

DATA SHEET

SURFACE MOUNT MULTILAYER CERAMIC CAPACITORS

Automotive grade X5R/X6S

12μF to 1 μF RoHS compliant & Halogen Free

YAGEO

Product specification – August 25, 2021 V.0

Surface-Mount Ceramic Multilayer Capacitors Automotive grade

SCOPE

This specification describes Automotive grade X5R/X6S series chip capacitors with lead-free terminations and used for automotive infotainment system.

APPLICATIONS

Entertainment applications Comfort applications Information applications

Do not use these products in application critical to passenger safety and car driving function

FEATURES

- AEC-Q200 complaint
- MSL class: MSL I
- · Soldering is compliant with J-STD-020D
- Reduce environmentally hazardous waste
- High component and equipment reliability
- The capacitors are 100% performed by automatic optical inspection prior to taping.

ORDERING INFORMATION - GLOBAL PART NUMBER

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

GLOBAL PART NUMBER

AC xxxx x x xxx x B x xxx

(1) (2) (3) (4) (5) (6) (7)

(I) SIZE - INCH BASED (METRIC)

0201 (0603) / 0402 (1005) / 0603 (1608) / 0805 (2012) / 1206 (3216)/ 1210 (3225)

(2) TOLERANCE

 $| = \pm 5\%$

 $K = \pm 10\%$

 $M = \pm 20\%$

(3) PACKING STYLE (SEE TABLE 5)

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

(4) TC MATERIAL

X5R

X6S

(5) RATED VOLTAGE

 $4 = 4 \ \lor$

5 = 6.3 V

6 = 10 V

7 = 16 V

8 = 25 V

G = 35 V

9 = 50 V

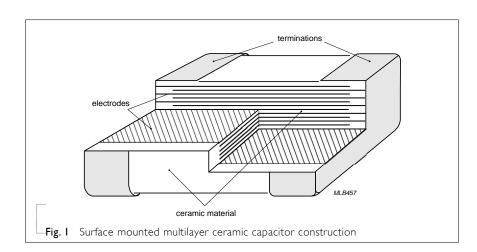
(6) PROCESS

B = Class 2 MLCC

(7) CAPACITANCE VALUE

2 significant digits + number of zeros

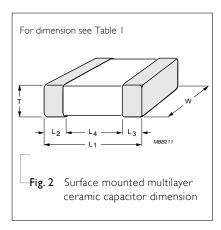
The 3rd digit signifies the multiplying factor, and letter R is decimal point


Example: $121 = 12 \times 10^{1} = 120 \text{ pF}$

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (Matte Sn). The terminations are leadfree. A cross section of the structure is shown in Fig. I.



DIMENSION

Table I For outlines see fig. 2

TYPE	L ₁ (mm) W (mm) T (MM)		T (MM)	L ₂ / L ₃ (mm)	L ₄ (mm)
IIFE	L ₁ (111111)	vv (mm)	1 (141141)	min.	max.	min.
0201	0.6 ±0.03	0.3±0.03	0.3±0.03	0.10	0.20	0.20
0402	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15	0.35	0.40
0603	1.6 ±0.10	0.8 ±0.10	0.8 ±0.10	0.20	0.60	0.40
	20.10.10	125 1010	0.6 ±0.10			
0805	2.0 ±0.10	1.25 ±0.10	0.85 ±0.10	0.25	0.75	0.70
	2.0 ±0.20	1.25 ±0.20	.25 ±0.20			
	22 1015	17.1015	0.6 ±0.10			
	3.2 ±0.15	1.6 ±0.15	0.85 ±0.10	0.25		1.40
1206	3.2 ±0.30	17.10.20	1.25 ±0.20		0.75	
		1.6 ±0.20	1.6 ±0.20			
	3.2 ±0.30	1.6 ±0.30	1.6 ±0.30			
	3.2 ±0.20	2.5 ±0.20	0.85 ±0.10			
			1.25 ±0.20			
1210	3.2 ±0.30	2.5 ±0.20	1.6 ±0.20	0.25	0.75	1.40
			2.0 ±0.20			
	3.2 ±0.40	2.5 ±0.30	2.5 ±0.20			

