A Miniature Power Relay with 1-pole 3A/5A Switching Capability and 10 kV Impulse Withstand Voltage

- Highly efficient magnetic circuit for high sensitivity (200 mW).
- Standard model conforms to UL/CSA/VDE standards.
- Satisfies EN61010 reinforced insulation requirements.
- IEC/EN 60335-1 conformed. (-HA Model)
- IEC/EN 6079-15 conformed. (Only for G5NB-1A4, G5NB-1A4-E Model)
- Reduced power consumption with voltage holding and pulse width modulation (PWM) control (Only for G5NB-PW model)

RoHS Compliant

Model Number Legend

G5NB-[...]

1. Number of Poles
 1 : 1-pole

2. Contact Form
 A : SPST-NO (1a)
 E : High-capacity

3. Enclosure rating
 None : Flux protection
 HA : Home Appliance according to IEC/EN60335-1
 4 : Sealed

4. Classification
 None : Standard
 E : High-capacity

5. Market Code
 None : General purpose
 HA : Home Appliance according to IEC/EN60335-1

6. Coil Insulation Class (UL1446)
 None : Class B
 CF : Class F

7. Special Requirement
 None : Not supported
 PW : Supported

8. Packing
 None : Tray Packing
 SP : Tube Packing

Application Examples

- Water heaters
- Air conditioners
- Refrigerators
- Home appliances
- Small electric appliances

Ordering Information

<table>
<thead>
<tr>
<th>Terminal Shape</th>
<th>Market Code</th>
<th>Classification</th>
<th>Contact form</th>
<th>Enclosure rating</th>
<th>Model</th>
<th>Rated coil voltage</th>
<th>Minimum packing unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB terminals</td>
<td>General purpose</td>
<td>Standard</td>
<td></td>
<td>Flux protection</td>
<td>G5NB-1A(-SP)</td>
<td>5VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Geased</td>
<td>G5NB-1A(1A(-SP))</td>
<td>12VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-capacity</td>
<td>SPST-NO (1a)</td>
<td></td>
<td>Flux protection</td>
<td>G5NB-1A-CF(-SP)</td>
<td>5VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Geased</td>
<td>G5NB-1A-CF(1A(-SP))</td>
<td>12VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flux protection</td>
<td>G5NB-1A-CF-PW(-SP)</td>
<td>24VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Home Appliance</td>
<td>Standard</td>
<td></td>
<td>Sealed</td>
<td>G5NB-1A-E(-SP)</td>
<td>5VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G5NB-1A-E(1A(-SP))</td>
<td>12VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-capacity</td>
<td></td>
<td></td>
<td>Flux protection</td>
<td>G5NB-1A-HA(-SP)</td>
<td>5VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G5NB-1A-HA(1A(-SP))</td>
<td>12VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G5NB-1A-HA-CF(-SP)</td>
<td>24VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G5NB-1A-HA-CF-PW(-SP)</td>
<td>24VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G5NB-1A-HA-PW</td>
<td>12VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G5NB-1A-E-HA(-SP)</td>
<td>12VDC</td>
<td></td>
</tr>
</tbody>
</table>

Note 1. When ordering, add the rated coil voltage to the model number.
 Example: G5NB-1A-DC6
 --- Rated coil voltage

However, the notation of the coil voltage on the product case as well as on the packing will be marked as DCVDC.

Note 2. When ordering tape packing, add "-SP" to the model number.
Be sure since "-SP" is not part of the relay model number, it is not marked on the relay case.
Ratings

Coil

<table>
<thead>
<tr>
<th>Rated voltage</th>
<th>Item</th>
<th>Rated current (mA)</th>
<th>Coil resistance (Ω)</th>
<th>Must operate voltage (V)</th>
<th>Must release voltage (V)</th>
<th>Max. voltage (V)</th>
<th>Power consumption (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 VDC</td>
<td></td>
<td>40</td>
<td>125</td>
<td>75% max.</td>
<td>10% min.</td>
<td>100 (at 23°C)</td>
<td>Standard: approx. 200</td>
</tr>
<tr>
<td>12 VDC</td>
<td></td>
<td>16.7</td>
<td>720</td>
<td></td>
<td></td>
<td></td>
<td>High-capacity: approx. 32</td>
</tr>
<tr>
<td>18 VDC</td>
<td></td>
<td>11.1</td>
<td>1,620</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 VDC</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1. The rated current and coil resistance are measured at a coil temperature of 23°C with a tolerance of ±10%.

Note 2. The operating characteristics are measured at a coil temperature of 23°C.

Note 3. The "Max. voltage" is the maximum voltage that can be applied to the relay coil.

* These numbers are only for +PW type. Power consumption with Holding Voltage is 32mW. Please confirm the detail in page 6 Coil Voltage Reduction (Holding Voltage).

Contacts

<table>
<thead>
<tr>
<th>Item</th>
<th>Load</th>
<th>Resitive load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Contact Type</td>
<td>Single</td>
<td></td>
</tr>
<tr>
<td>Contact material</td>
<td>Ag-alloy (Cd free)</td>
<td></td>
</tr>
<tr>
<td>Rated load</td>
<td>3 A at 120 VAC</td>
<td>5 A at 250 VAC</td>
</tr>
<tr>
<td>Rated carry current</td>
<td>3 A at 90 VDC</td>
<td>5 A at 90 VDC</td>
</tr>
<tr>
<td>Max. switching voltage</td>
<td>250 VAC, 30 VDC</td>
<td></td>
</tr>
<tr>
<td>Max. switching current</td>
<td>3 A</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics

<table>
<thead>
<tr>
<th>Contact resistance *1</th>
<th>100 mΩ max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operate time</td>
<td>10 ms max.</td>
</tr>
<tr>
<td>Release time</td>
<td>10 ms max.</td>
</tr>
<tr>
<td>Insulation resistance *2</td>
<td>1,000 MΩ min.</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>4,000 VAC, 50/60 Hz for 1 min</td>
</tr>
<tr>
<td>Impulse withstand voltage</td>
<td>750 VAC, 50/60 Hz for 1 min</td>
</tr>
<tr>
<td>Vibration resistance</td>
<td>10 to 55 x 0.75 mm single amplitude (1.5 mm double amplitude)</td>
</tr>
<tr>
<td>Shock resistance</td>
<td>1,000 m/s²</td>
</tr>
<tr>
<td>Mechanical Durability</td>
<td>5,000,000 operations min.</td>
</tr>
</tbody>
</table>

Electrical (resistive load)

| Standard (G5NB-1A, -1A4) | 200,000 operations at 125 VAC, 3A |
| High-capacity (G5NB-1A-E, -1A4-E) | 100,000 operations at 260 VAC, 6A |
| 200,000 operations at 30 VDC, 3A |

Failure rate (P level) (reference value) *3 | DC5V 10mA

Ambient operating temperature

-40°C to 85°C (with no icing or condensation)

Ambient operating humidity

5% to 85%

Weight

Approx. 4 g

Note. Values in the above table are the initial values at 23°C.

*1. Measurement conditions: 5 VDC, 1 A, voltage drop method

*2. Measurement conditions: Measured at the cono point as the dielectric strength using a 500 VDC ohmmeter.

*3. This value was measured at a switching frequency of 120 operations/min.
● Maximum Switching Capacity

Standard models

![Graph showing switching current vs. switching voltage for standard models.]

High-capacity models

![Graph showing switching current vs. switching voltage for high-capacity models.]

● Durability

Standard models

![Graph showing durability (10^6 operations) vs. switching current for standard models.]

High-capacity models

![Graph showing durability (10^6 operations) vs. switching current for high-capacity models.]

● Ambient Temperature vs. Maximum Coil Voltage

Standard models

![Graph showing maximum coil voltage vs. ambient temperature for standard models.]

High-capacity models

![Graph showing maximum coil voltage vs. ambient temperature for high-capacity models.]

Note: The maximum coil voltage refers to the maximum value in a varying range of operating power voltage, not a continuous voltage.
G5NB PCB Power Relay

● Shock malfunction

Standard models

Test Item: G5NB-1A, 24VDC
Number of Relays: 5 pcs
Test Method: Shock is applied 3 times in 6 directions along 3 axes and the level at which shock caused malfunction is measured. 100% of the energized voltage is 1100% of the rated voltage.
Rating: 100 m/s²

High-capacity models

Test Item: G5NB-1A-E, 24VDC
Number of Relays: 5 pcs
Test Method: Shock is applied 3 times in 6 directions along 3 axes and the level at which shock caused malfunction is measured. 100% of the energized voltage is 1100% of the rated voltage.
Rating: 100 m/s²

Dimensions

G5NB-1A(4)(-E)(-HA)(-CF)(-PW)

![Dimensions Diagram](image)

PCB Mounting Holes

(Bottom View)

Tolerance: ±0.1 mm

Terminal Arrangement/ Internal Connections

(Bottom View)

(No coil polarity)
Approved Standards

The approval rating values for overseas standards are different from the performance values determined individually. Confirm the values before use.

