Amplifier Transistors

NPN Silicon

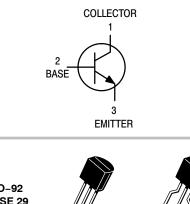
Features

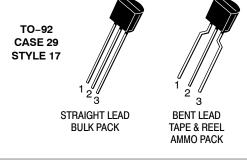
• These are Pb-Free Devices*

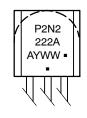
MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	40	Vdc
Collector – Base Voltage	V _{CBO}	75	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ι _C	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	–55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

= Assembly Location

= Year

А

γ

WW = Work Week

= Pb-Free Package

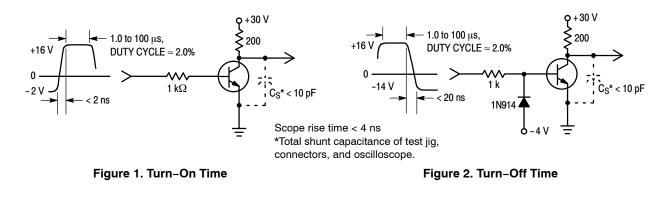
(Note: Microdot may be in either location)

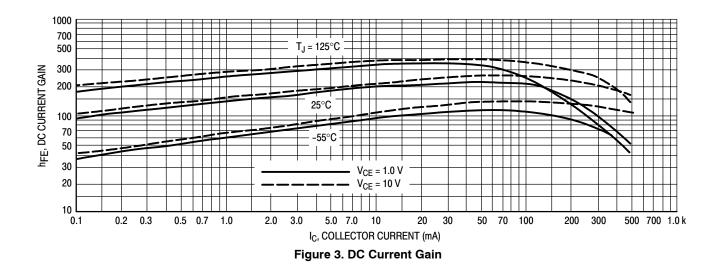
ORDERING INFORMATION

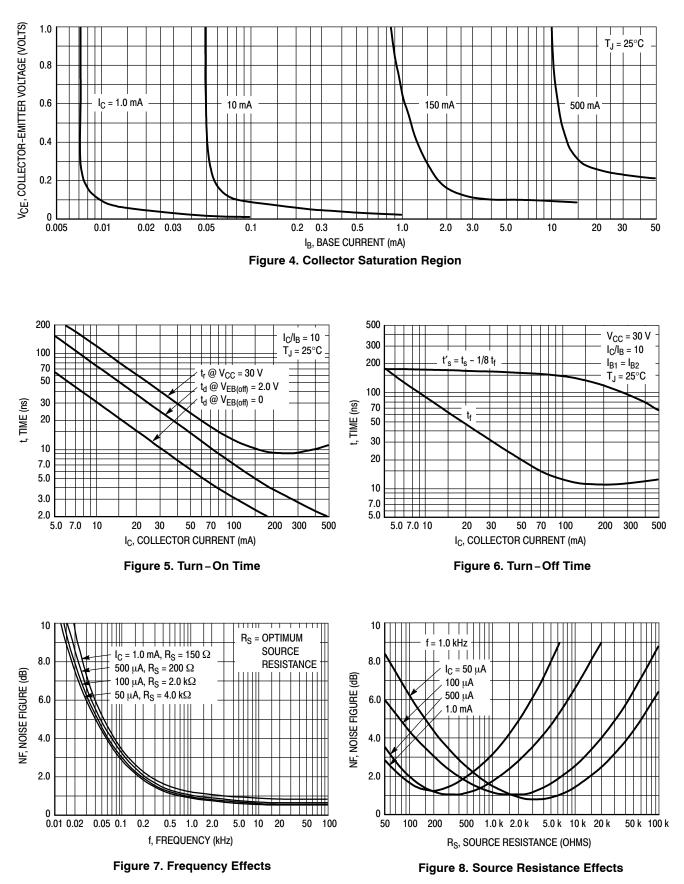
Device	Package	Shipping [†]
P2N2222AG	TO-92 (Pb-Free)	5000 Units/Bulk
P2N2222ARL1G	TO-92 (Pb-Free)	2000/Tape & Ammo

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


ELECTRICAL CHARACTERISTICS (T_A = $25^{\circ}C$ unless otherwise noted)


Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector – Emitter Breakdown Voltage $(I_C = 10 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	40	_	Vdc
Collector – Base Breakdown Voltage ($I_C = 10 \ \mu Adc, I_E = 0$)	V _{(BR)CBO}	75	_	Vdc
Emitter – Base Breakdown Voltage ($I_E = 10 \ \mu Adc, I_C = 0$)	V _{(BR)EBO}	6.0	_	Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 3.0 Vdc)	ICEX	_	10	nAdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 60 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	I _{CBO}		0.01 10	μAdc
Emitter Cutoff Current ($V_{EB} = 3.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	_	10	nAdc
Collector Cutoff Current (V _{CE} = 10 V)	I _{CEO}	_	10	nAdc
Base Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 3.0 Vdc)	I _{BEX}	_	20	nAdc
ON CHARACTERISTICS	·			
DC Current Gain ($I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) (Note 1) ($I_C = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$) (Note 1) ($I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) (Note 1)	hFE	35 50 75 35 100 50 40	- - - 300 -	_
Collector – Emitter Saturation Voltage (Note 1) ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)	V _{CE(sat)}		0.3 1.0	Vdc
Base – Emitter Saturation Voltage (Note 1) $(l_C = 150 \text{ mAdc}, l_B = 15 \text{ mAdc})$ $(l_C = 500 \text{ mAdc}, l_B = 50 \text{ mAdc})$	V _{BE(sat)}	0.6	1.2 2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current – Gain – Bandwidth Product (Note 2) (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)C	f _T	300	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	8.0	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _{ibo}	_	25	pF
Input Impedance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{ie}	2.0 0.25	8.0 1.25	kΩ
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz) (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{re}		8.0 4.0	X 10 ⁻⁴
$ \begin{array}{l} \text{Small-Signal Current Gain} \\ (I_{C} = 1.0 \text{ mAdc, } V_{CE} = 10 \text{ Vdc, } f = 1.0 \text{ kHz}) \\ (I_{C} = 10 \text{ mAdc, } V_{CE} = 10 \text{ Vdc, } f = 1.0 \text{ kHz}) \end{array} $	h _{fe}	50 75	300 375	-
Output Admittance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{oe}	5.0 25	35 200	μMhos
Collector Base Time Constant (I _E = 20 mAdc, V _{CB} = 20 Vdc, f = 31.8 MHz)	rb′C _c	_	150	ps
Noise Figure (I _C = 100 μAdc, V _{CE} = 10 Vdc, R _S = 1.0 kΩ, f = 1.0 kHz)	N _F	_	4.0	dB


ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Continued)

	Characteristic		Min	Max	Unit
SWITCHING CHARACTERISTICS					
Delay Time	(V _{CC} = 30 Vdc, V _{BE(off)} = -2.0 Vdc,	t _d	-	10	ns
Rise Time	I _C = 150 mAdc, I _{B1} = 15 mAdc) (Figure 1)	t _r	-	25	ns
Storage Time	$(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mAdc},$	t _s	-	225	ns
Fall Time	$I_{B1} = I_{B2} = 15 \text{ mAdc}$ (Figure 2)	t _f	-	60	ns

SWITCHING TIME EQUIVALENT TEST CIRCUITS

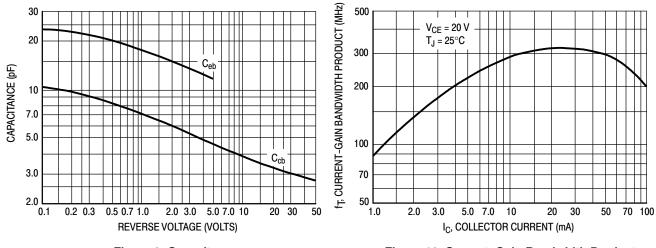


Figure 9. Capacitances

Figure 10. Current-Gain Bandwidth Product

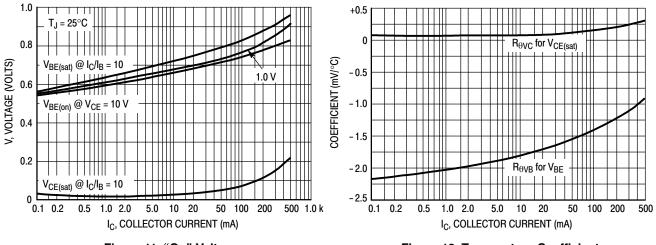
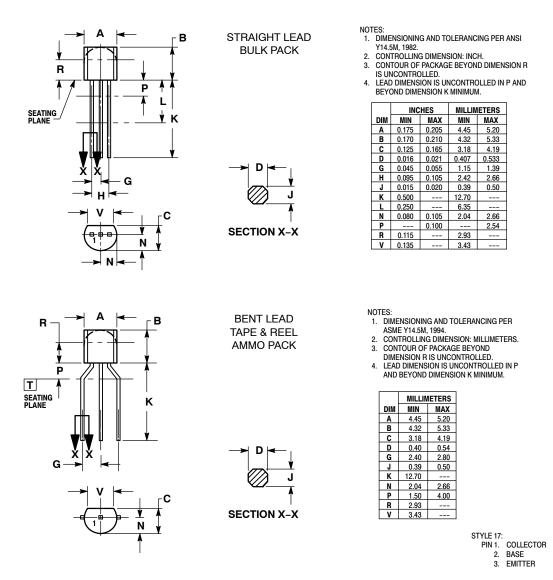



Figure 11. "On" Voltages

Figure 12. Temperature Coefficients

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 ISSUE AM

ON Semiconductor and **OD** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components insystems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright ha

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

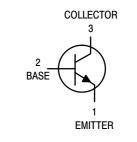
Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

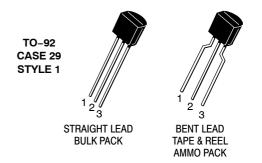
Europe, Middle East and Africa Technic Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 Order Literature: http://www.onsemi.com/orderlit

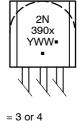
For additional information, please contact your local Sales Representative

General Purpose Transistors

NPN Silicon


Features


• Pb-Free Packages are Available*


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

x = 3 or 4 Y = Year WW = Work Week = = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	40	Vdc
Collector – Base Voltage	V _{CBO}	60	Vdc
Emitter – Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ι _C	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS (Note 1)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W

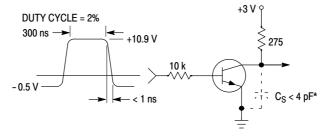
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Indicates Data in addition to JEDEC Requirements.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

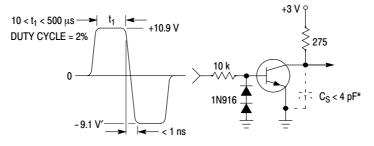
ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)

Cha	aracteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS						
Collector – Emitter Breakdown Voltage	(Note 2) (I _C = 1.0 mAdc, I _B = 0)		V _{(BR)CEO}	40	-	Vdc
Collector - Base Breakdown Voltage (Ic	_C = 10 μAdc, I _E = 0)		V _{(BR)CBO}	60	_	Vdc
Emitter-Base Breakdown Voltage (IE =	= 10 μAdc, I _C = 0)		V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _E	_B = 3.0 Vdc)		I _{BL}	-	50	nAdd
Collector Cutoff Current (V _{CE} = 30 Vdc	, V _{EB} = 3.0 Vdc)		I _{CEX}	-	50	nAdd
ON CHARACTERISTICS				1	1	
DC Current Gain (Note 2) $(I_C = 0.1 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$		2N3903	h _{FE}	20	-	-
$(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$		2N3904 2N3903 2N3904		40 35 70		
($I_C = 10$ mAdc, $V_{CE} = 1.0$ Vdc)		2N3903 2N3904		50 100	150 300	
(I _C = 50 mAdc, V _{CE} = 1.0 Vdc)		2N3904 2N3903 2N3904		30 60		
$(I_{C} = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$		2N3903 2N3904		15 30		
$\begin{array}{l} \mbox{Collector}-\mbox{Emitter Saturation Voltage (I} \\ \mbox{(I}_{C}=10\mbox{ mAdc, I}_{B}=1.0\mbox{ mAdc)} \\ \mbox{(I}_{C}=50\mbox{ mAdc, I}_{B}=5.0\mbox{ mAdc} \end{array}$	Note 2)		V _{CE(sat)}		0.2 0.3	Vdc
$\begin{array}{l} \text{Base-Emitter Saturation Voltage (Note (I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}) \\ (I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}) \end{array}$	9 2)		V _{BE(sat)}	0.65	0.85 0.95	Vdc
SMALL-SIGNAL CHARACTERISTIC	S				1	
Current-Gain – Bandwidth Product ($I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ M}$	MHz)	2N3903 2N3904	f _T	250 300		MHz
Output Capacitance (V_{CB} = 5.0 Vdc, I_{E}	= 0, f = 1.0 MHz)		C _{obo}	-	4.0	pF
Input Capacitance (V_{EB} = 0.5 Vdc, I_{C} =	: 0, f = 1.0 MHz)		C _{ibo}	-	8.0	pF
Input Impedance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, f = 1.0 k	(Hz)	2N3903 2N3904	h _{ie}	1.0 1.0	8.0 10	kΩ
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 k	(Hz)	2N3903 2N3904	h _{re}	0.1 0.5	5.0 8.0	X 10⁻
Small–Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 k	(Hz)	2N3903 2N3904	h _{fe}	50 100	200 400	-
Output Admittance ($I_C = 1.0 \text{ mAdc}, V_{CI}$	_≡ = 10 Vdc, f = 1.0 kHz)		h _{oe}	1.0	40	μmho
Noise Figure (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.	.0 k Ω, f = 1.0 kHz)	2N3903 2N3904	NF		6.0 5.0	dB
SWITCHING CHARACTERISTICS				•	•	
Delay Time (V _{CC} = 3.0 Vdc.	V _{BE} = 0.5 Vdc,		t _d	-	35	ns
Bise Time $I_{\rm C} = 10$ mAdc, $I_{\rm I}$			t.	<u> </u>	35	ns


Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = 0.5 Vdc,	t _d	-	35	ns
Rise Time	$I_{\rm C} = 10 \text{ mAdc}, I_{\rm B1} = 1.0 \text{ mAdc})$	t _r	-	35	ns
Storage Time		t _s	-	175 200	ns
Fall Time		t _f	-	50	ns

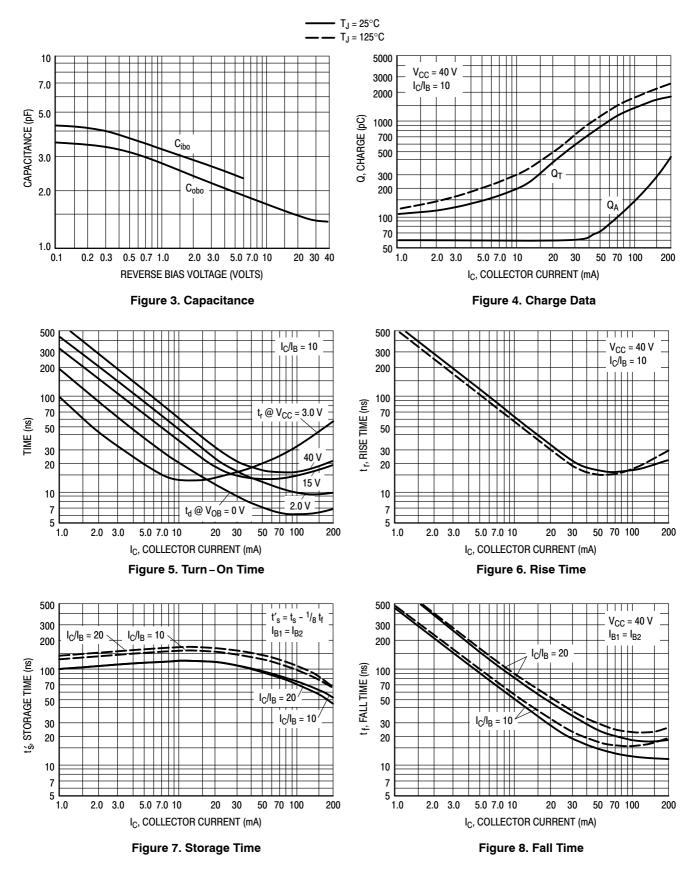
2. Pulse Test: Pulse Width \leq 300 µs; Duty Cycle \leq 2%.

