

MG Chemicals UK Limited

Version No: A-1.02

Safety Data Sheet (Conforms to Regulation (EU) No 2015/830)

Issue Date:24/05/2018 Revison Date: 01/11/2020 L.REACH.GBR.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

1.1. Product Identifier

Product name	8329TCM-A			
Synonyms	SDS Code: 8329TCM-Part A; 8329TCM-6ML, 8329TCM-50ML, 8329TCM-200ML UFI: ATE0-C0S2-J00S-W38T			
Other means of identification	Thermally Conductive Epoxy Adhesive			

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Thermally conductive adhesive for bonding and thermal management		
Uses advised against Not Applicable			

1.3. Details of the supplier of the safety data sheet

Registered company name	MG Chemicals UK Limited	MG Chemicals (Head office)
Address	Hearne House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom	9347 - 193 Street Surrey V4N 4E7 British Columbia Canada
Telephone	+(44) 1663 362888	+(1) 800-201-8822
Fax	Not Available	+(1) 800-708-9888
Website	Not Available	www.mgchemicals.com
Email	sales@mgchemicals.com	Info@mgchemicals.com

1.4. Emergency telephone number

Association / Organisation	Verisk 3E (Access code: 335388)	Not Available	
Emergency telephone numbers	+(44) 20 35147487	Not Available	
Other emergency telephone numbers	+(0) 800 680 0425	Not Available	

SECTION 2 HAZARDS IDENTIFICATION

2.1. Classification of the substance or mixture

Classification according to regulation (EC) No 1272/2008 [CLP] ^[1]	H315 - Skin Corrosion/Irritation Category 2, H319 - Eye Irritation Category 2, H317 - Skin Sensitizer Category 1, H410 - Chronic Aquatic Hazard Category 1
Legend:	1. Classified by Chemwatch; 2. Classification drawn from EC Directive 67/548/EEC - Annex I ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

2.2. Label elements

Hazard pictogram(s)	
 SIGNAL WORD	WARNING

Hazard statement(s)

H315	Causes skin irritation.		
H319	ses serious eye irritation.		
H317	lay cause an allergic skin reaction.		
H410	Very toxic to aquatic life with long lasting effects.		

Supplementary statement(s)

Not Applicable

Page 2 of 20

8329TCM-A Thermally Conductive Epoxy Adhesive

Precautionary statement(s) Prevention

P280	Wear protective gloves/protective clothing/eye protection/face protection.		
P261	P261 Avoid breathing dust/fumes.		
P273	Avoid release to the environment.		
P272 Contaminated work clothing should not be allowed out of the workplace.			

Precautionary statement(s) Response

······································				
P302+P352	IF ON SKIN: Wash with plenty of water and soap.			
P305+P351+P338	IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.			
P333+P313	in irritation or rash occurs: Get medical advice/attention.			
P337+P313	f eye irritation persists: Get medical advice/attention.			
P362+P364	Take off contaminated clothing and wash it before reuse.			
P391	Collect spillage.			

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501	Dispose of contents/container in accordance with local regulations.
------	---

2.3. Other hazards

Inhalation and/or ingestion may produce health damage*.

Cumulative effects may result following exposure*.

Limited evidence of a carcinogenic effect*.

Possible respiratory sensitizer*.

REACh - Art.57-59: The mixture does not contain Substances of Very High Concern (SVHC) at the SDS print date.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classification according to regulation (EC) No 1272/2008 [CLP]
1.1344-28-1. 2.215-691-6 3.Not Available 4.01-2119529248-35-XXXX	35-45	aluminium oxide	Not Applicable
1.1314-13-2 2.215-222-5 3.030-013-00-7 4.01-2119463881-32- XXXX 01-2120089607-43-XXXX	10-30	zinc oxide	Acute Aquatic Hazard Category 1, Chronic Aquatic Hazard Category 1; H410 $^{[3]}$
1.25068-38-6 2.500-033-5 3.603-074-00-8 4.01-2119456619-26- XXXX registration numbers missing	17	bisphenol A diglycidyl ether resin, solid	Eye Irritation Category 2, Skin Corrosion/Irritation Category 2, Skin Sensitizer Category 1, Chronic Aquatic Hazard Category 2; H319, H315, H317, H411 ^[3]
1.28064-14-4 2.Not Available 3.Not Available 4.Not Available	5	bisphenol F glycidyl ether/ formaldehyde copolymer	Skin Corrosion/Irritation Category 2, Eye Irritation Category 2, Skin Sensitizer Category 1, Chronic Aquatic Hazard Category 2; H315, H319, H317, H411, EUH019 ^[1]
1.17557-23-2 2.241-536-7 3.603-094-00-7 4.Not Available	3	neopentyl glycol diglycidyl ether	Skin Corrosion/Irritation Category 2, Skin Sensitizer Category 1; H315, H317 ^[3]
1.1333-86-4 2.215-609-9 3.Not Available 4.01-2119384822-32- XXXX 01-2119475601-40- XXXX 01-2119489801-30-XXXX	0.7	carbon black	Carcinogenicity Category 2; H351 ^[1]

1.68609-97-2 2.271-846-8 3.603-103-00-4 4.01-2119485289-22-XXXX	0.5	(C12-14)alkylqlycidyl ether	Skin Corrosion/Irritation Category 2, Skin Sensitizer Category 1; H315, H317 ^[3]
Legend:	1. Classified by Chemwatch; 2. Classification drawn from EC Directive 67/548/EEC - Annex I ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI 4. Classification drawn from C&L		

SECTION 4 FIRST AID MEASURES

4.1. Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

- Manifestation of aluminium toxicity include hypercalcaemia, anaemia, Vitamin D refractory osteodystrophy and a progressive encephalopathy (mixed dysarthria-apraxia of speech, asterixis, tremulousness, myoclonus, dementia, focal seizures). Bone pain, pathological fractures and proximal myopathy can occur.
- > Symptoms usually develop insidiously over months to years (in chronic renal failure patients) unless dietary aluminium loads are excessive.
- Serum aluminium levels above 60 ug/ml indicate increased absorption. Potential toxicity occurs above 100 ug/ml and clinical symptoms are present when levels exceed 200 ug/ml.
- Deferoxamine has been used to treat dialysis encephalopathy and osteomalacia. CaNa2EDTA is less effective in chelating aluminium.

[Ellenhorn and Barceloux: Medical Toxicology]

Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce 'metal fume fever' in workers from an acute or long term exposure.

- Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
- Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months.
 Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
- The general approach to treatment is recognition of the disease, supportive care and prevention of exposure.
- > Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.

[Ellenhorn and Barceloux: Medical Toxicology]

- Absorption of zinc compounds occurs in the small intestine.
- The metal is heavily protein bound.
- Elimination results primarily from faecal excretion.
- The usual measures for decontamination (Ipecac Syrup, lavage, charcoal or cathartics) may be administered, although patients usually have sufficient vomiting not to require them.
 CaNa2EDTA has been used successfully to normalise zinc levels and is the agent of choice.

[Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 FIREFIGHTING MEASURES

5.1. Extinguishing media

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result			
5.3. Advice for firefighters				

Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers free.
	If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaininated after use.

Fire/Explosion Hazard	 Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) - according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions. Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions). Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of innitiated, however, larger particles up to 1400 microns dameter will contribute to the propagation of an explosion. In the same way as gases and vapours, dusts in the form of a doud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent efficitly of achieving homogeneous dust clouds at trigh temperatures (for dusts the LEL is often called the Minimum Explosible Concentration, MEC). When processed with flammable flauds/vapors/mists.ginitable (hybrid) mixtures may be formed with combustible dusts. glontable mixtures and use to also a trigh temperatures (for dusts the LEL is often called the Minimum flauto and be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the individual LELs for the vapors/mists or dusts. A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosion pressure isseand and the splace. Usually the initial or primary explosion. All large scale explosions have resulted from chain reactions of this type. Usually the initial or
-----------------------	---

SECTION 6 ACCIDENTAL RELEASE MEASURES

6.1. Personal precautions, protective equipment and emergency procedures

See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

Minor Spills	 Environmental hazard - contain spillage. Clean up all spills immediately. Avoid contact with skin and eyes. Wear impervious gloves and safety glasses. Use dry clean up procedures and avoid generating dust. Vacuum up (consider explosion-proof machines designed to be grounded during storage and use). Do NOT use air hoses for cleaning Place spilled material in clean, dry, sealable, labelled container.
Major Spills	 Environmental hazard - contain spillage. Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. Prevent, by any means available, spillage from entering drains or water courses. Recover product wherever possible. IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. If contamination of drains or waterways occurs, advise Emergency Services.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

7.1. Precautions for safe handling

Safe handling	 Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps.
---------------	--

	 DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. When handing, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Avoid physical damage to containers. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions) Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame. Establish good housekeeping practices. Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds. Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a 'secondary' explosion. According to NFPA Standard 654, dust layers 1/32 in (0.8 mm) thick can be sufficient to warrant immediate cleaning of the area. Do not use air hoses for cleaning. Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used. Control sources of static electricity. Dusts or their packages may accumula
	permit.
Fire and explosion protection	See section 5
Other information	 Store in original containers. Keep containers securely sealed. Store in a cool, dry area protected from environmental extremes. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. For major quantities: Consider storage in bunded areas - ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams). Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

7.2. Conditions for safe storage, including any incompatibilities

Suitable container	 Lined metal can, lined metal pail/ can. Plastic pail. Polyliner drum. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	 For aluminas (aluminium oxide): Incompatible with hot chlorinated rubber. In the presence of chlorin trifluoride may react violently and ignite. -May initiate explosive polymerisation of olefin oxides including ethylene oxide. -Produces exothermic reaction above 200 C with halocarbons and an exothermic reaction at ambient temperatures with halocarbons in the presence of other metals. -Produces exothermic reaction with oxygen difluoride. -May form explosive mixture with oxygen difluoride. -Reacts vigorously with vinyl acetate. Aluminium oxide is an amphoteric substance, meaning it can react with both acids and bases, such as hydrofluoric acid and sodium hydroxide, acting as an acid with a base and a base with an acid, neutralising the other and producing a salt. Zinc oxide: slowly absorbs carbon dioxide from the air. may react, explosively with ingressium and chlorinated rubber when heated is incompatible with linesed oil (may cause ignition) WARNING: Avoid or control reaction with peroxides. All <i>transition metal</i> peroxides should be considered as potentially explosive. For example transition metal acomplexes of alkyl hydroperoxides may decompose explosively. The pic-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive. Avoid reaction with borohydrides or cyanoborohydrides Avoid strong acids, bases. Citycidyl ethers: may polymerise in contact with heat, organic and inorganic free radical producing initiators may polymerise with strong oxidisers, permangianates, peroxides, acyl haides, alkalis, ammonium persulfate, bromine dioxide attack some forms of plastics, coatings, and rubber

