MOSFET - SiC Power, Single N-Channel, TO247-4L 650 V, 12 mΩ, 142 A

NTH4L015N065SC1

Features

- Typ. $R_{DS(on)} = 12 \text{ m}\Omega$ @ $V_{GS} = 18 \text{ V}$ Typ. $R_{DS(on)} = 15 \text{ m}\Omega$ @ $V_{GS} = 15 \text{ V}$
- Ultra Low Gate Charge (Q_{G(tot)} = 283 nC)
- High Speed Switching with Low Capacitance ($C_{oss} = 430 \text{ pF}$)
- 100% Avalanche Tested
- $T_J = 175^{\circ}C$
- These Devices are Pb-Free and are RoHS Compliant

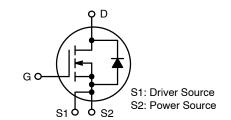
Typical Applications

- SMPS (Switching Mode Power Supplies)
- Solar Inverters
- UPS (Uninterruptable Power Supplies)
- Energy Storages

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

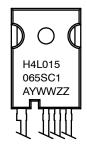
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	650	V
Gate-to-Source Voltage	V_{GS}	-8/+22	V		
	Recommended Operation Values of Gate-to-Source Voltage		V_{GSop}	-5/+18	V
Continuous Drain Current (Note 1)	Steady State	T _C = 25°C	I _D	142	Α
Power Dissipation (Note 1)			P _D	500	W
Continuous Drain Current (Note 1)	Steady State	T _C = 100°C	I _D	100	Α
Power Dissipation (Note 1)			P _D	250	W
Pulsed Drain Current (Note 2)	T _C = 25°C		I _{DM}	483	Α
Single Pulse Surge Drain Current Capability	T_A = 25°C, t_p = 10 μ s, R_G = 4.7 Ω		I _{DSC}	798	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Di	IS	114	Α		
Single Pulse Drain-to-Source Avalanche Energy ($I_{L(pk)} = 13 \text{ A}, L = 1 \text{ mH}$) (Note 3)			E _{AS}	84	mJ
Maximum Lead Temperature for Soldering (1/8" from case for 5 s)			TL	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Repetitive rating, limited by max junction temperature.
- 3. EAS of 84 mJ is based on starting T_J = 25°C; L = 1 mH, I_{AS} = 13 A, V_{DD} = 50 V, V_{GS} = 18 V.

ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
650 V	18 mΩ @ 18 V	142 A	

N-CHANNEL MOSFET

MARKING DIAGRAM

H4L015065SC1 = Specific Device Code

A = Assembly Location

Y = Year WW = Work Week ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping
NTH4L015N065SC1	TO247-4L	30 Units / Tube

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Junction-to-Case - Steady State (Note 1)	$R_{ heta JC}$	0.3	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	40	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA		650	_	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 20 mA, referenced to 25°C		-	0.12	-	V/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C	-	_	10	μΑ
		V _{DS} = 650 V	T _J = 175°C	-	-	1	mA
Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = +18/-5 \text{ V}, V_{DS}$; = 0 V	-	_	250	nA
ON CHARACTERISTICS (Note 2)	•				•		
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 25 \text{ m}$	Α	1.8	2.5	4.3	V
Recommended Gate Voltage	V_{GOP}			-5	-	+18	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 15 V, I _D = 75 A	, T _J = 25°C	_	15	-	mΩ
		V _{GS} = 18 V, I _D = 75 A	, T _J = 25°C	_	12	18	
		V _{GS} = 18 V, I _D = 75 A	, T _J = 175°C	_	16	-	
Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 75 A	ı	_	47	-	S
CHARGES, CAPACITANCES & GATE RES	SISTANCE						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 325 V		_	4790	-	pF
Output Capacitance	C _{OSS}			_	430	-	
Reverse Transfer Capacitance	C _{RSS}			_	33	-	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -5/18 \text{ V}, V_{DS} =$	520 V,	-	283	-	nC
Gate-to-Source Charge	Q _{GS}	f = 1 MHz		_	72	-	
Gate-to-Drain Charge	Q_{GD}			-	64	-	
Gate-Resistance	R_{G}			-	1.6	_	Ω
SWITCHING CHARACTERISTICS	•						
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = -5/18 \text{ V},$		_	23	_	ns
Rise Time	t _r	$V_{DS} = 400 \text{ V},$ $I_D = 75 \text{ A},$ $R_G = 2.2 \Omega$ inductive load		-	26	-	
Turn-Off Delay Time	t _{d(OFF)}			-	49	-	
Fall Time	t _f			1	9.6	-	
Turn-On Switching Loss	E _{ON}			_	167	-	μJ
Turn-Off Switching Loss	E _{OFF}			-	276	-	
Total Switching Loss	E _{tot}			_	443	-	
SOURCE-DRAIN DIODE CHARACTERIST	rics				<u> </u>		
Continuous Source-Drain Diode Forward Current	I _{SD}	$V_{GS} = -5 \text{ V}, T_{J} = 25^{\circ}\text{C}$	C	-	-	114	Α
Pulsed Source-Drain Diode Forward Current (Note 2)	I _{SDM}			-	-	483	
Forward Diode Voltage	V_{SD}	V _{GS} = -5 V, I _{SD} = 75	A, T _J = 25°C	-	4.8	-	V