OUTLINES

CAPACITANCE RANGE & THICKNESS FOR X5R

Table 2	Sizes from	0201 to 0402	<u>)</u>	
CAP.		0201		0402
		6.3V	10V	6.3 V
15	nF	0.3±0.03	0.3±0.03	
22	nF	0.3±0.03	0.3±0.03	
33	nF	0.3±0.03	0.3±0.03	
47	nF	0.3±0.03	0.3±0.03	
68	nF	0.3±0.03	0.3±0.03	
100	nF	0.3±0.03	0.3±0.03	
150	nF			0.5±0.05
220	nF			0.5±0.05
330	nF			0.5±0.05
470	nF			0.5±0.05
680	μF			0.5±0.05
1000	uF			0.5±0.05

NOTE

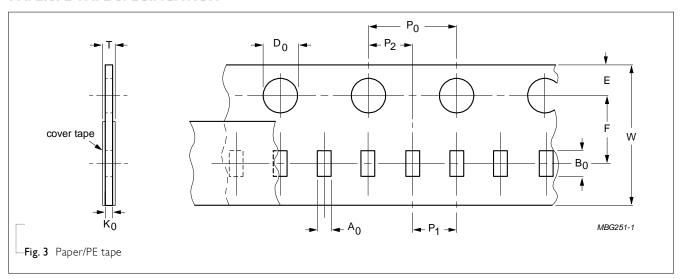
- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request

CAPACITANCE RANGE & THICKNESS FOR X6S

Table 3	Sizes 020	I	
CAP.		0201	
		6.3V	10V
15	nF	0.3±0.03	0.3±0.03
22	nF	0.3±0.03	0.3±0.03
33	nF	0.3±0.03	0.3±0.03
47	nF	0.3±0.03	0.3±0.03
68	nF	0.3±0.03	0.3±0.03
100	nF	0.3±0.03	0.3±0.03
150	nF		
220	nF		
330	nF		
470	nF		
680	μF		
1000	uF		

NOTE

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request



THICKNESS CLASSES AND PACKING QUANTITY

Table 4

	THICKNESS PACKING CODE				QUANTITY PER REEL					
SIZE CODE	CLASSIFICATION	PACKII	NG CODE	TAPE WIDTH	Ø180 MN	1/7 INCH	Ø330 MM / 13 INCH			
	CL/ (SSII 1C/ (TIOTY	7 INCH	13 INCH		Paper	Blister	Paper	Blister		
0201	0.3 ±0.03 mm	R	Р	8 mm	15,000		50,000			
0402	0.5 ±0.05 mm	R	Р	8 mm	10,000		50,000			
0603	0.8 ±0.1 mm	R	Р	8 mm	4,000		15,000			
	0.6 ±0.1 mm	R	Р	8 mm	4,000		20,000			
0805	0.85 ±0.1 mm	R	Р	8 mm	4,000		15,000			
	1.25 ±0.2 mm	K	F	8 mm		3,000		10,000		
	0.6 ±0.1 mm	R	Р	8 mm	4,000		20,000			
1206	0.85 ±0.1 mm	R	Р	8 mm	4,000		15,000			
1200	1.0/1.15 ±0.1 mm	K	F	8 mm		3,000		10,000		
	1.25 ±0.2 mm	K	F	8 mm		3,000		10,000		
	0.85 ±0.1 mm	K	F	8 mm		4,000		10,000		
	1.15 ±0.1 mm	K	F	8 mm		3,000		10,000		
1210	1.25 ±0.2 mm	K	F	8 mm		3,000		10,000		
	2.0 ±0.2 mm	K		8 mm		2,000				
	2.5 ±0.2 mm	K		8 mm		1,000				

