

MG Chemicals UK Limited

Version No: A-1.04 Safety Data Sheet (Conforms to Regulation (EU) No 2015/830)

Issue Date: 16/05/2019 Revision Date:16/03/2020 L.REACH.GBR.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

1.1. Product Identifier

Product name	422B Silicone Modified Conformal Coating (Aerosol)		
Synonyms	SDS Code: 422B-Aerosol, 422B-340G, 422B-340GCA		
Other means of identification	Not Applicable		

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Conformal coating for printed circuit boards and electronic components	
Uses advised against FOR INDUSTRIAL USE ONLY		

1.3. Details of the supplier of the safety data sheet

Registered company name	MG Chemicals UK Limited	MG Chemicals (Head office)
Address	Hearne House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom	9347 - 193 Street Surrey V4N 4E7 British Columbia Canada
Telephone	+(44) 1663 362888	+(1) 800-201-8822
Fax	Not Available	+(1) 800-708-9888
Website	Not Available	www.mgchemicals.com
Email	sales@mgchemicals.com	Info@mgchemicals.com

1.4. Emergency telephone number

Association / Organisation	Verisk 3E (Access code: 335388)	Not Available
Emergency telephone numbers	+(44) 20 35147487	Not Available
Other emergency telephone numbers	+(0) 800 680 0425	Not Available

SECTION 2 HAZARDS IDENTIFICATION

2.1. Classification of the substance or mixture

Classification according to regulation (EC) No 1272/2008 [CLP] ^[1]	H336 - Specific target organ toxicity - single exposure Category 3 (narcotic effects), H223+H229 - Aerosols Category 2, H312 - Acute Toxicity (Dermal) Category 4, H373 - Specific target organ toxicity - repeated exposure Category 2, H332 - Acute Toxicity (Inhalation) Category 4, H335 - Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), H315 - Skin Corrosion/Irritation Category 2, H319 - Eye Irritation Category 2, H361 - Reproductive Toxicity Category 2, H304 - Aspiration Hazard Category 1, H351 - Carcinogenicity Category 2
Legend:	1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

2.2. Label elements

Hazard pictogram(s)	
SIGNAL WORD	DANGER

Hazard statement(s)

H336	May cause drowsiness or dizziness.			
H223+H229	lammable aerosol; Pressurized container: may burst if heated.			
H312	armful in contact with skin.			
H373	r cause damage to organs through prolonged or repeated exposure.			
H332	rmful if inhaled.			
H335	May cause respiratory irritation.			
H315	Causes skin irritation.			
H319	Causes serious eye irritation.			

H361	Suspected of damaging fertility or the unborn child.		
H304	May be fatal if swallowed and enters airways.		
H351	Suspected of causing cancer.		

Supplementary statement(s)

Not Applicable

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.		
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.		
P211	Do not spray on an open flame or other ignition source.		
P251	Do not pierce or burn, even after use.		
P260	Do not breathe dust/fume/gas/mist/vapours/spray.		
P271	Use in a well-ventilated area.		
P280	Wear protective gloves/protective clothing/eye protection/face protection.		

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.			
P308+P313	IF exposed or concerned: Get medical advice/ attention.			
P331	Do NOT induce vomiting.			
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.			
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.			
P337+P313	If eye irritation persists: Get medical advice/attention.			
P302+P352	IF ON SKIN: Wash with plenty of water and soap.			
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.			
P332+P313	If skin irritation occurs: Get medical advice/attention.			
P362+P364	Take off contaminated clothing and wash it before reuse.			

Precautionary statement(s) Storage

P405	Store locked up.		
P410+P412	Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.		
P403+P233	Store in a well-ventilated place. Keep container tightly closed.		

Precautionary statement(s) Disposal

P501

Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classification according to regulation (EC) No 1272/2008 [CLP]
1.115-10-6 2.204-065-8 3.603-019-00-8 4.01-2119472128-37-XXXX	36	dimethyl ether *	Gas under Pressure, Flammable Gas Category 1; H280, H220 ^[2]
1.67-64-1 2.200-662-2 3.606-001-00-8 4.01-2119471330-49-XXXX	21	acetone *	Flammable Liquid Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Eye Irritation Category 2; H225, H336, H319, EUH066 ^[2]
1.1330-20-7 2.215-535-7 3.601-022-00-9 4.01-2119488216-32-XXXX	17	<u>xylene *</u>	Flammable Liquid Category 3, Skin Corrosion/Irritation Category 2, Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4; H226, H315, H312, H332 ^[2]
1.78-93-3 2.201-159-0 3.606-002-00-3 4.01-2119457290-43- XXXX 01-2119943742-35-XXXX	13	<u>methyl ethyl</u> <u>ketone</u> <u>*</u>	Flammable Liquid Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Eye Irritation Category 2; H225, H336, H319, EUH066 ^[2]

1.100-41-4 2.202-849-4 3.601-023-00-4 4.01-2119489370-35-XXXX	4	ethylbenzene *	Flammable Liquid Category 2, Aspiration Hazard Category 1, Specific target organ toxicity - repeated exposure Category 2 (hearing organs), Acute Toxicity (Inhalation) Category 4; H225, H304, H373, H332 ^[2]
1.108-88-3 2.203-625-9 3.601-021-00-3 4.01-2119471310-51- XXXX 01-2120766415-50-XXXX	<1	toluene <u>*</u>	Flammable Liquid Category 2, Reproductive Toxicity Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Specific target organ toxicity - repeated exposure Category 2, Skin Corrosion/Irritation Category 2, Aspiration Hazard Category 1; H225, H361d, H336, H373, H315, H304 ^[2]
Legend:	1. Classified available	by Chemwatch; 2. (Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 3. Classification drawn from C&L * EU IOELVs

SECTION 4 FIRST AID MEASURES

4.1. Description of first aid measures

Eye Contact	If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation.
Inhalation	If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	 Not considered a normal route of entry. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. Avoid giving milk or oils. Avoid giving alcohol.

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

for lower alkyl ethers: -----

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- A low-stimulus environment must be maintained.
- Monitor and treat, where necessary, for shock.
- Anticipate and treat, where necessary, for seizures.
- > DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension without signs of hypovolaemia may require vasopressors.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- + Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and
- magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph. • Ethers may produce anion gap acidosis. Hyperventilation and bicarbonate therapy might be indicated.
- Haemodialysis might be considered in patients with impaired renal function.

 Consult a toxicologist as necessary. BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

for simple ketones:

-----BASIC TREATMENT

• Establish a patent airway with suction where necessary.

• Watch for signs of respiratory insufficiency and assist ventilation as necessary.

Administer oxygen by non-rebreather mask at 10 to 15 l/min.

- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- > DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5mL/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool
- Give activated charcoal

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Consider intubation at first sign of upper airway obstruction resulting from oedema ٠
- Positive-pressure ventilation using a bag-valve mask might be of use. ٠
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications. ٠
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosohorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph. Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consult a toxicologist as necessary.
- BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For acute or short term repeated exposures to xylene:

- Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- Pulmonary absorption is rapid with about 60-65% retained at rest.
- Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- + Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice
 - **BIOLOGICAL EXPOSURE INDEX BEI**

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant Methylhippu-ric acids in urine Index 1.5 gm/gm creatinine 2 mg/min

Sampling Time End of shift Last 4 hrs of shift Comments

SECTION 5 FIREFIGHTING MEASURES

5.1. Extinguishing media

- Alcohol stable foam.
- Dry chemical powder
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.
- SMALL FIRE: Water spray, dry chemical or CO2

LARGE FIRE:

Water spray or fog.

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
.3. Advice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	 Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. Aerosol cans may explode on exposure to naked flame. Rupturing containers may rocket and scatter burning materials. Hazards may not be restricted to pressure effects. May emit acrid, poisonous or corrosive fumes. On combustion, may emit toxic fumes of carbon monoxide (CO).
	Continued

Page 5 of 24

422B Silicone Modified Conformal Coating (Aerosol)

Combustion products include: carbon monoxide (CO) carbon dioxide (CO2)
carbon dioxide (CO2)
other pyrolysis products typical of burning organic material.
Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.
 Vented gas is more dense than air and may collect in pits, basements.

SECTION 6 ACCIDENTAL RELEASE MEASURES

6.1. Personal precautions, protective equipment and emergency procedures

See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up 1

-

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. 									
	Chemical Class: ester and ethers For release onto land: recommended sorbents listed in order of priority.									
	SORBENT TYPE	RANK	APPLICATION			COLLE	CTION		LIMITATIONS	
	LAND SPILL - SMALL									
	cross-linked polymer - pa	rticulate		1	s	shovel	shov	el	R, W, SS	
	cross-linked polymer - pille	w		1	ti	hrow	pitch	fork	R, DGC, RT	
	sorbent clay - particulate			2	s	shovel	shov	el	R,I, P	
	wood fiber - particulate			3	s	shovel	shov	el	R, W, P, DGC	
	wood fiber - pillow			3	ti	hrow	pitch	fork	R, P, DGC, RT	
	treated wood fiber - pillow			3	ti	hrow	pitch	fork	DGC, RT	
	LAND SPILL - MEDIUM									
	cross-linked polymer - par	ticulate		1	blow	ver	skipload	ler	R,W, SS	
	cross-linked polymer - pill	ow		2	throw	w	skipload	ler	R, DGC, RT	
	sorbent clay - particulate				blow	ver	skipload	ler	R, I, P	
	polypropylene - particulate			3	blow	ver	skipload	ler	W, SS, DGC	
	expanded mineral - particulate			4	blow	ver	skipload	ler	R, I, W, P, DGC	
	wood fiber - particulate					ver	skipload	ler	R, W, P, DGC	
Major Spills	Spills Legend DGC: Not effective where ground cover is dense R; Not reusable I: Not incinerable P: Effectiveness reduced when rainy RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites W: Effectiveness reduced when windy Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988 Chemical Class: aromatic hydrocarbons For release onto land: recommended sorbents listed in order of priority.									
	SORBENT TYPE	RANK	APPLICATION			COLLE	CTION		LIMITATIONS	
	LAND SPILL - SMALL									
	Feathers - pillow					1	throw	pitchfork	DGC, RT	
	cross-linked polymer - par	ticulate				2	shovel	shovel	R,W,SS	
	cross-linked polymer- pillow				2	throw	pitchfork	R, DGC, RT		
	sorbent clay - particulate					3	shovel	shovel	R, I, P,	
	treated clay/ treated natura	al organic - partici	ulate			3	shovel	shovel	R, I	
	wood fibre - pillow					4	throw	pitchfork	R, P, DGC, RT	
	LAND SPILL - MEDIUM							1.		
	cross-linked polymer -part	iculate				1 b	lower	skiploader	R, W, SS	
	treated clay/ treated natura		ulate				lower	skiploader	R, I	
									Continued	

Page 6 of 24

422B Silicone Modified Conformal Coating (Aerosol)

sorbent clay - particulate	3	blower	skiploader	R, I, P
polypropylene - particulate	3	blower	skiploader	W, SS, DGC
feathers - pillow	3	throw	skiploader	DGC, RT
expanded mineral - particulate	4	blower	skiploader	R, I, W, P, DGC

Legend

DGC: Not effective where ground cover is dense

R: Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

Chemical Class: ketones

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE RANK	APPLICATION	COLLECTION	LIMITATIONS
----------------------	-------------	------------	-------------

LAND SPILL - SMALL

cross-linked polymer - particulate		shovel	shovel	R, W, SS
cross-linked polymer - pillow		throw	pitchfork	R, DGC, RT
sorbent clay - particulate	2	shovel	shovel	R,I, P
wood fiber - pillow	3	throw	pitchfork	R, P, DGC, RT
treated wood fiber - pillow	3	throw	pitchfork	DGC, RT
foamed glass - pillow	4	throw	pitchfork	R, P, DGC, RT

LAND SPILL - MEDIUM

cross-linked polymer - particulate	1	blower	skiploader	R,W, SS
cross-linked polymer - pillow		throw	skiploader	R, DGC, RT
sorbent clay - particulate	3	blower	skiploader	R, I, P
polypropylene - particulate	3	blower	skiploader	R, SS, DGC
expanded mineral - particulate	4	blower	skiploader	R, I, W, P, DGC
polypropylene - mat	4	throw	skiploader	DGC, RT

Legend

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

Clear area of all unprotected personnel and move upwind.

Alert Emergency Authority and advise them of the location and nature of hazard.

May be violently or explosively reactive.

Wear full body clothing with breathing apparatus.

Prevent by any means available, spillage from entering drains and water-courses.

Consider evacuation.

Shut off all possible sources of ignition and increase ventilation.

- No smoking or naked lights within area.
- Use extreme caution to prevent violent reaction.
- Stop leak only if safe to so do.
- Water spray or fog may be used to disperse vapour.
- DO NOT enter confined space where gas may have collected.
- Keep area clear until gas has dispersed.
- Remove leaking cylinders to a safe place.
- Fit vent pipes. Release pressure under safe, controlled conditions
- Burn issuing gas at vent pipes.
- DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse / absorb vapour.
- Absorb or cover spill with sand, earth, inert materials or vermiculite.
- F If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated.
- Undamaged cans should be gathered and stowed safely. Collect residues and seal in labelled drums for disposal.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

7.1. Precautions for safe handling

Safe handling	 Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. DO NOT incinerate or puncture aerosol cans. DO NOT spray directly on humans, exposed food or food utensils. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. DO NOT allow clothing wet with material to stay in contact with skin
Fire and explosion protection	See section 5
Other information	 Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can Store in original containers in approved flammable liquid storage area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. No smoking, naked lights, heat or ignition sources. Keep containers securely sealed. Contents under pressure. Store away from incompatible materials. Store in a cool, dry, well ventilated area. Avoid storage at temperatures higher than 40 deg C. Store in an upright position. Protect containers against physical damage. Check regularly for spills and leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

7.2. Conditions for safe storage, including any incompatibilities

Suitable container	 Aerosol dispenser. Check that containers are clearly labelled.
Storage incompatibility	Directly lether: is a peroxidisable gas imay be heat and shock sensitive is a peroxidisable gas imay be heat and shock sensitive is able to form unstable peroxides on prolonged exposure to air is accounted to the stable peroxides on prolonged exposure to air is incompatible with strong acids, metal salts Wetly etly kickone: reacts violently with strong oxidisers, alterity des, nitric acid, perchloric acid, potossium tert-butoxide, oleum is incompatible with inorganic acids, alighted armines, ammonia, caustics, isocyanates, pyridines, chlorosulfonic aid ioms unstable peroxides in storage, or on contact with propanol or hydrogen peroxide it attacks some plastics imay generate electrostatic charges, due to low conductivity, on flow or agitation Xyleres: imay generate electrostatic charges, due to low conductivity, inay generate electrostatic charges on flow or agitation due to low conductivity. Yogorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents. For fally aromatics: The alkyl side chain of aromatic ings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at berarytic carbon as the intermediate formed is stabilised by resonance structure of the ring. Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the apha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen attim is initially available at this positor) - inis product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C4 bond is more easily attacked than a primary C4 bond whilst a tertiary C4 bond is even more susceptibe to attack by oxygen Moroalkylbenzenes may subsequently from monocarboxylic acids, akly naphthalenes mainly produce the corresponding naphthalene carboxylic acids. Hocok-rearrangemen

dissolves or attacks most rubber, resins, and plastics (polyethylenes, polyester, vinyl ester, PVC, Neoprene, Viton)
Ketones in this group:
▶ are reactive with many acids and bases liberating heat and flammable gases (e.g., H2).
▶ react with reducing agents such as hydrides, alkali metals, and nitrides to produce flammable gas (H2) and heat.
▶ are incompatible with isocyanates, aldehydes, cyanides, peroxides, and anhydrides.
▶ react violently with aldehydes, HNO3 (nitric acid), HNO3 + H2O2 (mixture of nitric acid and hydrogen peroxide), and HCIO4 (perchloric acid).
may react with hydrogen peroxide to form unstable peroxides; many are heat- and shock-sensitive explosives.
A significant property of most ketones is that the hydrogen atoms on the carbons next to the carbonyl group are relatively acidic when compared to hydrogen
atoms in typical hydrocarbons. Under strongly basic conditions these hydrogen atoms may be abstracted to form an enolate anion. This property allows
ketones, especially methyl ketones, to participate in condensation reactions with other ketones and aldehydes. This type of condensation reaction is favoured
by high substrate concentrations and high pH (greater than 1 wt% NaOH).
Ethers
may react violently with strong oxidising agents and acids.
 can act as bases, - they form salts with strong acids and addition complexes with Lewis acids; the complex between diethyl ether and boron
trifluoride is an example.
are generally stable to water under neutral conditions and ambient temperatures.
 are generally stable to water under neutral conduitors and ambient temperatures. are hydrolysed by heating in the presence of halogen acids, particularly hydrogen iodide
 are injurity/set by nearing in the presence of hardgen actus, particularly hydrogen iodide are relatively inert in other reactions, which typically involve the breaking of the carbon-oxygen bond
 The tendency of many ethers to form explosive peroxides is well documented. These leaves the device a strategies of the strategies
Ethers lacking non-methyl hydrogen atoms adjacent to the ether link are thought to be relatively safe.
 When solvents have been freed from peroxides (by percolation through a column of activated alumina for example), the absorbed peroxides must prompti
be desorbed by treatment with the polar solvents methanol or water, which should be discarded safely.
Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the
gas in chemical reaction with other substances

7.3. Specific end use(s)

See section 1.2

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

8.1. Control parameters

DERIVED NO EFFECT LEVEL (DNEL) Not Available

PREDICTED NO EFFECT LEVEL (PNEC)

