Product Overview

Compact High Power PCB Relay

ELECTRONIC AND MECHANICAL COMPONENTS COMPANY

2

What's new?

 High power PCB relay: G9KA is developed for high voltage / current applications in energy market such as consumer & industry PV inverter.

• 800VAC, 200A high-current switching capability.

 Omron original low-heat generating design with class-leading low contact resistance of *0.2 m ohm.
*As an initial value.

Super compact and low-profile package (50mm X 50mm X 46mm)

Advantages for customers

1. Compared with conventional PCB relays;

(1) Reduces the design cost for heat dissipation such as heatsink, a fan, etc.(2) Helps miniaturize end products with a simple heat dissipation design.

2. Replacing from contactors;

- (1) Reduces man-hours and wiring mistakes by PC board connection.
- (2) Helps design more compact and lighter end products.
- (3) Reduces switching device costs without sacrificing necessary specifications.

* For more details, please see pages 9 and 10.

Omron advanced technologies

Compact high power PCB relay: G9KA for high current equipment in energy market.

- Class-leading low-heat performance:
 - Contact resistance is dramatically reduced. \rightarrow 0.2 m ohm or less as an initial value.
- Super compact and low-profile package.

Performance details: Contact resistance

Our proven development and manufacturing competences in structures, materials, and production methods realize low CR until end of life.

Change of contact resistance(200A_30min)

- Contact resistance: Measured at conditions of 200A, 30minutes

&Due to the product development stage, above data will be updated at mass production samples.

OMRON

Performance details: Low-heat generation

Omron's low-heat generation design with low contact resistance improves reliability of your high current equipment.

The following table shows the results of temperature rise simulation.

Preliminary product specifications

Outline dimensions

Terminal layout

7

		G9KA
Item		Specifications
Coil	Coil voltage	12 VDC, 24 VDC
	Coil power Consumption	5.0 W (1.25W at holding voltage of 50%)
Contact	Rated load	800 VAC / 200A (resistive load)
	Contact resistance	0.2m ohm or less at 200A *At initial, measured after 5 minutes
	Contact gap	4.0 mm
Endurance	Mechanical	100,000 times
	Electrical *1sec.ON / 9sec.OFF at 85 deg.C	800 VAC / 200A (Break) 10 cycles
		800 VAC Make 50A, Carry 200A, Break 50A 30,000 cycles at 85 deg.C
Ambient operating temperature		-40 to 85 deg.C
Terminal type		For PC board
Safety standard		TUV, UL

Note: The specified values may be changed before the release date.

Application example

Grid interconnection for consumer & industry PV inverters

- Advancement of larger capacity in PV inverter.
 - ➔ Low contact resistance feature is required to avoid rise in temperature caused by high current.

ELECTRONIC AND MECHANICAL COMPONENTS COMPANY

Advantages for customers: Replacing from contactor

PCB relay contributes less wiring, lower profile, and cost reduction by reasonable switching performance for inverter applications.

Advantages for customers: Replacing from contactor

We estimate occupied area will be reduced, and height can be reduced to 1/3, In case of being replaced by PCB relay design.

X Above figures are just for reference based on Omron research. Actual values should depend on customer's product design.

Product lineup / AC high capacity PCB relays

A wide product line with compact / low-heat generating features are available for high capacity applications.

Please check each region's Terms & Conditions by region website.

OMRON Corporation

Electronic and Mechanical Components Company

Regional ContactAmericas : https://www.components.omron.com/Asia-Pacific : https://ecb.omron.com.sg/Korea : https://www.omron-ecb.co.kr/Europe : http://components.omron.eu/China : https://www.ecb.omron.com.cn/Japan : https://www.omron.co.jp/ecb/

© OMRON Corporation 2019 All Rights Reserved. In the interest of product improvement, specifications are subject to change without notice.