

User Manual

About this document

Scope and purpose

The scope of the TLD1211SJ_EVAL (evaluation) board is to help designers evaluate the performance of the LITIX™ Linear TLD1211SJ, a single channel linear current source LED driver for automotive LED lighting applications. The LITIX™ Linear TLD1211SJ provides a simple and low-cost solution for low current applications up to 85 mA. When using additional external power stages as "booster" transistors, it can also be used to drive high currents up to 2.5 A.

This user manual provides the usage instructions of the TLD1211SJ_EVAL board (schematic version S00, PCB version P00).

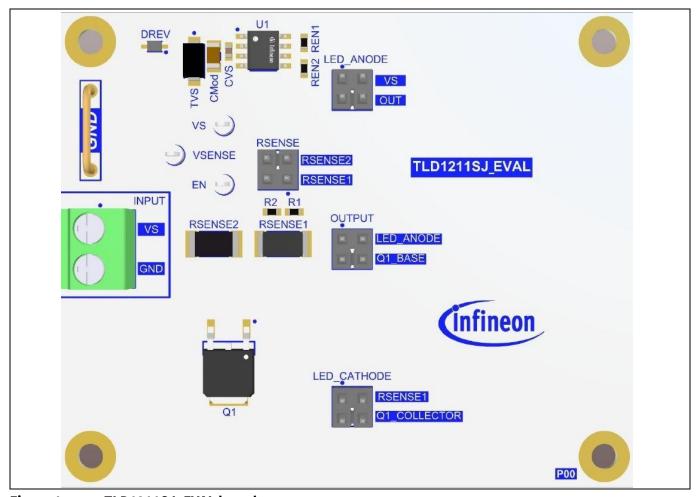


Figure 1 TLD1211SJ_EVAL board

Intended audience

Hardware engineers, system architects

User Manual

TLD1211SJ_EVAL description

Related information

Table 1 Supplementary links and document references

Reference	Description	
LITIX™ Linear TLD1211SJ product	Product website which contains reference information for the LITIX™ Linear TLD1211SJ including datasheet, simulation models, board and relevant trainings	
LITIX™ Linear family	All information about LITIX™ Linear family products	
LED driving concepts and Linear LED drivers	Application note regarding the usage and design-in of the LITIX™ Linear and BCR LED drivers	
LED rear lighting - application	Application website for rear LED lighting	

Table of contents

Abo	out this document	1
Tabl	ole of contents	2
1	TLD1211SJ_EVAL description	
1.1	Key features	
1.2		
1.3	· ·	
1.4	Test points	5
2	Quick start	6
2.1	Low current configuration, I _{OUT} = 50 mA	
2.2	High current configuration, I _{OUT} = 300 mA	6
3	Schematics, layout and bill of material	7
3.1	Schematics	
3.2	Layout	8
3.3	Bill of materials	9
3.4	PCB design data	9
Dovi	vision history	10

1 TLD1211SJ_EVAL description

The TLD1211SJ_EVAL is an evaluation board equipped with one LITIX™ Linear TLD1211SJ and on-board LEDs for easy evaluation. The board can be used within the typical automotive voltage range, 8 V to 16 V. The jumpers available on the board offer the user the possibility to evaluate the LITIX™ Linear TLD1211SJ in both low and high current applications.

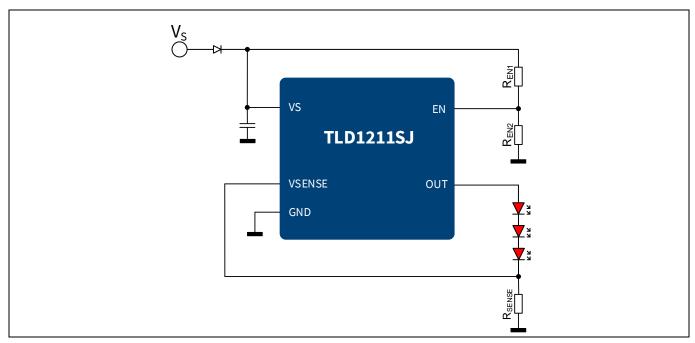


Figure 2 Low current application with LITIX™ Linear TLD1211SJ

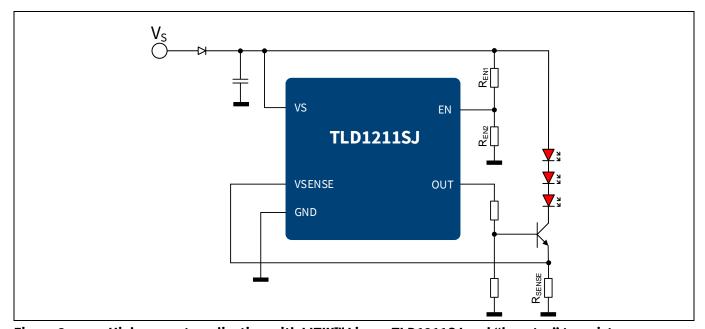


Figure 3 High current application with LITIX™ Linear TLD1211SJ and "booster" transistor

TLD1211SJ_EVAL description

1.1 Key features

The TLD1211SJ_EVAL has the following features:

- Equipped with one LITIX[™] Linear TLD1211SJ
- Typical supply voltage range 8 V to 16 V
- Equipped with jumpers that provide the possibility to evaluate TLD1211SJ in two different current configurations:
 - \circ $I_{OUT} = 50 \text{ mA}$
 - \circ $I_{OUT} = 300 \text{ mA}$
- On-board LED load, 3 red LEDs
- 7.4 cm x 6.1 cm 2-layer PCB

1.2 Connectors and jumpers

The TLD1211SJ_EVAL board connectors are described in Table 2.

Table 2 TLD1211SJ_EVAL connectors

Connector	Description	
INPUT		
VS	Power supply, typical 8 V to 16 V	
GND	Ground	

The TLD1211SJ_EVAL board jumpers are described in Table 3:

Table 3 TLD1211SJ_EVAL board jumpers

Jumper	Description and configuration
LED_ANODE	Select the connection of the LED string anode:
	• VS: connect to the VS line, configuration for I _{OUT} = 300 mA
	• OUTPUT: connect directly to the OUT-pin of LITIX™ Linear TLD1211SJ, configuration for I _{OUT} = 50 mA
RSENSE	Select the sense resistor connected to the VSENSE-pin of LITIX™ Linear TLD1211SJ:
	• RSENSE1: connect to 3 Ω resistor to set $I_{OUT} = 50$ mA
	• RSENSE2: connect to 500 m Ω resistor to set I_{OUT} = 300 mA
LED_CATHODE	Select the connection of the LED string cathode:
	• RSENSE1: connect to RSENSE1, configuration for $I_{OUT} = 50 \text{ mA}$
	• Q1_COLLECTOR: connect to the collector of Q1 transistor, configuration for $I_{\text{OUT}} = 300 \text{ mA}$
OUTPUT	Select the output configuration of LITIX™ Linear TLD1211SJ:
	• LED_AN: connect to the anode of the LED string, configuration for $I_{\text{OUT}} = 50 \text{ mA}$
	• Q1_BASE: connect to the base of Q1 transistor, configuration for $I_{\text{OUT}} = 300 \text{ mA}$

TLD1211SJ_EVAL description

1.3 On-board load

The TLD1211SJ_EVAL board is equipped with on-board LED load for easy evaluation. Three red OSLON® Black Flat LEDs on the bottom side of the board can be used for both current level configurations. See Figure 4.



Figure 4 On-board LED load

1.4 Test points

The TLD1211SJ_EVAL board is equipped with several test points and one ground terminal for easy monitoring of significant voltages. See Figure 5.

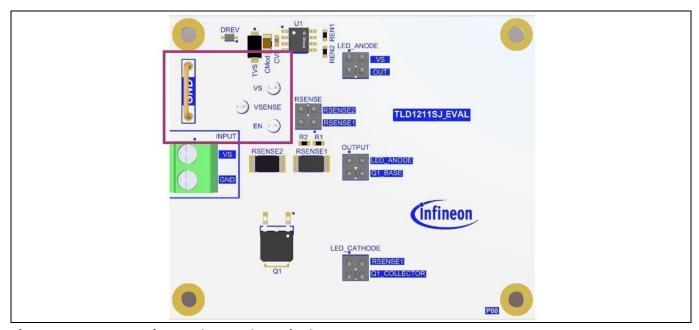


Figure 5 Test points and ground terminal

User Manual

Quick start

2 Quick start

The TLD1211SJ_EVAL board offers two possible current level configurations, $I_{\text{OUT}} = 50 \text{ mA}$ and $I_{\text{OUT}} = 300 \text{ mA}$. The steps for a quick start, for either of the above configurations, are described in this chapter.

2.1 Low current configuration, $I_{OUT} = 50 \text{ mA}$

- Connect a voltage source to VS and GND, typically 8 V to 16 V
- Select the connection of the LED string anode (LED_ANODE): place jumper on OUTPUT
- Select the sense resistor connected to the VSENSE-pin of LITIX™ Linear TLD1211SJ (RSENSE): place jumper on RSENSE1
- Select the connection of the LED string cathode (LED_CATHODE): place jumper on RSENSE1
- Select the output configuration of LITIX™ Linear TLD1211SJ (OUTPUT): place jumper on LED_ANODE

2.2 High current configuration, $I_{OUT} = 300 \text{ mA}$

- Connect a voltage source to VS and GND, typically 8 V to 16 V
- Select the connection of the LED string anode (LED_ANODE): place jumper on VS
- Select the sense resistor connected to the VSENSE-pin of LITIX™ Linear TLD1211SJ (RSENSE): place jumper on RSENSE2
- Select the connection of the LED string cathode (LED_CATHODE): place jumper on Q1_COLLECTOR
- Select the output configuration of LITIX™ Linear TLD1211SJ (OUTPUT): place jumper on Q1_BASE

Schematics, layout and bill of material

3 Schematics, layout and bill of material

For the calculation of the external components required for the LITIX™ Linear TLD1211SJ and used on the TLD1211SJ_EVAL board refer to the following documentation:

- LITIX™ Linear TLD1211SJ datasheet
- LED driving concepts and Linear LED drivers

3.1 Schematics

The schematic of the TLD1211SJ_EVAL board is shown in Figure 6.

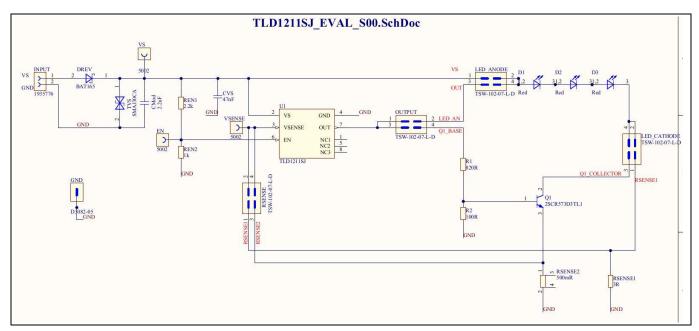


Figure 6 Schematic of TLD1211SJ_EVAL board

Schematics, layout and bill of material

infineon

3.2 Layout

Figure 7 and Figure 8 show the layout of the TLD1211SJ_EVAL board.

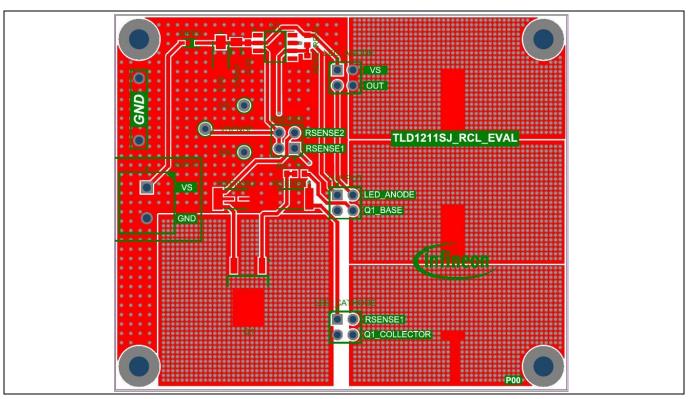


Figure 7 Layout of TLD1211SJ_EVAL board - top layer

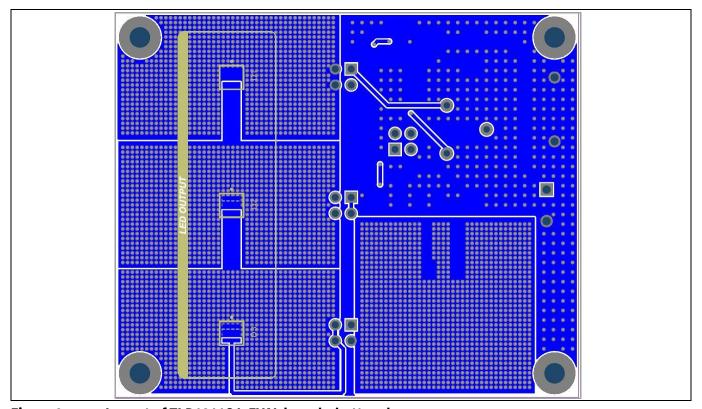


Figure 8 Layout of TLD1211SJ_EVAL board - bottom layer

User Manual

Schematics, layout and bill of material

3.3 Bill of materials

Table 4 shows the TLD1211SJ_EVAL board bill of material.

Table 4 Bill of material

Designator	Value	Manufacturer	Manufacturer order number
CMod	2.2 μF	MuRata	GRM31CR71H225KA88
CVS	47 nF	TDK Corporation	CGA3E2X8R1H473K080AA
D1, D2, D3	Red	OSRAM Opto Semiconductors	LR H9PP-HZJZ-1-1
DREV	BAT165	Infineon Technologies AG	BAT165
EN, VS, VSENSE	5002	Keystone Electronics Corp.	5002
GND	D3082-05	Harwin	D3082-05
INPUT	1935776	Phoenix Contact	1935776
LED_ANODE, LED_CATHODE, OUTPUT, RSENSE	TSW-102-07-L-D	Samtec	TSW-102-07-L-D
Q1	2SCR573D3TL1	ROHM Semiconductors	2SCR573D3TL1
R1	820 Ω	Yageo	RC0603FR-07820RL
R2	100 Ω	Yageo	RC0603FR-07100RL
REN1	2.2 kΩ	Yageo	RC0603FR-072K2L
REN2	1 kΩ	Yageo	RC0603FR-071KL
RSENSE1	3 Ω	Panasonic	ERJ-1TRQF3R0V
RSENSE2	500 mΩ	Vishay	WSL2512R5000DEA
TVS	SMAJ30CA	Littelfuse	SMAJ30CA
U1	TLD1211SJ	Infineon Technologies AG	TLD1211SJ

3.4 PCB design data

The Altium project is available on the **TLD1211SJ_EVAL** website.

User Manual

Revision history

Document version	Date of release	Description of changes
V 1.0	2021-01-13	Initial release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-01-13 **Published by Infineon Technologies AG** 81726 Munich, Germany

© 2021 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference Z8F80042284

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.