	1.45	
	Clamp reverse	Figure 45	V _R = 50 V				50			50	
I _R	current	Figure 15	V _R = 50 V	$T_A = 70^{\circ}C$			100			100	μA
Ci	Input capacitance		$V_{I} = 0,$	f = 1 MHz		15	25		15	25	рF

Copyright © 1976–2019, Texas Instruments Incorporated

Submit Documentation Feedback 5

6.7 Electrical Characteristics: ULN2003AI

 $T_A = 25^{\circ}C$

	DADAMETED		TEST		ULN	12003AI		
	PARAMETER	TEST FIGURE	CONDITIONS		MIN	TYP	MAX	UNIT
				I _C = 200 mA			2.4	
V _{I(on)}	ON-state input voltage	Figure 14	$V_{CE} = 2 V$	I _C = 250 mA			2.7	V
				I _C = 300 mA			3	
V _{OH}	High-level output voltage after switching	Figure 18	$V_{S} = 50 V, I_{O} =$	50 V, I _O = 300 mA				mV
			I _I = 250 μA,	I _C = 100 mA		0.9	1.1	
V _{CE(sat)}	Collector-emitter saturation voltage	Figure 13	I _I = 350 μA,	I _C = 200 mA		1	1.3	V
			I _I = 500 μA,	I _C = 350 mA		1.2	1.6	
I _{CEX}	Collector cutoff current	Figure 9	V _{CE} = 50 V,	$I_I = 0$			50	μA
V _F	Clamp forward voltage	Figure 16	I _F = 350 mA			1.7	2	V
I _{I(off)}	OFF-state input current	Figure 11	V _{CE} = 50 V,	I _C = 500 μA	50	65		μA
I _I	Input current	Figure 12	V _I = 3.85 V			0.93	1.35	mA
I _R	Clamp reverse current	Figure 15	V _R = 50 V				50	μA
C _i	Input capacitance		$V_{I} = 0,$	f = 1 MHz		15	25	pF

6.8 Electrical Characteristics: ULN2003AI

 $T_A = -40^{\circ}C$ to $105^{\circ}C$

	DADAMETED		TEST	TEST CONDITIONS		12003AI		UNIT
	PARAMETER	TEST FIGURE	TEST C	UNDITIONS	MIN	TYP	MAX	UNIT
				I _C = 200 mA			2.7	
V _{I(on)}	ON-state input voltage	Figure 14	$V_{CE} = 2 V$	I _C = 250 mA			2.9	V
				I _C = 300 mA			3	
V _{OH}	High-level output voltage after switching	Figure 18	$V_{\rm S} = 50 \text{ V}, \text{ I}_{\rm O} =$	_S = 50 V, I _O = 300 mA				mV
			I _I = 250 μA,	l _C = 100 mA		0.9	1.2	
V _{CE(sat)}	Collector-emitter saturation voltage	Figure 13	I _I = 350 μA,	I _C = 200 mA		1	1.4	V
			$I_I = 500 \ \mu A$,	I _C = 350 mA		1.2	1.7	
I _{CEX}	Collector cutoff current	Figure 9	V _{CE} = 50 V,	$I_{I} = 0$			100	μA
V _F	Clamp forward voltage	Figure 16	I _F = 350 mA			1.7	2.2	V
I _{I(off)}	OFF-state input current	Figure 11	V _{CE} = 50 V,	I _C = 500 μA	30	65		μA
I _I	Input current	Figure 12	V _I = 3.85 V			0.93	1.35	mA
I _R	Clamp reverse current	Figure 15	V _R = 50 V				100	μA
Ci	Input capacitance		$V_{I} = 0,$	f = 1 MHz		15	25	pF

Product Folder Links: ULN2002A ULN2003A ULN2003A ULN2003A ULN2004A ULQ2004A

6

6.9 Electrical Characteristics: ULQ2003A and ULQ2004A

over recommended operating conditions (unless otherwise noted)

	DADAMETED	TEST	TEST CO		ULQ	2003A		ULQ	2004A		UNIT
	PARAMETER	FIGURE	TEST CO	ONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
				I _C = 125 mA						5	
				I _C = 200 mA			2.7			6	
	ON-state input	-		I _C = 250 mA			2.9				
V _{I(on)}	voltage	Figure 14	V _{CE} = 2 V	I _C = 275 mA						7	V
				I _C = 300 mA			3				
				I _C = 350 mA						8	
V _{OH}	High-level output voltage after switching	Figure 18	V _S = 50 V, I _O	= 300 mA	V _S - 50			V _S - 50			mV
	/ _{CE(sat)} Collector-emitter saturation voltage Figure		I _I = 250 μA,	I _C = 100 mA		0.9	1.2		0.9	1.1	
V _{CE(sat)}		Figure 13	I _I = 350 μA,	I _C = 200 mA		1	1.4		1	1.3	-
()			I _I = 500 μA,	I _C = 350 mA		1.2	1.7		1.2	1.6	
	0	Figure 9	$V_{CE} = 50 V,$	$I_{1} = 0$			100			50	
I _{CEX}	Collector cutoff current	Figure 10	$V_{CE} = 50 V,$	$I_1 = 0$						100	μΑ
	odnonk		$T_A = 70^{\circ}C$	$V_I = 6 V$						500	
V_{F}	Clamp forward voltage	Figure 16	I _F = 350 mA			1.7	2.3		1.7	2	V
I _{I(off)}	OFF-state input current	Figure 11	V _{CE} = 50 V, T _A = 70°C,	I _C = 500 μA		65		50	65		μΑ
			V _I = 3.85 V			0.93	1.35				
I _I	Input current	Figure 12	V _I = 5 V						0.35	0.5	mA
			V _I = 12 V						1	1.45	- 1
1	Clamp reverse $V_R = 50 V$	V _R = 50 V	$T_A = 25^{\circ}C$			100			50		
I _R	current	Figure 15	V _R = 50 V				100			100	μA
Ci	Input capacitance		$V_{I} = 0,$	f = 1 MHz		15	25		15	25	pF

6.10 Switching Characteristics: ULN2002A, ULN2003A, ULN2004A

 $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	ULN2002A ULN	UNIT		
			MIN	TYP	MAX	
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 17		0.25	1	μS
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 17		0.25	1	μs

6.11 Switching Characteristics: ULN2003AI

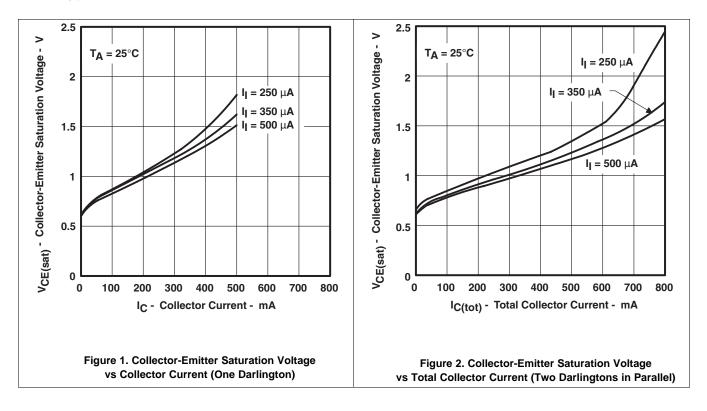
 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	ULN	UNIT		
	FARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 17		0.25	1	μs
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 17		0.25	1	μs

Copyright © 1976–2019, Texas Instruments Incorporated

6.12 Switching Characteristics: ULN2003AI

 $T_A = -40^{\circ}C$ to $105^{\circ}C$

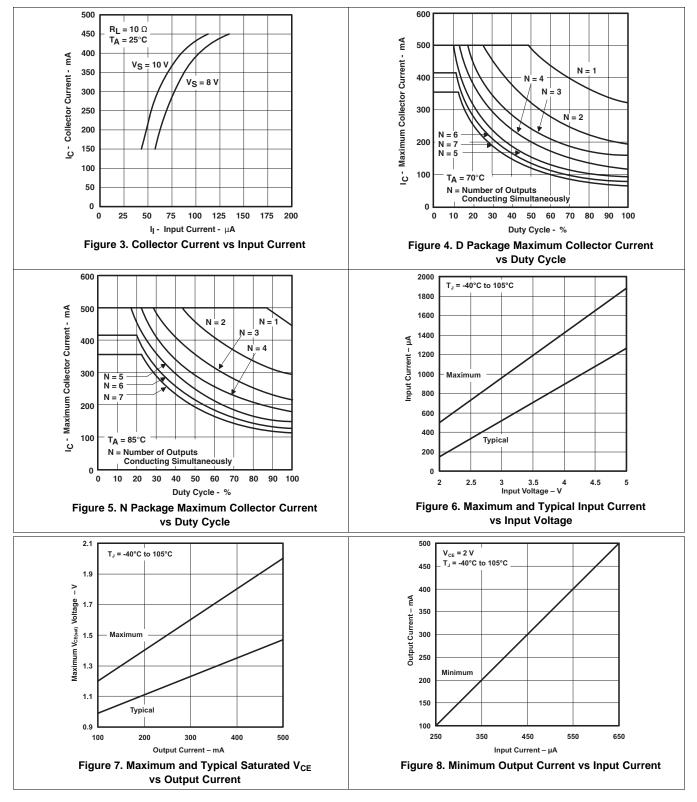

	PARAMETER	TEST CONDITIONS	ULN	UNIT		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 17		1	10	μS
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 17		1	10	μS

6.13 Switching Characteristics: ULQ2003A, ULQ2004A

over recommended operating conditions (unless otherwise noted)

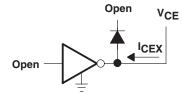
	PARAMETER	TEST CONDITIONS	ULQ2003	UNIT		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 17		1	10	μS
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 17		1	10	μS

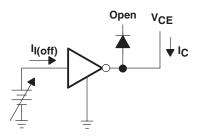
6.14 Typical Characteristics


Submit Documentation Feedback

Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A

8


Typical Characteristics (continued)


Texas Instruments

www.ti.com

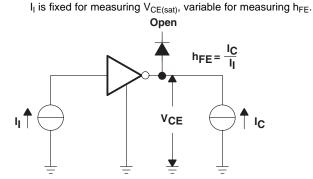

7 Parameter Measurement Information

Figure 9. I_{CEX} Test Circuit

Figure 11. I_{I(off)} Test Circuit

Figure 13. h_{FE} , $V_{CE(sat)}$ Test Circuit

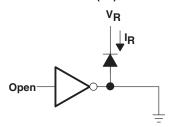
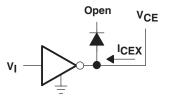
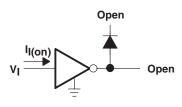
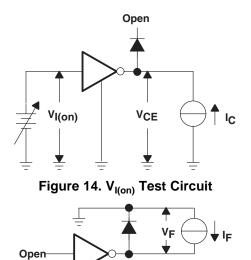
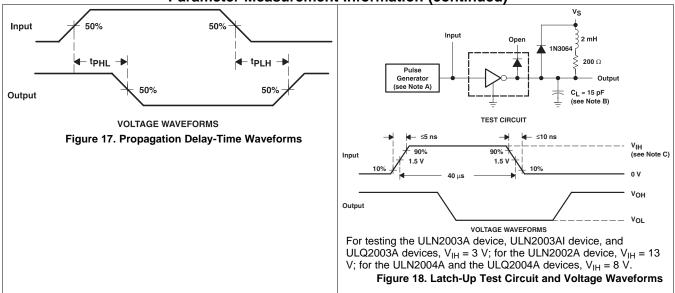




Figure 15. I_R Test Circuit

Figure 10. I_{CEX} Test Circuit




Figure 16. V_F Test Circuit

11

www.ti.com

8 Detailed Description

8.1 Overview

This standard device has proven ubiquity and versatility across a wide range of applications. This is due to integration of 7 Darlington transistors of the device that are capable of sinking up to 500 mA and wide GPIO range capability.

The ULN2003A device comprises seven high-voltage, high-current NPN Darlington transistor pairs. All units feature a common emitter and open collector outputs. To maximize their effectiveness, these units contain suppression diodes for inductive loads. The ULN2003A device has a series base resistor to each Darlington pair, thus allowing operation directly with TTL or CMOS operating at supply voltages of 5 V or 3.3 V. The ULN2003A device offers solutions to a great many interface needs, including solenoids, relays, lamps, small motors, and LEDs. Applications requiring sink currents beyond the capability of a single output may be accommodated by paralleling the outputs.

This device can operate over a wide temperature range (-40°C to 105°C).

8.2 Functional Block Diagrams

All resistor values shown are nominal. The collector-emitter diode is a parasitic structure and should not be used to conduct current. If the collectors go below GND, an external Schottky diode should be added to clamp negative undershoots.

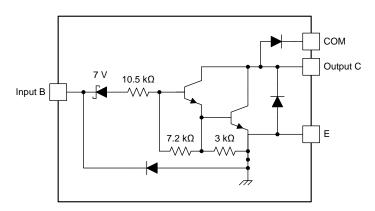


Figure 19. ULN2002A Block Diagram

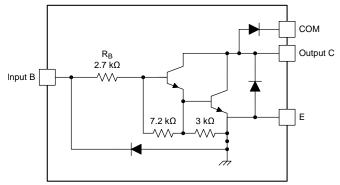


Figure 20. ULN2003A, ULQ2003A and ULN2003AI Block Diagram

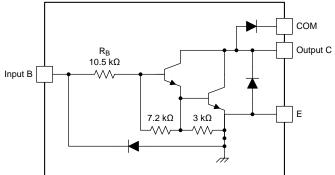


Figure 21. ULN2004A and LQ2004A Block Diagram

8.3 Feature Description

Each channel of the ULN2003A device consists of Darlington connected NPN transistors. This connection creates the effect of a single transistor with a very high-current gain (β 2). This can be as high as 10,000 A/A at certain currents. The very high β allows for high-output current drive with a very low input current, essentially equating to operation with low GPIO voltages.

The GPIO voltage is converted to base current through the 2.7-k Ω resistor connected between the input and base of the predriver Darlington NPN. The 7.2-k Ω and 3-k Ω resistors connected between the base and emitter of each respective NPN act as pulldowns and suppress the amount of leakage that may occur from the input.

The diodes connected between the output and COM pin is used to suppress the kick-back voltage from an inductive load that is excited when the NPN drivers are turned off (stop sinking) and the stored energy in the coils causes a reverse current to flow into the coil supply through the kick-back diode.

In normal operation the diodes on base and collector pins to emitter will be reversed biased. If these diodes are forward biased, internal parasitic NPN transistors will draw (a nearly equal) current from other (nearby) device pins.

8.4 Device Functional Modes

8.4.1 Inductive Load Drive

When the COM pin is tied to the coil supply voltage, ULN2003A device is able to drive inductive loads and suppress the kick-back voltage through the internal free-wheeling diodes.

8.4.2 Resistive Load Drive

When driving a resistive load, a pullup resistor is needed in order for ULN2003A device to sink current and for there to be a logic high level. The COM pin can be left floating for these applications.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

Typically, the ULN2003A device drives a high-voltage or high-current (or both) peripheral from an MCU or logic device that cannot tolerate these conditions. This design is a common application of ULN2003A device, driving inductive loads. This includes motors, solenoids and relays. Figure 22 shows a model for each load type.

9.2 Typical Application

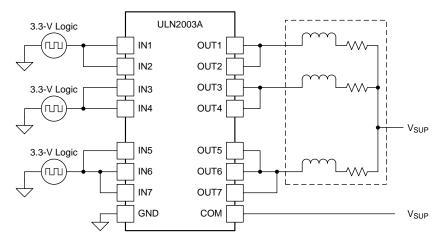


Figure 22. ULN2003A Device as Inductive Load Driver

9.2.1 Design Requirements

For this design example, use the parameters listed in Table 1 as the input parameters.

•	
DESIGN PARAMETER	EXAMPLE VALUE
GPIO voltage	3.3 V or 5 V
Coil supply voltage	12 V to 48 V
Number of channels	7
Output current (R _{COIL})	20 mA to 300 mA per channel
Duty cycle	100%

Table 1. Design Parameters

9.2.2 Detailed Design Procedure

When using ULN2003A device in a coil driving application, determine the following:

- Input voltage range
- Temperature range
- Output and drive current
- Power dissipation

9.2.2.1 Drive Current

The coil voltage (V_{SUP}), coil resistance (R_{COIL}), and low-level output voltage ($V_{CE(SAT)}$ or V_{OL}) determine the coil current.

$$I_{COIL} = (V_{SUP} - V_{CE(SAT)}) / R_{COIL}$$

9.2.2.2 Low-Level Output Voltage

The low-level output voltage (V_{OL}) is the same as $V_{CE(SAT)}$ and can be determined by, Figure 1, Figure 2, or Figure 7.

9.2.2.3 Power Dissipation and Temperature

The number of coils driven is dependent on the coil current and on-chip power dissipation. The number of coils driven can be determined by Figure 4 or Figure 5.

For a more accurate determination of number of coils possible, use the below equation to calculate ULN2003A device on-chip power dissipation P_D :

$$P_{D} = \sum_{i=1}^{N} V_{OLi} \times I_{Li}$$

where

- N is the number of channels active together
- V_{OLi} is the OUT_i pin voltage for the load current I_{Li}. This is the same as V_{CE(SAT)}

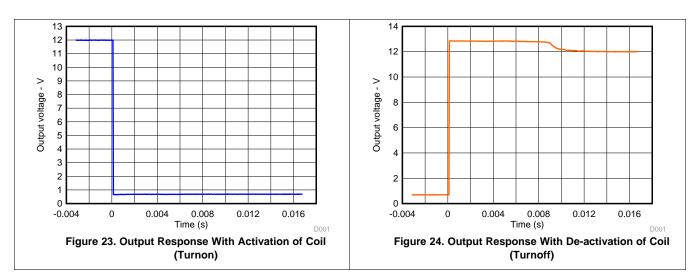
To ensure reliability of ULN2003A device and the system, the on-chip power dissipation must be lower that or equal to the maximum allowable power dissipation ($PD_{(MAX)}$) dictated by below equation Equation 3.

$$\mathsf{PD}_{(\mathsf{MAX})} = \frac{\left(\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}\right)}{\theta_{\mathsf{JA}}}$$

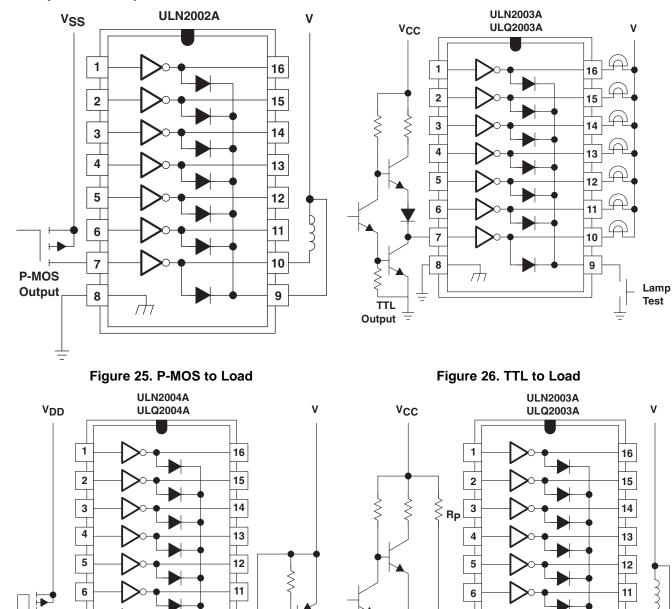
where

- T_{J(max)} is the target maximum junction temperature
- T_A is the operating ambient temperature
- $R_{\theta JA}$ is the package junction to ambient thermal resistance

Limit the die junction temperature of the ULN2003A device to less than 125°C. The IC junction temperature is directly proportional to the on-chip power dissipation.


ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A SLRS027P – DECEMBER 1976–REVISED AUGUST 2019

(1)


(3)

9.2.3 Application Curves

The characterization data shown in Figure 23 and Figure 24 were generated using the ULN2003A device driving an OMRON G5NB relay and under the following conditions: $V_{IN} = 5 \text{ V}$, $V_{SUP} = 12 \text{ V}$, and $R_{COIL} = 2.8 \text{ k}\Omega$.