See section 1.2

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

8.1. Control parameters

DERIVED NO EFFECT LEVEL (DNEL)

Not Available

PREDICTED NO EFFECT LEVEL (PNEC)

Not Available

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

EMERGENCY LIMITS

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
UK Workplace Exposure Limits (WELs)	aluminium oxide	Aluminium oxides respirable dust	4 mg/m3	Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs)	aluminium oxide	Aluminium oxides inhalable dust	10 mg/m3	Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs)	carbon black	Carbon black	3.5 mg/m3	7 mg/m3	Not Available	Not Available

Ingredient	Material name		TEEL-1	TEEL-2	TEEL-3
aluminium oxide	Aluminum oxide; (Alumina)		5.7 mg/m3	15 mg/m3	25 mg/m3
zinc oxide	Zinc oxide		10 mg/m3	15 mg/m3	2,500 mg/m3
bisphenol A diglycidyl ether resin, solid	Epoxy resin includes EPON 1001, 1007, 820, ERL-2795		90 mg/m3	990 mg/m3	5,900 mg/m3
bisphenol A diglycidyl ether resin, solid	Polypropylene glycol, (chloromethyl) oxirane polymer	30 mg/m3	330 mg/m3	2,000 mg/m3	
bisphenol F glycidyl ether/ formaldehyde copolymer	Phenol, polymer with formaldehyde, oxiranylmethyl ether		30 mg/m3	330 mg/m3	2,000 mg/m3
carbon black	Carbon black		9 mg/m3	99 mg/m3	590 mg/m3
Ingredient	Original IDLH	Revised IDLH			
aluminium oxide	Not Available	Not A	Not Available		
zinc oxide	500 mg/m3	Not A	Not Available		
bisphenol A diglycidyl ether resin, solid	Not Available	Not A	Not Available		
bisphenol F glycidyl ether/ formaldehyde copolymer	Not Available	Not A	Not Available		
neopentyl glycol diglycidyl ether	Not Available	Not A	Not Available		
carbon black	1750 mg/m3	Not A	Not Available		
(C12-14)alkylglycidyl ether	Not Available	Not A	Not Available		

MATERIAL DATA

for zinc oxide:

Zinc oxide intoxication (intoxication zincale) is characterised by general depression, shivering, headache, thirst, colic and diarrhoea.

Exposure to the fume may produce metal fume fever characterised by chills, muscular pain, nausea and vomiting. Short-term studies with guinea pigs show pulmonary function changes and morphologic evidence of small airway inflammation. A no-observed-adverse-effect level (NOAEL) in guinea pigs was 2.7 mg/m3 zinc oxide. Based on present data, the current TLV-TWA may be inadequate to protect exposed workers although known physiological differences in the guinea pig make it more susceptible to functional impairment of the airways than humans. For aluminium oxide and pyrophoric grades of aluminium:

Twenty seven year experience with a luminium oxide dust (particle size 96% 1,2 um) without adverse effects either systemically or on the lung, and at a calculated concentration equivalent to 2 mg/m3 over an 8-hour shift has lead to the current recommendation of the TLV-TWA.

The limit should also apply to aluminium pyro powders whose toxicity is reportedly greater than aluminium dusts and should be protective against lung changes.

For aluminium oxide:

The experimental and clinical data indicate that aluminium oxide acts as an 'inert' material when inhaled and seems to have little effect on the lungs nor does it produce significant organic disease or toxic effects when exposures are kept under reasonable control.

[Documentation of the Threshold Limit Values], ACGIH, Sixth Edition

8.2. Exposure controls

8.2.1. Appropriate engineering controls	 Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

	 might consist of: (a): particle dust respirators, if necessary, combined with an absorption cartridge; (b): filter respirators with absorption cartridge or canister of the right type; (c): fresh-air hoods or masks Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grou Powder handling equipment such as dust collectors, dryers and mills may require additiona Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, required to efficiently remove the contaminant. 	I protection measures such as	ies' of fresh circulating air
	Type of Contaminant:		Air Speed:
	direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, ga generation into zone of rapid air motion)	as discharge (active	1-2.5 m/s (200-500 f/min.)
	grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initi high rapid air motion).	al velocity into zone of very	2.5-10 m/s (500-2000 f/min.)
	Within each range the appropriate value depends on:		
	Lower end of the range	Upper end of the range	
	1: Room air currents minimal or favourable to capture	1: Disturbing room air curr	ents
	2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high tox	kicity
	3: Intermittent, low production.	3: High production, heavy u	ISE
	4: Large hood or large air mass in motion	4: Small hood-local control	only
	Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple square of distance from the extraction point (in simple cases). Therefore the air speed at the extreference to distance from the contaminating source. The air velocity at the extraction fan, for exe for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mech within the extraction apparatus, make it essential that theoretical air velocities are multiplied by far or used.	raction point should be adjuste ample, should be a minimum of anical considerations, producir	ed, accordingly, after f 4-10 m/s (800-2000 f/min) ng performance deficits
8.2.2. Personal protection			
Eye and face protection	 Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentration of lenses or restrictions on use, should be created for each workplace or task. This should in class of chemicals in use and an account of injury experience. Medical and first-aid person should be readily available. In the event of chemical exposure, begin eye irrigation immediat should be removed at the first signs of eye redness or irritation - lens should be removed in a thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equiv. 	nclude a review of lens absorp nel should be trained in their re ely and remove contact lens as a clean environment only after o	tion and adsorption for the moval and suitable equipment s soon as practicable. Lens
Skin protection	See Hand protection below		
Hands/feet protection	 NOTE: The material may produce skin sensitisation in predisposed individuals. Care must be taken avoid all possible skin contact. Contaminated leather items, such as shoes, belts and watch-bands should be removed and The selection of suitable gloves does not only depend on the material, but also on further marks. Where the chemical is a preparation of several substances, the resistance of the glove material checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the prochoice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean har thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of frequency and duration of contact, chemical resistance of glove material, glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or n When prolonged or frequently repeated contact may occur, a glove with a protection class when only brief contact is expected, a glove with a protection class of 3 or higher (breaktl AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into are contaminated gloves should be replaced. Gove thickness may also vary depending on the glove material. Therefore, glove sele requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove soft any approximate glove for the tas Note: Depending on the exact omposition of the glove and the glow ishould always be taken into account to ensure selection of the most appropriate glove for the tas Note: Depending on the exact composition of the glove material. Glove thickness may also vary depending on the glove soft	destroyed. of quality which vary from manni- san not be calculated in advance tective gloves and has to be ob- nds. After using gloves, hands s of gloves include: ational equivalent). s of 5 or higher (breakthrough the arough time greater than 60 mi excount when considering gloves ded. Ince to a specific chemical, as ction should also be based on a model. Therefore, the manufa c. or specific tasks. For example: dexterity is needed. However, sed of. ell as a chemical) risk i.e. wher	ufacturer to manufacturer. ce and has therefore to be oserved when making a final should be washed and dried time greater than 240 inutes according to EN 374, s for long-term use. the permeation efficiency of consideration of the task acturers' technical data these gloves are only likely to re there is abrasion or

Continued...

	 When handling liquid-grade epoxy resins wear chemically protective gloves (e.g nitrile or nitrile-butatoluene rubber), boots and aprons. DO NOT use cotton or leather (which absorb and concentrate the resin), polyvinyl chloride, rubber or polyethylene gloves (which absorb the resin). DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. polychloroprene. nitrile rubber. butyl rubber. fluorocaoutchouc. polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly.
Body protection	See Other protection below
Other protection	 Overalls. P.V.C. apron. Barrier cream. Skin cleansing cream. Eye wash unit.

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator A P1	Full-Face Respirator	Powered Air Respirator A PAPR-P1
up to 10 x ES	Air-line*	-	-
up to 50 x ES up to 100 x ES	Air-line** -	A P2 A P3	A PAPR-P2 -
100+ x ES	-	Air-line* Air-line**	- A PAPR-P3

* - Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.

- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.

• Use approved positive flow mask if significant quantities of dust becomes airborne.

Try to avoid creating dust conditions.

8.2.3. Environmental exposure controls

See section 12

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

9.1. Information on basic physical and chemical properties

Appearance	Dark grey		
Physical state	Solid	Relative density (Water = 1)	2.48
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	524194
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	149	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

10.1.Reactivity	See section 7.2
10.2. Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 TOXICOLOGICAL INFORMATION

11.1. Information on toxicological effects

Inhaled	The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in 'metal fume fever'. Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure.
Ingestion	Acute toxic responses to aluminium are confined to the more soluble forms. Male rats exposed to a single oral dose of bisphenol A diglycidyl ether (BADGE) at 750, 1000, and 2000 mg/kg/day showed a significantly increase in the number of immature and maturing sperm on the testis. There were no significant differences with respect to sperm head count, sperm motility, and sperm abnormality in the BADGE treatment groups The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.
Skin Contact	Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin reflexes (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Skin contact is not though to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Contact with aluminas (aluminium oxides) may produce a form of irritant dermatitis accompanied by pruritus. Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles.
Eye	Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.
Chronic	Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Chronic exposure to aluminum oxides) of particle size 1.2 microns did not produce significant systemic or respiratory system effects in workers. Epidemiologic surveys have indicated an excess of nonmalignant respiratory disease in workers exposed to aluminum oxide during abrasives production. Very fine AI2O3 powder was not fibrogenic in rats, guinea pigs, or harnsters when inhaled for 6 to 12 months and sacrificed at periods up to 12 months following the last exposure. When hydrated aluminas were injected intratracheally, they produced dense and numerous nodules of advanced fibrosis in rats, a reticulin network with occasional collagen fibres in mice and guinea pigs, and only a slight reticulin network in rabbits. Shaver's disease, a rapidly progressive and often fatal interstitial fibrosis of the lungs, is associated with a process involving the fusion of bauxite (aluminium oxide) with iron, ocke and silica at 2000 deg. C. The weight of evidence suggests that catalytically active alumina and the large surface area aluminas can induce lung fibrosis(aluminosis) in experimental animals, but only when given by the intra-tracheal route. The pertinence of such experiments in relation to workplace exposure is doubtful especially since it has been demonstrated that the most reactive of the aluminia (i.e. the chi and gamma forms), when given by inhalation, are non-fibrous forms. Aluminium oxide fibres administered by the intrapleural route produce clear evidence of carcinogenic potential and oral toxicity have included in-vitro, intrapertoneal injection, intrapleural injection, intraletural injection, intraletural injection, intraletural injection, intraletural injectios, inhelation, and feeding. The fibre has generally been inactive a nailed subce when they occur as dusts, fumes or vapours. Only t

aluminium is not as toxic as heavy metals, but there is evidence of some toxicity if it is consumed in excessive amounts. Although the use of aluminium cookware has not been shown to lead to aluminium toxicity in general, excessive consumption of antacids containing aluminium compounds and excessive use of aluminium-containing antiperspirants provide more significant exposure levels. Studies have shown that consumption of acidic foods or liquids with aluminium significantly increases aluminium absorption, and maltol has been shown to increase the accumulation of aluminium in nervous and osseus tissue. Furthermore, aluminium increases oestrogen-related gene expression in human breast cancer cells cultured in the laboratory These salts' estrogen-like effects have led to their classification as a metalloestrogen.Some researchers have expressed concerns that the aluminium in antiperspirants may increase the risk of breast cancer.

