

MDT0400EIS-MIPI	480 x 480	MIPI Interface		TFT Module				
Specification								
Version: 1 Date: 24/06/2020								
Revision								
1 2	2/06/2020	First issue						

* Please note: Midas Displays are able to provide a wide range of MIPI interface TFT displays. There are many more sizes available, with a range of different features. Get in touch for more information.

Display Fe	atures		
Display Size	4.0"		
Resolution	480 x 480		
Orientation	Square		
Appearance	RGB		
Logic Voltage	2.8V		oHS
Interface	MIPI		
Brightness	500 cd/m ²		moliont
Touchscreen		1 00	mphant
Module Size	78.80 x 82.95 x 4.77mm		
Operating Temperature	-30°C ~ +80°C		
Pinout	24 way FFC	Box Quantity	Weight / Display
Pitch	0.5mm		n n l v

* - For full design functionality, please use this specification in conjunction with the ST7701S specification.(Provided Separately)

Display Accessories					
Part Number	Description				

Optional Variants							
Appearances Volta							

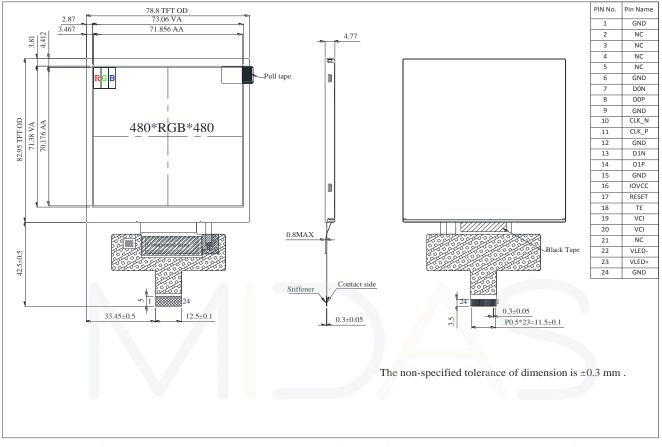
Summary

TFT 4.0" is a color active matrix thin film transistor (TFT) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. This TFT LCD has a 4.0 (1:1) inch diagonally

measured active display area with 480x480 (480 horizontal by 480 vertical pixel) resolution.

General Specifications

- Size: 4.0 inch
- Dot Matrix: 480× 3(RGB) × 480 dots
- Module dimension: 78.8(H) * 82.95 (W) *4.77 mm
- Active area: 71.856(H)*70.176 (V) mm
- Dot pitch: 0.1497(H)*0.1462(V) mm
- LCD type: TFT, Normally Black, Transmissive
- View Direction: 80/80/80/80
- Aspect Ratio: 1:1
- Interface: 2-Lanes MIPI
- Driver IC: ST7701S
- Backlight Type: LED ,Normally White
- With /Without TP: Without TP
- Surface: Glare


*Color tone slight changed by temperature and driving voltage.

Interface

1.	LCM	PIN	Defin	ition
----	-----	-----	-------	-------

Pin	Symbol	Function
1	GND	Power ground
2-5	NC	No connect
6	GND	Power ground
7	D0N	MIPI DSI differential data pair (Data lane 0)
8	D0P	MIFT DST differential data pair (Data lane 0)
9	GND	Power ground
10	CLK_N	MIPI DSI differential clock pair
11	CLK_P	
12	GND	Power ground
13	D1N	MIPI DSI differential data pair(Data lane 1)
14	D1P	MIPT DSI dillerential data pair(Data lane T)
15	GND	Power ground
16	IOVCC	I/O and interface power supply (1.8V)
17	RESET	Reset input
18	TE	Tearing effect output pin.
19	VCI	Analog power supply
20	VCI	Analog power supply
21	NC	No connect
22	VLED-	Power for LED backlight cathode
23	VLED+	Power for LED backlight anode
24	GND	Power ground

Contour Drawing

design • manufacture • supply

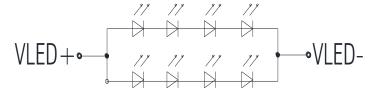
Absolute Maximum Ratings

ltem	Symbol	Min	Тур	Max	Unit
Operating Temperature	TOP	-30		+80	°C
Storage Temperature	TST	-30		+80	°C

Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above

1. Temp. $\leq 60^{\circ}$ C , 90% RH MAX. Temp. $> 60^{\circ}$ C , Absolute humidity shall be less than 90% RH at 60° C

Electrical Characteristics


1. Typical Operation Conditions

Item	Symbol	Values			Unit	Remark
nem	Symbol	Min.	Тур.	Max.	Onit	Neillaik
Interface Supply Voltage	VCI	2.5	2.8	3.6	V	
Power voltage	IOVCC	1.65	1.8	3.3	V	
Current for Driver(White)	IDD	-	11	16.5	mA	

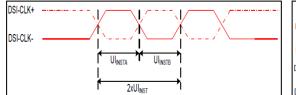
2. Backlight Driving Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED current	ILED	-	100	-	mA	
LED voltage	VLED+	10.8	12.4	13.6	V	Note 1
LED Life Time		50,000	-	-	Hr	Note 2,3,4

Note 1 : There are 1 Groups LED

CIRCUIT DIAGRAM

Note 2 : Ta = 25 °C


Note 3 : Brightness to be decreased to 50% of the initial value

Note 4 : The single LED lamp case.

Interface Timing

1. MIPI Interface Characteristics

High Speed Mode

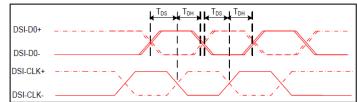
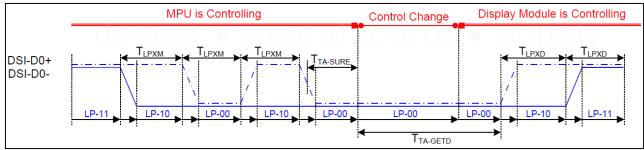



Figure 1 DSI clock channel timing Figure 2 Rising and falling time on clock and data channel *VDDI=1.8, VDD=2.8, AGND=DGND=0V, Ta=25*°C

Signal	Symbol	Parameter	MIN	MAX	Unit	Description
DSI-CLK+/-	2xUI _{INSTA}	Double UI instantaneous	4	25	ns	
DSI-CLK+/-	UIINSTA UIINSTB	UI instantaneous halfs	2	12.5	ns	UI = UI _{INSTA} = UI _{INSTB}
DSI-Dn+/-	tDS	Data to clock setup time	0.15	-	UI	
DSI-Dn+/-	tDH	Data to clock hold time	0.15	-	UI	

Table 1 Mipi Interface-High SpeedMode Timing Characteristics

Lowe Power Mode

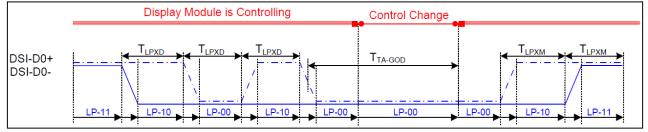


Figure 4 Bus Turnaround (BTA) from MPU to display module Timing

VDDI=1.8, VDD=2.8, AGND=DGND=0V, Ta=25°C

Signal	Symbol	Parameter	MIN	МАХ	Unit	Description	
		Length of LP-00,LP-01,					
DSI-D0+/-	TLPXM	LP-10 or LP-11 periods	50	75	ns	Input	
		MPU→Display Module					
		Length of LP-00,LP-01,					
DSI-D0+/-	TLPXD	LP-10 or LP-11 periods	50	75	ns	Output	
		MPU→Display Module					
DSI-D0+/-	TTA-SURED	Time-out before the MPU	TLPXD	2xT _{LP}	ns	Output	
031-0017-	TIA-SORED	start driving	TLPXD	XD	115	Output	
DSI-D0+/-	TTA-GETD	Time to drive LP-00 by	Ev.T		20	loput	
031-00+/-	TIA-GETD	display module	5xT _{LPXD}		ns	Input	
DSI-D0+/-	TTA-GOD	Time to drive LP-00 after	4xTLPXD		ns	Output	
D3I-D0+/-	TIA-GOD	turnaround request-MPU	4X1	LPXD	115	Output	

Table 2 Mipi Interface Low Power Mode Timing Characteristics

DSI Bursts Mode

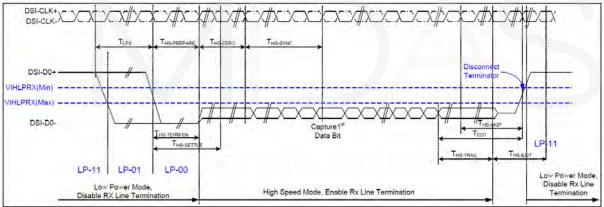


Figure 5 Data lanes-Low Power Mode to/from High Speed Mode Timing

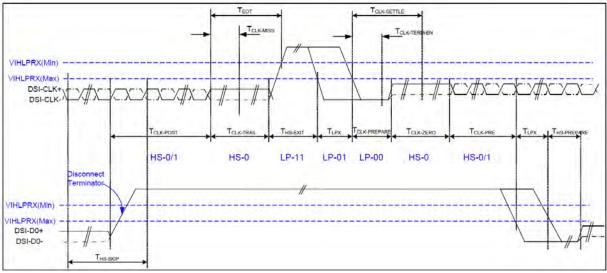
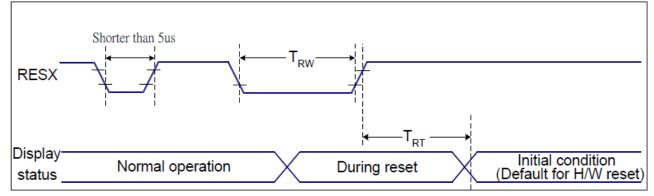



Figure 6 Clock lanes- High Speed Mode to/from Low Power Mode Timing

MAX Signal Symbol Parameter MIN Unit Description Low Power Mode to High Speed Mode Timing Length of any low power state TLPX DSI-Dn+/-50 ns Input period 40+4 85+6 Time to drive LP-00 to prepare DSI-Dn+/-THS-PREPARE Input ns for HS transmission UI UI Time to enable data receiver 35+4 DSI-Dn+/-THS-TERM-EN line termination measured from ns Input when Dn crosses VILMAX UI THS-PREPARE 140 +THS-PREPARE + time to drive DSI-Dn+/ns Input HS-0 before the sync sequence + THS-ZERO 10UI High Speed Mode to Low Power Mode Timing 55+4 Time-out at display module to DSI-Dn+/-THS-SKIP 40 ns Input ignore transition period of EoT UI Time to drive LP-11 after HS DSI-Dn+/-THS-EXIT 100 Input ns burst Time to drive flipped differential 60+4 state after last payload data bit DSI-Dn+/-THS-TRAIL Input ns of a HS transmission burst UI High Speed Mode to/from Low Power Mode Timing Time that the MPU shall 60+5 continue sending HS clock after TCLK-POS DSI-CLK+/-Input ns the last associated data lane 2UI has transition to LP mode Time to drive HS differential DSI-CLK+/-TCLK-TRAIL state after last payload clock bit 60 ns Input of a HS transmission burst Time to drive LP-11 after HS DSI-CLK+/-THS-EXIT 100 ns Input burst Time to drive LP-00 to prepare DSI-CLK+/-TCLK-PREPARE 38 95 ns Input for HS transmission Time-out at clock lan display DSI-CLK+/-TCLK-TERM-EN module to enable HS 38 ns Input _ transmission TCLK-PREPARE Minimum lead HS-0 drive DSI-CLK+/-300 Input ns period before starting clock + TCLK-ZERO Time that the HS clock shall be driven prior to any associated DSI-CLK+/-TCLK-PRE 8UI Input ns data lane beginning the transition from LP to HS mode 105n Time form start of TCLK-TRAIL TEOT DSI-CLK+/s+12 Input ns _ period to start of LP-11 state UI

VDDI=1.8, VDD=2.8, AGND=DGND=0V, Ta=25°C

Reset Timing

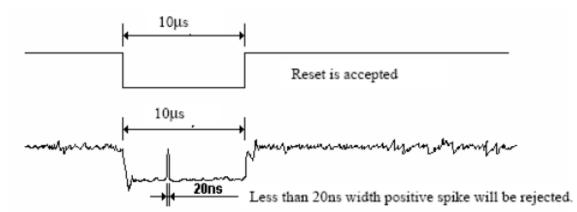
Figure 6 Reset Timing

VDDI=1.8, VDD=2.8, AGND=DGND=0V, Ta=25 ℃

Related Pins	Symbol	Parameter	MIN	МАХ	Unit
	TRW	Reset pulse duration	10	-	us
RESX	тот	Paget equal	-	5 (Note 1, 5)	ms
TRT		Reset cancel		1 <mark>20(Note 1</mark> , 6, 7)	ms

Table 3 Reset Timing

Notes:


1. The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NVM (or similar device) to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5 ms after a rising edge of RESX.

2. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below:

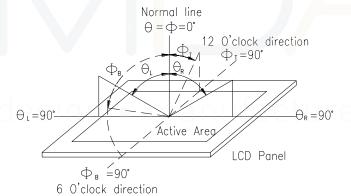
RESX Pulse	Action
Shorter than 5us	Reset Rejected
Longer than 9us	Reset
Between 5us and 9us	Reset starts

3. During the Resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode.) and then return to Default condition for Hardware Reset.

4. Spike Rejection also applies during a valid reset pulse as shown below:

5. When Reset applied during Sleep In Mode.6. When Reset applied during Sleep Out Mode.

7. It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.



Optical Characteristics

ltem		Symbol	Condition.	Min	Тур.	Max.	Unit	Remark
Response time		Tr+ Tf	θ=0° 、Φ=0°	-	25	35	.ms	Note 3
Contrast ratio		CR	At optimized viewing angle	640	800	-	-	Note 4
Color Chromaticity	White	Wx	θ=0° 、Φ=0	0.251	0.301	0.351		Note 2,6,7
		Wy		0.277	0.327	0.377		
Viewing angle	Hor.	ΘR	CR≧10	70	80	-	Deg.	Note 1
		ΘL		70	80	-		
	Ver.	ΦΤ		70	80	-		
		ΦВ		70	80	-		
Brightnes	S	-	-	400	500	-	cd/m ²	Center of display
Uniformity		(U)	-	75	-	-	%	Note 5

Ta=25±2℃

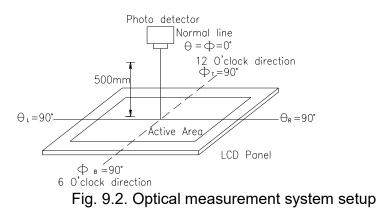
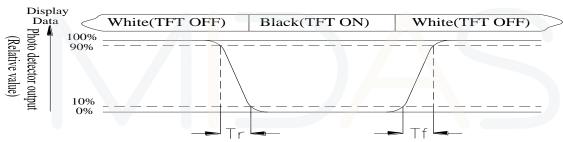

Note 1: Definition of viewing angle range

Fig. 9.1. Definition of viewing angle

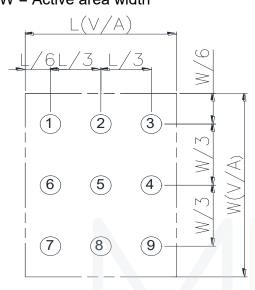

Note 2: Test equipment setup:

After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7or BM-5 luminance meter 1.0° field of view at a distance of 50cm and normal direction.

Note 3: Definition of Response time:

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90% to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10% to 90%

Note 4: Definition of contrast ratio:


The contrast ratio is defined as the following expression.

Contrast ratio (CR) = Luminance measured when LCD on the "White" state Luminance measured when LCD on the "Black" state Note 5: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (reference the picture in below). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/Lmax x100%

L = Active area length W = Active area width

Note 6: Definition of color chromaticity (CIE 1931) Color coordinates measured at the center point of LCD

Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Reliability

Content of Reliability Test (Super Wide temperature, -30°C~80°C)

Environmental Test							
Test Item	Content of Test	Test Condition	Note				
High Temperature	Endurance test applying the high storage temperature		2				
storage	for a long time.	200hrs					
Low Temperature	Endurance test applying the low storage temperature	-30 ℃	1,2				
storage	for a long time.	200hrs					
High Temperature	Endurance test applying the electric stress (Voltage &	80 °C					
Operation	Current) and the thermal stress to the element for a	200hrs					
	long time.						
Low Temperature	Endurance test applying the electric stress under low	-30 °C	1				
Operation	temperature for a long time.	200hrs					
High Temperature/	The module should be allowed to stand at	60°C,90%RH	1,2				
Humidity storage	60℃,90%RH max	96hrs					
Thermal shock	The sample should be allowed stand the following 10	-30°C/80° C					
resistance	cycles of	10 cycles					
	operation						
	-30° <u>C</u> 25°C 80°C						
	30min 5min 30min						
Vibration test	Endurance test applying the vibration during	Total fixed amplitude :	3				
	transportation and using.	1.5mm					
		Vibration Frequency : 10~55Hz					
		One cycle 60					
des		seconds to 3					
		directions of					
	ssion • manulaciure	X,Y,Z for Each 15	V				
		minutes					
Static electricity test	Endurance test applying the electric stress to the	VS=±600V(contact)					
Claric Cicculory (63)	terminal.	, , , ,					
		,±800v(air),					
		RS=330Ω					
		CS=150pF					
		10 times					

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal Temperature and humidity after remove from the test chamber.

Note3: The packing have to including into the vibration testing.

Initial Code For Reference

External system porch setting:125>VBP≧17, VFP≧20 Two data lanes / maximum speed 550Mbps

Void ST7701S_PanelInitialCode(void) { -----Reset Sequence------//---// LCD Nreset(1); Delayms (1); //Delay 1ms LCD Nreset(0); Delayms (1); //Delay 1ms LCD_Nreset(1); Delayms (120); //Delay 120ms WriteComm (0x11); Delayms (120); //Delay 120ms //-----Initial setting----// WriteComm (0xFF): WriteData (0x77); WriteData (0x01); WriteData (0x00); WriteData (0x00); WriteData (0x10); WriteComm (0xC0); WriteData (0x3B); WriteData (0x00); WriteComm (0xC1); WriteData (0x0D); WriteData (0x02); WriteComm (0xC2); WriteData (0x21); WriteData (0x08); WriteComm (0xCC); WriteData (0x10); WriteComm (0xB0); WriteData (0x00); WriteData (0x05); WriteData (0x0F); WriteData (0x0D); WriteData (0x13); WriteData (0x07); WriteData (0x01);

WriteData (0x08); WriteData (0x09); WriteData (0x1E); WriteData (0x05); WriteData (0x12); WriteData (0x10); WriteData (0xA7); WriteData (0x2F); WriteData (0x18); WriteComm (0xB1); WriteData (0x00); WriteData (0x0F); WriteData (0x17); WriteData (0x0C); WriteData (0x0D); WriteData (0x05); WriteData (0x01); WriteData (0x08); WriteData (0x08); WriteData (0x1E); WriteData (0x05); WriteData (0x13); WriteData (0x11); WriteData (0xA7); WriteData (0x2F); WriteData (0x18); WriteComm (0xFF); WriteData (0x77); WriteData (0x01); WriteData (0x00); WriteData (0x00); WriteData (0x11); WriteComm (0xB0); WriteData (0x4D); WriteComm (0xB1); WriteData (0x4F); WriteComm (0xB2); WriteData (0x07); WriteComm (0xB3); WriteData (0x80); WriteComm (0xB5);

manufacture • supply

```
WriteData (0x47);
```

WriteComm (0xB7); WriteData (0x85);

WriteComm (0xB8); WriteData (0x21);

WriteComm (0xB9); WriteData (0x10);

WriteComm (0xC1); WriteData (0x78);

WriteComm (0xC2); WriteData (0x78);

WriteComm (0xD0); WriteData (0x88);

Delayms (100);

WriteComm (0xE0); WriteData (0x00); WriteData (0x00); WriteData (0x02);

WriteComm (0xE1); WriteData (0x08); WriteData (0x00); WriteData (0x0A); WriteData (0x00); WriteData (0x07); WriteData (0x00); WriteData (0x09); WriteData (0x00); WriteData (0x00); WriteData (0x33); WriteData (0x33); WriteComm (0xE2); WriteData (0x00); WriteData (0x00); WriteData (0x00); WriteData (0x00); WriteData (0x00);

WriteData (0x00); WriteData (0x00);

• manufacture • supply

WriteData (0x00); WriteData (0x00); WriteData (0x00); WriteData (0x00); WriteData (0x00); WriteData (0x00); WriteComm (0xE3); WriteData (0x00); WriteData (0x00); WriteData (0x33); WriteData (0x33); WriteComm (0xE4); WriteData (0x44); WriteData (0x44); WriteComm (0xE5); WriteData (0x0E); WriteData (0x2D); WriteData (0xA0); WriteData (0xA0); WriteData (0x10); WriteData (0x2D); WriteData (0xA0); WriteData (0xA0); WriteData (0x0A); WriteData (0x2D); WriteData (0xA0); WriteData (0xA0); WriteData (0x0C); WriteData (0x2D); WriteData (0xA0); WriteData (0xA0); WriteComm (0xE6); WriteData (0x00); WriteData (0x00); WriteData (0x33); WriteData (0x33); WriteComm (0xE7); WriteData (0x44); WriteData (0x44); WriteComm (0xE8); WriteData (0x0D); WriteData (0x2D);

manufacture • supply

WriteData (0xA0); WriteData (0xA0); WriteData (0x0F); WriteData (0x2D); WriteData (0xA0); WriteData (0xA0); WriteData (0x09); WriteData (0x2D); WriteData (0xA0); WriteData (0xA0); WriteData (0x0B); WriteData (0x2D); WriteData (0xA0); WriteData (0xA0); WriteComm (0xEB); WriteData (0x02); WriteData (0x01); WriteData (0xE4); WriteData (0xE4); WriteData (0x44); WriteData (0x00); WriteData (0x40); WriteComm (0xEC); WriteData (0x02); WriteData (0x01); WriteComm (0xED); WriteData (0xAB); WriteData (0x89); WriteData (0x76); WriteData (0x54); WriteData (0x01); WriteData (0xFF); WriteData (0xFF); WriteData (0xFF); WriteData (0xFF); WriteData (0xFF); WriteData (0xFF); WriteData (0x10); WriteData (0x45); WriteData (0x67); WriteData (0x98); WriteData (0xBA); WriteComm (0xFF); WriteData (0x77);

WriteData (0x01); WriteData (0x00); WriteData (0x00); WriteData (0x00);

WriteComm (0x11);

WriteComm (0x36); WriteData (0x00);

WriteComm (0x29);

}

