

Pressure sensors

Pressure transmitter with analog output signal

Series/Type: ALA 1.500 K VR Z15E L ST 1.0 B801

Ordering code: B58620L3200B801

2021-02-09 Date:

Version: 1.0

[©] TDK Electronics AG 2021. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without TDK Electronics' prior express consent is prohibited.

Pressure transmitter with analog output signal ALA 1.500 K VR Z15E L ST 1.0 B801

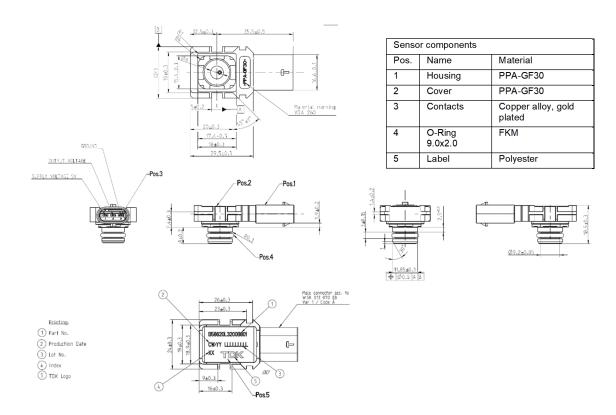
Applications

- Absolute pressure transmitter for industrial applications
- Typical applications are:
 - Off-road including marine, agriculture, construction, oil and gas
 - o Industrial process controls
 - Food and beverage
 - o Pneumatic controls
 - Automation
 - o Corrosive fluids and gas metering
 - Boilers and pumps
 - Filtration systems
 - Natural gas
- High resistance against media like diluted acids, contaminated air, exhaust gases
- Suitable for pressure ranges of 0.5 to 1.5 bar absolute like filter monitoring, flow control and fluid level measurement in extended temperature range of -40 °C to 140 °C

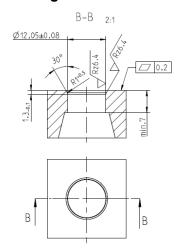
Features

- Sensing element based on piezoresistive MEMS technology
- High media resistance
- Voltage output signal (0.5 V to 4.5 V @ 5 V_{supply}) proportional to pressure and supply voltage (ratiometric)
- The integrated signal conditioner compensates non-linearity and temperature errors and supplies a precise calibrated, amplified output signal with a high immunity against electromagnetic influences
- Overvoltage and reverse voltage protection
- Short response time
- High measuring accuracy
- High resistance to large variety of media. Only unsuitable for substances which react with silicon, fluorsilicone, FKM, PPA
- Wire adapter with 1 m long cable included (temperature range of -40 °C to 125 °C)
- RoHS-compatible, halogen free according to IEC 61249-2-21 clause 3.1

Options


Customer specific output characteristics and connectors on request

Pressure transmitter with analog output signal ALA 1.500 K VR Z15E L ST 1.0 B801


Dimensional drawings

All dimensions in mm

For further dimensions see product drawing B58620L3200B801.

Mounting conditions

All dimensions in mm

Pressure transmitter with analog output signal ALA 1.500 K VR Z15E L ST 1.0 B801

Wire adapter for industrial applications

Bill of materials					
Pos.	Description	Material	Comment		
1	Connector	PA 6/6, PBT, Silicone	-		
2	Terminal pin	copper alloy tin plated	-		
3	Sealing	Silicone	-		
4	Wire Black	FEP Insulated wire	AWG24		
5	Wire Blue	FEP Insulated wire	AWG24		
6	Wire Red	FEP Insulated wire	AWG24		
7	Rubberband Red	Rubber	-		

All dimensions in mm

For further dimensions see wire harness drawing Z25200N497D.

