

# **MG Chemicals UK Limited**

Version No: A-1.01 Safety Data Sheet (Conforms to Regulation (EU) No 2015/830) Issue Date:02/10/2018 Revision Date: 17/03/2020 L.REACH.GBR.EN

# SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

# 1.1. Product Identifier

| Product name                  | 8330S-B                                               |
|-------------------------------|-------------------------------------------------------|
| Synonyms                      | SDS Code: 8330S–B, 8330S-21G, 8330S-50ML, 8330S-200ML |
| Other means of identification | Silver Conductive Epoxy Adhesive                      |

# 1.2. Relevant identified uses of the substance or mixture and uses advised against

| Relevant identified uses | Silver filled electrically conductive adhesive for repairing traces on circuit boards, cold soldering, and bonding |
|--------------------------|--------------------------------------------------------------------------------------------------------------------|
| Uses advised against     | Not Applicable                                                                                                     |

# 1.3. Details of the supplier of the safety data sheet

| Registered company name | MG Chemicals UK Limited                                                   | MG Chemicals (Head office)                               |  |  |
|-------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|--|--|
| Address                 | Hearne House, 23 Bilston Street, Sedgely Dudley DY3 1JA United<br>Kingdom | 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada |  |  |
| Telephone               | +(44) 1663 362888                                                         | +(1) 800-201-8822                                        |  |  |
| Fax                     | Not Available                                                             | +(1) 800-708-9888                                        |  |  |
| Website                 | Not Available                                                             | www.mgchemicals.com                                      |  |  |
| Email                   | sales@mgchemicals.com Info@mgchemicals.com                                |                                                          |  |  |

# 1.4. Emergency telephone number

| Association / Organisation        | Verisk 3E (Access code: 335388) | Not Available |  |
|-----------------------------------|---------------------------------|---------------|--|
| Emergency telephone numbers       | +(44) 20 35147487               | Not Available |  |
| Other emergency telephone numbers | +(0) 800 680 0425               | Not Available |  |

# **SECTION 2 HAZARDS IDENTIFICATION**

# 2.1. Classification of the substance or mixture

| Classification according to regulation (EC) No 1272/2008 [CLP] [1] | H315 - Skin Corrosion/Irritation Category 2, H318 - Serious Eye Damage Category 1, H317 - Skin Sensitizer Category 1, H410 - Chronic Aquatic Hazard Category 1 |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Legend:                                                            | 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI                                                               |

# 2.2. Label elements

Hazard pictogram(s)







SIGNAL WORD DANGER

# Hazard statement(s)

| H315 | Causes skin irritation.                               |  |  |
|------|-------------------------------------------------------|--|--|
| H318 | Causes serious eye damage.                            |  |  |
| H317 | May cause an allergic skin reaction.                  |  |  |
| H410 | Very toxic to aquatic life with long lasting effects. |  |  |

# Supplementary statement(s)

Not Applicable

| P280 | Wear protective gloves/protective clothing/eye protection/face protection. |  |  |
|------|----------------------------------------------------------------------------|--|--|
| P261 | Avoid breathing dust/fumes.                                                |  |  |
| P273 | Avoid release to the environment.                                          |  |  |
| P272 | Contaminated work clothing should not be allowed out of the workplace.     |  |  |

# Precautionary statement(s) Response

| P305+P351+P338 | IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| P310           | Immediately call a POISON CENTER/doctor/physician/first aider.                                                                |  |  |  |  |
| P302+P352      | IF ON SKIN: Wash with plenty of water and soap.                                                                               |  |  |  |  |
| P333+P313      | If skin irritation or rash occurs: Get medical advice/attention.                                                              |  |  |  |  |
| P362+P364      | Take off contaminated clothing and wash it before reuse.                                                                      |  |  |  |  |
| P391           | Collect spillage.                                                                                                             |  |  |  |  |

# Precautionary statement(s) Storage

Not Applicable

# Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

### 2.3. Other hazards

Inhalation and/or ingestion may produce health damage\*.

Cumulative effects may result following exposure\*.

May produce discomfort of the respiratory system\*.

Possible respiratory sensitizer\*.

REACh - Art.57-59: The mixture does not contain Substances of Very High Concern (SVHC) at the SDS print date.

# **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS**

# 3.1.Substances

See 'Composition on ingredients' in Section 3.2

# 3.2.Mixtures

| 1.CAS No<br>2.EC No<br>3.Index No<br>4.REACH No                                                    | %[weight]            | Name                                                           | Classification according to regulation (EC) No 1272/2008 [CLP]                                                                                                       |  |  |
|----------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1.7440-22-4<br>2.231-131-3<br>3.Not Available<br>4.01-2119555669-21-<br>XXXX 01-2119513211-60-XXXX | 60-100               | silver                                                         | EUH210 <sup>[1]</sup>                                                                                                                                                |  |  |
| 1.68541-13-9<br>2.Not Available<br>3.Not Available<br>4.Not Available                              | 7-13                 | linoleic acid/4,7,10-trioxa-<br>1,13-tridecanediamine polyamid | Serious Eye Damage Category 1, Skin Corrosion/Irritation Category 2; H318, H315 [1]                                                                                  |  |  |
| 1.68082-29-1<br>2.500-191-5<br>3.Not Available<br>4.01-2119972320-44-XXXX                          | 5-10                 | tall oil/ triethylenetetramine polyamides                      | Not Applicable                                                                                                                                                       |  |  |
| 1.4246-51-9<br>2.224-207-2<br>3.Not Available<br>4.01-2119963377-26-XXXX                           | 1-5                  | diethylene glycol, di(3-aminopropyl)<br>ether                  | Metal Corrosion Category 1, Chronic Aquatic Hazard Category 3, Serious Eye Damage Category 1, Skin Corrosion/Irritation Category 1B; H290, H412, H314 [1]            |  |  |
| 1.112-24-3<br>2.203-950-6<br>3.612-059-00-5<br>4.Not Available                                     | 0.5-1.5              | triethylenetetramine                                           | Acute Toxicity (Dermal) Category 4, Chronic Aquatic Hazard Category 3, Skin Sensitizer Category 1, Skin Corrosion/Irritation Category 1B; H312, H412, H317, H314 [2] |  |  |
| Legend:                                                                                            | Classified available | by Chemwatch; 2. Classification drawn from                     | Regulation (EU) No 1272/2008 - Annex VI; 3. Classification drawn from C&L * EU IOELVs                                                                                |  |  |

# **SECTION 4 FIRST AID MEASURES**

# 4.1. Description of first aid measures

If this product comes in contact with eyes:

- Wash out immediately with water.
- ► If irritation continues, seek medical attention.
- Eye Contact

  Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

|              | <ul> <li>DO NOT attempt to remove particles attached to or embedded in eye.</li> <li>Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye.</li> <li>Seek urgent medical assistance, or transport to hospital.</li> </ul> |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skin Contact | If skin contact occurs:  Immediately remove all contaminated clothing, including footwear.  Flush skin and hair with running water (and soap if available).  Seek medical attention in event of irritation.                                                                                                                                          |
| Inhalation   | <ul> <li>If furnes, aerosols or combustion products are inhaled remove from contaminated area.</li> <li>Other measures are usually unnecessary.</li> </ul>                                                                                                                                                                                           |
| Ingestion    | <ul> <li>Immediately give a glass of water.</li> <li>First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.</li> </ul>                                                                                                                                                                                  |

# 4.2 Most important symptoms and effects, both acute and delayed

See Section 11

# 4.3. Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

53ag

Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce 'metal fume fever' in workers from an acute or long term exposure.

- Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
- Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months.
- ▶ Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
- ▶ The general approach to treatment is recognition of the disease, supportive care and prevention of exposure
- F Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.

[Ellenhorn and Barceloux: Medical Toxicology]

# **SECTION 5 FIREFIGHTING MEASURES**

### 5.1. Extinguishing media

▶ DO NOT use halogenated fire extinguishing agents.

Metal dust fires need to be smothered with sand, inert dry powders.

# DO NOT USE WATER, CO2 or FOAM.

- Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire.
- Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas.
- ▶ Chemical reaction with CO2 may produce flammable and explosive methane.
- If impossible to extinguish, withdraw, protect surroundings and allow fire to burn itself out.

# 5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility

- ▶ Reacts with acids producing flammable / explosive hydrogen (H2) gas
- Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

# 5.3. Advice for firefighters

| 5.3. Advice for firefighters |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fire Fighting                | <ul> <li>Alert Fire Brigade and tell them location and nature of hazard.</li> <li>Wear breathing apparatus plus protective gloves.</li> <li>Prevent, by any means available, spillage from entering drains or water courses.</li> <li>Use water delivered as a fine spray to control fire and cool adjacent area.</li> <li>DO NOT approach containers suspected to be hot.</li> <li>Cool fire exposed containers with water spray from a protected location.</li> <li>If safe to do so, remove containers from path of fire.</li> <li>Equipment should be thoroughly decontaminated after use.</li> </ul> |
|                              | DO NOT disturb burning dust. Explosion may result if dust is stirred into a cloud, by providing oxygen to a large surface of hot metal.     DO NOT use water or foam as generation of explosive hydrogen may result.  With the exception of the metals that burn in contact with air or water (for example, sodium), masses of combustible metals do not represent unusual fire                                                                                                                                                                                                                           |

With the exception of the metals that burn in contact with air or water (for example, sodium), masses of combustible metals do not represent unusual fire risks because they have the ability to conduct heat away from hot spots so efficiently that the heat of combustion cannot be maintained - this means that it will require a lot of heat to ignite a mass of combustible metal. Generally, metal fire risks exist when sawdust, machine shavings and other metal 'fines' are present

 $\label{thm:metal-powders} \mbox{Metal powders, while generally regarded as non-combustible:}$ 

- May burn when metal is finely divided and energy input is high.
- ► May react explosively with water.
- ► May be ignited by friction, heat, sparks or flame.
- May REIGNITE after fire is extinguished.
- Will burn with intense heat.

# Fire/Explosion Hazard

# Note: • Metal dust fires are slow moving but intense and difficult to extinguish.

- ► Containers may explode on heating.
- Dusts or fumes may form explosive mixtures with air.
- ► Gases generated in fire may be poisonous, corrosive or irritating.
- Hot or burning metals may react violently upon contact with other materials, such as oxidising agents and extinguishing agents used on fires involving ordinary combustibles or flammable liquids.
- ▶ Temperatures produced by burning metals can be higher than temperatures generated by burning flammable liquids
- ▶ Some metals can continue to burn in carbon dioxide, nitrogen, water, or steam atmospheres in which ordinary combustibles or flammable liquids would be incapable of burning.

be incapable of burning.

Combustion products include:

carbon monoxide (CO) carbon dioxide (CO2)

nitrogen oxides (NOx) other pyrolysis products typical of burning organic material.

# **SECTION 6 ACCIDENTAL RELEASE MEASURES**

# 6.1. Personal precautions, protective equipment and emergency procedures

See section 8

# 6.2. Environmental precautions

See section 12

# 6.3. Methods and material for containment and cleaning up

Environmental hazard - contain spillage

- Clean up all spills immediately.
- ► Avoid contact with skin and eyes
- ► Wear impervious gloves and safety glasses.
- Use dry clean up procedures and avoid generating dust.
- Minor Spills Vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
  - Do NOT use air hoses for cleaning
     Place spilled material in clean, dry, sealable, labelled container.

### Environmental hazard - contain spillage.

- Do not use compressed air to remove metal dusts from floors, beams or equipment
- · Vacuum cleaners, of flame-proof design, should be used to minimise dust accumulation.
- Use non-sparking handling equipment, tools and natural bristle brushes.
- Provide grounding and bonding where necessary to prevent accumulation of static charges during metal dust handling and transfer operations
  - Cover and reseal partially empty containers.
- Do not allow chips, fines or dusts to contact water, particularly in enclosed areas.

# If molten:

- ▶ Contain the flow using dry sand or salt flux as a dam.
- Major Spills
- Contain the flow using dry sand or sait flux as a dam
- All tooling (e.g., shovels or hand tools) and containers which come in contact with molten metal must be preheated or specially coated, rust free and approved for such use.
- Allow the spill to cool before remelting scrap.

### Moderate hazard.

- ► CAUTION: Advise personnel in area.
- ▶ Alert Emergency Services and tell them location and nature of hazard.
- ► Control personal contact by wearing protective clothing.
- ▶ Prevent, by any means available, spillage from entering drains or water courses.
- ► Recover product wherever possible.
- ► IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- ▶ If contamination of drains or waterways occurs, advise Emergency Services.

# 6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

# **SECTION 7 HANDLING AND STORAGE**

Safe handling

# 7.1. Precautions for safe handling

# For molten metals

- Molten metal and water can be an explosive combination. The risk is greatest when there is sufficient molten metal to entrap or seal off water. Water and other forms of contamination on or contained in scrap or remelt ingot are known to have caused explosions in melting operations. While the products may have minimal surface roughness and internal voids, there remains the possibility of moisture contamination or entrapment. If confined, even a few drops can lead to violent explosions.
- · All tooling, containers, molds and ladles, which come in contact with molten metal must be preheated or specially coated, rust free and approved for such use.
- Any surfaces that may contact molten metal (e.g. concrete) should be specially coated
- Drops of molten metal in water (e.g. from plasma arc cutting), while not normally an explosion hazard, can generate enough flammable hydrogen gas to present an explosion hazard. Vigorous circulation of the water and removal of the particles minimise the hazard.

During melting operations, the following minimum guidelines should be observed:

- Inspect all materials prior to furnace charging and completely remove surface contamination such as water, ice, snow, deposits of grease and oil or other surface contamination resulting from weather exposure, shipment, or storage.
- $\cdot$  Store materials in dry, heated areas with any cracks or cavities pointed downwards.
- Preheat and dry large objects adequately before charging in to a furnace containing molten metal. This is typically done by the use of a drying oven or homogenising furnace. The dry cycle should bring the metal temperature of the coldest item of the batch to 200 degree C (400 deg F) and then hold at that temperature for 6 hours.
- ► Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- ▶ Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- ▶ DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.

# Continued...

- Always wash hands with soap and water after handling.
- ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
- ▶ Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- Establish good housekeeping practices.
- Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
- ▶ Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a 'secondary' explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
- Do not use air hoses for cleaning.
- Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used.
- ► Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
- ▶ Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance.
- ▶ Do not empty directly into flammable solvents or in the presence of flammable vapors.
- ► The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- ► Do NOT cut, drill, grind or weld such containers.
- ▶ In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

### Fire and explosion protection

#### See section 5

- ▶ Store in original containers
- Keep containers securely sealed.
- Store in a cool, dry area protected from environmental extremes
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

# Other information

### For major quantities

- Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams).
- ► Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

# 7.2. Conditions for safe storage, including any incompatibilities

# Suitable container

- Lined metal can, lined metal pail/ can.
- ► Plastic pail.
- Polyliner drum.
- ▶ Packing as recommended by manufacturer.
- ► Check all containers are clearly labelled and free from leaks.
- Bulk bags: Reinforced bags required for dense materials.
- ► Glass container is suitable for laboratory quantities
- CARE: Packing of high density product in light weight metal or plastic packages may result in container collapse with product release
- Heavy gauge metal packages / Heavy gauge metal drums
- ► WARNING: Avoid or control reaction with peroxides. All *transition metal* peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.
- ► The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- Avoid reaction with borohydrides or cyanoborohydrides
- ► Silver or silver salts readily form explosive silver fulminate in the presence of both nitric acid and ethanol. The resulting fulminate is much more sensitive and a more powerful detonator than mercuric fulminate.
- ► Silver and its compounds and salts may also form explosive compounds in the presence of acetylene and nitromethane.
- Many metals may incandesce, react violently, ignite or react explosively upon addition of concentrated nitric acid.
- Avoid strong acids, bases.

Metals exhibit varying degrees of activity. Reaction is reduced in the massive form (sheet, rod, or drop), compared with finely divided forms. The less active metals will not burn in air but:

# Storage incompatibility

- can react exothermically with oxidising acids to form noxious gases.
   catalyse polymerisation and other reactions, particularly when finely divided
- react with halogenated hydrocarbons (for example, copper dissolves when heated in carbon tetrachloride), sometimes forming explosive compounds.
- Finely divided metal powders develop pyrophoricity when a critical specific surface area is exceeded; this is ascribed to high heat of oxide formation on exposure to air.
- ► Safe handling is possible in relatively low concentrations of oxygen in an inert gas.
- Several pyrophoric metals, stored in glass bottles have ignited when the container is broken on impact. Storage of these materials moist and in metal containers is recommended.
- ▶ The reaction residues from various metal syntheses (involving vacuum evaporation and co-deposition with a ligand) are often pyrophoric.

Factors influencing the pyrophoricity of metals are particle size, presence of moisture, nature of the surface of the particle, heat of formation of the oxide, or nitride, mass, hydrogen content, stress, purity and presence of oxide, among others.

- Many metals in elemental form react exothermically with compounds having active hydrogen atoms (such as acids and water) to form flammable hydrogen gas and caustic products.
- ▶ Elemental metals may react with azo/diazo compounds to form explosive products.
- Some elemental metals form explosive products with halogenated hydrocarbons.

# 7.3. Specific end use(s)

See section 1.2

# **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION**

### 8.1. Control parameters

# DERIVED NO EFFECT LEVEL (DNEL)

Not Available

# PREDICTED NO EFFECT LEVEL (PNEC)

Not Available

# OCCUPATIONAL EXPOSURE LIMITS (OEL)

### INGREDIENT DATA

| Source                              | Ingredient | Material name    | TWA       | STEL          | Peak          | Notes         |
|-------------------------------------|------------|------------------|-----------|---------------|---------------|---------------|
| UK Workplace Exposure Limits (WELs) | silver     | Silver, metallic | 0.1 mg/m3 | Not Available | Not Available | Not Available |

### **EMERGENCY LIMITS**

| Ingredient                                    | Material name                                                   | TEEL-1    | TEEL-2    | TEEL-3    |
|-----------------------------------------------|-----------------------------------------------------------------|-----------|-----------|-----------|
| silver                                        | Silver                                                          | 0.3 mg/m3 | 170 mg/m3 | 990 mg/m3 |
| diethylene glycol,<br>di(3-aminopropyl) ether | Diethylene glycol di(3-aminopropyl) ether; (Polyglycol diamine) | 13 mg/m3  | 140 mg/m3 | 850 mg/m3 |
| triethylenetetramine                          | Triethylenetetramine                                            | 3 ppm     | 14 ppm    | 83 ppm    |

| Ingredient                                                     | Original IDLH | Revised IDLH  |
|----------------------------------------------------------------|---------------|---------------|
| silver                                                         | 10 mg/m3      | Not Available |
| linoleic acid/4,7,10-trioxa-<br>1,13-tridecanediamine polyamid | Not Available | Not Available |
| tall oil/ triethylenetetramine polyamides                      | Not Available | Not Available |
| diethylene glycol,<br>di(3-aminopropyl) ether                  | Not Available | Not Available |
| triethylenetetramine                                           | Not Available | Not Available |

# MATERIAL DATA

Polyamide hardeners have much reduced volatility, toxicity and are much less irritating to the skin and eyes than amine hardeners. However commercial polyamides may contain a percentage of residual unreacted amine and all unnecessary contact should be avoided.

The adopted TLV-TWA for silver dust and fumes is 0.1 mg/m3 and for the more toxic soluble silver compounds the adopted value is 0.01 mg/m3. Cases of argyria (a slate to blue-grey discolouration of epithelial tissues) have been recorded when workers were exposed to silver nitrate at concentrations of 0.1 mg/m3 (as silver). Exposure to very high concentrations of silver furne has caused diffuse pulmonary fibrosis. Percutaneous absorption of silver compounds is reported to have resulted in allergy. Based on a 25% retention upon inhalation and a 10 m3/day respiratory volume, exposure to 0.1 mg/m3 (TWA) would result in total deposition of no more than 1.5 gms in 25 years.

# 8.2. Exposure controls

8.2.1. Appropriate engineering

controls

Metal dusts must be collected at the source of generation as they are potentially explosive.

- Avoid ignition sources.
- Good housekeeping practices must be maintained.
- Dust accumulation on the floor, ledges and beams can present a risk of ignition, flame propagation and secondary explosions.
- Do not use compressed air to remove settled materials from floors, beams or equipment
- Vacuum cleaners, of flame-proof design, should be used to minimise dust accumulation.
- ▶ Use non-sparking handling equipment, tools and natural bristle brushes. Cover and reseal partially empty containers. Provide grounding and bonding where necessary to prevent accumulation of static charges during metal dust handling and transfer operations.
- ▶ Do not allow chips, fines or dusts to contact water, particularly in enclosed areas
- Metal spraying and blasting should, where possible, be conducted in separate rooms. This minimises the risk of supplying oxygen, in the form of metal oxides. to potentially reactive finely divided metals such as aluminium, zinc, magnesium or titanium.
- ▶ Work-shops designed for metal spraying should possess smooth walls and a minimum of obstructions, such as ledges, on which dust accumulation is possible.
- Wet scrubbers are preferable to dry dust collectors.
- ▶ Bag or filter-type collectors should be sited outside the workrooms and be fitted with explosion relief doors.
- Cyclones should be protected against entry of moisture as reactive metal dusts are capable of spontaneous combustion in humid or partially wetted states.
- Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec.
- Local ventilation and vacuum systems must be designed to handle explosive dusts. Dry vacuum and electrostatic precipitators must not be used, unless specifically approved for use with flammable/ explosive dusts

Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant.

| Type of Contaminant:                                                                   | Air Speed:                   |
|----------------------------------------------------------------------------------------|------------------------------|
| welding, brazing fumes (released at relatively low velocity into moderately still air) | 0.5-1.0 m/s (100-200 f/min.) |

Within each range the appropriate value depends on:

| Lower end of the range                                     | Upper end of the range           |
|------------------------------------------------------------|----------------------------------|
| 1: Room air currents minimal or favourable to capture      | 1: Disturbing room air currents  |
| 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity |
| 3: Intermittent, low production.                           | 3: High production, heavy use    |
| 4: Large hood or large air mass in motion                  | 4: Small hood-local control only |

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

#### 8.2.2. Personal protection









# Eye and face protection

- Safety glasses with side shields.
- Chemical goggles
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

### Skin protection

Hands/feet protection

### See Hand protection below

#### NOTE:

- Fig. The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374 AS/NZS 2161 10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term

Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

▶ Protective gloves eg. Leather gloves or gloves with Leather facing

When handling liquid-grade epoxy resins wear chemically protective gloves, boots and aprons.

The performance, based on breakthrough times .of:

- Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent
- Butyl Rubber ranges from excellent to good
- Nitrile Butyl Rubber (NBR) from excellent to fair.
- Neoprene from excellent to fair
- Polyvinyl (PVC) from excellent to poor

As defined in ASTM F-739-96

- Excellent breakthrough time > 480 min
- Good breakthrough time > 20 min
- Fair breakthrough time < 20 min Poor glove material degradation

Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively)

- DO NOT use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin).
- DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use

Replacement time should be considered when selecting the most appropriate glove. It may be more effective to select a glove with lower chemical resistance but which is replaced frequently than to select a more resistant glove which is reused many times

|                  | Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.  • polychloroprene.  • nitrile rubber.  • butyl rubber.  • fluorocaoutchouc.  • polyvinyl chloride.  Gloves should be examined for wear and/ or degradation constantly. |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Body protection  | See Other protection below                                                                                                                                                                                                                                                                                                                         |
| Other protection | <ul> <li>Overalls.</li> <li>P.V.C. apron.</li> <li>Barrier cream.</li> <li>Skin cleansing cream.</li> <li>Eye wash unit.</li> </ul>                                                                                                                                                                                                                |

### Recommended material(s)

### GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

'Forsberg Clothing Performance Index'.

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

8330S-Part B Silver Conductive Epoxy Adhesive: Slow Cure / Extreme Conductivity

| Material   | СРІ |
|------------|-----|
| BUTYL      | A   |
| NEOPRENE   | A   |
| NITRILE    | A   |
| PE/EVAL/PE | A   |
| VITON      | A   |

<sup>\*</sup> CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

**NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

\* Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

# 8.2.3. Environmental exposure controls

See section 12

# **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES**

# Respiratory protection

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne
- ► Try to avoid creating dust conditions.

| Appearance                                  | silver grey     |                                         |                |
|---------------------------------------------|-----------------|-----------------------------------------|----------------|
| Physical state                              | Solid           | Relative density (Water = 1)            | 2.83           |
| Odour                                       | Not Available   | Partition coefficient n-octanol / water | Not Available  |
| Odour threshold                             | Not Available   | Auto-ignition temperature (°C)          | Not Available  |
| pH (as supplied)                            | Not Available   | Decomposition temperature               | Not Available  |
| Melting point / freezing point (°C)         | Not Available   | Viscosity (cSt)                         | >20.5          |
| nitial boiling point and boiling range (°C) | >221            | Molecular weight (g/mol)                | Not Available  |
| Flash point (°C)                            | >93             | Taste                                   | Not Available  |
| Evaporation rate                            | Not Available   | Explosive properties                    | Not Available  |
| Flammability                                | Not Applicable  | Oxidising properties                    | Not Available  |
| Upper Explosive Limit (%)                   | Not Available   | Surface Tension (dyn/cm or mN/m)        | Not Applicable |
| Lower Explosive Limit (%)                   | Not Available   | Volatile Component (%vol)               | Not Available  |
| Vapour pressure (kPa)                       | <0.48           | Gas group                               | Not Available  |
| Solubility in water (g/L)                   | Partly miscible | pH as a solution (1%)                   | Not Available  |
| Vapour density (Air = 1)                    | Not Available   | VOC g/L                                 | Not Available  |

# 9.2. Other information

Not Available

# **SECTION 10 STABILITY AND REACTIVITY**

| 10.1.Reactivity                          | See section 7.2                                                                                                                                                  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.2. Chemical stability                 | <ul> <li>Unstable in the presence of incompatible materials.</li> <li>Product is considered stable.</li> <li>Hazardous polymerisation will not occur.</li> </ul> |
| 10.3. Possibility of hazardous reactions | See section 7.2                                                                                                                                                  |
| 10.4. Conditions to avoid                | See section 7.2                                                                                                                                                  |
| 10.5. Incompatible materials             | See section 7.2                                                                                                                                                  |
| 10.6. Hazardous decomposition products   | See section 5.3                                                                                                                                                  |

### **SECTION 11 TOXICOLOGICAL INFORMATION**

### 11.1. Information on toxicological effects

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing 'amine asthma'. The literature records several instances of systemic intoxications following the use of amines in epoxy resin systems.

Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, are

headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death.

### Inhaled

Not normally a hazard due to non-volatile nature of product

Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in 'metal fume fever'. Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure.

# Ingestion

Ingestion of amine epoxy-curing agents (hardeners) may cause severe abdominal pain, nausea, vomiting or diarrhoea. The vomitus may contain blood and mucous. If death does not occur within 24 hours there may be an improvement in the patients condition for 2-4 days only to be followed by the sudden onset of abdominal pain, board-like abdominal rigidity or hypo-tension; this indicates that delayed gastric or oesophageal corrosive damage has occurred. The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

The material may accentuate any pre-existing dermatitis condition

Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Skin Contact

Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur. Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions.

Individuals exhibiting 'amine dermatitis' may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities of air-borne amine may precipitate intense dermatological symptoms in sensitive individuals. Prolonged or repeated exposure may produce tissue necrosis.

NOTE: Susceptibility to this sensitisation will vary from person to person. Also, allergic dermatitis may not appear until after several days or weeks of contact. However, once sensitisation has occurred, exposure of the skin to even very small amounts of the material may cause erythema (redness) and oedema (swelling) at the site. Thus, all skin contact with any epoxy curing agent should be avoided.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Silver is one of the most physically and physiologically cumulative of the elements. Chronic exposure to silver salts may cause argyria, a permanent ashen-grey discolouration of the skin, conjunctiva and internal organs (due to the deposit of an insoluble albuminate of silver).

The respiratory tract may also be a site of local argyria (following chronic inhalation exposures) with a mild chronic bronchitis being the only obviou

The respiratory tract may also be a site of local argyria (following chronic inhalation exposures) with a mild chronic bronchitis being the only obvious symptom.

Chronic

On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur. Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions.

Individuals exhibiting 'amine dermatitis' may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities of air-borne amine may precipitate intense dermatological symptoms in sensitive individuals. Prolonged or repeated exposure may produce tissue necrosis.

NOTE: Susceptibility to this sensitisation will vary from person to person. Also, allergic dermatitis may not appear until after several days or weeks of contact. However, once sensitisation has occurred, exposure of the skin to even very small amounts of the material may cause erythema (redness) and oedema (swelling) at the site. Thus, all skin contact with any epoxy curing agent should be avoided.

Sensitisation may give severe responses to very low levels of exposure, in situations where exposure may occur.

|                                                                | ., , , , , , , , , , , , , , , , , , ,          |                                    |               |  |
|----------------------------------------------------------------|-------------------------------------------------|------------------------------------|---------------|--|
| 8330S-B Silver Conductive                                      | TOXICITY IRRITATION                             |                                    |               |  |
| Epoxy Adhesive                                                 | Not Available                                   | Not Available                      |               |  |
|                                                                |                                                 |                                    |               |  |
| silver                                                         | TOXICITY                                        |                                    | RRITATION     |  |
|                                                                | Oral (rat) LD50: >2000 mg/kg <sup>[1]</sup>     |                                    | Not Available |  |
|                                                                | TOXICITY                                        | IRRITATION                         |               |  |
| linoleic acid/4,7,10-trioxa-<br>1,13-tridecanediamine polyamid | Not Available                                   |                                    |               |  |
|                                                                |                                                 |                                    |               |  |
| tall oil/ triethylenetetramine                                 | TOXICITY                                        | RRITATION                          |               |  |
| polyamides                                                     | Oral (rat) LD50: >5000 mg/kg <sup>[2]</sup>     | Not Available                      |               |  |
|                                                                |                                                 |                                    |               |  |
|                                                                | TOXICITY                                        |                                    | IRRITATION    |  |
| diethylene glycol,<br>di(3-aminopropyl) ether                  | Dermal (rabbit) LD50: 2500 mg/kg <sup>[2]</sup> | Not Available                      |               |  |
|                                                                | Oral (rat) LD50: 4290 mg/kg <sup>[2]</sup>      |                                    |               |  |
|                                                                |                                                 | IRRITATION                         |               |  |
|                                                                | TOXICITY                                        |                                    |               |  |
|                                                                | Dermal (rabbit) LD50: 805 mg/kg <sup>[2]</sup>  | Eye (rabbit):20 mg/24 h - moderate |               |  |
| triethylenetetramine                                           | Oral (rat) LD50: 2500 mg/kg <sup>[2]</sup>      | Eye (rabbit); 49 mg - SEVERE       |               |  |
|                                                                |                                                 | Skin (rabbit): 490 mg open SE      |               |  |
|                                                                |                                                 | Skin (rabbit): 5 mg/24 SEVERE      |               |  |

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.\* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

| LINOLEIC ACID/4,7,10-TRIOXA- |
|------------------------------|
| 1,13-TRIDECANEDIAMINE        |
| POLYAMID                     |

No significant acute toxicological data identified in literature search.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and a burning sensation.

Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the damage (inflammation of the lungs may be a consequence).

# DIETHYLENE GLYCOL, DI(3-AMINOPROPYL) ETHER

The repair process (which initially developed to protect mammalian lungs from foreign matter and antigens) may, however, cause further damage to the lungs (fibrosis for example) when activated by hazardous chemicals. Often, this results in an impairment of gas exchange, the primary function of the lungs. Therefore prolonged exposure to respiratory irritants may cause sustained breathing difficulties.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Handling ethyleneamine products is complicated by their tendency to react with other chemicals, such as carbon dioxide in the air, which results in the formation of solid carbamates. Because of their ability to produce chemical burns, skin rashes, and asthma-like symptoms, ethyleneamines also require substantial care in handling. Higher molecular weight ethyleneamines are often handled at elevated temperatures further increasing the possibility of vapor exposure to these compounds.

Because of the fragility of eye tissue, almost any eye contact with any ethyleneamine may cause irreparable damage, even blindness. A single, short exposure to ethyleneamines, may cause severe skin burns, while a single, prolonged exposure may result in the material being absorbed through the skin in harmful amounts. Exposures have caused allergic skin reactions in some individuals. Single dose oral toxicity of ethyleneamines is low. The oral LD50 for rats is in the range of 1000 to 4500 mg/kg for the ethyleneamines.

In general, the low-molecular weight polyamines have been positive in the Ames assay, increase sister chromatid exchange in Chinese hamster ovary (CHO) cells, and are positive for unscheduled DNA synthesis although they are negative in the mouse micronucleus assay. It is believed that the positive results are based on its ability to chelate copper

# TRIETHYLENETETRAMINE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis

The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis.

Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration.

For alkyl polyamines:

The alkyl polyamines cluster consists of organic compounds containing two terminal primary amine groups and at least one secondary amine

group. Typically these substances are derivatives of ethylenediamine, propylenediamine or hexanediamine. The molecular weight range for the entire cluster is relatively narrow, ranging from 103 to 232

Acute toxicity of the alkyl polyamines cluster is low to moderate via oral exposure and a moderate to high via dermal exposure. Cluster members have been shown to be eye irritants, skin irritants, and skin sensitisers in experimental animals. Repeated exposure in rats via the oral route indicates a range of toxicity from low to high hazard. Most cluster members gave positive results in tests for potential genotoxicity.

Limited carcinogenicity studies on several members of the cluster showed no evidence of carcinogenicity. Unlike aromatic amines, aliphatic amines are not expected to be potential carcinogens because they are not expected to undergo metabolic activation, nor would activated intermediates be stable enough to reach target macromolecules.

Polyamines potentiate NMDA induced whole-cell currents in cultured striatal neurons

Triethylenetetramine (TETA) is a severe irritant to skin and eyes and induces skin sensitisation.

TETA is of moderate acute toxicity: LD50(oral, rat) > 2000 mg/kg bw, LD50(dermal, rabbit) = 550 - 805 mg/kg bw. Acute exposure to saturated vapour via inhalation was tolerated without impairment. Exposure to to aerosol leads to reversible irritations of the mucous membranes in the respiratory tract. Following repeated oral dosing via drinking water only in mice but not in rats at concentration of 3000 ppm there were signs of impairment. The NOAEL is 600 ppm [92 mg/kg bw (oral, 90 days)]. Lifelong dermal application to mice (1.2 mg/mouse) did not result in tumour formation.

There are differing results of the genetic toxicity for TETA. The positive results of the in vitro tests may be the result of a direct genetic action as well as a result of an interference with essential metal ions. Due to this uncertainty of the in vitro tests, the genetic toxicity of TETA has to be assessed on the basis of in vivo tests.

The in vivo micronucleus tests (i.p. and oral) and the SLRL test showed negative results.

There are no human data on reproductive toxicity (fertility assessment). The analogue diethylenetriamine had no effects on reproduction. TETA shows developmental toxicity in animal studies if the chelating property of the substance is effective. The NOEL is 830 mg/kg bw (oral).

Experience with female patients suffering from Wilson's disease demonstrated that no miscarriages and no foetal abnormalities occur during treatment with TETA.

In rats, there are several studies concerning developmental toxicity. The oral treatment of rats with 75, 375 and 750 mg/kg resulted in no effects on dams and fetuses, except slight increased fetal body weight. After oral treatment of rats with 830 or 1670 mg/kg bw only in the highest dose group increased fetal abnormalities in 27/44 fetus (69,2 %) were recorded, when simultaneously the copper content of the feed was reduced. Copper supplementation in the feed reduced significant the fetal abnormalities of the highest dose group to 3/51 (6,5 % feetus. These findings suggest that the developmental toxicity is produced as a secondary consequence of the chelating properties of TETA.

Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

### 8330S-B Silver Conductive Epoxy Adhesive & TRIETHYLENETETRAMINE

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

For Fatty Nitrogen Derived (FND) Amides (including several high molecular weight alkyl amino acid amides)

The chemicals in the Fatty Nitrogen Derived (FND) Amides of surfactants are similar to the class in general as to physical/chemical properties, environmental fate and toxicity. Human exposure to these chemicals is substantially documented.

The Fatty nitrogen-derived amides (FND amides) comprise four categories:

Subcategory I: Substituted Amides

Subcategory II: Fatty Acid Reaction Products with Amino Compounds (Note: Subcategory II chemicals, in many cases, contain Subcategory I chemicals as major components)

Subcategory III: Imidazole Derivatives

Subcategory IV: FND Amphoterics

Acute Toxicity: The low acute oral toxicity of the FND Amides is well established across all Subcategories by the available data. The limited acute toxicity of these chemicals is also confirmed by four acute dermal and two acute inhalation studies.

Repeated Dose and Reproductive Toxicity: Two subchronic toxicity studies demonstrating low toxicity are available for Subcategory I chemicals. In addition, a 5-day repeated dose study for a third chemical confirmed the minimal toxicity of these chemicals. Since the Subcategory I chemicals are major components of many Subcategory II chemicals, and based on the low repeat-dose toxicity of the amino compounds (e.g. diethanolamine, triethanolamine) used for producing the Subcategory II derivatives, the Subcategory I repeat-dose toxicity studies adequately support Subcategory II.

Two subchronic toxicity studies in Subcategory III confirmed the low order of repeat dose toxicity for the FND Amides Imidazole derivatives. For Subcategory IV, two subchronic toxicity studies for one of the chemicals indicated a low order of repeat-dose toxicity for the FND amphoteric salts similar to that seen in the other categories.

8330S-B Silver Conductive Epoxy Adhesive & LINOLEIC ACID/4,7,10-TRIOXA-1,13-TRIDECANEDIAMINE POLYAMID Genetic Toxicity in vitro: Based on the lack of effect of one or more chemicals in each subcategory, adequate data for mutagenic activity as measured by the Salmonella reverse mutation assay exist for all of the subcategories.

Developmental Toxicity: A developmental toxicity study in Subcategory I and in Subcategory IV and a third study for a chemical in Subcategory III are available. The studies indicate these chemicals are not developmental toxicants, as expected based on their structures, molecular weights, physical properties and knowledge of similar chemicals. As above for repeat-dose toxicity, the data for Subcategory I are adequate to support Subcategory III. In evaluating potential toxicity of the FND Amides chemicals, it is also useful to review the available data for the related FND Cationic and FND Amines Category chemicals. Acute oral toxicity studies (approximately 80 studies for 40 chemicals in the three categories) provide LD50 values from approximately 400 to 10,000 mg/kg with no apparent organ specific toxicity. Similarly, repeated dose toxicity studies (approximately 35 studies for 15 chemicals) provide NOAELs between 10 and 100 mg/kg/day for rats and slightly lower for dogs. More than 60 genetic toxicity studies (in vitro bacterial and mammalian cells as well as in vivo studies) indicated no mutagenic activity among more than 30 chemicals tested. For reproductive evaluations, 14 studies evaluated reproductive endpoints and/or reproductive organs for 11 chemicals, and 15 studies evaluated developmental toxicity for 13 chemicals indicating no reproductive or developmental effects for the FND group as a whole.

Some typical applications of FND Amides are:

masonry cement additive; curing agent for epoxy resins; closed hydrocarbon systems in oil field production, refineries and chemical plants; and slip and antiblocking additives for polymers.

The safety of the FND Amides to humans is recognised by the U.S. FDA, which has approved stearamide, oleamide and/or erucamide for adhesives; coatings for articles in food contact; coatings for polyolefin films; defoaming agents for manufacture of paper and paperboard; animal glue (defoamer in food packaging); in EVA copolymers for food packaging; lubricants for manufacture of metallic food packaging; irradiation of prepared foods; release agents in manufacture of food packaging materials, food contact surface of paper and paperboard; cellophane in food packaging; closure sealing gaskets; and release agents in polymeric resins and petroleum wax. The low order of toxicity indicates that the use of FND Amides does not pose a significant hazard to human health.

The differences in chain length, degree of saturation of the carbon chains, source of the natural oils, or addition of an amino group in the chain would not be expected to have an impact on the toxicity profile. This conclusion is supported by a number of studies in the FND family of chemicals (amines, cationics, and amides as separate categories) that show no differences in the length or degree of saturation of the alkyl substituents and is also supported by the limited toxicity of these long-chain substituted chemicals.

### DIETHYLENE GLYCOL, DI(3-AMINOPROPYL) ETHER & TRIETHYLENETETRAMINE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high

concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. **Acute Toxicity** 0 Carcinogenicity 0 Skin Irritation/Corrosion Reproductivity 0 0 Serious Eye Damage/Irritation STOT - Single Exposure Respiratory or Skin STOT - Repeated Exposure 0 sensitisation 0 Mutagenicity 0 Aspiration Hazard

Legend:

🗶 – Data available but does not fill the criteria for classification

✓ – Data available to make classification
 N – Data Not Available to make classification

# SECTION 12 ECOLOGICAL INFORMATION

#### 12.1. Toxicity

|                                               |                             |                                                               | I                  |                               | I                             | 1             |                        |          |               |  |
|-----------------------------------------------|-----------------------------|---------------------------------------------------------------|--------------------|-------------------------------|-------------------------------|---------------|------------------------|----------|---------------|--|
| 8330S-B Silver Conductive                     | ENDPOINT                    | TEST DURATION (HR)                                            |                    |                               | SPECIES                       | VALU          |                        | SOURCE   |               |  |
| Epoxy Adhesive                                | Not Available               |                                                               | Not Available      |                               | Not Available Not Available   |               | vailable Not Available |          | Available     |  |
|                                               | ENDPOINT                    | TE                                                            | ST DURATION (HR)   | SPECIES                       | SPECIES                       |               | VALUE                  |          | SOURCE        |  |
|                                               | LC50                        | 250 96                                                        |                    | Fish 0.00°                    |                               | 0.00148mg/L   | )148mg/L               |          |               |  |
|                                               | EC50                        | EC50 48                                                       |                    | Crustacea                     | Crustacea 0.00                |               | 0.00024mg/L            | 0024mg/L |               |  |
| silver                                        | EC50                        | 96                                                            |                    | Algae or o                    | other aquatic plants          |               | 0.001628837mg          | ı/L      | 4             |  |
|                                               | BCF                         | 336                                                           | 6                  | Crustacea                     | a                             |               | 0.02mg/L               |          | 4             |  |
| NOEC 480                                      |                             | 0                                                             | Crustacea          | a                             |                               | 0.00031mg/L   |                        | 2        |               |  |
|                                               |                             |                                                               |                    |                               |                               |               |                        |          |               |  |
| linoleic acid/4,7,10-trioxa-                  | ENDPOINT                    | TEST DURATION (HR)                                            |                    | SPECIES                       |                               | VALU          | VALUE                  |          | SOURCE        |  |
| ,13-tridecanediamine polyamid                 | Not Available Not Available |                                                               |                    | Not Available Not Avail       |                               | vailable      | able Not Available     |          |               |  |
|                                               |                             |                                                               |                    |                               |                               |               |                        |          |               |  |
| tall oil/ triethylenetetramine                | ENDPOINT                    |                                                               | TEST DURATION (HR) |                               | SPECIES                       | VALU          | IE                     | sou      | RCE           |  |
| polyamides                                    | Not Available               |                                                               | Not Available      |                               | Not Available                 | Not Available |                        | Not A    | Not Available |  |
|                                               | ENDPOINT                    |                                                               | TEST DUDATION (UD) |                               | SPECIES                       | VALU          |                        | 501      | RCE           |  |
| diethylene glycol,<br>di(3-aminopropyl) ether |                             |                                                               | TEST DURATION (HR) |                               |                               |               |                        |          |               |  |
| ui(3-animopropyi) etilei                      | Not Available               | lable Not Available Not Available Not Available Not Available |                    | vailable                      | ble Not Available             |               |                        |          |               |  |
|                                               | ENDPOINT                    | Т                                                             | EST DURATION (HR)  | SPE                           | CIES                          |               | VALUE                  |          | SOURCE        |  |
| triethylenetetramine                          | LC50                        | 9                                                             |                    | Fish                          |                               | 180mg         | /L                     | 1        |               |  |
|                                               | EC50                        | 4                                                             | 8                  | Crus                          | Crustacea                     |               | 31.1mg                 | g/L      | 1             |  |
|                                               | EC50                        | 72                                                            |                    | Algae or other aquatic plants |                               | 2.5mg/        | L                      | 1        |               |  |
|                                               | EC30                        |                                                               | 72                 |                               | Algae or other aquatic plants |               |                        |          |               |  |

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. Environmental processes (such as oxidation and the presence of acids or bases) may transform insoluble metals to more soluble ionic forms. Microbiological processes may also transform insoluble metals to more soluble forms. Such ionic species may bind to dissolved ligands or sorb to solid particles in aquatic or aqueous media. A significant proportion of dissolved/sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms.

When released to dry soil most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. Environmental processes may also be important in changing solubilities.

Even though many metals show few toxic effects at physiological pHs, transformation may introduce new or magnified effects.

A metal ion is considered infinitely persistent because it cannot degrade further.

The current state of science does not allow for an unambiguous interpretation of various measures of bioaccumulation.

The counter-ion may also create health and environmental concerns once isolated from the metal. Under normal physiological conditions the counter-ion may be essentially insoluble and may not be bioavailable.

Environmental processes may enhance bioavailability.

For silver and its compounds:

# Environmental fate:

Silver is a rare but naturally occurring metal, often found deposited as a mineral ore in association with other elements. Emissions from smelting operations, manufacture and disposal of certain photographic and electrical supplies, coal combustion, and cloud seeding are some of the anthropogenic sources of silver in the biosphere. The global biogeochemical movements of silver are characterized by releases to the atmosphere, water, and land by natural and anthropogenic sources, long-range transport of fine particles in the atmosphere, wet and dry deposition, and sorption to soils and sediments.

In general, accumulation of silver by terrestrial plants from soils is low, even if the soil is amended with silver-containing sewage sludge or the plants are grown on tailings from silver mines, where silver accumulates mainly in the root systems.

The ability to accumulate dissolved silver varies widely between species. Some reported bioconcentration factors for marine organisms (calculated as milligrams of silver per kilogram fresh weight organism divided by milligrams of silver per litre of medium) are 210 in diatoms, 240 in brown algae, 330 in mussels, 2300 in scallops, and 18 700 in oysters, whereas bioconcentration factors for freshwater organisms have been reported to range from negligible in bluegills (*Lepomis macrochirus*) to 60 in daphnids; these values represent uptake of bioavailable silver in laboratory experiments. Laboratory studies with the less toxic silver compounds, such as silver sulfide and silver chloride, reveal that accumulation of silver does not necessarily lead to adverse effects. At concentrations normally encountered in the environment, food-chain biomagnification of silver in aquatic systems is unlikely. Elevated silver concentrations in biota occur in the vicinities of sewage outfalls, electroplating plants, mine waste sites, and silver iodide-seeded areas. Maximum concentrations recorded in field collections, in milligrams total silver per kilogram dry weight (tissue), were 1.5 in marine mammals (liver) (except Alaskan beluga whales *Delphinapterus leucas*, which had concentrations 2 orders of magnitude higher than those of other marine mammals), 6 in fish (bone), 14 in plants (whole), 30 in annelid worms (whole), 44 in birds (liver), 110 in mushrooms (whole), 185 in bivalve molluscs (soft parts), and 320 in gastropods (whole).

In general, silver ion was less toxic to freshwater aquatic organisms under conditions of low dissolved silver ion concentration and increasing water pH, hardness, sulfides, and dissolved and particulate organic loadings; under static test conditions, compared with flow-through regimens; and when animals were adequately nourished instead of being starved. Silver ions are very toxic to microorganisms. However, there is generally no strong inhibitory effect on microbial activity in sewage treatment plants because of reduced bioavailability due to rapid complexation and adsorption. Free silver ion was lethal to representative species of sensitive aquatic plants, invertebrates, and teleosts at nominal water concentrations of 1-5 ug/litre. Adverse effects occur on development of trout at concentrations as low as 0.17 ug/litre and on phytoplankton species composition and succession at 0.3-0.6 ug/litre.

A knowledge of the speciation of silver and its consequent bioavailability is crucial to understanding the potential risk of the metal. Measurement of free ionic silver is the only direct method that can be used to assess the likely effects of the metal on organisms. Speciation models can be used to assess the likely proportion of the total silver measured that is bioavailable to organisms. Unlike some other metals, background freshwater concentrations in pristine and most urban areas are well below concentrations causing toxic effects. Levels in most industrialized areas border on the effect concentration, assuming that conditions favour bioavailability. On the basis of available toxicity test results, it is unlikely that bioavailable free silver ions would ever be at sufficiently high concentrations to cause toxicity in marine environments.

No data were found on effects of silver on wild birds or mammals. Silver was harmful to poultry (tested as silver nitrate) at concentrations as low as 100 mg total silver/litre in drinking-water or 200 mg total silver/kg in diets. Sensitive laboratory mammals were adversely affected at total silver concentrations (added as silver nitrate) as low as 250 ug/litre in drinking-water (brain histopathology), 6 mg/kg in diet (high accumulations in kidneys and liver), or 13.9 mg/kg body weight (lethality).

Silver and Silver Compounds; Concise International Chemical Assessment Document (CICAD) 44 IPCS InChem (WHO)

The transport of silver through estuarine and coastal marine systems is dependent on biological uptake and incorporation. Uptake by phytoplankton is rapid, in proportion to silver concentration and inversely proportional to salinity. In contrast to studies performed with other toxic metals, sliver availability appears to be controlled by both the free silver ion concentration and the concentration of other silver complexes. Silver incorporated by phytoplankton is not lost as salinity increases, as a result silver associated with cellular material is largely retained within the estuary. Phytoplankton exhibit a variable sensitivity to silver. Sensitive species exhibit a marked delay in the onset of growth in response to silver at low concentrations, even though maximum growth rates are similar to controls. A delay in the onset of growth reduces the ability of a population to respond to short-term favourable conditions and to succeed within th community.

James G. Saunders and George R Abbe: Aquatic Toxicology and Environmental Fate; ASTM STP 1007, 1989, pp 5-18

### 12.2. Persistence and degradability

| Ingredient                                    | Persistence: Water/Soil | Persistence: Air |  |  |
|-----------------------------------------------|-------------------------|------------------|--|--|
| diethylene glycol,<br>di(3-aminopropyl) ether | HIGH                    | HIGH             |  |  |
| triethylenetetramine                          | LOW                     | LOW              |  |  |

# 12.3. Bioaccumulative potential

| Ingredient                                    | Bioaccumulation        |
|-----------------------------------------------|------------------------|
| diethylene glycol,<br>di(3-aminopropyl) ether | LOW (LogKOW = -1.4594) |
| triethylenetetramine                          | LOW (LogKOW = -2.6464) |

# 12.4. Mobility in soil

| Ingredient                                    | Mobility          |
|-----------------------------------------------|-------------------|
| diethylene glycol,<br>di(3-aminopropyl) ether | LOW (KOC = 10)    |
| triethylenetetramine                          | LOW (KOC = 309.9) |

# 12.5.Results of PBT and vPvB assessment

|                         | P              | В              | Т              |
|-------------------------|----------------|----------------|----------------|
| Relevant available data | Not Applicable | Not Applicable | Not Applicable |
| PBT Criteria fulfilled? | Not Applicable | Not Applicable | Not Applicable |

# 12.6. Other adverse effects

No data available

# **SECTION 13 DISPOSAL CONSIDERATIONS**

# 13.1. Waste treatment methods

- ► Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

# Otherwise:

# Product / Packaging disposal

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then
- puncture containers, to prevent re-use, and bury at an authorised landfill.

  Where possible retain label warnings and SDS and observe all notices pertaining to the produc
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.
   DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.

# Waste treatment options

Not Available

Sewage disposal options

Not Available

# **SECTION 14 TRANSPORT INFORMATION**

# Labels Required

For 8330S-21G, 8330S-50ML, 8330S-200ML

NOT REGULATED by Ground ADR Special Provision 375 NOT REGULATED by Air IATA Special Provision A197 NOT REGULATED by Sea IMDG per 2.10.2.7 NOT REGULATED by ADN Special Provision 274 (The provision of 3.1.2.8 apply)

# Land transport (ADR)

| 14.1. UN number                    | 3077                                                                 |                 |  |
|------------------------------------|----------------------------------------------------------------------|-----------------|--|
| 14.2. UN proper shipping name      | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains silver) |                 |  |
| 14.3. Transport hazard class(es)   | Class 9 Subrisk Not Applicable                                       |                 |  |
| 14.4. Packing group                | III                                                                  |                 |  |
| 14.5. Environmental hazard         | Environmentally hazardous                                            |                 |  |
|                                    | Hazard identification (Kemler)                                       | 90              |  |
|                                    | Classification code                                                  | M7              |  |
| 14.6. Special precautions for user | Hazard Label                                                         | 9               |  |
|                                    | Special provisions                                                   | 274 335 375 601 |  |
|                                    | Limited quantity                                                     | 5 kg            |  |

# Air transport (ICAO-IATA / DGR)

| 14.1. UN number                    | 3077                                     |                                                                        |                    |  |
|------------------------------------|------------------------------------------|------------------------------------------------------------------------|--------------------|--|
| 14.2. UN proper shipping name      | Environmentally hazardo                  | Environmentally hazardous substance, solid, n.o.s. * (contains silver) |                    |  |
| 14.3. Transport hazard class(es)   | ICAO/IATA Class                          | 9                                                                      |                    |  |
|                                    | ICAO / IATA Subrisk                      | Not Applicable                                                         |                    |  |
|                                    | ERG Code                                 | Code 9L                                                                |                    |  |
| 14.4. Packing group                |                                          |                                                                        |                    |  |
| 14.5. Environmental hazard         | Environmentally hazardous                |                                                                        |                    |  |
| 14.6. Special precautions for user | Special provisions                       |                                                                        | A97 A158 A179 A197 |  |
|                                    | Cargo Only Packing Ir                    | nstructions                                                            | 956                |  |
|                                    | Cargo Only Maximum Qty / Pack            |                                                                        | 400 kg             |  |
|                                    | Passenger and Cargo Packing Instructions |                                                                        | 956                |  |
|                                    | Passenger and Cargo Maximum Qty / Pack   |                                                                        | 400 kg             |  |
|                                    | Passenger and Cargo                      | Limited Quantity Packing Instructions                                  | Y956               |  |
|                                    | Passenger and Cargo                      | Limited Maximum Qty / Pack                                             | 30 kg G            |  |

# Sea transport (IMDG-Code / GGVSee)

| 14.1. UN number                    | 3077                                                                                |  |
|------------------------------------|-------------------------------------------------------------------------------------|--|
| 14.2. UN proper shipping name      | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains silver)                |  |
| 14.3. Transport hazard class(es)   | IMDG Class 9  IMDG Subrisk Not Applicable                                           |  |
| 14.4. Packing group                |                                                                                     |  |
| 14.5. Environmental hazard         | Marine Pollutant                                                                    |  |
| 14.6. Special precautions for user | EMS Number F-A , S-F Special provisions 274 335 966 967 969 Limited Quantities 5 kg |  |

| 14.1. UN number                    | 3077                                                                 |  |  |
|------------------------------------|----------------------------------------------------------------------|--|--|
| 14.2. UN proper shipping name      | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains silver) |  |  |
| 14.3. Transport hazard class(es)   | 9 Not Applicable                                                     |  |  |
| 14.4. Packing group                |                                                                      |  |  |
| 14.5. Environmental hazard         | Environmentally hazardous                                            |  |  |
| 14.6. Special precautions for user | Classification code M7                                               |  |  |
|                                    | Special provisions 274; 335; 375; 601                                |  |  |
|                                    | Limited quantity 5 kg                                                |  |  |
|                                    | Equipment required PP, A***                                          |  |  |
|                                    | Fire cones number 0                                                  |  |  |
|                                    | Fire cones number 0                                                  |  |  |

# 14.7. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

# **SECTION 15 REGULATORY INFORMATION**

# 15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

# SILVER(7440-22-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS

| EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List of Substances | European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English) |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Cubstanices                                                                                  | (English)                                                                                         |
| Furnnean Customs Inventory of Chemical Substances FCICS (English)                            | LIK Workplace Exposure Limits (WELs)                                                              |

# LINOLEIC ACID/4,7,10-TRIOXA-1,13-TRIDECANEDIAMINE POLYAMID(68541-13-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Not Applicable

# TALL OIL/ TRIETHYLENETETRAMINE POLYAMIDES(68082-29-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

European Union (EU) No-Longer Polymers List (NLP) (67/548/EEC)

# DIETHYLENE GLYCOL, DI(3-AMINOPROPYL) ETHER(4246-51-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS

| Europe European Customs Inventory of Chemical Substances - ECICS (Slovak)  | Europe European Customs Inventory of Chemical Substances ECICS (Romanian)               |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Europe European Customs Inventory of Chemical Substances ECICS (Bulgarian) | European Customs Inventory of Chemical Substances ECICS (English)                       |
| Europe European Customs Inventory of Chemical Substances ECICS (Czech)     | European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) |
|                                                                            | (English)                                                                               |

# TRIETHYLENETETRAMINE(112-24-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

| European Customs Inventory of Chemical Substances ECICS (English)                                 | European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of                                               |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| European Trade Union Confederation (ETUC) Priority List for REACH Authorisation                   | Dangerous Substances - updated by ATP: 31                                                                                            |
| European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English) | European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and<br>Packaging of Substances and Mixtures - Annex VI |

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2015/830; Regulation (EC) No 1272/2008 as updated through ATPs.

# 15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

# **National Inventory Status**

| National Inventory            | Status                                                                                                                                                                                |  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Australia - AICS              | Y                                                                                                                                                                                     |  |
| Canada - DSL                  | Y                                                                                                                                                                                     |  |
| Canada - NDSL                 | N (tall oil/ triethylenetetramine polyamides; linoleic acid/4,7,10-trioxa-1,13-tridecanediamine polyamid; triethylenetetramine; silver)                                               |  |
| China - IECSC                 | Υ                                                                                                                                                                                     |  |
| Europe - EINEC / ELINCS / NLP | N (linoleic acid/4,7,10-trioxa-1,13-tridecanediamine polyamid)                                                                                                                        |  |
| Japan - ENCS                  | N (tall oil/ triethylenetetramine polyamides; linoleic acid/4,7,10-trioxa-1,13-tridecanediamine polyamid; silver)                                                                     |  |
| Korea - KECI                  | Υ                                                                                                                                                                                     |  |
| New Zealand - NZIoC           | Y                                                                                                                                                                                     |  |
| Philippines - PICCS           | Υ                                                                                                                                                                                     |  |
| USA - TSCA                    | Υ                                                                                                                                                                                     |  |
| Legend:                       | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) |  |

# **SECTION 16 OTHER INFORMATION**

| Revision Date | 17/03/2020 |
|---------------|------------|
| Initial Date  | 24/02/2017 |

| H290 | May be corrosive to metals.                        |
|------|----------------------------------------------------|
| H312 | Harmful in contact with skin.                      |
| H314 | Causes severe skin burns and eye damage.           |
| H412 | Harmful to aquatic life with long lasting effects. |

# Other information

# Ingredients with multiple cas numbers

| Name                                          | CAS No                |
|-----------------------------------------------|-----------------------|
| diethylene glycol,<br>di(3-aminopropyl) ether | 4246-51-9, 25265-19-4 |

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

# **Definitions and abbreviations**

PC — TWA: Permissible Concentration-Time Weighted Average PC — STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit $_{\circ}$ 

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

# Reason For Change

A-1.01- Update to the emergency phone number information.