Not Available

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	dimethyl ether	Dimethyl ether	1000 ppm / 1920 mg/m3	Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs)	dimethyl ether	Dimethyl ether	400 ppm / 766 mg/m3	958 mg/m3 / 500 ppm	Not Available	Not Available
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	acetone	Acetone	500 ppm / 1210 mg/m3	Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs)	acetone	Acetone	500 ppm / 1210 mg/m3	3620 mg/m3 / 1500 ppm	Not Available	Not Available
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	xylene	Xylene (mixed isomers, pure)	50 ppm / 221 mg/m3	442 mg/m3 / 100 ppm	Not Available	Skin
UK Workplace Exposure Limits (WELs)	xylene	Xylene, o-,m-,p- or mixed isomers	50 ppm / 220 mg/m3	441 mg/m3 / 100 ppm	Not Available	Sk, BMGV
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	methyl ethyl ketone	Butanone	200 ppm / 600 mg/m3	900 mg/m3 / 300 ppm	Not Available	Not Available
UK Workplace Exposure Limits (WELs)	methyl ethyl ketone	Butan-2-one (methyl ethyl ketone)	200 ppm / 600 mg/m3	899 mg/m3 / 300 ppm	Not Available	Sk, BMGV
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	ethylbenzene	Ethyl benzene	100 ppm / 442 mg/m3	884 mg/m3 / 200 ppm	Not Available	Skin
UK Workplace Exposure Limits (WELs)	ethylbenzene	Ethylbenzene	100 ppm / 441 mg/m3	552 mg/m3 / 125 ppm	Not Available	Sk
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	toluene	Toluene	50 ppm / 192 mg/m3	384 mg/m3 / 100 ppm	Not Available	Skin
UK Workplace Exposure Limits (WELs)	toluene	Toluene	50 ppm / 191 mg/m3	384 mg/m3 / 100 ppm	Not Available	Sk

Ingredient Material name TEEL-1 TEEL-2 TEEL-3 dimethyl ether Methyl ether; (Dimethyl ether) 3,000 ppm 3800 ppm 7200 ppm acetone Acetone Not Available Not Available Not Available

xylene	Xylenes	Not	Available	Not Available	Not Available
methyl ethyl ketone	Butanone, 2-; (Methyl ethyl ketone; MEK)	Not	Available	Not Available	Not Available
ethylbenzene	Ethyl benzene	Not	Available	Not Available	Not Available
toluene	Toluene	Not Available		Not Available	Not Available
Ingredient	Original IDLH		Revised IDLH		
dimethyl ether	Not Available		Not Available		
acetone	2,500 ppm		Not Available		
xylene	900 ppm		Not Available		
methyl ethyl ketone	3,000 ppm		Not Available		
ethylbenzene	800 ppm		Not Available		
toluene	500 ppm		Not Available		

MATERIAL DATA

IFRA Prohibited Fragrance Substance

The International Fragrance Association (IFRA) Standards form the basis for the globally accepted and recognized risk management system for the safe use of fragrance ingredients and are part of the IFRA Code of Practice. This is the self-regulating system of the industry, based on risk assessments carried out by an independent Expert Panel for dimethyl ether:

The no-effect-level for dimethyl ether is somewhere between 2000 ppm (rabbits) and 50,000 ppm (humans) with possible cardiac sensitisation occurring around 200,000 ppm (dogs). The AIHA has adopted a safety factor of 100 in respect to the 50,000 ppm level in its recommendation for a workplace environmental exposure level (WEEL) which is thought to protect against both narcotic and sensitising effects. This level is consistent with the TLV-TWA of 400 ppm for diethyl ether and should be easily achievable using current technologies. The use of the traditionally allowable excursion of 1.25 to the level of 6.25 ppm is felt to be more than adequate as an upper safe limit of exposure.

Human data:

50,000 ppm (12 mins): Feelings of mild intoxication.

75,000 ppm (12 mins): As above plus slight lack of attenuation.

82,000 ppm (12 mins): Some incoordination, slight blurring of vision

(30 mins): As above plus analgesia of the face and rushing of blood to the face.

100,000 ppm (10-20 mins): Narcotic symptoms; (64 mins): Sickness (assumed to be nausea)

144,000 ppm (36 mins):Unconsciousness

Odour Threshold Value: 3.6 ppm (detection), 699 ppm (recognition)

Saturation vapour concentration: 237000 ppm @ 20 C NOTE: Detector tubes measuring in excess of 40 ppm, are available.

Exposure at or below the recommended TLV-TWA is thought to protect the worker against mild irritation associated with brief exposures and the bioaccumulation, chronic irritation of the respiratory tract and headaches associated with long-term acetone exposures. The NIOSH REL-TWA is substantially lower and has taken into account slight irritation experienced by volunteer subjects at 300 ppm. Mild irritation to acclimatised workers begins at about 750 ppm - unacclimatised subjects will experience irritation at about 350-500 ppm but acclimatisation can occur rapidly. Disagreement between the peak bodies is based largely on the view by ACGIH that widespread use of acetone, without evidence of significant adverse health effects at higher concentrations allows acceptance of a higher limit.

Half-life of acetone in blood is 3 hours which means that no adjustment for shift-length has to be made with reference to the standard 8 hour/day, 40 hours per week because body clearance occurs within any shift with low potential for accumulation.

A STEL has been established to prevent excursions of acetone vapours that could cause depression of the central nervous system.

Odour Safety Factor(OSF)

OSF=38 (ACETONE)

May act as a simple asphyxiants; these are gases which, when present in high concentrations, reduce the oxygen content in air below that required to support breathing, consciousness and life; loss of consciousness, with death by suffocation may rapidly occur in an oxygen deficient atmosphere.

CARE: Most simple asphyxiants are odourless or possess low odour and there is no warning on entry into an oxygen deficient atmosphere. If there is any doubt, oxygen content can be checked simply and quickly. It may not be appropriate to only recommend an exposure standard for simple asphyxiants rather it is essential that sufficient oxygen be maintained. Air normally has 21 percent oxygen by volume, with 18 percent regarded as minimum under normal atmospheric pressure to maintain consciousness / life. At pressures significantly higher or lower than normal atmospheric pressure, expert guidance should be sought.

for xylenes:

IDLH Level: 900 ppm

Odour Threshold Value: 20 ppm (detection), 40 ppm (recognition)

NOTE: Detector tubes for o-xylene, measuring in excess of 10 ppm, are available commercially. (m-xylene and p-xylene give almost the same response).

Xylene vapour is an irritant to the eyes, mucous membranes and skin and causes narcosis at high concentrations. Exposure to doses sufficiently high to produce intoxication and unconsciousness also produces transient liver and kidney toxicity. Neurologic impairment is NOT evident amongst volunteers inhaling up to 400 ppm though complaints of ocular and upper respiratory tract irritation occur at 200 ppm for 3 to 5 minutes.

Exposure to xylene at or below the recommended TLV-TWA and STEL is thought to minimise the risk of irritant effects and to produce neither significant narcosis or chronic injury. An earlier skin notation was deleted because percutaneous absorption is gradual and protracted and does not substantially contribute to the dose received by inhalation.

Odour Safety Factor(OSF) OSF=4 (XYLENE)

For methyl ethyl ketone:

Odour Threshold Value: Variously reported as 2 ppm and 4.8 ppm

Odour threshold: 2 ppm (detection); 5 ppm (recognition) 25 ppm (easy recognition); 300 ppm IRRITATING

Exposures at or below the recommended TLV-TWA are thought to prevent injurious systemic effects and to minimise objections to odour and irritation. Where synergism or potentiation may occur stringent control of the primary toxin (e.g. n-hexane or methyl butyl ketone) is desirable and additional consideration should be given to lowering MEK exposures

Odour Safety Factor(OSF) OSF=28 (METHYL ETHYL KETONE)

for ethyl benzene:

Odour Threshold Value: 0.46-0.60 ppm

NOTE: Detector tubes for ethylbenzene, measuring in excess of 30 ppm, are commercially available.

Ethyl benzene produces irritation of the skin and mucous membranes and appears to produce acute and chronic effects on the central nervous system. Animal experiments also suggest the effects of chronic exposure include damage to the liver, kidneys and testes. In spite of structural similarities to benzene, the material does not appear to cause damage to the haemopoietic system. The TLV-TWA is thought to be protective against skin and eye irritation. Exposure at this concentration probably will not result in systemic effects

Subjects exposed at 200 ppm experienced transient irritation of the eyes; at 1000 ppm there was eye irritation with profuse lachrymation; at 2000 ppm eye irritation and lachrymation were immediate and severe accompanied by moderate nasal irritation, constriction in the chest and vertigo; at 5000 ppm exposure produced intolerable irritation of the eyes and throat. Odour Safety Factor(OSF)

OSF=43 (ETHYL BENZENE)

For toluene:

Odour Threshold Value: 0.16-6.7 (detection), 1.9-69 (recognition)

NOTE: Detector tubes measuring in excess of 5 ppm, are available.

