197 Series High Frequency Reactors

197J5
Features:
- High permeability core ideal for applications <50Khz
- High self-resonant frequency values
- Rugged construction with aluminum base and stainless steel band
- Open-style terminal for maximum versatility
- Weight: 6.0 lbs

ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductance with bias</td>
<td>14mH ±15% @ 5ADC</td>
</tr>
<tr>
<td>Operating Frequency</td>
<td>60Hz – 10KHz</td>
</tr>
<tr>
<td>Self-Resonant Frequency</td>
<td>74.35 Khz</td>
</tr>
<tr>
<td>Impedance @ SRF</td>
<td>140K Ohms</td>
</tr>
<tr>
<td>Ripple Current</td>
<td>20% peak-to-peak</td>
</tr>
<tr>
<td>DCR</td>
<td>293mΩ ±15% @20°C</td>
</tr>
<tr>
<td>Dielectric Strength</td>
<td>2500V RMS</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-40 To 105°C</td>
</tr>
<tr>
<td>Core material</td>
<td>Carbonyl Iron Powder</td>
</tr>
</tbody>
</table>

DIMENSIONAL DETAILS:

This drawing and the information in it is the property of Hammond Manufacturing. It may not be reproduced, transmitted or used in any manner whatsoever without the written permission of Hammond Manufacturing. Data subject to change without notice.
PERFORMANCE GRAPHS:

1. Inductance Vs DC Bias Current
 - Voltech DC1000A Precision DC Bias Current Source
 - Wayne Kerr 3255B with a 3265B Inductance Analyzer
 - Agilent E4980A Precision LCR Meter
 - HP 4192A LF Impedance Analyzer
 - Keithley 2010 DVM

2. Quality Factor
 - Frequency (Hz)
 - Q Factor

3. Impedance Vs DC Bias Current

4. Power Loss @ 10KHz 5ADC
 - Copper Loss : 7.72W

MEASUREMENT INSTRUMENTS:
- Voltech DC1000A Precision DC Bias Current Source
- Wayne Kerr 3255B with a 3265B Inductance Analyzer
- Agilent E4980A Precision LCR Meter
- HP 4192A LF Impedance Analyzer
- Keithley 2010 DVM

TEST & DIMENSIONAL CONDITIONS:
1. Performance graphs @1.0 volt AC drive.
2. Power loss computation from core manufacturer’s data.
3. The results are typical and are subject to normal manufacturing and electrical tolerances.
4. Dimensional tolerance ±0.063".

Release 1: 31/07/2020