PAPER/PE TAPE SPECIFICATION

Table 5 Dimensions of paper/PE tape for relevant chip size; see Fig.3

SIZE	SYMBOL								Unit: mm		
CODE	A_0	B ₀	W	E	F	P ₀ (I)	P _I	P ₂	ØD ₀	K ₀	Т
0201	0.39 ± 0.06	0.70 ± 0.06	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.05	2.0 ± 0.05	2.0 ± 0.05	1.55 ± 0.03	0.38 ± 0.05	(0.47 / 0.55)±0.10
0402	0.70 ± 0.15	1.21 ± 0.12	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.05	2.0 ± 0.05	2.0 ± 0.05	1.50 +0.1 /-0	(0.75 / 0.60)±0.10	(0.85 / 0.70)±0.10
0603	1.05 ± 0.14	1.86 ± 0.13	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	1.50 +0.1 /-0	(1.05 / 0.95 / 0.75)±0.10	(1.15 / 1.05 / 0.85)±0.10
0805	1.50 ± 0.15	2.26 ± 0.20	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	1.50 +0.1 /-0	(1.05 / 0.95 / 0.75)±0.10	(1.15 / 1.05 / 0.85)±0.10
1206	1.90 ± 0.15	3.50 ± 0.20	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	1.50 +0.1 /-0	(0.95 / 0.75)±0.10	(1.05 / 0.85)± 0.10

NOTE

1. P_0 pitch tolerance over any 10 pitches is $\pm 0.2 \text{ mm}$

BLISTER TAPE SPECIFICATION

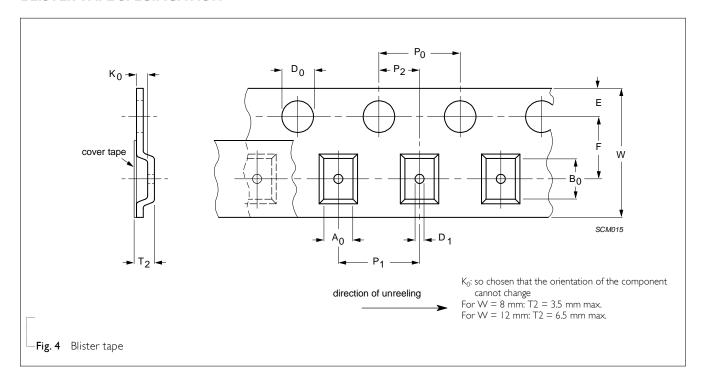


Table 6 Dimensions of blister tape for relevant chip size; see Fig.4

	SYM	SYMBOL Unit: mm														
SIZE CODE	A_0		B ₀		K ₀		W	E	F	$ØD_0$	ØD _I	P ₀ (2)	P _I	P ₂	T2	
	Min.	Max.	Min.	Max.	Min.	Max.					Min.				Min.	Max,
0805	1.29	1.65	2.09	2.60	1.25	1.62	8.I ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	1 +0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.30	1.67
1206	1.65	2.12	3.30	3.75	1.22	2.15	8.I ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	1 +0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.27	2.20
1210	2.55	3.02	3.31	3.88	0.97	2.92	8.I ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	1 +0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.02	2.97

NOTE

- 1. Typical capacitor displacement in pocket
- 2. P_0 pitch tolerance over any 10 pitches is ± 0.2 mm

REEL SPECIFICATION

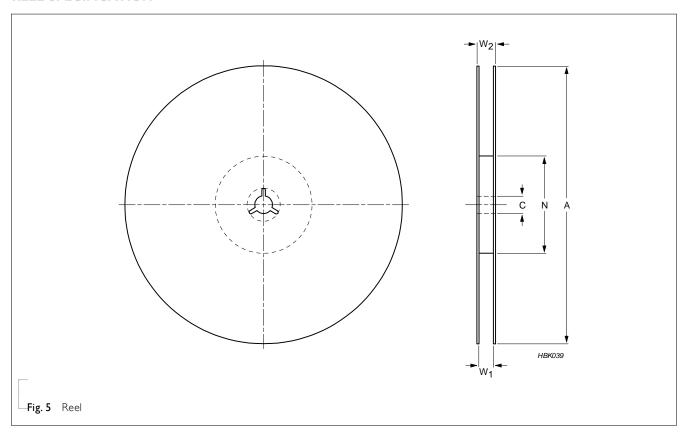


 Table 7
 Reel dimensions; see Fig.5

TARE VAURETIA	SYMBOL							
TAPE WIDTH	A	N	С	Wı	W _{2max} .			
8 (Ø178 mm/7")	178 ±1.0	60 ±1.0	13 +0.50/-0.20	9.4 ±1.5	14.4			
8 (Ø330 mm/13")	330 ±1.0	100 ±1.0	13 +0.50/-0.20	9.0 ±0.2	14.4			
12 (Ø178 mm/7")	178 ±1.0	60 ±1.0	13 +0.50/-0.20	13.4 ±1.5	18.4			

PROPERTIES OF REEL

Material: polystyrene Surface resistance: $<10^{10}$ X/sq.

