

Product Change Notification / SYST-23QFBP679

Date:

24-Feb-2022

Product Category:

8-bit Microcontrollers

PCN Type:

Document Change

Notification Subject:

ERRATA - AVR32DA28/32/48 Silicon Errata and Data Sheet Clarification Document Revision

Affected CPNs:

SYST-23QFBP679_Affected_CPN_02242022.pdf SYST-23QFBP679_Affected_CPN_02242022.csv

Notification Text:

SYST-23QFBP679

Microchip has released a new Product Documents for the AVR32DA28/32/48 Silicon Errata and Data Sheet Clarification of devices. If you are using one of these devices please read the document located at AVR32DA28/32/48 Silicon Errata and Data Sheet Clarification.

Notification Status: Final

Description of Change:

- 1) Added data sheet clarifications:
 - 3.1. Features
 - 3.2. FUSE Configuration and User Fuses
 - 3.5. Electrical Characteristics Peripheral Power Consumption
 - 3.6. Electrical Characteristics Memory Programming Specifications
 - 3.7. Electrical Characteristics VREF
 - 3.8. Electrical Characteristics DAC
 - 3.9. Electrical Characteristics ADC
- 2) Updated data sheet clarifications:
 - 3.3. RSTCTRL Reset Controller
 - 3.4. TWI Two-Wire Interface

Impacts to Data Sheet: None

Reason for Change: To Improve Productivity

Change Implementation Status: Complete

Date Document Changes Effective: 24 Feb 2022

NOTE: Please be advised that this is a change to the document only the product has not been changed.

Attachments:

AVR32DA28/32/48 Silicon Errata and Data Sheet Clarification

Please contact your local Microchip sales office with questions or concerns regarding this notification.

Terms and Conditions:

If you wish to <u>receive Microchip PCNs via email</u> please register for our PCN email service at our <u>PCN</u> home page select register then fill in the required fields. You will find instructions about registering for Microchips PCN email service in the <u>PCN FAQ</u> section.

If you wish to <u>change your PCN profile</u>, <u>including opt out</u>, please go to the <u>PCN home page</u> select login and sign into your myMicrochip account. Select a profile option from the left navigation bar and make the applicable selections.

Affected Catalog Part Numbers (CPN)

AVR32DA28-E/SO

AVR32DA28-E/SP

AVR32DA28-E/SS

AVR32DA28-I/SO

AVR32DA28-I/SP

AVR32DA28-I/SS

AVR32DA28-I/SSVAO

AVR32DA28T-E/SO

AVR32DA28T-E/SS

AVR32DA28T-I/SO

AVR32DA28T-I/SS

AVR32DA28T-I/SSVAO

AVR32DA32-E/PT

AVR32DA32-E/PTVAO

AVR32DA32-E/RXB

AVR32DA32-E/RXBVAO

AVR32DA32-I/PT

AVR32DA32-I/RXB

AVR32DA32T-E/PT

AVR32DA32T-E/RXB

AVR32DA32T-E/RXBVAO

AVR32DA32T-I/PT

AVR32DA32T-I/RXB

AVR32DA48-E/6LX

AVR32DA48-E/6LXVAO

AVR32DA48-E/PT

AVR32DA48-E/PTVAO

AVR32DA48-I/6LX

AVR32DA48-I/PT

AVR32DA48T-E/6LX

AVR32DA48T-E/6LXV01

AVR32DA48T-E/6LXVAO

AVR32DA48T-E/PT

AVR32DA48T-E/PTVAO

AVR32DA48T-I/6LX

AVR32DA48T-I/PT

AVR32DA28/32/48

AVR32DA Silicon Errata and Data Sheet Clarification

The AVR32DA28/32/48 devices you have received conform functionally to the current device data sheet (www.microchip.com/DS40002228), except for the anomalies described in this document. The errata described in this document will likely be addressed in future revisions of the AVR32DA28/32/48 devices.

Notes:

- · This document summarizes all the silicon errata issues from all the silicon revisions, previous as well as current
- Refer to the Device/Revision ID section in the current device data sheet (www.microchip.com/DS40002228) for more detailed information on Device Identification and Revision IDs for your specific device, or contact your local Microchip sales office for assistance

Table of Contents

			1
1.	Silico	n Issue Summary	3
2.	Silicon Errata Issues		4
	2.1.	Errata Details	
	2.2.	Device	
	2.3.	CCL - Configurable Custom Logic	
	2.4.	CLKCTRL - Clock Controller	
	2.5.	DAC - Digital-to-Analog Converter	
	2.6.	NVMCTRL - Nonvolatile Memory Controller	
	2.7.	PORT - I/O Configuration	
	2.8.	RSTCTRL - Reset Controller	
	2.9.	TCA - 16-Bit Timer/Counter Type A	
	2.10.	TCB - 16-Bit Timer/Counter Type B	
	2.11.	TCD - 12-Bit Timer/Counter Type D	
	2.12.	TWI - Two-Wire Interface	
		USART - Universal Synchronous and Asynchronous Receiver and Transmitter	
		ZCD - Zero-Cross Detector	
3.	Data	Sheet Clarifications	10
٥.	3.1.	Features	
	3.1.	FUSE - Configuration and User Fuses	
	3.3.	RSTCTRL - Reset Controller	
	3.4.	TWI - Two-Wire Interface.	
	3.5.	Electrical Characteristics - Peripheral Power Consumption	
	3.6.	Electrical Characteristics - Peripheral Power Consumption	
	3.7.	Electrical Characteristics - Wernory Frogramming Specifications	
	3.8.	Electrical Characteristics - VNLi	
	3.9.	Electrical Characteristics - DAC.	
4.	Docu	ment Revision History	17
	4.1.	Revision History	17
The	e Micro	chip Website	18
Pro	duct C	hange Notification Service	18
Cu	stomer	Support	18
Mic	rochip	Devices Code Protection Feature	18
	-	ice	
		ks	
		anagement System	
	-		
VVC	riawide	Sales and Service	21

1. Silicon Issue Summary

Legend

- Erratum is not applicable.
- **X** Erratum is applicable.

Peripheral	neral Short Description		Valid for Silicon Revision	
		Rev. A3 ⁽¹⁾	Rev. A4	
Device	2.2.1. Some Reserved Fuse Bits Are '1'	Х	-	
	2.2.2. CRC Check During Reset Initialization Is not Functional	Х	X	
CCL	2.3.1. The LINK Input Source Selection for LUT3 Is not Functional on 28-and 32-Pin Devices	X	X	
CLKCTRL	2.4.1. PLL Status not Working as Expected	Х	X	
DAC	2.5.1. DAC Output Buffer Lifetime Drift	Х	Х	
NVMCTRL	2.6.1. Flash Multi-Page Erase Can Erase Write Protected Section	Х	X	
PORT	2.7.1. Digital Input on Pin Automatically Disabled When Pin Selected for Analog Input	X	X	
RSTCTRL	2.8.1. BOD Registers not Reset When UPDI Is Enabled	Х	Х	
TCA	2.9.1. Restart Will Reset Counter Direction in NORMAL and FRQ Mode	Х	X	
ТСВ	2.10.1. CCMP and CNT Registers Operate as 16-Bit Registers in 8-Bit PWM Mode	X	X	
TCD	2.11.1. Asynchronous Input Events not Working When TCD Counter Prescaler Is Used	X	X	
	2.11.2. CMPAEN Controls All WOx for Alternative Pin Functions	Х	X	
	2.11.3. Halting TCD and Wait for SW Restart Does Not Work if Compare Value A is 0 or Dual Slope Mode is Used	X	X	
TWI	2.12.1. The Output Pin Override Does not Function as Expected	Х	X	
	2.12.2. Flush Non-Functional	Х	X	
USART	2.13.1. Open-Drain Mode Does not Work When TXD Is Configured as Output	X	X	
	2.13.2. Start-of-Frame Detection Can Unintentionally Be Triggered in Active Mode	X	X	
ZCD	2.14.1. All ZCD Output Selection Bits Are Tied to the ZCD0 Bit	X	X	

Note:

1. This revision is the initial release of the silicon.

2. Silicon Errata Issues

2.1 Errata Details

- Erratum is not applicable.
- X Erratum is applicable.

2.2 Device

2.2.1 Some Reserved Fuse Bits Are '1'

For material with date code 2033 (manufactured in the year 2020, week 33) or older, the default fuse values are not compliant with the data sheet. The fuse values will read out as listed below:

- BODCFG = 0x10
- OSCCFG = 0x78 (The device will use the OSCHF clock source)
- SYSCFG0 = 0xF2
- SYSCFG1 = 0xF8

Work Around

None.

Affected Silicon Revisions

Rev. A3	Rev. A4
X	-

2.2.2 CRC Check During Reset Initialization Is not Functional

For material with date code 2136 (manufactured in the year 2021, week 36) or older, the CRCSRC bit field in the SYSCFG0 fuse is ignored during Reset initialization. A CRC check will not be performed during Reset initialization. CRCSCAN is only available from the software.

Work Around

None.

Affected Silicon Revisions

Rev. A3	Rev. A4
X	X

2.3 CCL - Configurable Custom Logic

2.3.1 The LINK Input Source Selection for LUT3 Is not Functional on 28- and 32-Pin Devices

The LINK option (INSELn in LUT3CTRLB or LUT3CTRLC is '0x2') does not work; the output from LUT0 will not get connected as an input to LUT3. This occurs only on 28-pin and 32-pin devices.

Work Around

Connect LUT0 output to LUT3 input using the Event System.

Affected Silicon Revisions

Rev. A3	Rev. A4
X	X

2.4 CLKCTRL - Clock Controller

2.4.1 PLL Status not Working as Expected

The PLL Status (PLLS) bit in the Main Clock Status (MCLKSTATUS) register will never be set to '1' if the Run Standby (RUNSTDBY) bit in PLL Control A (PLLCTRLA) register is set to '1' and no peripherals are requesting the PLL oscillator.

Work Around

None.

Affected Silicon Revisions

Rev. A3	Rev. A4
X	X

2.5 DAC - Digital-to-Analog Converter

2.5.1 DAC Output Buffer Lifetime Drift

The offset of the DAC output buffer can drift over lifetime if the device is powered with the DAC output buffer disabled.

Work Around

Keep the DAC output buffer enabled (OUTEN in DACn.CTRLA is `1') continuously or compensate by measuring the DAC output voltage offset with the ADC and adjust the DAC data register value (DATA[9:0] in DACn.DATA) accordingly.

Affected Silicon Revisions

Rev. A3	Rev. A4
X	X

2.6 NVMCTRL - Nonvolatile Memory Controller

2.6.1 Flash Multi-Page Erase Can Erase Write Protected Section

When using Flash Multi-Page Erase mode, only the first page in the selected address range is verified to be within a section that is not write-protected. If the address range includes any write-protected Application Data pages, it will erase them.

Work Around

None.

Affected Silicon Revisions

Rev. A3	Rev. A4
X	X

2.7 PORT - I/O Configuration

2.7.1 Digital Input on Pin Automatically Disabled When Pin Selected for Analog Input

If an input pin is selected to be analog input, the digital input function for those pins is automatically disabled.

Work Around

None

Affected Silicon Revisions

Rev. A3	Rev. A4
X	X

2.8 RSTCTRL - Reset Controller

2.8.1 BOD Registers not Reset When UPDI Is Enabled

If the UPDI is enabled, the VLMCTRL, INTCTRL, and INTFLAGS registers in BOD will not be reset by other reset sources than POR.

Work Around

None

Affected Silicon Revisions

Rev. A3	Rev. A4
X	X

2.9 TCA - 16-Bit Timer/Counter Type A

2.9.1 Restart Will Reset Counter Direction in NORMAL and FRQ Mode

When the TCA is configured to a NORMAL or FRQ mode (WGMODE in TCAn.CTRLB is ' 0×0 ' or ' 0×1 '), a RESTART command or Restart event will reset the count direction to default. The default is counting upwards.

Work Around

None.

Affected Silicon Revisions

Rev. A3	Rev. A4
X	Х

2.10 TCB - 16-Bit Timer/Counter Type B

2.10.1 CCMP and CNT Registers Operate as 16-Bit Registers in 8-Bit PWM Mode

When the TCB is operating in 8-bit PWM mode (CNTMODE in TCBn.CTRLB is '0x7'), the low and high bytes for the CNT and CCMP registers operate as 16-bit registers for read and write. They cannot be read or written independently.

Work Around

Use 16-bit register access. Refer to the data sheet for further information.

Affected Silicon Revisions

Rev. A3	Rev. A4
X	X

2.11 TCD - 12-Bit Timer/Counter Type D

2.11.1 Asynchronous Input Events not Working When TCD Counter Prescaler Is Used

When configuring TCD to use asynchronous input events (CFG in TCDn.EVCTRLx is ' 0×2 ') and the TCD Counter Prescaler (CNTPRES in TCDn.CTRLA) is different from ' 0×0 ', events can be missed.

Work Around

Use the TCD Synchronization Prescaler (SYNCPRES in TCDn.CTRLA) instead of the TCD Counter Prescaler. Alternatively, use synchronous input events (CFG in TCDn.EVCTRLx is not 0x2) if the input events are longer than one CLK TCD CNT cycle.

Affected Silicon Revisions

Rev. A3	Rev. A4
X	X

2.11.2 CMPAEN Controls All WOx for Alternative Pin Functions

When TCD alternative pins are enabled (TCD0 in PORTMUX.TCDROUTEA is not '0x0'), all waveform outputs (WOx) are controlled by Compare A Enable (CMPAEN in TCDn.FAULTCTRL).

Work Around

None.

Affected Silicon Revisions

Rev. A3	Rev. A4
X	X

2.11.3 Halting TCD and Wait for SW Restart Does Not Work if Compare Value A is 0 or Dual Slope Mode is Used

Halting TCD and wait for software restart (INPUTMODE in TCDn.INPUTCTRLA is '0x7') does not work if compare value A is 0 (CMPASET in TCDn.CMPASET is '0x0') or Dual Slope mode is used (WGMODE in TCDn.CTRLB is '0x3').

Work Around

Configure the compare value A (CMPASET in TCDn.CMPASET) to be different from 0 and do not use Dual Slope mode (WGMODE in TCDn.CTRLB is not '0x3').

Affected Silicon Revisions

Rev. A3	Rev. A4
X	X

2.12 TWI - Two-Wire Interface

2.12.1 The Output Pin Override Does not Function as Expected

When TWI is enabled, it overrides the output pin driver, but not the output value. The output on the line will always be high when the value in the PORTx.OUT register is '1' for the pins corresponding to the SDA or SCL.

Work Around

Ensure that the values in the PORTx.OUT register corresponding to the SCL and SDA pins are '0' before enabling the TWI.

Affected Silicon Revisions

Rev. A3	Rev. A4
X	X

2.12.2 Flush Non-Functional

Issuing a Flush by writing to the FLUSH bit in TWIn.MCTRLB can cause the TWI Host to be stuck in Unknown bus state (see BUSSTATE in TWIn.MSTATUS).

Work Around

Disable and re-enable the Host using the ENABLE bit in TWIn.MCTRLA. A normal operation does not require the use of FLUSH.

Affected Silicon Revisions

Rev. A3	Rev. A4
X	X

2.13 USART - Universal Synchronous and Asynchronous Receiver and Transmitter

2.13.1 Open-Drain Mode Does not Work When TXD Is Configured as Output

When configured as an output, the USART TXD pin can drive the pin high regardless of whether the Open-Drain mode is enabled or not.

Work Around

Configure the TXD pin as an input by writing the corresponding bit in PORTx.DIR to '0' when using Open-Drain mode.

Affected Silicon Revisions

Rev. A3	Rev. A4				
X	X				

2.13.2 Start-of-Frame Detection Can Unintentionally Be Triggered in Active Mode

The Start-of-Frame Detection feature enables the USART to wake up from Standby sleep mode upon data reception. The Start-of-Frame Detector can unintentionally be triggered when the Start-of-Frame Detection Enable (SFDEN) bit in the USART Control B (USARTn.CTRLB) register is set, and the device is in Active mode. If the Receive Data (RXDATA) registers are read while receiving new data, the Receive Complete Interrupt Flag (RXCIF) in the USARTn.STATUS register is cleared. This triggers the Start-of-Frame Detector and falsely detects the following falling edge as a start bit. When the Start-of-Frame Detector detects a start condition, the frame reception is restarted, resulting in corrupt received data. Note that the USART Receive Start Interrupt Flag (RXSIF) always is '0' when in Active mode. No interrupt will be triggered.

Work Around

Disable Start-of-Frame Detection by writing '0' to the Start-of-Frame Detection Enable (SFDEN) bit in the USART Control B (USARTn.CTRLB) register when the device is in Active mode. Re-enable it by writing the bit to '1' before transitioning to Standby sleep mode. This work around depends on a protocol preventing a new incoming frame when re-enabling Start-of-Frame Detection. Re-enabling Start-of-Frame Detection, while a new frame is already incoming, will result in corrupted received data.

Affected Silicon Revisions

Rev. A3	Rev. A4
x	X

2.14 ZCD - Zero-Cross Detector

2.14.1 All ZCD Output Selection Bits Are Tied to the ZCD0 Bit

The Zero Cross Detector n Output (ZCDn) bits in the Pin Position (PORTMUX.ZCDROUTEA) register are tied to ZCD0. Any write to ZCD0 will be reflected in the ZCD1 and ZCD2 as well. Writing to ZCD1 and/or ZCD2 has no effect.

Work Around

Use the Event System or CCL to make the output of ZCD1 or ZCD2 available on a pin.

Affected Silicon Revisions

Rev. A3	Rev. A4				
X	X				

3. Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (www.microchip.com/DS40002228).

Note: Corrections are shown in bold. Where possible, the original bold text formatting has been removed for clarity.

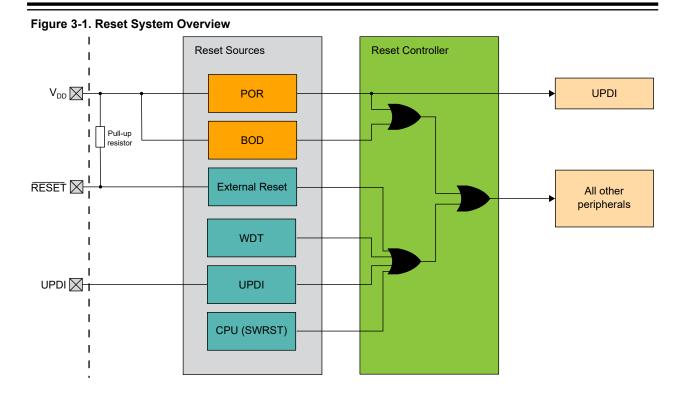
3.1 Features

A clarification has been made to change the Flash endurance specification in the *Memories* bullet point in the *Features* list.

- · Memories
 - 128 KB in-system self-programmable Flash memory
 - 512B EEPROM
 - 16 KB SRAM
 - 32B of user row in nonvolatile memory that can keep data during chip-erase and be programmed while the device is locked
 - Write/erase endurance
 - Flash: 1,000 cycles
 - EEPROM: 100,000 cycles
 - Data retention: 40 years at 55°C

3.2 FUSE - Configuration and User Fuses

A clarification of the EEPROM Save During Chip Erase (EESAVE) fuse description in the System Configuration 0 (SYSCFG0) fuse has been made.


Bit 0 - EESAVE EEPROM Save During Chip Erase

This bit controls if the EEPROM will be erased or not during a chip erase.

Value	Name	Description					
0	DISABLE	EEPROM erased during chip erase					
1	ENABLE	EEPROM not erased during chip erase regardless of whether the device is locked or not					

3.3 RSTCTRL - Reset Controller

A clarification has been made to add the missing block diagram figure.

3.4 TWI - Two-Wire Interface

A clarification of the clock stretching in the SDA Setup Time (SDASETUP) bit description in the TWI Control A (CTRLA) register has been made.

Bit 4 - SDASETUP SDA Setup Time

This bit is used in TWI Client mode **with clock stretching** to select the clock hold time and ensure the minimum setup time on the SDA out signal.

Value	Name	Description			
0	4CYC	SDA setup time is four clock cycles			
1	8CYC	SDA setup time is eight clock cycles			

3.5 Electrical Characteristics - Peripheral Power Consumption

To update the ADC power consumption (I_{DD_ADC}) in the *Peripheral Power Consumption* table, a clarification has been made.

Table 37-6. Peripheral Power Consumption(1)

Operating Conditions:

- V_{DD} = 3.0V
- T_A = 25°C
- OSCHF at 4 MHz used as clock source
- Device in Standby sleep mode

Symbol	Description	Min.	Typ.	Max. 85°C	Max. 125° C	Unit	Conditions
I _{DD_WDT}	Watchdog Timer (WDT)	—	600	900	1500	nA	32.768 kHz internal oscillator
		_	175	300	320	μA	ADC0REF enabled, V _{REF} = 2.048V
I _{DD_VREF}	Voltage Reference (VREF)	_	71	90	92	μA	ACREF enabled, V _{REF} = 2.048V
		_	40	60	62	μA	DACREF enabled, V _{REF} = 2.048V
		_	17	25	27	μA	Brown-out Detect (BOD) continuous
I _{DD_BOD}	Brown-out Detector (BOD)	_	1.6	10	12	μA	Brown-out Detect (BOD) sampling @128 Hz, including I _{DD_OSC32K}
		_	0.95	10	12	μA	Brown-out Detect (BOD) sampling @32 Hz, including I _{DD_OSC32K}
I _{DD_TCA}	16-bit Timer/Counter Type A (TCA)	_	6	_	_	μA	
I _{DD_TCB}	16-bit Timer/Counter Type B (TCB)	_	3.6	_	_	μA	CLK_PER = OSCHF/4 = 1 MHz
I _{DD_TCD}	12-bit Timer/Counter Type D (TCD)	_	4.6	_	_	μA	
		_	0.7	18	25.5	μA	RTC running at 1.024 kHz from OSC32K
I _{DD_RTC}	Real-Time Counter (RTC)		3.9	20	26	μA	RTC running at 1.024 kHz from XOSC32K, XOSC32KCTRLA.LPMODE = 0
			2.1	18	25	μA	RTC running at 1.024 kHz from XOSC32K, XOSC32KCTRLA.LPMODE = 1
I _{DD_OSC32K}	32.768 kHz Internal Oscillator (OSC32K)	_	600	900	1500	nA	
1	32.768 kHz Crystal Oscillator (XOSC32K)	_	2	_	_	μA	XOSC32KCTRLA.LPMODE = 0
I _{DD_XOSC32K}		_	1.2	_	_	μA	XOSC32KCTRLA.LPMODE = 1
I _{DD_OSCHF}	Internal High Frequency Oscillator (OSCHF)	_	185	_	_	μA	OSCHF at 4 MHz

.....continued

Operating Conditions:

- $V_{DD} = 3.0V$
- $T_A = 25^{\circ}C$
- OSCHF at 4 MHz used as clock source
- Device in Standby sleep mode

Symbol	Description	Min.	Typ.	Max. 85°C	Max. 125° C	Unit	Conditions
		_	300	600	650	nA	ADC - Nonconverting
I _{DD_ADC}	Analog-to-Digital Converter (ADC)	_	1.1	1.4	1.5	mA	ADC @60 ksps ⁽²⁾
		_	1.1	1.5	1.6	mA	ADC @120 ksps ⁽²⁾
		_	70	105	110	μΑ	CTRLA.POWER = 0x0
I _{DD_AC}	Analog Comparator (AC)	_	17	30	32	μA	CTRLA.POWER = 0x1
		_	12	20	22	μA	CTRLA.POWER = 0x2
I _{DD_DAC}	Digital-to-Analog Converter (DAC)	_	120	140	160	μA	DAC + DACOUT, $V_{DACREF} = V_{DD}/2$
_		_	8	13	34	μΑ	DAC, $V_{DACREF} = V_{DD}/2$
I _{DD_UART}	Universal Synchronous and Asynchronous Receiver and Transmitter (USART)	_	8.2	_	_	μA	USART Enabled @9600 Baud
I _{DD_SPI}	Serial Peripheral Interface (SPI)	_	4	_	_	μΑ	SPI Host @100 kHz
laa	Two-Wire Interface (TWI)	_	8	_	_	μΑ	TWI Host @100 kHz
I _{DD_TWI}	Two-vviile interface (Tvvi)	_	6	_	_	μΑ	TWI Client @100 kHz
I _{DD_NVM_ERA} SE	Flash Programming Erase	_	6.8	_	_	mA	
I _{DD_NVM_WRIT}	Flash Programming Write	_	9.2	_	_	mA	

 $[\]dagger$ Data in the "Typ." column is at T_A = 25°C and V_{DD} = 3.0V unless otherwise specified. These parameters are for design guidance only and are not tested.

Notes:

- 1. Current consumption of the module only. To calculate the total internal power consumption of the microcontroller, add the power consumption values of all the peripherals and the clock sources used to the base power consumption given in the *Power Consumption* section.
- 2. Average power consumption with ADC active in Free Running mode.

3.6 Electrical Characteristics - Memory Programming Specifications

A clarification has been made to change the Flash memory cell endurance specification in the *Memory Programming Specifications* table.

Table 37-8. Memory Programming Specifications

Symbol	Description	Min.	Typ. †	Max.	Unit	Conditions				
Data EEI	Data EEPROM Memory Specifications									
E _D *	Data EEPROM byte endurance	100k	_	_	Erase/Write cycles	-40°C ≤ T _A ≤ +85°C				
t _{D_RET}	Characteristic retention	_	40	_	Year	Provided no other violated specifications				
V_{D_RW}	V _{DD} for Read or Erase/Write operation	V _{DDMIN}	_	V_{DDMAX}	V					
N _{D_REF} *	Total Erase/Write cycles before refresh	1M	4M	_	Erase/Write cycles	-40°C ≤ T _A ≤ +85°C				
t _{D_CE}	Byte/Multibyte/Full EEPROM Erase time	_	10	10.5	ms					
t _{D_WRE}	Byte Write time	_	70	75	μs					
t _{D_BEW}	Byte Erase and Write time	_	10.07	_	ms					
Program	Flash Memory Specifications									
E _P *	Flash memory cell endurance	1k	_	_	Erase/Write cycles					
t _{P_RET}	Characteristic retention	_	40	_	Year					
V _{P_RD}	V _{DD} for Read operation	V_{DDMIN}	_	V_{DDMAX}	V					
V _{P_REW}	V _{DD} for Erase/Write operation	V _{DD} ⁽¹⁾	_	V_{DDMAX}	V					
t _{P_CE}	Chip Erase time	_	11	11.6	ms					
t _{P_PE}	Page Erase time	_	10	10.5	ms					
t _{P_WRD}	Byte/Word Write time	_	70	75	μs					

 $[\]dagger$ Data in the "Typ." column is at T_A = 25°C and V_{DD} = 3.0V unless otherwise specified. These parameters are for design guidance only and are not tested.

Note:

1. During Chip Erase, the Brown-out Detector (BOD) configured with BODLEVEL0 is forced ON. The erase attempt will fail if the supply voltage V_{DD} is below V_{BOD} for BODLEVEL0.

3.7 Electrical Characteristics - VREF

A clarification has been made to change the maximum accuracy of VREF in the V_{REF} Specifications table.

Table 37-17. V_{REF} Specifications

Symbol	Description	Min.	Typ.	Max.	Unit	Conditions
V _{VREF_1V024} (1)	Internal Voltage Reference 1.024V	-4	_	4	%	$V_{DD} \ge 2.5V$, $-40^{\circ}C \le TA \le +85^{\circ}C$
V _{VREF_2V048} (1)	Internal Voltage Reference 2.048V	-4	_	4	%	V _{DD} ≥ 2.5V, -40°C ≤ TA ≤ +85°C
V _{VREF_4V096} (1)	Internal Voltage Reference 4.096V	-4	_	4	%	V _{DD} ≥ 4.55V, -40°C ≤ TA ≤ +85°C
V _{VREF_2V500} ⁽¹⁾	Internal Voltage Reference 2.5V	-4	_	4	%	V _{DD} ≥ 2.7V, -40°C ≤ TA ≤ +85°C

^{*} These parameters are characterized but not tested in production.

continued								
Symbol	Description	Min.	Typ.	Max.	Unit	Conditions		
V	VREFA input pin voltage	1.8	_	V_{DD}	V	V _{DD} < 2.7V		
V_{VREFA}		1.024	_	V_{DD}	V	V _{DD} ≥ 2.7V		
t _{INTREF} *	Delay for changing voltage reference	_	2	_	μs			
. *	VREF Start-up Time	_	10	_	μs	CLKCTRL.MCLKCTRLA = 0x00 or 0x03		
t _{VREF_ST} *		_	200	_	μs	CLKCTRL.MCLKCTRLA = 0x01 or 0x02		

 $[\]dagger$ Data in the "Typ." column is at T_A = 25°C and V_{DD} = 3.0V unless otherwise specified. These parameters are for design guidance only and are not tested.

Note:

 The symbol V_{VREF_xVxxx} refers to the respective values of the REFSEL bit fields in the VREF.ADC0REF, VREF.DAC0REF and VREF.ACREF registers.

3.8 Electrical Characteristics - DAC

A clarification has been made to update the conditions in the DAC Electrical Specifications table.

Table 37-22. DAC Electrical Specifications

Operating Conditions:

- $V_{DD} = 3.0 V$
- T_Δ = 25°C

Symbol	Description	Min.	Typ. †	Max.	Unit	Conditions
V_{DD}	Supply voltage	1.8	_	5.5	V	
V _{OUT}	Output voltage range	GND	<u> </u>	V_{DD}	V	
V_{LSB}	Resolution	_	10	_	Bit	
V _{ACC}	Absolute accuracy	_	1	_	LSb	0x023 ≤ DAC.DATA < 0x3DC
t _{ST}	Settling Time ⁽¹⁾	_	7	_	μs	V _{DACREF} = V _{DD} = 3.0V, 50 pF Load
		_	10	_	μs	V _{DACREF} = V _{DD} = 5.5V, 50 pF Load
INL	Integral nonlinearity	-2.3	1	2.3	LSb	0x023 ≤ DAC.DATA < 0x3DC
DNL	Differential nonlinearity	-0.2	0.2	0.7	LSb	0x023 ≤ DAC.DATA < 0x3DC
E _{OFF}	Offset error	1.7	2.8	5	LSb	0x023 ≤ DAC.DATA < 0x3DC
E _{GAIN}	Gain error	-3.3	-1.1	0.7	LSb	0x023 ≤ DAC.DATA < 0x3DC

 $[\]dagger$ Data in the "Typ." column is at T_A = 25°C and V_{DD} = 3.0V unless otherwise specified. These parameters are for design guidance only and are not tested.

Note:

1. Settling time measured while DAC.DATA[9:0] transitions from '0x000' to '0x3FF'.

^{*} These parameters are characterized but not tested in production.

3.9 Electrical Characteristics - ADC

A clarification has been made for ADC Specifications in the ADC Accuracy Specifications table.

Table 37-23. ADC Accuracy Specifications

Operating Conditions:

- $V_{DD} = 3.0 V$
- $T_A = 25^{\circ}C$

Symbol	Description	Min.	Typ. †	Max.	Unit	Conditions
N _R	Resolution	_	_	12	bit	
E _{INL}	Integral nonlinearity error	-1	0.1	1	LSb	$V_{DD} = V_{REF} = 3.0V$
E _{DNL}	Differential nonlinearity error ⁽¹⁾	-1	0.1	1	LSb	$V_{DD} = V_{REF} = 3.0V$
E _{OFF}	Offset error	1.3	3	5	LSb	$V_{DD} = V_{REF} = 3.0V$
E _{GAIN}	Gain error	-5	1.5	5	LSb	$V_{DD} = V_{REF} = 3.0V$
E _{ABS}	Absolute error	_	_	_	LSb	$V_{DD} = V_{REF} = 3.0V$
V _{ADCREF}	ADC reference voltage	1.8	_	V_{DD}	V	
V _{AIN}	Full-scale range	GND	_	V _{ADCREF}	V	
Z _{AIN}	Recommended impedance of analog voltage source	_	1	_	kΩ	
R _{VREFA}	ADC voltage reference ladder impedance ⁽²⁾	_	50	_	kΩ	

 $[\]dagger$ Data in the "Typ." column is at T_A = 25°C and V_{DD} = 3.0V unless otherwise specified. These parameters are for design guidance only and are not tested.

Notes:

- 1. The ADC conversion result never decreases with an increase in the input and has no missing codes.
- 2. This is the impedance seen by the VREFA pin when the external reference is selected.

4. Document Revision History

Note: The document revision is independent of the silicon revision.

4.1 Revision History

Doc. Rev.	Date	Comments
D	02/2022	Added data sheet clarifications: - 3.1. Features - 3.2. FUSE - Configuration and User Fuses - 3.5. Electrical Characteristics - Peripheral Power Consumption - 3.6. Electrical Characteristics - Memory Programming Specifications - 3.7. Electrical Characteristics - VREF - 3.8. Electrical Characteristics - DAC - 3.9. Electrical Characteristics - ADC Updated data sheet clarifications: - 3.3. RSTCTRL - Reset Controller - 3.4. TWI - Two-Wire Interface
С	10/2021	 Updated errata: Device: Some Reserved Fuse Bits Are '1' Device: CRC Check During Reset Initialization Is Not Functional USART: Start-of-Frame Detection Can Unintentionally Be Enabled in Active Mode When RXCIF Is '0' Added errata: CLKCTRL: PLL Status Not Working as Expected DAC: DAC Output Buffer Lifetime Drift NVMCTRL: Flash Multi-Page Erase Can Erase Write Protected Section TCD: Halting TCD and Wait for SW Restart Does Not Work if Compare Value A Is 0 or Dual Slope Mode Is Used TWI: Flush Nonfunctional
В	11/2020	 Add new device revision (A4) Added errata: Device: Some Reserved Fuse Bits Are '1' Device: CRC Check During Reset Initialization Is Not Functional CCL: The LINK Input Source Selection for LUT3 Is Not Functional on 28- and 32-Pin Device RSTCTRL: BOD Registers Not Reset When UPDI Is Enabled TCA: Restart Will Reset Counter Direction in NORMAL and FRQ Mode TCB: CCMP and CNT Registers Operate as 16-Bit Registers in 8-Bit PWM Mode TCD: Asynchronous Input Events Not Working When TCD Counter Prescaler Is Used USART: Start-of-Frame Detection Can Unintentionally Be Enabled in Active Mode When RXCIF Is '0'
Α	06/2020	Initial document release

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- **Local Sales Office**
- Embedded Solutions Engineer (ESE)
- **Technical Support**

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/ design-help/client-support-services.

Errata

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified Iogo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

Errata

All other trademarks mentioned herein are property of their respective companies.

© 2020-2022, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-5224-9701-1

DS80000895D-page 19

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380			Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
Tel: 919-844-7510			Sweden - Gothenberg
New York, NY			Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			
Fax: 905-695-2078			