UL Recognized: (File No. E41515)

CSA Certified: (File No. LR31928)

<table>
<thead>
<tr>
<th>Model</th>
<th>Contact form</th>
<th>Coil ratings</th>
<th>Contact ratings</th>
<th>Number of test operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>G5NB-1A(4)(HA)(-CF)(-PW)</td>
<td>SPST-NO (1a)</td>
<td>5 to 24V DC</td>
<td>3A 250V AC (Resistive) 85°C</td>
<td>100,000</td>
</tr>
<tr>
<td>G5NB-1A(4)-E</td>
<td></td>
<td></td>
<td>3A 30V DC (Resistive) 70°C</td>
<td>6,000</td>
</tr>
<tr>
<td>G5NB-1A-E-HA</td>
<td></td>
<td></td>
<td>5A 250 V AC (Resistive) 85°C</td>
<td>6,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5A 30 V DC (Resistive) 70°C</td>
<td></td>
</tr>
</tbody>
</table>

EN/IEC, VDE Certified (Certificate No. 137575)

<table>
<thead>
<tr>
<th>Model</th>
<th>Contact form</th>
<th>Coil ratings</th>
<th>Contact ratings</th>
<th>Number of test operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>G5NB-1A(4)(HA)(-CF)(-PW)</td>
<td>SPST-NO (1a)</td>
<td>5, 12, 18, 24V DC</td>
<td>3A 250V AC (Resistive) 85°C</td>
<td>100,000</td>
</tr>
<tr>
<td>G5NB-1A(4)-E</td>
<td></td>
<td></td>
<td>3A 30V DC (Resistive) 70°C</td>
<td>10,000</td>
</tr>
<tr>
<td>G5NB-1A-E-HA</td>
<td></td>
<td></td>
<td>5A 250 V AC (Resistive) 85°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5A 30 V DC (Resistive) 70°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3A 250V AC (Resistive) 85°C</td>
<td>100,000</td>
</tr>
</tbody>
</table>

- Creepage distance: 6.0 mm min.
- Clearance distance: 6.0 mm min.
- Insulation material group: IIIa
- Type of insulation coil-contact circuit open contact circuit:
 - Pollution degree 2 / Reinforced (Sealed)
 - Pollution degree 3 / Basic (flux protection) / Reinforced (Sealed)
 - Micro disconnection
- Rated Insulation voltage: 250 V
- Pollution degree: 3
- Rated voltage system: 250 V
- Over voltage category: III
- Category of protection according to IEC 61810-1: RT II (Flux protection) / RT III (Sealed)
- Glow wire according to IEC 60335-1: <file name>
 - GWT 750°C min. (IEC 60695-2-11) / GWFI 850°C min. (IEC 60695-2-12)
- Tracking resistance according to IEC 60112: PTI 250 V min. (housing parts)
- Flammability class according to UL94: V-0
Precautions

Please refer to “PCB Relays Common Precautions” for correct use.

Correct Use

Coil Voltage Reduction (Holding Voltage) after Relay Operation
- If the coil voltage is reduced to the holding voltage after Relay operation, first apply the rated voltage to the coil for at least 100 ms, as shown below.
- A voltage of at least 40% of the rated voltage is required for the coil holding voltage. Do not allow voltage fluctuations to cause the coil holding voltage to fall below this level.

<table>
<thead>
<tr>
<th>Applied coil voltage</th>
<th>Coil resistance*</th>
<th>Power consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td>100%</td>
<td>125Ω (5 VDC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>720Ω (12 VDC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>288Ω (24 VDC)</td>
</tr>
<tr>
<td>Holding voltage</td>
<td>40%</td>
<td></td>
</tr>
</tbody>
</table>

* The coil resistance were measured at a coil temperature of 23°C with tolerances of ±10%.

Power consumption reduction of coil with pulse width modulation (PWM)
- Models with PWM drive capability (-PW) can reduce coil holding current with PWM control. This function reduces power consumption by reducing the current held by coil.
- Apply the rated voltage for at least 100 ms at the time of relay operation.
- The following are our verification conditions. When using, it be sure to check the actual machine under the actual usage conditions.

Example of drive circuit

Conditions of validation carried out by OMRON
- Applied voltage: rated voltage
- Duty: 50% or more
- Frequency: 10 kHz or more
- Inductance: 1 mH or less

Please check each region’s Terms & Conditions by region website.

OMRON Corporation
Electronic and Mechanical Components Company

Regional Contact
- Americas
 https://www.components.omron.com/
- Asia-Pacific
 https://ecb.omron.com.sg/
- Korea
 https://www.omron-ecb.co.kr/
- Europe
 http://components.omron.eu/
- China
 https://www.ecb.omron.com.cn/
- Japan
 https://www.omron.co.jp/ecb/

©OMRON Corporation 2007-2021 All Rights Reserved.
In the interest of product improvement, specifications are subject to change without notice.

Cat. No. J143-E1-17
0621(0207)