

MG Chemicals UK Limited

Version No: A-1.02 Safety Data Sheet (Conforms to Regulation (EU) No 2015/830) Issue Date: 01/05/2019 Revision Date: 17/03/2020 L.REACH.GBR.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

1.1. Product Identifier

Product name 841AR-P	
Synonyms SDS Code: 841AR-Pen; 841AR-P	
Other means of identification Nickel Conductive Pen	

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Electrically conductive coating and EMI/RFI shield	
Uses advised against	Not Applicable	

1.3. Details of the supplier of the safety data sheet

Registered company name	MG Chemicals UK Limited	MG Chemicals (Head office)
Address	Hearne House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom	9347 - 193 Street Surrey V4N 4E7 British Columbia Canada
Telephone	+(44) 1663 362888	+(1) 800-201-8822
Fax	Not Available	+(1) 800-708-9888
Website	Not Available	www.mgchemicals.com
Email	sales@mgchemicals.com	Info@mgchemicals.com

1.4. Emergency telephone number

Association / Organisation	Verisk 3E (Access code: 335388)	Not Available
Emergency telephone numbers +(44) 20 35147487		Not Available
Other emergency telephone numbers	+(0) 800 680 0425	Not Available

SECTION 2 HAZARDS IDENTIFICATION

2.1. Classification of the substance or mixture

Classification according to regulation (EC) No 1272/2008 [CLP] [1] H336 - Specific target organ toxicity - single exposure Category 3 (narcotic effects), H225 - Flammable Liquid Category 2, H319 - Eye Irr 2, H317 - Skin Sensitizer Category 1, H372 - Specific target organ toxicity - repeated exposure Category 1, H351 - Carcinogenicity Category 3 Chronic Aquatic Hazard Category 3	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

2.2. Label elements

Hazard pictogram(s)

SIGNAL WORD DANGER

Hazard statement(s)

H336	May cause drowsiness or dizziness.	
H225	Highly flammable liquid and vapour.	
H319	Causes serious eye irritation.	
H317	May cause an allergic skin reaction.	
H372	Causes damage to organs through prolonged or repeated exposure.	
H351	Suspected of causing cancer.	
H412	Harmful to aquatic life with long lasting effects.	

Supplementary statement(s)

Not Applicable

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.		
P210	eep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.		
P260	Do not breathe dust/fume/gas/mist/vapours/spray.		
P271	Jse only outdoors or in a well-ventilated area.		
P280	ar protective gloves/protective clothing/eye protection/face protection.		
P240	Fround and bond container and receiving equipment.		
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.		
P242	Use non-sparking tools.		
P243	Take action to prevent static discharges.		
P270	Do not eat, drink or smoke when using this product.		
P273	Avoid release to the environment.		
P272	Contaminated work clothing should not be allowed out of the workplace.		

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/ attention.			
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.			
P302+P352	302+P352 IF ON SKIN: Wash with plenty of water and soap.			
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.			
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.			
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.			
P337+P313	If eye irritation persists: Get medical advice/attention.			
P362+P364	Take off contaminated clothing and wash it before reuse.			
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].			
P304+P340	P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing.			

Precautionary statement(s) Storage

	Troductionally stationism(c) otologo		
P403+P235 Store in a well-ventilated place. Keep cool.		Store in a well-ventilated place. Keep cool.	
	P405	Store locked up.	

Precautionary statement(s) Disposal

•	` '	•
P	501	Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classification according to regulation (EC) No 1272/2008 [CLP]
1.7440-02-0 2.231-111-4 3.028-002-00-7 028-002-01-4 4.01-2119438727-29-XXXX	43	<u>nickel</u>	Carcinogenicity Category 2, Skin Sensitizer Category 1, Specific target organ toxicity - repeated exposure Category 1; H351, H317, H372** [2]
1.616-38-6 2.210-478-4 3.607-013-00-6 4.01-2119548399-23- XXXX 01-2119822377-36-XXXX	14	dimethyl carbonate	Flammable Liquid Category 2; H225 ^[2]
1.67-64-1 2.200-662-2 3.606-001-00-8 4.01-2119471330-49-XXXX	12	acetone *	Flammable Liquid Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Eye Irritation Category 2; H225, H336, H319, EUH066 ^[2]
1.110-43-0 2.203-767-1 3.606-024-00-3 4.01-2119902391-49- XXXX 01-2120752829-39-XXXX	9	amyl methyl ketone *	Flammable Liquid Category 3, Acute Toxicity (Oral) Category 4, Acute Toxicity (Inhalation) Category 4; H226, H302, H332 ^[2]

1.67-63-0 2.200-661-7 3.603-117-00-0 4.01-2119457558-25-XXXX	8	isopropanol	Flammable Liquid Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Eye Irritation Category 2; H225, H336, H319 [2]
1.123-86-4 2.204-658-1 3.607-025-00-1 4.01-2119485493-29-XXXX	2	n-butyl acetate	Flammable Liquid Category 3, Specific target organ toxicity - single exposure Category 3 (narcotic effects); H226, H336, EUH066 ^[2]
1.108-65-6 2.203-603-9 3.607-195-00-7 4.01-2119475791-29-XXXX	1	propylene glycol monomethyl ether acetate, alpha-isomer *	Flammable Liquid Category 3; H226 ^[2]
Legend:	1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 3. Classification drawn from C&L * EU IOELVs available		

SECTION 4 FIRST AID MEASURES

4.1. Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

Treat symptomatically

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

To treat poisoning by the higher aliphatic alcohols (up to C7):

- Gastric lavage with copious amounts of water
- It may be beneficial to instill 60 ml of mineral oil into the stomach.
- Oxygen and artificial respiration as needed.
- Electrolyte balance: it may be useful to start 500 ml. M/6 sodium bicarbonate intravenously but maintain a cautious and conservative attitude toward electrolyte replacement unless shock or severe acidosis threatens.
- ▶ To protect the liver, maintain carbohydrate intake by intravenous infusions of glucose.
- ▶ Haemodialysis if coma is deep and persistent. [GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, Ed 5)

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for shock.
- Monitor and treat, where necessary, for pulmonary oedema.
- Anticipate and treat, where necessary, for seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- ▶ Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- ▶ Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- If the patient is hypoglycaemic (decreased or loss of consciousness, tachycardia, pallor, dilated pupils, diaphoresis and/or dextrose strip or glucometer readings below 50 mg), give 50% dextrose.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Treat seizures with diazepam.
- ▶ Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Acidosis may respond to hyperventilation and bicarbonate therapy.

- ▶ Haemodialysis might be considered in patients with severe intoxication.
- Consult a toxicologist as necessary. BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For C8 alcohols and above

Symptomatic and supportive therapy is advised in managing patients.

SECTION 5 FIREFIGHTING MEASURES

5.1. Extinguishing media

Metal dust fires need to be smothered with sand, inert dry powders.

DO NOT USE WATER, CO2 or FOAM.

- ▶ Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire.
- Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas.
- ► Chemical reaction with CO2 may produce flammable and explosive methane.
- If impossible to extinguish, withdraw, protect surroundings and allow fire to burn itself out.
- ▶ DO NOT use halogenated fire extinguishing agents.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility

- ▶ Reacts with acids producing flammable / explosive hydrogen (H2) gas
- ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

5.3. Advice for firefighters

May be violently or explosively reactive.
 Wear breathing apparatus plus protective gloves in the event of a fire.
 Prevent, by any means available, spillage from entering drains or water course.
 Consider evacuation (or protect in place).

Alert Fire Brigade and tell them location and nature of hazard.

- Fire Fighting
- Fight fire from a safe distance, with adequate cover.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control the fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- Do not approach containers suspected to be hot.
- ▶ Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- DO NOT disturb burning dust. Explosion may result if dust is stirred into a cloud, by providing oxygen to a large surface of hot metal.
- ▶ DO NOT use water or foam as generation of explosive hydrogen may result.

With the exception of the metals that burn in contact with air or water (for example, sodium), masses of combustible metals do not represent unusual fire risks because they have the ability to conduct heat away from hot spots so efficiently that the heat of combustion cannot be maintained - this means that it will require a lot of heat to ignite a mass of combustible metal. Generally, metal fire risks exist when sawdust, machine shavings and other metal 'fines' are present.

Metal powders, while generally regarded as non-combustible:

- ► May burn when metal is finely divided and energy input is high.
- ► May react explosively with water.
- ▶ May be ignited by friction, heat, sparks or flame.
- May REIGNITE after fire is extinguished.
- ▶ Will burn with intense heat.

Fire/Explosion Hazard

- Note:

 Metal dust fires are slow moving but intense and difficult to extinguish.
- ► Containers may explode on heating.
- ▶ Dusts or fumes may form explosive mixtures with air.
- Gases generated in fire may be poisonous, corrosive or irritating.
- Hot or burning metals may react violently upon contact with other materials, such as oxidising agents and extinguishing agents used on fires involving ordinary combustibles or flammable liquids.
- ▶ Temperatures produced by burning metals can be higher than temperatures generated by burning flammable liquids
- Some metals can continue to burn in carbon dioxide, nitrogen, water, or steam atmospheres in which ordinary combustibles or flammable liquids would be incapable of burning.