Pressure transmitter with analog output signal ALA 1.500 K VR Z15E L ST 1.0 B801

Technical data

Absolute maximum ratings

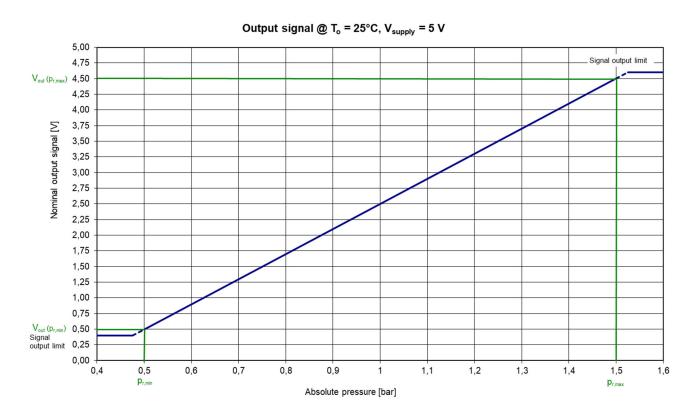
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Temperature ranges				•	•	
Sensor operating temperature range	T _{so}	1)	-40		+ 140	°C
Short time sensor operating temp. range	T _{so,short}	For 100 h ²⁾	-40		+ 150	°C
Wire adapter operating temperature range	Two	3)	-40		+ 125	°C
Pressure ranges						
Rated pressure range	pr	Absolute pressure 4)	0.5		1.5	bar
Overpressure	pov	Absolute pressure 5)	3			bar
Burst pressure	p _{burst}	Absolute pressure 6)	4.5			bar
Supply voltage /-current						•
Supply voltage	V _{supply}	7)	4.5	5.0	5.5	V
Reverse voltage, overvoltage	Vov	8)	-33		+ 33	V
Supply current	Isupply	Without load current			9.5	mA
Signal output current	l _{out}	9)			2.5	mA
Short circuit current	I _{out,SC}	10)	-25		25	mA
Load	•		•	•	•	•
Pull-up resistor	Rpull-up		4.7			kΩ
Pull-down resistor	Rpull-down		4.7			kΩ
Load capacity	Cload	Including harness capacity			95	nF

Pressure transmitter with analog output signal ALA 1.500 K VR Z15E L ST 1.0 B801

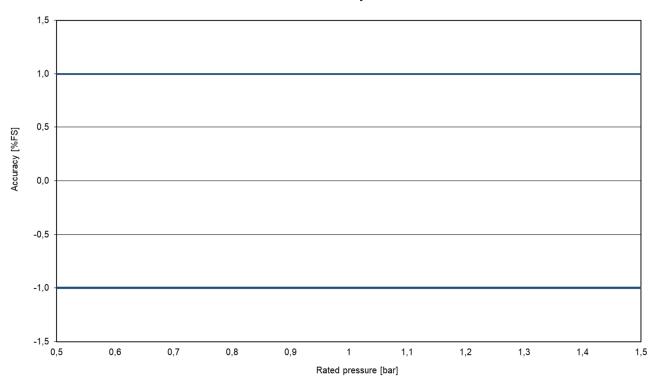
Characteristics

Output signal characteristic (at To = 25 °C, V_{supply} = 5 V)

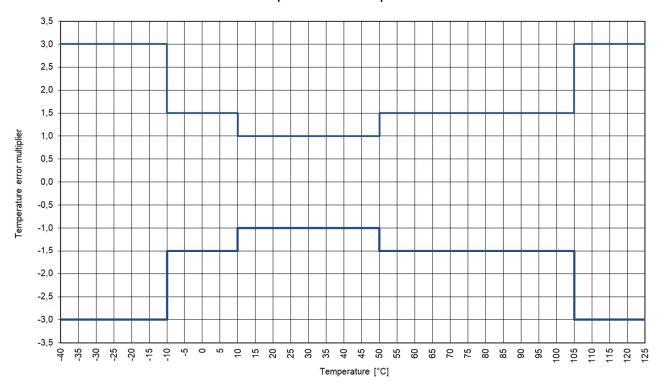
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Output at pr,min	Vout (pr,min)	Ratiometric 11)		0.5		V
Signal span (Full scale)	V _{FS}	Ratiometric 11) / 12)		4.0		V
Full scale output at p _{r,max}	Vout (pr,max)	Ratiometric ¹¹⁾		4.5		V
Upper output signal limit		Ratiometric ¹¹⁾	4.50	4.60	4.70	V
Lower output signal limit		Ratiometric 11)	0.30	0.40	0.50	V
Startup time	t _{startup}				5.0	ms
Response time	t10-90	13)		1	2	ms
Accuracy	E	Without temperature error	- 1.00		+ 1.00	%FS