After absorption, aluminium distributes to all tissues in animals and humans and accumulates in some, in particular bone. The main carrier of the aluminium ion in plasma is the iron binding protein, transferrin. Aluminium can enter the brain and reach the placenta and foetus. Aluminium may persist for a very long time in various organs and tissues before it is excreted in the urine. Although retention times for aluminium appear to be longer in humans than in rodents, there is little information allowing extrapolation from rodents to the humans.

At high levels of exposure, some aluminium compounds may produce DNA damage in vitro and in vivo via indirect mechanisms. The database on carcinogenicity of aluminium compounds is limited. No indication of any carcinogenic potential was obtained in mice given aluminium potassium sulphate at high levels in the diet.

Aluminium has shown neurotoxicity in patients undergoing dialysis and thereby chronically exposed parenterally to high concentrations of aluminium. It has been suggested that aluminium is implicated in the aetiology of Alzheimer's disease and associated with other neurodegenerative diseases in humans. However, these hypotheses remain controversial. Several compounds containing aluminium have the potential to produce neurotoxicity (mice, rats) and to affect the male reproductive system (dogs). In addition, after maternal exposure they have shown embryotoxicity (mice) and have affected the developing nervous system in the offspring (mice, rats). The available studies have a number of limitations and do not allow any dose-response relationships to be established. The combined evidence from several studies in mice, rats and dogs that used dietary administration of aluminium compounds produce lowest-observed-adverse-effect levels (LOAELs) for effects on neurotoxicity, testes, embryotoxicity, and the developing nervous system of 52, 75, 100, and 50 mg aluminium/kg bw/day, respectively. Similarly, the lowest no-observed-adverse-effect levels (NOAELs) for effects on the developing nervous system, between 10 and 42 mg aluminium/kg bw per day, respectively.

Controversy exists over whether aluminium is the cause of degenerative brain disease (Alzheimer's disease or AD). Several epidemiological studies show a possible correlation between the incidence of AD and high levels of aluminium in drinking water. A study in Toronto, for example, found a 2.6 times increased risk in people residing for at least 10 years in communities where drinking water contained more than 0.15 mg/l aluminium compared with communities where the aluminium level was lower than 0.1 mg/l. A neurochemical model has been suggested linking aluminium exposure to brain disease. Aluminium concentrates in brain regions, notably the hippocampus, cerebral cortex and amygdala where it preferentially binds to large pyramid-shaped cells - it does not bind to a substantial degree to the smaller interneurons. Aluminium displaces magnesium in key metabolic reactions in brain cells and also interferes with calcium metabolism and inhibits phosphoinositide metabolism. Phosphoinositide normally controls calcium ion levels at critical concentrations.

Under the microscope the brain of AD sufferers show thickened fibrils (neurofibrillary tangles - NFT) and plaques consisting of amyloid protein deposited in the matrix between brain cells. Tangles result from alteration of 'tau' a brain cytoskeletal protein. AD tau is distinguished from normal tau because it is hyperphosphorylated. Aluminium hyperphosphorylates tau in vitro. When AD tau is injected into rat brain NFT-like aggregates form but soon degrade. Aluminium stabilises these aggregates rendering them resistant to protease degradation. Plaque formation is also enhanced by aluminium which induces the accumulation of amyloid precursor protein in the thread-like extensions of nerve cells (axons and dendrites). In addition aluminium has been shown to depress the activity of most neuro-transmitters similarly depressed in AD (acety/choline, norepinephrine, glutamate and GABA).

Aluminium enters the brain in measurable quantities, even when trace levels are contained in a glass of tap water. Other sources of bioavailable aluminium include baking powder, antacids and aluminium products used for general food preparation and storage (over 12 months, aluminium levels in soft drink packed in aluminium cans rose from 0.05 to 0.9 mg/l). [Walton, J and Bryson-Taylor, D. - Chemistry in Australia, August 1995]

All glycidyl ethers show genotoxic potential due their alkylating properties. Those glycidyl ethers that have been investigated in long term studies exhibit more or less marked carcinogenic potential. Alkylating agents may damage the stem cell which acts as the precursor to components of the blood. Loss of the stem cell may result in pancytopenia (a reduction in the number of red and white blood cells and platelets) with a latency period corresponding to the lifetime of the individual blood cells. Granulocytopenia (a reduction in granular leukocytes) develops within days and thrombocytopenia (a disorder involving platelets), within 1-2 weeks, whilst loss of erythrocytes (red blood cells) need months to become clinically manifest. Aplastic anaemia develops due to complete destruction of the stem cells.

Glycidyl ethers have been shown to cause allergic contact dermatitis in humans. Glycidyl ethers generally cause skin sensitization in experimental animals. Necrosis of the mucous membranes of the nasal cavities was induced in mice exposed to allyl glycidyl ether.

A study of workers with mixed exposures was inconclusive with regard to the effects of specific glycidyl ethers. Phenyl glycidyl ether, but not *n*-butyl glycidyl ether, induced morphological transformation in mammalian cells *in vitro*. *n*-Butyl glycidyl ether induced micronuclei in mice *in vivo* following intraperitoneal but not oral administration. Phenyl glycidyl ether did not induce micronuclei or chromosomal aberrations *in vivo* or chromosomal aberrations in animal cells *in vitro*. Alkyl C12 or C14 glycidyl ether did not induce DNA damage in cultured human cells or mutation in cultured animal cells. Allyl glycidyl ether induced mutation in *Drosophila*. The glycidyl ethers were generally mutagenic to bacteria

On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Zinc is necessary for normal fetal growth and development. Fetal damage may result from zinc deficiency. Only one report in the literature suggested adverse developmental effects in humans due to exposure to excessive levels of zinc. Four women were given zinc supplements of 0.6 mg zinc/kg/day as zinc sulfate during the third trimester of pregnancy. Three of the women had premature deliveries, and one delivered a stillbom infant. However, the significance of these results cannot be determined because very few details were given regarding the study protocol, reproductive histories, and the nutritional status of the women. Other human studies have found no developmental effects in the newboms of mothers consuming 0.3 mg zinc/kg/day as zinc sulfate or zinc citrate or 0.06 mg zinc/kg/day as zinc aspartate during the last two trimesters. There has been a suggestion that increased serum zinc levels in pregnant women may be associated with an increase in neural tube defects, but others have failed to confirm this association. The developmental toxicity of zinc in experimental animals has been evaluated in a number of investigations. Exposure to high levels of zinc in the diet prior to and/or during gestation has been associated with increased fetal resorptions, reduced fetal weights, altered tissue concentrations of fetal iron and copper, and reduced growth in the offspring.

Animal studies suggest that exposure to very high levels of dietary zinc is associated with reduced fetal weight, alopecia, decreased hematocrit, and copper deficiency in offspring. For example, second generation mice exposed to zinc carbonate during gestation and lactation (260 mg/kg/day in the maternal diet), and then continued on that diet for 8 weeks, had reduced body weight, alopecia, and signs of copper deficiency (e.g., lowered hematocrit and occasional achromotrichia [loss of hair colour]. Similarly, mink kits from dams that ingested a time-weighted-average dose of 20.8 mg zinc/kg/day as zinc sulfate also had alopecia and achromotrichia. It is likely that the alopecia resulted from zinc-induced copper deficiency, which is known to cause alopecia in monkeys. However, no adverse effects were observed in parental mice or mink. No effects on reproduction were reported in rats exposed to 50 mg zinc/kg/day.

Welding or flame cutting of metals with zinc or zinc dust coatings may result in inhalation of zinc oxide fume; high concentrations of zinc oxide fume may result in 'metal fume fever'; also known as 'brass chills', an industrial disease of short duration. [I.L.O] Symptoms include malaise, fever, weakness, nausea and may appear quickly if operations occur in enclosed or poorly ventilated areas.

Genotoxicity studies conducted in a variety of test systems have failed to provide evidence for mutagenicity of zinc. However, there are indications of weak clastogenic effects following zinc exposure.