High concentrations of toluene in the air produce depression of the central nervous system (CNS) in humans. Intentional toluene exposure (glue-sniffing) at maternally-intoxicating concentration has also produced birth defects. Foetotoxicity appears at levels associated with CNS narcosis and probably occurs only in those with chronic toluene-induced kidney failure. Exposure at or below the recommended TLV-TWA is thought to prevent transient headache and irritation, to provide a measure of safety for possible disturbances to human reproduction, the prevention of reductions in cognitive responses reported amongst humans inhaling greater than 40 ppm, and the significant risks of hepatotoxic, behavioural and nervous system effects (including impaired reaction time and incoordination). Although toluene/ethanol interactions are well recognised, the degree of protection afforded by the TLV-TWA among drinkers is not known. Odour Safety Factor(OSF) OSF=17 (TOLUENE)

8.2. Exposure controls

	Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant.			
	Type of Contaminant:	Speed:		
	aerosols, (released at low velocity into zone of active generation)		0.5-1 m/s	
8.2.1. Appropriate engineering controls	direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rap	id air motion)	1-2.5 m/s (200-500 f/min.)	
	Within each range the appropriate value depends on:		· · · · ·	
	Lower end of the range	Upper end of the range		
	1: Room air currents minimal or favourable to capture	1: Disturbing room air o	currents	
	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high	toxicity	
	3: Intermittent, low production.	3: High production, heav	vy use	
	4: Large hood or large air mass in motion	4: Small hood-local con	trol only	
8.2.2. Personal protection	square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.			
Eye and face protection	 Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed it the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Close fitting gas tight goggles DO NOT wear contact lenses. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as pr			
Skin protection	See Hand protection below			
Hands/feet protection	 No special equipment needed when handling small quantities. OTHERWISE: For potentially moderate exposures: Wear general protective gloves, eg. light weight rubber gloves. For potentially heavy exposures: Wear chemical protective gloves, eg. PVC. and safety footwear. 			
Body protection	See Other protection below			
Other protection	 The clothing worn by process operators insulated from earth may develop static charges far for various flammable gas-air mixtures. This holds true for a wide range of clothing materials Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn ou BRETHERICK: Handbook of Reactive Chemical Hazards. 	s including cotton.	nan the minimum ignition energies	

No special equipment needed when handling small quantities. OTHERWISE:

- Overalls.
- Skin cleansing cream.
- Evewash unit.
- Do not spray on hot surfaces.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

'Forsberg Clothing Performance Index'.

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

422B Silicone Modified Conformal Coating (Aerosol)

Material	CPI
BUTYL	С
BUTYL/NEOPRENE	С
CPE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	C
NEOPRENE/NATURAL	С
NITRILE	C
NITRILE+PVC	C
PE/EVAL/PE	С
PVA	C
PVC	C
PVDC/PE/PVDC	C
SARANEX-23	C
SARANEX-23 2-PLY	С
TEFLON	C
VITON	С
VITON/CHLOROBUTYL	C
VITON/NEOPRENE	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as

'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

8.2.3. Environmental exposure controls

See section 12

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

9.1. Information on basic physical and chemical properties

Appearance	Clear			
Physical state	Liquid	Relative density (Water = 1)	0.89	
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	315	
pH (as supplied)	Not Available	Decomposition temperature	Not Available	
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	<20.5	
Initial boiling point and boiling range (°C)	>56	Molecular weight (g/mol)	Not Available	
Flash point (°C)	-17	Taste	Not Available	
Evaporation rate	Not Available	Explosive properties	Not Available	
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available	

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 5 x ES	AX-AUS / Class 1	-	AX-PAPR-AUS / Class 1
up to 25 x ES	Air-line*	AX-2	AX-PAPR-2
up to 50 x ES	-	AX-3	-
50+ x ES	-	Air-line**	-

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

Generally not applicable.

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

Upper Explosive Limit (%)	26	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	3	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Partly miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	>2	VOC g/L	Not Available

9.2. Other information

Not Available

SECTION 10 STABILITY AND REACTIVITY

10.1.Reactivity	See section 7.2
10.2. Chemical stability	 Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 TOXICOLOGICAL INFORMATION

11.1. Information on toxicological effects

	g
	Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.
	 respiratory system complications may include acute pulmonary oedema, dyspnoea, stridor, tachypnoea, bronchospasm, wheezing and other reactive airway symptoms, and respiratory arrest; cardiovascular effects may include cardiovascular collapse, arrhythmias and cardiac arrest;
	 gastrointestinal effects may also be present and may include mucous membrane irritation, nausea and vomiting (sometimes bloody), and abdominal pain. Ethers produce narcosis following inhalation.
	Inhalation of lower alkyl ethers may result in central nervous system depression or stimulation, intoxication, headache, dizziness, weakness, blurred vision, seizures and possible coma. Cardiovascular involvement may produce hypotension, bradycardia and cardiovascular collapse, whilst respiratory symptoms might include irritation of nose and throat, cough, laryngeal spasm, pharyngitis, irregular respiration, depression, pulmonary oedema and respiratory arrest. Nausea, vomiting and salivation might also indicate overexposure.
	Convulsions, respiratory distress or paralysis, asphyxia, pneumonitis, and unconsciousness are all serious manifestations of poisoning. Fatalities have been reported. Kidney and liver damage with interstitial cystitis may result from massive exposures.
	Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination
	Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.
Inhaled	The acute toxicity of inhaled alkylbenzenes is best described by central nervous system depression. As a rule, these compounds may also act as general anaesthetics.
	Systemic poisoning produced by general anaesthesia is characterised by lightheadedness, nervousness, apprehension, euphoria, confusion, dizziness, drowsiness, tinnitus, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness and respiratory depression and arrest. Cardiac arrest may result from cardiovascular collapse. Bradycardia, and hypotension may also be produced. Inhaled alkylbenzene vapours cause death in animals at air levels that are relatively similar (typically LC50s are in the range 5000 -8000 ppm for 4 to 8 hour exposures). It is likely that acute inhalation exposure to alkylbenzenes resembles that to general anaesthetics. Alkylbenzenes are not generally toxic other than at high levels of exposure. This may be because their metabolites have a low order of toxicity and are easily excreted. There is little or no evidence to suggest that metabolic pathways can become saturated leading to spillover to alternate pathways. Nor is there evidence that toxic reactive intermediates, which may produce subsequent toxic or mutagenic effects, are formed
	Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. Symptoms of asphyxia (sulfocation) may include headache, dizziness, shortness of breath, muscular weakness, drowsiness and ringing in the ears. If the asphyxia is allowed to progress, there may be nausea and vomiting, further physical weakness and unconsciousness and, finally, convulsions, coma and death. Significant concentrations of the non-toxic gas reduce the oxygen level in the air. As the amount of oxygen is reduced from 21 to 14 volume %, the pulse rate accelerates and the rate and volume of breathing increase. The ability to maintain attention and think clearly is diminished and muscular coordination is somewhat disturbed. As oxygen decreases from 14-10% judgement becomes faulty; severe injuries may cause no pain. Muscular exertion leads to rapid fatigue. Further reduction to 6% may produce nausea and vomiting and the ability to move may be lost. Permanent brain damage may result even after resuscitation at exposures to this lower oxygen level. Below 6% breathing is in gasps and convulsions may occur. Inhalation of a mixture containing no oxygen may result in unconsciousness from the first breath and death will follow in a few minutes. WARNING :Intentional misuse by concentrating/inhaling contents may be lethal. Acute exposure of humans to high concentrations of methyl ethyl ketone produces irritation to the eyes, nose, and throat. Other effects reported from acute inhalation exposure in humans include central nervous system depression, headache, and nausea. Easy odour recognition and irritant properties of methyl ethyl ketone produces irritation to the eyes are readily detected and should be avoided by application of or tortol measures; however odour fatigue may occur with loss of warning of exposure.

Page 13 of 24

422B Silicone Modified Conformal Coating (Aerosol)

	Headache, fatigue, lassitude, irritability and gastrointestinal disturbances (e.g., nausea, anorexia and flatulence) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Transient memory loss, renal impairment, temporary confusion and some evidence of disturbance of liver function was reported in three workers overcome by gross exposure to xylene (10000 ppm). One worker died and autopsy revealed pulmonary congestion, oedema and focal alveolar haemorrhage. Volunteers inhaling xylene at 100 ppm for 5 to 6 hours showed changes in manual coordination reaction time and slight ataxia. Tolerance developed during the workweek but was lost over the weekend. Physical exercise may antagonise this effect. Xylene body burden in humans exposed to 100 or 200 ppm xylene in air depends on the amount of body fat with 4% to 8% of total absorbed xylene accumulating in adipose tissue. Xylene is a central nervous system depressant. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. The primary physiological effect which follows exposure to diethyl ether is acute narcosis. Inhalation at about 7.5%, in air, produces mild intoxication in about 12 minutes. Longer exposures and exposure to higher concentrations produces incoordination, blurring of vision, headache, dizziness and unconsciousness (20% produces unconsciousness in about 20 minutes). Heavy exposures may be lethal and deaths occur due to depression of the respiratory system. Dimethyl ether is a weak cardiac sensitiser in dogs.
Ingestion	Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis). Ingestion of alkyl ethers may produce symptoms similar to those produced following inhalation.
Skin Contact	The material may accentuate any pre-existing dermatitis condition Dermatitis has been reported in humans following dermal exposure to methyl ethyl ketone. Tests involving acute exposure of rabbits has shown methyl ethyl ketone to have high acute toxicity from dermal exposure. Spray mist may produce discomfort Alkyl ethers may defat and dehydrate the skin producing dermatoses. Absorption may produce headache, dizziness, and central nervous system depression. Toxic effects may result from skin absorption Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The material may produce mild skin irritation; limited evidence or practical experience suggests, that the material either: produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (non allergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.
Eye	Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures Eye contact with alkyl ethers (vapours or liquid) may produce irritation, redness and lachrymation. Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur, permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or transient eye discomfort and is capable of causing temporary impairment of vision and/or transient eye inflammation, ulceration
Chronic	On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. Long-term exposure to respiratory infants may result in disease of the airways involving difficult breathing and related systemic problems. Exposure to the material may cause concerns for human fertility, generally on the basis that results in animal studies provide sufficient evidence to cause a strong suspicion of impaired fertility in basence of toxic effects, put which are not a secondary non-specific consequence of other toxic effects. Principal route of occupational exposure to the gas is by inhalation. Limited information is available on the chronic (long-term) effects of methyl ethyl ketone in humans. Chronic inhalation studies in animals have reported slight neurological, liver, likensy and repositive of toxic lifects, including decreased foetal weight and foetal malformations, have been reported in mice and rats exposed to methyl ethyl ketone in humans. Developmental effects, including decreased foetal weight and foetal malformations, have been reported in mice and rats exposed to methyl ethyl ketone is one prive the same dose levels as other toxic effects of the mix may be greater than either solvent alone. Combinations of n-hexane with methyl ethyl ketone and also methyl n-butyl ketone with methyl ethyl ketone is often used in combination with other solvents and the toxic effects of the mix may be greater than either solvent alone. Combinations of n-hexane with methyl ethyl ketone and also methyl n-butyl ketone with methyl ethyl ketone is often used in combination with other solvents and the toxic effects of the mix may be greater than either solvent alone. Combinations of n-hexane with methyl ethyl ketone i

