
SKU:DRI0050 (https://www.dfrobot.com/product-2429.html)

 (https://www.dfrobot.com/product-2429.html)

1. Introduction

This is a PWM driver board with four adjustment methods, namely, Python code direct control,

https://www.dfrobot.com/product-2429.html
https://www.dfrobot.com/product-2429.html

j , y, y ,
PC host computer control, UART communication programming control, and potentiometer
manual control. It is used in application scenarios such as DC motor speed control and light
adjustment.

This product supports 5V~24V wide voltage input, and has a load capacity of 10A, which can
drive a DC motor of about 50W or a LED strip light of about 5 meters. It is suitable for water
pump water volume control, cooling fan speed control, light brightness adjustment, power tool
transformation, motor/LED strip product testing, motor speed automation control, lighting effect
automation control and other scenes.

2. Features

Python code programming, no motherboard or adapter required. Directly connected to PC
via a USB cable, simple and easy to use.
Windows software control, no programming required, plug and play.
UART communication control, convenient for long-term use of embedded equipment.
External potentiometer control, manual control, no programming required.
Standard MODBUS protocol. The protocol is public so you can flexibly customize your own
control method.

5V~24V wide voltage support, suitable for various motors and light strips.
Driven by high current MOS tube, load capacity of 10A

3. Applications

Control by Python code

1. Connect the USB interface, you can directly use Python code to automatically control the
motor speed and lighting effect. No additional motherboard or adapter is required.

2. Can be very conveniently used on Windows computers, Apple computers, Raspberry Pi,
industrial computers or LattePanda.

Control by Windows computer

1. When remaking a PC cooling fan, cooling water pump, etc, you can manually control the
device on PC, or make it be automatically adjusted by reading the CPU temperature.

2. Because the host computer can accurately adjust the frequency and duty ratio, this driver
can be used to test dc motor or light strip products, or to optimize small equipment.

3. Make a small fan whose wind speed can be automatically adjusted or controlled on the

computer. Just plug in the USB to use.

Control by programming mainboard

1. Create a project with special effects, or turn it on at a specific time, or adjust lighting effects,
or use it with sensors. For example, a fan that automatically adjusts the wind force, and a
light strip that automatically changes its brightness.

2. Automatic control of the water output of the fish tank or watering pump.
3. Automatic control of festival atmosphere lights.

Manual control by potentiometer

1. Home appliance renovation, making adjustable fans.
2. Electric tool production, transformation, adjustable speed.
3. Lighting effects control of light strip.

4. Specification

Input Voltage Range: 5~24V
Max Control Current: 10A

Max Control Current: 10A
PWM Duty Ratio Adjustment Range: 0~255
PWM Frequency Adjustment Range: 183Hz ~ 46875Hz
Number of PWM Channels:1 channel

Stop/Start Button ×1
Control Mode: External potentiometer adjustment, UART communication control, USB port
host computer control, Python control
USB Interface: Type-C
UART Interface: PH2.0-4P
External Potentiometer Interface: 2.54 pin header, binding post
Mounting Hole Size: 30mm × 50mm, diameter 3.1mm
PCB Size: 37 × 57mm / 1.46 × 2.24 inches

5. Product Dimension

6. Board Overview

7. Control Peripheral via Windows

The product allows users to configure its PWM parameters by Windows so as to control motor
speed or light brightness.

Note: Currently the product only passed the test on Windows. Other Systems are not tested yet.

1. Connect a device

Before using the product, you have to prepare the following hardware:

PC Windows 10
Motor or LED strip
Type-C cable
Power Source(Voltage: 5V~24V Power>2A Select the suitable power according to the devcie
you used)

Connect all parts together as shown below, dial the switch to UART/COM side.

2. Install USB driver

D i D l d

Driver Download

When using this product for the first time, you may need to download and install the USB driver
program.

USB Driver download link(Select one of the links below to download):

https://github.com/DFRobot/CH_Driver (https://github.com/DFRobot/CH_Driver)

http://download.dfrobot.top/CH_Drive/ (http://download.dfrobot.top/CH_Drive/)

Driver Description

Windows Driver: CH340/CH341 USB to Serial Windows Driver program. DLL and non-standard
buad rate settings are included. It supports 32/64 bits Windows 10/8.1/8/7/VISTA/XP, SERVER
2016/2012/2008/2003, 2000/ME/98. Certificated by microsoft digital signature. Supporting USB
to serial port 3-wire and 9-wire.

Linux Driver: CH340/CH341 USB to serial port Linux Driver program, supporting 32/64bits.

MAC Driver: CH340/CH341 USB to serial port MAC OS Driver program, supporting 32/64bits.
Manual included.

https://github.com/DFRobot/CH_Driver
http://download.dfrobot.top/CH_Drive/

Android Driver: CH340/CH341 USB to serial port Android driver-free library, used for the USB
Host mode of Android OS 3.1 and above. No need to load Android core driver and root
operation privilege is unnecessary. It includes apk installtion program, lib files(Java Driver), and
APP Demo(USB to UART Demo Engineering SDK).

3. Download program package for Windows

Download link: https://github.com/DFRobot/DRI0050_soft_V1.0
(https://github.com/DFRobot/DRI0050_soft_V1.0)

Download the file, unzip it, click the program "Light and Motor Driver.exe" to run. No need to
install.

https://github.com/DFRobot/DRI0050_soft_V1.0

Software Interface:

1. Connect the product to a PC via a USB Type-C cable. If the driver program is installed
already, the software will automatically recognize it.

2. Click the start button, the PC communicates successfully with PWM module, and now the
PWM frequency and duty ratio can be adjusted in real-time.

3. Adjustable Frequency ranges from 0 to 255. You can input manually or drag the control bar
to revise. The frequency will be displayed on the right side of the interface.

4. The product supports single-channel PWM control, so only the duty ratio of Channel 1 can
be adjusted. Enter the duty ratio into the input box.

5. Tick/untick to enable/disable PWM control.

8. Control Peripherial via Python Programming

When connecting this board to a PC via a USB cable, you can not only directly control it on PC,

but also program in Python on multiple platforms like Windows, MAC, Linux, etc. to control
motor or LED strip.

Note: Windows platform needs to install Python3.5+.(The newest version is recommended.)

Most Linux platforms has pre-installed Python3, if not, please install Python3.5+.

There are two ways provided for Python programming:

1. Program by Python Pinpong library: pinpong library is a Python library that integrates
abundant hardware control functions, which aims to greatly simplify coding.

2. Program by Python directly: The codes will be a little bit cumbersome, but still, same
functions can be realized in this way.

Control prepherial by Python_pinpong library (All platforms)

Input the following commands to install pinpong library:

pip3 install pinpong

Use pinpong library to control device (For Linux and Windows)

Use pinpong library to control device (For Linux and Windows)

The program provides the basic controllable commands. You can select your program control
method and coding platform, etc, as your actual needs.

-*- coding: utf-8 -*-
'''
PWM frequency higher than 2K, there may be relatively large difference between the frequen
For frequency higher than 2K, please refer to the following frequency value:
46875HZ, 23437HZ, 15625HZ, 11718HZ,
9375HZ, 7812HZ, 6696HZ, 5859HZ, 5208HZ, 4687HZ, 4261HZ,
3906HZ, 3605HZ, 3348HZ, 3125HZ,
2929HZ, 2757HZ, 2604HZ, 2467HZ, 2343HZ, 2232HZ, 2130HZ, 2038HZ,
'''

import time
from pinpong.board import Board
from pinpong.libs.dfrobot_dri0050 import DRI0050 # Import DRI0050 library from libs

#Board("RPi").begin() #RPi Linux platform
Board("Win").begin() #windows platform

#pwmd = DRI0050(port="/dev/ttyUSB0") #RPi Linux platform
pwmd = DRI0050(port="COM12") #Windows platform

pwmd = DRI0050(port= COM12) #Windows platform

print("version=0x{:x}, addr=0x{:x}".format(pwmd.get_version(), pwmd.get_addr()))
print("pid=0x{:x}, vid=0x{:x}".format(pwmd.get_vid(), pwmd.get_pid()))

while True:
 print("\n--------Inital Value------")
 print("freq={}, duty={:.2f} enable={}".format(pwmd.get_freq(), pwmd.get_duty(), pwmd.get

 print("--------Set a new value------")
 #pwmd.pwm(freq=860,duty=0.82) # freq(183HZ-46875HZ) duty(0%-100%)
 pwmd.set_freq(860) #(183HZ-46875HZ)
 pwmd.set_duty(0.82)#(0%-100%)
 pwmd.set_enable(1)
 print("freq={}, duty={:.2f} enable={}".format(pwmd.get_freq(), pwmd.get_duty(), pwmd.get

 print("--------Restore to factory settings (366HZ, duty ratio 50%, disable output)------
 pwmd.pwm(freq=366,duty=0.5) # freq(183HZ-46875HZ) duty(0%-100%)
 pwmd.set_enable(0)
 time.sleep(5)

Control prepherial via Python (All platforms)

Use the following commands to install serial library and modbus library:

pip3 install serial
pip3 install modbus_tk

The program provides the basic controllable commands. You can select your program control
method and coding platform, etc, as your actual needs.

-*- coding: utf-8 -*-
'''
PWM frequency higher than 2K, there may be relatively large difference between the frequen
For frequency higher than 2K, please refer to the following frequency value:
46875HZ, 23437HZ, 15625HZ, 11718HZ,
9375HZ, 7812HZ, 6696HZ, 5859HZ, 5208HZ, 4687HZ, 4261HZ,
3906HZ, 3605HZ, 3348HZ, 3125HZ,
2929HZ, 2757HZ, 2604HZ, 2467HZ, 2343HZ, 2232HZ, 2130HZ, 2038HZ,
'''

import time
import serial
import modbus_tk
import modbus_tk.defines as cst
from modbus_tk import modbus_rtu

PORT="COM12" #Windows platform
#PORT="/dev/ttyUSB0" #Linux platform
BAUDRATE=9600

BAUDRATE=9600
SLAVE_ADDR=0x32

PID_REG = 0x00
VID_REG = 0x01

ADDR_REG = 0x02
VER_REG = 0x05
DUTY_REG = 0x06
FREQ_REG = 0x07
PWM_EN_REG = 0x08

ser = serial.Serial(port=PORT,baudrate=BAUDRATE, bytesize=8, parity='N', stopbits=1)
master = modbus_rtu.RtuMaster(ser)
time.sleep(0.5)

def get_pid():
 data = master.execute(SLAVE_ADDR, cst.READ_HOLDING_REGISTERS, PID_REG, 1)
 time.sleep(0.03)
 return data[0]

def get_vid():
 data = master.execute(SLAVE_ADDR, cst.READ_HOLDING_REGISTERS, VID_REG, 1)
 time.sleep(0.03)
 return data[0]

def get_addr():
 data = master.execute(SLAVE_ADDR, cst.READ_HOLDING_REGISTERS, ADDR_REG, 1)
 time.sleep(0.03)
 return data[0]

def get_version():
 data = master.execute(SLAVE_ADDR, cst.READ_HOLDING_REGISTERS, VER_REG, 1)
 time.sleep(0.03)
 return data[0]

def get_duty():
 data = master.execute(SLAVE_ADDR, cst.READ_HOLDING_REGISTERS, DUTY_REG, 1)
 time.sleep(0.03)
 return data[0]/255

def get_freq():
 data = master.execute(SLAVE_ADDR, cst.READ_HOLDING_REGISTERS, FREQ_REG, 1)
 time.sleep(0.03)
 return int(12*1000*1000/256/(data[0]+1))

def get_enable():
 data = master.execute(SLAVE_ADDR, cst.READ_HOLDING_REGISTERS, PWM_EN_REG, 1)
 time.sleep(0.03)

t d t [0]

 return data[0]

def set_duty(duty):
 master.execute(SLAVE_ADDR, cst.WRITE_SINGLE_REGISTER, DUTY_REG, output_value=int(duty*25
 time.sleep(0.03)

def set_freq(freq):
 master.execute(SLAVE_ADDR, cst.WRITE_SINGLE_REGISTER, FREQ_REG, output_value=int(12*1000
 time.sleep(0.03)

def set_enable(enable):
 master.execute(SLAVE_ADDR, cst.WRITE_SINGLE_REGISTER, PWM_EN_REG, output_value=enable)
 time.sleep(0.03)

def pwm(freq, duty):
 v=[]
 v.append(int(duty*255))
 v.append(int(12*1000*1000/256/freq) - 1)
 master.execute(SLAVE_ADDR, cst.WRITE_MULTIPLE_REGISTERS, DUTY_REG, output_value=v)
 time.sleep(0.03)

print("version=0x{:x}, addr=0x{:x}".format(get_version(), get_addr()))
print("pid=0x{:x}, vid=0x{:x}".format(get_vid(), get_pid()))

print("\n--------Initial Value------")
print("freq={}, duty={:.2f} enable={}".format(get_freq(), get_duty(), get_enable()))

print("--------Set a new value------")

#pwm(freq=860,duty=0.82) # freq(183HZ-46875HZ) duty(0%-100%)
set_freq(860) #(183HZ-46875HZ)
set_duty(0.82)#(0%-100%)
set_enable(1)
print("freq={}, duty={:.2f} enable={}".format(get_freq(), get_duty(), get_enable()))

print("--------Restore to factory settings(366HZ, duty ratio 50%, diable output)-------\n"
pwm(freq=366, duty=0.5) # freq(183HZ-46875HZ) duty(0%-100%)
set_enable(0)

9. Control Prepherial via Arduino Programming

Before using Arduino programming, you have to prepare the following hardware:

Arduino UNO
Motor or LED strip

4PIN Gravity sensor wire
Power source(Voltage: 5~24V, power>2A Select the suitable power according to the devcie
you used)

Connect all parts together as shown below, dial the switch to UART/COM side.

Function Description: let the LED strip flash every 2s.

#define PWM_ENABLE 0x01
#define PWM_DISENABLE 0x00
#define DEV_ADDR 0x32
#define DUTY_REG_ADDR 0x0006
#define FREQ_REG_ADDR 0x0007
#define PWM_EN_REG_ADDR 0x0008

static uint16_t CheckCRC(uint8_t *data, uint8_t len){
 uint16_t crc = 0xFFFF;
 for(uint8_t pos = 0; pos < len; pos++){
 crc ^= (uint16_t)data[pos];
 for(uint8_t i = 8; i != 0; i--){
 if((crc & 0x0001) != 0){
 crc >>= 1;
 crc ^= 0xA001;
 }else{
 crc >>= 1;

}

 }
 }
 }
 crc = ((crc & 0x00FF) << 8) | ((crc & 0xFF00) >> 8);
 return crc;

}

static void WriteRegValue(uint16_t regAddr, uint16_t value){
 uint8_t tempData[8];
 uint16_t crc;
 tempData[0] = DEV_ADDR;
 tempData[1] = 0x06;
 tempData[2] = (regAddr >> 8) & 0xFF;
 tempData[3] = regAddr & 0xFF;
 tempData[4] = (value >> 8) & 0xFF;
 tempData[5] = value & 0xFF;
 crc = CheckCRC(tempData, 6);
 tempData[6] = (crc >> 8) & 0xFF;
 tempData[7] = crc & 0xFF;
 for(uint8_t i = 0 ;i < 8; i++){
 Serial.print((char)tempData[i]);
 }
 Serial.flush();
}

static void setPwmDuty(uint8_t duty){
 WriteRegValue(DUTY_REG_ADDR, (uint16_t)duty);
}

static void setPwmFreq(uint8_t freq){
 WriteRegValue(FREQ_REG_ADDR, (uint16_t)freq);
}

static void setPwmEnable(uint8_t pwmStatus){
 WriteRegValue(PWM_EN_REG_ADDR, (uint16_t)pwmStatus);
}

void setup() {
 // put your setup code here, to run once:
 Serial.begin(9600);
 delay(1000);
 setPwmFreq(10);
 delay(50);
 setPwmDuty(0);
 delay(50);
 setPwmEnable(PWM_ENABLE);
 delay(50);
}

}

void loop() {
 setPwmDuty(200);
 delay(2000);

 setPwmDuty(0);
 delay(2000);
}

10. Control Peripherial via Potentiometer

We can also connect a "Potentiometer module" or "Potentiometer element" to control PWM
value so as to control motor speed or light brightness.

Before using potentiometer to control, you need to prepare the following hardware and tool:

Gravity Potentiometer module or potentiometer element with wires soldered.
Motor or LED strip
Screwdriver
Power source(Voltage: 5~24V, power>2A Select the suitable power according to the devcie
you used)

you used)

Connect all parts together as shown below, dial the switch to Analog IN side.

Connect with Gravity Potentiometer Module
Use the Gravity 3PIN sensor cable to connect the DFRobot Potentiometer with the driver board.
(Pay attention to the wire order when connecting.)

Connect with Potentiometer element

The diagram on the left is the connection for potentiometer element. You have to solder wires for
the potentiometer first and then attach the wires to the binding post. The right diagram shows
how to connect a real potentiometer to the driver board. Normally the middle pin of a
potentiometer is the wiper that gives us the variable of resistance value, and should be
connected to port "A". Find the right wiper on your potentiometer before connecting.

Available potentiometer vlaue: 4.7K~470K

11 Mind+

11. Mind+

12. Register Table (ModBus RTU Communication Protocol)

Type Address Name Read/Write Data Range
Default
Value

Desc

Holding
Register

0×0000 PID R 0×C032 0×C032
PI

Holding
Register

0×0001 VID R 0×3343 0×3343 VI

Holding
Register

0×0002
Device

Address
R 0×0032 0×0032

Mo
A

Holding
Register

0×0003 Reserve R 0×0000~0×FFFF 0×FFFF

Holding
Register

0×0004 Reserve R 0×0000~0×FFFF 0×FFFF

Fi

Type Address Name Read/Write Data Range
Default
Value

Desc
Holding
Register

0×0005 Version R 0×0000~0×00FF 0×1000
Firm

0

Holding
Register

0×0006
PWM0 Duty

Ratio
R/W 0×0000~0×00FF 0×007F

PW
Duty

fo

Holding
Register

0×0007
PWM0

Frequency
R/W 0×0000~0×00FF 0×007F

PW
Freq

frequ
fa
fr

12M

cor
th

Type Address Name Read/Write Data Range
Default
Value

Desc

th
4

Holding
Register

0×0008
PWM Output

Enable/Disable
Status

R/W 0×0000~0×0001 0×0000
Ena
PW

FAQ

For any questions, advice or cool ideas to share, please visit the DFRobot Forum
(https://www.dfrobot.com/forum/).

More Documents

Schematics PDF

https://www.dfrobot.com/forum/
https://dfimg.dfrobot.com/nobody/wiki/e56242dc316eb1db47799bca7e05bff2.PDF

Schematics.PDF
(https://dfimg.dfrobot.com/nobody/wiki/e56242dc316eb1db47799bca7e05bff2.PDF)
DRI0050-V1.0-3D-STEP File.rar
(https://dfimg.dfrobot.com/nobody/wiki/46c98ea706e831286a9cb0c265c0f61a.rar)

DRI0050-V1.0-2D-DXF File.rar
(https://dfimg.dfrobot.com/nobody/wiki/d08ff6fcb58626bec2af453dcc113eb8.rar)

 Get Light and Motor Driver for Python (https://www.dfrobot.com/product-2429.html) from
DFRobot Store or DFRobot Distributor. (https://www.dfrobot.com/index.php?
route=information/distributorslogo)

Turn to the Top

https://dfimg.dfrobot.com/nobody/wiki/e56242dc316eb1db47799bca7e05bff2.PDF
https://dfimg.dfrobot.com/nobody/wiki/46c98ea706e831286a9cb0c265c0f61a.rar
https://dfimg.dfrobot.com/nobody/wiki/d08ff6fcb58626bec2af453dcc113eb8.rar
https://www.dfrobot.com/product-2429.html
https://www.dfrobot.com/index.php?route=information/distributorslogo