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified) (continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
SOURCE-DRAIN DIODE CHARACTERISTICS							
Reverse Recovery Time	t _{RR}	$V_{GS} = -5/18 \text{ V}, I_{SD} = 75 \text{ A},$	_	28	-	ns	
Reverse Recovery Charge	Q _{RR}	dl _S /dt = 1000 A/μs	_	234	-	nC	
Reverse Recovery Energy	E _{REC}		_	23	-	μJ	
Peak Reverse Recovery Current	I _{RRM}		_	16	-	Α	
Charge time	Ta		_	17	-	ns	
Discharge time	Tb		_	11	-	ns	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

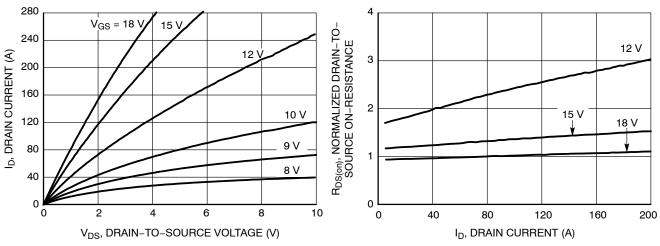


Figure 1. On-Region Characteristics

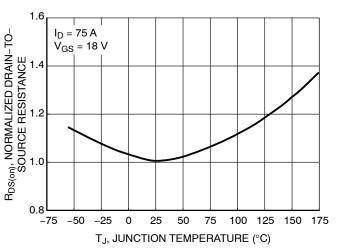


Figure 3. On–Resistance Variation with Temperature

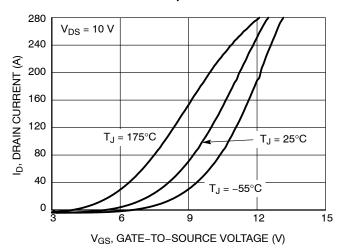


Figure 5. Transfer Characteristics

Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

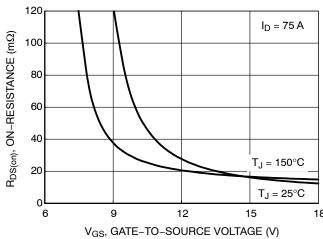
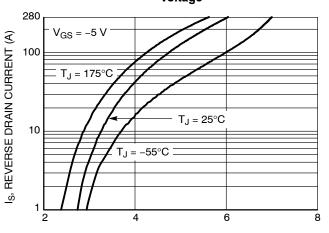



Figure 4. On-Resistance vs. Gate-to-Source Voltage

V_{SD}, BODY DIODE FORWARD VOLTAGE (V)