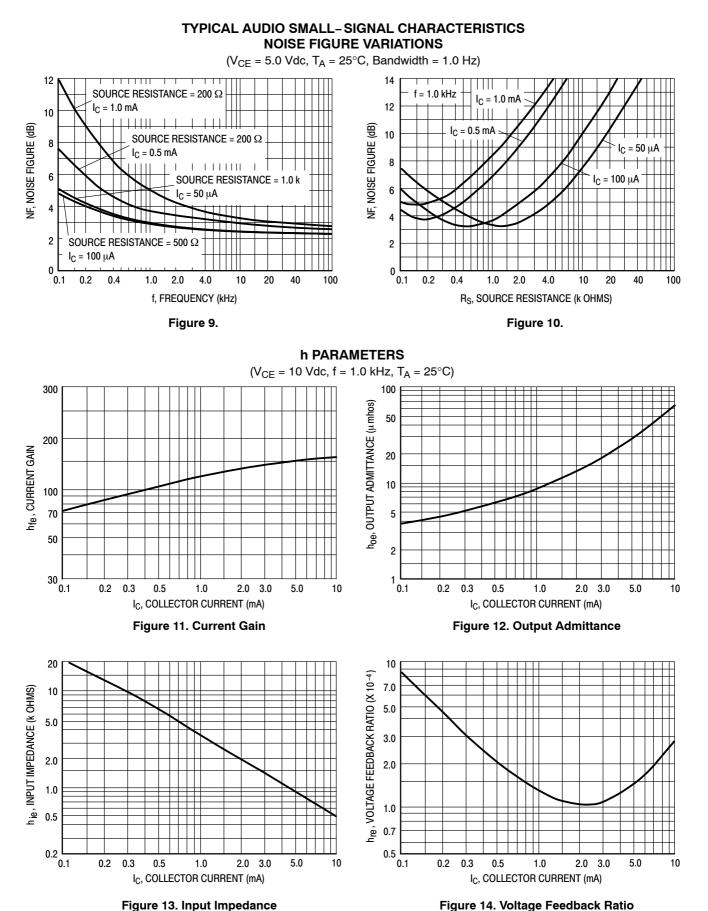
ORDERING INFORMATION


Device	Package	Shipping [†]
2N3903RLRM	TO-92	2000 / Ammo Pack
2N3904	TO-92	5000 Units / Bulk
2N3904G	TO-92 (Pb-Free)	5000 Units / Bulk
2N3904RLRA	TO-92	2000 / Tape & Reel
2N3904RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N3904RLRM	TO-92	2000 / Ammo Pack
2N3904RLRMG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N3904RLRP	TO-92	2000 / Ammo Pack
2N3904RLRPG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N3904RL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
2N3904ZL1	TO-92	2000 / Ammo Pack
2N3904ZL1G	TO-92 (Pb-Free)	2000 / Ammo Pack

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

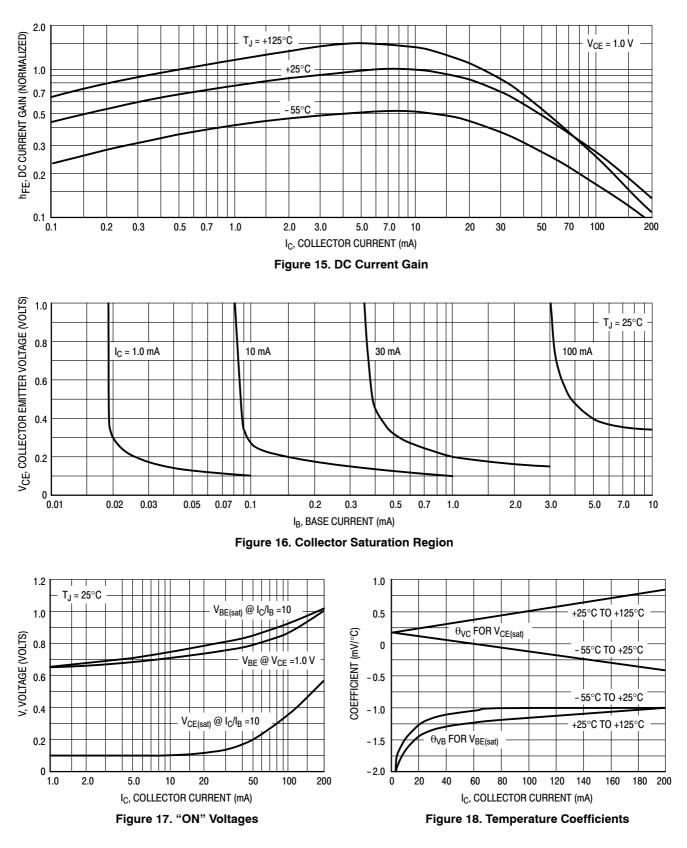
* Total shunt capacitance of test jig and connectors

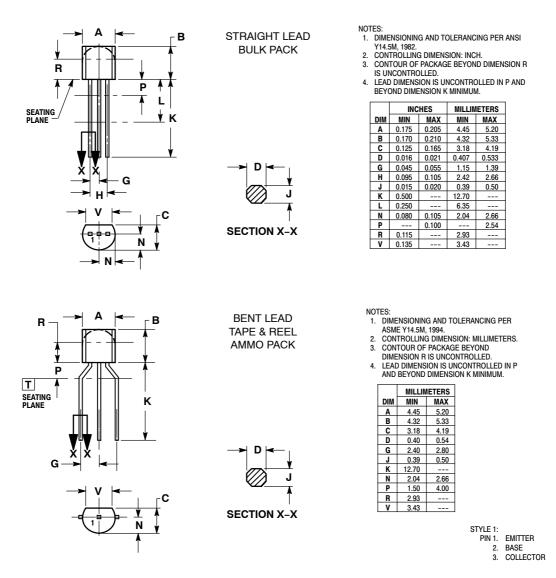

Figure 1. Delay and Rise Time Equivalent Test Circuit



* Total shunt capacitance of test jig and connectors

Figure 2. Storage and Fall Time Equivalent Test Circuit


TYPICAL TRANSIENT CHARACTERISTICS


http://onsemi.com 5

TYPICAL STATIC CHARACTERISTICS

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 ISSUE AM

ON Semiconductor and **OD** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and easonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use provides coupright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

General Purpose Transistors

PNP Silicon

Features

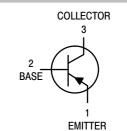
• Pb-Free Packages are Available*

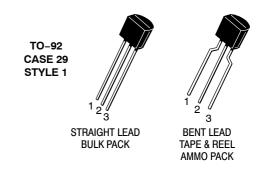
MAXIMUM RATINGS

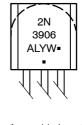
Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	40	Vdc
Collector – Base Voltage	V _{CBO}	40	Vdc
Emitter – Base Voltage	V _{EBO}	5.0	Vdc
Collector Current – Continuous	Ι _C	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Power Dissipation @ $T_A = 60^{\circ}C$	PD	250	mW
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS (Note 1)

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. Indicates Data in addition to JEDEC Requirements.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

A = Assembly Location L = Wafer Lot

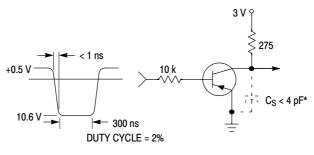
- Y = Year
- W = Work Week
- = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

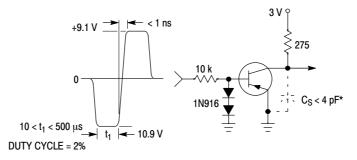
See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

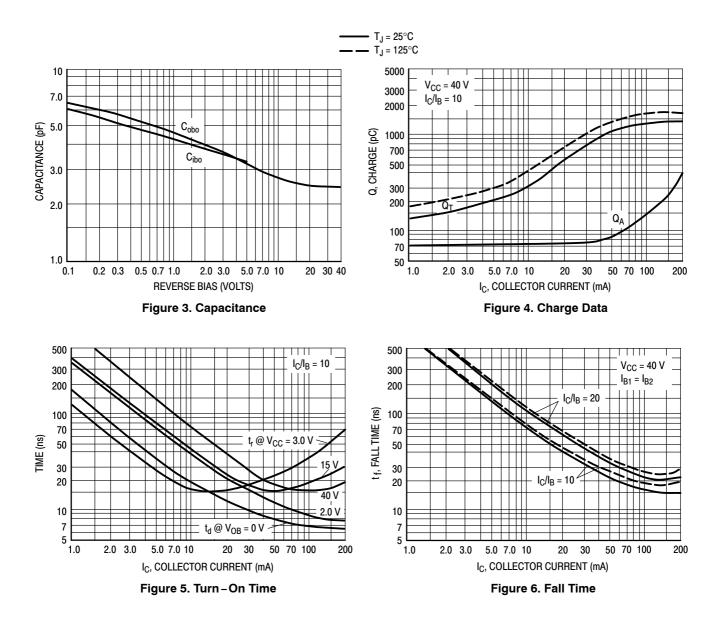
Characteristic			Symbol	Min	Max	Unit
OFF CHARACTERIST	rics					
Collector - Emitter Bre	akdown Voltage (Note 2) (I _C = 1.0 mAdc, I _B = 0)	V _{(BR)CEO}	40	-	Vdc
Collector - Base Break	down Voltage	$(I_{C} = 10 \ \mu Adc, I_{E} = 0)$	V _{(BR)CBO}	40	-	Vdc
Emitter-Base Breakd	own Voltage	$(I_{E} = 10 \ \mu Adc, I_{C} = 0)$	V _{(BR)EBO}	5.0	-	Vdc
Base Cutoff Current		$(V_{CE} = 30 \text{ Vdc}, V_{EB} = 3.0 \text{ Vdc})$	I _{BL}	-	50	nAdc
Collector Cutoff Curre	nt	(V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	I _{CEX}	-	50	nAdc
ON CHARACTERISTI	CS (Note 2)					
			h _{FE}	60 80 100 60 30	_ 300 _ _	_
Collector – Emitter Saturation Voltage		$(I_{C} = 10 \text{ mAdc}, I_{B} = 1.0 \text{ mAdc})$ $(I_{C} = 50 \text{ mAdc}, I_{B} = 5.0 \text{ mAdc})$	V _{CE(sat)}		0.25 0.4	Vdc
		$(I_{C} = 10 \text{ mAdc}, I_{B} = 1.0 \text{ mAdc})$ $(I_{C} = 50 \text{ mAdc}, I_{B} = 5.0 \text{ mAdc})$	V _{BE(sat)}	0.65 -	0.85 0.95	Vdc
SMALL-SIGNAL CH	ARACTERISTICS					÷
Current-Gain - Band	width Product	$(I_{C} = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz})$	f _T	250	-	MHz
Output Capacitance		(V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	-	4.5	pF
Input Capacitance		$(V_{EB} = 0.5 \text{ Vdc}, I_{C} = 0, f = 1.0 \text{ MHz})$	C _{ibo}	-	10	pF
Input Impedance		(I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{ie}	2.0	12	kΩ
Voltage Feedback Rat	tio	(I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{re}	0.1	10	X 10 ⁻⁴
Small-Signal Current	Gain	(I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	100	400	-
Output Admittance		(I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{oe}	3.0	60	μmhos
Noise Figure $(I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc, R_S = 1.0 \ k\Omega, f = 1.0 \ kHz)$		uAdc, V _{CE} = 5.0 Vdc, R _S = 1.0 kΩ, f = 1.0 kHz)	NF	-	4.0	dB
SWITCHING CHARA	CTERISTICS					
Delay Time	(V _{CC} = 3.0 Vdc,	V _{BE} = 0.5 Vdc,	t _d	-	35	ns
Rise Time	$I_{\rm C} = 10 \text{ mAdc}, I_{\rm B1} = 1.0 \text{ mAdc})$		t _r	-	35	ns
Storage Time	(V _{CC} = 3.0 Vdc,	$I_{\rm C}$ = 10 mAdc, $I_{\rm B1}$ = $I_{\rm B2}$ = 1.0 mAdc)	t _s	-	225	ns
Fall Time	$(V_{CC} = 3.0 \text{ Vdc}, I_C = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc})$		t _f	-	75	ns

ORDERING INFORMATION

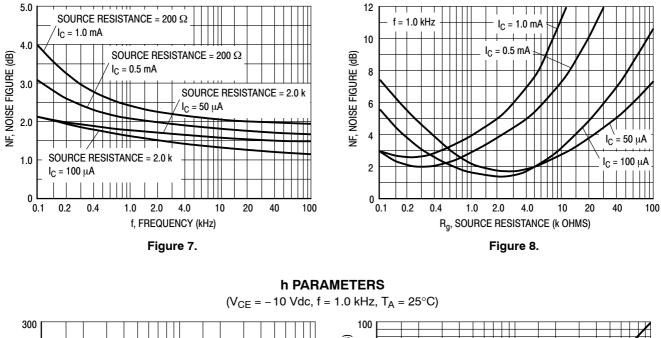

Device	Package	Shipping [†]
2N3906	TO-92	5000 Units / Bulk
2N3906G	TO-92 (Pb-Free)	5000 Units / Bulk
2N3906RL1	TO-92	2000 / Tape & Reel
2N3906RL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
2N3906RLRA	TO-92	2000 / Tape & Reel
2N3906RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N3906RLRM	TO-92	2000 / Tape & Ammo Box
2N3906RLRMG	TO-92 (Pb-Free)	2000 / Tape & Ammo Box
2N3906RLRP	TO-92	2000 / Tape & Ammo Box
2N3906RLRPG	TO-92 (Pb-Free)	2000 / Tape & Ammo Box

