Product Change Notification / SYST-19GUZD071

Date:
22-Mar-2021

Product Category:
32-bit Microcontrollers

PCN Type:
Document Change

Notification Subject:
ERRATA - SAM D11 Series Family Silicon Errata and Data Sheet Clarifications

Affected CPNs:
SYST-19GUZD071_Affected_CPN_03222021.pdf
SYST-19GUZD071_Affected_CPN_03222021.csv

Notification Text:
SYST-19GUZD071

Microchip has released a new Product Documents for the SAM D11 Series Family Silicon Errata and Data Sheet Clarifications of devices. If you are using one of these devices please read the document located at [SAM D11 Series Family Silicon Errata and Data Sheet Clarifications].

Notification Status: Final

Description of Change: This revision includes numerous typographical updates, along with the following new information:
The I2C standard uses the terminology "master" and "slave". The equivalent Microchip terminology used in this document is "Host" and "Client" respectively.
The following Errata were added:
• 2. Module: "SERCOM I2C STATUS.CLKHold bit"
• 3. Module: "Device Standby Wakeup"
Updated the following Data Sheet Clarifications with new images and descriptions:
• 2. Module: "OSC32K and XOSC32K EN1K bit"
• 5. Module: "ADC Power Management"
• 9. Module: "NVMCTRL - NVM User Configuration"
• 11. Module: "SYSCTRL - XOSC Register" The following Data Sheet Clarifications were added:
• 14. Module: "USB - STATUS.Speed"
The following Data Sheet Clarifications were removed:

- Module: 32 kHz Ultra-Low Power Internal Oscillator (OSCULP32K) Operation

Impacts to Data Sheet: None

Reason for Change: To Improve Productivity

Change Implementation Status: Complete

Date Document Changes Effective: 22 Mar 2021

NOTE: Please be advised that this is a change to the document only the product has not been changed.

Markings to Distinguish Revised from Unrevised Devices: N/A

Attachments:

- SAM D11 Series Family Silicon Errata and Data Sheet Clarifications

Please contact your local Microchip sales office with questions or concerns regarding this notification.

Terms and Conditions:

If you wish to receive Microchip PCNs via email, please register for our PCN email service at our PCN home page select register then fill in the required fields. You will find instructions about registering for Microchips PCN email service in the PCN FAQ section.

If you wish to change your PCN profile, including opt out, please go to the PCN home page select login and sign into your myMicrochip account. Select a profile option from the left navigation bar and make the applicable selections.
Affected Catalog Part Numbers (CPN)

ATSAMD11-XPRO
ATSAMD11C14A-SSNT
ATSAMD11C14A-SSUT
ATSAMD11C14A-SSUTN01
ATSAMD11D14A-MNT
ATSAMD11D14A-MU
ATSAMD11D14A-MUT
ATSAMD11D14A-MUTN03
ATSAMD11D14A-SSNT
ATSAMD11D14A-SSUT
ATSAMD11D14A-UUT
ATSAMD11D14A-W-NG
The SAM D11 Series family of devices that you have received conform functionally to the current Device Data Sheet (Atmel-42363H-SAM-D11-Datasheet_09/2016), except for the anomalies described in this document.

New Silicon Errata Issues

Note: This document provides information on new errata issues for the SAM D11 Series of devices. Please refer to the current device data sheet for all pre-existing silicon errata issues.

1. **Module: BOD12**
 On External Reset, the BOD12 reset cause can also be triggered.
 Work around
 Ignore BOD12 reset cause if External reset cause is set.

2. **Module: SERCOM I²C STATUS.CLK HOLD bit**
 The SERCOM I²C STATUS.CLK HOLD bit can be written, whereas it is a read-only status bit in both Host and Client modes.
 Work around
 Do not clear the STATUS.CLK HOLD bit to preserve the current clock hold state.

3. **Module: Device Standby Wakeup**
 Upon wakeup from standby with the Arm® Core register PRIMASK = 1, the first instruction fetched by the CPU in Flash memory will be the first instruction following the Wait For Interrupt (WFI) instruction. This instruction may be returned corrupted and lead to unpredictable behavior.
 If PRIMASK = 0, the first instruction fetched by the CPU will be the first instruction of the interrupt handler. This one will be correctly returned to the CPU.
 Work around
 The following two possible workarounds can be used independently:
 1. Disable Flash sleep in Standby Sleep mode (SLEEPPRM=DISABLED).
 2. Place the standby sleep function in SRAM and make sure that at least one dummy Flash fetch is completed before exiting the function. This can be achieved by reading 2 data in memory, with addresses separated by at least the cache size. Because the first read could be a cache hit, the second one will be a cache miss and will generate a real read in memory.