5 days/week for 90 days, showed narcosis, Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. TOXICITY IRRITATION 422B Silicone Modified Conformal Coating (Aerosol) Not Available Not Available TOXICITY IRRITATION dimethyl ether Inhalation (rat) LC50: 309 mg/l/4H^[2] Not Available TOXICITY IRRITATION Dermal (rabbit) LD50: =20 mg/kg^[2] Eye (human): 500 ppm - irritant Inhalation (rat) LC50: 100.2 mg/l/8hr^[2] Eye (rabbit): 20mg/24hr -moderate Oral (rat) LD50: 1800-7300 mg/kg^[2] Eye (rabbit): 3.95 mg - SEVERE acetone Eye: adverse effect observed (irritating)^[1] Skin (rabbit): 500 mg/24hr - mild Skin (rabbit):395mg (open) - mild Skin: no adverse effect observed (not irritating)^[1] TOXICITY IRRITATION Dermal (rabbit) LD50: >1700 mg/kg^[2] Eye (human): 200 ppm irritant Inhalation (rat) LC50: 4994.295 mg/l/4h^[2] Eye (rabbit): 5 mg/24h SEVERE xylene Oral (rat) LD50: 3523-8700 mg/kg^[2] Eye (rabbit): 87 mg mild Eye: adverse effect observed (irritating)^[1] Skin (rabbit):500 mg/24h moderate Skin: adverse effect observed (irritating)^[1] ΤΟΧΙΟΙΤΥ IRRITATION Eye (human): 350 ppm -irritant Dermal (rabbit) LD50: ~6400-8000 mg/kg^[2] Inhalation (rat) LC50: 47 mg/l/8H^[2] methyl ethyl ketone Eye (rabbit): 80 mg - irritant Oral (rat) LD50: 2054 mg/kg^[1] Skin (rabbit): 402 mg/24 hr - mild Skin (rabbit):13.78mg/24 hr open TOXICITY IRRITATION Dermal (rabbit) LD50: >5000 mg/kg^[2] Eye (rabbit): 500 mg - SEVERE Inhalation (mouse) LC50: 17.75 mg/l/2H^[2] Eye: no adverse effect observed (not irritating)^[1] ethylbenzene Oral (rat) LD50: 3500 mg/kg^[2] Skin (rabbit): 15 mg/24h mild Skin: no adverse effect observed (not irritating)^[1] TOXICITY IRRITATION dermal (rat) LD50: >2000 mg/kg^[1] Eye (rabbit): 2mg/24h - SEVERE Inhalation (rat) LC50: 49 mg/l/4H^[2] Eye (rabbit):0.87 mg - mild Oral (rat) LD50: 636 mg/kg^[2] Eye (rabbit):100 mg/30sec - mild toluene Eye: adverse effect observed (irritating)^[1] Skin (rabbit):20 mg/24h-moderate Skin (rabbit):500 mg - moderate Skin: adverse effect observed (irritating)^[1] Skin: no adverse effect observed (not irritating)^[1]

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Page 14 of 24

50.000 ppm, 7 hours/day,

422B Silicone Modified Conformal Coating (Aerosol)

Repeated overexposure of liquid to skin can cause cracking and drying. Rabbits exposed for 15 minute periods, daily, 5 days/week for 13 weeks, showed no changes in haematology, gross pathology or histopathology of the lungs, spleen, liver, kidney, lymph nodes, aorta or testes. Rats and rabbits exposed at

The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. Reproductive effector in rats
Ethylbenzene is readily absorbed following inhalation, oral, and dermal exposures, distributed throughout the body, and excreted primarily through urine. There are two different metabolic pathways for ethylbenzene with the primary pathway being the alpha-oxidation of ethylbenzene to 1-phenylethanol, mostly as the R-enantiomer. The pattern of urinary metabolite excretion varies with different mammalian species. In humans, ethylbenzene is excreted in the urine as mandelic acid and phenylgloxylic acids; whereas rats and rabbits excrete hippuric acid and phenaceturic acid as the main metabolites. Ethylbenzene can induce liver enzymes and hence its own metabolism as well as the metabolism of other substances. Ethylbenzene has a low order of acute toxicity by the oral, dermal or inhalation routes of exposure. Studies in rabbits indicate that ethylbenzene is irritating to the skin and eyes. There are numerous repeat dose studies available in a variety of species, these include: rats, mice, rabbits, guinea pig and thesus monkeys. Hearing loss has been reported in rats (but not guinea pigs) exposed to relatively high exposures (<i>400 ppm and greater</i>) of ethylbenzene in chronic toxicity/carcinogenicity studies, both rats and mice were exposed via inhalation to 0, 75, 250 or 750 ppm for 104 weeks. In rats, the kidney was the target organ of toxicity, with renal tubular hyperplasia noted in both males and females at the 750 ppm level only. In mice, the liver and lung were the principal target organs of toxicity. In male mice at 750 ppm, lung toxicity was described as alveolar epithelial metaplasia, and liver toxicity was described as hepatocellular synchital alteration, hypertrophy and mild necrosity; tis was accompanied by increased folicular cell hyperplasia in the thyroid (4% vs 10% in the controls) and an increased incidence in follicular cell hyperplasia in the thyroid gland. In studies conducted by the U.S. National Toxicology Program, inhalation of ethylpenzene at 750 ppm presulted in increased lung tumors in male m
Liver changes, utheral tract, effects on fertility, foetotoxicity, specific developmental abnormalities (musculoskeletal system) recorded. For toluene:
Particulare: Actual Toxicity Humans exposed to intermediate to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headches to intoxication, convulsione, narcosis, and death. Similar effects are observed in short-term animal studies. Humans - Toluene ingestion or inhalation can result in severe central nervous system depression, and in large doese, can act as a narcotic. The ingestion diabud 50 mL neurolas system depression with 30 minutes in one reported case. Constriction and necrosis of myocardial fibers, markedly swellen liver, congestion and hearmorrhage of the lungs and acute tubular necrosis were found on autopsy. Central nervous system effects (headaches, dizziness, intoxication) and eye inflation occurred following inhalation exposure to 100 ppm toluene 6 hours/dx for 4 dys. Exposure to 600 ppm has been reported to casus encores and death Toluene can also strip the skin of lipids causing domatilis Animals - The initial effects are instability and incorcination, lachrymation and sniffles (respiratory exposure), followed by narcosis. Animals de of respiratory failure from severe nervous system depression. Cloudy swelling of the kidneys was reported in rats following inhalation exposure to 100 ppm, 18-20 hours/dx for 4 dys. Subchronic/Chronic Effects: Rymans - Chronic occupational exposure and incidences of buene abuse have resulted in hepatomegaly and liver function changes. It has also resulted in nephrotoxity and, no cecase, was a cardiac semister and falla cardiadoxi. Numans - Chronic occupational exposure and incidences of toluene abuse have resulted in hepatomegaly and liver function changes. It has also resulted in nephrotoxity and, no cecase, was a cardiac semister and falla cardiadoxi. Numans - Chronic occupational exposure and incidences of toluene abuse have resulted in hepatomegaly and liver function changes. It has also resulted in nephrotoxity and, no re cease, was a cardiac semister and falla cardiadoxi
excretion of unchanged toluene through the lungs also accounts for 10-20%. Excretion of hippuric acid is usually complete within 24 hours after exposure. Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms

Continued...

	within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. Methyl ethyl ketone is considered to have a low order of toxicity; however methyl ethyl ketone is often used in combination with other solvents and the toxic effects of the mix may be greater than either solvent alone. Combinations of n-hexane with methyl ethyl ketone and also methyl n-butyl ketone with methyl ethyl ketone show increase in peripheral neuropathy, a progressive disorder of nerves of extremities. Combinations with chloroform also show increase in toxicity		
422B Silicone Modified Conformal Coating (Aerosol) & ACETONE	Combinations with chloroform also show increase in toxicity for acetone: The acute toxicity of acetone is low. Acetone is not a skin irritant or sensitiser but is a defatting agent to the skin. Acetone is an eye irritant. The subchronic toxicity of acetone has been examined in mice and rats that were administered acetone in the drinking water and again in rats treated by oral gavage. Acetone-induced increases in relative kidney weight changes were observed in male and female rats used in the oral 13-week study. Acetone treatment caused increases in the relative liver weight in male and female rats that were not associated with histopathologic effects and the effects may have been associated with microsomal enzyme induction. Haematologic effects consistent with macrocytic anaemia were also noted in male rats along with hyperpigmentation in the spleen. The most notable findings in the mice were increased liver and decreased spleen weights. Overall, the no-observed- effect-levels in the drinking water study were 1% for male rats (900 mg/kg/d) and male mice (2258 mg/kg/d), 2% for female mice (5945 mg/kg/d), and 5% for female rats (3100 mg/kg/d). For developmental effects, a statistically significant reduction in foetal weight, and a slight, but statistically significant increase in the percent incidence of later resorptions were seen in mice at 15,665 mg/m3 and in rats at 26,100 mg/m3. The no-observable-effect level for developmental toxicity was determined to be 5220 mg/m3 for both rats and mice. Teratogenic effects were not observed in rats and mice tested at 26,110 and 15,665 mg/m3, respectively. Lifetime dermal carcinogenicity studies in mice treated with up to 0.2 mL of acetone did not reveal any increase in organ tumor incidence relative to untreated control animals. The scientific literature contains many different studies that have measured either the neurobehavioural performance or neurophysiological response of humans exposed to acetone. Effect levels ranging from about 600 to greater than 2375 mg/m3 were		
ACETONE & ETHYLBENZENE	The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.		
XYLENE & ETHYLBENZENE	The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.		
XYLENE & METHYL ETHYL KETONE & TOLUENE	The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.		
Acute Toxicity	✓	Carcinogenicity	✓
Skin Irritation/Corrosion	 ✓ 	Reproductivity	✓
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	✓
	1		

Legend:

X − Data either not available or does not fill the criteria for classification
✓ − Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

422B Silicone Modified	ENDPOINT	TEST DURATION (HR)	:	SPECIES	VALUE		SOURCE
Conformal Coating (Aerosol)	Not Available	Not Available	Not Available		Not Availa	able	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES			VALUE	SOURCE
	LC50	96	Fish			1-783.04mg/L	2
dimethyl ether	EC50	48	Crustacea			>4400.0mg/L	2
	EC50	96	Algae or other aquatic plants			154.917mg/L	2
	NOEC	48	Crustacea			>4000mg/L	1
	ENDPOINT	TEST DURATION (HR)	SPECIES			VALUE	SOURCE
	LC50	96	Fish			5-540mg/L	2
acetone	EC50	48	Crustacea			>100mg/L	4
	EC50	96	Algae or other aquatic plants			20.565mg/L	4
	NOEC	240	Crustacea			1-866mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES			VALUE	SOURCE
	LC50	96	Fish			2.6mg/L	2
			Crustacea				
xylene	EC50	48	Crustad	cea		1.8mg/L	2

	NOEC	73	Algae or other aquatic plants	0.44mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	2-993mg/L	2
method athod betavia	EC50	48	Crustacea	5-91mg/L	2
methyl ethyl ketone	EC50	72	Algae or other aquatic plants	1-972mg/L	2
	EC0	96	Fish	1-848mg/L	2
	NOEC	96	Fish	1-170mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	6 Fish		4
ethylbenzene	EC50	48	Crustacea	1.184mg/L	4
	EC50	96	Algae or other aquatic plants	3.6mg/L	4
	NOEC	168	Crustacea	0.96mg/L	5
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	0.0073mg/L	4
	EC50	48	Crustacea	3.78mg/L	5
toluene	EC50	72	Algae or other aquatic plants	12.5mg/L	4
	BCF	24	Algae or other aquatic plants	10mg/L	4
	NOEC	168	Crustacea	0.74mg/L	5
	<u> </u>		1	<u> </u>	

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. For example, there is an increase in toxicity as alkylation of the naphthalene structure increases. The order of most toxic to least in a study using grass shrimp (Palaemonetes pugio) and brown shrimp (Penaeus aztecus) was dimethylnaphthalenes > methylnaphthalenes >naphthalenes

Studies conclude that the toxicity of an oil appears to be a function of its di-aromatic and tri-aromatic hydrocarbons, which includes three-ring hydrocarbons such as phenanthrene. The heavier (4-, 5-, and 6-ring) PAHs are more persistent than the lighter (2- and 3-ring) PAHs and tend to have greater carcinogenic and other chronic impact potential. PAHs in general are more frequently associated with chronic risks. These risks include cancer and often are the result of exposures to complex mixtures of chronic-risk aromatics (such as PAHs, alkyl PAHs, benzenes, and alkyl benzenes), rather than exposures to low levels of a single compound.

Anthrcene is a phototoxic PAH . UV light greatly increases the toxicity of anthracene to bluegill sunfish. . Benchmarks developed in the absence of UV light may be under-protective, and biological resources in strong sunlight are at more risk than those that are not.

For methyl ethyl ketone: log Kow : 0.26-0.69 log Koc : 0.69 Koc · 34 Half-life (hr) air : 2.3 Half-life (hr) H2O surface water : 72-288 Henry's atm m3 /mol: 1.05E-05 BOD 5 : 1.5-2.24, 46% COD : 2.2-2.31, 100% ThOD : 2.44 BCF : 1

Environmental fate:

TERRESTRIAL FATE: Measured Koc values of 29 and 34 were obtained for methyl ethyl ketone in silt loams. Methyl ethyl ketone is expected to have very high mobility in soil. Volatilisation of methyl ethyl ketone from dry soil surfaces is expected based upon an experimental vapor pressure of 91 mm Hg at 25 deg C. Volatilization from moist soil surfaces is also expected given the measured Henry's Law constant of 4.7x10-5 atm-cu m/mole. The volatilisation half-life of methyl ethyl ketone from silt and sandy loams was measured as 4.9 days. Methyl ethyl ketone is expected to biodegrade under both aerobic and anaerobic conditions as indicated by numerous screening tests

AQUATIC FATE: Based on Koc values, methyl ethyl ketone is not expected to adsorb to suspended solids and sediment in water. Methyl ethyl ketone is expected to volatilise from water surfaces based on the measured Henry's Law constant. Estimated half-lives for a model river and model lake are 19 and 197, hours respectively. Biodegradation of this compound is expected based upon numerous screening tests. An estimated BCF value of 1 based on an experimental log Kow of 0.29, suggests that bioconcentration in aquatic organisms is low.

ATMOSPHERIC FATE: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, methyl ethyl ketone, which has an experimental vapor pressure of 91 mm Hg at 25 deg C, will exist solely as a vapor in the ambient atmosphere. Vapour-phase methyl ethyl ketone is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 14 days. Methyl ethyl ketone is also expected to undergo photodecomposition in the atmosphere by natural sunlight. Photochemical degradation of methyl ethyl ketone by natural sunlight is expected to occur at approximately 1/5 the rate of degradation by photochemically produced hydroxyl radicals. Ecotoxicity:

Fish LC50 (24 h): bluegill sunfish (Lepomis macrochirus) 1690-5640 mg/l; guppy (Lebistes reticulatus) 5700 mg/l; goldfish (Carassius auratus) >5000 mg/l Fish LC50 (96 h): fathead minnow (Pimephales promelas) 3200 mg/l; bluegill sunfish (Lepomis macrochirus) 4467 mg/l; mosquito fish (Gambusia affinis) 5600 mg/l Daphnia magna LC50 (48 h):<520-1382 mg/l Daphnia magna LC50 (24 h): 8890 mg/l

Brine shrimp (Artemia salina) LC50 (24 h): 1950 mg/l

Most ethers are very resistant to hydrolysis, and the rate of cleavage of the carbon-oxygen bond by abiotic processes is expected to be insignificant.