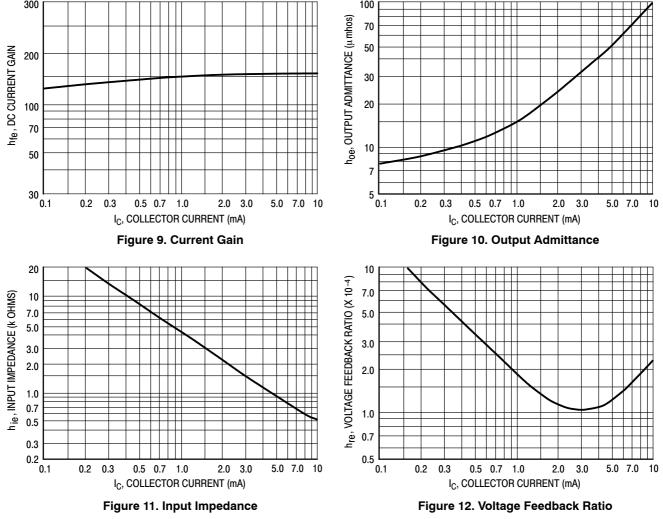
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

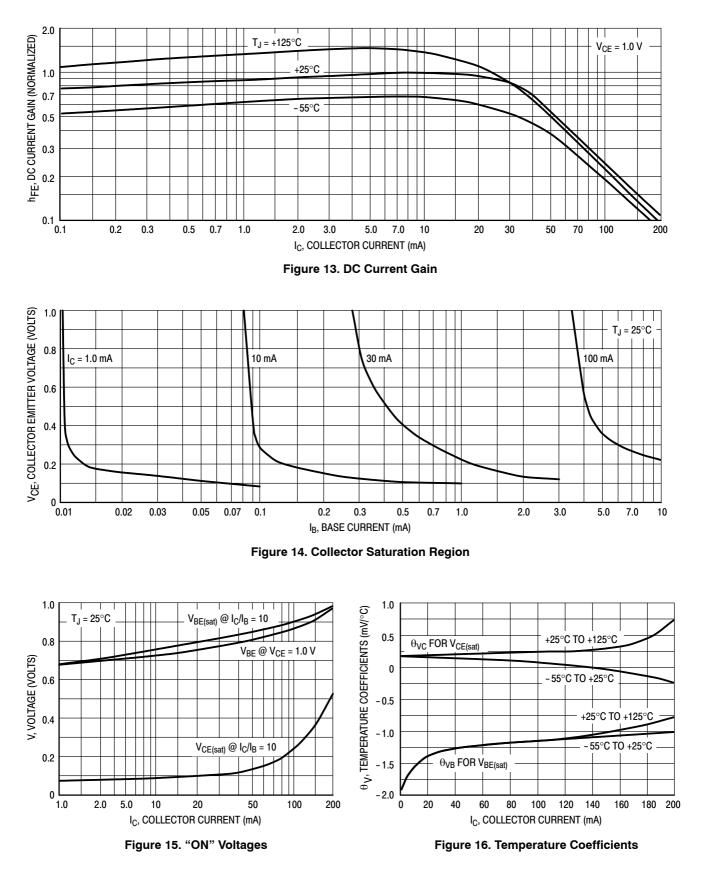
* Total shunt capacitance of test jig and connectors


Figure 1. Delay and Rise Time Equivalent Test Circuit

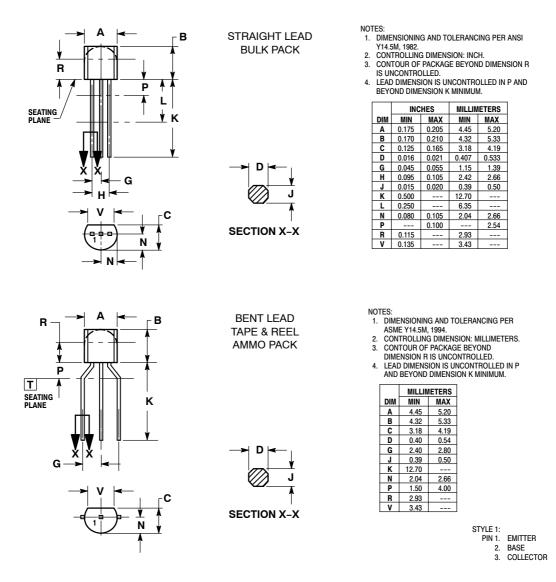
* Total shunt capacitance of test jig and connectors


Figure 2. Storage and Fall Time Equivalent Test Circuit


TYPICAL TRANSIENT CHARACTERISTICS


TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

(V_{CE} = -5.0 Vdc, T_A = 25° C, Bandwidth = 1.0 Hz)



TYPICAL STATIC CHARACTERISTICS

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 ISSUE AM

ON Semiconductor and IIIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use payers and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use porties that SCILLC was negligent regarding the design or manufacture of the part. SCILC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Amplifier Transistors PNP Silicon

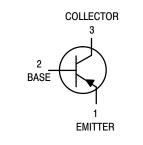
Features

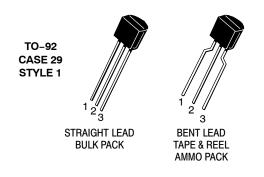
• These are Pb-Free Devices*

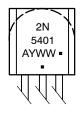
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	150	Vdc
Collector - Base Voltage	V _{CBO}	160	Vdc
Emitter – Base Voltage	V _{EBO}	5.0	Vdc
Collector Current – Continuous	Ι _C	600	mAdc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

A = Assembly Location Y = Year WW = Work Week = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

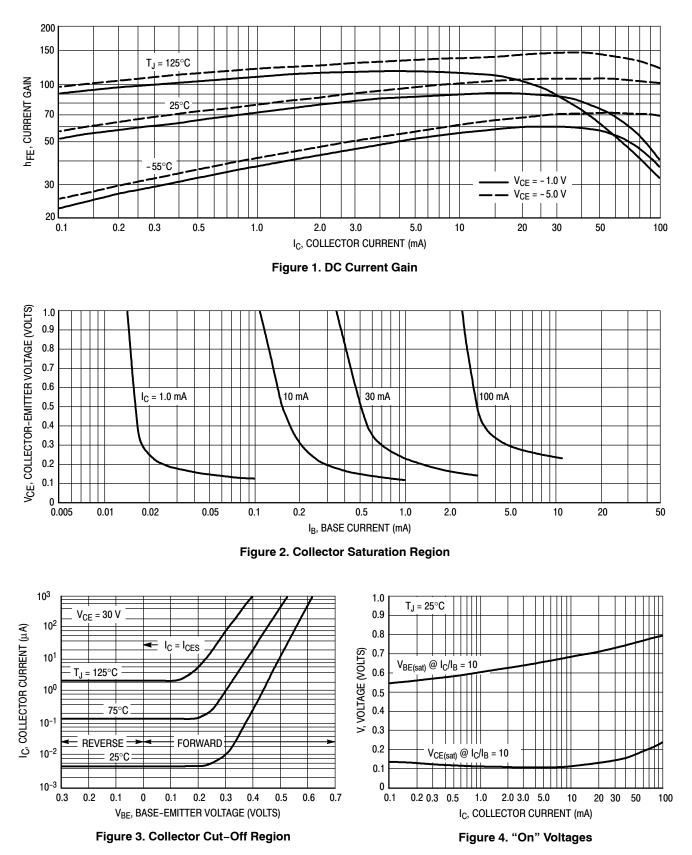
*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Semiconductor Components Industries, LLC, 2012 August, 2012 – Rev. 4

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•	
Collector-Emitter Breakdown Voltage (Note 1) ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	150	-	Vdc
Collector-Base Breakdown Voltage $(I_C = 100 \ \mu Adc, I_E = 0)$	V _{(BR)CBO}	160	-	Vdc
Emitter-Base Breakdown Voltage $(I_E = 10 \ \mu Adc, I_C = 0)$	V _{(BR)EBO}	5.0	_	Vdc
Collector Cutoff Current ($V_{CB} = 120 \text{ Vdc}, I_E = 0$) ($V_{CB} = 120 \text{ Vdc}, I_E = 0, T_A = 100^{\circ}\text{C}$)	Ісво		50 50	nAdc μAdc
Emitter Cutoff Current $(V_{EB} = 3.0 \text{ Vdc}, I_C = 0)$	I _{EBO}	-	50	nAdc
ON CHARACTERISTICS (Note 1)				
$ \begin{array}{l} \text{DC Current Gain} \\ (I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}) \\ (I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}) \\ (I_C = 50 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}) \end{array} $	h _{FE}	50 60 50	240 	-
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$)	V _{CE(sat)}		0.2 0.5	Vdc
$\begin{array}{l} \text{Base-Emitter Saturation Voltage} \\ (I_{C} = 10 \text{ mAdc}, I_{B} = 1.0 \text{ mAdc}) \\ (I_{C} = 50 \text{ mAdc}, I_{B} = 5.0 \text{ mAdc}) \end{array}$	V _{BE(sat)}	- -	1.0 1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
$\label{eq:current-Gain} \begin{array}{l} \text{Current-Gain} & \text{Bandwidth Product} \\ (I_C = 10 \text{ mAdc}, \text{ V}_{CE} = 10 \text{ Vdc}, \text{ f} = 100 \text{ MHz}) \end{array}$	fT	100	300	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	6.0	pF
Small–Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	40	200	-
Noise Figure	NF		8.0	dB

Noise Figure (I_C = 250 μ Adc, V_{CE} = 5.0 Vdc, R_S = 1.0 kΩ, f = 1.0 kHz)


1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

ORDERING INFORMATION

Device	Package	Shipping [†]
2N5401G	TO-92 (Pb-Free)	5000 Unit / Bulk
2N5401RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel

8.0

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

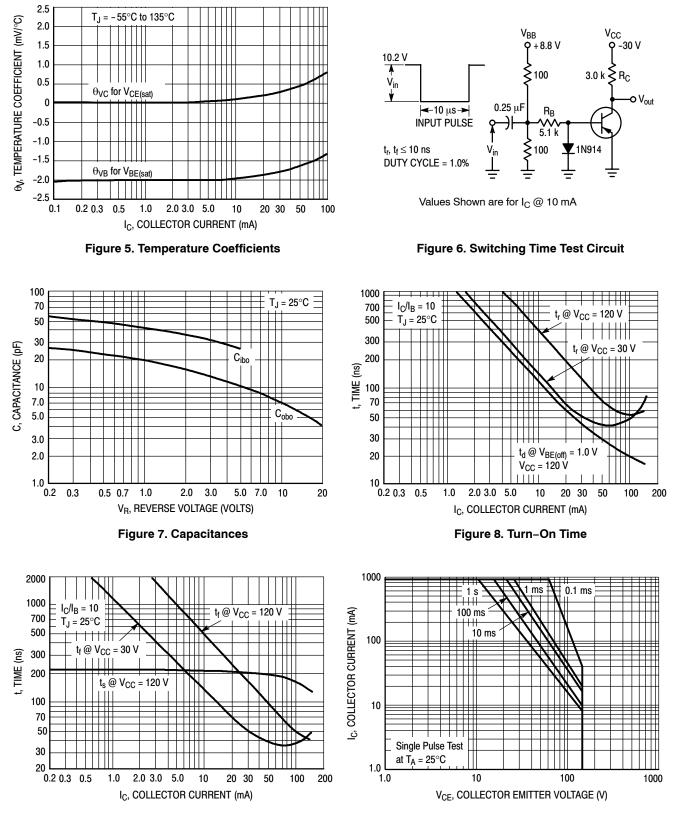
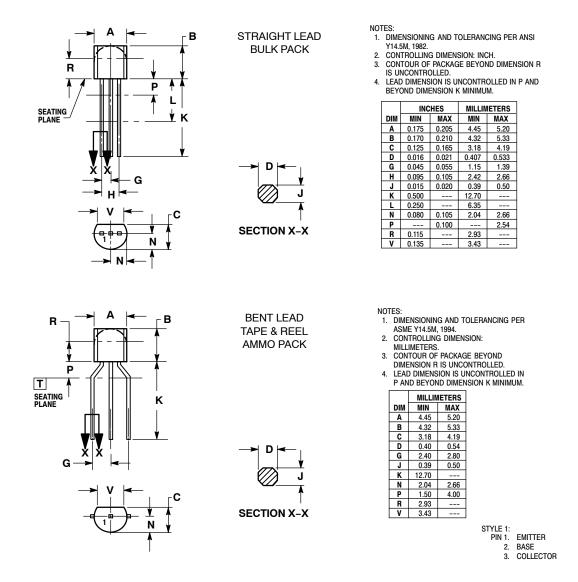



Figure 9. Turn–Off Time

Figure 10. Safe Operating Area

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 ISSUE AM

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended or subpication by customer's technical culture culd create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any other application, unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and the officers, subcidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not be regarding the design or manufacture of the part.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your loca Sales Representative

2N5550, 2N5551

Preferred Device

Amplifier Transistors

NPN Silicon

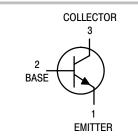
Features

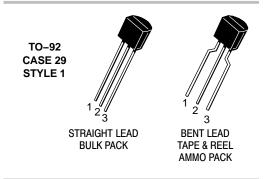
• These are Pb-Free Devices*

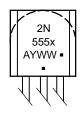
MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Collector – Emitter Voltage	2N5550 2N5551	V _{CEO}	140 160	Vdc
Collector – Base Voltage	2N5550 2N5551	V _{CBO}	160 180	Vdc
Emitter – Base Voltage		V_{EBO}	6.0	Vdc
Collector Current – Continuous		Ι _C	600	mAdc
Total Device Dissipation @ $T_A = 2$ Derate above 25°C	25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ $T_C = 2$ Derate above 25°C	25°C	PD	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range		T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

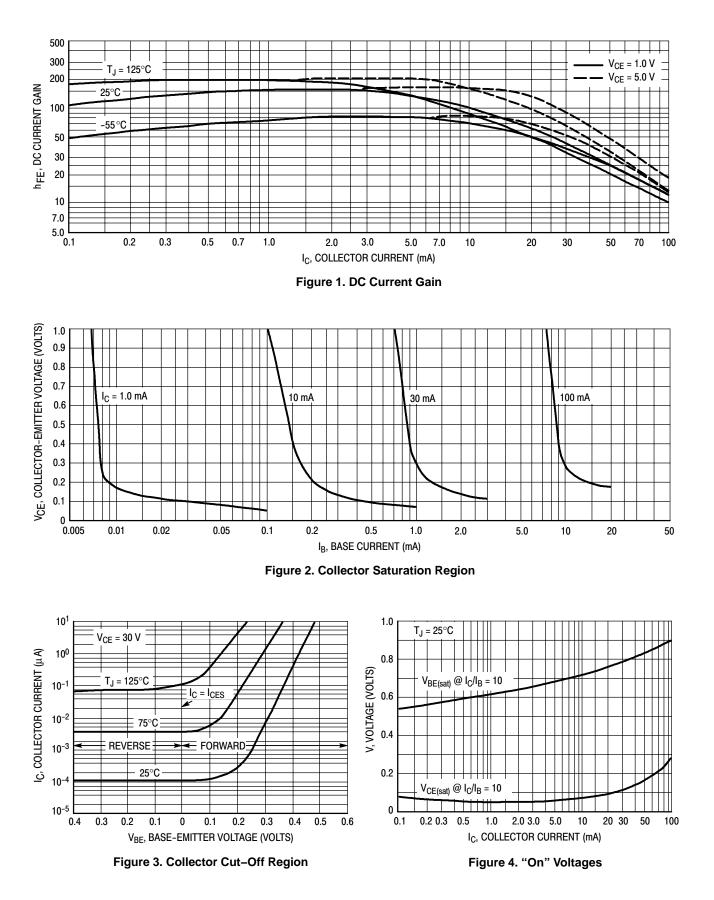
x = 0 or 1 A = Assembly Location Y = Year WW = Work Week • = Pb-Free Package Wicrodot may be in either locat

(Note: Microdot may be in either location)

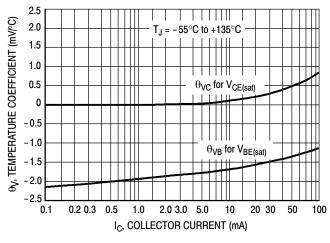
ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

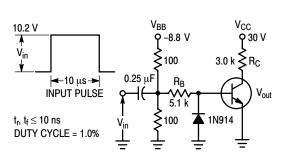
Preferred devices are recommended choices for future use and best overall value.


*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

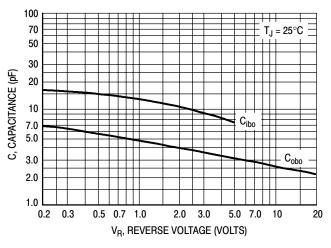
2N5550, 2N5551

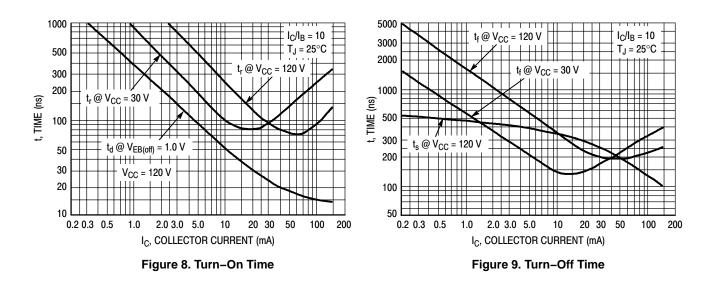

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•		•
Collector–Emitter Breakdown Voltage (Note 1) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	2N5550 2N5551	V _{(BR)CEO}	140 160		Vdc
Collector–Base Breakdown Voltage ($I_C = 100 \ \mu Adc, I_E = 0$)	2N5550 2N5551	V _{(BR)CBO}	160 180		Vdc
Emitter–Base Breakdown Voltage ($I_E = 10 \ \mu Adc, I_C = 0$)		V _{(BR)EBO}	6.0	_	Vdc
	2N5550 2N5551 2N5550 2N5551	I _{CBO}	- - - -	100 50 100 50	nAdc μAdc
Emitter Cutoff Current ($V_{EB} = 4.0 \text{ Vdc}, I_{C} = 0$)		I _{EBO}	-	50	nAdc
ON CHARACTERISTICS (Note 1)	·		Į	4	ļ
DC Current Gain ($I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 50 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$)	2N5550 2N5551 2N5550 2N5551 2N5551 2N5550	h _{FE}	60 80 60 80 20	- 250 250 -	_
Collector–Emitter Saturation Voltage ($I_C = 10$ mAdc, $I_B = 1.0$ mAdc) ($I_C = 50$ mAdc, $I_B = 5.0$ mAdc)	2N5551 Both Types 2N5550 2N5551	V _{CE(sat)}	30 - - -	- 0.15 0.25 0.20	Vdc
Base – Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ $(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$	Both Types 2N5550 2N5551	V _{BE(sat)}	- - -	1.0 1.2 1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current–Gain — Bandwidth Product ($I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 100 \text{ MHz}$)		f _T	100	300	MHz
Output Capacitance (V_{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	-	6.0	pF
Input Capacitance (V_{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	2N5550 2N5551	C _{ibo}		30 20	pF
Small–Signal Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, f = 1.0 kHz)		h _{fe}	50	200	-
Noise Figure (I _C = 250 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 kΩ, f = 1.0 kHz)	2N5550 2N5551	NF		10 8.0	dB


1. Pulse Test: Pulse Width $\leq 300~\mu s,$ Duty Cycle $\leq 2.0\%.$

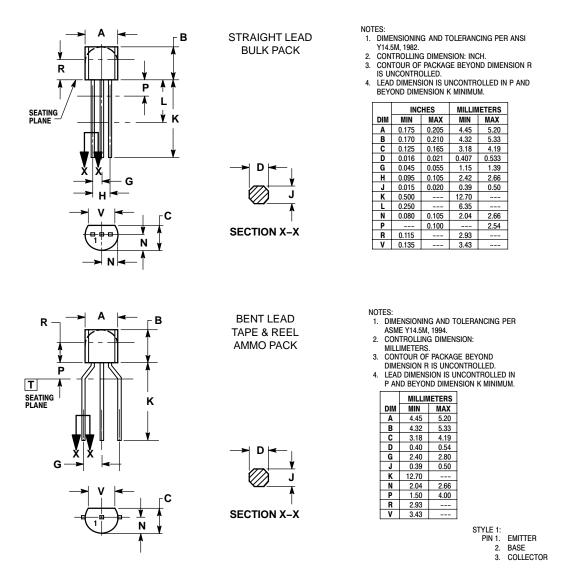
2N5550, 2N5551





Values Shown are for $I_C @ 10 \mbox{ mA}$

Figure 6. Switching Time Test Circuit


ORDERING INFORMATION

Device	Package	Shipping [†]
2N5550G	TO-92 (Pb-Free)	5000 Units / Bulk
2N5550RLRPG	TO-92 (Pb-Free)	2000 / Tape & Ammo Box
2N5551G	TO-92 (Pb-Free)	5000 Units / Bulk
2N5551RL1G	TO-92 (Pb-Free)	2000 / Tana & Dagi
2N5551RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N5551RLRPG	TO-92 (Pb-Free)	2000 / Tana & Amma Dav
2N55551ZL1G	TO-92 (Pb-Free)	2000 / Tape & Ammo Box

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 ISSUE AM

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under tits patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use plate as CILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

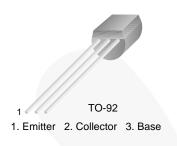
For additional information, please contact your local Sales Representative

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d


May 2016

KSC1815 NPN Epitaxial Silicon Transistor

Features

- Audio Frequency Amplifier and High-Frequency OSC
- Complement to KSA1015
- Collector-Base Voltage: V_{CBO} = 50 V

Ordering Information

Part Number	Top Mark	Package	Packing Method
KSC1815YTA	YC&3	TO-92 3L	Ammo

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	60	V
V _{CEO}	Collector-Emitter Voltage	50	V
V _{EBO}	Emitter-Base Voltage	5	V
۱ _C	Collector Current	150	mA
۱ _B	Base Current	50	mA
ТJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature Range	-55 to 150	°C

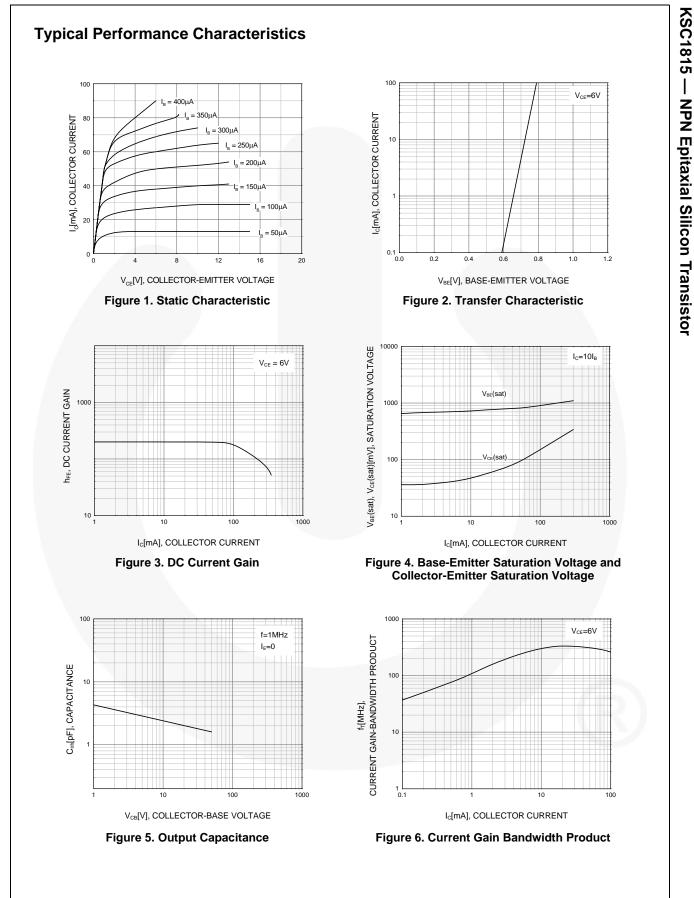
Thermal Characteristics⁽¹⁾

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

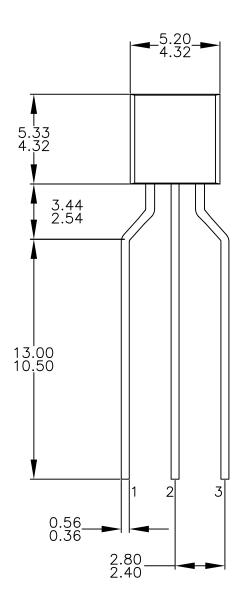
Symbol	Parameter	Max.	Unit
P _D	Total Device Dissipation	400	mW
	Derate Above 25°C	3.2	mW/°C
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	312	°C/W

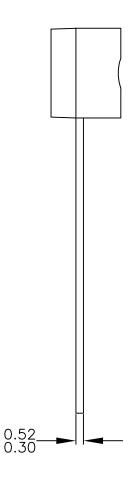
Note:

1. PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.


Electrical Characteristics

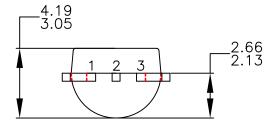
Values are at $T_A = 25^{\circ}C$ unless otherwise noted.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{CBO}	Collector-Base Voltage	$I_{\rm C} = 1 {\rm mA}, I_{\rm E} = 0$	60			V
BV _{CEO}	Collector-Emitter Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	50			V
ΒV _{EBO}	Emitter-Base Voltage	$I_{E} = 10 \ \mu A, \ I_{C} = 0$	5			V
I _{CBO}	Collector Cut-Off Current	$V_{CB} = 60 \text{ V}, I_{E} = 0$			0.1	μA
I _{EBO}	Emitter Cut-Off Current	$V_{EB} = 5 V, I_{C} = 0$			0.1	μA
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = 100 mA, I _B = 10 mA		0.10	0.25	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	I _C = 100 mA, I _B = 10 mA			1.0	V
h _{FE1}	DC Current Gain	$V_{CE} = 6 \text{ V}, I_{C} = 2 \text{ mA}$	70		700	
h _{FE2}	DC Current Gain	$V_{CE} = 6 \text{ V}, I_{C} = 150 \text{ mA}$	25			
f _T	Current Gain Bandwidth Product	$V_{CE} = 10 \text{ V}, \text{ I}_{C} = 1 \text{ mA}$	80			MHz
C _{ob}	Output Capacitance	$V_{CB} = 10 \text{ V}, \text{ I}_{E} = 0, $ f = 1 MHz		2.0	3.0	pF
N _F	Noise Figure	$V_{CE} = 6 \text{ V}, \text{ I}_{C} = 0.1 \text{ mA}, \\ \text{R}_{\text{S}} = 10 \text{ k}\Omega, \text{ f} = 1 \text{ Hz}$		1.0	10.0	dB


h_{FE} Classification

Classification	0	Y	GR	L
h _{FE1}	70 ~ 140	120 ~ 240	200 ~ 400	350 ~ 700

© 1999 Fairchild Semiconductor Corporation KSC1815 Rev. 1.8



NOTES: UNLESS OTHERWISE SPECIFIED

- DRAWING CONFORMS TO JEDEC MS-013, VARIATION AC. ALL DIMENSIONS ARE IN MILLIMETERS. DRAWING CONFORMS TO ASME Y14.5M-2009. DRAWING FILENAME: MKT-ZA03FREV3. FAIRCHILD SEMICONDUCTOR. Α.

- В. С. D. Е.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: KSC1815GRTA KSC1815YBU KSC1815GRBU KSC1815YTA KSC1815GRTA_Q

FAIRCHILD

SEMICONDUCTOR®

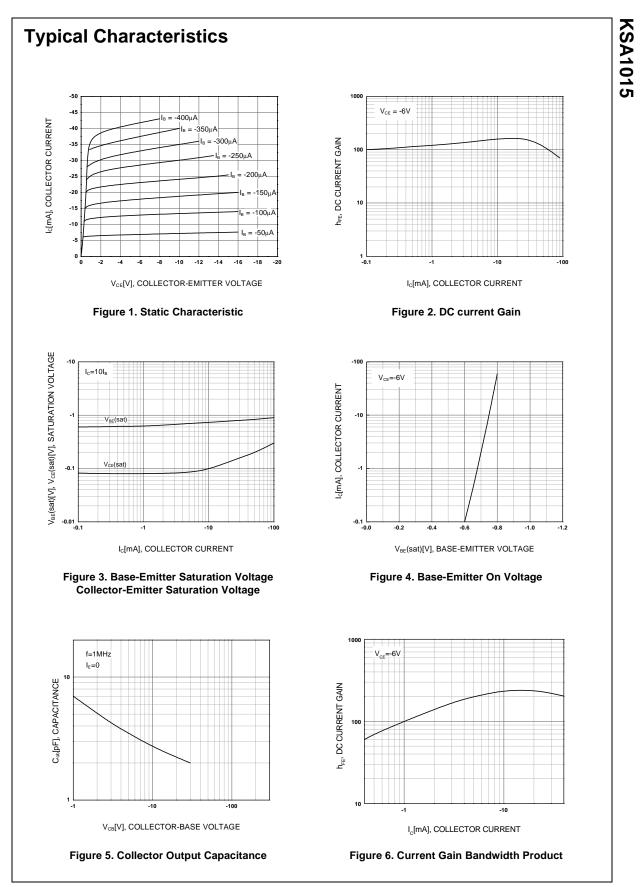
KSA1015

LOW FREQUENCY AMPLIFIER

- Collector-Base Voltage : V_{CBO} = -50V
- Complement to KSC1815

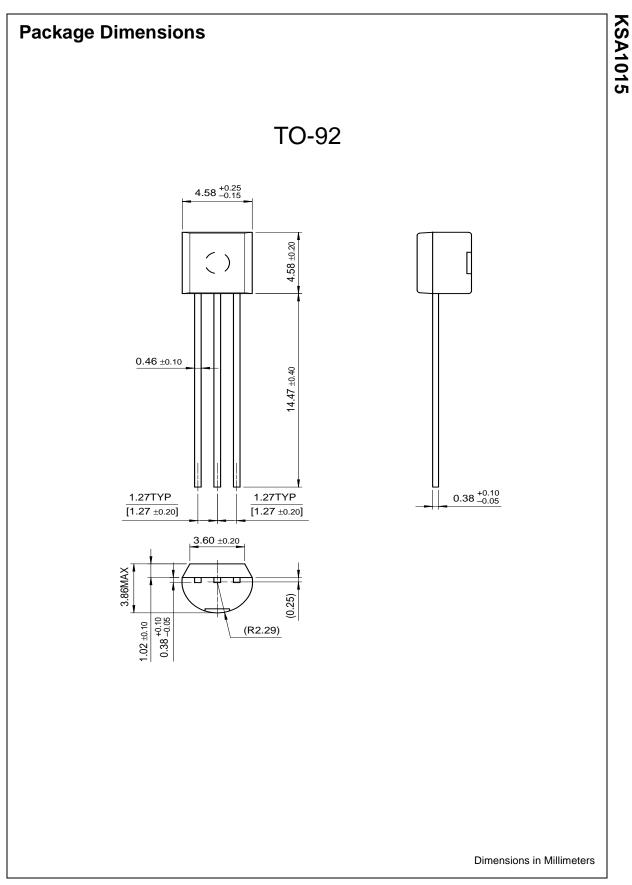
PNP Epitaxial Silicon Transistor

Absolute Maximum Ratings $T_a=25^{\circ}C$ unless otherwise noted


Symbol	Parameter	Ratings	Units
V _{CBO}	Collector-Base Voltage	-50	V
V _{CEO}	Collector-Emitter Voltage	-50	V
V _{EBO}	Emitter-Base Voltage	-5	V
I _C	Collector Current	-150	mA
I _B	Base Current	-50	mA
P _C	Collector Power Dissipation	400	mW
TJ	Junction Temperature	125	°C
T _{ST9}	Storage Temperature	-65 ~ 150	۵°