Surface-Mount Ceramic Multilayer Capacitors Automotive grade x5R/X6S 4V to 50 V

ELECTRICAL CHARACTERISTICS

X5RX6S DIELECTRIC CAPACITORS; NI/SIN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35 °C - Relative humidity: 25% to 75% - Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

DE:	SCI	۲I	Р	Щ	N
	_			_	

Table 8					VALUE
Capacitance toleral X5R/X6S	nce			±5% ⁽¹⁾ ,	±10%, ±20%
Operating temper	rature range:				
X5R				–55 °	°C to +85 °C
X6S				_55 °C	C to +105 °C
•	nce change as a function of tem racteristic/coefficient):	perature			±15% ±22%
Dissipation factor ((D.F.)				
X5R	0201	0402	0603	0805	Spec.
6.3V		120nF to 1µF			≤7%
0.5 V	12nF to 100nF				≤10%
10V	12nF to 100nF				≤10%
X6S	0201	0402			
6.3V	12nF to 100nF				≤10%
10V	12nF to 100nF				≤10%

Insulation resistance (I.R.)

X5R 0201 0402 0603 0805 25°C Max. operating temperature 6.3V 12nF to 100nF 120nF to 1μF ≥100 ≥10 10V 12nF to 100nF ≥100 ≥10 X6S 0201 0402 6.3V 12nF to 100nF ≥100 ≥10						I.R. ×	C (Ω .F.)
IOV I2nF to I00nF ≥100 ≥10 X6S 0201 0402	X5R	0201	0402	0603	0805	25°C	Max. operating temperature
X6S 0201 0402	6.3V	12nF to 100nF	120nF to 1µF			≥100	≥10
	10V	12nF to 100nF				≥100	≥10
6.3V 12nF to 100nF ≥100 ≥10	X6S	0201	0402				
	6.3V	12nF to 100nF				≥100	≥10
10V 12nF to 100nF ≥100 ≥10	I0V	12nF to 100nF	_			≥100	≥10

NOTE

1. Capacitance tolerance ±5% doesn't available for X5R/X6S full product range, please contact local sales force before order

Surface-Mount Ceramic Multilayer Capacitors | Automotive grade | x5R/X6S | 4V to 50 V

SOLDERING RECOMMENDATION

Table 9

SOLDERING	SIZE					
METHOD	0201	0402	0603	0805	1206	≥ 1210
Reflow	Reflow only	≥ 0.1 µF	≥ 1.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave		< 0.1 µF	< 1.0 µF	< 2.2 µF	< 4.7 µF	

SOLDERING CONDITIONS

The lead free MLCCs are able to stand the reflow soldering conditions as below:

- Temperature: above 220 °C
- Endurance: 95 to 120 seconds
- Cycles: 3 times

The test of "soldering heat resistance" is carried out in accordance with the schedule of "MIL-STD-202G-method 210F", "The robust construction of chip capacitors allows them to be completely immersed in a solder bath of 260 °C for 10 seconds". Therefore, it is possible to mount MLCCs on one side of a PCB and other discrete components on the reverse (mixed PCBs). Surface Mount Capacitors are tested for solderability at 245 °C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds.

TESTS AND REQUIREMENTS

Table 10 Test procedures and requirements

NO	AEC-Q2000 TEST	TEST METHOD	REQUIREMENTS
ı	Pre-and Post-stress Electrical Test		
		Preconditioning	No visual damage
2	Temperature Cycling	150 +0/-10 °C for 1 hour, then keep for 24 ±1 hours at room temperature 1000 cycles with following detail:	ΔC/C ±10%
		15 minutes at –55 °C 15 minutes at 125 °C	D.F. meet initial specified value
		Recovery time 24 ±4 hours	I.R. meet initial specified value
3	Destructive Physical Analysis	Only applies to SMD ceramics. Electrical test not required.	