Direct photolysis will not be an important removal process since aliphatic ethers do not absorb light at wavelengths >290 nm

For xylenes : log Koc : 2.05-3.08 Koc : 25.4-204 Half-life (hr) air : 0.24-42 Half-life (hr) H2O surface water : 24-672 Half-life (hr) H2O ground : 336-8640 Half-life (hr) soil : 52-672 Henry's Pa m3 /mol: 637-879 Henry's atm m3 /mol: 7.68E-03

BOD 5 if unstated: 1.4,1% COD : 2.56,13% ThOD : 3.125 BCF : 23 log BCF : 1.17-2.41 Environmental Fate

Terrestrial fate:: Measured Koc values of 166 and 182, indicate that 3-xylene is expected to have moderate mobility in soil. Volatilisation of p-xylene is expected to be important from moist soil surfaces given a measured Henry's Law constant of 7.18x10-3 atm-cu m/mole. The potential for volatilisation of 3-xylene from dry soil surfaces may exist based on a measured vapor pressure of 8.29 mm Hg. p-Xylene may be degraded during its passage through soil). The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. p-Xylene, present in soil samples contaminated with jet fuel, was completely degraded aerobically within 5 days. In aquifer studies under anaerobic conditions, p-xylene was degraded, usually within several weeks, with the production of 3-methylbenzylfumaric acid, 3-methylbenzylsuccinic acid, 3-methylbenzoate, and 3-methylbenzoate, and

Aquatic fate: Koc values indicate that p-xylene may adsorb to suspended solids and sediment in water. p-Xylene is expected to volatilise from water surfaces based on the measured Henry's Law constant. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. BCF values of 14.8, 23.4, and 6, measured in goldfish, eels, and clams, respectively, indicate that bioconcentration in aquatic organisms is low. p-Xylene in water with added humic substances was 50% degraded following 3 hours irradiation suggesting that indirect photooxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. Although p-xylene is biodegradable and has been observed to degrade in pond water, there are insufficient data to assess the rate of this process in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater in several studies; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high.

Atmospheric fate:

Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere primarily by reaction with photochemically-produced hydroxyl radicals, with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylenes' susceptibility to photochemical oxidation in the troposphere is to the extent that they may contribute to photochemical smog formation.

According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and from its vapour pressure, p-xylene, is expected to exist solely as a vapour in the atmosphere atmosphere. Vapour-phase p-xylene is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 16 hours. A half-life of 1.0 hr in summer and 10 hr in winter was measured for the reaction of p-xylene with photochemically-produced hydroxyl radicals. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers, with loss rates varying from 9-42% per hr. The photooxidation of p-xylene results in the production of component of formaldehyde, glyoxal, methylglyoxal, 3-methylghenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol.

Ecotoxicity:

for xylenes

Fish LC50 (96 h) Pimephales promelas 13.4 mg/l; Oncorhyncus mykiss 8.05 mg/l; Lepomis macrochirus 16.1 mg/l (all flow through values); Pimephales promelas 26.7 (static) Daphnia EC50 948 h): 3.83 mg/l

Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/l Gammarus lacustris LC50 (48 h): 0.6 mg/l

For ketones:

Ketones, unless they are alpha, beta--unsaturated ketones, can be considered as narcosis or baseline toxicity compounds

Hydrolysis may also involve the addition of water to ketones to yield ketals under mild acid conditions. However, this addition of water is thermodynamically favorable only for low molecular weight ketones. This addition is an equilibrium reaction that is reversible upon a change of water concentration and the reaction ultimately leads to no permanent change in the structure of the ketone substrateThe higher molecular weight ketones do no form stable ketals. Therefore, the ketones are stable to water under ambient environmental conditions

Another possible reaction of ketones in water involves the enolic hydrogen on the carbons bonded to the carbonyl function. Under conditions of high pH (pH greater than 10), the enolic proton is abstracted by base (OH-) forming a carbanion intermediate that may react with other organic substrates (*e.g.*, ketones, esters, aldehydes) containing a center for nucleophilic attack. The reactions, commonly recognized as condensation reactions, produce higher molecular weight products. Under ambient conditions of temperature, pH, and low concentration, these condensation reactions are unfavorable.

Based on its reactions in air, it seems likely that ketones undergo photolysis in water. It is probable that ketones will be biodegraded to an appreciable degree by micro-organisms in soil and water. They are unlikely to bioconcentrate or biomagnify.

DO NOT discharge into sewer or waterways.

for acetone: log Kow: -0.24 Half-life (hr) air: 312-1896 Half-life (hr) H2O surface water: 20 Henry's atm m3 /mol: 3.67E-05 BOD 5: 0.31-1.76,46-55% COD: 1.12-2.07 ThOD: 2.2 BCF: 0.69

Environmental fate:

Acetone preferentially locates in the air compartment when released to the environment. A substantial amount of acetone can also be found in water, which is consistent with the high water to air partition coefficient and its small, but detectable, presence in rain water, sea water, and lake water samples. Very little acetone is expected to reside in soil, biota, or suspended solids. This is entirely consistent with the physical and chemical properties of acetone and with measurements showing a low propensity for soil absorption and a high preference for moving through the soil and into the ground water

In air, acetone is lost by photolysis and reaction with photochemically produced hydroxyl radicals; the estimated half-life of these combined processes is about 22 days. The relatively long half-life allows acetone to be transported long distances from its emission source.

Acetone is highly soluble and slightly persistent in water, with a half-life of about 20 hours; it is minimally toxic to aquatic life.

Acetone released to soil volatilises although some may leach into the ground where it rapidly biodegrades.

Acetone does not concentrate in the food chain.

Acetone meets the OECD definition of readily biodegradable which requires that the biological oxygen demand (BOD) is at least 70% of the theoretical oxygen demand (THOD) within the 28-day test period

Drinking Water Standard: none available.

Soil Guidelines: none available.

Air Quality Standards: none available

Ecotoxicity:

Testing shows that acetone exhibits a low order of toxicity

Fish LC50: brook trout 6070 mg/l; fathead minnow 15000 mg/l Bird LC0 (5 day): Japanese quail, ring-neck pheasant 40,000 mg/l

Daphnia magna LC50 (48 h): 15800 mg/l; NOEC 8500 mg/l

Aquatic invertebrate 2100 - 16700 mg/l

Aquatic plant NOEC: 5400-7500 mg/

Daphnia magna chronic NOEC 1660 mg/l

Acetone vapors were shown to be relatively toxic to two types insects and their eggs. The time to 50% lethality (LT50) was found to be 51.2 hr and 67.9 hr when the flour beetle (*Tribolium confusum*) and the flour moth (*Ephestia kuehniella*) were exposed to an airborne acetone concentration of 61.5 mg/m3. The LT50 values for the eggs were 30-50% lower than for the adult. The direct application of acetone liquid to the body of the insects or surface of the eggs did not, however, cause any mortality.

The ability of acetone to inhibit cell multiplication has been examined in a wide variety of microorganisms. The results have generally indicated mild to minimal toxicity with NOECs greater than 1700 mg/L for exposures lasting from 6 hr to 4 days. Longer exposure periods of 7 to 8 days with bacteria produced mixed results; but overall the data indicate a low degree of toxicity for acetone. The only exception to these findings were the results obtained with the flagellated protozoa (*Entosiphon sulcatum*) which yielded a 3-day NOEC of 28 mg/L.

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
dimethyl ether	LOW	LOW
acetone	LOW (Half-life = 14 days)	MEDIUM (Half-life = 116.25 days)
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)
methyl ethyl ketone	LOW (Half-life = 14 days)	LOW (Half-life = 26.75 days)
ethylbenzene	HIGH (Half-life = 228 days)	LOW (Half-life = 3.57 days)
toluene	LOW (Half-life = 28 days)	LOW (Half-life = 4.33 days)

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
dimethyl ether	LOW (LogKOW = 0.1)
acetone	LOW (BCF = 0.69)
xylene	MEDIUM (BCF = 740)
methyl ethyl ketone	LOW (LogKOW = 0.29)
ethylbenzene	LOW (BCF = 79.43)
toluene	LOW (BCF = 90)

12.4. Mobility in soil

Ingredient	Mobility
dimethyl ether	HIGH (KOC = 1.292)
acetone	HIGH (KOC = 1.981)
methyl ethyl ketone	MEDIUM (KOC = 3.827)
ethylbenzene	LOW (KOC = 517.8)
toluene	LOW (KOC = 268)

12.5.Results of PBT and vPvB assessment

	Р	В	т
Relevant available data	Not Applicable	Not Applicable	Not Applicable
PBT Criteria fulfilled?	Not Applicable	Not Applicable	Not Applicable

12.6. Other adverse effects

No data available

SECTION 13 DISPOSAL CONSIDERATIONS

13.1. Waste treatment methods

Product / Packaging disposal	Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: Reduction Reuse Recycling Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. DO NOT allow wash water for treatment before disposal. In all cases disposal to sever may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. Consult State Land Waste Management Authority for disposal. Discharge contents of damaged aerosol cans at an approved site. Allow small quantities to evaporate. DO NOT incinerate or puncture aerosol cans. Bury residues and emptied aerosol cans at an approved site.
Waste treatment options	Not Available
Sewage disposal options	Not Available

SECTION 14 TRANSPORT INFORMATION

Labels Required

Land transport (ADR)

	-					
14.1. UN number	1950					
14.2. UN proper shipping name	AEROSOLS	AEROSOLS				
14.3. Transport hazard class(es)	Class 2.1 Subrisk Not Applicable					
14.4. Packing group	Not Applicable	Not Applicable				
14.5. Environmental hazard	Not Applicable					
14.6. Special precautions for user	Hazard identification (Kemler)	Not Applicable 5F				
	Hazard Label	2.1				
	Special provisions	190 327 344 625				
	Limited quantity	1L				

Air transport (ICAO-IATA / DGR)