Electrical Characteristics $T_a=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	I _C = -100μA, I _E =0	-50			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = -10mA, I _B =0	-50			V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E = -10μA, I _C =0	-5			V
I _{CBO}	Collector Cut-off Current	V _{CB} = -50V, I _E =0			-0.1	μΑ
I _{EBO}	Emitter Cut-off Current	V _{EB} = -5V, I _C =0			-0.1	μA
h _{FE1} h _{FE2}	DC Current Gain	V_{CE} = -6V, I _C = -2mA V_{CE} = -6V, I _C = -150mA	70 25		400	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = -100mA, I _B = -10mA		-0.1	-0.3	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C = -100mA, I _B = -10mA			-1.1	V
f _T	Current Gain Bandwidth Product	V _{CE} = -10V, I _C =-1mA	80			MHz
C _{ob}	Output Capacitance	V _{CB} = -10V, I _E =0, f=1MHz		4	7	pF
NF	Noise Figure	V_{CE} = -6V, I _C = -0.1mA f=100Hz, R _G =10kΩ		0.5	6	dB


h_{FE} Classification

Classification	0	Y	G
h _{FE1}	70 ~ 140	120 ~ 240	200 ~ 400

©2002 Fairchild Semiconductor Corporation

Rev. A2, September 2002

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

The Power Franch		ImpliedDisconnect [™] ISOPLANAR [™] LittleFET [™] MicroFET [™] MiCROWIRE [™] MICROWIRE [™] MSX [™] MSXPro [™] OCX [™] OCX [™] OCXPro [™] OPTOLOGIC [®] OPTOLOGIC [®]	PACMAN TM POP TM Power247 TM PowerTrench [®] QFET TM QS TM QT Optoelectronics TM Quiet Series TM RapidConfigure TM RapidConnect TM SILENT SWITCHER [®] SMAPT STAPTTM	SPM [™] Stealth [™] SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [™] TruTranslation [™] UHC [™] UltraFET [®] VCX [™]
Programmable Ac	tive Droop™	OPTOPLANAR™	SMART START™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

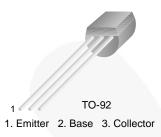
Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese


November 2014

KSC945 NPN Epitaxial Silicon Transistor

Features

- Audio Frequency Amplifier and High-Frequency OSC.
- Complimentary to KSA733
- Collector-Base Voltage: V_{CBO} = 60 V
- High Current Gain Bandwidth Product: f_T = 300 MHz (Tyical)
- Suffix "-C" means Center Collector (1. Emitter 2. Collector 3. Base)

Ordering Information

Part Number	Top Mark	Package	Packing Method
KSC945YBU	C945	TO-92 3L	Bulk
KSC945YTA	C945	TO-92 3L	Ammo
KSC945GTA	C945	TO-92 3L	Ammo
KSC945CYTA	C945	TO-92 3L	Ammo
KSC945CGBU	C945	TO-92 3L	Bulk
KSC945CGTA	C945	TO-92 3L	Ammo

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	60	V
V _{CEO}	Collector-Emitter Voltage	50	V
V _{EBO}	Emitter-Base Voltage	5	V
۱ _C	Collector Current	150	mA
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-55 to 150	°C

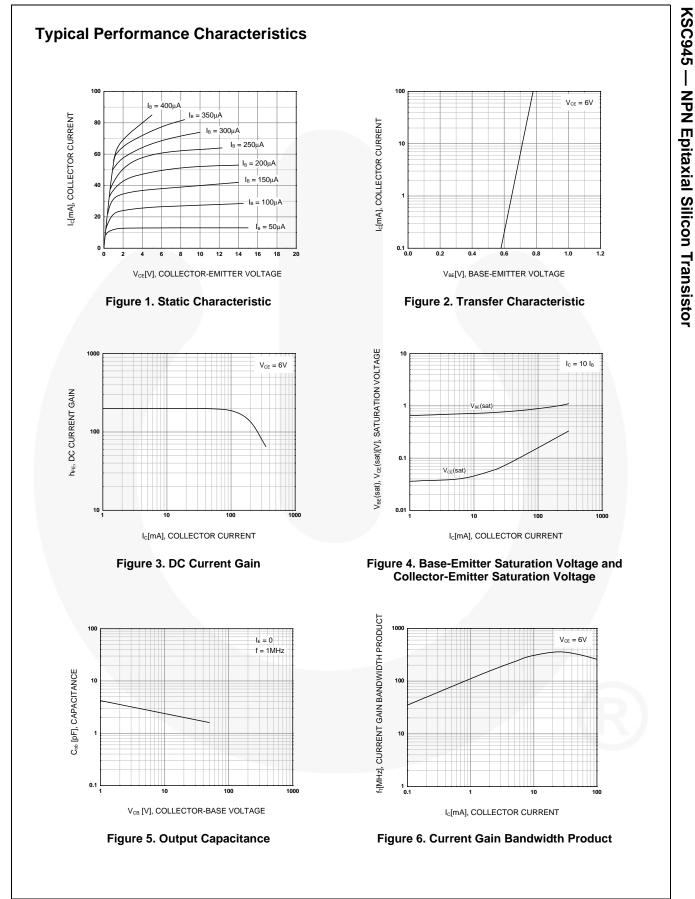
Thermal Characteristics⁽¹⁾

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

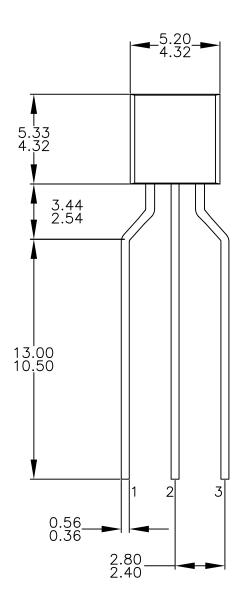
Symbol	Parameter	Value	Unit
в	Power Dissipation	250	mW
PD	Derate Above 25°C	2.0	mW/°C
R _{θJA}	Thermal Resistance, Junction-to-Ambient	500	°C/W

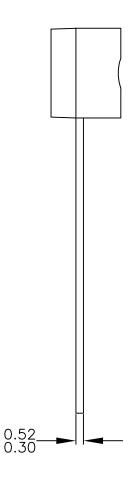
Note:

1. PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.


Electrical Characteristics

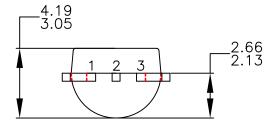
Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

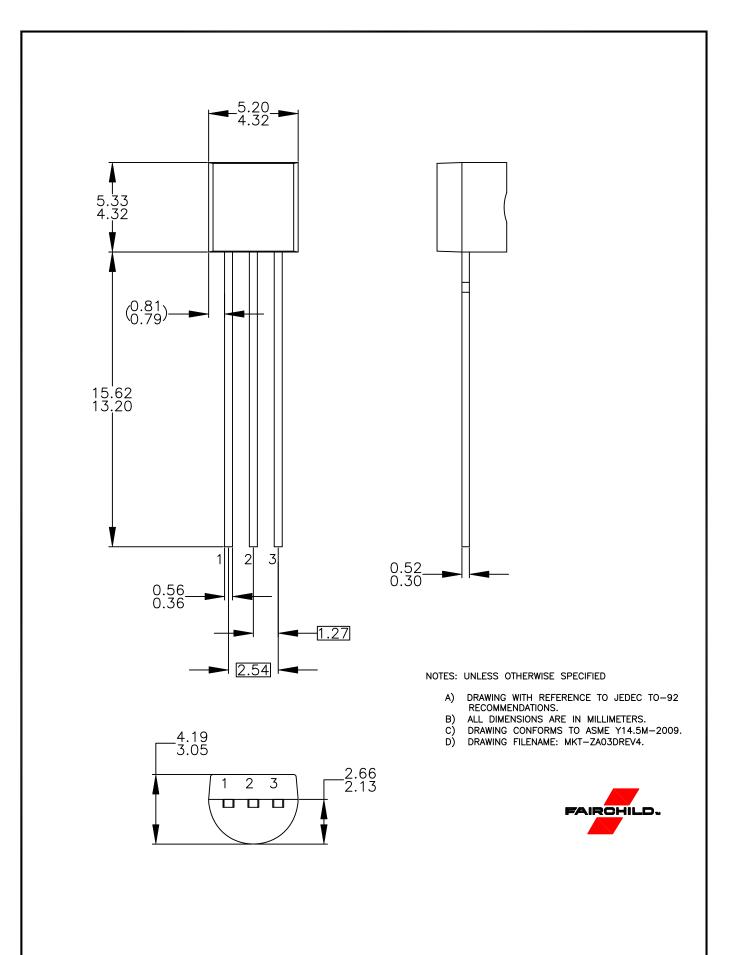

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{CBO}	Collector-Base Breakdown Voltage	$I_{C} = 100 \ \mu A, I_{E} = 0$	60			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	50			V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 10 \ \mu A, \ I_{C} = 0$	5			V
I _{CBO}	Collector Cut-Off Current	$V_{CB} = 40 \text{ V}, \text{ I}_{E} = 0$			0.1	μA
I _{EBO}	Emitter Cut-Off Current	$V_{EB} = 3 V, I_{C} = 0$			0.1	μΑ
h _{FE}	DC Current Gain	$V_{CE} = 6 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA}$	40		700	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = 100 mA, I _B = 10 mA		0.15	0.30	V
f _T	Current Gain Bandwidth Product	$V_{CE} = 6 V, I_{C} = 10 mA$		300		MHz
C _{ob}	Output Capacitance	$V_{CB} = 6 V$, $I_E = 0$, f = 1 MHz		2.5		pF
NF	Noise Figure	$\label{eq:VCE} \begin{array}{l} V_{CE} = 6 \; V, I_{C} = 0.5 \; mA, \\ f = 1 \; kHz, R_{S} = 500 \; \Omega \end{array}$		4.0		dB


h_{FE} Classification

Classification	R	0	Y	G	L
h _{FE}	40 ~ 80	70 ~ 140	120 ~ 240	200 ~ 400	350 ~ 700

© 2002 Fairchild Semiconductor Corporation KSC945 Rev. 1.1.0





NOTES: UNLESS OTHERWISE SPECIFIED

- DRAWING CONFORMS TO JEDEC MS-013, VARIATION AC. ALL DIMENSIONS ARE IN MILLIMETERS. DRAWING CONFORMS TO ASME Y14.5M-2009. DRAWING FILENAME: MKT-ZA03FREV3. FAIRCHILD SEMICONDUCTOR. Α.

- В. С. D. Е.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

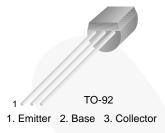
Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

KSC945CGBU KSC945CYTA KSC945CYTAM KSC945YTAM KSC945GTA KSC945COTA KSC945CGTA KSC945CYBU KSC945GBU KSC945CLTA KSC945LBU KSC945YTA KSC945OTA KSC945OBU KSC945YBU KSC945LTA KSC945CGTA_Q KSC945CYTA_Q KSC945YTA_Q

November 2014



SS8050 NPN Epitaxial Silicon Transistor

Features

- 2 W Output Amplifier of Portable Radios in Class B Push-pull Operation.
- Complimentary to SS8550
- Collector Current: I_C = 1.5 A

Ordering Information

Part Number	Top Mark	Package	Packing Method
SS8050BBU	S8050	TO-92 3L	Bulk
SS8050CBU	S8050	TO-92 3L	Bulk
SS8050CTA	S8050	TO-92 3L	Ammo
SS8050DBU	S8050	TO-92 3L	Bulk
SS8050DTA	S8050	TO-92 3L	Ammo

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	40	V
V _{CEO}	Collector-Emitter Voltage	25	V
V _{EBO}	Emitter-Base Voltage	6	V
۱ _C	Collector Current	1.5	А
ТJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-65 to 150	°C

www.fairchildsemi.com

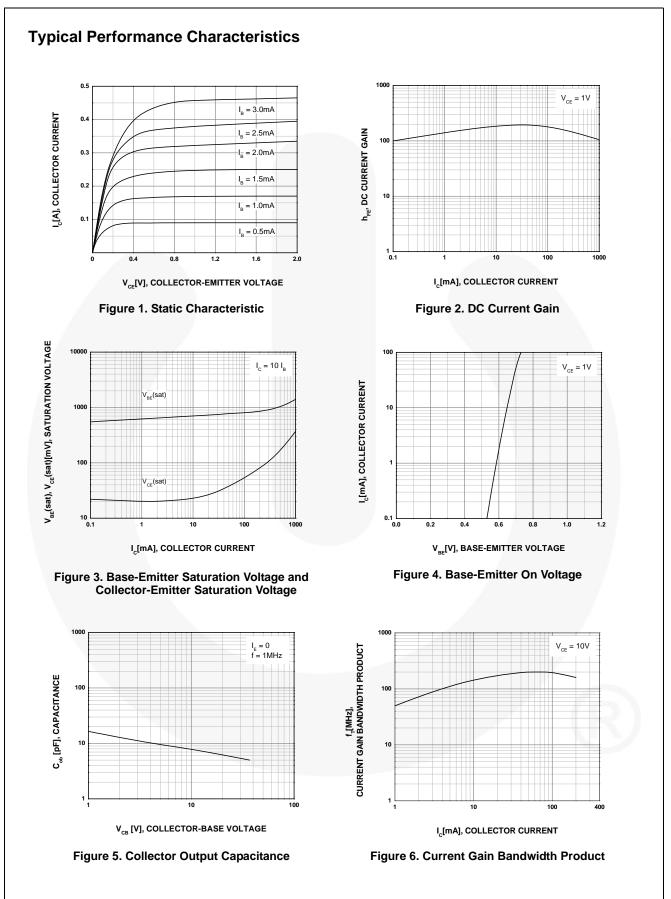
Thermal Characteristics⁽¹⁾

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

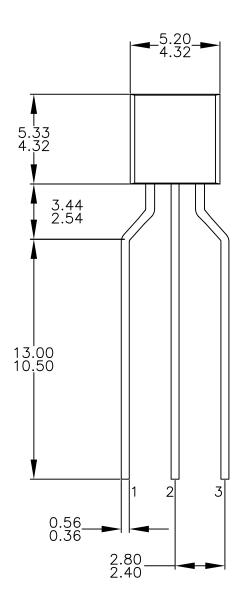
Symbol	Parameter	Value	Unit
р	Power Dissipation	1	W
PD	Derate Above 25°C	8	mW/°C
R _{θJA}	Thermal Resistance, Junction-to-Ambient	125	°C/W

