EVBL4571-QB-00A 1A, 60V, High-Efficiency, Synchronous **Step-Down Converter Evaluation Board** #### DESCRIPTION The EVBL4571-QB-00A is an evaluation board designed to demonstrate the capabilities of the MP4571, a high-efficiency, synchronous stepdown converter with integrated internal power MOSFETs (HS-FET and LS-FET, respectively). It can deliver up to 1A of continuous output current, with peak current control for excellent transient response and an integrated MPS power inductor. The MP4571 features advanced asynchronous mode (AAM) and forced continuous condition mode (FCCM). AAM helps achieve high efficiency under light-load conditions by scaling back the switching frequency (f_{SW}) to reduce switching and gate driver losses. The EVBL4571-QB-00A is a fully assembled and tested evaluation board. It generates 5V of output voltage (V_{OUT}) and 1A of continuous output current across a wide 5V to 60V input range. #### **ELECTRICAL SPECIFICATIONS** | Parameter | Symbol | Value | Units | | |----------------|--------|---------|-------|--| | Input voltage | Vin | 5 to 60 | V | | | Output voltage | Vout | 5 | V | | | Output current | lout | 1 | Α | | #### **FEATURES** - Wide 5V to 60V Operating Input Range - **1A Continuous Output Current** - 40µA Quiescent Current - Up to 2.2MHz Configurable Frequency - Internal 250mΩ High-Side MOSFET and 45mΩ Low-Side MOSFET - Low 2µA Shutdown Current - 0.45ms Internal Soft Start (SS) - 180° Out-of-Phase SYNCOUT Clock - Synchronous Mode for High-Efficiency Operation - Selectable Advanced Asynchronous Mode (AAM) or Forced Continuous Conduction Mode (FCCM) for Light-Load Operation - **EN Remote Control** - Power Good (PG) Indicator - Low-Dropout (LDO) Mode - Over-Current Protection (OCP) - Thermal Shutdown (TSD) - Available in a QFN-12 (2.5mmx3mm) Package MPL Optimized Performance with MPS Inductor MPL-AL6060 Series #### APPLICATIONS - **Automotive Systems** - **Industrial Power Systems** All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries. ## **EVBL4571-QB-00A EVALUATION BOARD** LxWxH (6.35cmx6.35cmx1.3cm) | Board Number | MPS IC
Number | MPS Inductor | | |-----------------|------------------|----------------|--| | EVBL4571-QB-00A | MP4571GQB | MPL-AL6060-150 | | # Efficiency vs. Load Current vs. Power Loss V_{OUT} = 5V, f_{SW} = 450kHz, L = 15 μ H, AAM #### **QUICK START GUIDE** - 1. Preset the power supply between 5V and 60V, then turn off the power supply. (1) - 2. If longer cables (>0.5m total) are being used between the source and the evaluation board, install a damping capacitor at the input terminals. This is critical when V_{IN} exceeds 24V. - 3. Connect the power supply terminals to: a. Positive (+): VIN b. Negative (-): GND 4. Connect the load terminals to: a. Positive (+): VOUT b. Negative (-): GND - 5. After making the connections, turn on the power supply. - 6. To use the enable (EN) function, apply a digital input to the EN pin. Drive EN above 1.45V to turn the regulator on; drive EN below 1.12V to turn it off. - 7. The oscillating frequency can be configured by the external frequency resistor (R_{FREQ}), which can be estimated with Equation (1): $$R_{FREQ}(M\Omega) = \frac{30}{f_{sw}(kHz)}$$ (1) 8. The output voltage (V_{OUT}) is set by the external resistor dividers (R4 and R5). The feedback resistor (R_{FB}, R4 plus R6) also sets the feedback loop bandwidth via the internal compensation capacitor. Select R4 to have a value of about 40k Ω . R5 can be calculated with Equation (2): $$R5 = \frac{R4}{\frac{V_{\text{OUT}}}{0.8} - 1} \tag{2}$$ 3 Table 1 shows the recommended R_{FB} values for common output voltages. **Table 1: Recommended Resistor Voltages** | V _{OUT} (V) | R4 (kΩ) | R5 (kΩ) | R6 (kΩ) | |----------------------|-----------|-----------|---------| | 3.3 | 41.2 (1%) | 13 (1%) | 20 (1%) | | 5 | 41.2 (1%) | 7.68 (1%) | 20 (1%) | | 12 | 41.2 (1%) | 2.94 (1%) | 20 (1%) | #### Notes: 1) Electronic loads represent a negative impedance to the regulator. If the current is too high, hiccup mode is triggered. EVBL4571-QB-00A Rev. 1.0 MonolithicPower.com 2/18/2021 MPS Proprietary Information, Patent Protected, Unauthorized Photocopy and Duplication Prohibited. ### **EVALUATION BOARD SCHEMATIC** Figure 1: Evaluation Board Schematic #### PACKAGE REFERENCE 4 ## **EVBL4571-QB-00A BILL OF MATERIALS** | Qty | Ref | Value | Description | Package | Manufacturer | Manufacturer P/N | |-----|--|--------|---------------------------------|-----------------------|--------------|--------------------| | 2 | C1A, C1B | 10μF | Ceramic capacitor,
100V, X7S | 1210 | Murata | GRM32EC72A106KE05L | | 1 | C1C | 0.1µF | Ceramic capacitor,
100V, X7R | 0603 | Murata | GRM188R72A104KA35D | | 2 | C2A, C2B | 22µF | Ceramic capacitor,
25V, X7R | 1210 | Murata | GRM32ER71E226KE15L | | 1 | C3 | 1µF | Ceramic capacitor,
25V, X7R | 0603 | Murata | GRM188R71E105KA12D | | 1 | C4 | 0.1µF | Ceramic capacitor,
16V, X7R | 0603 | Murata | GRM188R71C104KA01D | | 1 | CIN5 | 22µF | Electrolytic capacitor, 63V | SMD | Jianghai | VTD-63V22 | | 8 | CIN1, CIN2,
CIN3, CIN4,
C2C, C2D,
C2E, C5 | NS | | | | | | 1 | D1 | NS | | | | | | 1 | D2 | 5.6V | Zener diode, 5.6V | SOD323 | Diodes, Inc. | BZT52C5V6S | | 1 | FB1 | NS | | | | | | 1 | L1 | NS | | | | | | 1 | L2 | 15µH | Inductor, 35mΩ, DCR, 5.8A | SMD | MPS | MPL-AL6060-150 | | 1 | L3 | Short | | SMD | | | | 3 | R1, R9, R10 | 100kΩ | Film resistor, 1% | 0603 | Yageo | RC0603FR-07100KL | | 1 | R3 | 10kΩ | Film resistor, 1% | 0603 | Yageo | RC0603FR-0710RL | | 1 | R4 | 41.2kΩ | Film resistor, 1% | 0603 | Yageo | RC0603FR-0741K2L | | 1 | R5 | 7.68kΩ | Film resistor, 1% | 0603 | Yageo | RC0603FR-077K68L | | 1 | R6 | 20kΩ | Film resistor, 1% | 0603 | Yageo | RC0603FR-0720KL | | 1 | R7 | 66.5kΩ | Film resistor, 1% | 0603 | Yageo | RC0603FR-0766K5L | | 1 | R8 | 0Ω | Film resistor, 1% | 0603 | Yageo | RC0603FR-070RL | | 1 | R2 | NS | | | - | | | 1 | U1 | MP4571 | Step-down regulator | QFN-12
(2.5mmx3mm) | MPS | MP4571GQB | | 1 | JP1 | 2.54mm | Test pin | DIP | Custom | | | 5 | VIN, VEMI,
VOUT, GND,
GND | 2mm | 2 golden pins | DIP | Custom | | | 5 | CCM/
SYNCO,
PG, EN,
GND, GND | 2.54mm | Test pin | DIP | Custom | | 5 #### **EVB TEST RESULTS** Performance curves and waveforms are tested on the evaluation board. V_{IN} = 24V, V_{OUT} = 5V, L = 15 μ H, f_{SW} = 450kHz, T_A = 25°C, unless otherwise noted. ## Efficiency vs. Load Current vs. Power Loss # Efficiency vs. Load Current vs. Power Loss # Efficiency vs. Load Current vs. Power Loss Performance curves and waveforms are tested on the evaluation board. V_{IN} = 24V, V_{OUT} = 5V, L = 15 μ H, f_{SW} = 450kHz, T_A = 25°C, unless otherwise noted. 11 ## **PCB LAYOUT** 0 0 0 0 • 0 Figure 2: Top Silk and Top Layer Figure 3: Mid-Layer 1 Figure 4: Mid-Layer 2 Figure 5: Bottom Layer and Bottom Silk ## **REVISION HISTORY** | Revision # | Revision Date | Description | Pages Updated | |------------|---------------|-----------------|---------------| | 1.0 | 2/18/2021 | Initial Release | - | Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.