Combustion products include:

carbon dioxide (CO2)

other pyrolysis products typical of burning organic material.

Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

SECTION 6 ACCIDENTAL RELEASE MEASURES

6.1. Personal precautions, protective equipment and emergency procedures

See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

Minor Spills

- ► Remove all ignition sources
- Clean up all spills immediately.
- ► Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.
- ▶ Wipe up.
- Collect residues in a flammable waste container.

Chemical Class: alcohols and glycols

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
-----------------	------	-------------	------------	-------------

LAND SPILL - SMALL

cross-linked polymer - particulate	1	shovel	shovel	R, W, SS
cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	2	shovel	shovel	R,I, P
wood fiber - pillow	3	throw	pitchfork	R, P, DGC, RT
treated wood fiber - pillow	3	throw	pitchfork	DGC, RT
foamed glass - pillow	4	throw	pichfork	R, P, DGC, RT

LAND SPILL - MEDIUM

cross-linked polymer - particulate	1	blower	skiploader	R,W, SS
polypropylene - particulate	2	blower	skiploader	W, SS, DGC
sorbent clay - particulate	2	blower	skiploader	R, I, W, P, DGC
polypropylene - mat	3	throw	skiploader	DGC, RT
expanded mineral - particulate	3	blower	skiploader	R, I, W, P, DGC
polyurethane - mat	4	throw	skiploader	DGC, RT

Legend

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

Chemical Class: ketones

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
-----------------	------	-------------	------------	-------------

LAND SPILL - SMALL

cross-linked polymer - particulate	1	shovel	shovel	R, W, SS
cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	2	shovel	shovel	R,I, P
wood fiber - pillow	3	throw	pitchfork	R, P, DGC, RT
treated wood fiber - pillow	3	throw	pitchfork	DGC, RT
foamed glass - pillow	4	throw	pitchfork	R, P, DGC, RT

LAND SPILL - MEDIUM

cross-linked polymer - particulate	1	blower	skiploader	R,W, SS
cross-linked polymer - pillow	2	throw	skiploader	R, DGC, RT
sorbent clay - particulate	3	blower	skiploader	R, I, P
polypropylene - particulate	3	blower	skiploader	R, SS, DGC
expanded mineral - particulate	4	blower	skiploader	R, I, W, P, DGC
polypropylene - mat	4	throw	skiploader	DGC, RT

Legend

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

- ► Clear area of personnel and move upwind.
- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- ▶ Prevent, by any means available, spillage from entering drains or water course.
- ► Consider evacuation (or protect in place).
- ▶ No smoking, naked lights or ignition sources.
- ► Increase ventilation.
- Stop leak if safe to do so.
- ► Water spray or fog may be used to disperse /absorb vapour.

- ► Contain spill with sand, earth or vermiculite.
- Use only spark-free shovels and explosion proof equipment.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite
- ▶ Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Safe handling

7.1. Precautions for safe handling

- Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.

Contains low boiling substance:

Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately.

- ▶ Check for bulging containers.
- Vent periodically
- ▶ Always release caps or seals slowly to ensure slow dissipation of vapours
- ▶ Avoid all personal contact, including inhalation.
- ► Wear protective clothing when risk of exposure occurs
- ▶ Use in a well-ventilated area
- Prevent concentration in hollows and sumps.
- ► DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights, heat or ignition sources.
- ► When handling, **DO NOT** eat, drink or smoke.
- Vapour may ignite on pumping or pouring due to static electricity.
- DO NOT use plastic buckets
- ► Earth and secure metal containers when dispensing or pouring product.
- ▶ Use spark-free tools when handling.
- r Ose spark-nee tools when handling.
- Avoid contact with incompatible materials.
- Keep containers securely sealed.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- ► DO NOT allow clothing wet with material to stay in contact with skin

Fire and explosion protection

Other information

Suitable container

See section 5

- ► Store in original containers in approved flame-proof area.
- No smoking, naked lights, heat or ignition sources.
- ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- ► Keep containers securely sealed.
- ► Store away from incompatible materials in a cool, dry well ventilated area.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

7.2. Conditions for safe storage, including any incompatibilities

► Packing as supplied by manufacturer.

- ▶ Plastic containers may only be used if approved for flammable liquid.
- ► Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- ► For materials with a viscosity of at least 2680 cSt. (23 deg. C)
 - ▶ For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
 - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
 - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
 - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Heptanones

- react violently with strong oxidisers, aldehydes, nitric acid, perchloric acid
- ▶ form a variety of unstable peroxides following reaction with hydrogen peroxide
- are incompatible with aliphatic amines, aldehydes, strong bases

Isopropanol (syn: isopropyl alcohol, IPA):

• forms ketones and unstable peroxides on contact with air or oxygen; the presence of ketones especially methyl ethyl ketone (MEK, 2-butanone) will accelerate the rate of peroxidation

reacts violently with strong oxidisers, powdered aluminium (exothermic), crotonaldehyde, diethyl aluminium bromide (ignition), dioxygenyl tetrafluoroborate (ignition/ ambient temperature), chromium trioxide (ignition), potassium-tert-butoxide (ignition), nitroform (possible explosion), oleum (pressure increased in closed container), cobalt chloride, aluminium triisopropoxide, hydrogen plus palladium dust (ignition), oxygen gas, phosgene, phosgene plus iron salts (possible explosion), sodium dichromate plus sulfuric acid (exothermic/ incandescence), triisobutyl aluminium

- reacts with phosphorus trichloride forming hydrogen chloride gas
- reacts, possibly violently, with alkaline earth and alkali metals, strong acids, strong caustics, acid anhydrides, halogens, aliphatic amines, aluminium isopropoxide, isocyanates, acetaldehyde, barium perchlorate (forms highly explosive perchloric ester compound), benzoyl peroxide, chromic acid, dialkylzincs, dichlorine oxide, ethylene oxide (possible explosion), hexamethylene diisocyanate (possible explosion), hydrogen peroxide (forms explosive compound), hypochlorous acid, isopropyl chlorocarbonate, lithium aluminium hydride, lithium tetrahydroaluminate, nitric acid, nitrogen dioxide, nitrogen tetraoxide (possible explosion), pentafluoroguanidine, perchloric acid (especially hot), permonosulfuric acid, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium, trinitromethane

Storage incompatibility

- attacks some plastics, rubber and coatings
- ▶ reacts with metallic aluminium at high temperature
- ► may generate electrostatic charges

Nickel

- is a strong reducing agent
- may be pyrophoric when dry (dependent on particle size); powders or dusts may ignite spontaneously in air
- reacts with acids, evolving flammable hydrogen gas
- reacts violently with ammonia, ammonium nitrate, fluorine, hydrazine, hydrazoic acid, strong oxidisers, nitric acid, peroxyformic acid, potassium, potassium perchlorate, selenium, sulfur (evolves heat, incandescence), titanium and other materials
- ▶ is incompatible with organic solvents, sulfur compounds
- in reducing atmosphere furnace can react with carbon monoxide forming highly toxic nickel carbonyl gas; under fire conditions may also react in similar manner
- ▶ Raney alloys, containing aluminium, may react with moisture
- ► Carbonates are incompatible with cerium compounds, germanium, lead diacetate, magnesium, mercurous chloride, silver nitrate
- WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.
- The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- Avoid reaction with borohydrides or cyanoborohydrides
- ▶ Many metals may incandesce, react violently, ignite or react explosively upon addition of concentrated nitric acid.

Ketones in this group:

- ▶ are reactive with many acids and bases liberating heat and flammable gases (e.g., H2).
- react with reducing agents such as hydrides, alkali metals, and nitrides to produce flammable gas (H2) and heat.
- are incompatible with isocyanates, aldehydes, cyanides, peroxides, and anhydrides.
- react violently with aldehydes, HNO3 (nitric acid), HNO3 + H2O2 (mixture of nitric acid and hydrogen peroxide), and HClO4 (perchloric acid).
- may react with hydrogen peroxide to form unstable peroxides; many are heat- and shock-sensitive explosives.

A significant property of most ketones is that the hydrogen atoms on the carbons next to the carbonyl group are relatively acidic when compared to hydrogen atoms in typical hydrocarbons. Under strongly basic conditions these hydrogen atoms may be abstracted to form an enolate anion. This property allows ketones, especially methyl ketones, to participate in condensation reactions with other ketones and aldehydes. This type of condensation reaction is favoured by high substrate concentrations and high pH (greater than 1 wt% NaOH).

Alcohols

- are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents.
- reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen
- react with strong acids, strong caustics, aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tanderine oil, triethylaluminium, triisobutylaluminium
- ▶ should not be heated above 49 deg. C. when in contact with aluminium equipment

Metals exhibit varying degrees of activity. Reaction is reduced in the massive form (sheet, rod, or drop), compared with finely divided forms. The less active metals will not burn in air but:

- ▶ can react exothermically with oxidising acids to form noxious gases
- ▶ catalyse polymerisation and other reactions, particularly when finely divided
- react with halogenated hydrocarbons (for example, copper dissolves when heated in carbon tetrachloride), sometimes forming explosive compounds.
- Finely divided metal powders develop pyrophoricity when a critical specific surface area is exceeded; this is ascribed to high heat of oxide formation on exposure to air.
- Safe handling is possible in relatively low concentrations of oxygen in an inert gas.
- Several pyrophoric metals, stored in glass bottles have ignited when the container is broken on impact. Storage of these materials moist and in metal containers is recommended.
- ► The reaction residues from various metal syntheses (involving vacuum evaporation and co-deposition with a ligand) are often pyrophoric.