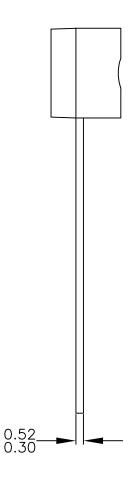
Note:

1. PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.


Electrical Characteristics

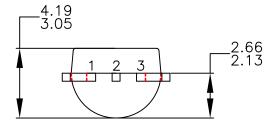
Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

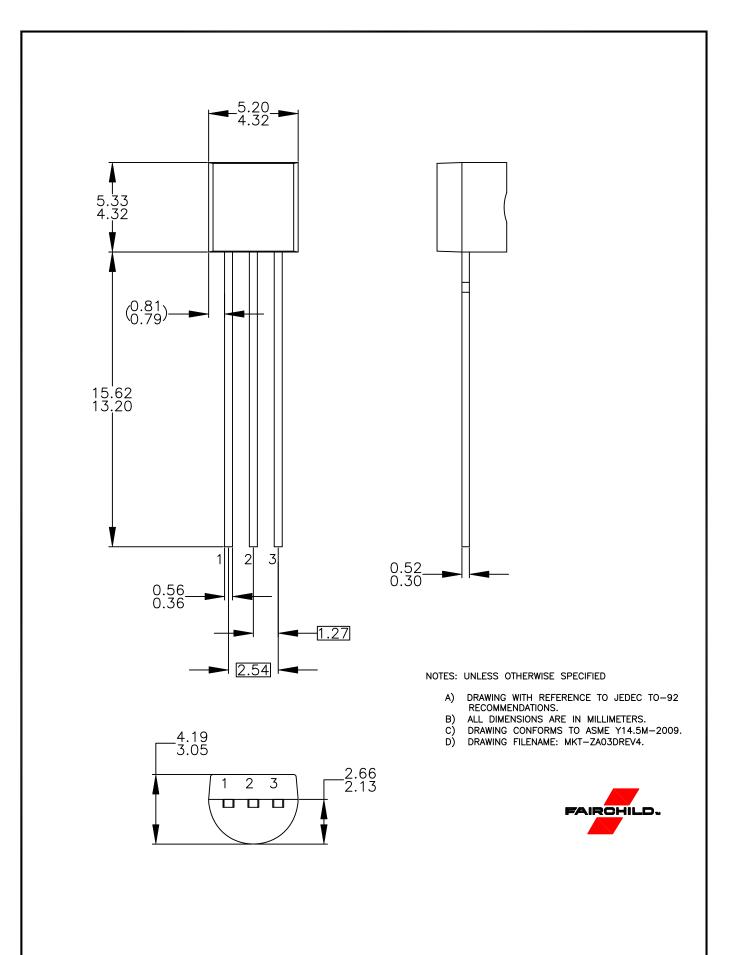

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{CBO}	Collector-Base Breakdown Voltage	$I_{C} = 100 \ \mu A, I_{E} = 0$	40			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = 2 {\rm mA}, I_{\rm B} = 0$	25			V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 100 \ \mu A, \ I_{C} = 0$	6			V
I _{CBO}	Collector Cut-Off Current	$V_{CB} = 35 \text{ V}, \text{ I}_{E} = 0$			100	nA
I _{EBO}	Emitter Cut-Off Current	$V_{EB} = 6 V, I_{C} = 0$			100	nA
h _{FE1}		$V_{CE} = 1 \text{ V}, I_{C} = 5 \text{ mA}$	45			
h _{FE2}	DC Current Gain	$V_{CE} = 1 \text{ V}, I_{C} = 100 \text{ mA}$	85		300	
h _{FE3}		$V_{CE} = 1 \text{ V}, I_{C} = 800 \text{ mA}$	40			
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = 800 mA, I _B = 80 mA			0.5	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C = 800 mA, I _B = 80 mA			1.2	V
V _{BE} (on)	Base-Emitter On Voltage	$V_{CE} = 1 \text{ V}, I_{C} = 10 \text{ mA}$			1	V
C _{ob}	Output Capacitance	V _{CB} = 10 V, I _E = 0, f = 1 MHz		9.0		pF
f _T	Current Gain Bandwidth Product	$V_{CE} = 10 \text{ V}, I_{C} = 50 \text{ mA}$	100			MHz

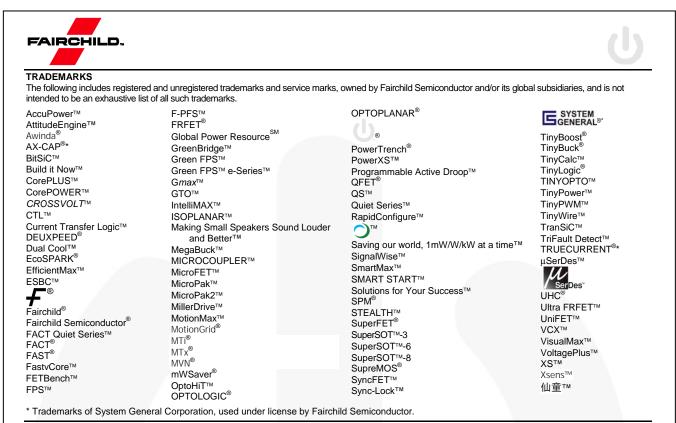

h_{FE} Classification

Classification	В	С	D
h _{FE2}	85 ~ 160	120 ~ 200	160 ~ 300

SS8050 — NPN Epitaxial Silicon Transistor






NOTES: UNLESS OTHERWISE SPECIFIED

- DRAWING CONFORMS TO JEDEC MS-013, VARIATION AC. ALL DIMENSIONS ARE IN MILLIMETERS. DRAWING CONFORMS TO ASME Y14.5M-2009. DRAWING FILENAME: MKT-ZA03FREV3. FAIRCHILD SEMICONDUCTOR. Α.

- В. С. D. Е.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 173

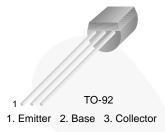
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

SS8050CBU SS8050DBU SS8050DBU SS8050DTA SS8050CTA


November 2014

SS8550 PNP Epitaxial Silicon Transistor

Features

- 2 W Output Amplifier of Portable Radios in Class B Push-pull Operation.
- Complimentary to SS8050
- Collector Current: I_C = 1.5 A

Ordering Information

Part Number	Top Mark	Package	Packing Method
SS8550BBU	S8550	TO-92 3L	Bulk
SS8550CBU	S8550	TO-92 3L	Bulk
SS8550CTA	S8550	TO-92 3L	Ammo
SS8550DBU	S8550	TO-92 3L	Bulk
SS8550DTA	S8550	TO-92 3L	Ammo

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	-40	V
V _{CEO}	Collector-Emitter Voltage	-25	V
V _{EBO}	Emitter-Base Voltage	-6	V
Ι _C	Collector Current	-1.5	А
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-65 to 150	°C

www.fairchildsemi.com

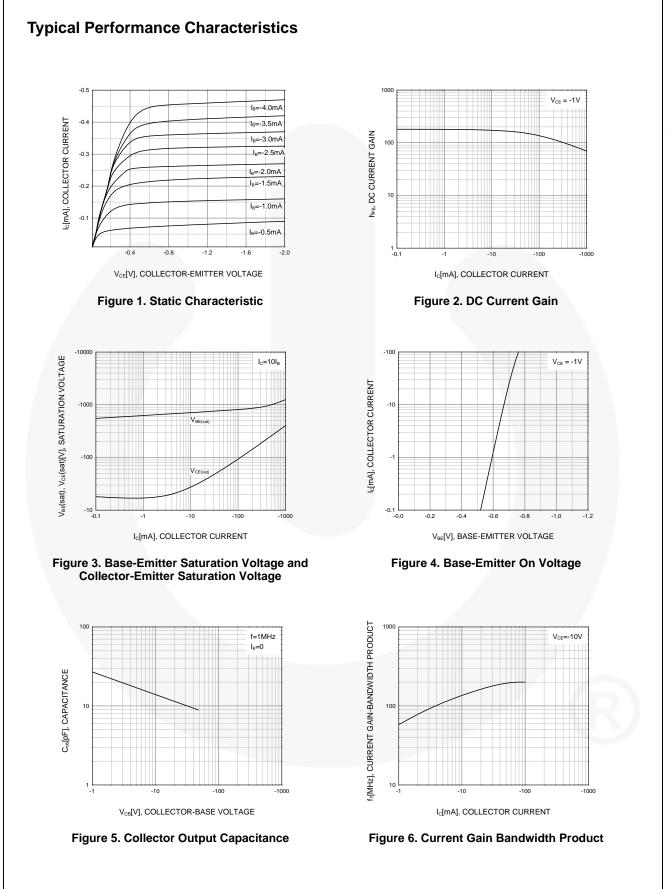
Thermal Characteristics⁽¹⁾

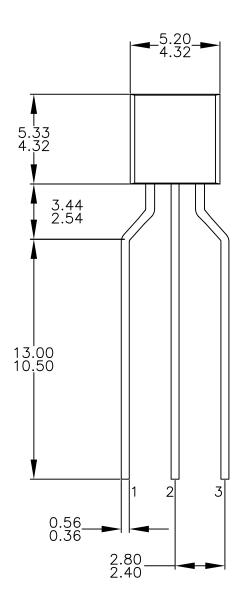
Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

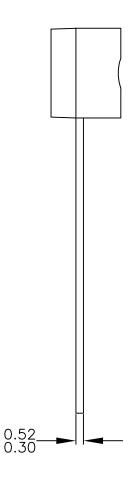
Symbol	Parameter	Value	Unit
р	Power Dissipation	1	W
PD	Derate Above 25°C	8	mW/°C
R _{θJA}	Thermal Resistance, Junction-to-Ambient	125	°C/W

Note:

1. PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.

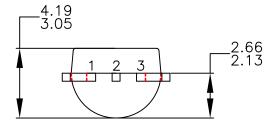

Electrical Characteristics

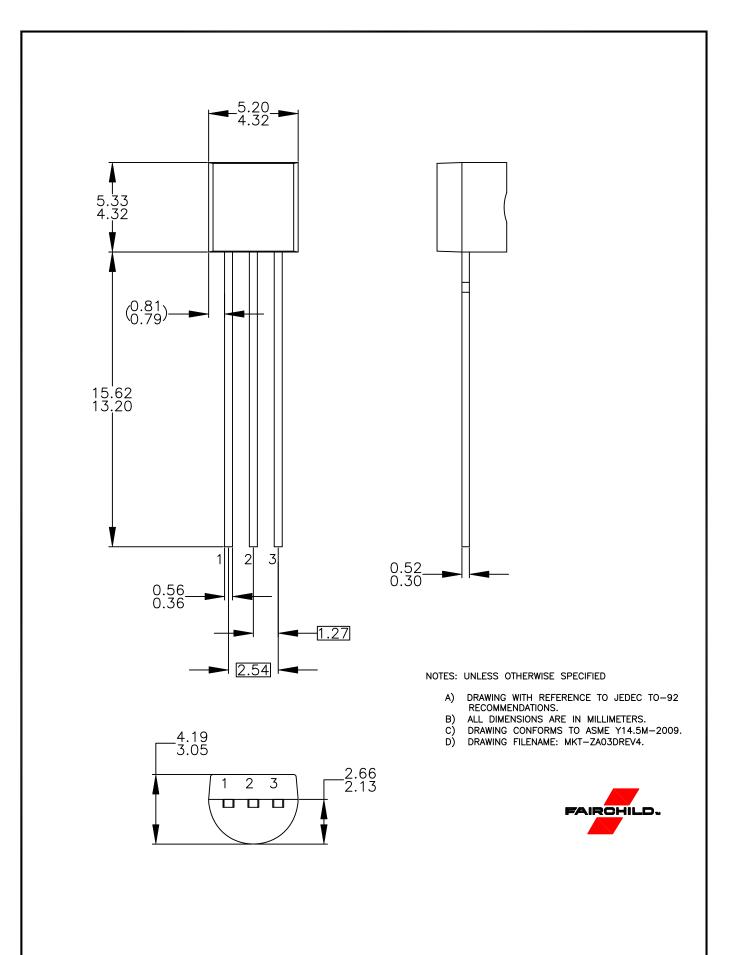

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

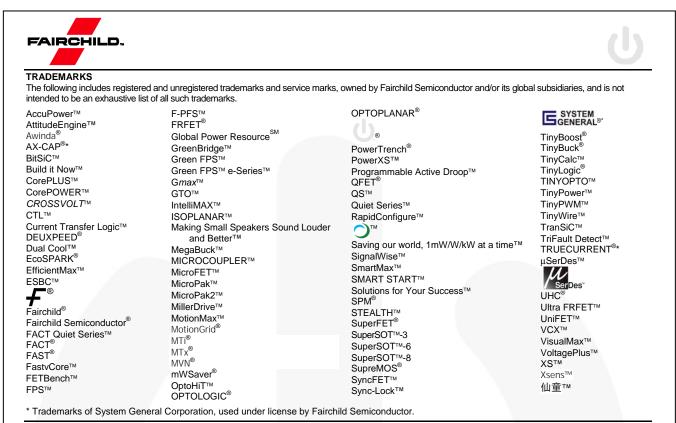

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{CBO}	Collector-Base Breakdown Voltage	$I_{C} = -100 \ \mu A, \ I_{E} = 0$	-40			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = -2 \text{mA}, I_{\rm B} = 0$	-25			V
BV_{EBO}	Emitter-Base Breakdown Voltage	$I_{E} = -100 \ \mu A, \ I_{C} = 0$	-6			V
I _{CBO}	Collector Cut-Off Current	$V_{CB} = -35 \text{ V}, \text{ I}_{E} = 0$			-100	nA
I _{EBO}	Emitter Cut-Off Current	$V_{EB} = -6 V, I_{C} = 0$			-100	nA
h _{FE1}		$V_{CE} = -1 V, I_{C} = -5 mA$	45	170		
h _{FE2}	DC Current Gain	$V_{CE} = -1 V, I_{C} = -100 mA$	85	160	300	
h _{FE3}]	$V_{CE} = -1 V, I_{C} = -800 mA$	40	80		
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = -800 mA, I _B = -80 mA		-0.28	-0.50	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C = -800 mA, I _B = -80 mA		-0.98	-1.20	V
V _{BE} (on)	Base-Emitter On Voltage	$V_{CE} = -1 V, I_{C} = -10 mA$		-0.66	-1.00	V
C _{ob}	Output Capacitance	$V_{CB} = -10 \text{ V}, \text{ I}_{E} = 0,$ f = 1 MHz		15		pF
f _T	Current Gain Bandwidth Product	$V_{CE} = -10 \text{ V}, \text{ I}_{C} = -50 \text{ mA}$	100	200		MHz

h_{FE} Classification

Classification	В	С	D
h _{FE2}	85 ~ 160	120 ~ 200	160 ~ 300






NOTES: UNLESS OTHERWISE SPECIFIED

- DRAWING CONFORMS TO JEDEC MS-013, VARIATION AC. ALL DIMENSIONS ARE IN MILLIMETERS. DRAWING CONFORMS TO ASME Y14.5M-2009. DRAWING FILENAME: MKT-ZA03FREV3. FAIRCHILD SEMICONDUCTOR. Α.