Bisphenol F, bisphenol A, fluorine-containing bisphenol A (bisphenol AF), and other diphenylalkanes were found to be oestrogenic in a bioassay with MCF7 human breast cancer cells in culture Bisphenol F (4.4-dihydroxydiphenylmethane) has been reported to exhibit oestrogen agonistic properties in the uterotrophic assay. Bisphenol F (BPF) is present in the environment and as a contaminant of food. Humans may, therefore, be exposed to BP. BPF has been shown to have genotoxic and endocrine-disruptor properties in a human hepatoma cell line (HepG2), which is a model system for studies of xenobiotic toxicity. BPF was largely metabolised into the corresponding sulfate by the HepG2 cell line. BPF was metabolised into both sulfate and glucuronide by human hepatocytes, but with differences between individuals. The metabolism of BPF in both HepG2 cells and human hepatocytes suggests the existence of a detoxification pathway

Bisphenol F was orally administered at doses 0, 20, 100 and 500 mg/kg per day for at least 28 days, but no clear endocrine-mediated changes were detected, and it was concluded to have no endocrine-mediated effects in young adult rats. On the other hand, the main effect of bisphenol F was concluded to be liver toxicity based on clinical biochemical parameters and liver weight, but without histopathological changes. The no-observed-effect level for

	bisphenol F is concluded to be under 20 mg/kg per day since decreased body albumin values were observed in the female rats given 20 mg/kg per day or his Bisphenol A exhibits hormone-like properties that raise concern about its suita an endocrine disruptor which can mimic oestrogen and may lead to negative I function of the hormone oestradiol with the ability to bind to and activate the sai appear to be the period of greatest sensitivity to its effects and some studies h Regulatory bodies have determined safety levels for humans, but those safety A 2009 study on Chinese workers in bisphenol A factories found that workers desire and overall dissatisfaction with their sex life than workers with no height likely to have ejaculation difficulties. They were also more likely to report reduce the higher the exposure, the more likely they were to have sexual difficulties. Bisphenol A in weak concentrations is sufficient to produce a negative reactior ug/ litre of bisphenol A in the culture medium, a concentration equal to the ave the population, was sufficient to produce the effects. The researchers believe th congenital masculinisation defects of the hypospadia and cryptorchidism types suggested that 'it is also possible that bisphenol A contributes to a reduction in cancer in adults that have been observed in recent decades' One review has concluded that obesity may be increased as a function of bisp	gher doses of bisphenol F. bility in consumer products a nealth effects. More specifical me oestrogen receptor as the levels are being questioned o vere four times more likely to ened bisphenol A exposure. E ad sexual function within one non the human testicle. The r rage concentration generally at exposure of pregnant wom the frequency of which has on the production of sperm and	nd food containers. Bisphenol A is thought to be by bisphenol A closely mimics the structure and natural hormone Early developmental stages to later physical and neurological difficulties. r are under review. report erectile dysfunction, reduced sexual Bisphenol A workers were also seven times more year of beginning employment at the factory, and esearchers found that a concentration equal to 2 found in the blood, urine and amniotic fluid of ten to bisphenol A may be one of the causes of loubled overall since the 70's. They also d the increase in the incidence of testicular	
	officials' One study demonstrated that adverse neurological effects occur in non-human primates regularly exposed to bisphenol A at levels equal to the United States Environmental Protection Agency's (EPA) maximum safe dose of 50 ug/kg/day This research found a connection between bisphenol A and interference with brain cell connections vital to memory, learning, and mood. A further review concluded that bisphenol-A has been shown to bind to thyroid hormone receptor and perhaps have selective effects on its functions. Carcinogenicity studies have shown increases in leukaemia and testicular interstitial cell tumours in male rats. However, 'these studies have not been considered as convincing evidence of a potential cancer risk because of the doubtful statistical significance of the small differences in incidences from controls'. Another in vitro study has concluded that bisphenol A is able to induce neoplastic transformation in human breast epithelial cells. [whilst a further study concluded that matemal oral exposure to low concentrations of bisphenol A, during lactation, increases mammary carcinogenesis in a rodent model. In vitro studies have suggested that bisphenol A can promote the growth of neuroblastoma cells and potently promotes invasion and metastasis of neuroblastoma cells. Newborn rats exposed to a low-dose of bisphenol A (10 ug/kg) showed increased prostate cancer susceptibility when adults. At least one study has suggested that bisphenol A suppresses DNA methylation which is involved in epigenetic changes. Bisphenol A is the isopropyl adduct of 4,4'-dihydroxydiphenyl oxide (DHDPO). A series of DHDPO analogues have been investigated as potential oestrogen receptor/anti-tumour drug carriers in the development of a class of therapeutic drugs called 'cytostatic hormones'. Cestrogenic activity is induced with 1 to 100 mg/kg body weight in animal models. Bisphenol A sealants are frequently used in dentistry for treatment of dental pits and fissures. Samples of saliva collected from dental patients during			
8329TCM Medium Cure	TOXICITY	IRRITATION		
Thermally Conductive Adhesive (Part A)	Not Available	Not Available		
aluminium oxide	TOXICITY Oral (rat) LD50: >2000 mg/kg ^[1]		IRRITATION Not Available	
	· · · · · · · · · · · · · · · · · · ·		I	
	TOXICITY	IRRITATION		
zinc oxide	Oral (rat) LD50: >5000 mg/kg ^[1]	Eye (rabbit) : 500 mg/24 h	mild	
		Skin (rabbit) : 500 mg/24 h	mild	
	TOXICITY IRRITATION			
bisphenol A diglycidyl ether resin, solid	dermal (rat) LD50: >1200 mg/kg ^[2]		Not Available	
16511, 5010	Oral (rat) LD50: >1000 mg/kg ^[2]			
bisphenol F glycidyl ether/				
formaldehyde copolymer	dermal (rat) LD50: 4000 mg/kg ^[2] Eyes * (-) (-) Slight irritant			
	Oral (rat) LD50: 4000 mg/kg ^[2]	Skin * (-) (-) Slight	irritant	

(C12-14)alkylglycidyl ether	TOXICITY	IRRITATION
	Oral (rat) LD50: >10000 mg/kg ^[2]	Eye (rabbit): mild [Ciba]
		Skin (guinea pig): sensitiser
		Skin (human): Irritant
		Skin (human): non- sensitiser
		Skin (rabbit): moderate
		Skin : Moderate
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* \	/alue obtained from manufacturer's SDS. Unless otherwise specified

data extracted from RTECS - Register of Toxic Effect of chemical Substances

In mice, dermal application of bisphenol A dialycidyl ether (BADGE) (1, 10, or 100 mg/kg) for 13 weeks produced mild to moderate chronic active dermatitis. At the high dose, spongiosis and epidermal micro abscess formation were observed. In rats, dermal application of BADGE (10, 100, or 1000 mg/kg) for 13 weeks resulted in a decrease in body weight at the high dose. The no-observable effect level (NOEL) for dermal exposure was 100 mg/kg for both sexes. In a separate study, application of BADGE (same doses) five times per week for ~13 weeks not only caused a decrease in body weight but also produced chronic dermatitis at all dose levels in males and at >100 mg/kg in females (as well as in a satellite group of females given 1000 mg/kg). Reproductive and Developmental Toxicity: BADGE (50, 540, or 750 mg/kg) administered to rats via gavage for 14 weeks (P1) or 12 weeks (P2) produced decreased body weight in all males at the mid dose and in both males and females at the high dose, but had no reproductive effects. The NOEL for reproductive effects was 750 mg/kg. IARC concluded that 'there is limited evidence for the carcinogenicity of bisphenol A diglycidyl ether in experimental animals.' Its overall evaluation was 'Bisphenol A diglycidyl ether is not classifiable as to its carcinogenicity to humans (Group 3). In a lifetime tumourigenicity study in which 90-day-old C3H mice received three dermal applications per week of BADGE (undiluted dose) for 23 months, only one out of 32 animals developed a papilloma after 16 months. A retest, in which skin paintings were done for 27 months. however, produced no tumours (Weil et al., 1963). In another lifetime skin-painting study, BADGE (dose n.p.) was also reported to be noncarcinogenic to the skin of C3H mice; it was, however, weakly carcinogenic to the skin of C57BL/6 mice (Holland et al., 1979; cited by Canter et al., 1986). In a two-year bioassay, female Fisher 344 rats dermally exposed to BADGE (1, 100, or 1000 mg/kg) showed no evidence of dermal carcinogenicity but did have low incidences of tumours in the oral cavity (U.S. EPA, 1997). : In S. typhimurium strains TA100 and TA1535, BADGE (10-10,000 ug/plate) was mutagenic with and without S9; negative results were obtained in TA98 and TA1537 (Canter et al., 1986; Pullin, 1977). In a spot test, BADGE (0.05 or 10.00 mg) failed to show mutagenicity in strains TA98 and TA100 (Wade et al., 1979). Negative results were also obtained in the body fluid test using urine of female BDF and ICR mice (1000 mg/kg BADGE), the mouse host-mediated assay (1000 mg/kg), micronucleus test (1000 mg/kg), and dominant lethal assay (~3000 mg/kg). Intracutaneous injection of diluted BADGE (0.1 mL) three times per week on alternate days (total of 8 injections) followed by a three-week incubation period and a challenge dose produced sensitisation in 19 of 20 guinea pigs Consumer exposure to BADGE is almost exclusively from migration of BADGE from can coatings into food. Using a worst-case scenario that assumes BADGE migrates at the same level into all types of food, the estimated per capita daily intake for a 60-kg individual is approximately 0.16 ug/kg body weight/day. A review of one- and two-generation reproduction studies and developmental investigations found no evidence of reproductive or endocrine toxicity, the upper ranges of dosing being determined by maternal toxicity. The lack of endocrine toxicity in the reproductive and developmental toxicological tests is supported by negative results from both in vivo and in vitro assays designed specifically to detect oestrogenic and androgenic properties of BADGE. An examination of data from sub-chronic and chronic toxicological studies support a NOAEL of 50 mg/ kg/body weight day from the 90-day study, and a NOAEL of 15 mg/kg body weigh/day (male rats) from the 2-year carcinogenicity study. Both NOAELS are considered appropriate for risk assessment. Comparing the estimated daily human intake of 0.16 ug/kg body weight/day with the NOAELS of 50 and 15 mg/kg body weight/day shows human exposure to BADGE from can coatings is between 250,000 and 100,000-fold lower than the NOAELs from the most sensitive toxicology tests. These large margins of safety together with lack of reproductive, developmental, endocrine and carcinogenic effects supports the continued use of 8329TCM Medium Cure BADGE for use in articles intended to come into contact with foodstuffs. Thermally Conductive Bisphenol A diglycidyl ethers (BADGEs) produce sensitisation dermatitis characterised by a papular, vesicular eczema with considerable Adhesive (Part A) itching of the back of the hand, the forearm and face and neck. This lesion may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. This dermatitis may persist for longer periods following each exposure but is unlikely to become more intense. Lesions may develop a brownish colour and scaling occurs frequently. Lower molecular weight species produce sensitisation more readily. In mice technical grades of bisphenol A diglycidyl ether produced epidermal tumours and a small increase in the incidence kidney tumours in males and of lymphoreticular/ haematopoietic tumours in females. Subcutaneous injection produced a small number of fibrosarcomas in rats. Bisphenol A exhibits hormone-like properties that raise concern about its suitability in consumer products and food containers. Bisphenol

A is thought to be an endocrine disruptor which can mimic oestrogen and may lead to negative health effects. More specifically, bisphenol A closely mimics the structure and function of the hormone oestradiol with the ability to bind to and activate the same oestrogen receptor as the natural hormone. Early developmental stages appear to be the period of greatest sensitivity to its effects and some studies have linked prenatal exposure to later physical and neurological difficulties. Regulatory bodies have determined safety levels for humans, but those safety levels are being questioned or are under review.