14.1. UN number	1950			
14.2. UN proper shipping name	Aerosols, flammable			
14.3. Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	A Subrisk Not Applicable		
14.4. Packing group	Not Applicable			
14.5. Environmental hazard	Not Applicable			
	Special provisions		A145 A167 A802	
	Cargo Only Packing Instructions		203	
	Cargo Only Maximum Qty / Pack		150 kg	
14.6. Special precautions for user	Passenger and Cargo Packing Instructions		203	
	Passenger and Cargo Maximum Qty / Pack		75 kg	
	Passenger and Cargo Limited Quantity Packing Instructions		Y203	
	Passenger and Cargo	Limited Maximum Qty / Pack	30 kg G	

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	1950		
14.2. UN proper shipping name	AEROSOLS		
14.3. Transport hazard class(es)	IMDG Class 2.1 IMDG Subrisk Not Applicable		
14.4. Packing group	Not Applicable		
14.5. Environmental hazard	Not Applicable		
14.6. Special precautions for user	EMS NumberF-D, S-USpecial provisions63 190 277 327 344 381 959Limited Quantities1000ml		

Inland waterways transport (ADN)

14.1. UN number	1950			
14.2. UN proper shipping name	AEROSOLS			
14.3. Transport hazard class(es)	2.1 Not Applicable			
14.4. Packing group	Not Applicable			
14.5. Environmental hazard	Not Applicable			
14.6. Special precautions for user	Classification code 5F Special provisions 190; 327; 344; 625			

14.7. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

DIMETHYL ETHER(115-10-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

ADN - European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways	European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of
Europe EC Inventory	Dangerous Substances - updated by ATP: 31
Europe ECHA Registered Substances - Classification and Labelling - DSD-DPD	European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and
Europe European Customs Inventory of Chemical Substances - ECICS (Slovak)	Packaging of Substances and Mixtures - Annex VI
Europe European Customs Inventory of Chemical Substances ECICS (Bulgarian)	European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and
Europe European Customs Inventory of Chemical Substances ECICS (Czech)	Packaging of Substances and Mixtures - Annex VI - Chemwatch Standard Format
Europe European Customs Inventory of Chemical Substances ECICS (Romanian)	European Union (EU) Transport of Dangerous Goods by Road - Dangerous Goods List
European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2011, Spanish)	(English) GESAMP/EHS Composite List - GESAMP Hazard Profiles
European Agreement concerning the International Carriage of Dangerous Goods by Road	IMO IBC Code Chapter 17: Summary of minimum requirements
(ADR 2017, English)	International Air Transport Association (IATA) Dangerous Goods Regulations
European Chemical Agency (ECHA) Classification & Labelling Inventory - Chemwatch	International Maritime Dangerous Goods Requirements (IMDG Code)
Harmonised classification	Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A:
European Customs Inventory of Chemical Substances ECICS (English)	Dangerous Goods List - RID 2019 (English)
	UK Workplace Exposure Limits (WELs)
	United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

ACETONE(67-64-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

ADN - European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways

EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs) Europe EC Inventory

Europe ECHA Registered Substances - Classification and Labelling - DSD-DPD Europe European Customs Inventory of Chemical Substances - ECICS (Slovak) Europe European Customs Inventory of Chemical Substances ECICS (Bulgarian)

Europe European Customs Inventory of Chemical Substances ECICS (Czech) Europe European Customs Inventory of Chemical Substances ECICS (Romanian)

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2011, Spanish)

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2017, English)

European Chemical Agency (ECHA) Classification & Labelling Inventory - Chemwatch Harmonised classification

European Customs Inventory of Chemical Substances ECICS (English)

European Trade Union Confederation (ETUC) Priority List for REACH Authorisation

XYLENE(1330-20-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

ADN - European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways

EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs) EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List of Substances

Europe EC Inventory

(English)

Europe ECHA Registered Substances - Classification and Labelling - DSD-DPD

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2011, Spanish)

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2017, English)

European Chemical Agency (ECHA) Classification & Labelling Inventory - Chemwatch Harmonised classification

European Customs Inventory of Chemical Substances ECICS (English)

European Trade Union Confederation (ETUC) Priority List for REACH Authorisation European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31 European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)

European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI - Chernwatch Standard Format European Union (EU) Transport of Dangerous Goods by Road - Dangerous Goods List (English)

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO IBC Code Chapter 18: List of products to which the Code does not apply

IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)

Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2019 (English)

UK Workplace Exposure Limits (WELs)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI - Chemwatch Standard Format European Union (EU) Transport of Dangerous Goods by Road - Dangerous Goods List (English)

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk

IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code)

Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2019 (English)

UK Workplace Exposure Limits (WELs)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

METHYL ETHYL KETONE(78-93-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

ADN - European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways

EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)

EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List of Substances

Europe EC Inventory

Europe ECHA Registered Substances - Classification and Labelling - DSD-DPD

Europe European Customs Inventory of Chemical Substances - ECICS (Slovak)

Europe European Customs Inventory of Chemical Substances ECICS (Bulgarian)

Europe European Customs Inventory of Chemical Substances ECICS (Czech) Europe European Customs Inventory of Chemical Substances ECICS (Romanian)

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2011, Spanish)

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2017, English)

European Chemical Agency (ECHA) Classification & Labelling Inventory - Chemwatch Harmonised classification

European Customs Inventory of Chemical Substances ECICS (English)

ETHYLBENZENE(100-41-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS

ADN - European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways

EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs) Europe EC Inventory

Europe ECHA Registered Substances - Classification and Labelling - DSD-DPD Europe European Customs Inventory of Chemical Substances - ECICS (Slovak) Europe European Customs Inventory of Chemical Substances ECICS (Bulgarian)

Europe European Customs Inventory of Chemical Substances ECICS (Czech)

Europe European Customs Inventory of Chemical Substances ECICS (Romanian) European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2011, Spanish)

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2017, English)

European Chemical Agency (ECHA) Classification & Labelling Inventory - Chemwatch Harmonised classification

European Customs Inventory of Chemical Substances ECICS (English)

European Trade Union Confederation (ETUC) Priority List for REACH Authorisation

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)

TOLUENE(108-88-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

European Trade Union Confederation (ETUC) Priority List for REACH Authorisation European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)

European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI - Chernwatch Standard Format European Union (EU) Transport of Dangerous Goods by Road - Dangerous Goods List (English)

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk

International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)

Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2019 (English)

UK Workplace Exposure Limits (WELs)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

 $\label{eq:constraint} \begin{array}{l} \mbox{European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI - Chemwatch Standard Format \\ \end{array}$

European Union (EU) Transport of Dangerous Goods by Road - Dangerous Goods List (English)

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures

containing at least 99% by weight of components already assessed by IMO

IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code) Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A:

Dangerous Goods List - RID 2019 (English)

UK Workplace Exposure Limits (WELs)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

ADN - European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways

EU Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products - Annex III - List of Substances which cosmetic products must not contain except subject to the restrictions laid down (Czech)

EU Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products - Annex III - List of Substances which cosmetic products must not contain except subject to the restrictions laid down (Estonian)

EU Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products - Annex III - List of Substances which cosmetic products must not contain except subject to the restrictions laid down (German)

EU Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products - Annex III - List of Substances which cosmetic products must not contain except subject to the restrictions laid down (Latvian)

EU Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products - Annex III - List of Substances which cosmetic products must not contain except subject to the restrictions laid down (Lithuanian)

EU Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products - Annex III - List of Substances which cosmetic products must not contain except subject to the restrictions laid down (Portuguese)

EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)

EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List of Substances

Europe EC Inventory

Europe ECHA Registered Substances - Classification and Labelling - DSD-DPD

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2011, Spanish)

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR 2017, English)

European Chemical Agency (ECHA) Classification & Labelling Inventory - Chemwatch Harmonised classification

European Customs Inventory of Chemical Substances ECICS (English)

European Trade Union Confederation (ETUC) Priority List for REACH Authorisation European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)

European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI - Chemwatch Standard Format

European Union (EU) Transport of Dangerous Goods by Road - Dangerous Goods List (English)

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk

IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code) Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2019 (English)

UK Workplace Exposure Limits (WELs)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2015/830; Regulation (EC) No 1272/2008 as updated through ATPs.

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

National Inventory	Status	
Australia - AICS	Yes	
Canada - DSL	Yes	
Canada - NDSL	No (toluene; acetone; xylene; dimethyl ether; ethylbenzene; methyl ethyl ketone)	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	Yes	
Japan - ENCS	Yes	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	Yes	
Vietnam - NCI	Yes	
Russia - ARIPS	Yes	
Thailand - TECI	Yes	
Legend:	Yes = All declared ingredients are on the inventory No = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)	

SECTION 16 OTHER INFORMATION

Revision Date	10/02/2020
Initial Date	27/03/2018

Full text Risk and Hazard codes

H220	Extremely flammable gas.
H225	Highly flammable liquid and vapour.
H226	Flammable liquid and vapour.
H280	Contains gas under pressure; may explode if heated.
H361d	Suspected of damaging the unborn child.

SDS Version Summary

Version	Issue Date	Sections Updated
2.7.1.1.1	16/05/2019	Appearance, Ingredients, Physical Properties

Other information

Ingredients with multiple cas numbers

Name	CAS No
dimethyl ether	115-10-6, 157621-61-9

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL : No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

Reason for Change

A-1.04 - Update to the emergency phone number information.