Factors influencing the pyrophoricity of metals are particle size, presence of moisture, nature of the surface of the particle, heat of formation of the oxide, or nitride, mass, hydrogen content, stress, purity and presence of oxide, among others.

- Many metals in elemental form react exothermically with compounds having active hydrogen atoms (such as acids and water) to form flammable hydrogen gas and caustic products.
- Elemental metals may react with azo/diazo compounds to form explosive products.
- ► Some elemental metals form explosive products with halogenated hydrocarbons.

7.3. Specific end use(s)

See section 1.2

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

8.1. Control parameters

DERIVED NO EFFECT LEVEL (DNEL)

Not Available

PREDICTED NO EFFECT LEVEL (PNEC)

Not Available

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
UK Workplace Exposure Limits (WELs)	nickel	Nickel and its inorganic compounds (except nickel tetracarbonyl): nickel and water- insoluble nickel compounds (as Ni)	0.5 mg/m3	Not Available	Not Available	Sk, Carc (nickel oxides and sulphides) Sen (nickel sulphate)
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	acetone	Acetone	500 ppm / 1210 mg/m3	Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs)	acetone	Acetone	500 ppm / 1210 mg/m3	3620 mg/m3 / 1500 ppm	Not Available	Not Available

EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	amyl methyl ketone	Heptan-2-one	50 ppm / 238 mg/m3	475 mg/m3 / 100 ppm	Not Available	Skin
UK Workplace Exposure Limits (WELs)	amyl methyl ketone	Heptan-2-one	50 ppm / 237 mg/m3	475 mg/m3 / 100 ppm	Not Available	Sk
UK Workplace Exposure Limits (WELs)	isopropanol	Propan-2-ol	400 ppm / 999 mg/m3	1250 mg/m3 / 500 ppm	Not Available	Not Available
UK Workplace Exposure Limits (WELs)	n-butyl acetate	Butyl acetate	150 ppm / 724 mg/m3	966 mg/m3 / 200 ppm	Not Available	Not Available
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	propylene glycol monomethyl ether acetate, alpha-isomer	1-Methoxypropyl-2-acetate	50 ppm / 275 mg/m3	550 mg/m3 / 100 ppm	Not Available	Skin
UK Workplace Exposure Limits (WELs)	propylene glycol monomethyl ether acetate, alpha-isomer	1-Methoxypropyl acetate	50 ppm / 274 mg/m3	548 mg/m3 / 100 ppm	Not Available	Sk

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
nickel	Nickel	4.5 mg/m3	50 mg/m3	99 mg/m3
dimethyl carbonate	Dimethyl carbonate	11 ppm	120 ppm	700 ppm
acetone	Acetone	Not Available	Not Available	Not Available
amyl methyl ketone	Methyl n-amyl ketone	150 ppm	670 ppm	4000 ppm
isopropanol	Isopropyl alcohol	400 ppm	2000 ppm	12000 ppm
n-butyl acetate	Butyl acetate, n-	Not Available	Not Available	Not Available
propylene glycol monomethyl ether acetate, alpha-isomer	Propylene glycol monomethyl ether acetate, alpha-isomer; (1-Methoxypropyl-2-acetate)	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
nickel	Not Available	Not Available
dimethyl carbonate	Not Available	Not Available
acetone	2,500 ppm	Not Available
amyl methyl ketone	800 ppm	Not Available
isopropanol	2,000 ppm	Not Available
n-butyl acetate	1,700 ppm	Not Available
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available	Not Available

MATERIAL DATA

Odour Threshold Value: 3.6 ppm (detection), 699 ppm (recognition)

Saturation vapour concentration: 237000 ppm @ 20 C

NOTE: Detector tubes measuring in excess of 40 ppm, are available.

Exposure at or below the recommended TLV-TWA is thought to protect the worker against mild irritation associated with brief exposures and the bioaccumulation, chronic irritation of the respiratory tract and headaches associated with long-term acetone exposures. The NIOSH REL-TWA is substantially lower and has taken into account slight irritation experienced by volunteer subjects at 300 ppm. Mild irritation to acclimatised workers begins at about 750 ppm - unacclimatised subjects will experience irritation at about 350-500 ppm but acclimatisation can occur rapidly. Disagreement between the peak bodies is based largely on the view by ACGIH that widespread use of acetone, without evidence of significant adverse health effects at higher concentrations, allows acceptance of a higher limit.

Half-life of acetone in blood is 3 hours which means that no adjustment for shift-length has to be made with reference to the standard 8 hour/day, 40 hours per week because body clearance occurs within any shift with low potential for accumulation.

A STEL has been established to prevent excursions of acetone vapours that could cause depression of the central nervous system.

Odour Safety Factor(OSF)

OSF=38 (ACETONE)

For n-butyl acetate

Odour Threshold Value: 0.0063 ppm (detection), 0.038-12 ppm (recognition)

Exposure at or below the recommended TLV-TWA is thought to prevent significant irritation of the eyes and respiratory passages as well as narcotic effects. In light of the lack of substantive evidence regarding teratogenicity and a review of acute oral data a STEL is considered inappropriate.

Odour Safety Factor(OSF)

OSF=3.8E2 (n-BUTYL ACETATE)

for propylene glycol monomethyl ether acetate (PGMEA)

Saturated vapour concentration: 4868 ppm at 20 C.

A two-week inhalation study found nasal effects to the nasal mucosa in animals at concentrations up to 3000 ppm. Differences in the teratogenic potential of the alpha (commercial grade) and beta isomers of PGMEA may be explained by the formation of different metabolites. The beta-isomer is thought to be oxidised to methoxypropionic acid, a homologue to methoxyacetic acid which is a known teratogen. The alpha- form is conjugated and excreted. PGMEA mixture (containing 2% to 5% beta isomer) is a mild skin and eye irritant, produces mild central nervous system effects in animals at 3000 ppm and produces mild CNS impairment and upper respiratory tract and eye irritation in humans at 1000 ppm. In rats exposed to 3000 ppm PGMEA produced slight foetotoxic effects (delayed sternabral ossification) - no effects on foetal development were seen in rabbits exposed at 3000 ppm.

For amyl methyl ketone:

Odour Threshold Value: 0.18 ppm (detection)

The TLV-TWA is well below the highest level of vapour (1025 ppm) reported to be associated with adverse effects in animals including dermal irritation.

Odour Safety Factor (OSF)

OSF=1.4E2 (2-HEPTANONE)

Odour Threshold Value: 3.3 ppm (detection), 7.6 ppm (recognition)

Exposure at or below the recommended isopropanol TLV-TWA and STEL is thought to minimise the potential for inducing narcotic effects or significant irritation of the eyes or upper respiratory tract. It is believed, in the absence of hard evidence, that this limit also provides protection against the development of chronic health effects. The limit is intermediate to that set for ethanol, which is less toxic, and n-propyl alcohol, which is more toxic, than isopropanol

8.2. Exposure controls

Metal dusts must be collected at the source of generation as they are potentially explosive.

- Avoid ignition sources.
- Good housekeeping practices must be maintained.
- ▶ Dust accumulation on the floor, ledges and beams can present a risk of ignition, flame propagation and secondary explosions.
- ▶ Do not use compressed air to remove settled materials from floors, beams or equipment
- ▶ Vacuum cleaners, of flame-proof design, should be used to minimise dust accumulation.
- Use non-sparking handling equipment, tools and natural bristle brushes. Cover and reseal partially empty containers. Provide grounding and bonding where necessary to prevent accumulation of static charges during metal dust handling and transfer operations.
- Do not allow chips, fines or dusts to contact water, particularly in enclosed areas.
- Metal spraying and blasting should, where possible, be conducted in separate rooms. This minimises the risk of supplying oxygen, in the form of metal oxides, to potentially reactive finely divided metals such as aluminium, zinc, magnesium or titanium.
- Work-shops designed for metal spraying should possess smooth walls and a minimum of obstructions, such as ledges, on which dust accumulation is
 possible.
- ▶ Wet scrubbers are preferable to dry dust collectors.
- ▶ Bag or filter-type collectors should be sited outside the workrooms and be fitted with explosion relief doors.
- Cyclones should be protected against entry of moisture as reactive metal dusts are capable of spontaneous combustion in humid or partially wetted states.
- Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec.
- ► Local ventilation and vacuum systems must be designed to handle explosive dusts. Dry vacuum and electrostatic precipitators must not be used, unless specifically approved for use with flammable/ explosive dusts.

8.2.1. Appropriate engineering controls

Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
welding, brazing fumes (released at relatively low velocity into moderately still air)	0.5-1.0 m/s (100-200 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

8.2.2. Personal protection

Eye and face protection

Safety glasses with side shields.