A 2009 study on Chinese workers in bisphenol A factories found that workers were four times more likely to report erectile dysfunction, reduced sexual desire and overall dissatisfaction with their sex life than workers with no heightened bisphenol A exposure. Bisphenol A workers were also seven times more likely to have ejaculation difficulties. They were also more likely to report reduced sexual function within one year of beginning employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties. Bisphenol A in weak concentrations is sufficient to produce a negative reaction on the human testicle. The researchers found that a concentration equal to 2 ug/ litre of bisphenol A in the culture medium, a concentration equal to the average concentration generally found in the blood, urine and amniotic fluid of the population, was sufficient to produce the effects. The researchers believe that exposure of pregnant women to bisphenol A may be one of the causes of congenital masculinisation defects of the hypospadia and cryptorchidism types the frequency of which has doubled overall since the 70's. They also suggested that 'it is also possible that bisphenol A contributes to a reduction in the production of sperm and the increase in the incidence of testicular cancer in adults that have been observed in recent decades'

One review has concluded that obesity may be increased as a function of bisphenol A exposure, which '...merits concern among scientists and public health officials'

One study demonstrated that adverse neurological effects occur in non-human primates regularly exposed to bisphenol A at levels equal to the United States Environmental Protection Agency's (EPA) maximum safe dose of 50 ug/kg/day This research found a connection between bisphenol A and interference with brain cell connections vital to memory, learning, and mood.

A further review concluded that bisphenol-A has been shown to bind to thyroid hormone receptor and perhaps have selective effects on its functions. Carcinogenicity studies have shown increases in leukaemia and testicular interstitial cell tumours in male rats. However, these studies have not been considered as convincing evidence of a potential cancer risk because of the doubtful statistical significance of the small differences in incidences from controls'. Another in vitro study has concluded that bisphenol A is able to induce neoplastic transformation in human breast epithelial cells.[Whilst a further study concluded that maternal oral exposure to low concentrations of

	bisphenol A, during lactation, increases mammary carcinogenesis in a rodent model. In vitro studies have suggested that bisphenol A ca promote the growth of neuroblastoma cells and potently promotes invasion and metastasis of neuroblastoma cells. Newborn rats expose to a low-dose of bisphenol A (10 ug/kg) showed increased prostate cancer susceptibility when adults. At least one study has suggested th bisphenol A suppresses DNA methylation which is involved in epigenetic changes. Bisphenol A sis the isopropyl adduct of 4,4'-dihydroxydiphenyl oxide (DHDPO). A series of DHDPO analogues have been investigated as potential oestrogen receptor/anti-tumour drug carriers in the development of a class of therapeutic drugs called 'cytostatic hormones'. Oestrogenic activity is induced with 1 to 100 mg/kg body weight in animal models. Bisphenol A sealants are frequently used in dentistry for treatment of dental pits and fissures. Samples of saliva collected from dental patients during a 1-hour period following application contr the monomer. A bisphenol-A sealant has been shown to be oestrogenic in vitro; such sealants may represent an additional source of xenoestrogens in humans and may be the cause of additional concerns in children. Concerns have been raised about the possible developmental effects on the foetus/embryo or neonate resulting from the leaching of bisphenol A from epoxy linings in metal cans which come in contact with food-stuffs. Many drugs, including naproxen, salicylic acid, carbamazepine and mefenamic acid can, in vitro, significantly inhibit bisphenol A glucuronidation (detoxification). Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit many common characteristics with respect to animal toxicology. One such oxirane is ethyloxirane; data presented here may be taken as representative. for 1,2-butylene oxide (ethyloxirane): Ethyloxirane increased the incidence of tumours of the respiratory system in male and female rats exposed via inhalation. Significant increases in nasal papillar		
BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID	CAUTION: Epoxy resin products may contain sensitising glycidyl ethers, even when these are not mentioned in the information given for the product. Th likely occurrence of these is greatly reduced in solid grades of the resin.		
NEOPENTYL GLYCOL DIGLYCIDYL ETHER	* Anchor SDS]		
CARBON BLACK	WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans. Inhalation (rat) TCLo: 50 mg/m3/6h/90D-I Nil reported		
8329TCM Medium Cure Thermally Conductive Adhesive (Part A) & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID & BISPHENOL F GLYCIDYL ETHER/ FORMALDEHYDE COPOLYMER & NEOPENTYL GLYCOL DIGLYCIDYL ETHER & (C12-14)ALKYLGLYCIDYL ETHER	The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.		
8329TCM Medium Cure	The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenolic rings joined together through a bridging carbon. This cl of endocrine disruptors that mimic oestrogens is widely used in industry, particularly in plastics		
Thermally Conductive Adhesive (Part A) & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID & BISPHENOL F GLYCIDYL ETHER/ FORMALDEHYDE COPOLYMER	Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities. Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two pr chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydrog bonding to the acceptor site of the oestrogen receptor.		
Thermally Conductive Adhesive (Part A) & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID & BISPHENOL F GLYCIDYL ETHER/ FORMALDEHYDE	differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities. Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two pr		
Thermally Conductive Adhesive (Part A) & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID & BISPHENOL F GLYCIDYL ETHER/ FORMALDEHYDE COPOLYMER ALUMINIUM OXIDE & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID &	differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities. Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two pr chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydroxy bonding to the acceptor site of the oestrogen receptor.		
Thermally Conductive Adhesive (Part A) & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID & BISPHENOL F GLYCIDYL ETHER/ FORMALDEHYDE COPOLYMER ALUMINIUM OXIDE & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID & CARBON BLACK ZINC OXIDE & BISPHENOL A DIGLYCIDYL ETHER RESIN,	differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities. Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two prochains at the bridging carbon, the lower the concentration and an angular configuration are suitable for appropriate hydrog bonding to the acceptor site of the oestrogen receptor. No significant acute toxicological data identified in literature search. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongios)		
Thermally Conductive Adhesive (Part A) & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID & BISPHENOL F GLYCIDYL ETHER/ FORMALDEHYDE COPOLYMER ALUMINIUM OXIDE & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID & CARBON BLACK ZINC OXIDE & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID	differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities. Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two pr chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydrog bonding to the acceptor site of the oestrogen receptor. No significant acute toxicological data identified in literature search. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongios and intracellular oedema of the epidermis.		
Thermally Conductive Adhesive (Part A) & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID & BISPHENOL F GLYCIDYL ETHER/ FORMALDEHYDE COPOLYMER ALUMINIUM OXIDE & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID & CARBON BLACK ZINC OXIDE & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID	differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities. Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two pr chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydrog bonding to the acceptor site of the oestrogen receptor. No significant acute toxicological data identified in literature search. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongios and intracellular oedema of the epidermis. Solutional codema of the epidermis.		
Thermally Conductive Adhesive (Part A) & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID & BISPHENOL F GLYCIDYL ETHER/FORMALDEHYDE COPOLYMER ALUMINIUM OXIDE & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID & CARBON BLACK ZINC OXIDE & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID Acute Toxicity Skin Irritation/Corrosion	differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities. Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two pr chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydrog bonding to the acceptor site of the oestrogen receptor. No significant acute toxicological data identified in literature search. Image: the alkyl substituent at the epiderma) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongios and intracellular oedema of the epidermis. Image: term of term of term of term of the epidermis. Image: term of the epidermis. Image: term of the epidermis. Image: term		

Data available to make classification

🚫 – Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Page 14 of 20

8329TCM-A Thermally Conductive Epoxy Adhesive

8329TCM Medium Cure Thermally Conductive	ENDPOINT	TEST DURATION (HR)		SPECIES	VALUE		SOURCE	
Adhesive (Part A)	Adhesive (Part A) Not Available Not Available Not Available		Not Available	Not Availa	ailable Not Available		ailable	
	ENDPOINT	TEST DURATION (HR)	SPECI	ES		VALUE		SOURCE
	LC50	. ,		ïsh		0.0029mg/L		2
aluminium oxide	EC50	48	Crustad	ustacea		0.7364mg/L		2
	EC50	96 Algae		gae or other aquatic plants		0.0054mg/L		2
	NOEC	72	Algae c	r other aquatic plants		>=0.004mg/L	-	2
	ENDPOINT	TEST DURATION (HR)	SPECIE	S		VALUE		SOURCE
	LC50	96	Fish			0.439mg/L		2
	EC50	48	Crustac	ea		0.105mg/L		2
zinc oxide	EC50	72	Algae o	r other aquatic plants		0.042mg/L		4
	BCF	336	Fish			4376.673mg/L		4
	NOEC	72	Algae o	r other aquatic plants		0.0049mg/L	9mg/L 2	
	ENDPOINT	TEST DURATION (HR)	SPE	CIES		VALUE		SOURCE
bisphenol A diglycidyl ether	LC50	96 Fis		Fish		1.2mg/l	L :	2
resin, solid	EC50	72 A		Algae or other aquatic plants		9.4mg/l	L :	2
	NOEC	72	72 Algae or other aquatic plants 2.		2.4mg/l	L	2	
bisphenol F glycidyl ether/	ENDPOINT	TEST DURATION (HR)		SPECIES	VALUE		SOUR	CE
formaldehyde copolymer	Not Available	Not Available			Not Availa	Not Available		ailable
	ENDPOINT	TEST DURATION (HR)		SPECIES	VALUE		SOUR	CF
eopentyl glycol diglycidyl ether	Not Available	Not Available		Not Available	Not Availa	ble	Not Av	-
	ENDPOINT	TEST DURATION (HR)		SPECIES	VALUE	-	SOL	JRCE
carbon black	LC50	96		Fish				
	NOEC	96		Fish	=1000	ng/L	1	
	ENDPOINT	TEST DURATION (HR)		SPECIES	VALUE		SOUR	CE
(C12-14)alkylglycidyl ether	Not Available	Not Available		Not Available	Not Availa	ble	Not Av	ailable
Legend:	(QSAR) - Aquatic	JCLID Toxicity Data 2. Europe ECH/ Toxicity Data (Estimated) 4. US EPA ntration Data 7. METI (Japan) - Bioc	, Ecotox databas	e - Aquatic Toxicity Dat				

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For bisphenol A and related bisphenols:

Environmental fate:

Biodegradability (28 d) 89% - Easily biodegradable

Bioconcentration factor (BCF) 7.8 mg/l

Bisphenol A, its derivatives and analogues, can be released from polymers, resins and certain substances by metabolic products

Substance does not meet the criteria for PBT or vPvB according to Regulation (EC) No 1907/2006, Annex XIII

As an environmental contaminant, bisphenol A interferes with nitrogen fixation at the roots of leguminous plants associated with the bacterial symbiont Sinorhizobium meliloti. Despite a half-life in the soil of only 1-10 days, its ubiquity makes it an important pollutant. According to Environment Canada, 'initial assessment shows that at low levels, bisphenol A can harm fish and organisms over time. Studies also indicate that it can currently be found in municipal wastewater.' However, a study conducted in the United States found that 91-98% of bisphenol A may be removed from water during treatment at municipal water treatment plants.

Ecotoxicity:

Fish LC50 (96 h): 4.6 mg/l (freshwater fish); 11 mg/l (saltwater fish): NOEC 0.016 mg/l (freshwater fish- 144 d); 0.064 mg/l (saltwater fish 164 d)

Fresh water invertebrates EC50 (48 h): 10.2 mg/l: NOEC 0.025 mg/l - 328 d)

Marine water invertebrate EC50 (96 h): 1.1 mg/l; NOEC 0.17 mg/l (28 d)

Freshwater algae (96 h): 2.73 mg/l

Marine water algae (96 h): 1.1 mg/l

Fresh water plant EC50 (7 d): 20 mg/l: NOEC 7.8 mg/l

In general, studies have shown that bisphenol A can affect growth, reproduction and development in aquatic organisms.

Among freshwater organisms, fish appear to be the most sensitive species. Evidence of endocrine-related effects in fish, aquatic invertebrates, amphibians and reptiles has been reported at environmentally relevant exposure levels lower than those required for acute toxicity. There is a widespread variation in reported values for endocrine-related effects, but many fall in the range of 1 ug/L to 1 mg/L

A 2009 review of the biological impacts of plasticisers on wildlife published by the Royal Society with a focus on annelids (both aquatic and terrestrial), molluscs, crustaceans, insects, fish and amphibians concluded that bisphenol A has been shown to affect reproduction in all studied animal groups, to impair development in crustaceans and amphibians and to induce genetic aberrations. A large 2010 study of two rivers in Canada found that areas contaminated with hormone-like chemicals including bisphenol A showed females made up 85 per cent of the population of a certain fish,

while females made up only 55 per cent in uncontaminated areas.

Although abundant data are available on the toxicity of bisphenol-A (2,2-bis (4-hydroxydiphenyl)propane;(BPA) A variety of BPs were examined for their acute toxicity against Daphnia magna, mutagenicity, and oestrogenic activity using the Daphtoxkit (Creasel Ltd.), the umu test system, and the yeast two-hybrid system, respectively, in comparison with BPA. BPA was moderately toxic to D. magna (48-h EC50 was 10 mg/l) according to the current U.S. EPA acute toxicity evaluation standard, and it was weakly oestrogenic with 5 orders of magnitude lower activity than that of the natural estrogen 17 beta-oestradiol in the yeast screen, while no mutagenicity was observed. All seven BPs tested here showed moderate to slight acute toxicity, no mutagenicity, and weak oestrogenic activity as well as BPA. Some of the BPs showed considerably higher oestrogenic activity than BPA, and others exhibited much lower activity. Bisphenol S (bis(4-hydroxyphenyl)sulfice) showed oestrogenic activity.

Biodegradation is a major mechanism for eliminating various environmental pollutants. Studies on the biodegradation of bisphenols have mainly focused on bisphenol A. A number of BPA-degrading bacteria have been isolated from enrichments of sludge from wastewater treatment plants. The first step in the biodegradation of BPA is the hydroxylation of the carbon atom of a methyl group or the quaternary carbon in the BPA molecule. Judging from these features of the biodegradation mechanisms, it is possible that the same mechanism used for BPA is used to biodegrade all bisphenols that have at least one methyl or methylene group bonded at the carbon atom between the two phenol groups. However, bisphenol F ([bis(4-hydroxyphenyl)methane; BPF), which has no substituent at the bridging carbon, is unlikely to be metabolised by such a mechanism. Nevertheless BPF is readily degraded by river water microorganisms under aerobic conditions. From this evidence, it was clear that a specific mechanism for biodegradation of BPF does exist in the natural ecosystem,

Algae can enhance the photodegradation of bisphenols. The photodegradation rate of BPF increased with increasing algae concentration. Humic acid and Fe3+ ions also enhanced the photodegradation of BPF. The effect of pH value on the BPF photodegradation was also important.

Significant environmental findings are limited. Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit common characteristics with respect to environmental fate and ecotoxicology. One such oxirane is ethyloxirane and data presented here may be taken as representative.

for 1,2-butylene oxide (ethyloxirane):

Environmental fate: Ethyloxirane is highly soluble in water and has a very low soil-adsorption coefficient, which suggests that if released to water, adsorption of ethyloxirane to sediment and suspended solids is not expected. Volatilisation of ethyloxirane from water surfaces would be expected based on the moderate estimated Henry's Law constant. If ethyloxirane is released to soil, it is expected to have low adsorption and thus very high mobility. Volatilisation from moist soil and dry soil surfaces is expected, based on its vapour pressure. It is expected that ethyloxirane exists solely as a vapour in ambient atmosphere, based on its very high vapour pressure. Ethyloxirane may also be removed from the atmosphere by wet deposition processes, considering its relatively high water solubility.

Persistence: The half-life in air is about 5.6 days from the reaction of ethyloxirane with photochemically produced hydroxyl radicals which indicates that this chemical meets the persistence criterion in air (half-life of = 2 days)*.

Ethyloxirane is hydrolysable, with a half-life of 6.5 days, and biodegradable up to 100% degradation and is not expected to persist in water. A further model-predicted biodegradation half-life of 15 days in water was obtained and used to predict the half-life of this chemical in soil and sediment by applying Boethling's extrapolation factors (t1/2water: t1/2 soil: t1/2sediment = 1: 1: 4) (Boethling 1995). According to these values, it can be concluded that ethyloxirane does not meet the persistence criteria in water and soil (half-lives = 182 days) and sediments (half-life = 365 days).

Experimental and modelled log Kow values of 0.68 and 0.86, respectively, indicate that the potential for bioaccumulation of ethyloxirane in organisms is likely to be low. Modelled bioaccumulation -factor (BAF) and bioconcentration -factor (BCF) values of 1 to 17 L/kg indicate that ethyloxirane does not meet the bioaccumulation criteria (BCF/BAF = 5000)* Ecotoxicity:

Experimental ecotoxicological data for ethyloxirane (OECD 2001) indicate low to moderate toxicity to aquatic organisms. For fish and water flea, acute LC50/EC50 values vary within a narrow range of 70-215 mg/L; for algae, toxicity values exceed 500 mg/L, while for bacteria they are close to 5000 mg/L

* Persistence and Bioaccumulation Regulations (Canada 2000).

For aluminium and its compounds and salts:

Despite its prevalence in the environment, no known form of life uses aluminium salts metabolically. In keeping with its pervasiveness, aluminium is well tolerated by plants and animals. Owing to their prevalence, potential beneficial (or otherwise) biological roles of aluminium compounds are of continuing interest.

Environmental fate:

Aluminium occurs in the environment in the form of silicates, oxides and hydroxides, combined with other elements such as sodium, fluorine and arsenic complexes with organic matter.

Acidification of soils releases aluminium as a transportable solution. Mobilisation of aluminium by acid rain results in aluminium becoming available for plant uptake.

As an element, aluminum cannot be degraded in the environment, but may undergo various precipitation or ligand exchange reactions. Aluminum in compounds has only one oxidation state (+3), and would not undergo oxidation-reduction reactions under environmental conditions. Aluminum can be complexed by various ligands present in the environment (e.g., fulvic and humic acids). The solubility of aluminum in the environment will depend on the ligands present and the pH.

The trivalent aluminum ion is surrounded by six water molecules in solution. The hydrated aluminum ion, [Al(H2O)6]3+, undergoes hydrolysis, in which a stepwise deprotonation of the coordinated water ligands forms bound hydroxide ligands (e.g., [Al(H2O)5(OH)]2+, [Al(H2O)4(OH)2]+). The speciation of aluminum in water is pH dependent. The hydrated trivalent aluminum ion is the predominant form at pH levels below 4. Between pH 5 and 6, the predominant hydrolysis products are Al(OH)2+ and Al(OH)2+, while the solid Al(OH)3 is most prevalent between pH 5.2 and 8.8. The soluble species Al(OH)4- is the predominant species above pH 9, and is the only species present above pH 10. Polymeric aluminum hydroxides appear between pH 4.7 and 10.5, and increase in size until they are transformed into colloidal particles of amorphous Al(OH)3, which crystallise to gibbsite in acid waters. Polymerisation is affected by the presence of dissolved silica; when enough silica is present, aluminum is precipitated as poorly crystallised clav mineral species.

Hydroxyaluminum compounds are considered amphoteric (e.g., they can act as both acids and bases in solution). Because of this property, aluminum hydroxides can act as buffers and resist pH changes within the narrow pH range of 4-5.

Monomeric aluminum compounds, typified by aluminum fluoride, chloride, and sulfate, are considered reactive or labile compounds, whereas polymeric aluminum species react much more slowly in the environment. Aluminum has a stronger attraction for fluoride in an acidic environment compared to other inorganic ligand.

The adsorption of aluminum onto clay surfaces can be a significant factor in controlling aluminum mobility in the environment, and these adsorption reactions, measured in one study at pH 3.0-4.1, have been observed to be very rapid. However, clays may act either as a sink or a source for soluble aluminum depending on the degree of aluminum saturation on the clay surface. Within the pH range of 5-6, aluminum complexes with phosphate and is removed from solution. Because phosphate is a necessary nutrient in ecological systems, this immobilization of both aluminum and phosphate may result in depleted nutrient states in surface water.