10

9

7

8

 $\overline{}$

Figure 27. Buffer for Higher Current Loads

CMOS

Output

÷

7

8

H

Figure 28. Use of Pullup Resistors to Increase Drive Current

Product Folder Links: ULN2002A ULN2003A ULN2003AI ULQ2003A ULN2004A ULQ2004A

TTL ÷

Output

v

10

9

10 Power Supply Recommendations

This device does not need a power supply. However, the COM pin is typically tied to the system power supply. When this is the case, it is very important to ensure that the output voltage does not heavily exceed the COM pin voltage. This discrepancy heavily forward biases the fly-back diodes and causes a large current to flow into COM, potentially damaging the on-chip metal or over-heating the device.

11 Layout

11.1 Layout Guidelines

Thin traces can be used on the input due to the low-current logic that is typically used to drive ULN2003A device. Take care to separate the input channels as much as possible, as to eliminate crosstalk. TI recommends thick traces for the output to drive whatever high currents that may be needed. Wire thickness can be determined by the current density of the trace material and desired drive current.

Because all of the channels currents return to a common emitter, it is best to size that trace width to be very wide. Some applications require up to 2.5 A.

11.2 Layout Example

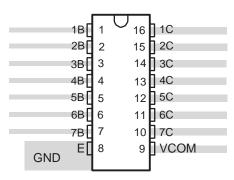


Figure 29. Package Layout

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following: SN7546x Darlington Transistor Arrays, SLRS023

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
ULN2002A	Click here	Click here	Click here	Click here	Click here
ULN2003A	Click here	Click here	Click here	Click here	Click here
ULN2003AI	Click here	Click here	Click here	Click here	Click here
ULN2004A	Click here	Click here	Click here	Click here	Click here
ULQ2003A	Click here	Click here	Click here	Click here	Click here
ULQ2004A	Click here	Click here	Click here	Click here	Click here

Table 2. Related Links

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

Copyright © 1976–2019, Texas Instruments Incorporated

9-Jul-2019

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
ULN2002AN	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-20 to 70	ULN2002AN	Samples
ULN2002ANE4	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-20 to 70	ULN2002AN	Samples
ULN2003AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Samples
ULN2003ADE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Samples
ULN2003ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Samples
ULN2003ADRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Samples
ULN2003ADRG3	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Samples
ULN2003ADRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Samples
ULN2003AID	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2003AI	Samples
ULN2003AIDE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2003AI	Samples
ULN2003AIDG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2003AI	Samples
ULN2003AIDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 105	ULN2003AI	Samples
ULN2003AIDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2003AI	Samples
ULN2003AIDRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2003AI	Samples
ULN2003AIN	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	N / A for Pkg Type	-40 to 105	ULN2003AIN	Samples
ULN2003AINE4	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 105	ULN2003AIN	Samples
ULN2003AINSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2003AI	Samples

PACKAGE OPTION ADDENDUM

9-Jul-2019

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
ULN2003AIPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	UN2003AI	Sample
ULN2003AIPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 105	UN2003AI	Sample
ULN2003AIPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	UN2003AI	Sample
ULN2003AN	ACTIVE	PDIP	Ν	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	N / A for Pkg Type	-20 to 70	ULN2003AN	Sample
ULN2003ANE4	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-20 to 70	ULN2003AN	Sample
ULN2003ANS	ACTIVE	SO	NS	16	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		ULN2003A	Sample
ULN2003ANSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Sample
ULN2003ANSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Sample
ULN2003ANSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Sample
ULN2003APW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	UN2003A	Sample
ULN2003APWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	UN2003A	Sampl
ULN2003APWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-20 to 70	UN2003A	Sample
ULN2003APWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	UN2003A	Sampl
ULN2004AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2004A	Sampl
ULN2004ADE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2004A	Sampl
ULN2004ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2004A	Sampl
ULN2004ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-20 to 70	ULN2004A	Samp
ULN2004ADRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2004A	Sampl

PACKAGE OPTION ADDENDUM

9-Jul-2019

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
ULN2004ADRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2004A	Samples
ULN2004AN	ACTIVE	PDIP	Ν	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-20 to 70	ULN2004AN	Samples
ULN2004ANE4	ACTIVE	PDIP	Ν	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-20 to 70	ULN2004AN	Samples
ULN2004ANSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2004A	Samples
ULQ2003AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ULQ2003A	Samples
ULQ2003ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		ULQ2003A	Samples
ULQ2003ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ULQ2003A	Samples
ULQ2003ADRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		ULQ2003A	Samples
ULQ2003AN	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	ULQ2003A	Samples
ULQ2004AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ULQ2004A	Samples
ULQ2004ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		ULQ2004A	Samples
ULQ2004ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ULQ2004A	Samples
ULQ2004ADRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		ULQ2004A	Samples
ULQ2004AN	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	ULQ2004AN	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

9-Jul-2019

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

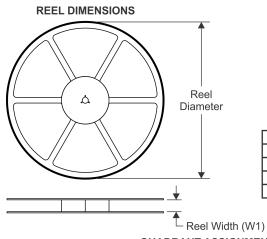
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF ULQ2003A, ULQ2004A :

• Automotive: ULQ2003A-Q1, ULQ2004A-Q1

NOTE: Qualified Version Definitions:


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

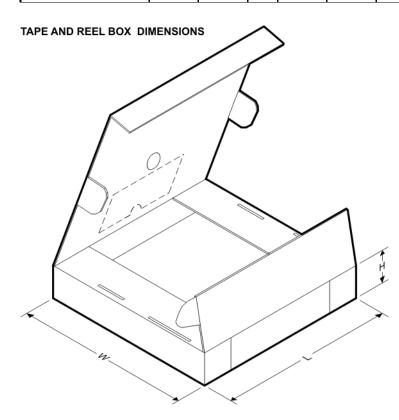
www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ULN2003ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003ADR	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003ADRG3	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003ADRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003AIDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003AIDR	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003AIDRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003AIPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
ULN2003AIPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
ULN2003AIPWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
ULN2003APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
ULN2003APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
ULN2003APWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
ULN2004ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2004ADR	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
ULN2004ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2004ADRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1


PACKAGE MATERIALS INFORMATION

www.ti.com

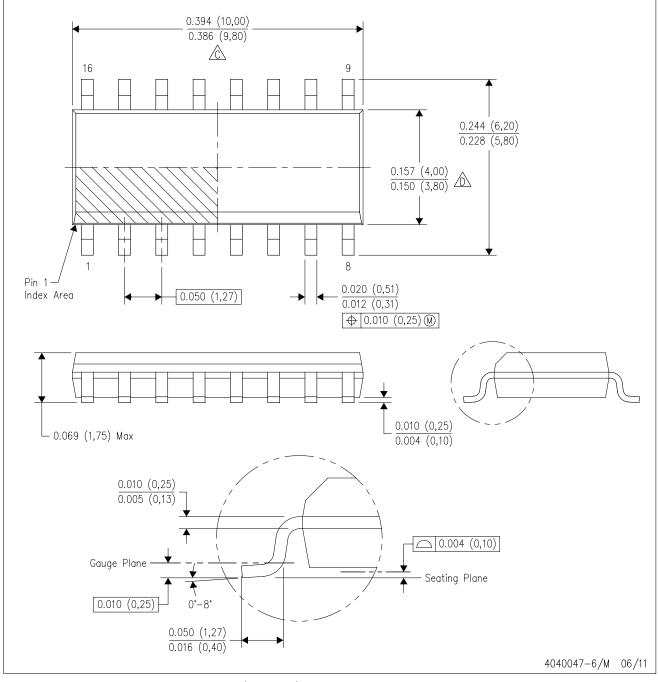
27-Sep-2019

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ULN2004ADRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULQ2003ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULQ2003ADRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ULN2003ADR	SOIC	D	16	2500	367.0	367.0	38.0
ULN2003ADR	SOIC	D	16	2500	333.2	345.9	28.6
ULN2003ADR	SOIC	D	16	2500	364.0	364.0	27.0
ULN2003ADRG3	SOIC	D	16	2500	364.0	364.0	27.0
ULN2003ADRG4	SOIC	D	16	2500	333.2	345.9	28.6
ULN2003AIDR	SOIC	D	16	2500	333.2	345.9	28.6
ULN2003AIDR	SOIC	D	16	2500	364.0	364.0	27.0
ULN2003AIDRG4	SOIC	D	16	2500	333.2	345.9	28.6
ULN2003AIPWR	TSSOP	PW	16	2000	364.0	364.0	27.0
ULN2003AIPWR	TSSOP	PW	16	2000	367.0	367.0	35.0
ULN2003AIPWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0
ULN2003APWR	TSSOP	PW	16	2000	364.0	364.0	27.0
ULN2003APWR	TSSOP	PW	16	2000	367.0	367.0	35.0
ULN2003APWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0

PACKAGE MATERIALS INFORMATION


www.ti.com

27-Sep-2019

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ULN2004ADR	SOIC	D	16	2500	367.0	367.0	38.0
ULN2004ADR	SOIC	D	16	2500	364.0	364.0	27.0
ULN2004ADR	SOIC	D	16	2500	333.2	345.9	28.6
ULN2004ADRG4	SOIC	D	16	2500	367.0	367.0	38.0
ULN2004ADRG4	SOIC	D	16	2500	333.2	345.9	28.6
ULQ2003ADR	SOIC	D	16	2500	333.2	345.9	28.6
ULQ2003ADRG4	SOIC	D	16	2500	367.0	367.0	38.0

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

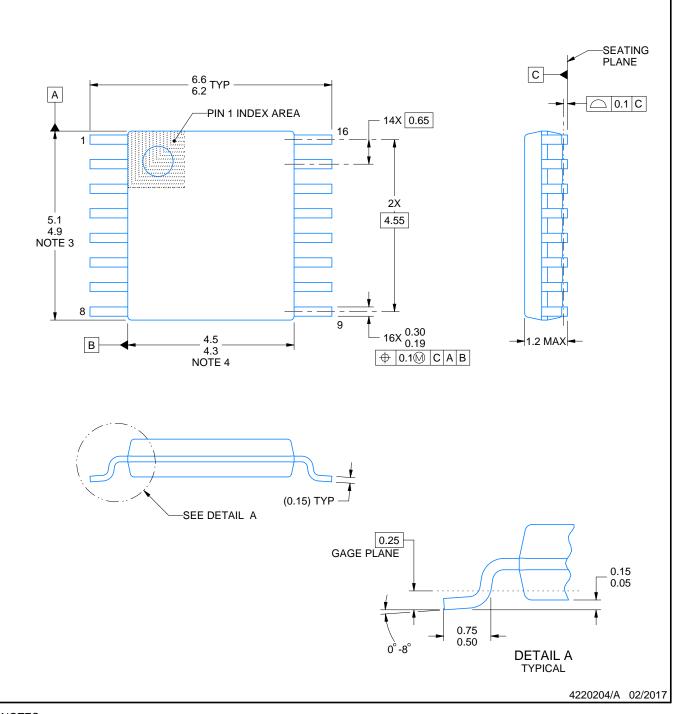
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