Chemical goggles.
 Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ► Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Hands/feet protection

Personal hygiene is a key element of effective hand care. Gloves must only be wom on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- · glove thickness and

dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term

use.

Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended

Body protection

Other protection

See Other protection below

- Overalls
- PVC Apron
- ▶ PVC protective suit may be required if exposure severe.
- ► Evewash unit
- Lyewasii ui ii.
- . .
- Ensure there is ready access to a safety shower
 - ► Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
 - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
 - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

'Forsberg Clothing Performance Index'.

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

841AR Nickel Conductive Pen

Material	СРІ
PE/EVAL/PE	A
BUTYL	С
BUTYL/NEOPRENE	С
CPE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
SARANEX-23	С
SARANEX-23 2-PLY	С
TEFLON	С
VITON/BUTYL	С
VITON/NEOPRENE	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AX-AUS	-	AX-PAPR-AUS / Class 1
up to 50 x ES	-	AX-AUS / Class	1 -
up to 100 x ES	-	AX-2	AX-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

See section 12

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

9.1. Information on basic physical and chemical properties

Appearance	Dark grey				
Physical state	Liquid	Relative density (Water = 1)	1.7		
Odour	Not Available	Partition coefficient n-octanol / water	Not Available		
Odour threshold	5 ppm	Auto-ignition temperature (°C)	>315		
pH (as supplied)	Not Available	Decomposition temperature	Not Available		
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	858.82		
Initial boiling point and boiling range (°C)	56	Molecular weight (g/mol)	Not Available		
Flash point (°C)	-17	Taste	Not Available		
Evaporation rate	Not Available	Explosive properties	Not Available		
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available		
Upper Explosive Limit (%)	13	Surface Tension (dyn/cm or mN/m)	Not Available		
Lower Explosive Limit (%)	2	Volatile Component (%vol)	Not Available		
Vapour pressure (kPa)	11	Gas group	Not Available		
Solubility in water	Partly miscible	pH as a solution (1%)	Not Available		
Vapour density (Air = 1)	>2	VOC g/L	Not Available		

9.2. Other information

Not Available

SECTION 10 STABILITY AND REACTIVITY

10.1.Reactivity	See section 7.2
10.2. Chemical stability	Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 TOXICOLOGICAL INFORMATION

11.1. Information on toxicological effects

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Exposure to aliphatic alcohols with more than 3 carbons may produce central nervous system effects such as headache, dizziness, drowsiness, muscle weakness, delirium, CNS depression, coma, seizure, and neurobehavioural changes. Symptoms are more acute with higher alcohols. Respiratory tract involvement may produce irritation of the mucosa, respiratory insufficiency, respiratory depression secondary to CNS depression, pulmonary oedema, chemical pneumonitis and bronchitis. Cardiovascular involvement may result in arrhythmias and hypotension. Gastrointestinal effects may include nausea and vomiting. Kidney and liver damage may result following massive exposures. The alcohols are potential irritants being, generally, stronger irritants than similar organic structures that lack functional groups (e.g. alkanes) but are much less irritating than the corresponding amines, aldehydes or ketones. Alcohols and glycols (diols) rarely represent serious hazards in the workplace, because their vapour concentrations are usually less than the levels which produce significant irritation which, in turn, produce significant central nervous system effects as well.

Inhaled

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation.

The odour of isopropanol may give some warning of exposure, but odour fatigue may occur. Inhalation of isopropanol may produce irritation of the nose and throat with sneezing, sore throat and runny nose. The effects in animals subject to a single exposure, by inhalation, included inactivity or anaesthesia and histopathological changes in the nasal canal and auditory canal.

Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.

Regular exposure to nickel fume, as the oxide, may result in 'metal fume fever' a sometimes debilitating upper respiratory tract condition resembling influenza.

Symptoms include malaise, fever, weakness, nausea and may appear quickly if operations occur in closed or poorly ventilated areas. Pulmonary oedema, pulmonary fibrosis and asthma has been reported in welders using nickel alloys; level of exposure are generally not available and case reports are often confounded by mixed exposures to other agents.

Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in 'metal fume fever'. Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of

malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure. Effects on the nervous system characterise over-exposure to higher aliphatic alcohols. These include headache, muscle weakness, giddiness, ataxia, (loss of muscle coordination), confusion, delirium and coma. Gastrointestinal effects may include nausea, vomiting and diarrhoea. In the absence of effective treatment, respiratory arrest is the most common cause of death in animals acutely poisoned by the higher alcohols. Aspiration of liquid alcohols produces an especially toxic response as they are able to penetrate deeply in the lung where they are absorbed and may produce pulmonary injury. Those possessing lower viscosity elicit a greater response. The result is a high blood level and prompt death at doses otherwise tolerated by ingestion without aspiration. In general the secondary alcohols are less toxic than the corresponding primary isomers. As a general observation, alcohols are more powerful central nervous system depressants than their aliphatic analogues. In sequence of decreasing depressant potential, tertiary alcohols with multiple substituent OH groups are more potent than secondary alcohols, which, in turn, are more potent than primary alcohols. The potential for overall systemic toxicity increases with molecular weight (up to C7), principally because the water solubility is diminished and lipophilicity is increased. Within the homologous series of aliphatic alcohols, narcotic potency may increase even faster than lethality Only scanty toxicity information is available about higher homologues of the aliphatic alcohol series (greater than C7) but animal data establish that lethality does not continue to increase with increasing chain length. Aliphatic alcohols with 8 carbons are less toxic than those immediately preceding them in the series. 10 -Carbon n-decyl alcohol has low toxicity as do the solid fatty alcohols (e.g. lauryl, myristyl, cetyl and stearyl). However the rat aspiration test suggests that decyl and melted dodecyl (lauryl) alcohols are dangerous if they enter the trachea. In the rat even a small quantity (0.2 ml) of these behaves like a hydrocarbon solvent in causing death from pulmonary oedema. Primary alcohols are metabolised to corresponding aldehydes and acids; a significant metabolic acidosis may occur. Secondary alcohols are converted to ketones, which are also central nervous system depressants and which, in he case of the higher homologues persist in the blood for many hours. Tertiary alcohols are metabolised slowly and incompletely so their toxic effects are generally persistent. Ingestion The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health), Gastrointestinal tract discomfort may produce nausea and yomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. Following ingestion, a single exposure to isopropyl alcohol produced lethargy and non-specific effects such as weight loss and irritation. Ingestion of near-lethal doses of isopropanol produces histopathological changes of the stomach, lungs and kidneys, incoordination, lethargy, gastrointestinal tract irritation, and inactivity or anaesthesia. Swallowing 10 ml. of isopropanol may cause serious injury; 100 ml. may be fatal if not promptly treated. The adult single lethal doses is approximately 250 ml. The toxicity of isopropanol is twice that of ethanol and the symptoms of intoxication appear to be similar except for the absence of an initial euphoric effect; gastritis and vomiting are more prominent. Ingestion may cause nausea, vomiting, and diarrhoea. There is evidence that a slight tolerance to isopropanol may be acquired. Accidental ingestion of the material may be damaging to the health of the individual. Nickel is poorly absorbed from the gastrointestinal tract. It is transported in the plasma bound to serum albumin and various small organic ligands. Excretion in the urine is substantially complete in 4-5 days. Serum nickel is influenced by environmental nickel or nickel concentrations in the air with faecal nickel about 100 times urinary nickel. Parenterally administered nickel is rapidly distributed to kidney, pituitary, lung, skin, adrenal and ovary and testis. In vivo binding with metallothionein has been demonstrated. A nickel binding protein has also been identified in plasma; it has been tentatively identified as an alpha-1-glycoprotein with a serum alpha-1-macroglobulin complex. The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man. Open cuts, abraded or irritated skin should not be exposed to this material Skin Contact Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. 511ipa Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); Eye temporary impairment of vision and/or other transient eye damage/ulceration may occur. Isopropanol vapour may cause mild eye irritation at 400 ppm. Splashes may cause severe eye irritation, possible corneal burns and eye damage. Eye contact may cause tearing or blurring of vision. On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. Long term or repeated ingestion exposure of isopropanol may produce incoordination, lethargy and reduced weight gain. Chronic Repeated inhalation exposure to isopropanol may produce narcosis, incoordination and liver degeneration. Animal data show developmental effects only at exposure levels that produce toxic effects in the adult animals. Isopropanol does not cause genetic damage in bacterial or mammalian cell cultures or in animals There are inconclusive reports of human sensitisation from skin contact with isopropanol. Chronic alcoholics are more tolerant of systemic isopropanol than are persons who do not consume alcohol; alcoholics have survived as much as 500 ml. of 70% isopropanol. Continued voluntary drinking of a 2.5% aqueous solution through two successive generations of rats produced no reproductive effects. NOTE: Commercial isopropanol does not contain 'isopropyl oil'. An excess incidence of sinus and laryngeal cancers in isopropanol production workers has been shown to be caused by the byproduct "isopropyl oil". Changes in the production processes now ensure that no byproduct is formed. Production changes include use of dilute sulfuric acid at higher temperatures. TOXICITY IRRITATION 841AR Nickel Conductive Pen Not Available Not Available