Plant species and cultivars of the same species differ considerably in their ability to take up and translocate aluminum to above-ground parts. Tea leaves may contain very high concentrations of aluminum, >5,000 mg/kg in old leaves. Other plants that may contain high levels of aluminum include Lycopodium (Lycopodiaceae), a few ferns, Symplocos (Symplocaceae), and Orites (Proteaceae). Aluminum is often taken up and concentrated in root tissue. In sub-alpine ecosystems, the large root biomass of the Douglas fir, *Abies amabilis*, takes up aluminum and immobilizes

it, preventing large accumulation in above-ground tissue. It is unclear to what extent aluminum is taken up into root food crops and leafy vegetables. An uptake factor (concentration of aluminum in the plant/concentration of aluminum in soil) of 0.004 for leafy vegetables and 0.00065 for fruits and tubers has been reported, but the plant species from which these uptake factors were derived are unclear. Based upon these values, however, it is clear that aluminum is not taken up in plants from soil, but is instead biodiluted.

Aluminum concentrations in rainbow trout from an alum-treated lake, an untreated lake, and a hatchery were highest in gill tissue and lowest in muscle. Aluminum residue analyses in brook trout have shown that whole-body aluminum content decreases as the fish advance from larvae to juveniles. These results imply that the aging larvae begin to decrease their rate of aluminum uptake, to eliminate aluminum at a rate that exceeds uptake, or to maintain approximately the same amount of aluminum while the body mass increases. The decline in whole-body aluminum residues in juvenile brook trout may be related to growth and dilution by edible muscle tissue that accumulated less aluminum than did the other tissues.

The greatest fraction of the gill-associated aluminum was not sorbed to the gill tissue, but to the gill mucus. It is thought that mucus appears to retard aluminum transport from solution to the membrane surface, thus delaying the acute biological response of the fish. It has been reported that concentrations of aluminum in whole-body tissue of the Atlantic salmon exposed to high concentrations of aluminum ranging from 3 ug/g (for fish exposed to 33 ug/L) to 96 ug/g (for fish exposed to 264 ug/L) at pH 5.5. After 60 days of exposure, BCFs ranged from 76 to 190 and were directly related to the aluminum exposure concentration. In acidic waters (pH 4.6-5.3) with low concentrations of calcium (0.5-1.5 mg Ca/L), labile aluminum between 25 and 75 ug/L is toxic. Because aluminum is toxic to many aquatic species, it is not bioaccumulated to a significant degree (BCF <300) in most fish and shellfish; therefore, consumption of contaminated fish does not appear to be a significant source of aluminum exposure in humans.

Bioconcentration of aluminum has also been reported for several aquatic invertebrate species. BCF values ranging from 0.13 to 0.5 in the whole-body were reported for the snail. Bioconcentration of aluminum has also been reported for aquatic insects.

Ecotoxicity:

Freshwater species pH >6.5

Fish: Acute LC50 (48-96 h) 5 spp: 0.6 (Salmo salar) - 106 mg/L; Chronic NOEC (8-28 d): 7 spp,NOEC, 0.034-7.1 mg/L. The lowest measured chronic figure was an 8-d LC50 of 0.17 mg/L for Micropterus sp.

Amphibian: Acute LC50 (4 d): *Bufo americanus*, 0.86-1.66 mg/L; Chronic LC50 (8-d) 2.28 mg/L Crustaceans LC50 (48 h): 1 sp 2.3-36 9 mg/L; Chronic NOEC (7-28 d) 3 spp, 0.136-1.72 mg/L Algae EC50 (96 h): population growth, 0.46-0.57 mg/L; 2 spp, chronic NOEC, 0.8-2.0 mg/L

Freshwater species pH <6.5 (all between pH 4.5 and 6.0)

Fish LC50 (24-96 h): 4 spp, 0.015 (S. trutta) - 4.2 mg/L; chronic data on Salmo trutta, LC50 (21-42 d) 0.015- 0.105 mg/L Amphibians LC50 (4-5 d): 2 spp, 0.540-2.670 m/L (absolute range 0.40-5.2 mg/L)

Alga: 1 sp NOEC growth 2.0 mg/L

Among freshwater aquatic plants, single-celled plants are generally the most sensitive to aluminium. Fish are generally more sensitive to aluminium than aquatic invertebrates. Aluminium is a gill toxicant to fish, causing both ionoregulatory and respiratory effects.

The bioavailability and toxicity of aluminium is generally greatest in acid solutions. Aluminium in acid habitats has been observed to be toxic to fish and phytoplankton. Aluminium is generally more toxic over the pH range 4.4.5.4, with a maximum toxicity occurring around pH 5.0.5.2. The inorganic single unit aluminium species (Al(OH)2 +) is thought to be the most toxic. Under very acid conditions, the toxic effects of the high H+ concentration appear to be more important than the effects of low concentrations of aluminium; at approximately neutral pH values, the toxicity of aluminium is greatly reduced. The solubility of aluminium is also enhanced under alkaline conditions, due to its amphoteric character, and some researchers found that the acute toxicity of aluminium increased from pH 7 to pH 9. However, the opposite relationship was found in other studies. The uptake and toxicity of aluminium in freshwater organisms generally decreases with increasing water hardness under acidic, neutral and alkaline conditions. Complexing agents such as fluoride, citrate and humic substances reduce the availability of aluminium to organisms, resulting in lower toxicity. Silicon can also reduce aluminium toxicity to fish.

Drinking Water Standards: aluminium: 200 ug/l (UK max.) 200 ug/l (WHO guideline) chloride: 400 mg/l (UK max.) 250 mg/l (WHO guideline) fluoride: 1.5 mg/l (UK max.) 1.5 mg/l (WHO guideline) nitrate: 50 mg/l (UK max.) 50 mg/l (WHO guideline) sulfate: 250 mg/l (UK max.) Soil Guideline: none available. Air Quality Standards: none available. For zinc and its compounds:

Environmental fate:

Zinc is capable of forming complexes with a variety of organic and inorganic groups (ligands). Biological activity can affect the mobility of zinc in the aquatic environment, although the biota contains relatively little zinc compared to the sediments. Zinc bioconcentrates moderately in aquatic organisms; bioconcentration is higher in crustaceans and bivalve species than in fish. Zinc does not concentrate appreciably in plants, and it does not biomagnify significantly through therestrial food chains.

However biomagnification may be of concern if concentration of zinc exceeds 1632 ppm in the top 12 inches of soil.

Zinc can persist in water indefinitely and can be toxic to aquatic life. The threshold concentration for fish is 0.1 ppm. Zinc may be concentrated in the aquatic food chain; it is concentrated over 200,000 times in oysters. Copper is synergistic but calcium is antagonistic to zinc toxicity in fish. Zinc can accumulate in freshwater animals at 5 -1,130 times the concentration present in the water. Furthermore, although zinc actively bioaccumulates in aquatic systems, biota appears to represent a relatively minor sink compared to sediments. Steady-state zinc bioconcentration factors (BCFs) for 12 aquatic species range from 4 to 24,000. Crustaceans and fish can accumulate zinc from both water and food. A BCF of 1,000 was reported for both aquatic plants and fish, and a value of 10,000 was reported for aquatic invertebrates. The order of enrichment of zinc in different aquatic organisms was as follows (zinc concentrations in µg/g dry weight appear in parentheses): fish (25), shrimp (50), mussel (60), periphyton (260), zooplankton (330), and oyster (3,300). The high enrichment in oysters may be due to their ingestion of particulate matter containing higher concentrations of zinc than ambient water. Other investigators have also indicated that organisms associated with sediments have higher zinc concentrations than organisms living in the aqueous layer. With respect to bioconcentration from soil by terrestrial plants, invertebrates, and mammals, BCFs of 0.4, 8, and 0.6, respectively, have been reported. The concentration of zinc in plants depends on the plant species, soil pH, and the composition of the soil.

Plant species do not concentrate zinc above the levels present in soil.

In some fish, it has been observed that the level of zinc found in their bodies did not directly relate to the exposure concentrations. Bioaccumulation of zinc in fish is inversely related to the aqueous exposure. This evidence suggests that fish placed in environments with lower zinc concentrations can sequester zinc in their bodies.

The concentration of zinc in drinking water may increase as a result of the distribution system and household plumbing. Common piping materials used in distribution systems often contain zinc, as well as other metals and alloys. Trace metals may enter the water through corrosion products or simply by the dissolution of small amounts of metals with which the water comes in contact. Reactions with materials of the distribution system, particularly in soft low-pH waters, very often have produced concentrations of zinc in tap water much greater than those in the raw or treated waters at the plant of origin. Zinc gives water a metallic taste at low levels. Overexposures to zinc also have been associated with toxic effects. Ingestion of zinc or zinc-containing compounds has resulted in a variety of systemic effects in the gastrointestinal and hematological systems and alterations in the blood lipid profile in humans and animals. In addition, lesions have been observed in the liver, pancreas, and kidneys of animals.

Environmental toxicity of zinc in water is dependent upon the concentration of other minerals and the pH of the solution, which affect the ligands that associate with zinc. Zinc occurs in the environment mainly in the +2 oxidation state. Sorption is the dominant reaction, resulting in the enrichment of zinc in suspended and bed sediments. Zinc in aerobic waters is partitioned into sediments through sorption onto hydrous iron and manganese oxides, clay minerals, and organic material. The efficiency of these materials in removing zinc from solution varies according to their concentrations, pH, redox potential (Eh), salinity, nature and concentrations of complexing ligands, cation exchange capacity, and the concentration of zinc. Precipitation of soluble zinc compounds appears to be significant only under reducing conditions in highly polluted water. Generally, at lower pH values, zinc remains as the free ion. The free ion (Zn+2) tends to be adsorbed and transported by suspended solids in unpolluted waters.

Zinc is an essential nutrient that is present in all organisms. Although biota appears to be a minor reservoir of zinc relative to soils and sediments, microbial decomposition of biota in water can produce ligands, such as humic acids, that can affect the mobility of zinc in the aquatic environment through zinc precipitation and adsorption.

The relative mobility of zinc in soil is determined by the same factors that affect its transport in aquatic systems (i.e., solubility of the compound, pH, and salinity)

The redox status of the soil may shift zinc partitioning. Reductive dissolution of iron and manganese (hydr)oxides under suboxic conditions release zinc into the aqueous phase; the persistence of suboxic conditions may then lead to a repartitioning of zinc into sulfide and carbonate solids. The mobility of zinc in soil depends on the solubility of the speciated forms of the element and on soil properties such as cation exchange capacity, pH, redox potential, and chemical species present in soil; under anaerobic conditions, zinc sulfide is the controlling species.