 The following code examples may be used:
   ```c
   __attribute__((noinline, section(".ramfunc")))
   void ram_sleep(void)
   {
     __DSB();
     __WFI();
     //
   }
   #define CACHE_SIZE_IN_BYTES 64
   ((volatile unsigned int *)FLASH_ADDR)[CACHE_SIZE_IN_BYTES/sizeof(unsigned int)];
   //will read a word at FLASH_ADDR + 0x40 in this case
   ```

 Note:
 This document provides information on new errata issues for the SAM D11 Series of devices. Please refer to the current device data sheet for all pre-existing silicon errata issues.
((volatile unsigned int *)FLASH_ADDR)[(CACHE_SIZE_IN_BYTES*2)/sizeof(unsigned int)];

//will read a word at FLASH_ADDR + 0x80 in this case

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the Device Data Sheet (Atmel-42363H-SAM-D11-Datasheet_09/2016).

Note: Corrections in tables and paragraphs are shown in **BOLD**. Where possible, the original bold text formatting has been removed for clarity.

1. **Module: Package Marking Information**

 In the current device data sheet, the SAM D11 Package Marking Information is missing. The information is as follows:

 All devices are marked with the Atmel logo, a shortened ordering code and additional marking (the two last lines).

 YYWW R ARM
 XXXXXX CC

 Where:
 - "Y" or "YY": Manufacturing Year (last OR two last digit(s))
 - "WW": Manufacturing Week
 - "R": Revision
 - "XXXXXX": Lot number
 - "CC": Internal Code

2. **Module: OSC32K and XOSC32K EN1K bit**

 The OSC32K and XOSC32K EN1K bits and the associated 1.024 kHz clock outputs are referenced several times in the device data sheet. The OSC32K and XOSC32K EN1K bits and the associated 1.024 kHz clock outputs are not implemented for this device.
3. Module: OSCULP32K Characteristics

The value for the minimum output frequency is incorrect. The corrected information is shown in **BOLD** below:

Figures 35-2, 35-3, 35-4, 40-2, 40-3, and 40-4 have an incorrect reset Polarity value. The corrected figures are as shown below:

FIGURE 35-2 and 40-2: POR OPERATING PRINCIPLE:

TABLE 35-45: ULTRA LOW POWER INTERNAL 32kHz RC OSCILLATOR CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f<sub>OUT</sub></td>
<td>Output frequency</td>
<td>Calibrated against a 32.768 kHz reference at 25°C, over [-40, +85]C, over [1.62, 3.63]V</td>
<td>27.8</td>
<td>32.768</td>
<td>37.8</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calibrated against a 32.768 kHz reference at 25°C, at V<sub>DD</sub>=3.3V</td>
<td>32.5</td>
<td>32.768</td>
<td>32.8</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calibrated against a 32.768 kHz reference at 25°C, over [1.62, 3.63]V</td>
<td>31.9</td>
<td>32.768</td>
<td>33.1</td>
<td>kHz</td>
</tr>
<tr>
<td>Duty</td>
<td>Duty Cycle</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>
5. Module: ADC Power Management

Section 31.5.2 has new information added, and is shown in BOLD below:

The ADC will continue to operate in any sleep modes where the selected source clock is running. The ADC’s interrupts can be used to wake up the device from sleep modes (Except the OVERRUN interrupt). The events can trigger other operations in the system without exiting the sleep modes. Refer to “PM – Power Manager” on page 110 for details on the different sleep modes.

Section 31.6.12 has new information added, and is shown in BOLD below:

When RUNSTDBY is one, any enabled ADC interrupt source can wake up the CPU (except the OVERRUN interrupt). While the CPU is sleeping, ADC conversion can only be triggered by events.

6. Module: EVSYS USER Register Summary

The USER register is displayed incorrectly in the Register Summary. The correct USER register summary section is displayed as follows:

<table>
<thead>
<tr>
<th>Address</th>
<th>USER</th>
<th>Bytes</th>
<th>...</th>
<th>CHANNEL[3:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0120</td>
<td>USER0</td>
<td>7:0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0136</td>
<td>USER22</td>
<td>7:0</td>
<td></td>
<td>CHANNEL [3:0]</td>
</tr>
</tbody>
</table>
7. Module: EVSYS Principle of Operation

Section 23.6.1 has incorrect information in the second part, the corrected information is shown in **BOLD**.

The EVSYS allows for communication between peripherals through events. Peripherals that respond to events (event users) are connected to multiplexers which have all event channels as input. **Each peripheral emitting events (Event Generator) can be connected to one or multiple event users, using one or multiple channels of the Event System.**

8. Module: NVMCTRL - CTRLA Register

Table 21-6 for the Command bit displays Write Lock bits as a feature. The Write Lock bits are not supported on this device.

Tables 21-2 and 21-3 show incorrect values on the last row of each table. These values are not possible per the device memory density.

10. Module: RTC - Overview

The overview section for the RTC had a new verbiage, which has been highlighted in **BOLD**.

The Real-Time Counter (RTC) is a 32-bit counter with a 10-bit programmable prescaler that typically runs continuously to keep track of time. The RTC can wake up the device from sleep modes using the alarm/compare wake up, periodic wake up or overflow wake up mechanisms.

The RTC is clocked by any clock sources selectable through the Generic Clock module (GCLK), providing the signal GCLK_RTC.

The RTC can generate periodic peripheral events from outputs of the prescaler, as well as alarm/compare interrupts and peripheral events, which can trigger at any counter value. Additionally, the timer can trigger an overflow interrupt and peripheral event, and be reset on the occurrence of an alarm/compare match. This allows periodic interrupts and peripheral events at very long and accurate intervals.

The 10-bit programmable prescaler can scale down the clock source, hence a wide range of resolutions and time-out periods can be configured. With a 32.768 kHz clock source, the minimum counter tick interval is 30.5 μs, and time-out periods can range up to 36 hours. With the counter tick interval configured to 1s, the maximum time-out period is more than 136 years.

11. Module: SYSCTRL - XOSC Register

The register description for the GAIN bit has been updated. The newly added text is shown in **BOLD**.

These bits select the gain for the oscillator. The listed maximum frequencies are recommendations, and might vary based on capacitive load and crystal characteristics. **These bits must be configured even when the Automatic Amplitude Gain Control is active.**

12. Module: SYSCTRL - XOSC Register

The AMPGC bit has been updated with a new note, as shown below in **BOLD**.

Note: The configuration of the oscillator gain is mandatory even if AMPGC feature is enabled at startup.

13. Module: Debug Operation - DCFGn Register

The register is erroneously listed as Read-Write. This register is Read Only.

14. Module: USB - STATUS.SPEED

The USB STATUS.SPEED bit field description in table 30-9 is wrong. The correct description is given below:

<table>
<thead>
<tr>
<th>SPEED[1:0]</th>
<th>SPEED STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0</td>
<td>Full-speed mode</td>
</tr>
<tr>
<td>0x1</td>
<td>Low-speed mode</td>
</tr>
<tr>
<td>0x2</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x3</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

15. Module: SERCOM I²C INTFLAG.DRDY bit

The description of the SERCOM I²C INTFLAG.DRDY bit is not complete. The **BOLD** part below must be added:

This flag is set when a I²C client byte transmission or reception is successfully completed.

16. Module: NVMCTRL AUX1 Device Configuration Register

Contrary to what is stated in the data sheet, the DCFG0/1 registers located in the AUX1 Area 2 are internal read-only registers and must not be written.
17. Module: DMAC SRCADDR and DSTADDR

Registers’ Descriptions

The description for the DMAC SRCADDR register is replaced by the following:

Bits 31:0 – SRCADDR[31:0] Transfer Source Address
This bit field holds the block transfer source address. When source address incrementation is disabled (BTCTRL.SRCINC=0), SRCADDR corresponds to the last beat transfer address in the block transfer. When source address incrementation is enabled (BTCTRL.SRCINC=1), SRCADDR is calculated as follows:

- If BTCTRL.STEPSEL=1:
 \[SRCADDR = SRCADDRE \cdot BTCNT \cdot (BEATSIZE + 1) \cdot 2^\text{STEPSEL} \]

- If BTCTRL.STEPSEL=0:
 \[SRCADDR = SRCADDRE \cdot BTCNT \cdot (BEATSIZE + 1) \]
 - SRCADDRE is the source address of the first beat transfer in the block transfer
 - BTCNT is the initial number of beats remaining in the block transfer
 - BEATSIZE is the configured number of bytes in a beat
 - STEPSEL is the configured number of beats for each incrementation

The description for the DMAC DSTADDR register is replaced by the following:

Bits 31:0 – DSTADDR[31:0] Transfer Destination Address
This bit field holds the block transfer destination address. When destination address incrementation is disabled (BTCTRL.DSTINC=0), DSTADDR corresponds to the last beat transfer address in the block transfer. When destination address incrementation is enabled (BTCTRL.DSTINC=1), DSTADDR is calculated as follows:

- If BTCTRL.STEPSEL=1:
 \[DSTADDR = DSTADDRE \cdot BTCNT \cdot (BEATSIZE + 1) \]

- If BTCTRL.STEPSEL=0:
 \[DSTADDR = DSTADDRE \cdot BTCNT \cdot (BEATSIZE + 1) \cdot 2^\text{STEPSEL} \]
 - DSTADDRE is the destination address of the first beat transfer in the block transfer
 - BTCNT is the initial number of beats remaining in the block transfer
 - BEATSIZE is the configured number of bytes in a beat
 - STEPSEL is the configured number of beats for each incrementation

18. Module: RTC and TC READREQ.RCONT bit fields

A note is added to the RTC and TC READREQ.RCONT bit fields descriptions:

For the RTC:

Note: Once the continuous synchronization is enabled, the first write in the COUNT/CLOCK register will be stalled for a maximum of 6 APB + 6 RTC clock cycles (the time for the on-going read synchronization to complete).

For the TC:

Note: Once the continuous synchronization is enabled, the first write in the COUNT/CCx register will be stalled for a maximum of 6 APB + 6 TC clock cycles (the time for the on-going read synchronization to complete).
19. Module: DMAC BASEADDR, WRBADDR and DESCADDR registers alignment

The description for the 3 DMAC BASEADDR, WRBADDR and DESCADDR registers erroneously states that these registers must be 128-bit aligned. These registers must actually be 64-bit aligned.

20. Module: DAC Maximum Input Clock Frequency

The Electrical Characteristics table 35-6 erroneously defines the DAC maximum input clock as 350 kHz. This value is corrected to 48 MHz.

A note has been added to the start conversion paragraph in chapter 33.6.4.3:

Note: When a DAC Start Conversion event is enabled, only DATABUF must be written (not DATA).

The description of the EVTCTRL.STARTEI bit has been updated to:

0: A new conversion will not be triggered on an incoming event. Only DATA must be written (not DATABUF).

1: A new conversion will be triggered on an incoming event. Only DATABUF must be written (not DATA).

22. Module: DAC Electrical Characteristics

The conversion rate of 350 ksp mentioned in Note 1 for the DAC Accuracy Characteristics tables 35-28 and 40-26 is incorrect. All values have been measured using a conversion rate of 35 ksp.
23. Module: ADC Electrical Characteristics at 85°C

The table 35-21 Operating Conditions is corrected as shown in BOLD as follows:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES</td>
<td>Resolution</td>
<td></td>
<td>8</td>
<td></td>
<td>12</td>
<td>bits</td>
</tr>
<tr>
<td>(F_{\text{CLK_ADC}})</td>
<td>ADC Clock frequency</td>
<td></td>
<td>30</td>
<td></td>
<td>2100</td>
<td>kHz</td>
</tr>
<tr>
<td>Sample rate(1)</td>
<td></td>
<td>Single shot</td>
<td>5</td>
<td></td>
<td>300</td>
<td>kcps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free running</td>
<td>5</td>
<td></td>
<td>350(3)</td>
<td></td>
</tr>
<tr>
<td>Sampling time(1)</td>
<td></td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Sampling time with DAC as input(2)</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Sampling time with Temp sens as input(2)</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Sampling time with Bandgap as input(2)</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Conversion time(1)</td>
<td></td>
<td>1x Gain</td>
<td>6</td>
<td></td>
<td></td>
<td>cycles</td>
</tr>
<tr>
<td>(V_{\text{REF}})</td>
<td>Voltage reference range</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td>(V_{\text{DDANA}}-0.6) V</td>
</tr>
<tr>
<td>INT1V</td>
<td>Internal 1V reference (^{(2)})</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td>(V_{\text{DDANA}}) V</td>
</tr>
<tr>
<td>INTVCC0</td>
<td>Internal ratiometric reference 0 (^{(2)})</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td>(V_{\text{DDANA}}/1.48) V</td>
</tr>
<tr>
<td>INTVCC0 Voltage Error</td>
<td>Internal ratiometric reference 0 (^{(2)}) error</td>
<td>2.0V<(V_{\text{DDANA}})<3.063 V</td>
<td>-1</td>
<td></td>
<td>1</td>
<td>%</td>
</tr>
<tr>
<td>INTVCC1</td>
<td>Internal ratiometric reference 1 (^{(2)})</td>
<td>(V_{\text{DDANA}} > 2.0) V</td>
<td></td>
<td>(V_{\text{DDANA}}/2)</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>INTVCC1 Voltage Error</td>
<td>Internal ratiometric reference 1 (^{(2)}) error</td>
<td>2.0V<(V_{\text{DDANA}})<3.063 V</td>
<td>-1</td>
<td></td>
<td>1</td>
<td>%</td>
</tr>
<tr>
<td>Conversion range(1)</td>
<td></td>
<td>Differential mode</td>
<td>-(V_{\text{REF}}/\text{GAIN})</td>
<td>0.0</td>
<td></td>
<td>+(V_{\text{REF}}/\text{GAIN})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single-ended mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{\text{SAMPLE}})</td>
<td>Sampling capacitance (^{(2)})</td>
<td></td>
<td></td>
<td>3.5</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>(R_{\text{SAMPLE}})</td>
<td>Input channel source resistance (^{(2)})</td>
<td></td>
<td></td>
<td>3.5</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>(I_{\text{DD}})</td>
<td>DC supply current(1)</td>
<td></td>
<td></td>
<td>3.8</td>
<td>4.5</td>
<td>mA</td>
</tr>
</tbody>
</table>

Note 1: These values are based on characterization. These values are not covered by test limits in production.

Note 2: These values are based on simulation. These values are not covered by test limits in production or characterization.

Note 3: In this condition and for a sample rate of 350ksps, a conversion takes 6 clock cycles of the ADC clock (conditions: 1X gain, 12-bit resolution, differential mode, free-running).

Note 4: It is the buffered internal reference of 1.0V derived from the internal 1.1V bandgap reference.
Table 35-22 Differential Mode is corrected as shown in **BOLD** as follows:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENOB</td>
<td>Effective Number Of Bits</td>
<td>With gain compensation</td>
<td>-</td>
<td>10.5</td>
<td>10.7</td>
<td>bits</td>
</tr>
<tr>
<td>TUE</td>
<td>Total Unadjusted Error</td>
<td>1x Gain</td>
<td>3.1</td>
<td>4.3</td>
<td>20</td>
<td>LSB</td>
</tr>
<tr>
<td>INLI</td>
<td>Integral Non Linearity</td>
<td>1x Gain</td>
<td>1.0</td>
<td>1.3</td>
<td>6.3</td>
<td>LSB</td>
</tr>
<tr>
<td>DNL</td>
<td>Differential Non Linearity</td>
<td>1x Gain</td>
<td>+/-0.3</td>
<td>+/-0.5</td>
<td>+/-0.98</td>
<td>LSB</td>
</tr>
</tbody>
</table>

GE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain Error</td>
<td>Ext. Ref 1x</td>
<td>-25.0</td>
<td>2.5</td>
<td>+25.0</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{REF} = V_{DDANA}/1.48$</td>
<td>-30.0</td>
<td>-1.5</td>
<td>+30.0</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{REF} = INT1V$</td>
<td>-15.0</td>
<td>-5.0</td>
<td>+10.0</td>
<td>mV</td>
<td></td>
</tr>
</tbody>
</table>

Gain Accuracy(4)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE</td>
<td>Offset Error</td>
<td>Ext. Ref. 0.5x</td>
<td>+/-0.04</td>
<td>+/-0.2</td>
<td>+/-1.5</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Ext. Ref. 2x to 16x</td>
<td>+/-0.1</td>
<td>+/-0.4</td>
<td>+/-2.0</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{REF} = V_{DDANA}/1.48$</td>
<td>-10.0</td>
<td>0.5</td>
<td>+10.0</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{REF} = INT1V$</td>
<td>-10.0</td>
<td>3.0</td>
<td>+10.0</td>
<td>mV</td>
<td></td>
</tr>
</tbody>
</table>

OE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFDR</td>
<td>Spurious Free Dynamic Range</td>
<td>1x Gain</td>
<td>62.7</td>
<td>70.4</td>
<td>75.8</td>
<td>dB</td>
</tr>
<tr>
<td>SINAD</td>
<td>Signal-to-Noise and Distortion</td>
<td>$F_{CLK, ADC} = 2.1$ MHz</td>
<td>54.1</td>
<td>61.4</td>
<td>62.7</td>
<td>dB</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
<td>$F_{IN} = 40$ kHz</td>
<td>54.5</td>
<td>63.6</td>
<td>65.6</td>
<td>dB</td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
<td></td>
<td>-74</td>
<td>-70.2</td>
<td>-63</td>
<td>dB</td>
</tr>
<tr>
<td>Noise RMS</td>
<td>$T = 25°C$</td>
<td></td>
<td>0.6</td>
<td>1.0</td>
<td>2</td>
<td>mV</td>
</tr>
</tbody>
</table>

Note 1: Maximum numbers are based on characterization and not tested in production, and valid for 5% to 95% of the input voltage range.

Note 2: Dynamic parameter numbers are based on characterization and not tested in production.

Note 3: Respect the input common mode voltage through the following equations (where $V_{CM, IN}$ is the Input channel common mode voltage):

- If $|V_{IN}| > V_{REF}/4$
 - $V_{CM, IN} < 0.95*V_{DDANA} + V_{REF}/4 - 0.75V$
 - $V_{CM, IN} > V_{REF}/4 - 0.05*V_{DDANA} - 0.1V$
- If $|V_{IN}| < V_{REF}/4$
 - $V_{CM, IN} < 1.2*V_{DDANA} - 0.75V$
 - $V_{CM, IN} > 0.2*V_{DDANA} - 0.1V$

Note 4: The gain accuracy represents the gain error expressed in percent. Gain accuracy (%) = (Gain Error in V x 100) / (2*Vref/GAIN)
24. Module: Bandgap Electrical

Characteristics at 85°C

The “Bandgap Reference Characteristics” chapter and its table 35-30 “Internal 1.1V Bandgap Reference Characteristics” are both renamed to “Bandgap and Internal 1.0V Reference Characteristics”.

Table 35-30 is updated as follows with corrections in **BOLD**:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandgap</td>
<td>Internal 1.1V Bandgap reference</td>
<td>Over voltage and [-40°C, +85°C]</td>
<td>1.08</td>
<td>1.10</td>
<td>1.12</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over voltage at 25°C</td>
<td>1.07</td>
<td>1.10</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>INT1V</td>
<td>Internal 1.0V reference voltage (1)</td>
<td>Over voltage and [-40°C, +85°C]</td>
<td>0.98</td>
<td>1.00</td>
<td>1.02</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over voltage at 25°C</td>
<td>0.97</td>
<td>1.00</td>
<td>1.01</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: These values are simulation based and are not covered by production test limits.
25. Module: ADC Electrical Characteristics at 105°C

Table 40-19 Operating Conditions is corrected as shown in BOLD as follows:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES</td>
<td>Resolution</td>
<td></td>
<td>8</td>
<td>-</td>
<td>12</td>
<td>bits</td>
</tr>
<tr>
<td>F_{CLK_ADC}</td>
<td>ADC Clock frequency</td>
<td></td>
<td>30</td>
<td>-</td>
<td>2100</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>Sample rate$^{(1)}$</td>
<td>Single shot</td>
<td>5</td>
<td>-</td>
<td>300</td>
<td>ksp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free running</td>
<td>5</td>
<td>-</td>
<td>350$^{(3)}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sampling time$^{(1)}$</td>
<td></td>
<td>250</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Sampling time with DAC as input$^{(2)}$</td>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>Sampling time with Temp sens as input$^{(2)}$</td>
<td></td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>Sampling time with Bandgap as input$^{(2)}$</td>
<td></td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>Conversion time$^{(1)}$</td>
<td>1x Gain</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>cycles</td>
</tr>
<tr>
<td>V_{DDANA}</td>
<td>Power supply voltage</td>
<td>$T > 85^\circ C$</td>
<td>2.7</td>
<td>-</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{REF}</td>
<td>Voltage reference range</td>
<td></td>
<td>1.0</td>
<td>-</td>
<td>V_{DDANA}-0.6</td>
<td>V</td>
</tr>
<tr>
<td>INT1V</td>
<td>Internal 1V reference$^{(2, 4)}$</td>
<td></td>
<td>-</td>
<td>1.0</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>INTVCC0</td>
<td>Internal ratiometric reference $^{(2)}$</td>
<td></td>
<td>-</td>
<td>V_{DDANA}/1.48</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>INTVCC0</td>
<td>Voltage Error</td>
<td>Internal ratiometric reference $^{(2)}$ error</td>
<td>2.0V<V_{DDANA}<3.063 V</td>
<td>-1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>INTVCC1</td>
<td>Voltage Error</td>
<td>Internal ratiometric reference $^{(1)}$ error</td>
<td>V_{DDANA}>2.0V</td>
<td>-</td>
<td>V_{DDANA}/2</td>
<td>-</td>
</tr>
<tr>
<td>Conversion range$^{(1)}$</td>
<td>Differential mode</td>
<td>$-V_{REF}$/GAIN</td>
<td>-</td>
<td>-</td>
<td>$+V_{REF}$/GAIN</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Single-ended mode</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>$+V_{REF}$/GAIN</td>
<td>V</td>
</tr>
<tr>
<td>C_{SAMPLE}</td>
<td>Sampling capacitance$^{(2)}$</td>
<td></td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>R_{SAMPLE}</td>
<td>Input channel source resistance$^{(2)}$</td>
<td></td>
<td>-</td>
<td>-</td>
<td>3.5</td>
<td>kΩ</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>DC supply current$^{(1)}$</td>
<td></td>
<td>-</td>
<td>3.8</td>
<td>4.5</td>
<td>mA</td>
</tr>
</tbody>
</table>

Note

1: These values are based on characterization. These values are not covered by test limits in production.
2: These values are based on simulation. These values are not covered by test limits in production or characterization.
3: In this condition and for a sample rate of 350ksp, a conversion takes 6 clock cycles of the ADC clock (conditions: 1X gain, 12-bit resolution, differential mode, free-running).
4: It is the buffered internal reference of 1.0V derived from the internal 1.1V bandgap reference.
Table 40-20 Differential Mode is corrected as shown in **BOLD** as follows:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENOB</td>
<td>Effective Number Of Bits</td>
<td>With gain compensation</td>
<td>-</td>
<td>10.0</td>
<td>10.4</td>
<td>bits</td>
</tr>
<tr>
<td>TUE</td>
<td>Total Unadjusted Error</td>
<td>1x Gain</td>
<td>3.1</td>
<td>4.3</td>
<td>16</td>
<td>LSB</td>
</tr>
<tr>
<td>INLI</td>
<td>Integral Non Linearity</td>
<td>1x Gain</td>
<td>1.0</td>
<td>1.3</td>
<td>5.0</td>
<td>LSB</td>
</tr>
<tr>
<td>DNL</td>
<td>Differential Non Linearity</td>
<td>1x Gain</td>
<td>+/-0.3</td>
<td>+/-0.5</td>
<td>+/-0.98</td>
<td>LSB</td>
</tr>
<tr>
<td></td>
<td>Gain Error</td>
<td>Ext. Ref 1x</td>
<td>-25.0</td>
<td>2.5</td>
<td>+25.0</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{REF}} = V_{\text{DDANA}}/1.48$</td>
<td>-30.0</td>
<td>-1.5</td>
<td>+30.0</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{REF}} = V_{\text{INT1V}}$</td>
<td>-15.0</td>
<td>-5.0</td>
<td>+10.0</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Gain Accuracy(4)</td>
<td>Ext. Ref. 0.5x</td>
<td>+/-0.04</td>
<td>+/-0.2</td>
<td>+/-1.0</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ext. Ref. 2x to 16x</td>
<td>+/-0.1</td>
<td>+/-0.4</td>
<td>+/-1.5</td>
<td>%</td>
</tr>
<tr>
<td>OE</td>
<td>Offset Error</td>
<td>Ext. Ref. 1x</td>
<td>-10.0</td>
<td>-1.5</td>
<td>+10.0</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{REF}} = V_{\text{DDANA}}/1.48$</td>
<td>-10.0</td>
<td>0.5</td>
<td>+10.0</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{REF}} = V_{\text{INT1V}}$</td>
<td>-10.0</td>
<td>3.0</td>
<td>+10.0</td>
<td>mV</td>
</tr>
<tr>
<td>SFDR</td>
<td>Spurious Free Dynamic Range</td>
<td>1x Gain</td>
<td>63.0</td>
<td>70.4</td>
<td>74.8</td>
<td>dB</td>
</tr>
<tr>
<td>SINAD</td>
<td>Signal-to-Noise and Distortion</td>
<td>$F_{\text{CLK, ADC}} = 2.1 \text{ MHz}$</td>
<td>57.0</td>
<td>61.4</td>
<td>64.3</td>
<td>dB</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
<td>$F_{\text{IN}} = 40 \text{ kHz}$</td>
<td>57.9</td>
<td>63.6</td>
<td>65.5</td>
<td>dB</td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
<td>$A_{\text{IN}} = 95% \text{ FSR}$</td>
<td>-74.5</td>
<td>-70.2</td>
<td>-64.5</td>
<td>dB</td>
</tr>
<tr>
<td>Noise RMS</td>
<td></td>
<td>$T = 25°C$</td>
<td>0.6</td>
<td>1.0</td>
<td>2</td>
<td>mV</td>
</tr>
</tbody>
</table>

Note 1: Maximum numbers are based on characterization and not tested in production, and valid for 5% to 95% of the input voltage range.

Note 2: Dynamic parameter numbers are based on characterization and not tested in production.

Note 3: Respect the input common mode voltage through the following equations (where $V_{\text{CM,IN}}$ is the Input channel common mode voltage):

- If $|V_{\text{IN}}| > V_{\text{REF}}/4$
 - $V_{\text{CM,IN}} < 0.95*V_{\text{DDANA}} + V_{\text{REF}}/4 - 0.75V$
 - $V_{\text{CM,IN}} > V_{\text{REF}}/4 - 0.05*V_{\text{DDANA}} - 0.1V$
- If $|V_{\text{IN}}| < V_{\text{REF}}/4$
 - $V_{\text{CM,IN}} < 1.2*V_{\text{DDANA}} - 0.75V$
 - $V_{\text{CM,IN}} > 0.2*V_{\text{DDANA}} - 0.1V$

Note 4: The ADC channels on pins PA08, PA09, PA10, PA11 are powered from the VDDIO power supply. The ADC performance of these pins will not be the same as all the other ADC channels on pins powered from the VDDANA power supply.

Note 5: The gain accuracy represents the gain error expressed in percent. Gain accuracy (%) = (Gain Error in V x 100) / (2*Vref/GAIN).
26. Module: Bandgap Electrical
Characteristics at 105°C

The “Bandgap Reference Characteristics” chapter
and its table 40-28 “Internal 1.1V Bandgap
Reference Characteristics” are both renamed to
"Bandgap and Internal 1.0V Reference
Characteristics". The table 40-28 is updated as
follows with corrections in **BOLD**:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandgap</td>
<td>Internal 1.1V Bandgap reference</td>
<td>Over voltage and [-40°C, +105°C]</td>
<td>1.08</td>
<td>1.10</td>
<td>1.12</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over voltage at 25°C</td>
<td>1.07</td>
<td>1.10</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>INT1V</td>
<td>Internal 1.0V reference voltage (1)</td>
<td>Over voltage and [-40°C, +85°C]</td>
<td>0.98</td>
<td>1.00</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over voltage at 25°C</td>
<td>0.97</td>
<td>1.00</td>
<td>1.01</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: These values are simulation based and are not covered by production test limits.
APPENDIX A: REVISION HISTORY

Revision A Document (07/2019)
This is the initial released version of this document.

Revision B Document (03/2021)
This revision includes numerous typographical updates, along with the following new information:
The I²C standard uses the terminology "master" and "slave". The equivalent Microchip terminology used in this document is "Host" and "Client" respectively.

The following Errata were added:
• 2. Module: “SERCOM I²C STATUS.CLKHold bit”
• 3. Module: “Device Standby Wakeup”

Updated the following Data Sheet Clarifications with new images and descriptions:
• 2. Module: “OSC32K and XOSC32K EN1K bit”
• 5. Module: “ADC Power Management”
• 9. Module: “NVMCTRL - NVM User Configuration”
• 11. Module: “SYSCTRL - XOSC Register”

The following Data Sheet Clarifications were added:
• 14. Module: “USB - STATUS.SPEED”
• 15. Module: “SERCOM I²C INFLAG.DRDY bit”
• 16. Module: “NVMCTRL AUX1 Device Configuration Register”
• 17. Module: “DMAC SRCADDR and DSTADDR Registers’ Descriptions”
• 18. Module: “RTC and TC READREQ.RCONT bit fields”
• 19. Module: “DMAC BASEADDR, WRBADDR and DESCADDR registers alignment”
• 20. Module: “DAC Maximum Input Clock Frequency”
• 22. Module: “DAC Electrical Characteristics”
• 23. Module: “ADC Electrical Characteristics at 85°C”
• 24. Module: “Bandgap Electrical Characteristics at 85°C”
• 25. Module: “ADC Electrical Characteristics at 105°C”
• 26. Module: “Bandgap Electrical Characteristics at 105°C”

The following Data Sheet Clarifications were removed:
• Module: 32 kHz Ultra-Low Power Internal Oscillator (OSCULP32K) Operation
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP’S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, iGLO, JukeBox, KeeLoq, Kleer, LANCheck, LinkMD, maxStyle, maxTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntellIMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temex, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc., in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019-2021, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-7917-8
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8755-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2386138

China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880-3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-8-8446-2100

ASIA/PACIFIC

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880-3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-8-8446-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-282

Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-7906

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-72400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra'anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-09-91

Sweden - Gothenburg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820