- В. С. D. Е.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 173

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: SS8550CBU SS8550BBU SS8550DBU SS8550CTA SS8550DTA

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

FAIRCHILD

SEMICONDUCTOR®

SS9012

1W Output Amplifier of Potable Radios in Class B Push-pull Operation.

- High total power dissipation. (P_T=625mW)
 High Collector Current. (I_C= -500mA)
 Complementary to SS9013

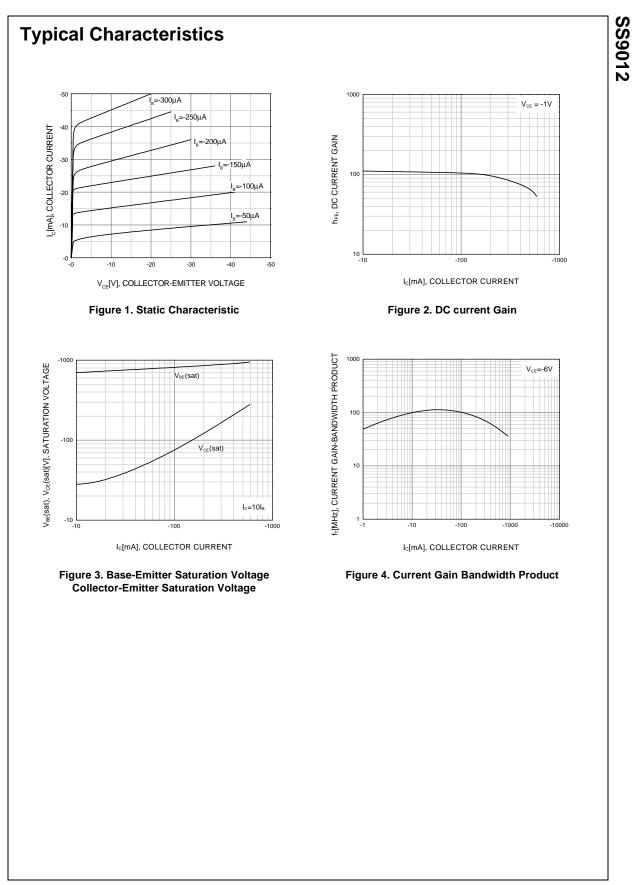
- Excellent h_{FE} linearity.

1. Emitter 2. Base 3. Collector

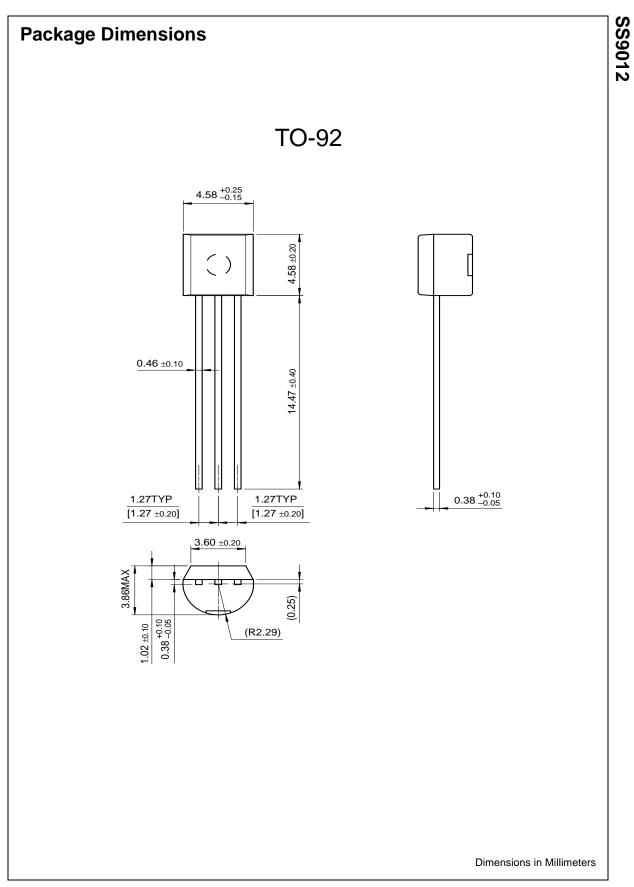
PNP Epitaxial Silicon Transistor

Absolute Maximum Ratings T_a=25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{CBO}	Collector-Base Voltage	-40	V
V _{CEO}	Collector-Emitter Voltage	-20	V
V _{EBO}	Emitter-Base Voltage	-5	V
с	Collector Current	-500	mA
Pc	Collector Power Dissipation	625	mW
Гј	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-55 ~ 150	°C


Electrical Characteristics Ta=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	I _C = -100μA, I _E =0	-40			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = -1mA, I _B =0	-20			V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E = -100μA, I _C =0	-5			V
I _{CBO}	Collector Cut-off Current	V _{CB} = -25V, I _E =0			-100	nA
I _{EBO}	Emitter Cut-off Current	V _{EB} = -3V, I _C =0			-100	nA
h _{FE1}	DC Current Gain	$V_{CE} = -1V, I_{C} = -50mA$	64	120	202	
h _{FE2}		$V_{CE} = -1V, I_{C} = -500mA$	40	90		
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = -500mA, I _B = -50mA		-0.18	-0.6	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C = -500mA, I _B = -50mA		-0.95	-1.2	V
V _{BE} (on)	Base-Emitter On Voltage	$V_{CE} = -1V, I_{C} = -10mA$	-0.6	-0.67	-0.7	V


h_{FF} Classification

Classification	D	E	F	G	Н
h _{FE1}	64 ~ 91	78 ~ 112	96 ~ 135	112 ~ 166	144 ~ 202

SS9012

©2002 Fairchild Semiconductor Corporation

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

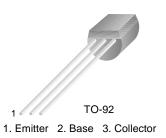
© Semiconductor Components Industries, LLC

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d


FAIRCHILD

SEMICONDUCTOR®

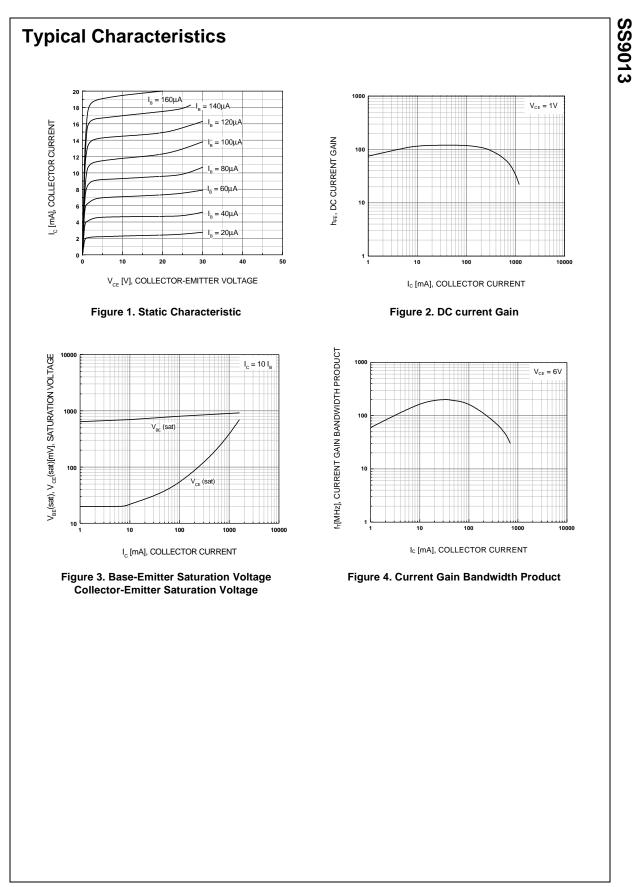
SS9013

1W Output Amplifier of Potable Radios in Class B Push-pull Operation.

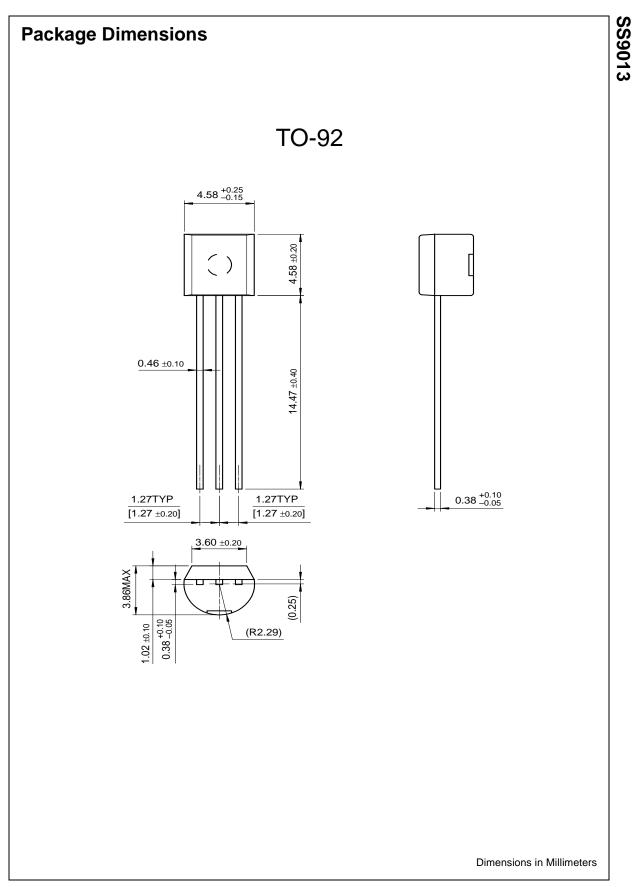
- High total power dissipation. (P_T=625mW)
- High Collector Current. (I_C=500mA)
- Complementary to SS9012
- Excellent h_{FE} linearity.

NPN Epitaxial Silicon Transistor

Absolute Maximum Ratings T_a=25°C unless otherwise noted


Symbol	Parameter	Ratings	Units	
V _{CBO}	Collector-Base Voltage	40	V	
V _{CEO}	Collector-Emitter Voltage	20	V	
V _{EBO}	Emitter-Base Voltage	5	V	
c	Collector Current	500	mA	
P _C	Collector Power Dissipation	625	mW	
ТJ	Junction Temperature	150	°C	
T _{STG}	Storage Temperature	-55 ~ 150	°C	

Electrical Characteristics T_a=25°C unless otherwise noted


Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	I _C =100μA, I _E =0	40			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C =1mA, I _B =0	20			V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E =100μA, I _C =0	5			V
I _{CBO}	Collector Cut-off Current	V _{CB} =25V, I _E =0			100	nA
I _{EBO}	Emitter Cut-off Current	V _{EB} =3V, I _C =0			100	nA
h _{FE1} h _{FE2}	DC Current Gain	$V_{CE} = 1V$, $I_C = 50mA$ $V_{CE} = 1V$, $I_C = 500mA$	64 40	120 120	202	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C =500mA, I _B =50mA		0.16	0.6	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C =500mA, I _B =50mA		0.91	1.2	V
V _{BE} (on)	Base-Emitter On Voltage	V _{CE} =1V, I _C =10mA	0.6	0.67	0.7	V

h_{FE} Classification

Classification	D	E	F	G	Н
h _{FE1}	64 ~ 91	78 ~ 112	96 ~ 135	112 ~ 166	144 ~ 202

Rev. A4, November 2002

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

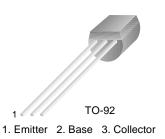
SS9013FBU SS9013HBU SS9013GBU SS9013HTA SS9013GTA SS9013FTA

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d


FAIRCHILD

SEMICONDUCTOR®

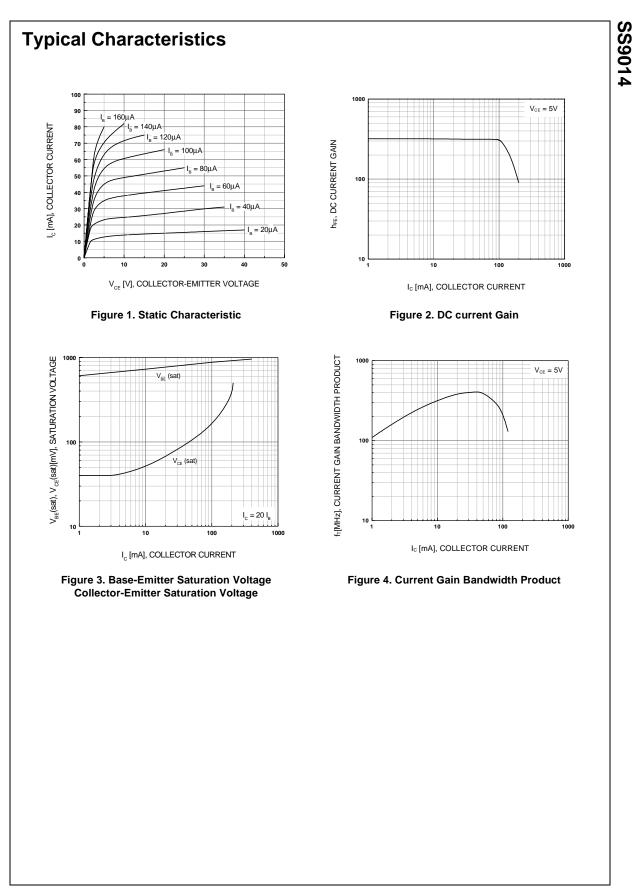
SS9014

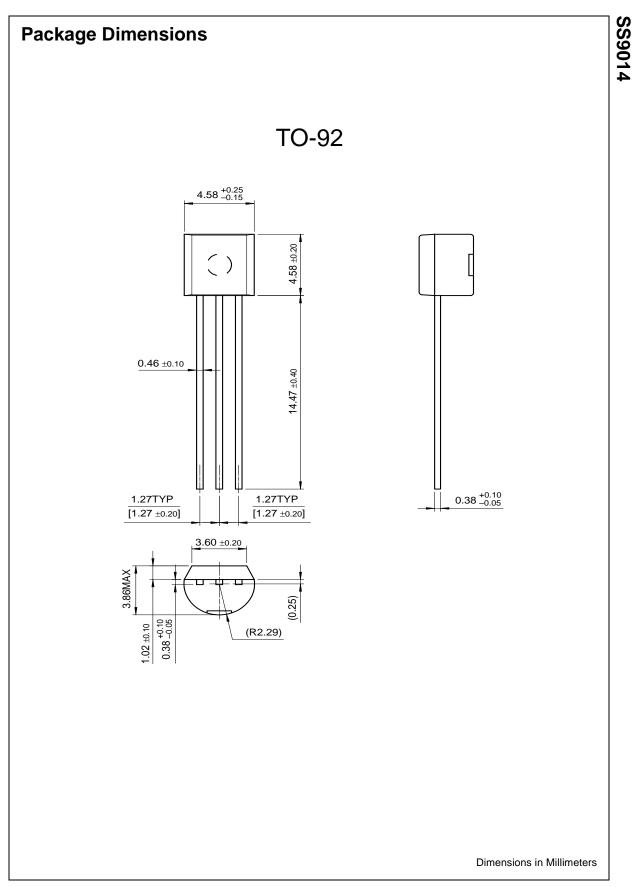
Pre-Amplifier, Low Level & Low Noise

- High total power dissipation. (P_T=450mW)
- High h_{FE} and good linearity
- Complementary to SS9015

NPN Epitaxial Silicon Transistor

Absolute Maximum Ratings $T_a=25^{\circ}C$ unless otherwise noted


Symbol	Parameter	Ratings	Units
V _{CBO}	Collector-Base Voltage	50	V
V _{CEO}	Collector-Emitter Voltage	45	V
V _{EBO}	Emitter-Base Voltage	5	V
I _C	Collector Current	100	mA
P _C	Collector Power Dissipation	450	mW
Junction Temperature		150	°C
T _{STG}	Storage Temperature	-55 ~ 150	°C


Electrical Characteristics Ta=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	I _C =100μA, I _E =0	50			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C =1mA, I _B =0	45			V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E =100μA, I _C =0	5			V
I _{CBO}	Collector Cut-off Current	V _{CB} =50V, I _E =0			50	nA
I _{EBO}	Emitter Cut-off Current	V _{EB} =5V, I _C =0			50	nA
h _{FE}	DC Current Gain	V_{CE} =5V, I_{C} =1mA	60	280	1000	
V _{CE} (sat)	Collector-Base Saturation Voltage	I _C =100mA, I _B =5mA		0.14	0.3	
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C =100mA, I _B =5mA		0.84	1.0	V
V _{BE} (on)	Base-Emitter On Voltage	V _{CE} =5V, I _C =2mA	0.58	0.63	0.7	V
C _{ob}	Output Capacitance	V _{CB} =10V, I _E =0 f=1MHz		2.2	3.5	pF
f _T	Current Gain Bandwidth Product	V _{CE} =5V, I _C =10mA	150	270		MHz
NF	Noise Figure	$V_{CE} = 5V$, $I_C = 0.2mA$ f=1KHz, $R_S = 2K\Omega$		0.9	10	dB

h_{FE} Classification

Classification	А	В	С	D
h _{FE}	60 ~ 150	100 ~ 300	200 ~ 600	400 ~ 1000

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

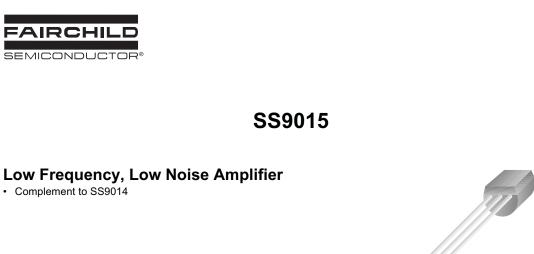
Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC


Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

<u>SS9014DBU</u> <u>SS9014CBU</u> <u>SS9014BBU</u> <u>SS9014CTA</u> <u>SS9014ABU</u> <u>SS9014BTA</u> <u>SS9014DTA</u> <u>SS9014CTA_Q</u> <u>SS9014DTA_Q</u>

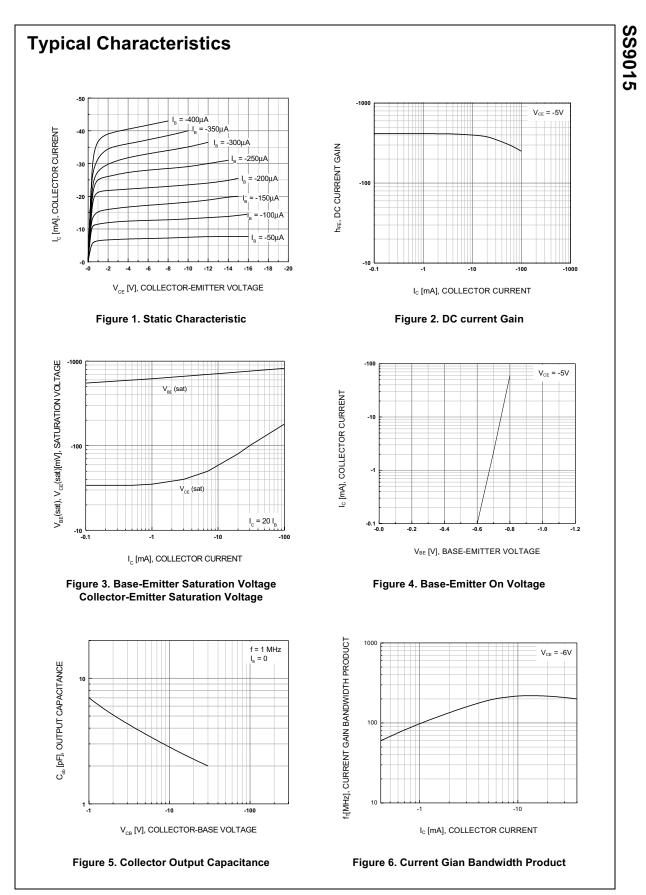
то-92

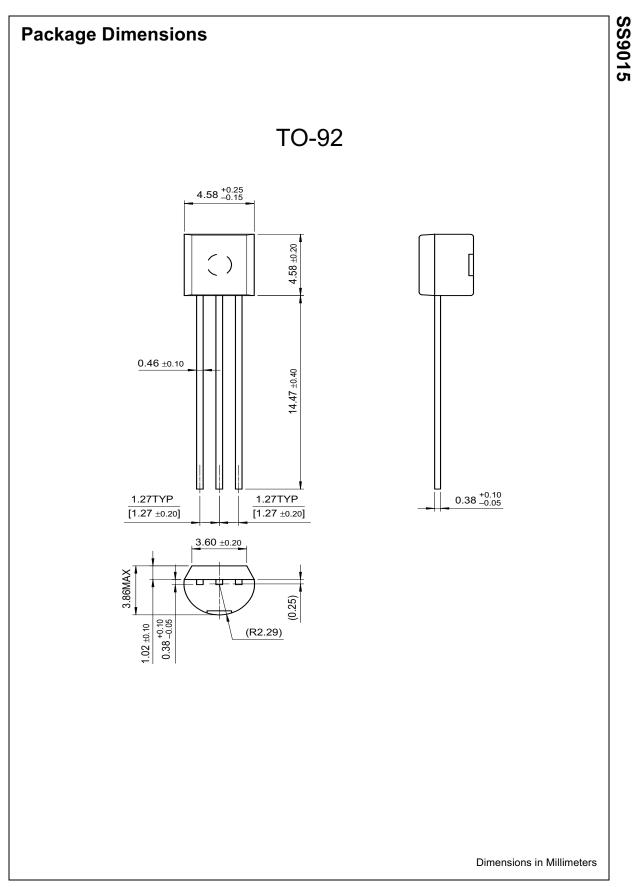
SS9015

1. Emitter 2. Base 3. Collector

PNP Epitaxial Silicon Transistor

Absolute Maximum Ratings Ta=25°C unless otherwise noted


Symbol	Parameter	Ratings	Units
V _{CBO}	Collector-Base Voltage	-50	V
V _{CEO}	Collector-Emitter Voltage	-45	V
V _{EBO}	Emitter-Base Voltage	-5	V
I _C	Collector Current	-100	mA
P _C	Collector Power Dissipation	450	mW
T _J Junction Temperature		150	°C
T _{STG}	Storage Temperature	-55 ~ 150	°C


Electrical Characteristics Ta=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	I _C = -100μA, I _E =0	-50			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = -1mA, I _B =0	-45			V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E = -100μA, I _C =0	-5			V
I _{CBO}	Collector Cut-off Current	V _{CB} = -50V, I _E =0			-50	nA
I _{EBO}	Emitter Cut-off Current	V _{EB} = -5V, I _C =0			-50	nA
h _{FE}	DC Current Gain	V _{CE} = -5V, I _C = -1mA	60		1000	
V _{CE} (sat)	Collector-Base Saturation Voltage	I _C = -100mA, I _B = -5mA			-0.7	
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C = -100mA, I _B = -5mA			-1.0	V
V _{BE} (on)	Base-Emitter On Voltage	V _{CE} = -5V, I _C = -2mA	-0.6		-0.75	V
C _{ob}	Output Capacitance	V _{CB} = -10V, I _E =0 f=1MHz		4.5	7.0	pF
f _T	Current Gain Bandwidth Product	V _{CE} = -5V, I _C = -10mA	100	190		MHz
NF	Noise Figure	V_{CE} = -5V, I _C = -0.2mA f=1KHz, R _S =1KΩ		0.7	10	dB

h_{FE} Classification

Classification	A	В	С	D
h _{FE}	60 ~ 150	100 ~ 300	200 ~ 600	400 ~ 1000

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

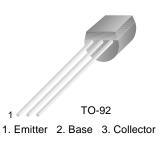
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>


ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

SS9018

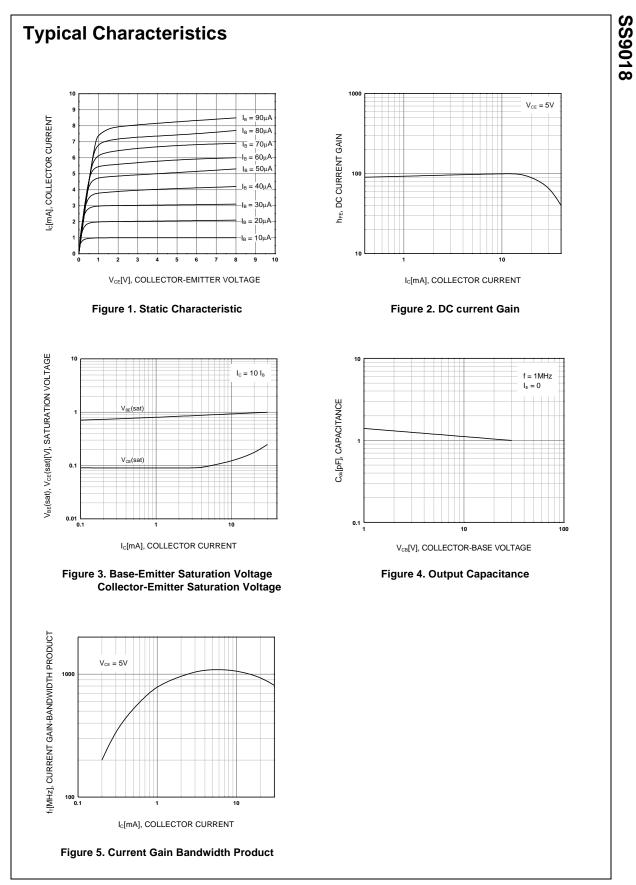
AM/FM Amplifier, Local Oscillator of FM/VHF Tuner

• High Current Gain Bandwidth Product f_T=1.1 GHz (Typ)

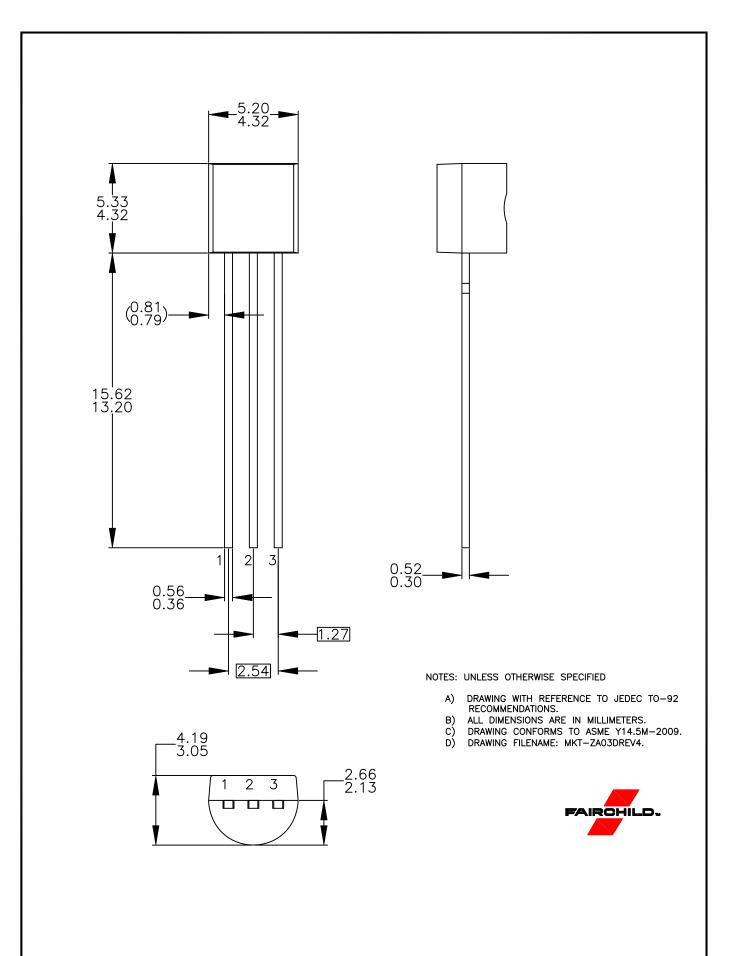
NPN Epitaxial Silicon Transistor

Absolute Maximum Ratings T _a =25°C unless otherwise noted							
Symbol	Parameter	Ratings	Units				
V _{CBO}	Collector-Base Voltage	30	V				
V _{CEO}	Collector-Emitter Voltage	15	V				
V _{EBO}	Emitter-Base Voltage	5	V				
I _C	Collector Current	50	mA				
P _C	Collector Power Dissipation	400	mW				
TJ	Junction Temperature	150	°C				
T _{STG}	Storage Temperature	-55 ~ 150	°C				

Electrical Characteristics $T_a=25^{\circ}C$ unless otherwise noted


Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	I _C =100μA, I _E =0	30			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C =1.0mA, I _B =0	15			V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E =100μA, I _C =0	5			V
I _{CBO}	Collector Cut-off Current	V _{CB} =12V, I _E =0			50	nA
h _{FE}	Emitter Cut-off Current	V _{CE} =5V, I _C =1.0mA	28	100	198	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C =10mA, I _B =1mA			0.5	V
C _{ob}	Output Capacitance	V _{CB} =10V, I _E =0 f=1MHz		1.3	1.7	pF
f _T	Current Gain Bandwidth Product	V _{CE} =5V, I _C =5mA	700	1100		MHz

h_{FF} Classification


©2002 Fairchild Semiconductor Corporation

Classification	D	E	F	G	Н	I
h _{FE}	28 ~ 45	39 ~ 60	54 ~ 80	72 ~ 108	97 ~ 146	132 ~ 198

SS9018

Rev. A4, November 2002

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

<u>SS9018GBU</u> <u>SS9018HBU</u> <u>SS9018FBU</u> <u>SS9018FBU_Q</u> <u>SS9018HBU_Q</u> <u>SS9018GBU_Q</u>