IRRITATION

Eye: no adverse effect observed (not irritating)^[1]
Skin: no adverse effect observed (not irritating)^[1]

TOXICITY

Oral (rat) LD50: 5000 mg/kg^[2]

nickel

Leaend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

NICKEL

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans. Tenth Annual Report on Carcinogens: Substance anticipated to be Carcinogen [National Toxicology Program: U.S. Dep. of Health & Human Services 2002]

Oral (rat) TDLo: 500 mg/kg/5D-I Inhalation (rat) TCLo: 0.1 mg/m3/24H/17W-C

for acetone

ACETONE

The acute toxicity of acetone is low. Acetone is not a skin irritant or sensitiser but is a defatting agent to the skin. Acetone is an eye irritant. The subchronic toxicity of acetone has been examined in mice and rats that were administered acetone in the drinking water and again in rats treated by oral gavage. Acetone-induced increases in relative kidney weight changes were observed in male and female rats used in the oral 13-week study. Acetone treatment caused increases in the relative liver weight in male and female rats that were not associated with histopathologic effects and the effects may have been associated with microsomal enzyme induction. Haematologic effects consistent with macrocytic anaemia were also noted in male rats along with hyperpigmentation in the spleen. The most notable findings in the mice were increased liver and decreased spleen weights. Overall, the no-observedeffect-levels in the drinking water study were 1% for male rats (900 mg/kg/d) and male mice (2258 mg/kg/d), 2% for female mice (5945 mg/kg/d), and 5% for female rats (3100 mg/kg/d). For developmental effects, a statistically significant reduction in foetal weight, and a slight, but statistically significant increase in the percent incidence of later resorptions were seen in mice at 15,665 mg/m3 and in rats at 26,100 mg/m3. The no-observable-effect level for developmental toxicity was determined to be 5220 mg/m3 for both rats and mice.

Teratogenic effects were not observed in rats and mice tested at 26,110 and 15,665 mg/m3, respectively. Lifetime dermal carcinogenicity studies in mice treated with up to 0.2 mL of acetone did not reveal any increase in organ tumor incidence relative to untreated control animals.

The scientific literature contains many different studies that have measured either the neurobehavioural performance or neurophysiological response of humans exposed to acetone. Effect levels ranging from about 600 to greater than 2375 mg/m3 have been reported. Neurobehavioral studies with acetoneexposed employees have recently shown that 8-hr exposures in excess of 2375 mg/m3 were not associated with any dose-related changes in response time, vigilance, or digit span scores. Clinical case studies, controlled human volunteer studies, animal research, and occupational field evaluations all indicate that the NOAEL for this effect is 2375 mg/m3 or greater.

For isopropanol (IPA):

Acute toxicity: Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high vapor concentrations are irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and narcosis. Human volunteers reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. caused mild irritation of the eyes, nose and throat.

Although isopropanol produced little irritation when tested on the skin of human volunteers, there have been reports of isolated cases of dermal irritation and/or sensitization. The use of isopropanol as a sponge treatment for the control of fever has resulted in cases of intoxication, probably the result of both dermal absorption and inhalation. There have been a number of cases of poisoning reported due to the intentional ingestion of isopropanol, particularly among alcoholics or suicide victims. These ingestions typically result in a comatose condition. Pulmonary difficulty, nausea, vomiting, and headache accompanied by various degrees of central nervous system depression are typical. In the absence of shock, recovery usually occurred.

Repeat dose studies: The systemic (non-cancer) toxicity of repeated exposure to isopropanol has been evaluated in rats and mice by the inhalation and oral routes. The only adverse effects-in addition to clinical signs identified

from these studies were to the kidney.

Reproductive toxicity. A recent two-generation reproductive study characterised the reproductive hazard for isopropanol associated with oral gavage exposure. This study found that the only reproductive parameter apparently affected by isopropanol exposure was a statistically significant decrease in male mating index of the F1 males. It is possible that the change in this reproductive parameter was treatment related and significant, although the mechanism of this effect could not be discerned from the results of the study. However, the lack of a significant effect of the female mating index in either generation, the absence of any adverse effect on litter size, and the lack of histopathological findings of the testes of the high-dose males suggest that the observed reduction in male mating index may not be biologically meaningful.

Developmental toxicity: The developmental toxicity of isopropanol has been characterized in rat and rabbit developmental toxicity studies. These studies indicate that isopropanol is not a selective developmental hazard. Isopropanol produced developmental toxicity in rats, but not in rabbits. In the rat, the developmental toxicity occurred only at maternally toxic doses and consisted of decreased foetal body weights, but no teratogenicity

Genotoxicity: All genotoxicity assays reported for isopropanol have been negative

Carcinogenicity: rodent inhalation studies were conduct to evaluate isopropanol for cancer potential. The only tumor rate increase seen was for interstitial (Leydig) cell tumors in the male rats. Interstitial cell tumors of the testis is typically the most frequently observed spontaneous tumor in aged male Fischer 344 rats. These studies demonstrate that isopropanol does not exhibit carcinogenic potential relevant to humans. Furthermore, there was no evidence from this study to indicate the development of carcinomas of the testes in the male rat, nor has isopropanol been found to be genotoxic. Thus, the testicular tumors seen in the isopropanol exposed male rats are considered of no significance in terms of human cancer risk assessment

The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

N-BUTYL ACETATE

ISOPROPANOL

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

for propylene glycol ethers (PGEs):

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM).

Testing of a wide variety of propylene glycol ethers Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blood (haemolytic effects), or thymus, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces an alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER

Longer chain length homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (thermodynamically favored during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects).

This alpha isomer comprises greater than 95% of the isomeric mixture in the commercial product.

Because the alpha isomer cannot form an alkoxypropionic acid, this is the most likely reason for the lack of toxicity shown by the PGEs as distinct from the lower molecular weight ethylene glycol ethers. More importantly, however, very extensive empirical test data show that this class of commercial-grade glycol ether presents a low toxicity hazard. PGEs, whether mono, di- or tripropylene glycol-based (and no matter what the alcohol group), show a very similar pattern of low to non-detectable toxicity of any type at doses or exposure levels greatly exceeding those showing pronounced effects from the ethylene series. One of the primary metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolised in the body.

As a class, the propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure. Dermal absorption is somewhat slower but subsequent distribution is rapid. Most excretion for PGEs is via the urine and expired air. A small portion is excreted in the faeces.

As a group PGEs exhibits low acute toxicity by the oral, dermal, and inhalation routes. Rat oral LD50s range from >3,000 mg/kg (PnB) to >5,000 mg/kg (DPMA). Dermal LD50s are all > 2,000 mg/kg (PnB, & DPnB; where no deaths occurred), and ranging up to >15,000 mg/kg (TPM). Inhalation LC50 values were higher than 5,000 mg/m3 for DPMA (4-hour exposure), and TPM (1-hour exposure). For DPnB the 4-hour LC50 is >2,040 mg/m3. For PnB, the 4-hour LC50 was >651 ppm (>3,412 mg/m3), representing the highest practically attainable vapor level. No deaths occurred at these concentrations. PnB and TPM are moderately irritating to eyes while the remaining category members are only slightly irritating to nonirritating. PnB is moderately irritating to skin while the remaining category members are slightly to non-irritating

None are skin sensitisers.

In repeated dose studies ranging in duration from 2 to 13 weeks, few adverse effects were found even at high exposure levels and effects that did occur were mild in nature. By the oral route of administration, NOAELs of 350 mg/kg-d (PnB – 13 wk) and 450 mg/kg-d (DPnB – 13 wk) were observed for liver and kidney weight increases (without accompanying histopathology). LOAELs for these two chemicals were 1000 mg/kg-d (highest dose tested). Dermal repeated-dose toxicity tests have been performed for many PGEs. For PnB, no effects were seen in a 13-wk study at doses as high as 1,000 mg/kg-d. A dose of 273 mg/kg-d constituted a LOAEL (increased organ weights without histopathology) in a 13-week dermal study for DPnB. For TPM, increased kidney weights (no histopathology) and transiently decreased body weights were found at a dose of 2,895 mg/kg-d in a 90-day study in rabbits. By inhalation, no effects were observed in 2-week studies in rats at the highest tested concentrations of 3244 mg/m3 (600 ppm) for PnB and 2,010 mg/m3 (260 ppm) for DPnB. TPM caused increased liver weights without histopathology by inhalation in a 2-week study at a LOAEL of 360 mg/m3 (43 ppm). In this study, the highest tested TPM concentration, 1010 mg/m3 (120 ppm), also caused increased liver weights without accompanying histopathology. Although no repeated-dose studies are available for the oral route for TPM, or for any route for DPMA, it is anticipated that these chemicals would behave similarly to other category members.

One and two-generation reproductive toxicity testing has been conducted in mice, rats, and rabbits via the oral or inhalation routes of exposure on PM and PMA. In an inhalation rat study using PM, the NOAEL for parental toxicity is 300 ppm (1106 mg/m3) with decreases in body and organ weights occurring at the LOAEL of 1000 ppm (3686 mg/m3). For offspring toxicity the NOAEL is 1000 ppm (3686 mg/m3), with decreased body weights occurring at 3000 ppm (11058 mg/m3). For PMA, the NOAEL for parental and offspring toxicity is 1000 mg/kg/d. in a two generation gavage study in rats. No adverse effects were found on reproductive organs, fertility rates, or other indices commonly monitored in such studies. In addition, there is no evidence from histopathological data from repeated-dose studies for the category members that would indicate that these chemicals would pose a reproductive hazard to human health. In developmental toxicity studies many PGEs have been tested by various routes of exposure and in various species at significant exposure levels and show no frank developmental effects. Due to the rapid hydrolysis of DPMA to DPM, DPMA would not be expected to show teratogenic effects. At high doses where maternal toxicity occurs (e.g., significant body weight loss), an increased incidence of some anomalies such as delayed skeletal ossification or increased 13th ribs, have been reported. Commercially available PGEs showed no teratogenicity.

The weight of the evidence indicates that propylene glycol ethers are not likely to be genotoxic. *In vitro*, negative results have been seen in a number of assays for PnB, DPnB, DPnB and TPM. Positive results were only seen in 3 out of 5 chromosome aberration assays in mammalian cells with DPnB. However, negative results were seen in a mouse micronucleus assay with DPnB and PM. Thus, there is no evidence to suggest these PGEs would be genotoxic *in vivo*. In a 2-year bioassay on PM, there were no statistically significant increases in tumors in rats and mice.

A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects.

The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I]

A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] *Shin-Etsu SDS

841AR Nickel Conductive Pen & NICKEL

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an

ACETONE & AMYL METHYL KETONE & ISOPROPANOL

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Acute Toxicity	×	Carcinogenicity	✓
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	×

allergic test reaction in more than 1% of the persons tested.

Legend:

X - Data either not available or does not fill the criteria for classification

– Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

12.1. Toxicity

841AR Nickel Conductive Pen	ENDPOINT TEST DURATION (HR)			SPECIES		VAL	VALUE		SOURCE		
	Not Available	Not	Not Available			Not Available Not Availa		Available	ble Not Available		ilable
	ENDPOINT	TEST D	URATION (HR)	SP	ECIES			VALUE	Ξ		SOURCE
nickel	LC50	96		Fis	Fish		0.0000475mg/L			4	
	EC50	48	48 Crustacea			0.001-0.576mg/L			2		
	EC50	72		Algae or other aquatic plants		0.00094mg/L			2		
	BCF	1440		Alg	Algae or other aquatic plants		0.47mg	0.47mg/L		4	
	NOEC	240		Cri	Crustacea >0.00			>0.001	-0.715mg/L		2
dimethyl carbonate	ENDPOINT	TEST I	TEST DURATION (HR)		SPECIES			VALUE			SOURCE
dimetriyi carbonate	EC50	48			Crustacea		:	>74.16mg/L	2	2	

acetone EC EC NO amyl methyl ketone EC	ENDPOINT C.C50 EC50 EC50 NOEC ENDPOINT C.C50 EC50 EC50 EC50 EC50 EC50 NOEC	96 TEST DURATION (HR) 96 48 96 240 TEST DURATION (HR) 96 48 72 72	Fish SPECIES Fish Crustacea Algae or other aquatic plants Crustacea SPECIES Fish Crustacea Algae or other aquatic plants	1-mg/L VALUE 5-540mg/L >100mg/L 20.565mg/L 1-866mg/L VALUE 30.530mg/L >90.1mg/L	SOURCE 2 4 4 2
acetone EC NO amyl methyl ketone EC EC	CC50 EC50 NOEC ENDPOINT CC50 EC50 EC50	96 48 96 240 TEST DURATION (HR) 96 48 72	Fish Crustacea Algae or other aquatic plants Crustacea SPECIES Fish Crustacea	5-540mg/L >100mg/L 20.565mg/L 1-866mg/L VALUE 30.530mg/L >90.1mg/L	2 4 4 2 2 SOURCE 3
acetone EC NO amyl methyl ketone EC EC	CC50 EC50 NOEC ENDPOINT CC50 EC50 EC50	96 48 96 240 TEST DURATION (HR) 96 48 72	Fish Crustacea Algae or other aquatic plants Crustacea SPECIES Fish Crustacea	5-540mg/L >100mg/L 20.565mg/L 1-866mg/L VALUE 30.530mg/L >90.1mg/L	2 4 4 2 2 SOURCE 3
acetone EC NO amyl methyl ketone EC EC EC	EC50 EC50 NOEC ENDPOINT	48 96 240 TEST DURATION (HR) 96 48 72	Crustacea Algae or other aquatic plants Crustacea SPECIES Fish Crustacea	>100mg/L 20.565mg/L 1-866mg/L VALUE 30.530mg/L >90.1mg/L	4 4 2 2 SOURCE 3
amyl methyl ketone EC	EC50 NOEC ENDPOINTC50 EC50	96 240 TEST DURATION (HR) 96 48 72	Algae or other aquatic plants Crustacea SPECIES Fish Crustacea	20.565mg/L 1-866mg/L VALUE 30.530mg/L >90.1mg/L	4 2 SOURCE 3
amyl methyl ketone EC	ENDPOINT C50 EC50	240 TEST DURATION (HR) 96 48 72	Crustacea SPECIES Fish Crustacea	1-866mg/L VALUE 30.530mg/L >90.1mg/L	SOURCE 3
amyl methyl ketone EC	ENDPOINT .C50 EC50	TEST DURATION (HR) 96 48 72	SPECIES Fish Crustacea	VALUE 30.530mg/L >90.1mg/L	SOURCE 3
amyl methyl ketone EC	C50 EC50 EC50	96 48 72	Fish Crustacea	30.530mg/L >90.1mg/L	3
amyl methyl ketone EC	C50 EC50 EC50	96 48 72	Fish Crustacea	30.530mg/L >90.1mg/L	3
amyl methyl ketone EC	C50 EC50 EC50	96 48 72	Fish Crustacea	30.530mg/L >90.1mg/L	3
amyl methyl ketone EC	EC50 EC50	48 72	Crustacea	>90.1mg/L	
EC	EC50	72			
			, ,	75.5mg/L	2
			Algae or other aquatic plants	42.68mg/L	2
-	NEBOINE	TEGT BUB ATION (UB)	0050150	VALUE	0011005
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	.C50	96	Fish	9-640mg/L	2
isopropanol	EC50	48	Crustacea	12500mg/L	5
EC	EC50	96	Algae or other aquatic plants	993.232mg/L	3
EC	EC0	24	Crustacea	5-102mg/L	2
No	NOEC	5760	Fish	0.02mg/L	4
EN	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
LC	_C50	96	Fish	18mg/L	4
	EC50	48	Crustacea	=32mg/L	1
n-butyl acetate	EC50	96	Algae or other aquatic plants	1.675mg/L	3
EC	EC90	72	Algae or other aquatic plants	1-540.7mg/L	2
No	NOEC	504	Crustacea	23.2mg/L	2
			'	<u> </u>	
Eľ	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	.C50	96	Fish	100mg/L	1
propylene glycol monomethyl	EC50	48	Crustacea	373mg/L	2
ether acetate, alpha-isomer	EC50	72	Algae or other aquatic plants	>1-mg/L	2
	NOEC	96	Algae or other aquatic plants	>=1-mg/L	2

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. Environmental processes (such as oxidation and the presence of acids or bases) may transform insoluble metals to more soluble ionic forms. Microbiological processes may also transform insoluble metals to more soluble forms. Such ionic species may bind to dissolved ligands or sorb to solid particles in aquatic or aqueous media. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms.

When released to dry soil most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. Environmental processes may also be important in changing solubilities.

Even though many metals show few toxic effects at physiological pHs, transformation may introduce new or magnified effects.

A metal ion is considered infinitely persistent because it cannot degrade further.

The current state of science does not allow for an unambiguous interpretation of various measures of bioaccumulation.

The counter-ion may also create health and environmental concerns once isolated from the metal. Under normal physiological conditions the counter-ion may be essentially insoluble and may not be bioavailable.

Environmental processes may enhance bioavailability.

For isopropanol (IPA): log Kow : -0.16- 0.28 Half-life (hr) air : 33-84

Half-life (hr) H2O surface water : 130 Henry's atm m3 /mol: 8.07E-06 BOD 5: 1.19,60%

COD: 1.61-2.30,97% ThOD: 2.4 BOD 20: >70% * [Akzo Nobel]

Environmental Fate

Based on calculated results from a lever 1 fugacity model, IPA is expected to partition primarily to the aquatic compartment (77.7%) with the remainder to the air (22.3%). IPA has been shown to biodegrade rapidly in aerobic, aqueous biodegradation tests and therefore, would not be expected to persist in aquatic habitats. IPA is also not expected to persist in surface soils due to rapid evaporation to the air. In the air, physical degradation will occur rapidly due to hydroxy

radical (OH) attack, Overall, IPA presents a low potential hazard to aquatic or terrestrial biota.