Figure 6. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS

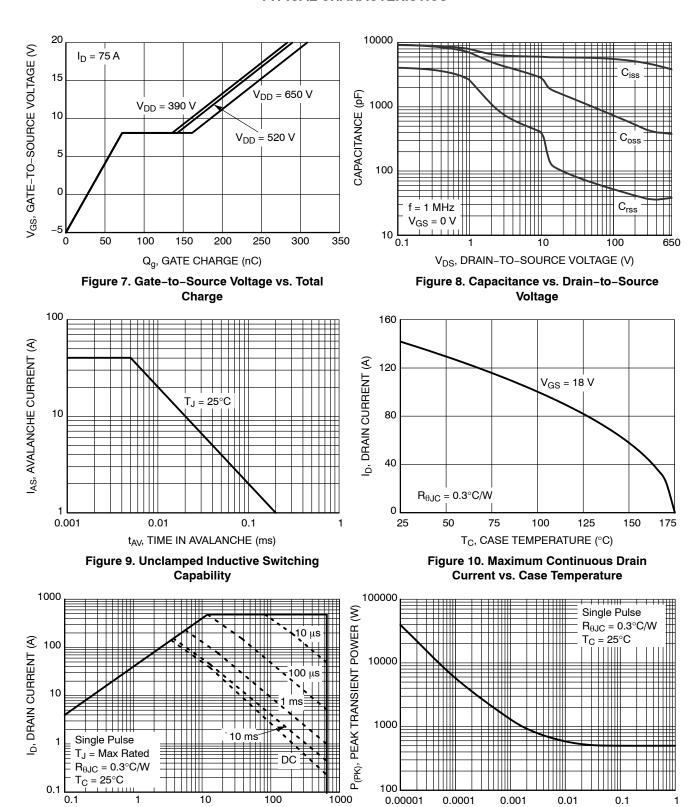


Figure 11. Safe Operating Area Figure 12. Single Pulse Maximum Power Dissipation

t, PULSE WIDTH (sec)

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

TYPICAL CHARACTERISTICS

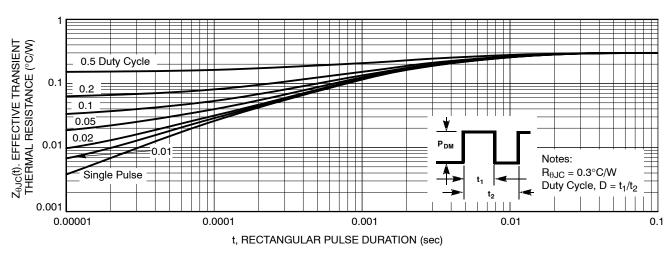
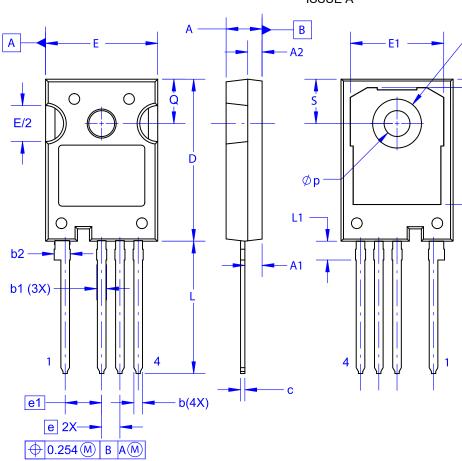



Figure 13. Junction-to-Case Thermal Response

PACKAGE DIMENSIONS

TO-247-4LD CASE 340CJ ISSUE A

NOTES:

- A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE.
 B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
 FLASH, AND TIE BAR EXTRUSIONS.
 C. ALL DIMENSIONS ARE IN MILLIMETERS.
 D. DRAWING CONFORMS TO ASME Y14.5-2009.

DIM	MIL	LIMETER	S		
DIM	MIN	NOM	MAX		
Α	4.80	5.00	5.20		
A1	2.10	2.40	2.70		
A2	1.80	2.00	2.20		
b	1.07	1.20	1.33		
b1	1.20	1.40	1.60		
b2	2.02	2.22	2.42		
С	0.50	0.60	0.70		
D	22.34	22.54	22.74		
D1	16.00	16.25	16.50		
D2	0.97	1.17	1.37		
е	2.54 BSC				
e1	Ę	5.08 BSC			
Е	15.40	15.60	15.80		
E1	12.80	13.00	13.20		
E/2	4.80	5.00	5.20		
L	18.22	18.42	18.62		
L1	2.42	2.62	2.82		
р	3.40	3.60	3.80		
p1	6.60	6.80	7.00		
Q	5.97	6.17	6.37		
S	5.97	6.17	6.37		

Ø**p1**

D1

D2

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative