

Time of Flight 3D Sensors Taking Optical Measurement to a New Level

Sebastian Bauer

AFBR - S50 Platform: Measurement Methodology

- The AFBR-S50 is a multi-pixel, optical distance and motion measurement sensor module based on the indirect Time of Flight (ToF) principle
- The sensors contain an integrated laser source, an optical receiver and lenses for beam collimation
- It has been developed with a special focus on applications that require the highest speed and accuracy at medium distance ranges with small size and very low power consumption
- Devices work on various objects including white, black and colored surfaces as well as reflective metallic surfaces

Target Applications in Industry

- Industrial Sensing
- Presence Detection
- Movement Speed/Direction
- Gesture Sensing in HMI
- Robotics Collision Avoidance
- Camera Focus / Surveillance
- Alignment functions
- Level Check
- Parking Sensor

Target Applications in Healthcare and Consumer Markets

- Breathing Monitor
- Patient Vehicles
- Gesture Sensing for HMI
- Service Robotics (Vacuum, Mowing)
- Drones (Collision avoidance, landing function)
- Logistics Robots

AFBR – S50 Platform: Principle of Operation

- Correlating the phase Information of transmitted and received signals, enables the exact calculation of distances
- Combined with our high dynamic range detector technology, we are able to process signals even under the presence of high ambient light
- The technology has many advantages compared to pulse ranging and triangulation sensors

AFBR-S50 ToF Sensor Family

TOF Sensor:	AFBR-S50MV85G	AFBR-S50LV85D	AFBR-S50MV68B	AFBR-S50MV85I
TOF Sensor Evalkit	AFBR-S50MV85G-EK	AFBR-S50LV85D-EK	AFBR-S50MV68B-EK	AFBR-S50MV85I-EK
Max. Range (black)	Medium: 10m	Long: 30m	Medium: 10m	Med-Short: 5m
Laser Light Source:	850nm (IR)	850nm (IR)	680nm (red)	850nm (IR)
Res. / Pixel	1.55°x1.55°	1.55°x1.55°	1.55°x1.55°	1.55°x1.55°
Beam Divergence Tx: Measured Spot:	4°x4°	< 2°x2°	< 1°x1°	13° x 6°
Illuminated Pixels:	7-16 (32)	1-3 (32)	1 (32)	32
Field of View:	< 12.4°x6.2°	< 1.55°x3.1°	1.55°x1.55°	12.4°x6.2°
Weight:	0.76g	0.76g	0.76g	0.76g
Status	Production	Production	Production	Production

Broadcom TOF Sensor Platform AFBR-S50

Principle of operation: Indirect TOF

AFBR-S50 Sensor Advantages

- Immune to ambient light and other optical signals
- Integrated Laser light source (850nm /680nm)
- High integration level
- Distance range 0,01 30m
- Accuracy better than 1%
- Multi pixel option (1-32 pixels)
- Works well on all surface conditions
- Up to 3kHz Framerate
- Laser Class 1 (Eysesafe)

For more information:

https://www.broadcom.com/products/optical-sensors/time-of-flight-3d-sensors

Order:

https://www.avnet.com/wps/portal/ebv/products/new-products/npi/2018/broadcom-afbr-s50-family/

AFBR-S50 HW/SW Interface

- The functionality of the ToF Sensor is completely accessible through an SPI protocol from any microcontroller
- Configuration and measurement tasks are triggered by the external microcontroller using the ToF driver firmware
- The ToF driver firmware extracts both the distance and amplitude values of all used pixels on a per-frame basis
- ❖ Explorer software application from the SDK enables fast Hardware hands-on with the sensor (w/o coding) by providing a graphical data representation of distance & signal amplitudes
- Enhanced methodologies are available as plug-ins

AFBR – S50 Platform – Sensor Parameters

Accessible Interface enables adjustmet of the following Parameters:

- Framerate
- Pixels
- Dynamic / Unambiguous Range

Sensor Results:

- Pixel based distance over time information (3/2D)
- Background light
- Amplitude (Signal quality, SNR)

Proactive Monitoring Function:

- Voltages
- Laser monitoring
- Temperature

AFBR-S50 SDK

Development Platform for simple sensor integration in various applications

Features:

- Easy to install
- Explorer SW Graphical User Interface (GUI)
 - Fast hands-on with the sensor
 - Example representation of data with different plots
 - Data logger to record acquisitions
 - Fast overview of API capability
- Documentation of Software
 - Getting started guide
 - API Reference manual
 - Release Notes
- Precompiled libraries for ARM Cortex M0/+,1,3 & 4
- Example code to get started with code implementation

AFBR - S50 Platform - Explorer GUI

Accessible Interface enables adjustment of the following Parameters:

- Framerate
- Pixel binning
- Unambiguous Range / Dual Frequency Mode

Sensor Results:

- Binned distance over time information (1/3D)
- Integration Depth / Gain
- Saturated / Active Pixel Count
- Amplitude (Signal quality, SNR)

Accessible Monitoring Parameters:

- Voltages
- Laser monitoring
- Temperature
- Ambient light indicator

C# based GUI available for fast hands-on

Evaluation Kits: AFBR-S50MV85G-EK/ AFBR-S50MV85I-EK

Evaluation kit Contains:

- ARM Cortex 0+ Board
- Adapter Board with either
 - AFBR-S50MV85G
 - AFBR-S50MV85I
- USB-Cable

AFBR-S50 Mechanical Dimensions and Functional Block Diagram

Mechanical Dimensions

Figure 1: Module Side and Top View (Dimensions in mm)

PCB outer dimension
 Housing outer dimension

AFBR-S50MV85G – ToF Sensor Asic and Sensor Matrix

The ToF sensor ASIC includes:

- clock and supply voltage generation from a single supplied voltage
- analog and digital signal processing
- integrated laser driver

- √ 8x4 receiver Sensor Matrix with hexagonal structure
- ✓ Between 7 and 16 pixels will be illuminated depending on distance and reflectivity of the target object.

Summary & References

Broadcom ToF Sensor Advantages

High Level of Integration

- Pixel Cluster and ToF correlation logic with 100% fillfactor
- Analog-Digital conversion, digital-only host interface
- Integrated Laser/LED Driver, temperature and voltage sensors and monitor Pixel

High speed frame rate and excellent ambient light suppression

- Measurement frame rate up to 3kHz
- Ambient Light Suppression for optimum indoor and outdoor applications

High Flexibility

- Variable number of measurement phases, integration time and modulation frequencies

Low System integration complexity

- Each phase is measured autonomously, no real-time processing required
- μC only needs to read out measurement data upon an interrupt once integration is finished

Additional customizaiton available – contact us for further information!