PW0016A

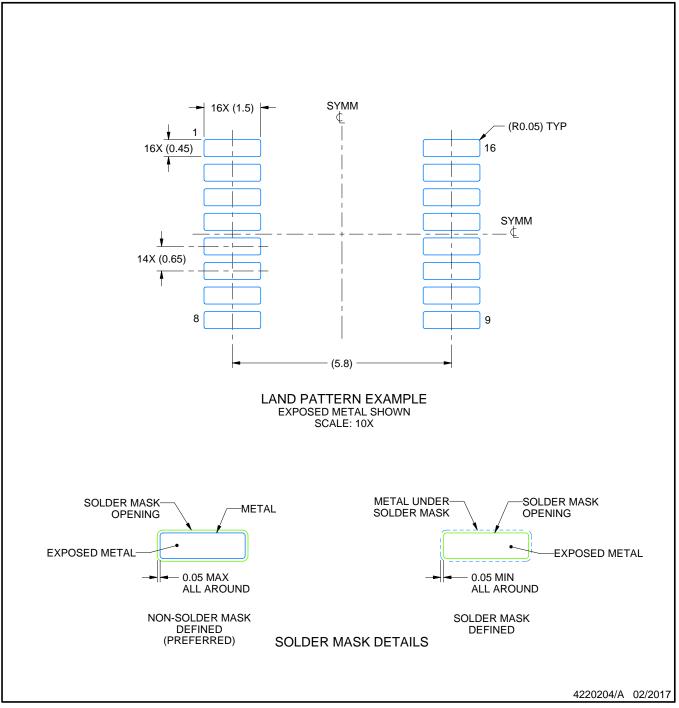
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

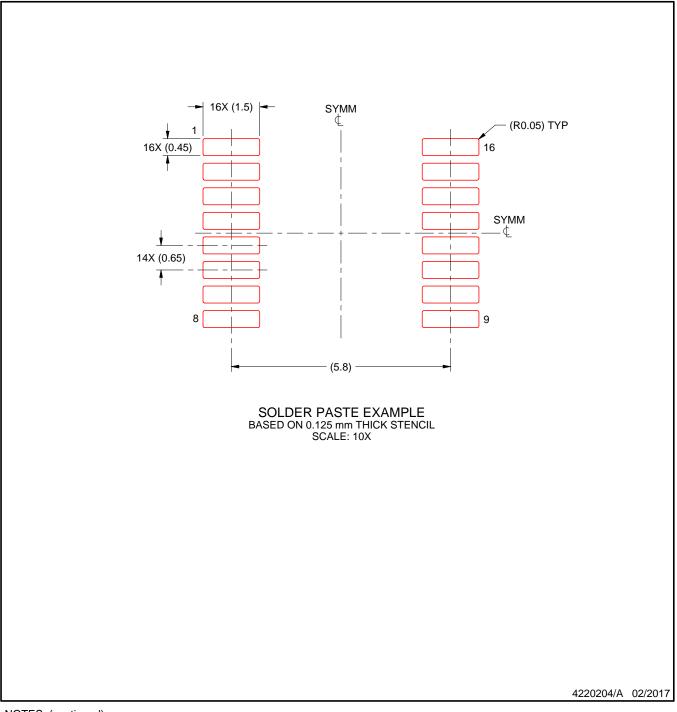
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

MECHANICAL DATA

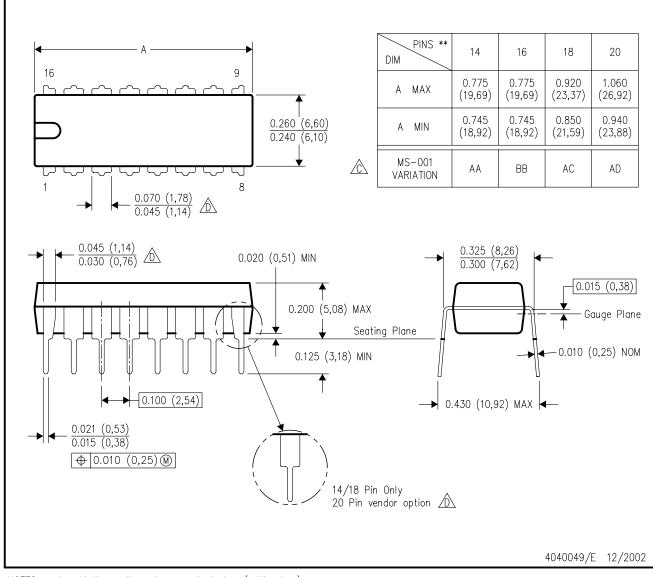
PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN


- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

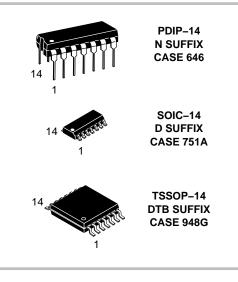
TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

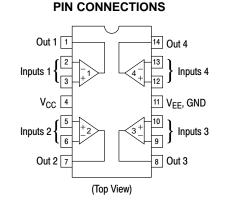
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated

LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902

Single Supply Quad Operational Amplifiers

The LM324 series are low–cost, quad operational amplifiers with true differential inputs. They have several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 V or as high as 32 V with quiescent currents about one–fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.


Features


- Short Circuited Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3.0 V to 32 V
- Low Input Bias Currents: 100 nA Maximum (LM324A)
- Four Amplifiers Per Package
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Industry Standard Pinouts
- ESD Clamps on the Inputs Increase Ruggedness without Affecting Device Operation
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 11 of this data sheet.

LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902

MAXIMUM RATINGS ($T_A = +25^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages Single Supply Split Supplies	V _{CC} V _{CC} , V _{EE}	32 ±16	Vdc
Input Differential Voltage Range (Note 1)	V _{IDR}	±32	Vdc
Input Common Mode Voltage Range	V _{ICR}	-0.3 to 32	Vdc
Output Short Circuit Duration	t _{SC}	Continuous	
Junction Temperature	TJ	150	°C
Thermal Resistance, Junction–to–Air (Note 2) Case 646 Case 751A Case 948G	037	118 156 190	°C/W
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Ambient Temperature Range LM224 LM324, LM324A, LM324E LM2902, LM2902E	T _A	-25 to +85 0 to +70 -40 to +105	°C
		-40	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Split Power Supplies.

2. All R_{0JA} measurements made on evaluation board with 1 oz. copper traces of minimum pad size. All device outputs were active.

3. NCV2902 is qualified for automitive use.

ESD RATINGS

Rating	HBM	ММ	Unit
ESD Protection at any Pin (Human Body Model – HBM, Machine Model – MM)			
NCV2902 (Note 3)	2000	200	V
LM324E, LM2902E	2000	200	V
LM324DG/DR2G, LM2902DG/DR2G	200	100	V
All Other Devices	2000	200	V

LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902

		RISTICS (V _{CC} = 5.0 V, V _{EE} = GND, T _A = 25°C, unless otherwise noted.) LM224 LM324A LM324, LM324E LM2902, LM2902E LM2902V/N								001/010	1/2000						
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Unit
Input Offset Voltage $V_{CC} = 5.0 \text{ V to } 30 \text{ V}$ $V_{ICR} = 0 \text{ V to}$ $V_{CC} -1.7 \text{ V},$ $V_{O} = 1.4 \text{ V}, R_{S} = 0 \Omega$	V _{IO}			5.0						7.0			7.0			7.0	mV
$T_A = 25^{\circ}C$		-	2.0	5.0 7.0	-	2.0	3.0 5.0	-	2.0	7.0 9.0	-	2.0	7.0 10	-	2.0	7.0 13	
$T_A = T_{high}$ (Note 4) $T_A = T_{low}$ (Note 4)		_	-	7.0	-	-	5.0 5.0	_	_	9.0 9.0	_	_	10	_	_	10	
Average Temperature Coefficient of Input Offset Voltage	$\Delta V_{IO} / \Delta T$	-	7.0	-	-	7.0	30	-	7.0	-	-	7.0	-	-	7.0	-	μV/°C
$T_A = T_{high}$ to T_{low} (Notes 4 and 6)																	
Input Offset Current $T_A = T_{high}$ to T_{low} (Note 4)	Ι _{ΙΟ}		3.0 -	30 100	-	5.0 -	30 75	-	5.0 -	50 150	-	5.0 -	50 200	-	5.0 -	50 200	nA
Average Temperature Coefficient of Input Offset Current $T_A = T_{high}$ to T_{low} (block of a cod 6)	$\Delta I_{IO} / \Delta T$	-	10	-	-	10	300	-	10	-	-	10	-	-	10	-	pA/°C
(Notes 4 and 6)			00	450		45	100		00	050		00	050		00	-250	
Input Bias Current $T_A = T_{high}$ to T_{low} (Note 4)	I _{IB}	-	-90 -	-150 -300	_	-45 -	-100 -200	-	-90 -	-250 -500	_	-90 -	-250 -500	_	-90 -	-250 -500	nA
Input Common Mode Voltage Range (Note 5) V _{CC} = 30 V	V _{ICR}																V
T _A = +25°C		0	-	28.3	0	-	28.3	0	-	28.3	0	-	28.3	0	-	28.3	
T _A = T _{high} to T _{low} (Note 4)		0	-	28	0	-	28	0	_	28	0	_	28	0	-	28	
Differential Input Voltage Range	V _{IDR}	-	-	V _{CC}	-	_	V _{CC}	-	_	V _{CC}	-	_	V _{CC}	-	-	V _{CC}	V
Large Signal Open Loop Voltage Gain $R_L = 2.0 k\Omega$, $V_{CC} = 15 V$, for Large V_{Ω} Swing	A _{VOL}	50	100	-	25	100	-	25	100	-	25	100	-	25	100	-	V/mV
$T_{A} = T_{high} \text{ to } T_{low}$ (Note 4)		25	-	-	15	-	-	15	-	-	15	-	-	15	-	-	
Channel Separation 10 kHz \leq f \leq 20 kHz, Input Referenced	CS	_	-120	-	_	-120	-	_	-120	-	_	-120	-	_	-120	-	dB
$\begin{array}{l} \mbox{Common Mode} \\ \mbox{Rejection,} \\ \mbox{R}_{S} \leq 10 \ \mbox{k}\Omega \end{array}$	CMR	70	85	-	65	70	-	65	70	-	50	70	-	50	70	-	dB
Power Supply Rejection	PSR	65	100	-	65	100	-	65	100	-	50	100	-	50	100	-	dB

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V, V_{EE} = GND, T_A = 25°C, unless otherwise noted.)

4. LM224: T_{Iow} = -25°C, T_{high} = +85°C LM324/LM324A/LM324E: T_{Iow} = 0°C, T_{high} = +70°C LM2902/LM2902E: T_{Iow} = -40°C, T_{high} = +105°C LM2902V & NCV2902: T_{Iow} = -40°C, T_{high} = +125°C NCV2902 is qualified for automotive use.

 The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is V_{CC} –1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude of V_{CC}.

6. Guaranteed by design.

LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902

	ECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}, V_{EE} = \text{GND},$																
		LM224			LM324A			LM324, LM324E			LM2902, LM2902E			LM2902V/NCV2902			
Characteristics	Symbol	Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах	Unit
$\begin{array}{l} Output \mbox{ Voltage} - \\ High \mbox{ Limit } \\ V_{CC} = 5.0 \mbox{ V}, \mbox{ R}_L = \\ 2.0 \mbox{ V}, \mbox{ T}_A = 25^\circ \mbox{ C} \\ V_{CC} = 30 \mbox{ V} \\ \mbox{ R}_L = 2.0 $	V _{OH}	3.3 26	3.5	-	3.3 26	3.5	-	3.3 26	3.5	-	3.3 26	3.5	-	3.3 26	3.5		V
$ (Note 7) \\ V_{CC} = 30 V \\ R_L = 10 k\Omega \\ (T_A = T_{high to} T_{low}) \\ (Note 7) $		27	28	_	27	28	_	27	28	_	27	28	_	27	28	-	
$\begin{array}{l} \text{Output Voltage} - \\ \text{Low Limit,} \\ \text{V}_{\text{CC}} = 5.0 \text{ V,} \\ \text{R}_{\text{L}} = 10 \text{ k}\Omega, \\ \text{T}_{\text{A}} = \text{T}_{\text{high}} \text{ to } \text{T}_{\text{low}} \\ (\text{Note 7}) \end{array}$	V _{OL}	-	5.0	20	-	5.0	20	-	5.0	20	-	5.0	100	I	5.0	100	mV
Output Source Current $(V_{ID} = +1.0 V, V_{CC} = 15 V)$ $T_A = 25^{\circ}C$ $T_A = T_{high}$ to T_{low}	I _{O +}	20 10	40 20	-	20 10	40 20	-	20 10	40 20	-	20 10	40 20	-	20 10	40 20	-	mA
(Note 7)																	
Output Sink Current $(V_{1D} = -1.0 V,$ $V_{CC} = 15 V)$ $T_A = 25^{\circ}C$	I _{O –}	10	20	-	10	20	-	10	20	-	10	20	-	10	20	-	mA
$T_A = T_{high}$ to T_{low} (Note 7)		5.0	8.0	-	5.0	8.0	-	5.0	8.0	-	5.0	8.0	-	5.0	8.0	-	
$(V_{ID} = -1.0 \text{ V},$ $V_O = 200 \text{ mV},$ $T_A = 25^{\circ}\text{C})$		12	50	-	12	50	-	12	50	-	-	-	-	-	-	-	μΑ
Output Short Circuit to Ground (Note 8)	I _{SC}	-	40	60	-	40	60	-	40	60	-	40	60	1	40	60	mA
Power Supply Current (T _A = T _{high} to T _{low}) (Note 7)	ICC																mA
$V_{CC} = 30 V$ $V_{O} = 0 V, R_{L} = \infty$		-	-	3.0	-	1.4	3.0	-	-	3.0	-	-	3.0	-	-	3.0	
$V_{CC} = 5.0 \text{ V},$ $V_{O} = 0 \text{ V}, \text{ R}_{L} = \infty$		-	-	1.2	-	0.7	1.2	-	-	1.2	-	-	1.2	-	-	1.2	

ELECTRICAL CHARACTERISTICS	$(V_{CC} = 5.0 \text{ V} \text{ V}_{FF} = \text{GND} \text{ T}$	$a = 25^{\circ}$ C unless otherwise noted)
	$(v_{1}) = 0.0 v_{1} v_{FF} = 0.0 v_{1}$	$\Delta = 25$ C, unless otherwise noted.)

7. LM224: $T_{low} = -25^{\circ}$ C, $T_{high} = +85^{\circ}$ C LM324/LM324A/LM324E: $T_{low} = 0^{\circ}$ C, $T_{high} = +70^{\circ}$ C LM2902/LM2902E: $T_{low} = -40^{\circ}$ C, $T_{high} = +105^{\circ}$ C LM2902V & NCV2902: $T_{low} = -40^{\circ}$ C, $T_{high} = +125^{\circ}$ C NCV2902 is qualified for automotive use.

8. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is V_{CC} –1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude of V_{CC}.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902

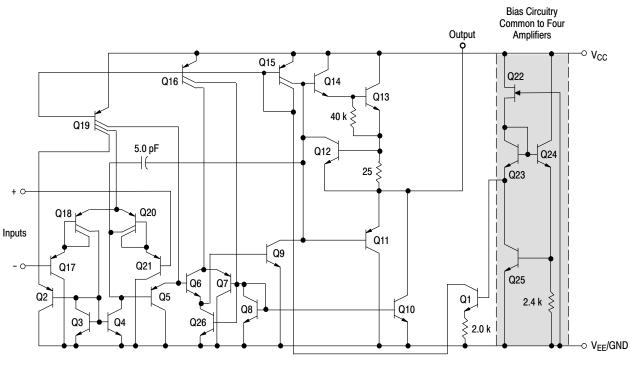
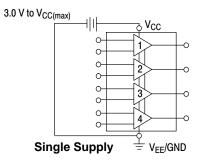



Figure 1. Representative Circuit Diagram (One–Fourth of Circuit Shown)

CIRCUIT DESCRIPTION

The LM324 series is made using four internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

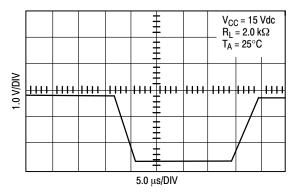
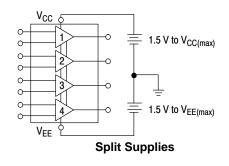



Figure 2. Large Signal Voltage Follower Response

Each amplifier is biased from an internal–voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

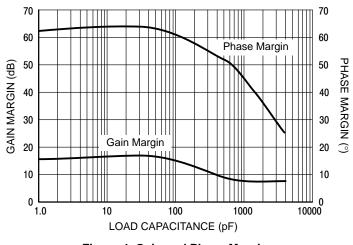
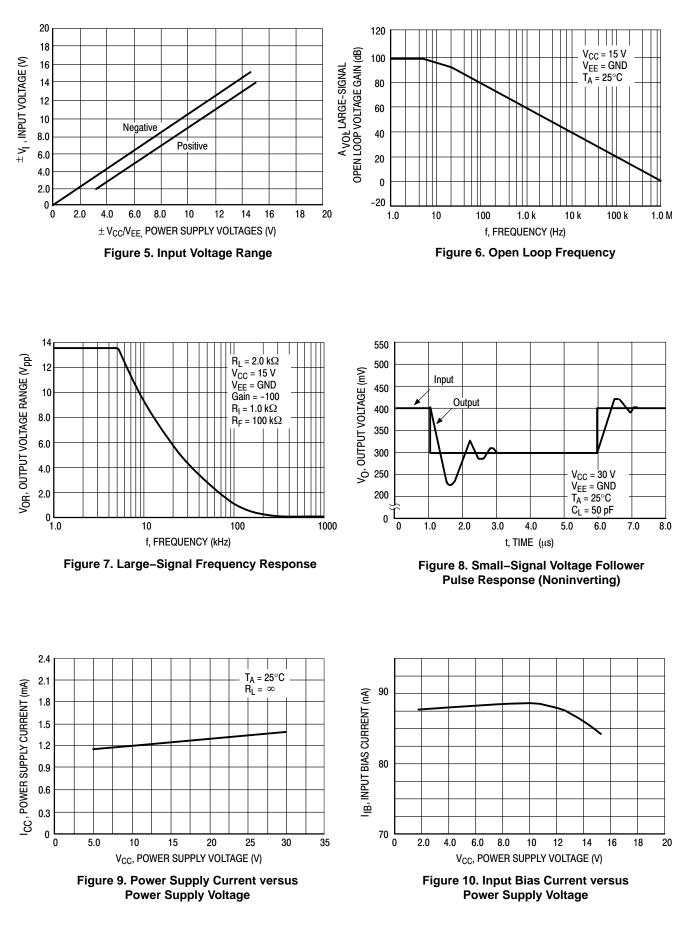



Figure 4. Gain and Phase Margin

LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902

LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902

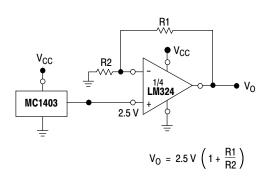


Figure 11. Voltage Reference

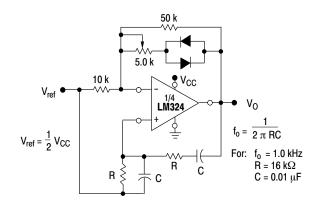


Figure 12. Wien Bridge Oscillator

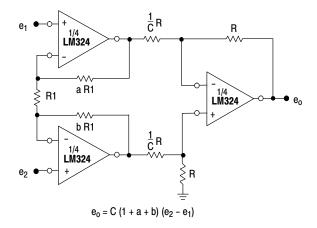


Figure 13. High Impedance Differential Amplifier

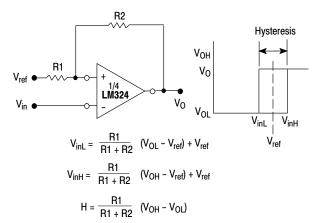


Figure 14. Comparator with Hysteresis

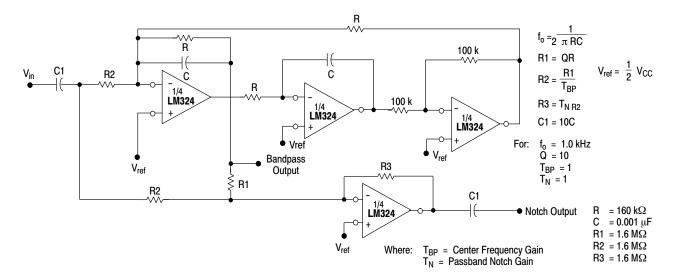
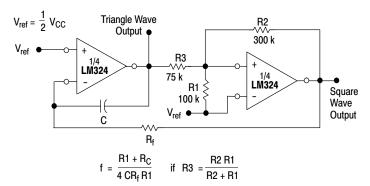
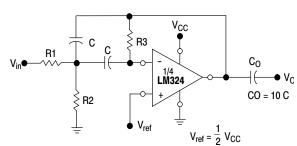
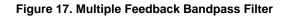





Figure 15. Bi-Quad Filter

Figure 16. Function Generator

Given: f_0 = center frequency A(f_0) = gain at center frequency

Choose value fo, C

Then: R3 =
$$\frac{Q}{\pi f_0 C}$$

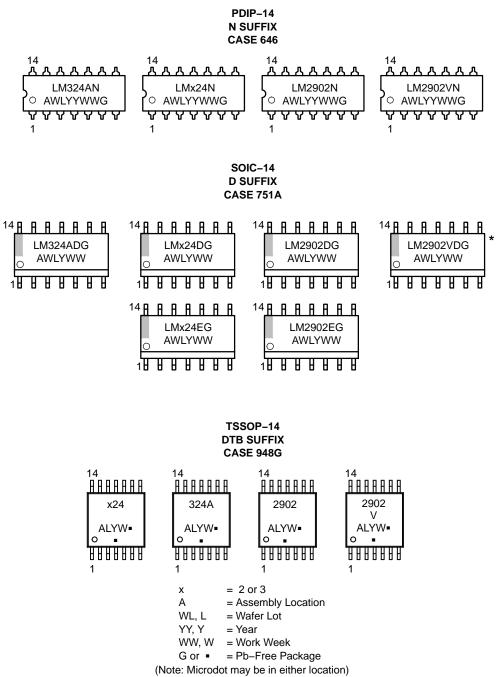
R1 = $\frac{R3}{2 A(f_0)}$
R2 = $\frac{R1 R3}{4Q^2 R1 - R3}$

For less than 10% error from operational amplifier, $~\frac{Q_{0}~f_{0}}{BW}~<0.1$

where f_0 and BW are expressed in Hz.

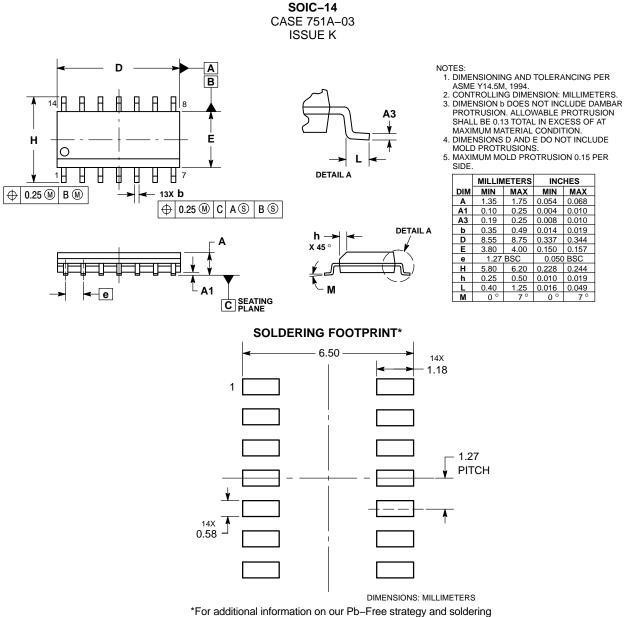
If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902


ORDERING INFORMATION

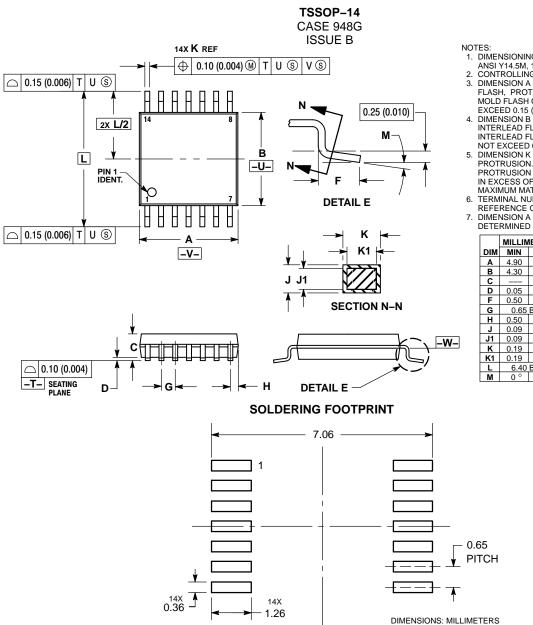
Device	Operating Temperature Range	Package	Shipping [†]
LM224DG		SOIC-14 (Pb-Free)	55 Units/Rail
LM224DR2G		SOIC-14 (Pb-Free)	2500/Tape & Reel
LM224DTBG	–25°C to +85°C	TSSOP-14 (Pb-Free)	96 Units/Tube
LM224DTBR2G		TSSOP-14 (Pb-Free)	2500/Tape & Reel
LM224NG		PDIP-14 (Pb-Free)	25 Units/Rail
LM324DG		SOIC-14 (Pb-Free)	55 Units/Rail
LM324DR2G		SOIC-14 (Pb-Free)	2500/Tape & Reel
LM324EDR2G	_	SOIC-14 (Pb-Free)	2500/Tape & Reel
LM324DTBG	_	TSSOP-14 (Pb-Free)	96 Units/Tube
LM324DTBR2G	_	TSSOP-14 (Pb-Free)	2500/Tape & Reel
LM324NG	0°C to +70°C	PDIP-14 (Pb-Free)	25 Units/Rail
LM324ADG	_	SOIC-14 (Pb-Free)	55 Units/Rail
LM324ADR2G	_	SOIC-14 (Pb-Free)	2500/Tape & Reel
LM324ADTBG	_	TSSOP-14 (Pb-Free)	96 Units/Tube
LM324ADTBR2G		TSSOP-14 (Pb-Free)	2500/Tape & Reel
LM324ANG		PDIP-14 (Pb-Free)	25 Units/Rail
LM2902DG		SOIC-14 (Pb-Free)	55 Units/Rail
LM2902DR2G	_	SOIC-14 (Pb-Free)	2500/Tape & Reel
LM2902EDR2G		SOIC-14 (Pb-Free)	2500/Tape & Reel
LM2902DTBG	−40°C to +105°C	TSSOP-14 (Pb-Free)	96 Units/Tube
LM2902DTBR2G		TSSOP-14 (Pb-Free)	2500/Tape & Reel
LM2902NG		PDIP-14 (Pb-Free)	25 Units/Rail
LM2902VDG		SOIC-14 (Pb-Free)	55 Units/Rail
LM2902VDR2G		SOIC-14 (Pb-Free)	2500/Tape & Reel
LM2902VDTBG		TSSOP-14 (Pb-Free)	96 Units/Tube
LM2902VDTBR2G	-40°C to +125°C	TSSOP-14 (Pb-Free)	2500/Tape & Reel
LM2902VNG		PDIP-14 (Pb-Free)	25 Units/Rail
NCV2902DR2G*		SOIC-14 (Pb-Free)	
NCV2902DTBR2G*	-1	TSSOP-14 (Pb-Free)	2500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

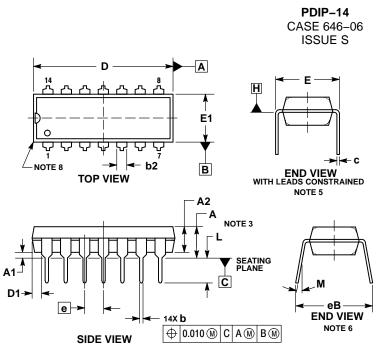
MARKING DIAGRAMS

*This marking diagram also applies to NCV2902.


PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902


PACKAGE DIMENSIONS

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED ALT (NOW DED AURS)
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
 TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	BSC
н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
м	0 °	8 °	0 °	8 °

PACKAGE DIMENSIONS

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2
- CONTROLLING DIMENSION: INCHES. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH 3.
- 4. OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH.
- 5 DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C
- DIMENSION OF IS MEASURED AT THE LEAD TIPS WITH THE 6 LEADS UNCONSTRAINED.
- DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE 7 LEADS, WHERE THE LEADS EXIT THE BODY. 8
- PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS).

	INC	HES	MILLIM	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α		0.210		5.33	
A1	0.015		0.38		
A2	0.115	0.195	2.92	4.95	
b	0.014	0.022	0.35	0.56	
b2	0.060) TYP	1.52	TYP	
С	0.008	0.014	0.20	0.36	
D	0.735	0.775	18.67	19.69	
D1	0.005		0.13		
Е	0.300	0.325	7.62	8.26	
E1	0.240	0.280	6.10	7.11	
е	0.100	BSC	2.54	BSC	
eB		0.430		10.92	
L	0.115	0.150	2.92	3.81	
М		10°		10°	

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Sample &

Buy

SLRS008D-SEPTEMBER 1986-REVISED JANUARY 2016

L293x Quadruple Half-H Drivers

Technical

Documents

1 Features

- Wide Supply-Voltage Range: 4.5 V to 36 V
- Separate Input-Logic Supply
- Internal ESD Protection
- High-Noise-Immunity Inputs
- Output Current 1 A Per Channel (600 mA for L293D)
- Peak Output Current 2 A Per Channel (1.2 A for L293D)
- Output Clamp Diodes for Inductive Transient Suppression (L293D)

2 Applications

- Stepper Motor Drivers
- DC Motor Drivers
- Latching Relay Drivers

3 Description

Tools &

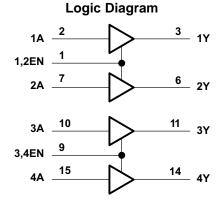
Software

The L293 and L293D devices are quadruple highcurrent half-H drivers. The L293 is designed to provide bidirectional drive currents of up to 1 A at voltages from 4.5 V to 36 V. The L293D is designed to provide bidirectional drive currents of up to 600-mA at voltages from 4.5 V to 36 V. Both devices are designed to drive inductive loads such as relays, solenoids, DC and bipolar stepping motors, as well as other high-current/high-voltage loads in positivesupply applications.

Support &

Community

20


Each output is a complete totem-pole drive circuit, with a Darlington transistor sink and a pseudo-Darlington source. Drivers are enabled in pairs, with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN.

The L293 and L293D are characterized for operation from 0°C to 70°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
L293NE	PDIP (16)	19.80 mm × 6.35 mm
L293DNE	PDIP (16)	19.80 mm × 6.35 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Texas Instruments

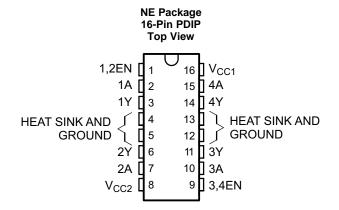
www.ti.com

Table of Contents

1	Feat	tures 1	J				
2	Applications 1						
3	Description 1						
4	Revision History 2						
5	Pin Configuration and Functions						
6	Spe	cifications4	ŀ				
	6.1	Absolute Maximum Ratings 4	ŀ				
	6.2	ESD Ratings 4	ŀ				
	6.3	Recommended Operating Conditions 4	ŀ				
	6.4	Thermal Information 4	ŀ				
	6.5	Electrical Characteristics5	5				
	6.6	Switching Characteristics 5	5				
	6.7	Typical Characteristics 5	5				
7	Para	ameter Measurement Information	3				
8	Deta	ailed Description7	,				
	8.1	Overview	7				
	8.2	Functional Block Diagram 7	7				

	8.3	Feature Description	7
	8.4	Device Functional Modes	8
9	App	lication and Implementation	9
	9.1	Application Information	9
	9.2	Typical Application	9
	9.3	System Examples	10
10	Pow	er Supply Recommendations	13
11	Lay	out	14
	11.1	Layout Guidelines	14
	11.2	Layout Example	14
12	Dev	ice and Documentation Support	15
	12.1	Related Links	15
	12.2	Community Resources	15
	12.3	Trademarks	15
	12.4	Electrostatic Discharge Caution	15
	12.5	Glossary	15
13		hanical, Packaging, and Orderable mation	15

4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	hanges from Revision C (November 2004) to Revision D	Page
•	Removed Ordering Information table	1
•	Added ESD Ratings and Thermal Information tables, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section.	1

L293, L293D SLRS008D – SEPTEMBER 1986 – REVISED JANUARY 2016

5 Pin Configuration and Functions

Pin Functions

F	PIN	TYPE	DESCRIPTION	
NAME	NO.	TIPE	DESCRIPTION	
1,2EN	1	Ι	Enable driver channels 1 and 2 (active high input)	
<1:4>A	2, 7, 10, 15	I	Driver inputs, noninverting	
<1:4>Y	3, 6, 11, 14	0	Driver outputs	
3,4EN	9	I	Enable driver channels 3 and 4 (active high input)	
GROUND	4, 5, 12, 13	—	Device ground and heat sink pin. Connect to printed-circuit-board ground plane with multiple solid vias	
V _{CC1}	16	—	5-V supply for internal logic translation	
V _{CC2}	8	_	Power VCC for drivers 4.5 V to 36 V	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
Supply voltage, V _{CC1} ⁽²⁾		36	V
Output supply voltage, V _{CC2}		36	V
Input voltage, V _I		7	V
Output voltage, V _O	-3	V _{CC2} + 3	V
Peak output current, I_O (nonrepetitive, t \leq 5 ms): L293	-2	2	А
Peak output current, I _O (nonrepetitive, t ≤ 100 µs): L293D	-1.2	1.2	А
Continuous output current, I _O : L293	-1	1	А
Continuous output current, I ₀ : L293D	-600	600	mA
Maximum junction temperature, T _J		150	°C
Storage temperature, T _{stg}	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to the network ground terminal.

6.2 ESD Ratings

			VALUE	UNIT	l
M	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V	
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	v	1

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT
	Supply veltogo	V _{CC1}	4.5	7	V
Supply voltage		V _{CC2}	V _{CC1}	36	v
.,		$V_{CC1} \le 7 V$	2.3	V _{CC1}	V
VIH	High-level input voltage	$V_{CC1} \ge 7 V$	2.3	7	V
VIL	Low-level output voltage		-0.3 ⁽¹⁾	1.5	V
T _A	Operating free-air temperature		0	70	°C

(1) The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for logic voltage levels.

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	NE (PDIP)	UNIT
		16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance (2)	36.4	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	22.5	°C/W
$R_{ extsf{ heta}JB}$	Junction-to-board thermal resistance	16.5	°C/W
ΨJT	Junction-to-top characterization parameter	7.1	°C/W
Ψјв	Junction-to-board characterization parameter	16.3	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

(2) The package thermal impedance is calculated in accordance with JESD 51-7.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER		Т	EST CONDITIONS	MIN	ТҮР	MAX	UNIT	
			L293: I _{OH} = -	-1 A	N 4.0				
V _{OH}	High-level output voltage		L293D: I _{OH} =	- 0.6 A	V _{CC2} – 1.8	V _{CC2} – 1.4		V	
	V _{OL} Low-level output voltage		L293: I _{OL} = 1	A		1.0	1.8	Ň	
VOL			L293D: I _{OL} =	0.6 A		1.2		V	
V _{OKH}	High-level output clamp voltage		L293D: I _{OK} =	-0.6 A		V _{CC2} + 1.3		V	
V _{OKL}	Low-level output clamp voltage	9	L293D: I _{OK} =	= 0.6 A		1.3		V	
	Lieb level input ourrent	А	V Z V			0.2	100	μA	
IIH	High-level input current	EN		$V_1 = 7 V$		0.2	10	0 μΑ	
	Low-level input current	А	<u>)/</u>			-3	-10		
IIL	Low-level input current	EN	$V_1 = 0$			-2	-100	μA	
				All outputs at high level		13	22		
I _{CC1}	Logic supply current		$I_{0} = 0$	All outputs at low level		35	60	mA	
				All outputs at high impedance		8	24		
				All outputs at high level		14	24		
I _{CC2}	Output supply current	Output supply current		All outputs at low level		2	6	3 mA	
•002			I _O = 0	All outputs at high impedance		2	4		

6.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted) $V_{CC1} = 5 V$, $V_{CC2} = 24 V$, $T_A = 25^{\circ}C$

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	Propagation delay time, low-to-	L293NE, L293DNE			800			
t _{PLH}	high-level output from A input	L293DWP, L293N L293DN	С ₁ = 30 рF,		750		ns	
	Propagation delay time, high-to-	L293NE, L293DNE			400			
t _{PHL}	low-level output from A input	L293DWP, L293N L293DN			200		ns	
	Transition time, low-to-high-level	L293NE, L293DNE	See Figure 2		300		ns	
t _{TLH}	output	L293DWP, L293N L293DN			100			
	Transition time, high-to-low-level	L293NE, L293DNE			300			
t _{THL}	output	L293DWP, L293N L293DN			350		ns	

6.7 Typical Characteristics

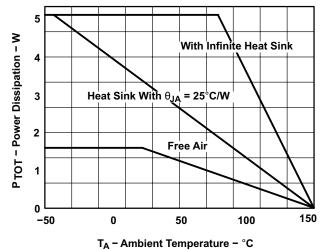
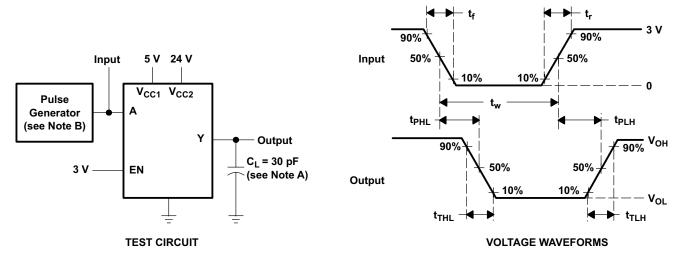



Figure 1. Maximum Power Dissipation vs Ambient Temperature

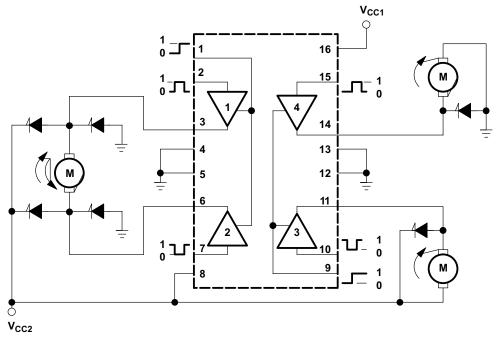
7 Parameter Measurement Information

NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_w = 10 \mu$ s, PRR = 5 kHz, $Z_0 = 50 \Omega$.

Figure 2. Test Circuit and Voltage Waveforms

8 Detailed Description


8.1 Overview

The L293 and L293D are quadruple high-current half-H drivers. These devices are designed to drive a wide array of inductive loads such as relays, solenoids, DC and bipolar stepping motors, as well as other high-current and high-voltage loads. All inputs are TTL compatible and tolerant up to 7 V.