IPA is expected to volatilise slowly from water based on a calculated Henry's Law constant of 7.52 x 10 -6 atm.m 3 /mole. The calculated half-life for the volatilisation from surface water (1 meter depth) is predicted to range from 4 days (from a river) to 31 days (from a lake). Hydrolysis is not considered a significant degradation process for IPA. However, aerobic biodegradation of IPA has been shown to occur rapidly under non-acclimated conditions, based on a result of 49% biodegradation from a 5 day BOD test. Additional biodegradation data developed using standardized test methods show that IPA is readily biodegradable in both freshwater and saltwater media (72 to 78% biodegradation in 20 days).

IPA will evaporate quickly from soil due to its high vapor pressure (43 hPa at 20°C), and is not expected to partition to the soil based on a calculated soil adsorption coefficient (log Koc) of 0.03. IPA has the potential to leach through the soil due to its low soil adsorption

In the air, isopropanol is subject to oxidation predominantly by hydroxy radical attack. The room temperature rate constants determined by several investigators are in good agreement for the reaction of IPA with hydroxy radicals. The atmospheric half-life is expected to be 10 to 25 hours, based on measured degradation rates ranging from 5.1 to 7.1 x 10 -12 cm3 /molecule-sec, and an OH concentration of 1.5 x 106 molecule/cm3, which is a commonly used default value for calculating atmospheric half-lives. Using OH concentrations representative of polluted (3 x 106) and pristine (3 x 105) air, the atmospheric half-life of IPA would range from 9 to 126 hours, respectively. Direct photolysis is not expected to be an important transformation process for the degradation of IPA.

Ecotoxicity:

IPA has been shown to have a low order of acute aquatic toxicity. Results from 24- to 96-hour LC50 studies range from 1,400 to more than 10,000 mg/L for freshwater and saltwater fish and invertebrates. In addition, 16-hour to 8-day toxicity threshold levels (equivalent to 3% inhibition in cell growth) ranging from 104 to 4,930 mg/L have been demonstrated for various microorganisms. Chronic aguatic toxicity has also been shown to be of low concern, based on 16- to 21-day NOEC values of 141 to 30 mg/L, respectively, for a freshwater invertebrate, Bioconcentration of IPA in aquatic organisms is not expected to occur based on a measured log octanol/water partition coefficient (log Kow) of 0.05, a calculated bioconcentration factor of 1 for a freshwater fish, and the unlikelihood of constant, long-term exposures.

Toxicity to Plants

Toxicity of IPA to plants is expected to be low, based on a 7-day toxicity threshold value of 1,800 mg/L for a freshwater algae, and an EC50 value of 2,100 mg/L from a lettuce seed germination test. For ketones:

Ketones, unless they are alpha, beta--unsaturated ketones, can be considered as narcosis or baseline toxicity compounds

Hydrolysis may also involve the addition of water to ketones to yield ketals under mild acid conditions. However, this addition of water is thermodynamically favorable only for low molecular weight ketones. This addition is an equilibrium reaction that is reversible upon a change of water concentration and the reaction ultimately leads to no permanent change in the structure of the ketone substrateThe higher molecular weight ketones do no form stable ketals. Therefore, the ketones are stable to water under ambient environmental conditions

Another possible reaction of ketones in water involves the enolic hydrogen on the carbons bonded to the carbonyl function. Under conditions of high pH (pH greater than 10), the enolic proton is abstracted by base (OH-) forming a carbanion intermediate that may react with other organic substrates (e.g., ketones, esters, aldehydes) containing a center for nucleophilic attack. The reactions, commonly recognized as condensation reactions, produce higher molecular weight products. Under ambient conditions of temperature, pH, and low concentration, these condensation reactions are unfavorable.

Based on its reactions in air, it seems likely that ketones undergo photolysis in water. It is probable that ketones will be biodegraded to an appreciable degree by micro-organisms in soil and water. They are unlikely to bioconcentrate or biomagnify.

for acetone:

loa Kow: -0.24

Half-life (hr) air: 312-1896 Half-life (hr) H2O surface water: 20 Henry's atm m3 /mol: 3.67E-05

BOD 5: 0.31-1.76.46-55%

COD: 1.12-2.07

ThOD: 2.2

BCF: 0.69

Environmental fate:

Acetone preferentially locates in the air compartment when released to the environment. A substantial amount of acetone can also be found in water, which is consistent with the high water to air partition coefficient and its small, but detectable, presence in rain water, sea water, and lake water samples. Very little acetone is expected to reside in soil, biota, or suspended solids. This is entirely consistent with the physical and chemical properties of acetone and with measurements showing a low propensity for soil absorption and a high preference for moving through the soil and

In air, acetone is lost by photolysis and reaction with photochemically produced hydroxyl radicals; the estimated half-life of these combined processes is about 22 days. The relatively long half-life allows acetone to be transported long distances from its emission source.

Acetone is highly soluble and slightly persistent in water, with a half-life of about 20 hours; it is minimally toxic to aquatic life.

Acetone released to soil volatilises although some may leach into the ground where it rapidly biodegrades.

Acetone does not concentrate in the food chain.

Acetone meets the OECD definition of readily biodegradable which requires that the biological oxygen demand (BOD) is at least 70% of the theoretical oxygen demand (THOD) within the 28-day test period

Drinking Water Standard: none available.

Soil Guidelines: none available.

Air Quality Standards: none available.

Ecotoxicity:

Testing shows that acetone exhibits a low order of toxicity Fish LC50: brook trout 6070 mg/l; fathead minnow 15000 mg/l Bird LC0 (5 day): Japanese quail, ring-neck pheasant 40,000 mg/l Daphnia magna LC50 (48 h): 15800 mg/l; NOEC 8500 mg/l

Aquatic invertebrate 2100 - 16700 mg/l

Aquatic plant NOEC: 5400-7500 mg/l

Daphnia magna chronic NOEC 1660 mg/l

Acetone vapors were shown to be relatively toxic to two types insects and their eggs. The time to 50% lethality (LT50) was found to be 51.2 hr and 67.9 hr when the flour beetle (Tribolium confusum) and the flour moth (Ephestia kuehniella) were exposed to an airborne acetone concentration of 61.5 mg/m3. The LT50 values for the eggs were 30-50% lower than for the adult. The direct application of acetone liquid to the body of the insects or surface of the eggs did not, however, cause any mortality.

The ability of acetone to inhibit cell multiplication has been examined in a wide variety of microorganisms. The results have generally indicated mild to minimal toxicity with NOECs greater than 1700 mg/L for exposures lasting from 6 hr to 4 days. Longer exposure periods of 7 to 8 days with bacteria produced mixed results; but overall the data indicate a low degree of toxicity for acetone. The only exception to these findings were the results obtained with the flagellated protozoa (Entosiphon sulcatum) which yielded a 3-day NOEC of 28 mg/L.

DO NOT discharge into sewer or waterways

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
dimethyl carbonate	HIGH	HIGH
acetone	LOW (Half-life = 14 days)	MEDIUM (Half-life = 116.25 days)
amyl methyl ketone	LOW	LOW
isopropanol	LOW (Half-life = 14 days)	LOW (Half-life = 3 days)
n-butyl acetate	LOW	LOW
propylene glycol monomethyl ether acetate, alpha-isomer	LOW	LOW

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
dimethyl carbonate	LOW (LogKOW = 0.2336)
acetone	LOW (BCF = 0.69)
amyl methyl ketone	LOW (LogKOW = 1.98)
isopropanol	LOW (LogKOW = 0.05)
n-butyl acetate	LOW (BCF = 14)
propylene glycol monomethyl ether acetate, alpha-isomer	LOW (LogKOW = 0.56)

12.4. Mobility in soil

Ingredient	Mobility
dimethyl carbonate	LOW (KOC = 8.254)
acetone	HIGH (KOC = 1.981)
amyl methyl ketone	LOW (KOC = 24.01)
isopropanol	HIGH (KOC = 1.06)
n-butyl acetate	LOW (KOC = 20.86)
propylene glycol monomethyl ether acetate, alpha-isomer	HIGH (KOC = 1.838)

12.5.Results of PBT and vPvB assessment

	P	В	Т
Relevant available data	Not Applicable	Not Applicable	Not Applicable
PBT Criteria fulfilled?	Not Applicable	Not Applicable	Not Applicable

12.6. Other adverse effects

No data available

SECTION 13 DISPOSAL CONSIDERATIONS

13.1. Waste treatment methods

Product / Packaging disposal

- ▶ Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ► Reduction
- ▶ Reuse
- ▶ Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ► DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible.
- ► Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- ▶ Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Waste treatment options Not Available Sewage disposal options Not Available

SECTION 14 TRANSPORT INFORMATION

Labels Required

Excepted Quantity

Code E2 for all modes of transport.

On air waybill, write "Dangerous Goods in Excepted Quantity"

14.1. UN number	1263			
14.2. UN proper shipping name	PAINT or PAINT RELATED MATE	PAINT or PAINT RELATED MATERIAL		
14.3. Transport hazard class(es)	Class 3 Subrisk Not Applicable			
14.4. Packing group	II .			
14.5. Environmental hazard	Not Applicable			
	Hazard identification (Kemler)	33		
	Classification code	F1		
14.6. Special precautions for user	Hazard Label	3		
	Special provisions	163 367 640C 640D 650		
	Limited quantity	5L		

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number	1263			
14.2. UN proper shipping name	PAINT or PAINT RELAT	PAINT or PAINT RELATED MATERIAL		
	ICAO/IATA Class	3		
14.3. Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable		
01033(03)	ERG Code	ode 3L		
14.4. Packing group	Not Applicable			
14.5. Environmental hazard	Not Applicable			
	Special provisions		A3 A72 A192	
	Cargo Only Packing Instructions		364	
14.6. Special precautions for user	Cargo Only Maximum Qty / Pack		60 L	
	Passenger and Cargo Packing Instructions		353	
	Passenger and Cargo Maximum Qty / Pack		5 L	
	Passenger and Cargo Limited Quantity Packing Instructions		Y341	
	Passenger and Cargo	Limited Maximum Qty / Pack	1L	
			1	

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	1263		
14.2. UN proper shipping name	PAINT or PAINT RELATED MATERIAL		
14.3. Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable		
14.4. Packing group	II		
14.5. Environmental hazard	Not Applicable		
14.6. Special precautions for user	EMS Number F-E , S-E Special provisions 163 367 Limited Quantities 5 L		

Inland waterways transport (ADN)

illianu waterways transport (ADN)				
14.1. UN number	1263			
14.2. UN proper shipping name	PAINT or PAINT RELATE	PAINT or PAINT RELATED MATERIAL		
14.3. Transport hazard class(es)	3 Not Applicable	3 Not Applicable		
14.4. Packing group				
14.5. Environmental hazard	Not Applicable			
	Classification code	F1		
	Special provisions	163; 367; 640C; 650; 640D		
14.6. Special precautions for user	Limited quantity	5 L		
	Equipment required	PP, EX, A		
	Fire cones number	1		

14.7. Transport in bulk according to Annex II of MARPOL and the IBC code

SECTION 15 REGULATORY INFORMATION

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

NICKEL(7440-02-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Europe EC Inventory

Europe ECHA Registered Substances - Classification and Labelling - DSD-DPD

Europe European Customs Inventory of Chemical Substances - ECICS (Slovak)

Europe European Customs Inventory of Chemical Substances ECICS (Bulgarian)

Europe European Customs Inventory of Chemical Substances ECICS (Czech)

Europe European Customs Inventory of Chemical Substances ECICS (Romanian)

European Chemical Agency (ECHA) Classification & Labelling Inventory - Chemwatch

Harmonised classification

European Customs Inventory of Chemical Substances ECICS (English)

European Trade Union Confederation (ETUC) Priority List for REACH Authorisation

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

(English)

European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI - Chemwatch Standard Format

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

UK Workplace Exposure Limits (WELs)

DIMETHYL CARBONATE(616-38-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

ADN - European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways

Europe EC Inventory

Europe ECHA Registered Substances - Classification and Labelling - DSD-DPD

Europe European Customs Inventory of Chemical Substances - ECICS (Slovak)

Europe European Customs Inventory of Chemical Substances ECICS (Bulgarian)

Europe European Customs Inventory of Chemical Substances ECICS (Czech)

Europe European Customs Inventory of Chemical Substances ECICS (Romanian)

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2011, Spanish)

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2017, English)

European Chemical Agency (ECHA) Classification & Labelling Inventory - Chemwatch Harmonised classification

European Customs Inventory of Chemical Substances ECICS (English)

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)

European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI - Chemwatch Standard Format

European Union (EU) Transport of Dangerous Goods by Road - Dangerous Goods List (English)

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)

Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2019 (English)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

ACETONE(67-64-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

ADN - European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways

EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)

Europe EC Inventory

Europe ECHA Registered Substances - Classification and Labelling - DSD-DPD

Europe European Customs Inventory of Chemical Substances - ECICS (Slovak) Europe European Customs Inventory of Chemical Substances ECICS (Bulgarian)

Europe European Customs Inventory of Chemical Substances ECICS (Czech)

Europe European Customs Inventory of Chemical Substances ECICS (Romanian)

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2011, Spanish)

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2017, English)

European Chemical Agency (ECHA) Classification & Labelling Inventory - Chemwatch Harmonised classification

European Trade Union Confederation (ETUC) Priority List for REACH Authorisation

European Customs Inventory of Chemical Substances ECICS (English)

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English) European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of

Dangerous Substances - updated by ATP: 31 European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and

Packaging of Substances and Mixtures - Annex VI

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI - Chemwatch Standard Format

European Union (EU) Transport of Dangerous Goods by Road - Dangerous Goods List

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO IBC Code Chapter 18: List of products to which the Code does not apply

IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances

International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)

Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2019 (English)

UK Workplace Exposure Limits (WELs)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

AMYL METHYL KETONE(110-43-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

ADN - European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways

EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)

Europe EC Inventory

Europe European Customs Inventory of Chemical Substances - ECICS (Slovak)

Europe European Customs Inventory of Chemical Substances ECICS (Bulgarian)

Europe European Customs Inventory of Chemical Substances ECICS (Czech)

Europe European Customs Inventory of Chemical Substances ECICS (Romanian)

European Agreement concerning the International Carriage of Dangerous Goods by Road

(ADR 2011, Spanish)

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2017, English)

European Chemical Agency (ECHA) Classification & Labelling Inventory - Chemwatch Harmonised classification

European Customs Inventory of Chemical Substances ECICS (English)

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)

European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI - Chemwatch Standard Format

European Union (EU) Transport of Dangerous Goods by Road - Dangerous Goods List (English)

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk

International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)

Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2019 (English)

UK Workplace Exposure Limits (WELs)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

ISOPROPANOL(67-63-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

ADN - European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways

Europe EC Inventory

Europe ECHA Registered Substances - Classification and Labelling - DSD-DPD

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2011, Spanish)

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2017, English)

European Chemical Agency (ECHA) Classification & Labelling Inventory - Chemwatch Harmonised classification

European Customs Inventory of Chemical Substances ECICS (English)

European Trade Union Confederation (ETUC) Priority List for REACH Authorisation

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)

European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI - Chemwatch Standard Format

European Union (EU) Transport of Dangerous Goods by Road - Dangerous Goods List (English)

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO IBC Code Chapter 18: List of products to which the Code does not apply

IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances

IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures containing at least 99% by weight of components already assessed by IMO

IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)

Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2019 (English)

UK Workplace Exposure Limits (WELs)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

N-BUTYL ACETATE(123-86-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS

ADN - European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways

Europe EC Inventory

Europe ECHA Registered Substances - Classification and Labelling - DSD-DPD

Europe European Customs Inventory of Chemical Substances - ECICS (Slovak)

Europe European Customs Inventory of Chemical Substances ECICS (Bulgarian)

Europe European Customs Inventory of Chemical Substances ECICS (Czech)
Europe European Customs Inventory of Chemical Substances ECICS (Romanian)

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2011, Spanish)

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2017, English)

European Chemical Agency (ECHA) Classification & Labelling Inventory - Chemwatch Harmonised classification

European Customs Inventory of Chemical Substances ECICS (English)

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)

European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI - Chemwatch Standard Format

European Union (EU) Transport of Dangerous Goods by Road - Dangerous Goods List (English)

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk

International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)

Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2019 (English)

UK Workplace Exposure Limits (WELs)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER(108-65-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

ADN - European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways

EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs) Europe EC Inventory

Europe ECHA Registered Substances - Classification and Labelling - DSD-DPD European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2011, Spanish)

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2017, English)

European Chemical Agency (ECHA) Classification & Labelling Inventory - Chemwatch Harmonised classification

European Customs Inventory of Chemical Substances ECICS (English)

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)

European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31 European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI - Chemwatch Standard Format

European Union (EU) Transport of Dangerous Goods by Road - Dangerous Goods List (English)

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk

International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)
Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A:

Dangerous Goods List - RID 2019 (English) UK Workplace Exposure Limits (WELs)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2015/830; Regulation (EC) No 1272/2008 as updated through ATPs.

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (propylene glycol monomethyl ether acetate, alpha-isomer; acetone; n-butyl acetate; dimethyl carbonate; nickel; isopropanol; amyl methyl ketone)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (nickel)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - ARIPS	Yes
Thailand - TECI	Yes
Legend:	Yes = All declared ingredients are on the inventory No = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	17/03/2020
Initial Date	10/01/2017

Full text Risk and Hazard codes

H226	Flammable liquid and vapour.
H302	Harmful if swallowed.
H332	Harmful if inhaled.

SDS Version Summary

Version	Issue Date	Sections Updated
5.9.1.1.1	01/05/2019	Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Advice to Doctor, Chronic Health, Classification, Environmental, Exposure Standard, Fire Fighter (extinguishing media), First Aid (inhaled), First Aid (swallowed), Ingredients, Personal Protection (Respirator), Physical Properties, Spills (major), Storage (storage incompatibility), Storage (suitable container), Synonyms, Name

Other information

Ingredients with multiple cas numbers

Name	CAS No
propylene glycol monomethyl ether acetate, alpha-isomer	108-65-6, 84540-57-8, 142300-82-1

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit $_{\circ}$

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

Reason for Change

A-1.02 - Update to the emergency phone number information.