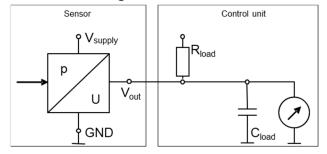

Output signal characteristic as function of pressure and supply voltage

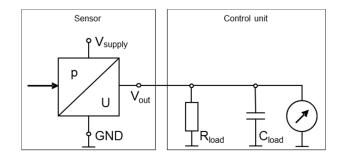
$$V_{out}(p_r, V_{supply}) = \left[\frac{p_r - p_{r,min}}{p_{r,max} - p_{r,min}} V_{FS} + V_{OUT}(p_{r,min})\right] V_{supply}$$


$$V_{out}(p_r, V_{supply}) = \left[\frac{p_r - 0.5 \ bar}{1 \ bar} \cdot 0.8 \frac{V}{V} + 0.1 \frac{V}{V}\right] V_{supply}$$

Pressure transmitter with analog output signal ALA 1.500 K VR Z15E L ST 1.0 B801


Accuracy e




Pressure transmitter with analog output signal ALA 1.500 K VR Z15E L ST 1.0 B801

Temperature error multiplier

Connection diagram

Terminal assignment

Pin	Symbol	Signal	Wire color*
1	V_{supply}	Supply voltage	red
2	V_{out}	Output signal ANALOG	blue
3	GND	Ground	black

^{*}if using wire adapter

Pressure transmitter with analog output signal ALA 1.500 K VR Z15E L ST 1.0 B801

Symbols and terms

1) Operating temperature range T_{so}

An operation of the pressure sensor within the temperature range $T_{so,min}$ up to $T_{so,max}$ will not affect the performance of the pressure sensor.

2) Short time operating temp. range, T_{so,short}

An operation of the pressure sensor within the temperature range $T_{so,short,min}$ up to $T_{so,short,max}$ will not affect the performance of the pressure sensor.

3) Operating temperature range Two

An operation of the connector within the temperature range $T_{wo,min}$ up to $T_{wo,max}$ will not affect the performance of the connector.

4) Rated pressure pr

Within the rated pressure range p_{r,min} up to p_{r,max} the signal output characteristic corresponds to this specification.

5) Overpressure pov

The sensor does not work correctly in the pressure range p_{r,max} up to p_{ov,min} but will return to normal operation after having been subjected to up to 1000 cycles of overpressure within the pressure range p_{r,min} up to p_{ov,min}. The sensor cannot be expected to return to normal operation after having been subjected to a pressure above the overpressure p_{ov,min}.

6) Burst pressure pburst

The sensor cannot be expected to return to normal operation after having been subjected to a pressure in the range of p_{ov} and p_{burst} . The sensor will not cause leakage of the pressure medium when exposed to pressure up to the burst pressure.

7) Supply voltage V_{supply}

 $V_{\text{supply,max}}$ is the maximum permissible supply voltage, which has to be applied for normal operation. $V_{\text{supply,min}}$ is the minimum required supply voltage, which has to be applied for normal operation.

8) Reverse voltage, Overvoltage Vov

If supplied with a supply voltage of $V_{ov,min}$ up to $V_{supply,min}$ the sensor does not work correctly (reverse voltage). If supplied with a supply voltage of $V_{supply,max}$ up to $V_{ov,max}$ the sensor does not work correctly (overvoltage). The sensor will return to normal operation after having been subjected to reverse voltage and overvoltage in the range of $V_{ov,min}$ up to $V_{ov,max}$ for 1 hour maximum.

9) Signal output current lout

Maximum output current with $R_{load} = 2.7 \text{ k}\Omega$ and supply voltage in the in the range of $V_{supply,min}$ up to $V_{supply,max}$.

10) Short circuit current lout, SC

Maximum short circuit current at following conditions: minimum output voltage to V_{supply} or maximum output voltage to Ground

11) Ratiometric output

The output voltage V_{out} is ratiometric to the supply voltage $(V_{out} \sim V_{supply})$.

Example: Vout (pr,min) = 0.04 V/V

with $V_{supply} = 5 \text{ V}$, V_{out} (pr,min) = 0.04 V/V * 5 V = 0.2 V

with $V_{\text{supply}} = 5.1 \text{ V}$, V_{out} (pr,min) = 0.04 V/V * 5.1 V = 0.204

12) Signal span (Full Scale)

 $VFS = FS = V_{out(pr,max)} - V_{out(pr,min)}$

13) Response time t10-90

Delay between a pressure change (10 ... 90% pr) and the corresponding signal output change (10 ... 90% FS). Response time cannot be measured and is evaluated theoretically (it is not possible to generate an adequate pressure jump function).

Pressure transmitter with analog output signal ALA 1.500 K VR Z15E L ST 1.0 B801

Cautions and warnings

Storage

All pressure sensors should be stored in their original packaging. They should not be placed in harmful environments such as corrosive gases nor exposed to heat or direct sunlight, which may cause deformations. Similar effects may result from extreme storage temperatures and climatic conditions. Avoid storing the sensor dies in an environment where condensation may form or in a location exposed to corrosive gases, which will adversely affect their performance. Plastic materials should not be used for wrapping/packing when storing or transporting these dies, as they may become charged.

Mounting

The correct application of the sensor and the connector on the sensor must be checked. Before usage test leak tightness of mounted pressure ports. Be assure, that pressure ports fulfil temperature, media and pressure requirements.

Release all mounting processes carefully.

Operation

Media compatibility with the pressure sensors must be ensured to prevent their failure. The use of other media can cause damage and malfunction. Never use pressure sensors in atmospheres containing explosive liquids or gases.

Ensure pressure equalization to the environment, if gauge pressure sensors are used. Avoid operating the pressure sensors in an environment where condensation may form or in a location exposed to corrosive gases. These environments adversely affect their performance. If the operating pressure is not within the rated pressure range, it may change the output characteristics. This may also happen with pressure sensor dies if an incorrect mounting method is used. Be sure that the applicable pressure does not exceed the over pressure, as it may damage the pressure sensor.

Do not exceed the maximum rated supply voltage nor the rated storage temperature range, as it may damage the pressure sensor.

Temperature variations in both the ambient conditions and the media (liquid or gas) can affect the accuracy of the output

signal from the pressure sensors. Be sure to check the operating temperature range and thermal error specification of the pressure sensors to determine their suitability for the application.

Connections must be wired in accordance with the terminal assignment specified in the data sheets. Care should be taken as reversed pin connections can damage the pressure transmitters or degrade their performance. Contact between the pressure sensor terminals and metals or other materials may cause errors in the output characteristics. This listing does not claim to be complete, but merely reflects the experience of TDK Electronics AG.

Display of ordering codes for TDK Electronics products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications, on the company website, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.tdk-electronics.tdk.com/orderingcodes.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, **the products described in this publication may change from time to time**. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.
 - We also **reserve the right to discontinue production and delivery of products**. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to our General Terms and Conditions of Supply.
- 7. Our manufacturing sites serving the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.

Important notes

8. The trade names EPCOS, CarXield, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, ModCap, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap, XieldCap are **trademarks registered or pending** in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

Release 2020-06