Since zinc sulfide is insoluble, the mobility of zinc in anaerobic soil is low. In a study of the effect of pH on zinc solubility: When the pH is <7, an inverse relationship exists between the pH and the amount of zinc in solution. As negative charges on soil surfaces increase with increasing pH, additional sites for zinc adsorption are activated and the amount of zinc in solution decreases. The active zinc species in the adsorbed state is the singly charged zinc hydroxide species (i.e., $Zn[OH]_{+}$). Other investigators have also shown that the mobility of zinc in solution decreases at lower soil pH under oxidizing conditions and at a lower cation exchange capacity of soil. On the other hand, the amount of zinc in solution generally increases when the pH is <7 in soils high in organic matter. This is a result of the release of organically complexed zinc, reduced zinc adsorption at higher pH, or an increase in the concentration of chelating agents in soil. For calcareous soils, the relationship between zinc solubility and pH is nonlinear. At a high pH, zinc in solution is precipitated as $Zn(OH)_2$, zinc carbonate (ZnCO3), or calcium zincate. Clay and metal oxides are capable of sorbing zinc and tend to retard its mobility in soil. Zinc was more mobile at pH 4 than at pH 6.5 as a consequence of sorption

Zinc concentrations in the air are relatively low, except near industrial sources such as smelters. No estimate for the atmospheric lifetime of zinc is available at this time, but the fact that zinc is transported long distances in air indicates that its lifetime in air is at least on the order of days. There are few data regarding the speciation of zinc released to the atmosphere. Zinc is removed from the air by dry and wet deposition, but zinc particles with small diameters and low densities suspended in the atmosphere travel long distances from emission sources.

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
bisphenol A diglycidyl ether resin, solid	HIGH	HIGH
neopentyl glycol diglycidyl ether	HIGH	HIGH

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
zinc oxide	LOW (BCF = 217)
bisphenol A diglycidyl ether resin, solid	LOW (LogKOW = 2.6835)
neopentyl glycol diglycidyl ether	LOW (LogKOW = 0.2342)

12.4. Mobility in soil

Ingredient	Mobility
bisphenol A diglycidyl ether resin, solid	LOW (KOC = 51.43)
neopentyl glycol diglycidyl ether	LOW (KOC = 10)

12.5.Results of PBT and vPvB assessment

	Р	В	т
Relevant available data	Not Available	Not Available	Not Available
PBT Criteria fulfilled?	Not Available	Not Available	Not Available

12.6. Other adverse effects

No data available

SECTION 13 DISPOSAL CONSIDERATIONS

13.1. Waste treatment methods

Product / Packaging disposal	 Containers may still present a chemical hazard/ danger when empty. Return to supplier for reuse/ recycling if possible. Otherwise: If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. Where possible retain label warnings and SDS and observe all notices pertaining to the product. DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority.
Waste treatment options	Not Available
Sewage disposal options	Not Available

SECTION 14 TRANSPORT INFORMATION

Labels Required

Limited Quantity: For 8329TCM-6ML, 8329TCM-50ML, 8329TCM-200ML kits, ship as per Part B

Land transport (DOT)

14.1. UN number	3077		
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains zinc oxide, bisphenol F glycidyl ether/ formaldehyde copolymer and bisphenol A diglycidyl ether resin, solid)		
14.3. Transport hazard class(es)	Class 9 Subrisk Not Applicable		
14.4. Packing group	III		
14.5. Environmental hazard	Environmentally hazardous		
14.6. Special precautions for user	Hazard identification (Kemler)	90	
	Classification code	M7	
	Hazard Label	9	
	Special provisions	274 335 375 601	
	Limited quantity	5 kg	

Air transport (ICAO-IATA / DGR)

14.1. UN number	3077		
14.2. UN proper shipping name	Environmentally hazardous substance, solid, n.o.s. * (contains zinc oxide, bisphenol F glycidyl ether/ formaldehyde copolymer and bisphenol A diglycidyl ether resin, solid)		
14.3. Transport hazard class(es)	ICAO/IATA Class 9 ICAO / IATA Subrisk Not Applicable ERG Code 9L		
14.4. Packing group	Ш		

14.5. Environmental hazard	Environmentally hazardous		
	Special provisions	A97 A158 A179 A197	
	Cargo Only Packing Instructions	956	
	Cargo Only Maximum Qty / Pack	400 kg	
14.6. Special precautions for user	Passenger and Cargo Packing Instructions	956	
	Passenger and Cargo Maximum Qty / Pack	400 kg	
	Passenger and Cargo Limited Quantity Packing Instructions	Y956	
	Passenger and Cargo Limited Maximum Qty / Pack	30 kg G	

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	3077		
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains zinc oxide, bisphenol F glycidyl ether/ formaldehyde copolymer and bisphenol A diglycidyl ether resin, solid)		
14.3. Transport hazard class(es)	IMDG Class 9 IMDG Subrisk Not Applicable		
14.4. Packing group	III III III III III III III III III II		
14.5. Environmental hazard	Marine Pollutant		
14.6. Special precautions for user	EMS NumberF-A , S-FSpecial provisions274 335 966 967 969Limited Quantities5 kg		

Inland waterways transport (ADN)

14.1. UN number	3077		
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains zinc oxide, bisphenol F glycidyl ether/ formaldehyde copolymer and bisphenol A diglycidyl ether resin, solid)		
14.3. Transport hazard class(es)	9 Not Applicable		
14.4. Packing group	III		
14.5. Environmental hazard	Environmentally hazardous		
14.6. Special precautions for user	Classification code	M7	
	Special provisions	274; 335; 375; 601	
	Limited quantity	5 kg	
	Equipment required	PP, A***	
	Fire cones number	0	

14.7. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

ALUMINIUM OXIDE(1344-28-1.) IS FOUND ON THE FOLLOWING REGULATORY LISTS

European Customs Inventory of Chemical Substances ECICS (English)	UK Workplace Exposure Limits (WELs)
European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)	
ZINC OXIDE(1314-13-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS	
European Customs Inventory of Chemical Substances ECICS (English)	European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of
European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)	Dangerous Substances - updated by ATP: 31
(English)	European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and
	Packaging of Substances and Mixtures - Annex VI
BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID(25068-38-6) IS FOUND ON THE FOLLO	DWING REGULATORY LISTS
European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of	European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and
Dangerous Substances - updated by ATP: 31	Packaging of Substances and Mixtures - Annex VI
European Union (EU) No-Longer Polymers List (NLP) (67/548/EEC)	

BISPHENOL F GLYCIDYL ETHER/ FORMALDEHYDE COPOLYMER(28064-14-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Not Applicable

NEOPENTYL GLYCOL DIGLYCIDYL ETHER(17557-23-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)	European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI	
European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31		
CARBON BLACK(1333-86-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS		
EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List of Substances	European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)	
European Customs Inventory of Chemical Substances ECICS (English)	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC	
European List of Notified Chemical Substances (ELINCS)	Monographs	
European Trade Union Confederation (ETUC) Priority List for REACH Authorisation	UK Workplace Exposure Limits (WELs)	
(C12-14)ALKYLGLYCIDYL ETHER(68609-97-2) IS FOUND ON THE FOLLOWING REGULA	TORY LISTS	
EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List of Substances	European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)	
European Customs Inventory of Chemical Substances ECICS (English)	European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of	
European Trade Union Confederation (ETUC) Priority List for REACH Authorisation	Dangerous Substances - updated by ATP: 31	

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2015/830; Regulation (EC) No 1272/2008 as updated through ATPs.

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and

Packaging of Substances and Mixtures - Annex VI

15.2. Chemical safety assessment

For further information please look at the Chemical Safety Assessment and Exposure Scenarios prepared by your Supply Chain if available.

National Inventory	Status	
Australia - AICS	Y	
Canada - DSL	Υ	
Canada - NDSL	N (bisphenol A diglycidyl ether resin, solid; (C12-14)alkylglycidyl ether; neopentyl glycol diglycidyl ether; aluminium oxide; bisphenol F glycidyl ether/ formaldehyde copolymer; carbon black)	
China - IECSC	Y	
Europe - EINEC / ELINCS / NLP	N (bisphenol F glycidyl ether/ formaldehyde copolymer)	
Japan - ENCS	N (bisphenol A diglycidyl ether resin, solid; (C12-14)alkylglycidyl ether)	
Korea - KECI	Y	
New Zealand - NZIoC	Υ	
Philippines - PICCS	Y	
USA - TSCA	Υ	
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)	

SECTION 16 OTHER INFORMATION

Revision Date	01/11/2020
Initial Date	11/05/2017

Full text Risk and Hazard codes

H351	Suspected of causing cancer.
H411	Toxic to aquatic life with long lasting effects.

Other information

Ingredients with multiple cas numbers

Name	CAS No
aluminium oxide	1344-28-1., 1011245-20-7, 1022097-81-9, 107462-07-7, 107874-14-6, 1097999-44-4, 1197416-35-5, 122784-35-4, 1234495-70-5, 1239586-42-5, 12522-88-2, 127361-04-0, 12737-16-5, 131689-14-0, 1346644-15-2, 135152-65-7, 1355357-83-3, 135667-70-8, 138361-58-7, 148619-39-0, 152743-26-5, 153858-98-1, 157516-29-5, 163581-50-8, 165390-91-0, 170448-81-4, 190401-78-6, 200295-99-4, 205316-36-5, 209552-43-2, 230616-05-4, 252756-35-7, 253606-46-1, 253606-47-2, 253606-45-0, 268724-08-9, 39354-49-9, 457654-46-5, 488831-46-5, 521982-71-8, 53809-96-4, 54352-04-4, 546141-61-1, 663170-52-3, 67853-35-4, 67894-14-8, 67894-42-2, 68189-68-4, 68389-42-4, 68389-43-5, 74871-10-6, 76363-81-0, 84149-21-3, 90669-62-8, 916225-60-0, 960377-08-6, 11092-32-3
zinc oxide	1314-13-2, 175449-32-8
bisphenol A diglycidyl ether resin, solid	25068-38-6, 25085-99-8
bisphenol F glycidyl ether/ formaldehyde copolymer	28064-14-4, 42616-71-7, 59029-73-1, 94422-39-6

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

- EN 13832 Footwear protecting against chemicals
- EN 133 Respiratory protective devices

Definitions and abbreviations

PC – TWA: Permissible Concentration-Time Weighted Average PC – STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit, IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL: No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

Reason for Change

A-1.02 - Added UFI number