YAGEO

cification	11	
/	16	

NO	AEC-Q2000 TEST	TEST METHOD	REQUIREMENTS
4	Humidity Bias	 Preconditioning: 150 +0/-10 °C /I hour, then keep for 24 ±I hour at room temp Initial measure: Parameter: I.R. Measuring voltage: I.3V ± I.5 Volts Note: Series with I00 KΩ Test condition: 85 °C, 85% R.H. connected with I00 KΩ resistor, applied I.5V/U_r for I,000 hours. Recovery: 24 ±2 hours Final measure: C.D.I.R. 	No visual damage after recovery $\Delta C/C \pm 15\%$ D.F. Less than 200% of initial spec. I.R. The insulation resistance shall be greater than 10% of initial spec.
5	High Temperature Operational Life	 Preconditioning: 150 +0/-10 °C /I hour, then keep for 24 ±I hour at room temp Initial measure: Spec: refer to initial spec C, D, I.R. Endurance test: Temperature: X5R:85 °C X6S:105 °C Specified stress voltage applied for I,000 hours:	No visual damage ΔC/C: ±20% D.F. Less than 200% of initial spec. I.R. The insulation resistance shall be greater than 10% of initial spec
6	External Visual	Any applicable method using × 10 magnification	In accordance with specification
7	Physical Dimension	Verify physical dimensions to the applicable device specification.	In accordance with specification
8	Resistance to Solvents	Per MIL-STD-202 Method 2 I 5 Solvent I : I part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits Solvent 2 : Terpene defluxer Solvent 3 : 42 parts (by volume) of water I part (by volume) of propylene glycol monomethyl ether I part (by volume) of monoethanolamine	No visual damage $\Delta C/C \pm 10\%$ D.F.: Within initial spec.

YAGEO

NO	AEC-Q2000 TEST	TEST METHOD	REQUIREMENTS
		Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks)	ΔC/C ±10%
		Peak value: 1,500 g's	D.F.
9	Mechanical Shock	Duration: 0.5 ms	Within initial specified value
		Velocity change: 15.4 ft/s Waveform: Half-sin	·
		VVAVCIOTITIE I I I I I I I I I I I I I I I I I	I.R. Within initial specified value
		5 g's for 20 minutes, 12 cycles each of 3 orientations. 10-2000 Hz.	ΔC/C ±10%
10	Vibration		D.F: meet initial specified value
			I.R. meet initial specified value
П	Resistance to Soldering Heat	Precondition: I50 +0/-I0 °C for I hour, then keep for 24 ±1 hours at room temperature Preheating: for size ≤ I206: I20 °C to I50 °C for I minute Preheating: for size > I206: I00 °C to I20 °C for I minute	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned
		and 170 °C to 200 °C for 1 minute Solder bath temperature: 260 ±5 °C Dipping time: 10 ±0.5 seconds	ΔC/C ±10%
		Recovery time: 24 ±2 hours	D.F. within initial specified value
			I.R. within initial specified value
	ESD	Per AEC-Q200-002	A component passes a voltage level if all components stressed at that voltage level pass.
12	FAIL PASS FAIL PASS		

YAGEO

NO	AEC-Q2000 TEST		TEST METHOD	REQUIREMENTS
13	Solderability		 Preheat at 155°C for 4 hours. After preheating, immerse the capacitor in a solution of ethanol and rosin (25% rosin in weight proportion). Immerse in eutectic solder solution for 5+0/-0.5 seconds at 235±5°C. Should be placed into steam aging for 8 hours±15 minutes. After preheating, immerse the capacitor in a solution of ethanol and rosin (25% rosin in weight proportion). Immerse in eutectic solder solution for 5+0/-0.5 seconds at 235±5°C. Should be placed into steam aging for 8 hours±15 minutes. After preheating, immerse the capacitor in a solution of Ethanol and rosin (25% rosin in weight proportion). Immerse in eutectic solder solution for 30±5 seconds at 260±5°C. 	The solder should cover over 95% of the critical area of each termination.
14	Electrical Characterization	Capacitance Dissipation Factor (D.F.) Insulation Resistance (I.R.) Temperature coefficient	At 25°C, 24 hours after annealing $f = 1 \text{ KHz}$, measuring at voltage 1 Vrms at 25 °C At 25°C, 24 hours after annealing $f = 1 \text{ KHz}$, measuring at voltage 1 Vrms at 25 °C At Ur (DC) for 1 minute Capacitance shall be measured by the steps shown in the following table. The capacitance change should be measured after 5 min at each specified temperature stage. Step Temperature(°C) a 25 ± 2 b Lower temperature ±3 °C c 25 ± 2 d Upper Temperature ±2 °C e 25 ± 2 Capacitance Change shall be calculated from the formula as below $\Delta C = \frac{C2 - C1}{C1} \times 100\%$ C1: Capacitance at step c C2: Capacitance at step b or d 1. Specified stress voltage applied for 1~5 seconds 2. Ur $\leq 50 \text{ V}$: series applied 2.5 Ur Charge/Discharge current is less than 50 mA	In according with specification on Table 8 In according with specification on Table 8 Δ C/C X5R: ±15% X6S: ±22%

Surface-Mount Ceramic Multilayer Capacitors | Automotive grade | x5R/X6S | 4V to 50 V

NO	AEC-Q2000 TEST	TEST METHOD	REQUIREMENTS
15	Board Flex	Part mounted on a 100 mm X 40 mm FR4 PCB board, which is 1.6 ±0.2 mm thick and has a layer-thickness 35 µm ± 10 µm. Part should be mounted using the following soldering reflow profile. Conditions: Test Substrate:	No visible damage △C/C X5R/X6S: ±10% Dimension(mm) Type a b c 0201 0.3 0.9 0.3 0402 0.4 1.5 0.5 0603 1.0 3.0 1.2 0805 1.2 4.0 1.65 1206 2.2 5.0 1.65 1210 2.2 5.0 2.0
16	Terminal Strength	With the component mounted on a PCB obtained with the device to be tested, apply a 17.7N (1.8Kg) force to the side of a device being tested. This force shall be applied for 60+1 seconds. Also the force shall be applied gradually as not to apply a shock to the component being tested. * Apply 2N force for 0402 size. * Apply 1N force for 0201 size.	Magnification of 20X or greater may be employed for inspection of the mechanical integrity of the device body, terminals and body/terminal junction. Before, during and after the test, the device shall comply with all electrical requirements stated in this specification.

Product specification 15

16

Surface-Mount Ceramic Multilayer Capacitors | Automotive grade | x5R/X6S | 4V to 50 V

REVISION HISTORY

REVISION I	∆ ∆TE	CHANGE NOTIFICATION	DESCRIPTION
KEVINUUN I	JAIF	CHANGE NOTHICATION	DESCRIPTION

Version 0 Aug. 25, 2021 - - New

[&]quot;YAGEO reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

Surface-Mount Ceramic Multilayer Capacitors | Automotive grade

x5R/X6S 4V to 50 V

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

YAGEO statements regarding the suitability of products for certain types of applications are based on YAGEO's knowledge of typical operating conditions for such types of applications in a generic nature. Such statements are neither binding statements of YAGEO nor intended to constitute any warranty concerning the suitability for a specific customer application or use. They are intended for use only by customers with requisite knowledge and experience for determining whether YAGEO products are the correct products for their application or use. In addition, unpredicatable and isolated cases of product failure may still occur, therefore, customer application or use of YAGEO products which requires higher degree of reliability or safety, shall employ additional protective safeguard measures to ensure that product failure would not result in personal injury or property damage.

YAGEO products are not designed for application or use in medical, life-saving, or life-sustaining devices or for any other application or use in which the failure of YAGEO products could result in personal injury or death. Customers using or selling YAGEO products not expressly indicated for above-mentioned purposes shall do so at their own risk and agree to fully indemnify YAGEO and hold YAGEO harmless.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.