Each output is a complete totem-pole drive circuit, with a Darlington transistor sink and a pseudo-Darlington source. Drivers are enabled in pairs, with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN. When an enable input is high, the associated drivers are enabled, and their outputs are active and in phase with their inputs. When the enable input is low, those drivers are disabled, and their outputs are off and in the high-impedance state. With the proper data inputs, each pair of drivers forms a full-H (or bridge) reversible drive suitable for solenoid or motor applications.

On the L293, external high-speed output clamp diodes should be used for inductive transient suppression. On the L293D, these diodes are integrated to reduce system complexity and overall system size. A V_{CC1} terminal, separate from V_{CC2}, is provided for the logic inputs to minimize device power dissipation. The L293 and L293D are characterized for operation from 0°C to 70°C.

8.2 Functional Block Diagram

Output diodes are internal in L293D.

8.3 Feature Description

The L293x has TTL-compatible inputs and high voltage outputs for inductive load driving. Current outputs can get up to 2 A using the L293.

8.4 Device Functional Modes

Table 1 lists the fuctional modes of the L293x.

INPU		
Α	EN	OUTPUT (Y)
Н	Н	Н
L	Н	L
Х	L	Z

Table 1. Function Table (Each Driver)⁽¹⁾

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off)
 (2) In the thermal shutdown mode, the output is in the high-impedance state, regardless of the input levels.

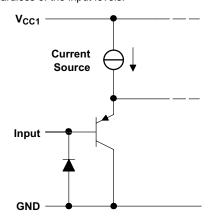


Figure 3. Schematic of Inputs for the L293x

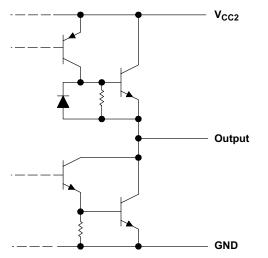


Figure 4. Schematic of Outputs for the L293

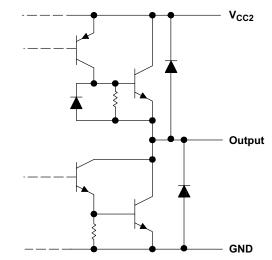


Figure 5. Schematic of Outputs for the L293D

8

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

A typical application for the L293 device is driving a two-phase motor. Below is an example schematic displaying how to properly connect a two-phase motor to the L293 device.

Provide a 5-V supply to V_{CC1} and valid logic input levels to data and enable inputs. V_{CC2} must be connected to a power supply capable of supplying the needed current and voltage demand for the loads connected to the outputs.

9.2 Typical Application

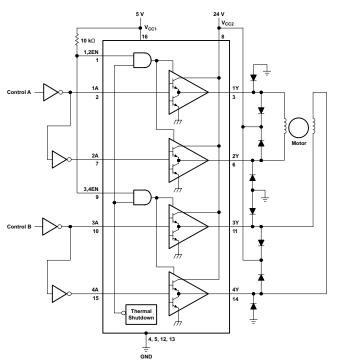


Figure 6. Two-Phase Motor Driver (L293)

9.2.1 Design Requirements

The design techniques in the application above as well as the applications below should fall within the following design requirements.

- 1. V_{CC1} should fall within the limits described in the *Recommended Operating Conditions*.
- 2. V_{CC2} should fall within the limits described in the *Recommended Operating Conditions*.
- 3. The current per channel should not exceed 1 A for the L293 (600mA for the L293D).

9.2.2 Detailed Design Procedure

When designing with the L293 or L293D, careful consideration should be made to ensure the device does not exceed the operating temperature of the device. Proper heatsinking will allow for operation over a larger range of current per channel. Refer to the *Power Supply Recommendations* as well as the *Layout Example*.

NSTRUMENTS

ÈXAS

Typical Application (continued)

9.2.3 Application Curve

Refer to *Power Supply Recommendations* for additional information with regards to appropriate power dissipation. Figure 7 describes thermal dissipation based on Figure 14.

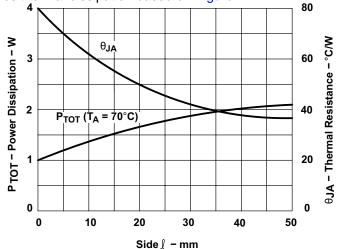
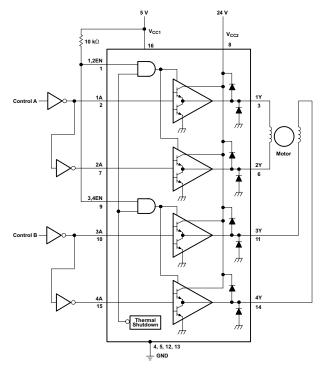


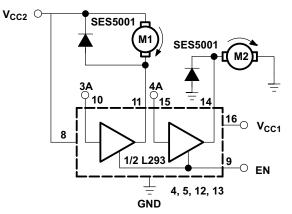
Figure 7. Maximum Power and Junction vs Thermal Resistance

9.3 System Examples

9.3.1 L293D as a Two-Phase Motor Driver

Figure 8 below depicts a typical setup for using the L293D as a two-phase motor driver. Refer to the *Recommended Operating Conditions* when considering the appropriate input high and input low voltage levels to enable each channel of the device.




Figure 8. Two-Phase Motor Driver (L293D)

System Examples (continued)

9.3.2 DC Motor Controls

Figure 9 and Figure 10 below depict a typical setup for using the L293 device as a controller for DC motors. Note that the L293 device can be used as a simple driver for a motor to turn on and off in one direction, and can also be used to drive a motor in both directions. Refer to the function tables below to understand unidirectional vs bidirectional motor control. Refer to the Recommended Operating Conditions when considering the appropriate input high and input low voltage levels to enable each channel of the device.

Connections to ground and to supply voltage

Figure 9. DC Motor Controls

Table 2. Unidirectional DC Motor Control

EN	3A	M1 ⁽¹⁾	4A	M2
н	Н	Fast motor stop	Н	Run
Н	L	run	L	Fast motor stop
L	Х	Free-running motor stop	Х	Free-running motor stop

(1) L = low, H = high, X = don't care

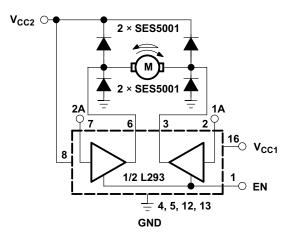


Figure 10. Bidirectional DC Motor Control

Table 3. Bidrectional DC Motor Control

EN	1A	2A	FUNCTION ⁽¹⁾
Н	L	Н	Turn right
Н	Н	L	Turn left

(1) L = low, H = high, X = don't care

Copyright © 1986–2016, Texas Instruments Incorporated

Submit Documentation Feedback

L293, L293D

SLRS008D - SEPTEMBER 1986 - REVISED JANUARY 2016

L293, L293D SLRS008D – SEPTEMBER 1986 – REVISED JANUARY 2016 **NSTRUMENTS**


ÈXAS

EN	1A	2A	FUNCTION ⁽¹⁾
Н	L	L	Fast motor stop
Н	Н	Н	Fast motor stop
L	Х	Х	Free-running motor stop

Table 3. Bidrectional DC Motor Control (continued)

9.3.3 Bipolar Stepping-Motor Control

Figure 11 below depicts a typical setup for using the L293D as a two-phase motor driver. Refer to the *Recommended Operating Conditions* when considering the appropriate input high and input low voltage levels to enable each channel of the device.

D1-D8 = SES5001

10 Power Supply Recommendations

 V_{CC1} is 5 V ± 0.5 V and V_{CC2} can be same supply as V_{CC1} or a higher voltage supply with peak voltage up to 36 V. Bypass capacitors of 0.1 uF or greater should be used at V_{CC1} and V_{CC2} pins. There are no power up or power down supply sequence order requirements.

Properly heatsinking the L293 when driving high-current is critical to design. The Rthj-amp of the L293 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board or to an external heat sink.

Figure 14 shows the maximum package power PTOT and the θ JA as a function of the side of two equal square copper areas having a thickness of 35 μ m (see Figure 14). In addition, an external heat sink can be used (see Figure 12).

During soldering, the pin temperature must not exceed 260°C, and the soldering time must not exceed 12 seconds.

The external heatsink or printed circuit copper area must be connected to electrical ground.

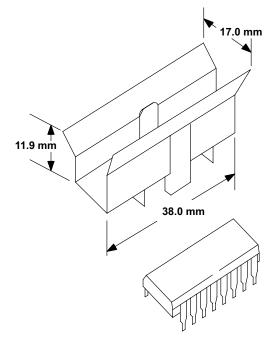


Figure 12. External Heat Sink Mounting Example ($\theta_{JA} = 25^{\circ}$ C/W)

L293, L293D SLRS008D – SEPTEMBER 1986 – REVISED JANUARY 2016

11 Layout

11.1 Layout Guidelines

Place the device near the load to keep output traces short to reduce EMI. Use solid vias to transfer heat from ground pins to ground plane of the printed-circuit-board.

11.2 Layout Example

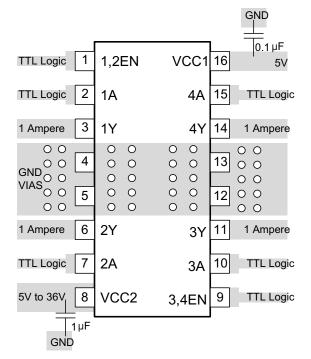


Figure 13. Layout Diagram

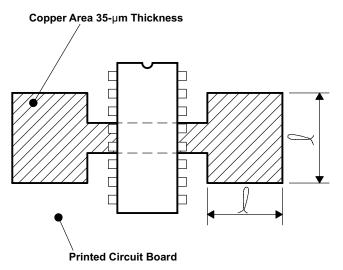


Figure 14. Example of Printed-Circuit-Board Copper Area (Used as Heat Sink)

12 Device and Documentation Support

12.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
L293	Click here	Click here	Click here	Click here	Click here	
L293D	Click here	Click here	Click here	Click here	Click here	

Table 4. Related Links

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
L293DNE	ACTIVE	PDIP	NE	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	L293DNE	Samples
L293DNEE4	ACTIVE	PDIP	NE	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	L293DNE	Samples
L293NE	ACTIVE	PDIP	NE	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	L293NE	Samples
L293NEE4	ACTIVE	PDIP	NE	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	L293NE	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

17-Mar-2017

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated