

BTN9970 / BTN9990 Motor control shield

Arduino shield for evaluation

About this document

Scope and purpose

This document describes the usage of the Motor control shield for BTN9970 and BTN9990 V1.2. The board can be connected to an Arduino UNO board.

Intended audience

This document is intended for electronic engineers who want to evaluate a high current PMOS / NMOS half bridge with integrated driver.

Evaluation board

This board can be used during design in phase for customer projects, for evaluation and measurement of BTN9970 / BTN9990 device behavior.

PCB and auxiliary circuits are not optimized for final customer design.

Figure 1 BTN9970 / BTN9990 motor control shield stacked on Arduino UNO board

Important notice

"Evaluation boards and reference boards" mean products embedded on a printed circuit board (PCB) for demonstration and / or evaluation purposes, which include, without limitation, demonstration, reference and evaluation boards, kits and design (collectively referred to as "reference board").

Environmental conditions have been considered in the design of the evaluation boards and reference boards provided by Infineon Technologies. The design of the evaluation boards and reference boards has been tested by Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing and operation over the entire operating temperature range or lifetime.

The evaluation boards and reference boards provided by Infineon Technologies are subject to functional testing only under typical load conditions. Evaluation boards and reference boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Evaluation boards and reference boards are not commercialized products, and are solely intended for evaluation and testing purposes. In particular, they may not be used for reliability testing or production. The evaluation boards and reference boards may therefore not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer must ensure that all evaluation boards and reference boards will be handled in a way which is compliant with the relevant requirements and standards of the country in which they are operated.

The evaluation boards and reference boards as well as the information provided in this document are addressed only to qualified and skilled technical staff, for laboratory usage, and must be used and managed according to the terms and conditions set forth in this document and in other related documentation supplied with the respective evaluation board and reference board.

It is the responsibility of the customer's technical departments to evaluate the suitability of the evaluation boards and reference boards for the intended application, and to evaluate the completeness and correctness of the information provided in this document with respect to such application.

The customer is obliged to ensure that the use of the evaluation boards and reference boards does not cause any harm to persons or third-party property.

The evaluation boards and reference boards and any information in this document is provided "as is" and Infineon Technologies disclaims any warranties, express or implied, including but not limited to warranties of non-infringement of third-party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies may not be responsible for any damages resulting from the use of the evaluation boards and reference boards and/or from any information provided in this document. The customer is obliged to defend, indemnify and hold Infineon Technologies harmless from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to modify this document and/or any information provided herein at any time without further notice.

BTN9970 / BTN9990 Motor control shield

Arduino shield for evaluation

Safety precautions

Safety precautions

Note: Please note the following warnings regarding the hazards associated with development systems.

Table 1 Safety precautions

	Caution
<u>SSS</u>	The heat sink and device surfaces of the evaluation or reference board may become hot during testing. Hence, necessary precautions are required while handling the board. Failure to comply may cause injury.
	Only personnel familiar with the drive, power electronics and associated machinery should plan, install, commission and subsequently service the system. Failure to comply may result in personal injury and/or equipment damage.
	The evaluation or reference board contains parts and assemblies sensitive to electrostatic discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with electrostatic control procedures, refer to the applicable ESD protection handbooks and guidelines.
	A drive that is incorrectly applied or installed can lead to component damage or reduction in product lifetime. Wiring or application errors such as undersizing the motor, supplying an incorrect or inadequate AC supply, or excessive ambient temperatures may result in system malfunction.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Table of contents

Abou	t this document	1
Impo	rtant notice	2
Safet	y precautions	3
	ings	
	e of contents	
1	The board at a glance	
1.1	Delivery content	
1.2	Block diagram	
1.3	Main features	5
2	Hardware description	6
2.1	Board overview and connectors	6
2.2	BTN9970 / BTN9990 pin assignment, definition and functions	7
3	Board Design	8
3.1	Schematics	
3.2	Layout	9
3.3	Bill of material	11
4	References and appendices	14
4.1	Abbreviations and definitions	
4.2	References	14
5	Revision history	15

1 The board at a glance

1.1 Delivery content

The carton box includes one BTN9970/BTN9990 motor control board with marking: BTN99xx NovalithIC+ V 1. 2

The Arduino UNO board and a power supply are not included. Information about the Arduino controller board can be found under: *Arduino - Home*.

1.2 Block diagram

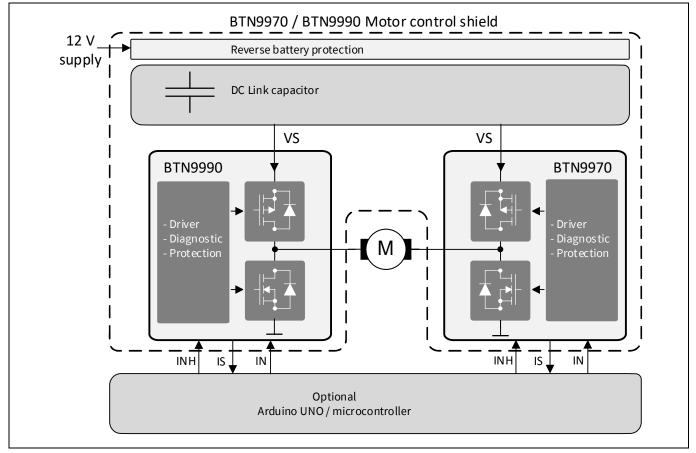


Figure 2 Block diagram

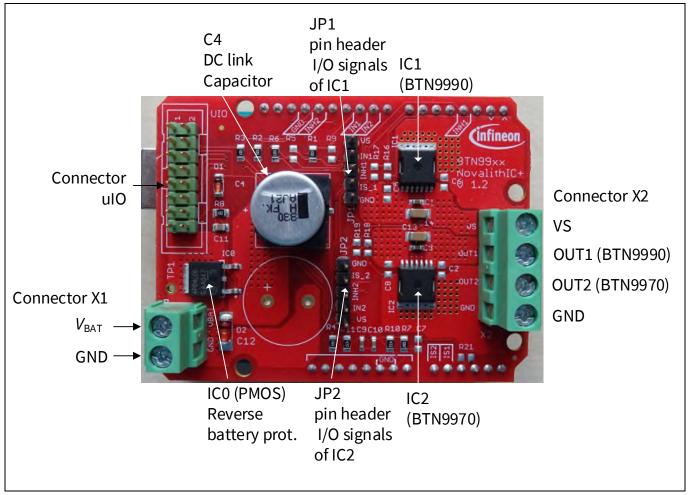
1.3 Main features

The board includes two NovalithIC+ [™] high current half bridges with integrated driver

BTN9970LV and BTN9990LV.

The board features:

- Operating voltage: 8 V 18V
- Average motor current up to ~ 10 A. Restricted by the value and size of DC-link capacitor and power dissipation of PCB (current limitation of BTN9970LV is min. 60A and for BTN9990 min. 75A)


Two independent single half-bridges to operate two DC brushed motors unidirectional either in motor to GND or motor to V_s configuration

- Single H (full) bridge to operate a DC brush motor bidirectional. In his case, the motor needs to be connected between the outputs OUT1 and OUT2.
- A 16 pin connector to interface via a uIO-stick to a PC or Notebook with installed Infineon's Toolbox software.
- Connectors to stack the BTN9970 / BTN9990 motor control shield directly on top of an Arduino UNO controller board.
- A demo software code for the Arduino UNO to operate a motor in H (full) bridge configuration can be downloaded from BTN9970 / BTN9990 web folder <u>Single Half-Bridge ICs</u>.
- PWM operation, controlled by Arduino UNO board
- Reverse polarity protection by IC0 (PMOS transistor)

2 Hardware description

2.1 Board overview and connectors

Figure 3 below describes the BTN9970 / BTN9990 motor control shield with its connectors.

Hardware description

2.2 BTN9970 / BTN9990 pin assignment, definition and functions

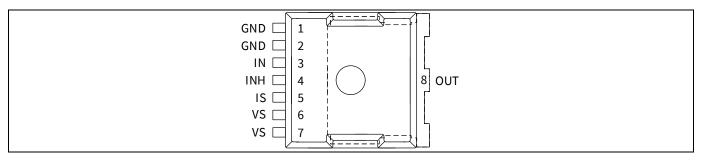


Figure 4 Pin assignment BTN9970LV / BTN9990LV top view

Pin	Symbol	I/O	Function	
1,2	GND	-	Ground 1)	
3	IN	I	Input	
			Defines whether high- or low-side switch is activated.	
			An internal pull-down resistor is connected to this pin.	
4	INH	I	Inhibit	
			When set to low device goes in tristate.	
			An internal pull-down resistor is connected to this pin.	
5	IS	0	Current sense, temperature sense, slew rate level and diagnostics	
6,7	VS	-	Supply 1)	
S(EP)	OUT	0	Power output of the bridge	

Table 1: Pin definitions and functions

1) All terminal pins must be connected together on the PCB. All terminal pins are internally connected together. PCB traces have to be designed to withstand the maximum current which can flow

Bold type: pin needs power wiring

BTN9970 / BTN9990 Motor control shield Arduino shield for evaluation

Board Design

3 Board Design

3.1 Schematics

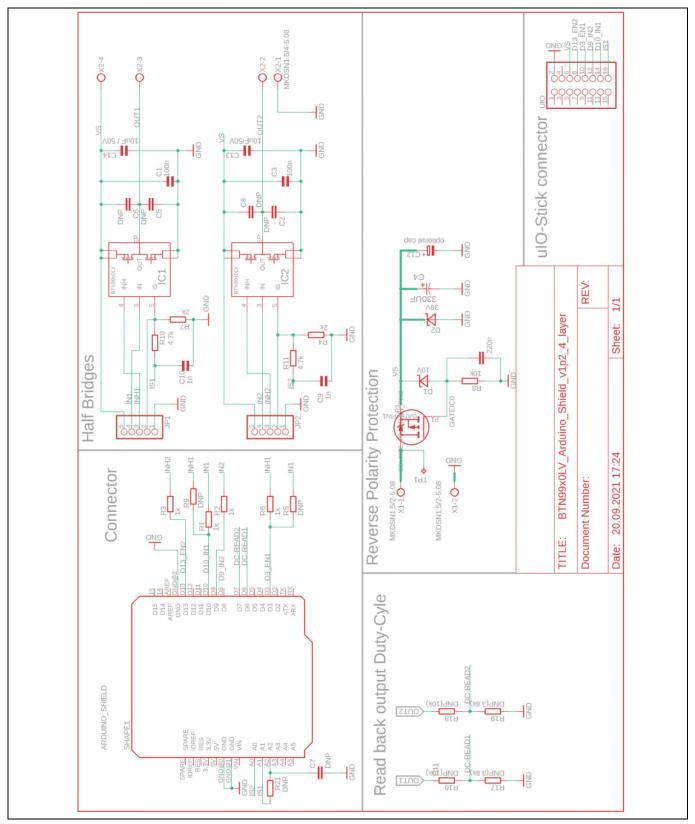


Figure 5 Motor control board schematics

Board Design

3.2 Layout

The board is a 4-layer design.

Material: FR4

Dimensions: 53 mm x 70 mm, 1.6mm thickness

Layer stack: 4 layers 70 / 35 / 35 / 70 μm

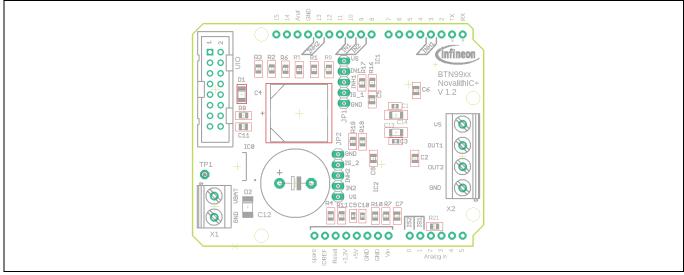


Figure 6 Components top side

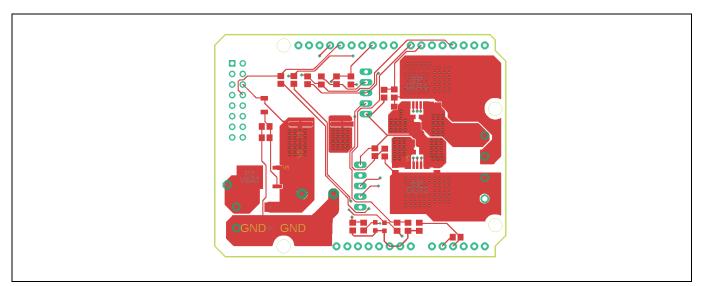
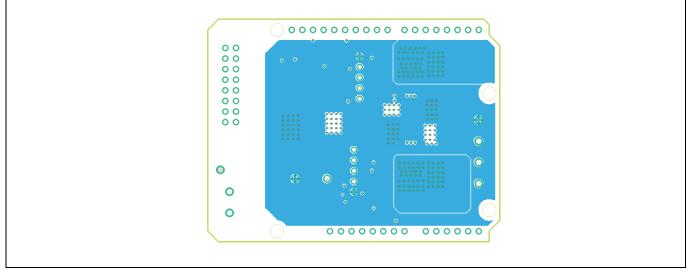
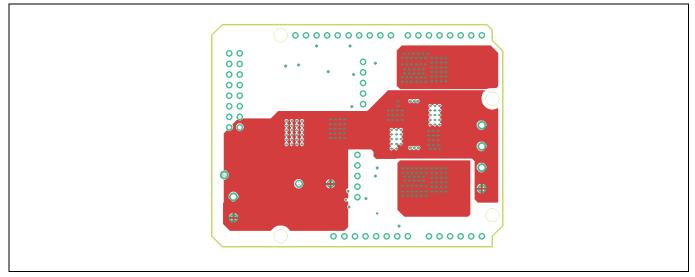



Figure 7 Top Layer, top view



Board Design

Figure 8 Inner1 layer, top view

Figure 9 Inner2 layer, top view

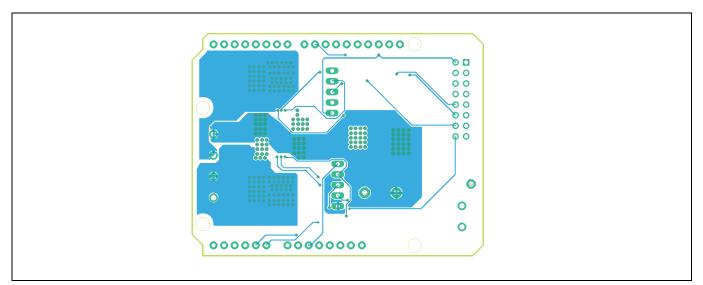


Figure 10 Bottom layer, bottom view

Board Design

3.3 Bill of material

Table 2BOM of the most important parts of the board

Part	Value	Mounted	Package	Description	Part number	Supplier
C1	100n	yes	603	AEC Q200,	GCJ188R71H104	Murata
				Ceramic	KA12D	
				capacitor		
C2	DNP	no	C0805	AEC Q200,		Murata ,
				Ceramic		TDK
				capacitor		
C3	100n	yes	603	AEC Q200,	GCJ188R71H104	Murata
				Ceramic	KA12D	
				capacitor		
C4	330UF or	yes	CAPAE1350X1400N	AECQ200,	EEV-TG1H331Q	Panasonic
	390uF			Aluminum	EEE-FK1H331AQ	/ Rubycon /
				Electrolytic	EEE-FK1H391AV	Nichicon
				Capacitor, SMD	UCD1H331MNQ1	
					MS	
					50SEV330M12	
C5	DNP	no	C0805	AEC Q200,		Murata,
				Ceramic		TDK
				capacitor		
C6	DNP	no	C0805	AEC Q200,		Murata,
				Ceramic		TDK
				capacitor		
C7	DNP	no	C0805	AEC Q200,		Murata,
				Ceramic		TDK
				capacitor		
C8	DNP	no	C0805	AEC Q200,		Murata ,
				Ceramic		TDK
				capacitor		
C9	1n	yes	C0603	AEC Q200,	GCM188R71H10	Murata,
				Ceramic	2KA37D	TDK
				capacitor		
C10	1n	yes	C0603	AEC Q200,	GCM188R71H10	Murata,
				Ceramic	2KA37D	TDK
				capacitor		
C11	220n	yes	C0805	AEC Q200,	GCM21BR71H22	Murata,
				Ceramic	4KA37K	TDK
				capacitor		
C12	1000uF	no	E7,5-16	POLARIZED	B41888D6108M	TDK
				ELECTROLYTIC/		
				TANTALUM,		
				AECQ200		
C13	10uF/50V	yes	C-1206	AEC Q200,	GRT31CR61H106	Murata
				Ceramic	ME01L	
				capacitor		

Arduino shield for evaluation

Board Design

Part	Value	Mounted	Package	Description	Part number	Supplier
C14	10uF / 50V	yes	C-1206	AEC Q200,	GRT31CR61H106	Murata
				Ceramic	ME01L	
				capacitor		
D1	10V	yes	SMD-SOD80		BZV55-B10	NXP
D2	39V	yes	SMD-MELF-D		ZMY39-GS08	Vishay
IC0	IPD90P04P4	yes	TO-252-3-313-L	IPD90P04P4L-04		Infineon
	L-04			Alternative:		
				IPD85P04P4L06A TMA2		
IC1	BTN9990LV	yes	HSOF-7	High current PN		Infineon
		J		half-bridge with		
				integrated driver		
IC2	BTN9970LV	yes	HSOF-7	High current PN		Infineon
				half-bridge with		
				integrated driver		
JP1	1x5pin	yes	1x5 pin header	single row pin	5-146277-5	TE
		-	2,54mm pitch	strip header		Connectivity
JP2	1x5pin	yes	1x5 pin header	single row pin	5-146277-5	TE
			2,54mm pitch	strip header		Connectivity
R1	1k	yes	R0805	AEC Q200,		
				resistor		
R2	1k	yes	R0805	AEC Q200,		
				resistor		
R3	1k	yes	R0805	AEC Q200,		
D 4			Dagar	resistor		
R4	2k	yes	R0805	AEC Q200, resistor		
R5	DNP	no				
R6	1k	yes	R0805	AEC Q200,		
NO	IN	yes	100003	resistor		
R7	2k	yes	R0805	AEC Q200,		
		,		resistor		
R8	10k	yes	R0805	AEC Q200,		
				resistor		
R9	DNP	no				
R10	4.7k	yes	R0805	AEC Q200,		
				resistor		
R11	4.7k	yes	R0805	AEC Q200,		
				resistor		
R16	DNP(10k)	no	R0805	AEC Q200,		
D17			DOQOE	resistor		
R17	DNP(3.8k)	no	R0805	AEC Q200,		
R18	DNP(10k)	no	R0805	resistor AEC Q200,		
UTQ	DINF(IUK)	no		resistor		
R19	DNP(3.8k)	no	R0805	AEC Q200,		
111		110	10000	resistor		

BTN9970 / BTN9990 Motor control shield

Arduino shield for evaluation

Board Design

Part	Value	Mounted	Package	Description	Part number	Supplier
R21	DNP	no	R0805	AEC Q200,		
				resistor		
TP1	TPPAD1-13	no	P1-13	Test pad		
UIO	2x8 pin	yes	2,54mm pitch	dual row header	826656-8	TE
				without		
				isolation		
X1	2 terminal	yes	5,08mm pitch	MKDSN series,	1888687	Phonix
	screw			AWG 12-30		Contact
	connector					
X2	4 terminal	yes	5,08mm pitch	MKDSN series,	1888700	Phonix
	screw			AWG 12-30		Contact
	connector					

4 **References and appendices**

4.1 Abbreviations and definitions

Abbreviation	Meaning			
CE	Conformité Européenne			
EMI	Electromagnetic interference			
UL	Underwriters Laboratories			

4.2 References

- [1] Infineon Technologies AG, Datasheet: BTN9970LV NovalithIC+[™]
- [2] Infineon Technologies AG, Datasheet: BTN9990LV NovalithIC+™
- [3] Arduino UNO web page [Online] <u>store.arduino.cc/arduino-uno-rev3</u>
- [4] Arduino home page [Online] <u>www.arduino.cc</u>
- [5] Web folder of Infineon's <u>Single Half-Bridge ICs</u>

5 Revision history

Table 4 Revision history

Revision number	Date of release	Description of changes
Rev. 1.00	2021-02-09	Initial document created, based on board 1.1
Rev. 1.10	2021-09-30	Board changed to Ver 1.2 with 4 layers PCB, optimized board layout, larger screw headers and test pins to analyze I/O signals of half-bridges

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-09-23

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2021 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference Z8F80043943 For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.