
I C/SPI
NI-845x Hardware and Software Manual

NI-845x Hardware and Software Manual

August 2013
371746E-01

2

Support

Worldwide Technical Support and Product Information

ni.com

Worldwide Offices

Visit ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information,
support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter
the Info Code feedback.

© 2005–2013 National Instruments. All rights reserved.

 Important Information

Warranty
NI devices are warranted against defects in materials and workmanship for a period of one year from the invoice date, as evidenced by receipts
or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty
period. This warranty includes parts and labor.

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in
materials and workmanship, for a period of 90 days from the invoice date, as evidenced by receipts or other documentation. National Instruments will,
at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects
during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In
the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document
without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING
FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of
the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the
product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only
to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:

• Notices are located in the <National Instruments>_Legal Information and <National Instruments> directories.

• EULAs are located in the <National Instruments>\Shared\MDF\Legal\license directory.

• Review <National Instruments>_Legal Information.txt for more information on including legal information in installers built with
NI products.

Trademarks
Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for more information on National Instruments trademarks.

ARM, Keil, and µVision are trademarks or registered of ARM Ltd or its subsidiaries.

LEGO, the LEGO logo, WEDO, and MINDSTORMS are trademarks of the LEGO Group. ©2013 The LEGO Group.

TETRIX by Pitsco is a trademark of Pitsco, Inc.©2013

FIELDBUS FOUNDATION™ and FOUNDATION™ are trademarks of the Fieldbus Foundation.

EtherCAT® is a registered trademark of and licensed by Beckhoff Automation GmbH.

CANopen® is a registered Community Trademark of CAN in Automation e.V.

DeviceNet™ and EtherNet/IP™ are trademarks of ODVA.

Go!, SensorDAQ, and Vernier are registered trademarks of Vernier Software & Technology. Vernier Software & Technology and vernier.com are
trademarks or trade dress.

Xilinx is the registered trademark of Xilinx, Inc.

Taptite and Trilobular are registered trademarks of Research Engineering & Manufacturing Inc.

FireWire® is the registered trademark of Apple Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Handle Graphics®, MATLAB®, Real-Time Workshop®, Simulink®, Stateflow®, and xPC TargetBox® are registered trademarks, and TargetBox™ and
Target Language Compiler™ are trademarks of The MathWorks, Inc.

Tektronix®, Tek, and Tektronix, Enabling Technology are registered trademarks of Tektronix, Inc.

The Bluetooth® word mark is a registered trademark owned by the Bluetooth SIG, Inc.

The ExpressCard™ word mark and logos are owned by PCMCIA and any use of such marks by National Instruments is under license.

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United
States and other countries.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency,
partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software,
the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

Export Compliance Information
Refer to the Export Compliance Information at ni.com/legal/export-compliance for the National Instruments global trade compliance
policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE
COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES,
TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR
ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF
HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY
UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH,
THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES,
INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS
CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION
DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY
RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER
NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT
LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

 Compliance

Electromagnetic Compatibility Information
This hardware has been tested and found to comply with the applicable regulatory requirements and limits for electromagnetic
compatibility (EMC) as indicated in the hardware’s Declaration of Conformity (DoC)1. These requirements and limits are
designed to provide reasonable protection against harmful interference when the hardware is operated in the intended
electromagnetic environment. In special cases, for example when either highly sensitive or noisy hardware is being used in close
proximity, additional mitigation measures may have to be employed to minimize the potential for electromagnetic interference.

While this hardware is compliant with the applicable regulatory EMC requirements, there is no guarantee that interference will
not occur in a particular installation. To minimize the potential for the hardware to cause interference to radio and television
reception or to experience unacceptable performance degradation, install and use this hardware in strict accordance with the
instructions in the hardware documentation and the DoC1.

If this hardware does cause interference with licensed radio communications services or other nearby electronics, which can be
determined by turning the hardware off and on, you are encouraged to try to correct the interference by one or more of the
following measures:
• Reorient the antenna of the receiver (the device suffering interference).
• Relocate the transmitter (the device generating interference) with respect to the receiver.
• Plug the transmitter into a different outlet so that the transmitter and the receiver are on different branch circuits.

Some hardware may require the use of a metal, shielded enclosure (windowless version) to meet the EMC requirements for
special EMC environments such as, for marine use or in heavy industrial areas. Refer to the hardware’s user documentation and
the DoC1 for product installation requirements.

When the hardware is connected to a test object or to test leads, the system may become more sensitive to disturbances or may
cause interference in the local electromagnetic environment.

Operation of this hardware in a residential area is likely to cause harmful interference. Users are required to correct the
interference at their own expense or cease operation of the hardware.

Changes or modifications not expressly approved by National Instruments could void the user’s right to operate the hardware
under the local regulatory rules.

1 The Declaration of Conformity (DoC) contains important EMC compliance information and instructions for the user or
installer. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line,
and click the appropriate link in the Certification column.

© National Instruments vii NI-845x Hardware and Software Manual

Contents

About This Manual
Conventions ...xxi

Chapter 1
Introduction

I2C Bus...1-1
I2C Terminology..1-1
I2C Bus ..1-2
I2C Arbitration...1-2
I2C Transfers..1-3
I2C ACK Polling..1-4
I2C Clock Stretching..1-4
I2C Extended (10-Bit) Addressing ..1-4
I2C High Speed Master Code ..1-5
I2C vs. SMBus ...1-5

SPI Bus ..1-6
SPI Terminology ...1-6
SPI Bus ..1-7
Clock and Polarity ...1-7
Error Handling...1-8

Chapter 2
Installation

Software Installation ..2-1
Hardware Installation...2-1
System Configuration API...2-3

Chapter 3
NI USB-845x Hardware Overview

Overview..3-1
NI USB-8451 ...3-1

Overview ...3-1
Block Diagram...3-2
Installing Software...3-2
Setting Up Hardware ...3-2

NI USB-8451 ..3-2
NI USB-8451 OEM ..3-3

Contents

NI-845x Hardware and Software Manual viii ni.com

I/O Connector and Cable... 3-4
NI USB-8451.. 3-4
NI USB-8451 OEM .. 3-5

Signal Descriptions ... 3-6
Front-End I/O Interfaces ... 3-7

Digital I/O (DIO) .. 3-7
SPI Interface ... 3-9
I2C Interface.. 3-10

I/O Protection.. 3-10
Power-On States.. 3-11
+5 V Power Source ... 3-11

NI USB-8452... 3-11
Overview... 3-11
Block Diagram .. 3-12
Installing Software .. 3-13
Setting Up Hardware... 3-13
Signal Descriptions ... 3-14
Front-End I/O Interfaces ... 3-16

SPI Interface ... 3-16
I2C Interface.. 3-18
Digital I/O (DIO) .. 3-19

LED Indicators .. 3-20
I/O Protection.. 3-21
Power-On States.. 3-21
Power Sources... 3-21

+5 V Power Source... 3-21
Vref I/O Reference Voltage.. 3-22

Chapter 4
Using the NI-845x API

Chapter 5
Using the NI-845x I2C API

I2C Basic Programming Model ... 5-1
I2C Configure .. 5-2
I2C Write ... 5-2
I2C Read .. 5-2
I2C Write Read .. 5-2

I2C Scripting Programming Model.. 5-2
Script: Set I2C Clock Rate... 5-4
Script: Set I2C ACK Poll Timeout .. 5-4
Script: Pullup Enable .. 5-4

Contents

© National Instruments ix NI-845x Hardware and Software Manual

Script: Set I2C High Speed Clock Rate...5-4
Script: Set I2C High Speed Enable ...5-4
Script: Issue Start Condition..5-5
Script: Send High Speed Master Code ..5-5
Script: Send Address + Read...5-5
Script: Read ...5-5
Script: Send Address + Write ..5-5
Script: Write ..5-6
Script: Issue Stop Condition..5-6
Run Script..5-6
Extract Read Data..5-6

Chapter 6
NI-845x I2C API for LabVIEW

General Device ..6-2
NI-845x Close Reference.vi ..6-2
NI-845x Device Property Node...6-4
NI-845x Device Reference ..6-7

Configuration ...6-8
NI-845x I2C Configuration Property Node...6-8
NI-845x I2C Create Configuration Reference.vi ..6-12

Basic...6-14
NI-845x I2C Read.vi ...6-14
NI-845x I2C Write.vi ..6-16
NI-845x I2C Write Read.vi ...6-18

Scripting...6-20
NI-845x I2C Create Script Reference.vi ...6-20
NI-845x I2C Extract Script Read Data.vi..6-22
NI-845x I2C Run Script.vi ..6-24
NI-845x I2C Script ACK Poll Timeout.vi ..6-26
NI-845x I2C Script Address+Read.vi ...6-28
NI-845x I2C Script Address+Write.vi ..6-30
NI-845x I2C Script Clock Rate.vi ...6-32
NI-845x I2C Script Delay (Microsecond).vi...6-34
NI-845x I2C Script Delay (Millisecond).vi...6-36
NI-845x I2C Script DIO Configure Line.vi ..6-38
NI-845x I2C Script DIO Configure Port.vi ...6-40
NI-845x I2C Script DIO Read Line.vi ..6-42
NI-845x I2C Script DIO Read Port.vi ...6-44
NI-845x I2C Script DIO Write Line.vi ...6-46
NI-845x I2C Script DIO Write Port.vi ..6-48
NI-845x I2C Script Pullup Enable.vi ..6-50
NI-845x I2C Script HS Enable.vi..6-52

Contents

NI-845x Hardware and Software Manual x ni.com

NI-845x I2C Script HS Master Code.vi.. 6-54
NI-845x I2C Script HS Clock Rate.vi .. 6-56
NI-845x I2C Script Issue Start.vi.. 6-58
NI-845x I2C Script Issue Stop.vi .. 6-60
NI-845x I2C Script Read.vi .. 6-62
NI-845x I2C Script Write.vi ... 6-64

Chapter 7
NI-845x I2C API for C

Section Headings ... 7-1
Purpose.. 7-1
Format ... 7-1
Inputs and Outputs .. 7-1
Description .. 7-1

Data Types... 7-1
List of Functions.. 7-2
General Device .. 7-8

ni845xClose .. 7-8
ni845xCloseFindDeviceHandle .. 7-9
ni845xDeviceLock .. 7-10
ni845xDeviceUnlock .. 7-11
ni845xFindDevice ... 7-12
ni845xFindDeviceNext ... 7-14
ni845xOpen... 7-15
ni845xSetIoVoltageLevel ... 7-16
ni845xI2cSetPullupEnable.. 7-17
ni845xStatusToString.. 7-18
ni845xSetTimeout ... 7-20

Configuration... 7-21
ni845xI2cConfigurationClose... 7-21
ni845xI2cConfigurationGetAckPollTimeout.. 7-22
ni845xI2cConfigurationGetAddress ... 7-23
ni845xI2cConfigurationGetAddressSize .. 7-24
ni845xI2cConfigurationGetClockRate ... 7-25
ni845xI2cConfigurationGetHSClockRate .. 7-26
ni845xI2cConfigurationGetHSEnable .. 7-27
ni845xI2cConfigurationGetHSMasterCode.. 7-28
ni845xI2cConfigurationGetPort.. 7-29
ni845xI2cConfigurationOpen ... 7-30
ni845xI2cConfigurationSetAckPollTimeout .. 7-31
ni845xI2cConfigurationSetAddress.. 7-32
ni845xI2cConfigurationSetAddressSize... 7-33
ni845xI2cConfigurationSetClockRate .. 7-34

Contents

© National Instruments xi NI-845x Hardware and Software Manual

ni845xI2cConfigurationSetHSClockRate ...7-35
ni845xI2cConfigurationSetHSEnable ...7-36
ni845xI2cConfigurationSetHSMasterCode...7-37
ni845xI2cConfigurationSetPort...7-38

Basic...7-39
ni845xI2cRead...7-39
ni845xI2cWrite..7-41
ni845xI2cWriteRead..7-43

Scripting...7-45
ni845xI2cScriptAckPollTimeout...7-45
ni845xI2cScriptAddressRead ..7-46
ni845xI2cScriptAddressWrite ...7-47
ni845xI2cScriptClockRate ..7-48
ni845xI2cScriptClose ..7-49
ni845xI2cScriptDelay..7-50
ni845xI2cScriptDioConfigureLine..7-51
ni845xI2cScriptDioConfigurePort ..7-52
ni845xI2cScriptDioReadLine..7-53
ni845xI2cScriptDioReadPort ..7-55
ni845xI2cScriptDioWriteLine...7-56
ni845xI2cScriptDioWritePort..7-58
ni845xI2cScriptPullupEnable..7-59
ni845xI2cScriptExtractReadData ..7-60
ni845xI2cScriptExtractReadDataSize ...7-61
ni845xI2cScriptHSEnable ...7-62
ni845xI2cScriptHSMasterCode...7-63
ni845xI2cScriptHSClockRate ...7-64
ni845xI2cScriptIssueStart..7-65
ni845xI2cScriptIssueStop..7-66
ni845xI2cScriptOpen...7-67
ni845xI2cScriptRead ...7-68
ni845xI2cScriptReset ..7-70
ni845xI2cScriptRun...7-71
ni845xI2cScriptUsDelay ...7-72
ni845xI2cScriptWrite ..7-73

Chapter 8
Using the NI-845x I2C Slave API

I2C Slave Programming Model..8-1
I2C Slave Configure...8-2
I2C Slave Start ...8-2
I2C Slave Wait For Event ..8-3
I2C Slave Read...8-3

Contents

NI-845x Hardware and Software Manual xii ni.com

I2C Slave Write ... 8-3
I2C Slave Get Write Information .. 8-3
I2C Slave Stop ... 8-3

Chapter 9
NI-845x I2C Slave API for LabVIEW

General Device .. 9-2
NI-845x Close Reference.vi.. 9-2
NI-845x Device Property Node .. 9-4
NI-845x Device Reference.. 9-7

Configuration... 9-8
NI-845x I2C Slave Configuration Property Node .. 9-8
NI-845x I2C Slave Create Configuration Reference.vi 9-11
NI-845x I2C Slave Get Write Info.vi.. 9-13
NI-845x I2C Slave Read.vi ... 9-15
NI-845x I2C Slave Start.vi.. 9-17
NI-845x I2C Slave Stop.vi.. 9-19
NI-845x I2C Slave Wait for Event.vi ... 9-21
NI-845x I2C Slave Write.vi .. 9-24

Chapter 10
NI-845x I2C Slave API for C

Section Headings ... 10-1
Purpose.. 10-1
Format ... 10-1
Inputs and Outputs .. 10-1
Description .. 10-1

Data Types... 10-1
List of Functions.. 10-2
General Device .. 10-5

ni845xClose .. 10-5
ni845xCloseFindDeviceHandle .. 10-6
ni845xDeviceLock .. 10-7
ni845xDeviceUnlock .. 10-8
ni845xFindDevice ... 10-9
ni845xFindDeviceNext ... 10-11
ni845xOpen... 10-12
ni845xSetIoVoltageLevel ... 10-13
ni845xI2cSetPullupEnable.. 10-14
ni845xSetTimeout ... 10-15
ni845xStatusToString.. 10-16

Contents

© National Instruments xiii NI-845x Hardware and Software Manual

Configuration ...10-18
ni845xI2cSlaveConfigurationClose ..10-18
ni845xI2cSlaveConfigurationGetAddress...10-19
ni845xI2cSlaveConfigurationGetAutoRemovalTimeout................................10-20
ni845xI2cSlaveConfigurationGetCommandBufferSize..................................10-21
ni845xI2cSlaveConfigurationGetDataBufferSize...10-22
ni845xI2cSlaveConfigurationOpen...10-23
ni845xI2cSlaveConfigurationSetAddress ...10-24
ni845xI2cSlaveConfigurationSetAutoRemovalTimeout10-25
ni845xI2cSlaveConfigurationSetCommandBufferSize10-26
ni845xI2cSlaveConfigurationSetDataBufferSize..10-27

Slave...10-28
ni845xI2cSlaveGetWriteInfo ..10-28
ni845xI2cSlaveRead..10-29
ni845xI2cSlaveStart ..10-31
ni845xI2cSlaveStop...10-32
ni845xI2cSlaveWaitForEvent ...10-33
ni845xI2cSlaveWrite...10-36

Chapter 11
Using the NI-845x SPI API

NI-845x SPI Basic Programming Model...11-1
SPI Configure ..11-2
SPI Write Read ..11-2
SPI Timing Characteristics..11-2

NI-845x SPI Scripting Programming Model ...11-3
Script: Enable SPI..11-5
Script: Configure Phase, Polarity, Clock Rate, Number of Bits11-5
Script: Chip Select Low...11-5
Script: Write Read ...11-5
Script: Chip Select High..11-6
Script: Disable SPI ..11-6
Run Script..11-6
Extract Read Data..11-6

Chapter 12
NI-845x SPI API for LabVIEW

General Device ..12-2
NI-845x Close Reference.vi ..12-2
NI-845x Device Property Node...12-4
NI-845x Device Reference ..12-7

Contents

NI-845x Hardware and Software Manual xiv ni.com

Configuration... 12-8
NI-845x SPI Configuration Property Node .. 12-8
NI-845x SPI Create Configuration Reference.vi .. 12-11

Basic .. 12-13
NI-845x SPI Write Read.vi ... 12-13

Scripting .. 12-16
NI-845x SPI Create Script Reference.vi ... 12-16
NI-845x SPI Extract Script Read Data.vi ... 12-18
NI-845x SPI Run Script.vi .. 12-20
NI-845x SPI Script Clock Polarity Phase.vi ... 12-22
NI-845x SPI Script Clock Rate.vi... 12-24
NI-845x SPI Script CS High.vi... 12-26
NI-845x SPI Script CS Low.vi ... 12-28
NI-845x SPI Script Delay (Microsecond).vi... 12-30
NI-845x SPI Script Delay (Millisecond).vi .. 12-32
NI-845x SPI Script DIO Configure Line.vi .. 12-34
NI-845x SPI Script DIO Configure Port.vi... 12-36
NI-845x SPI Script DIO Read Line.vi .. 12-38
NI-845x SPI Script DIO Read Port.vi... 12-40
NI-845x SPI Script DIO Write Line.vi ... 12-42
NI-845x SPI Script DIO Write Port.vi.. 12-44
NI-845x SPI Script Disable SPI.vi.. 12-46
NI-845x SPI Script Enable SPI.vi... 12-48
NI-845x SPI Script Num Bits Per Sample.vi .. 12-50
NI-845x SPI Script Write Read.vi .. 12-52

Chapter 13
NI-845x SPI API for C

Section Headings ... 13-1
Purpose.. 13-1
Format ... 13-1
Inputs and Outputs .. 13-1
Description .. 13-1

Data Types... 13-1
List of Functions.. 13-2
General Device .. 13-8

ni845xClose .. 13-8
ni845xCloseFindDeviceHandle .. 13-9
ni845xDeviceLock .. 13-10
ni845xDeviceUnlock .. 13-11
ni845xFindDevice ... 13-12
ni845xFindDeviceNext ... 13-14
ni845xOpen... 13-15

Contents

© National Instruments xv NI-845x Hardware and Software Manual

ni845xSetIoVoltageLevel..13-16
ni845xSetTimeout ...13-17
ni845xStatusToString ..13-18

Configuration ...13-20
ni845xSpiConfigurationClose ...13-20
ni845xSpiConfigurationGetChipSelect...13-21
ni845xSpiConfigurationGetClockPhase..13-22
ni845xSpiConfigurationGetClockPolarity ..13-23
ni845xSpiConfigurationGetClockRate..13-24
ni845xSpiConfigurationGetNumBitsPerSample...13-25
ni845xSpiConfigurationGetPort..13-26
ni845xSpiConfigurationOpen..13-27
ni845xSpiConfigurationSetChipSelect..13-28
ni845xSpiConfigurationSetClockPhase ..13-29
ni845xSpiConfigurationSetClockPolarity...13-30
ni845xSpiConfigurationSetClockRate ..13-31
ni845xSpiConfigurationSetNumBitsPerSample ...13-32
ni845xSpiConfigurationSetPort ..13-33

Basic...13-34
ni845xSpiWriteRead ...13-34

Scripting...13-36
ni845xSpiScriptClockPolarityPhase..13-36
ni845xSpiScriptClockRate ..13-38
ni845xSpiScriptClose ..13-39
ni845xSpiScriptCSHigh ..13-40
ni845xSpiScriptCSLow...13-41
ni845xSpiScriptDelay..13-42
ni845xSpiScriptDioConfigureLine..13-43
ni845xSpiScriptDioConfigurePort ..13-44
ni845xSpiScriptDioReadLine..13-45
ni845xSpiScriptDioReadPort ..13-47
ni845xSpiScriptDioWriteLine...13-48
ni845xSpiScriptDioWritePort ...13-50
ni845xSpiScriptDisableSPI ...13-51
ni845xSpiScriptEnableSPI ..13-52
ni845xSpiScriptExtractReadData..13-53
ni845xSpiScriptExtractReadDataSize...13-54
ni845xSpiScriptNumBitsPerSample ...13-55
ni845xSpiScriptOpen ..13-56
ni845xSpiScriptReset ..13-57
ni845xSpiScriptRun ..13-58
ni845xSpiScriptUsDelay ...13-59
ni845xSpiScriptWriteRead..13-60

Contents

NI-845x Hardware and Software Manual xvi ni.com

Chapter 14
Using the NI-845x SPI Stream API

NI-845x SPI Stream Programming Model .. 14-1
SPI Stream Configure ... 14-2
SPI Stream Start .. 14-2
SPI Stream Read ... 14-2
SPI Stream Stop .. 14-2

Waveform 1 ... 14-3
Extra SPI Pin Descriptions .. 14-4

CONV ... 14-4
DRDY ... 14-4
Chip Select .. 14-4

Chapter 15
NI-845x SPI Stream API for LabVIEW

General Device .. 15-2
NI-845x Close Reference.vi.. 15-2
NI-845x Device Property Node .. 15-4
NI-845x Device Reference.. 15-7

Configuration... 15-8
NI-845x SPI Stream Configuration Property Node .. 15-8
NI-845x SPI Stream Create Configuration Reference.vi................................ 15-16

Streaming... 15-18
NI-845x SPI Stream Read.vi... 15-18
NI-845x SPI Stream Start.vi ... 15-20
NI-845x SPI Stream Stop.vi.. 15-22

Chapter 16
NI-845x SPI Stream API for C

Section Headings ... 16-1
Purpose.. 16-1
Format ... 16-1
Inputs and Outputs .. 16-1
Description .. 16-1

Data Types... 16-1
List of Functions.. 16-2
General Device .. 16-5

ni845xClose .. 16-5
ni845xCloseFindDeviceHandle .. 16-6
ni845xDeviceLock .. 16-7
ni845xDeviceUnlock .. 16-8

Contents

© National Instruments xvii NI-845x Hardware and Software Manual

ni845xFindDevice ...16-9
ni845xFindDeviceNext..16-11
ni845xOpen ...16-12
ni845xSetTimeout ...16-13
ni845xStatusToString ..16-14

Configuration ...16-16
ni845xSpiStreamConfigurationClose..16-16
ni845xSpiStreamConfigurationOpen ..16-17
ni845xSpiStreamConfigurationGetNumBits...16-18
ni845xSpiStreamConfigurationGetNumSamples..16-19
ni845xSpiStreamConfigurationGetPacketSize..16-20
ni845xSpiStreamConfigurationGetClockPhase ..16-21
ni845xSpiStreamConfigurationWave1GetPinConfig16-22
ni845xSpiStreamConfigurationGetClockPolarity...16-23
ni845xSpiStreamConfigurationWave1GetTimingParam................................16-24
ni845xSpiStreamConfigurationWave1SetMosiData.......................................16-26
ni845xSpiStreamConfigurationSetNumBits ...16-28
ni845xSpiStreamConfigurationSetNumSamples ..16-29
ni845xSpiStreamConfigurationSetPacketSize ..16-30
ni845xSpiStreamConfigurationSetClockPhase...16-31
ni845xSpiStreamConfigurationWave1SetPinConfig16-32
ni845xSpiStreamConfigurationSetClockPolarity..16-33
ni845xSpiStreamConfigurationWave1SetTimingParam16-34

Streaming ...16-36
ni845xSpiStreamRead ...16-36
ni845xSpiStreamStart..16-38
ni845xSpiStreamStop ..16-39

Chapter 17
Using the NI-845x DIO API

NI-845x DIO Basic Programming Model ...17-1
DIO Port Configure ...17-2
DIO Port Write ..17-2
DIO Port Read ...17-2
DIO Line Write..17-2
DIO Line Read ..17-2

Contents

NI-845x Hardware and Software Manual xviii ni.com

Chapter 18
NI-845x DIO API for LabVIEW

General Device .. 18-2
NI-845x Close Reference.vi.. 18-2
NI-845x Device Property Node .. 18-4
NI-845x Device Reference.. 18-7

Basic .. 18-8
NI-845x DIO Read Line.vi ... 18-8
NI-845x DIO Read Port.vi .. 18-10
NI-845x DIO Write Line.vi .. 18-12
NI-845x DIO Write Port.vi ... 18-14

Chapter 19
NI-845x DIO API for C

Section Headings ... 19-1
Purpose.. 19-1
Format ... 19-1
Inputs and Outputs .. 19-1
Description .. 19-1

Data Types... 19-1
List of Functions.. 19-2
General Device .. 19-4

ni845xClose .. 19-4
ni845xCloseFindDeviceHandle .. 19-5
ni845xDeviceLock .. 19-6
ni845xDeviceUnlock .. 19-7
ni845xFindDevice ... 19-8
ni845xFindDeviceNext ... 19-10
ni845xOpen... 19-11
ni845xSetIoVoltageLevel ... 19-12
ni845xSetTimeout ... 19-13
ni845xStatusToString.. 19-14

Basic .. 19-16
ni845xDioReadLine .. 19-16
ni845xDioReadPort... 19-18
ni845xDioSetPortLineDirectionMap .. 19-19
ni845xDioSetDriverType.. 19-20
ni845xDioWriteLine ... 19-21
ni845xDioWritePort.. 19-22

Contents

© National Instruments xix NI-845x Hardware and Software Manual

Appendix A
NI USB-845x Hardware Specifications

Appendix B
Technical Support and Professional Services

Glossary

Index

© National Instruments xxi NI-845x Hardware and Software Manual

About This Manual

This manual explains how to use the NI-845x software. It contains
installation and configuration information, function reference for a
LabVIEW or C-based API, and a USB-845x hardware overview and
specifications.

Use this manual to learn the basics of I2C and SPI communication with
NI-845x, as well as how to develop an application.

Conventions
The following conventions are used in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence Options»Settings»General directs you to
pull down the Options menu, select the Settings item, and select General
from the last dialog box.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash. When this symbol is marked on a
product, refer to the Safety section in Appendix A, NI USB-845x Hardware
Specifications, for information about precautions to take.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

© National Instruments 1-1 NI-845x Hardware and Software Manual

1
Introduction

This chapter introduces the Inter-IC (I2C) and Serial Peripheral Interface
(SPI) buses.

I2C Bus
NXP (formerly Philips Semiconductors) developed the I2C bus in the early
1980s to connect a CPU to peripheral chips in televisions. I2C is also used
to communicate with temperature sensors, EEPROMs, LCD displays, and
other embedded peripheral devices.

I2C Terminology
This manual uses the following I2C bus terms:

I2C Inter-IC.

SMBus System Management Bus.

Transmitter Device transmitting data on the bus.

Receiver Device receiving data from the bus.

Master Device that can initiate and terminate a
transfer on the bus. The master is
responsible for generating the clock
(SCL) signal.

Master Code Unique 3-bit code designated to each
High Speed master to identify the master
initiating a High Speed operation and
arbitrate the I2C bus.

Slave Device addressed by the master.

Multimaster The ability for more than one master to
co-exist on the bus concurrently without
data loss.

Chapter 1 Introduction

NI-845x Hardware and Software Manual 1-2 ni.com

Arbitration The procedure to allow multiple masters
to determine which single master controls
the bus for a particular transfer time.

Synchronization The defined procedure to allow the clock
signals provided by two or more masters
to be synchronized.

SDA Serial DAta (data signal line).

SCL Serial CLock (clock signal line).

I2C Bus
The I2C bus is a two-wire half-duplex serial interface. The two wires, SDA
and SCL, are both bidirectional. The I2C specification version 3.0 defines
four speed categories: Standard mode at up to 100 kbits/s, Fast mode at up
to 400 kbits/s, Fast mode Plus at up to 1 Mbits/s, and High Speed mode at
up to 3.4 Mbits/s.

Each device connected to the I2C bus has a unique 7-bit I2C address to
facilitate identification and communication by the master. Typically, the
upper four bits are fixed and assigned to specific categories of devices
(for example, 1010 is assigned to serial EEPROMs). The three lower bits
are programmable through hardware address pins, allowing up to eight
devices of the same type to be connected to a single I2C bus.

Each device on the bus (both master and slave) can be a receiver and/or
transmitter. For example, an LCD is typically only a receiver, while an
EEPROM is both a transmitter and receiver.

I2C is a multimaster bus, meaning that multiple masters can be connected
to the bus at the same time. While a master is initiating a transfer on the bus,
all other devices, including other masters, are acting like slaves. However,
if another master is trying to control the bus at the same time, I2C defines
an arbitration mechanism to determine which master gets control of the
bus.

I2C Arbitration
When two masters are trying to control the bus simultaneously, or if a
second master joins the bus in the middle of a transfer and wants to control
the bus, the I2C bus has an arbitration scheme to guarantee no data
corruption.

Chapter 1 Introduction

© National Instruments 1-3 NI-845x Hardware and Software Manual

With I2C, a line (both SDA and SCL) is either driven low or allowed to be
pulled high. When a master changes a line state to high, it must sample the
line afterwards to make sure it really has been pulled high. If the master
samples the SDA bus after setting it high, and the sample shows that the line
is low, it knows another master is driving it low. The master assumes it has
lost arbitration and waits until it detects a stop condition before making
another attempt to start transmitting.

When in High Speed mode, arbitration occurs only during the master code
transfer. Each master code must be unique on the I2C bus so the arbitration
is finalized once the entire master code has been transferred.

I2C Transfers

Figure 1-1. I2C Transfers

To initiate a transfer, the master issues a start condition by changing the
SDA line level from high to low while keeping the SCL clock line high.
When this occurs, the bus is considered busy, and all devices on the bus get
ready to listen for incoming data.

Next, the master sends the 7-bit address and 1-bit data transfer direction on
the bus to configure for the appropriate data transfer. All slaves compare the
address with their own address. If the address matches, the slave produces
an acknowledge signal.

If the master detects an acknowledge signal, it starts transmitting or
receiving data. To transmit data to a device, the master places the first bit
onto the SDA line and generates a clock pulse to transmit the bit across the
bus to the slave. To receive data from a device, the master releases the SDA
line, allowing the slave to take control of it. The master generates a clock
pulse on the SCL line for each bit, reading the data while the SCL line is
high. The device is not allowed to change the SDA line state while the SCL
line is high.

After the data transmission, the master issues the stop condition by
changing the SDA line from low to high while keeping the SCL clock line

Occurs n -1 times
(where n is the number of bytes to transfer)

SCL:
STA A6 A5 A4 A3 A2 A1 A0 R/W ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK D7 D6 D5 D4 D3 D2 D1 D0 NAK STPSDA:

Chapter 1 Introduction

NI-845x Hardware and Software Manual 1-4 ni.com

high. When this occurs, the bus is considered free again for another master
to initiate a data transfer.

For High Speed mode, the transfer is initiated with a start condition
followed by a master code transmitted at a non-High Speed clock rate.
Because master codes are unique on the I2C bus, the master code never
should be followed by an acknowledge signal. Once the master code has
been transmitted, a restart condition is transmitted followed by the control
byte and data transmitted at a High Speed clock rate.

I2C ACK Polling
In some cases when the master sends an address, a slave may not
immediately acknowledge (ACK) its address. The slave may be busy and
thus temporarily detached from the bus. Typically EEPROMs do this while
storing a page of data. Once the write cycle completes, they reattach to the
I2C bus.

When ACK polling, the master repeatedly resends the start, address, and
direction bit to the slave until the address is acknowledged. Once the
address is acknowledged, the data transfer continues normally.

I2C Clock Stretching
Because the master controls the clock, the I2C specification provides a
mechanism to allow the slave to slow down the bus traffic when it is not
ready. This mechanism is known as clock stretching. When not in High
Speed mode, a slave may additionally hold down SCL to prevent it from
rising high again to slow down the SCL clock rate or pause I2C
communication during any SCL low phase. When in High Speed mode,
SCL may be stretched only after the reception and acknowledgement of a
byte.

When the master attempts to make SCL high to complete the current clock
pulse, it must verify that it has really gone high. If it is still low, it knows a
slave is holding it low and must wait until it goes high before continuing.

I2C Extended (10-Bit) Addressing
Typical I2C devices use a 7-bit addressing scheme. I2C also defines a 10-bit
addressing scheme that allows up to 1024 additional addresses to be
connected to the I2C bus. This 10-bit addressing scheme does not affect the
existing 7-bit addressing, allowing both 7-bit and 10-bit addressed devices
to share the bus. A device that supports 10-bit addressing receives the

Chapter 1 Introduction

© National Instruments 1-5 NI-845x Hardware and Software Manual

address across two bytes. The first byte consists of the NXP-designated
10-bit slave address group (11110), the 2 MSBs of the device address, and
the Read/Write bit. The next data byte sent across the bus contains the eight
LSBs of the address.

I2C High Speed Master Code
For High Speed mode, the NXP specification defines a master code
transferred in Standard, Fast, or Fast mode Plus to arbitrate the I2C bus. All
High Speed masters must have a master code defined, and all master codes
must be unique on the bus. The master code consists of the NXP-designated
master code address group (00001), then the three master code bits. This
allows up to eight High Speed masters to be connected to the High Speed
I2C bus; however, the NXP I2C specification describes master code 0 as
reserved for test and diagnostic purposes.

I2C vs. SMBus
Intel defined the System Management Bus (SMBus) in 1995. This bus is
used primarily in personal computers and servers for low-speed system
management communications.

The I2C bus and SMBus are very similar; at frequencies at or below
100 kHz, they tend to be interchangeable. However, the following sections
describe some important differences.

Timeout and Clock Rates
I2C has no minimum clock rate, and as such there is no minimum clock
frequency duration. However, SMBus does not allow the clock to be slower
than 10 kHz; a device will reset if the clock remains low for more than
35 ms.

I2C allows clock rates of 100 kHz, 400 kHz, 1 MHz, and 3.4 MHz, whereas
SMBus is limited to a maximum clock rate of 100 kHz.

Logic Levels
Logic high is defined on I2C as 0.7 * VDD. On SMBus, logic high is defined
as 2.1 V.

Logic low is defined on I2C as 0.3 * VDD. On SMBus, logic low is defined
as 0.8 V.

Chapter 1 Introduction

NI-845x Hardware and Software Manual 1-6 ni.com

Current Levels
The sink current also varies between I2C and SMBus. In I2C, the maximum
is 3 mA for Standard and High Speed mode. For Fast mode, the maximum
sink current is 6 mA, and Fast mode Plus allows 20 mA. SMBus has a
maximum of 350 µA. This determines the lowest acceptable value of the
pull-up resistor. At 3 V in Standard mode, an I2C bus should have a pull-up
of > 1 kΩ; SMBus should have a pull-up of > 8.5 kΩ. However, many
SMBus systems violate this rule; a common range for both SMBus and I2C
tends to be in the 2.4–3.9 kΩ range, but may vary significantly for various
speeds and bus capacitance ranges.

For more information about I2C current limitations and pullup resistor
selection, refer to the NXP I2C specification.

Throughout this document, we will refer to the bus as an I2C bus. For
information about compatibility of your NI 845x device with SMBus,
refer to Chapter 3, NI USB-845x Hardware Overview.

SPI Bus
The SPI bus is a de facto standard originated by Motorola and is used to
communicate with devices such as EEPROMs, real-time clocks, converters
(ADC and DAC), and sensors. Implementations may vary, as SPI does not
have a formal specification.

SPI Terminology
This manual uses the following SPI bus terms:

CLK CLocK. The clock is generated by the master device
and controls when data is sent and read.

MOSI Master Output, Slave Input. The MOSI line carries
data from the master to the slave.

MISO Master Input, Slave Output. The MISO carries data
from the slave to the master.

CS or SS Chip Select or Slave Select. Connection from the
master to a slave that signals the slave to listen for
SPI clock and data signals.

CPOL Clock POLarity. The polarity indicating whether the
clock makes positive or negative pulses.

Chapter 1 Introduction

© National Instruments 1-7 NI-845x Hardware and Software Manual

CPHA Clock PHAse. This controls the positioning of the
data bits relative to the clock edges.

Shift Register A shift register is connected to the MOSI and MISO
lines. As data is read from the input, it is placed into
the shift register. Data from the shift register is
placed into the output, creating a full-duplex
communication loop.

Master The master device provides the clock signal and
determines the chip select line state.

Slave The slave device receives the clock and chip select
from the master. The maximum number of slaves is
dependent on the number of available chip select
lines.

SPI Bus
The SPI bus is a four-wire, full-duplex serial interface. Three of the wires,
SCK, MOSI, and MISO, are shared along with a fourth wire, known as the
chip select, which is a direction connection between the master and a single
slave.

Communication across SPI uses a system known as data exchange.
Whenever a bit is written to an SPI device across the MOSI lines, the SPI
device concurrently returns a bit on the MISO line. Because data is
transferred in both directions, it is up to the receiving device to know
whether the received by is meaningful or not. For example, to receive data
from an EEPROM, the master must configure the EEPROM to send n bytes
of data and then must send n bytes to be exchanged for valid data. These
bytes can usually be any value, and writing them serves only to clock the
data out of the receiving device.

Clock and Polarity
Parameters called clock polarity (CPOL) and clock phase (CPHA)
determine the clock idle state and the edge of the clock signal when the data
is driven and sampled. These parameters are sometimes expressed as
four modes, as shown in Table 1-1.

Chapter 1 Introduction

NI-845x Hardware and Software Manual 1-8 ni.com

When the polarity is 0, the clock idles low. When the polarity is 1, the clock
idles high. When the phase is 0, data is latched at the clock transition from
idle to asserted. When the phase is 1, the data is latched at the clock
transition from asserted to idle. Figure 1-2 shows how the four SPI modes
affect the clock and sample times.

Figure 1-2. SPI Polarity Phase Differences

Error Handling
Unlike I2C, SPI has no acknowledgement mechanism or flow control. This
prevents the SPI master from knowing whether a slave received a data byte
correctly or even whether it is connected to the bus.

Table 1-1. SPI Modes

SPI Mode Polarity Phase

0 0 0

1 0 1

2 1 0

3 1 1

CPHA = 0 CPHA = 1

Sample Sample

CPOL = 0

CPOL = 1

Sample Sample

© National Instruments 2-1 NI-845x Hardware and Software Manual

2
Installation

This chapter explains how to install the NI-845x software and hardware.

Software Installation
This section discusses installing the NI-845x software on Microsoft
Windows.

Note You need administrator privileges to install the NI-845x software on your computer.

1. Insert the NI-845x Software installation media into your CD-ROM or
DVD-ROM drive. The installer launches if your optical drive plays
data disks automatically. If the installer does not launch automatically,
navigate to the media using Windows Explorer and launch the
autorun.exe file from your NI-845x Software installation media.

2. The Installation Wizard guides you through the necessary steps to
install the NI-845x software. You can go back and change values where
appropriate by clicking the Back button. You can exit the setup where
appropriate by clicking Cancel.

3. When installation is complete, select Finish.

Hardware Installation

Step 1: Unpack the Devices, Accessories, and Cables
Your device ships in an antistatic package to prevent electrostatic discharge
(ESD) damage to the device. ESD can damage several components on the
device.

To avoid such damage, take the following precautions:

• Ground yourself using a grounding strap or by touching a grounded
object.

• Touch the antistatic package to a metal part of the computer chassis
before removing the device from the package.

Chapter 2 Installation

NI-845x Hardware and Software Manual 2-2 ni.com

Remove the device from the package and inspect the device for loose
components or any sign of damage. Notify National Instruments if the
device appears damaged in any way. Do not install a damaged device into
your computer or PXI chassis.

Store the device in the antistatic package when the device is not in use.

For safety and compliance information, refer to the device documentation
packaged with your device.

Step 2: Install the Devices, Accessories, and Cables
Complete the following steps to install an NI USB device:

1. Connect the USB cable from the computer USB port or from any other
hub that provides USB power to the USB port on the device. The
following figure shows the USB cable and its connectors.

2. Power on your computer or PXI chassis. On some Windows systems,
the Found New Hardware wizard opens with a dialog box for every
device installed. Click Next or Yes to install the software for each
device.

3. Install accessories and/or terminal blocks according to the instructions
in their user guides.

Step 3: Confirm that Your Device Is Recognized
To verify that the USB device is recognized, complete the following steps:

1. Double-click the Measurement & Automation icon on the desktop to
open Measurement & Automation Explorer (MAX).

2. Expand Devices and Interfaces.

3. Verify that the device appears under USB Devices. If the device does
not appear, press <F5> to refresh the view in MAX. If the device is still
not recognized, refer to ni.com.support/install for
troubleshooting information.

1 Host/Hub/PC USB Port 2 NI USB Device USB Port

1
2

Chapter 2 Installation

© National Instruments 2-3 NI-845x Hardware and Software Manual

System Configuration API
NI-845x supports the National Instruments System Configuration API,
which provides programmatic access to many operations in MAX. This
enables you to perform these operations within your application.

The System Configuration API gathers information using various product
experts. You can create a filter to gather information for one type of product
such as filtering for NI-845x devices only. The NI-845x expert
programmatic name is 845x.

© National Instruments 3-1 NI-845x Hardware and Software Manual

3
NI USB-845x Hardware
Overview

Overview
NI USB-845x modules are USB 2.0 devices that provide I2C and SPI
connectivity along with general-purpose DIO lines.

NI USB-8451

Overview
The NI USB-8451 is a full-speed USB 2.0 device that provides I2C (up to
250 KHz) and SPI (up to 12 MHz) connectivity, along with eight SPI chip
select lines and eight general-purpose DIO lines.

The NI USB-8451 is available in an enclosure and as a board-only version.
In this manual, the enclosure version is referred to as the NI USB-8451, and
the board-only version is referred to as the NI USB-8451 OEM. Unless
otherwise noted, all information in this manual applies to both the
NI USB-8451 and NI USB-8451 OEM.

Chapter 3 NI USB-845x Hardware Overview

NI-845x Hardware and Software Manual 3-2 ni.com

Block Diagram

Figure 3-1. NI USB-8451 Block Diagram

Installing Software
Install the software provided with the NI USB-8451 or NI USB-8451 OEM
module. Refer to the NI-845x Software and Hardware Installation Guide
for more information.

Setting Up Hardware

NI USB-8451
Complete the following steps to set up the hardware:

1. Install the combicon screw terminal blocks by inserting them into the
combicon jacks.

Note The NI USB-8451 kit ships with signal labels. You can apply the signal labels to the
screw terminal blocks for easy signal identification.

2. Refer to Table 3-1 and Figure 3-2 for label orientation and affix the
provided signal labels to the screw terminal blocks. Until the signal
labels are applied, you can insert the screw terminal blocks into either
combicon jack.

SPI

P0.<0..7>

Te
rm

in
al

 B
lo

ck

USB Microcontroller

VBus

F
ul

l-S
pe

ed
 U

S
B

 In
te

rf
ac

e

USB

I2C

Short Circuit Protection
Current Limiting Circuit

Chapter 3 NI USB-845x Hardware Overview

© National Instruments 3-3 NI-845x Hardware and Software Manual

Figure 3-2. Signal Label Application Diagram

Note Once you label the screw terminal blocks, you must insert them into only the
matching combicon jacks, as the overlay label on the NI USB-8451 device indicates.

3. Connect the wiring to the appropriate screw terminals.

NI USB-8451 OEM
The NI USB-8451 OEM board has a USB Series B-type receptacle for
connection to the host machine. For the front-end I/O, the board has a
34-pin IDC ribbon cable header. Use any 34-pin female IDC (ribbon) cable
to access the I/O.

1 Overlay Label with Pin Orientation Guides
2 Combicon Jack

3 Screw Terminal Blocks
4 Signal Labels

43

3

2

1

4

Chapter 3 NI USB-845x Hardware Overview

NI-845x Hardware and Software Manual 3-4 ni.com

I/O Connector and Cable

NI USB-8451
The NI USB-8451 ships with two detachable terminal blocks for digital
signals. The individual terminals accept 16 AWG to 28 AWG wire.

Table 3-1 lists the digital terminal assignments.

Table 3-1. Digital Terminal Assignments

Module Terminal Signal Module Terminal Signal

1 GND 17 P0.0

2 +5 V 18 P0.1

3 SPI CS 7 19 P0.2

4 SPI CS 6 20 P0.3

5 SPI CS 5 21 P0.4

6 NC 22 P0.5

7 GND 23 P0.6

8 GND 24 P0.7

9 SPI CS 4 25 GND

10 SPI CS 3 26 GND

11 SPI CS 2 27 NC

12 SPI CS 1 28 NC

13 SPI CS 0 29 I2C SDA

14 SPI MOSI
(SDO)

30 I2C SCL

15 SPI MISO
(SDI)

31 +5 V

16 SPI CLK
(SCLK)

32 GND

Chapter 3 NI USB-845x Hardware Overview

© National Instruments 3-5 NI-845x Hardware and Software Manual

NI USB-8451 OEM
Use any 34-pin female IDC (ribbon) cable to connect to the IDC connector
on the NI USB-8451 OEM.

Table 3-2 lists the pin assignments and signal names for the IDC connector.

Table 3-2. Pin Assignments

Signal Pin Connector Pin Signal

NC 1 2 GND

NC 3 4 SCLK

SDA 5 6 GND

SCL 7 8 MISO

NC 9 10 GND

CS5 11 12 MOSI

CS6 13 14 GND

CS7 15 16 CS0

P0.0 17 18 GND

P0.1 19 20 CS1

P0.2 21 22 GND

P0.3 23 24 CS2

P0.4 25 26 GND

P0.5 27 28 CS3

P0.6 29 30 GND

P0.7 31 32 CS4

+5V 33 34 +5V

Pin 1

Pin 33

Pin 2

Pin 34

Chapter 3 NI USB-845x Hardware Overview

NI-845x Hardware and Software Manual 3-6 ni.com

Signal Descriptions
Table 3-3 describes the signals available on the I/O connectors.

Table 3-3. Signal Descriptions

Signal Name Direction Description

SPI CS <0..7> Output Chip Select Signals—Outputs used to select the desired
SPI peripheral device.

SPI MOSI (SDO) Output Master Output Slave Input—SPI communication
signal to slave device.

SPI MISO (SDI) Input Master Input Slave Output—SPI communication
signal from slave device.

SPI CLK (SCLK) Output SPI Clock—SPI output clock signal to slave devices
capable of clock rates up to 12 MHz.

I2C SDA Open-drain I2C Serial Data—Data signal for I2C communication.

I2C SCL Open-drain I2C Clock—I2C clock signal to slave devices capable of
clock rates up to 250 kHz.

P0.<0..7> Input or
output

Digital I/O Signals—You can individually configure
each signal as an input or output. You can configure the
port for open-drain or push-pull output.1

+5 V Output +5 V—The voltage source provided by the USB host.
The voltage is nominally 5 V, but varies from system to
system.

GND — Ground—The reference for the digital signals and the
+5 VDC supply.

NC — No Connect—Do not connect any signals to this
terminal.

1 If you configure the DIO port for open-drain output, you must supply pull-up resistors to Vcc (3.3 or 5 V). The resistor value
must not be lower than 1 kΩ.

Chapter 3 NI USB-845x Hardware Overview

© National Instruments 3-7 NI-845x Hardware and Software Manual

Front-End I/O Interfaces

Digital I/O (DIO)
The NI USB-8451 (and NI USB-8451 OEM) has eight single-ended digital
lines, P0.<0..7>.

You can program each DIO line individually as a static DI or DO line. You
can use static DIO lines to monitor or control digital signals. All samples
of static DI lines and updates of DO lines are software timed.

The default configuration of the DIO port is push-pull, allowing 3.3 V
operations. To achieve 5 V operation, change the output driver type to
open-drain and add an external pull-up resistor (Rp), as shown in
Figure 3-3. Do not use a pull-up resistor of less than 1 kΩ.

Figure 3-3. Example of Connecting External User-Provided Resistor

GND

P0.0

+5 V

Rp

Rl

Port Pad

VBus

USB-8451 DIO Box

External
Pull-Up

Resistor

Load

A

Short Circuit Protection
Current Limiting Circuit

Chapter 3 NI USB-845x Hardware Overview

NI-845x Hardware and Software Manual 3-8 ni.com

Figure 3-4 shows P0.<0..7> connected to example signals configured as
digital inputs and digital outputs. Refer to Figure 3-4 for some common
examples of connections of DIO lines with standard circuits.

Figure 3-4. Example of Connecting a Load

Caution Exceeding the maximum input voltage ratings or maximum output ratings, which
are listed in Appendix A, NI USB-845x Hardware Specifications, can damage the USB
device and the computer. National Instruments is not liable for any damage resulting from
such signal connections.

1 P0.0 Configured as an Open-Drain Digital Output Driving an LED
2 P0.4 Configured as a Digital Input Receiving a TTL Signal from a Gated Invertor
3 P0.7 Configured as a Digital Input Receiving a 0 V or 5 V Signal from a Switch

+5 V

LED

Switch

I/O Connector

 GND

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

+5 V

2

3
TTL Signal

1

Chapter 3 NI USB-845x Hardware Overview

© National Instruments 3-9 NI-845x Hardware and Software Manual

SPI Interface
Figure 3-5 shows a typical SPI interface to three peripherals. All devices
share the SPI MISO, SPI MOSI, and SPI CLK signals. Each peripheral has
its own CS signal for addressing it.

Figure 3-5. SPI Interface to Three Peripherals

GND

Slave 0

CS

MISO

MOSI

CLK

Slave 1

CS

MISO

MOSI

CLK

Slave 2

CS

MISO

MOSI

CLK

USB-8451

CS 0

CS 1

CS 2

CS 3

CS 4

CS 5

CS 6

CS 7

SPI MOSI
(SDO)

SPI MISO
(SDI)

SPI CLK
(SCLK)

Chapter 3 NI USB-845x Hardware Overview

NI-845x Hardware and Software Manual 3-10 ni.com

I2C Interface
Figure 3-6 shows a typical I2C interface to two peripherals. All devices on
the I2C bus share the SDA and SCL signals. SDA and SCL must be pulled
up externally. Refer to the I2C specification to select the correct resistor
values for your bus.

Figure 3-6. I2C Interface to Two Peripherals

I/O Protection
Each DIO, SPI, and SPI CS signal is protected against overvoltage,
undervoltage, and overcurrent conditions, as well as ESD events. However,
you should avoid these fault conditions by following these guidelines:

• If you configure a line as an output, do not connect it to any external
signal source, ground signal, or power supply.

• If you configure a line as an output, understand the current
requirements of the load connected to these signals. Do not exceed the
specified current output limits of the module.

GND

Slave 0

SDA

SCL

Slave 1

SDA

SCL

USB-8451

SDA

SCL

VDD VDD

GND

GND

Chapter 3 NI USB-845x Hardware Overview

© National Instruments 3-11 NI-845x Hardware and Software Manual

• If you configure a line as an input, do not drive the line with voltages
outside its normal operating range.

• Treat the module as you would treat any static-sensitive device.
Always properly ground yourself and the equipment when handling
the USB device or connecting to it.

Caution Take special care with respect to the I2C SDA and SCL lines. To allow for external
pull-ups, the circuit protection has been removed. Do not exceed the specified voltages for
these signals.

Power-On States
At system startup and reset, the hardware sets all DIO and SPI CS lines to
high-impedance inputs. The module does not drive any of the signals high
or low.

+5 V Power Source
The NI USB-8451 (and NI USB-8451 OEM) supplies a nominal 5 V from
two pins, one on each screw terminal block. The USB host provides the
voltage source. The voltage is nominally 5 V, but varies from system to
system. Refer to Appendix A, NI USB-845x Hardware Specifications, for
more information about USB bus power specifications. You can use this
source to power external components.

Note While the device is in USB suspend, the output is disabled.

Caution When using the 5 V source, understand the current requirements of the load
connected. Do not exceed the specified current USB Vbus output limits.

NI USB-8452

Overview
The NI USB-8452 is a high-speed USB device featuring both I2C (up to
3.3 MHz) and SPI (up to 50 MHz) connectivity along with eight chip select
lines and eight general-purpose DIO lines. The NI USB-8452 has a
programmable reference voltage to allow communication using I2C, SPI,
and DIO at multiple logic levels.

The NI USB-8452 is available in an enclosure and as a board-only version.
In this manual, the enclosure version (shown in Figure 3-7) is referred to
as the NI USB-8452, and the board-only version is referred to as the

Chapter 3 NI USB-845x Hardware Overview

NI-845x Hardware and Software Manual 3-12 ni.com

NI USB-8452 OEM. They share the same electrical design and pinout at
the connector. Unless otherwise noted, all information in this manual
applies to both the NI USB-8452 and NI USB-8452 OEM.

Figure 3-7. NI USB-8452 with Enclosure

Block Diagram
The block diagram in Figure 3-8 shows key NI USB-8452 module
functional components.

Figure 3-8. NI USB-8452 Block Diagram

NI U
SB-8452

I2 C/SP1 Int
erfa

ce

SPI

DIO/CS

Te
rm

in
al

 B
lo

ck

USB
Controller

VBus

H
ig

h-
S

pe
ed

 U
S

B
 In

te
rf

ac
e

USB

I2C

Short Circuit Protection
Current Limiting Circuit

SPI

DIO/CS

I2C

FPGA
Level
Shifter

Vref
VrefProgrammable

Voltage

Chapter 3 NI USB-845x Hardware Overview

© National Instruments 3-13 NI-845x Hardware and Software Manual

The NI USB-8452 is a USB 2.0 high-speed, high-power device with a
maximum theoretical transfer rate of 480 Mb/s. Using a high-speed
FPGA-based architecture, the NI USB-8452 supports SPI data acquisition
up to 50 MHz and I2C communication up to 3.3 MHz. The programmable
reference voltage covers logic families from 1.2 V to 3.3 V, which makes
the NI USB-8452 versatile for most SPI/I2C tests and verifications.

Refer to Safety in Appendix A, NI USB-845x Hardware Specifications, for
important safety information.

Installing Software
Install the software provided with the NI USB-8452. Refer to the NI-845x
Software and Hardware Installation Guide for more information.

Setting Up Hardware
Complete the following steps to set up the hardware:

1. Attach a suitable cable to the IDE-40 connector (pin 20 is left out on
purpose) on the NI USB-8452 module.

Note You can use a standard 40-pin IDE (ribbon) cable to access the front-end I/O pins
(SPI, I2C, and digital I/O) of the NI USB-8452 module. We also provide a fly-lead cable
(part number 152580-0R25) as an accessory for easy wiring.

2. Connect the other end of the cable to your board. Refer to Figure 3-9
for the IDE connector pinout. Refer to Signal Descriptions for more
information about the signals. Connect the ground pins next to the
functional pins for better signal integrity.

Chapter 3 NI USB-845x Hardware Overview

NI-845x Hardware and Software Manual 3-14 ni.com

Figure 3-9. IDE-40 Connector Pin Assignments

Note The above pinout applies to both the enclosure and OEM versions.

3. The USB-8452 has a USB series B-type receptacle. Use the USB cable
included in the kit (enclosure version only) to connect to the host PC.

Signal Descriptions
Table 3-4 describes the signals available on the I/O connectors.

Table 3-4. Signal Descriptions

Signal Name Direction Description

SPI_SCLK Output SPI Clock—SPI output clock signal to slave devices capable
of clock rates up to 50 MHz.

SPI_MOSI Output Master Output Slave Input—SPI communication signal to
slave device.

Vref
GND

I2C_SDA
GND

GND

GND

GND

GND

GND

GND
GND

GND

GND

GND

GND

GND

GND

GND

I2C_SCL

DIO(0)

DIO(1)
DIO(2)

DIO(3)

DIO(4)

DIO(5)
DIO(6)
DIO(7)

SPI_SCLK

SPI_MISO

SPI_MOSI

CS(0)

CS(1)

CS(2)

CS(3)
CS(4)
CS(5)
CS(6)
CS(7)

NA

+5V

1 2

39 40

Chapter 3 NI USB-845x Hardware Overview

© National Instruments 3-15 NI-845x Hardware and Software Manual

SPI_MISO Input Master Input Slave Output—SPI communication signal
from slave device.

CS<0..7>1 Output Chip Select Signals—Outputs used to select the desired SPI
peripheral device.

DIO<0..7>2 Input or
Output

Digital I/O Ports—You can individually configure each signal
as an input or push-pull output.

I2C_SCL Open-drain3 I2C Clock—I2C clock signal to slave devices, capable of clock
rates up to 3.3 MHz.

I2C_SDA Open-drain3 I2C Serial Data—Data signal for I2C communication.

+5V Output +5 V—Fixed 5 V output with ±5% tolerance, with a maximum
output drive capability of 20 mA.

Vref Output Vref—User programmable I2C/SPI/DIO reference voltage
output. Used for internal and external voltage reference.
Maximum output drive capability of 20 mA.

GND — Ground—Ground reference for all IO interfaces and +5 V,
Vref voltage references.

NA — Not available.

1 You can configure CS(0) as hardware-timed chip-select, which has a fixed timing relationship to SPI signal lines. Refer to
Chapter 14, Using the NI-845x SPI Stream API, for details.

2 Some of these pins have special functionality in SPI stream mode. Refer to Chapter 14, Using the NI-845x SPI Stream API,
for details.

3 You can enable or disable onboard pull-up resistors. You must enable these for Vref ≤ 1.8 V for the FPGA to properly
detect a low-to-high transition. Refer to Chapter 5, Using the NI-845x I2C API, for more information about enabling pull-ups
on the I2C lines.

Table 3-4. Signal Descriptions

Signal Name Direction Description

Chapter 3 NI USB-845x Hardware Overview

NI-845x Hardware and Software Manual 3-16 ni.com

Front-End I/O Interfaces

Caution Exceeding the maximum input voltage ratings or maximum output ratings, which
are listed in Appendix A, NI USB-845x Hardware Specifications, can damage the USB
device and the computer. National Instruments is not liable for any damage resulting from
such signal connections.

SPI Interface
The NI USB-8452 SPI master interface supports clock rates up to 50 MHz
and can be divided down to support lower rates. Meanwhile, you also can
switch voltage levels by configuring the programmable voltage regulator
on board. The NI USB-8452 supports logic families of 1.2 V, 1.5 V, 1.8 V,
2.5 V, and 3.3 V.

Figure 3-10 shows a typical SPI interface to three peripherals. All devices
share the SPI MISO, SPI MOSI, and SPI CLK signals. Each peripheral has
its own CS signal for addressing it.

Chapter 3 NI USB-845x Hardware Overview

© National Instruments 3-17 NI-845x Hardware and Software Manual

Figure 3-10. SPI Interface to Three Peripherals

The NI USB-8452 SPI master interface supports two modes: standard
mode and stream mode. The standard mode is generally backward
compatible with the NI USB-8451 (except for programmable logic levels
and clock rates). Meanwhile, in stream mode you have more control over
SPI timing and packet formation. This mode supports hardware timed data
streaming, which increases system throughput in cases of high-speed data
acquisition.

GND

Slave 0

CS

MISO

MOSI

CLK

Slave 1

CS

MISO

MOSI

CLK

Slave 2

CS

MISO

MOSI

CLK

USB-8452

CS 0

CS 1

CS 2

CS 3

CS 4

CS 5

CS 6

CS 7

SPI MOSI
(SDO)

SPI MISO
(SDI)

SPI CLK
(SCLK)

Chapter 3 NI USB-845x Hardware Overview

NI-845x Hardware and Software Manual 3-18 ni.com

Standard Mode
The SPI standard API provides the most fundamental SPI transaction type:
write/read. You can access most existing SPI devices using this transaction.
This mode is backward compatible with the NI USB-8451 and works with
the NI-845x basic and scripting APIs.

Stream Mode
With the stream API, you can get direct control over SPI timing parameters
and additional functional pins such as hardware timed chip select (CS(0)),
data ready (DIO(1)), and conversion (DIO(0)) lines, which are widely
adopted in modern analog to digital converters (ADCs). You can define
output/trigger waveforms based on a 10 ns system clock and run
continuously to stream in/out data. Refer to Chapter 14, Using the NI-845x
SPI Stream API, for further information. You can combine standard and
stream modes to generate a complete configuration and acquisition loop.

I2C Interface
You can configure the NI USB-8452 I2C Interface as either a master or a
slave on an I2C bus. Figure 3-11 shows a typical I2C interface to two
peripherals. All devices on the I2C bus share the SDA and SCL signals.
SDA and SCL lines must be pulled up internally for 1.2 V, 1.5 V, and 1.8 V
standards. SDA and SCL lines may be pulled up internally or externally for
2.5 V and 3.3 V. Refer to the I2C specification to select the proper resistor
values if using external pull-ups.

Chapter 3 NI USB-845x Hardware Overview

© National Instruments 3-19 NI-845x Hardware and Software Manual

Figure 3-11. I2C Interface to Two Peripherals

The NI USB-8452 I2C interface supports Standard mode, Fast mode,
Fast mode Plus, and High Speed mode (HS mode), defined in I2C 4.0
specifications. Refer to the I2C Interface section in Appendix A, NI
USB-845x Hardware Specifications, for list of supported I2C data rates.

Refer to Chapter 5, Using the NI-845x I2C API, for more information
about programming and using the I2C interface.

Digital I/O (DIO)
You can program each NI USB-8452 DIO line individually as a static DI
or DO line. You can use these I/O lines to monitor or control digital signals
directly. You can also configure the logic level the same way as SPI and
I2C interfaces. All samples of DI lines and updates of DO lines are software
timed. All DIO lines are push-pull if configured as output. If disabled, these
lines are tri-stated with weak pull-down resistors (40 kΩ).

GND

Device 0

SDA

SCL

Device 1

SDA

SCL

USB-8452

SDA

SCL

Vref Vref

GND

GND

Voltage
Translator

FPGA

3.3 V 3.3 V
(Optional)

Chapter 3 NI USB-845x Hardware Overview

NI-845x Hardware and Software Manual 3-20 ni.com

Refer to Chapter 17, Using the NI-845x DIO API, for more information
about programming and using the DIO lines.

Note While the device is in USB suspend, all I/O outputs are disabled.

LED Indicators
The NI USB-8452 has two LED indicators alongside the USB connector,
as shown in Figures 3-12 and 3-13.

Figure 3-12. LED Indicators on NI USB-8452

Figure 3-13. LED Indicators on NI USB-8452 OEM

The blue LED marked USB is the USB status LED.

The green LED marked STATUS indicates the SPI/I2C interface’s current
working status.

State Status

Off Unplugged or suspend mode, or disabled

Solid blue Connected to an active USB port

State Status

Off SPI/I2C interface is idle

Blinking green SPI/I2C interface is active

Solid green SPI interface is waiting on response from slave

USBSTATUS

STATUS USB

Chapter 3 NI USB-845x Hardware Overview

© National Instruments 3-21 NI-845x Hardware and Software Manual

I/O Protection
Each signal line is protected against overvoltage, undervoltage, and
overcurrent conditions. However, you should avoid these fault conditions
by following these guidelines:

• If you configure a line as an output, do not connect it to any external
signal source, ground signal, or power supply.

• If you configure a line as an output, understand the current
requirements of the load connected to these signals. Do not exceed the
specified current output limits of the NI USB-8452.

• If you configure a line as an input, do not drive the line with voltages
outside its normal operating range.

• Treat the NI USB-8452 as you would treat any static sensitive device.
Always properly ground yourself and the equipment when handling
the USB device or connecting to it.

Power-On States
At system startup and resume from suspend, the hardware tri-states all IO
ports including I2C, SPI, DIO, and CS lines, among which SPI, DIO and
CS lines are weakly pulled down to GND with 40 kΩ resistors. The
NI USB-8452 does not drive any of the signals high or low.

Power Sources

+5 V Power Source
The NI USB-8452 offers a 5 V output from pin 40. The voltage source is
generated from an onboard regulator, with ±5% tolerance. Refer to
Appendix A, NI USB-845x Hardware Specifications, for more
information. You can use this source to power external components with
low power budget at 20 mA current maximum.

Note The +5 V power source output is enabled on the first NI-845x API call. While the
device is in USB suspend, the +5 V power source output is disabled. The +5 V power
source output is reenabled after the next NI-845x API call.

Caution If you accidentally short the +5 V source or apply an external load that exceeds
the power budget, the NI USB-8452 automatically enters over current protection and cuts
off front power. In this case, you are warned to check your connection and reboot the
system. In the meantime, front I/O activity is stopped.

Chapter 3 NI USB-845x Hardware Overview

NI-845x Hardware and Software Manual 3-22 ni.com

Vref I/O Reference Voltage
The NI USB-8452 also provides a programmable reference voltage from
pin 1. You can configure this reference voltage as 1.2 V, 1.5 V, 1.8 V, 2.5
V, and 3.3 V. You can program the reference voltage based on the
application, and the NI USB-8452 board adapts to the programmed voltage
level. The voltage source is provided mainly as a voltage reference to
external circuitry or as power source for low power budget components. It
can source 20 mA current maximum. Refer to Appendix A, NI USB-845x
Hardware Specifications, for more information.

Note Vref is not enabled before you choose a specific voltage or use the default voltage
(3.3 V). While the device is in USB suspend, this output is disabled.

Caution If you accidentally short Vref or apply an external load that exceeds the power
budget, the NI USB-8452 automatically enters over current protection and cuts off front
power. In this case, you are warned to check your connection and reboot the system. In the
meantime, front I/O activity is stopped and tri-stated with weak pull down (40 kΩ) to GND.

© National Instruments 4-1 NI-845x Hardware and Software Manual

4
Using the NI-845x API

The NI-845x API consists of handles (references), property nodes
(LabVIEW only), and functions. A handle identifies a particular piece of
hardware or the configuration for use in the API functions. For example, to
access an NI 845x device, you first must create a device handle by
providing the name of the NI 845x device configured in Measurement &
Automation Explorer (MAX). After creating the device handle, the
NI-845x software functions use the returned handle to determine which
NI 845x device to communicate with.

The NI-845x API has other handles also. An example is a configuration
handle that describes the device characteristics used for communication.
An I²C configuration contains properties such as the bus clock rate and
device address to use for communication. Refer to the specific API calls for
more information on how to use handles in the NI-845x API. In LabVIEW,
you can pass the configuration handle into a property node to configure
specific characteristics. In other languages, you pass the handle into the
special configuration functions to configure the characteristics. In addition,
many API functions use the configuration to perform the desired action.

© National Instruments 5-1 NI-845x Hardware and Software Manual

5
Using the NI-845x I2C API

This chapter helps you get started with the I2C API.

I2C Basic Programming Model
The I2C Basic API provides the most fundamental I2C transaction types:
write, read, and write/read. You can access the majority of off-the-shelf
I2C devices using these transactions. The I2C Basic API allows you to
easily and quickly develop applications to communicate with these devices.
For those situations in which the I2C Basic API does not provide the
functionality you need, use the I2C Scripting API to create custom I2C
transactions.

When you use the I2C Basic API, the first step is to create an I2C
configuration to describe the communication requirements between the
NI 845x device and the I2C slave device. To make an I2C configuration,
create an I2C configuration reference and set the appropriate properties as
desired. You can then read or write data to the I2C slave device.

The diagram in Figure 5-1 describes the programming model for
the NI-845x I2C Basic API. Within the application, you repeat this
programming model for each I2C device. The diagram is followed by a
description of each step in the model.

Figure 5-1. Basic Programming Model for I2C Communication

I2C Configure

I2C Write I2C Read I2C Write Read

Chapter 5 Using the NI-845x I2C API

NI-845x Hardware and Software Manual 5-2 ni.com

I2C Configure
Use the NI-845x I2C Configuration Property Node in LabVIEW
and ni845xI2cConfiguration* calls in other languages to set the
specific I2C configuration that describes the characteristics of the device to
communicate with.

I2C Write
Use NI-845x I2C Write.vi in LabVIEW and ni845xI2cWrite in other
languages to write an array of data to an I2C slave device.

I2C Read
Use NI-845x I2C Read.vi in LabVIEW and ni845xI2cRead in other
languages to read an array of data from an I2C slave device.

I2C Write Read
Use NI-845x I2C Write Read.vi in LabVIEW and
ni845xI2cWriteRead in other languages to write an array of data
followed by a read (combined format) on an I2C slave device.

I2C Scripting Programming Model
The NXP I2C specification is extremely flexible and allows multiple
possibilities for constructing transactions beyond those handled by the I2C
Basic API. The I2C Scripting API provides a set of script commands that
allow you great flexibility in creating custom I2C transactions for your
particular needs. For example, you can use scripting in the following
scenarios:

• Validating a new device design, when you want to issue individual I2C
conditions to the bus, with or without variable delays in between, so
that you can observe device response.

• Issuing a transaction to a device and measuring its responses (using
NI 845x DIO pins configured for input) at multiple points within the
transaction.

• Using the NI 845x DIO pins configured for output to provide
additional control or addressing.

• Doing performance testing, in which you see how a device responds to
variable delays, clock rate changes, etc. within a transaction.

• Issuing multiple reads and writes to a device, or multiple devices,
within one transaction, to avoid relinquishing the bus.

Chapter 5 Using the NI-845x I2C API

© National Instruments 5-3 NI-845x Hardware and Software Manual

When you use the I2C Scripting API, the first step is to create a script that
describes the communication between an I2C master and an I2C slave
device. Then you execute the script and extract the read data if needed. The
script size is limited only by the amount of memory available on your PC.
The number of read commands, I2C Script Read, I2C Script DIO Read
Port, and I2C Script DIO Read Line within each script is limited to 64.

The diagram in Figure 5-2 describes an example of programming with the
scripting functions for the NI-845x I2C Scripting API. The diagram is
followed by a description of each step in the model.

Figure 5-2. Example of Scripting Programming Model
with Scripting API for I2C Communication

Script: Set I2C Clock Rate

Script: Issue Start Condition

Script: Send Address + Read Script: Send Address + Write

Script: Read Script: Write

Script: Issue Stop Condition

Run Script

Extract Read Data

Chapter 5 Using the NI-845x I2C API

NI-845x Hardware and Software Manual 5-4 ni.com

Script: Set I2C Clock Rate
Use NI-845x I2C Script Clock Rate.vi in LabVIEW and
ni845xI2cScriptClockRate in other languages to add an I2C Script
Clock Rate command to the I2C script. This command sets the I2C clock
rate for the I2C port you specify when you run the script.

Script: Set I2C ACK Poll Timeout
Use NI-845x I2C Script ACK Poll Timout.vi in LabVIEW and
ni845xI2cScriptAckPollTimeout in other languages to add an I2C
Script ACK Poll Timeout command to the I2C script. This command sets
the I2C ACK Poll timeout in milliseconds. When this value is nonzero, the
NI-845x device ACK polls when sending an address + direction byte.

Script: Pullup Enable
Use NI-845x I2C Script Pullup Enable.vi in LabVIEW and
ni845xI2cScriptPullupEnable in other languages to add an I2C
Script Pullup Enable command to the I2C script. This command enables or
disables the internal I2C pullup resistors. This command is valid only for
NI 845x devices with onboard pull-up resistors.

Script: Set I2C High Speed Clock Rate
Use NI-845x I2C Script High Speed Clock Rate.vi in LabVIEW and
ni845xI2cScriptHsClockRate in other languages to add an I2C Script
HS Clock Rate command to the I2C script. This command sets the I2C High
Speed clock rate for the I2C port you specify when you run the script. This
command is valid only for NI 845x devices that support High Speed I2C.

Script: Set I2C High Speed Enable
Use NI-845x I2C Script HS Enable.vi in LabVIEW and
ni845xI2cScriptHsEnable in other languages to add an I2C Script HS
Enable command to the I2C script. This command enables or disables High
Speed mode. This command is valid only for NI 845x devices that support
High Speed I2C.

Chapter 5 Using the NI-845x I2C API

© National Instruments 5-5 NI-845x Hardware and Software Manual

Script: Issue Start Condition
Use NI-845x I2C Script Issue Start.vi in LabVIEW and
ni845xI2cScriptIssueStart in other languages to add an I2C Script
Issue Start command to the I2C script. This command issues a start
condition on the I2C bus connected to the I2C port you specify when you
run the script.

Script: Send High Speed Master Code
Use NI-845x I2C Script Master Code.vi in LabVIEW and
ni845xI2cScriptHsMasterCode in other languages to add an I2C
Script HS Master Code command to the I2C script. This command
transmits the I2C High Speed master code. This command is valid only for
NI 845x devices that support High Speed I2C.

Script: Send Address + Read
Use NI-845x I2C Script Address+Read.vi in LabVIEW and
ni845xI2cScriptAddressRead in other languages to add an I2C Script
Address+Read command to the I2C script. This command writes a 7-bit
address, followed by the direction bit set to read, to the I2C bus connected
to the I2C port you specify when you run the script. If the ACK poll timeout
is nonzero, this command performs ACK polling.

Script: Read
Use NI-845x I2C Script Read.vi in LabVIEW and
ni845xI2cScriptRead in other languages to add an I2C Script Read
command to the I2C script. This command reads an array of data from a
device connected to the I2C port you specify when you run the script.

Script: Send Address + Write
Use NI-845x I2C Script Address+Write.vi in LabVIEW and
ni845xI2cScriptAddressRead in other languages to add an I2C Script
Address+Write command to the I2C script. This command writes a 7-bit
address, followed by the direction bit set to write, to the I2C bus connected
to the I2C port you specify when you run the script. If the ACK poll timeout
is nonzero, this command performs ACK polling.

Chapter 5 Using the NI-845x I2C API

NI-845x Hardware and Software Manual 5-6 ni.com

Script: Write
Use NI-845x I2C Script Write.vi in LabVIEW and
ni845xI2cScriptWrite in other languages to add an I2C Script Write
command to the I2C Script. This command writes an array of data to an I2C
slave device when you run the script.

Script: Issue Stop Condition
Use NI-845x I2C Script Issue Stop.vi in LabVIEW and
ni845xI2cScriptIssueStop in other languages to add an I2C Script
Issue Stop command to the I2C script. This command issues a stop
condition on the I2C bus connected to the I2C port you specify when you
run the script.

Run Script
Use NI-845x I2C Run Script.vi in LabVIEW and ni845xI2cScriptRun
in other languages to execute an I2C script on the desired device.

Extract Read Data
Use NI-845x I2C Extract Script Read Data.vi in LabVIEW and
ni845xI2cScriptExtractReadData in other languages to extract the
desired read data from an I2C script that has been previously run. Each I2C
script read command (I2C Script Read, I2C Script DIO Read Port, I2C
Script DIO Read Line) returns a script read index to be passed into the
Extract Read Data function.

© National Instruments 6-1 NI-845x Hardware and Software Manual

6
NI-845x I2C API for LabVIEW

This chapter lists the LabVIEW VIs for the NI-845x I2C API and describes the format,
purpose, and parameters for each VI. The VIs in this chapter are listed alphabetically.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-2 ni.com

General Device

NI-845x Close Reference.vi

Purpose
Closes a previously opened reference.

Inputs

reference in is a reference to an NI 845x device, I2C configuration, I2C
Slave configuration, SPI configuration, SPI stream configuration, I2C
script, or SPI script.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-3 NI-845x Hardware and Software Manual

executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x Close Reference.vi to close a previously opened reference.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-4 ni.com

NI-845x Device Property Node

Purpose
A property node with the NI-845x Device class preselected. This property node allows you to
modify properties of your NI 845x device.

Inputs

device reference in is a reference to an NI 845x device.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

device reference out is a reference to an NI 845x device after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-5 NI-845x Hardware and Software Manual

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The list below describes all valid properties for the NI-845x Device Property Node.

DIO:Active Port

The DIO:Active Port property sets the active DIO port for further DIO
port configuration. The format for this property is a decimal string. For
example, the string 0 represents DIO Port 0. The default value of this
property is 0. For NI 845x devices with one DIO port, the port value must
be 0.

DIO:Driver Type

The DIO:Driver Type property configures the active DIO port with the
desired driver type characteristics. DIO:Driver Type uses the following
values:

Open-Drain

The DIO driver type is configured for open-drain.

Push-Pull

The DIO driver type is configured for push-pull. The actual
voltage driven (when sourcing a high value) is determined by the
I/O Voltage Level property.

The default value of this property is Push-Pull.

DIO:Line Direction Map

The DIO:Line Direction Map property sets the line direction map for the
active DIO Port. The value is a bitmap that specifies the function of each
individual line within the port. If bit x = 1, line x is an output. If bit x = 0,
line x is an input.

The default value of this property is 0 (all lines configured for input).

I/O Voltage Level

The I/O Voltage Level property sets the board voltage. This property sets
the voltage for SPI, I2C, and DIO. The default value for this property is
3.3V. This property uses the following values:

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-6 ni.com

3.3V

I/O Voltage is set to 3.3 V.

2.5V

I/O Voltage is set to 2.5 V.

1.8V

I/O Voltage is set to 1.8 V.

1.5V

I/O Voltage is set to 1.5 V.

1.2V

I/O Voltage is set to 1.2 V.

Refer to Appendix A, NI USB-845x Hardware Specifications, to determine
the available voltage levels on your hardware.

I2C Pullup Enable

The I2C Pullup Enable property enables or disables the internal pullup
resistors connected to SDA and SCL.

Refer to Appendix A, NI USB-845x Hardware Specifications, to determine
whether your hardware has onboard pull-up resistors.

Timeout (ms)

The Timeout (ms) property sets the global timeout for the device. This
timeout is the minimum amount of time an I2C, SPI, or DIO operation is
allowed to complete.

Note It is highly recommended to set this property higher than the expected I/O time. For
the NI USB-8451, a timeout may leave the device in an unknown state that may require a
power cycle of the device.

The default of this property is 30000 (30 seconds).

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-7 NI-845x Hardware and Software Manual

NI-845x Device Reference

Purpose
Specifies the device resource to be used for communication.

Description
Use the NI-845x Device Reference to describe the NI 845x device to communicate with. You
can wire the reference into a property node to set specific device parameters or to an NI-845x
API call to invoke the function on the associated NI 845x device.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-8 ni.com

Configuration

NI-845x I2C Configuration Property Node

Purpose
A property node with the NI-845x I2C Configuration class preselected. This property node
allows you to query and modify I2C configuration properties of your NI 845x device.

Inputs

i2c configuration in is a reference to a specific I2C configuration that
describes the characteristics of the device to communicate with.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

i2c configuration out is a reference to a specific I2C configuration that
describes the characteristics of the device to communicate with.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-9 NI-845x Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The list below describes all valid properties for the NI-845x I2C Configuration Property
Node.

Port

Specifies the I2C port that this configuration communicates across.

Refer to Chapter 3, NI USB-845x Hardware Overview, to determine the
number of I2C ports your NI 845x device supports.

The default value of this property is 0.

Clock Rate in kHz

Specifies the I2C clock rate. Refer to Chapter 3, NI USB-845x Hardware
Overview, to determine which clock rates your NI 845x device supports. If
your hardware does not support the supplied clock rate, a warning is
generated, and the next smallest supported clock rate is used. If the supplied
clock rate is smaller than the smallest supported clock rate, an error is
generated.

If High Speed mode is enabled, this clock rate is used to transfer the master
code.

The default value of this property is 100 kHz.

Address Size

Specifies the addressing scheme to use when addressing the I2C slave
device this configuration describes. Address Size uses the following
values:

7 Bits

The NI 845x hardware uses the standard 7-bit addressing when
communicating with the I2C slave device.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-10 ni.com

10 Bits

The NI 845x hardware uses the extended 10-bit addressing when
communicating with the I2C slave device.

The default value of this property is 7 Bits.

Address

Specifies the I2C slave address. The default address is 0. For 7-bit device
addressing, the NXP I2C Specification defines a 7-bit slave address and a
direction bit. During the address phase of an I2C transaction, these values
are sent across the bus as one byte (slave address in bits 7–1, direction in
bit 0). The NI-845x software follows the convention used in the NXP
I2C Specification and defines an address for a 7-bit device as a 7-bit value.
The NI-845x software internally sets the direction bit to the correct value,
depending on the function (write or read). Some manufacturers specify the
address for their 7-bit device as a byte. In such cases, bits 7–1 contain the
slave address, and bit 0 contains the direction. When using the NI-845x
software, discard the direction bit and right-shift the byte value by one to
create the 7-bit address.

ACK Poll Timeout

Specifies the I2C ACK poll timeout in milliseconds. When this value is
zero, ACK polling is disabled. Otherwise, the NI-845x I2C Read.vi,
NI-845x I2C Write.vi, and NI-845x I2C Write Read.vi API calls ACK
poll until an acknowledge (ACK) is detected or the timeout is reached.

ACK polling is not supported with 10-bit addressing. If Address Size is set
to 10 bits, and ACK poll timeout is nonzero, an error is generated when
attempting an I/O API call.

The default value of this property is 0 ms.

HighSpeed:Enable

Enables High Speed (HS) mode. The default is set to High Speed mode
disabled. When High Speed mode is enabled, the NXP I2C Specification
defines a Master Code and a High Speed clock rate.

Refer to Appendix A, NI USB-845x Hardware Specifications, to determine
whether your NI 845x device supports High Speed mode.

HighSpeed:ClockRate

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-11 NI-845x Hardware and Software Manual

Specifies the I2C clock rate. Refer to Appendix A, NI USB-845x Hardware
Specifications, to determine which High Speed clock rates your NI 845x
device supports. If your hardware does not support the supplied High Speed
clock rate, a warning is generated, and the next smallest supported High
Speed clock rate is used. If the supplied High Speed clock rate is smaller
than the smallest supported High Speed clock rate, an error is generated.

The default value of this property is 1700 kHz.

Refer to Appendix A, NI USB-845x Hardware Specifications, to determine
the High Speed clock rates your NI 845x device supports.

HighSpeed:MasterCode

Specifies the master code to be used for High Speed mode. The NXP I2C
Specification defines the master code as a 3-bit number that is unique on
the I2C bus.

This property requires High Speed mode to be enabled.

The default value of this property is 1.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-12 ni.com

NI-845x I2C Create Configuration Reference.vi

Purpose
Creates a new NI-845x I2C configuration.

Inputs

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

i2c configuration is a reference to the newly created NI-845x I2C
configuration.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-13 NI-845x Hardware and Software Manual

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Create Configuration Reference.vi to create a new configuration to
use with the NI-845x I2C Basic API. Pass the reference to a property node to make the
configuration match the settings of your I2C slave. Then, pass the configuration to the I2C
basic functions to execute them on the described I2C slave. After you finish communicating
with your I2C slave, pass the reference into a new property node to reconfigure it or use
NI-845x Close Reference.vi to delete the configuration.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-14 ni.com

Basic

NI-845x I2C Read.vi

Purpose
Reads an array of data from an I2C slave device.

Inputs

device reference in is a reference to an NI 845x device.

i2c configuration in is a reference to a specific I2C configuration that
describes the characteristics of the device to communicate with. Connect
this configuration reference into a property node to set the specific
configuration parameters.

num bytes to read specifies the number of bytes to read from the I2C slave.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-15 NI-845x Hardware and Software Manual

Outputs

device reference out is a reference to the NI 845x device after this VI runs.

i2c configuration out is a reference to the I2C configuration after this VI
runs.

read data contains an array of read data from the I2C slave.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Read.vi to read an array of data from an I2C slave device. Per the NXP I2C
Specification, each byte read up to the last byte is acknowledged. The last byte is not
acknowledged. This VI first waits for the I2C bus to be free. If the I2C bus is not free within
the one second timeout of your NI 845x device, an error is returned. If the bus is free before
the timeout, the NI 845x device executes a 7 or 10-bit I2C read transaction, per the NXP I2C
Specification. The address type (7 or 10-bit) and other configuration parameters are specified
by the configuration wired into i2c configuration in. If the NI 845x device tries to access the
bus at the same time as another I2C master device and loses arbitration, the read transaction
is terminated and an error is returned. If the address of the transaction is not acknowledged
by the slave device, the NI 845x device ACK polls as specified in i2c configuration in. (Refer
to the I2C ACK Polling section in Chapter 1, Introduction, for more information about ACK
polling.) Otherwise, the transaction is completed, and a stop condition is generated per the
NXP I2C Specification.

Before using NI-845x I2C Read.vi, you need to ensure that the configuration parameters
specified in i2c configuration in are correct for the device you want to access.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-16 ni.com

NI-845x I2C Write.vi

Purpose
Writes an array of data to an I2C slave device.

Inputs

device reference in is a reference to an NI 845x device.

i2c configuration in is a reference to a specific I2C configuration that
describes the characteristics of the device to communicate with. Connect
this configuration reference into a property node to set the specific
configuration parameters.

write data contains an array of data to write to the I2C slave.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-17 NI-845x Hardware and Software Manual

Outputs

device reference out is a reference to the NI 845x device after this VI runs.

i2c configuration out is a reference to the I2C configuration after this VI
runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Write.vi to write an array of data to an I2C slave device. This VI first waits
for the I2C bus to be free. If the I2C bus is not free within the one second timeout of your
NI 845x device, an error is returned. If the bus is free before the timeout, the NI 845x device
executes a 7 or 10-bit I2C write transaction, per the NXP I2C Specification. The address type
(7 or 10-bit) and other configuration parameters are specified by the configuration wired into
i2c configuration in. If the NI 845x device tries to access the bus at the same time as another
I2C master device and loses arbitration, the write transaction is terminated and an error is
returned. If the slave device does not acknowledge the address, the NI 845x device ACK polls
as specified in i2c configuration in. (Refer to the I2C ACK Polling section in Chapter 1,
Introduction, for more information about ACK polling.) If the slave does not acknowledge
any transaction byte, an error is returned. Otherwise, the transaction is completed, and a stop
condition is generated per the NXP I2C Specification.

Before using NI-845x I2C Write.vi, you need to ensure that the configuration parameters
specified in i2c configuration in are correct for the device you currently want to access.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-18 ni.com

NI-845x I2C Write Read.vi

Purpose
Performs a write followed by read (combined format) on an I2C slave device.

Inputs

device reference in is a reference to an NI 845x device.

i2c configuration in is a reference to a specific I2C configuration that
describes the characteristics of the device to communicate with. Connect
this configuration reference into a property node to set the specific
configuration parameters.

write data contains an array of data to write to the I2C slave.

num bytes to read specifies the number of bytes to read from the I2C slave.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

device reference out is a reference to the NI 845x device after this VI runs.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-19 NI-845x Hardware and Software Manual

i2c configuration out is a reference to the I2C configuration after this VI
runs.

read data contains an array of read data from the I2C slave.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Write Read.vi to perform a write followed by read (combined format)
on an I2C slave device. During the read portion of the transaction, per the NXP I2C
Specification, each byte read up to the last byte is acknowledged. The last byte is not
acknowledged. This VI first waits for the I2C bus to be free. If the I2C bus is not free within
the one second timeout of your NI 845x device, an error is returned. If the bus is free before
the timeout, the NI 845x device executes a 7 or 10-bit I2C write/read transaction. Per the NXP
I2C Specification, the write/read transaction consists of a start–write–restart–read– stop
sequence.

The address type (7 or 10-bit) and other configuration parameters are specified by the
configuration wired into i2c configuration in. If the NI 845x device tries to access the bus
at the same time as another I2C master device and loses arbitration, the read transaction is
terminated and an error is returned. If the slave device does not acknowledge the address, the
NI 845x device ACK polls as specified in i2c configuration in . (Refer to the I2C ACK Polling
section in Chapter 1, Introduction, for more information about ACK polling.) If the read
address or a byte write within the transaction is not acknowledged, an error is returned.
Otherwise, the transaction is completed and a stop condition is generated per the NXP I2C
Specification. It should be noted that this type of combined transaction is provided because it
is commonly used (for example, with EEPROMs). The NXP I2C Specification provides
flexibility in the construction of I2C transactions. The NI-845x I2C scripting VIs allow
creating and customizing complex I2C transactions as needed.

Before using NI-845x I2C Write Read.vi, you need to ensure that the configuration
parameters specified in i2c configuration in are correct for the device you want to access.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-20 ni.com

Scripting

NI-845x I2C Create Script Reference.vi

Purpose
Creates a new NI-845x I2C script.

Inputs

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

i2c script reference is a reference to the newly created NI-845x I2C script.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-21 NI-845x Hardware and Software Manual

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Create Script Reference.vi to create a new script to use with the NI-845x
I2C Scripting API. Pass the reference to I2C script functions to create the script. Then, call
NI-845x I2C Run Script.vi to execute your script on your NI 845x device. After you finish
executing your script, use NI-845x Close Reference.vi to delete the script.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-22 ni.com

NI-845x I2C Extract Script Read Data.vi

Purpose
Extracts the desired read data from an I2C script, referenced by i2c script reference in, which
has been processed by NI-845x I2C Run Script.vi. Each script read command (NI-845x I2C
Script Read.vi, NI-845x I2C Script DIO Read Port.vi, NI-845x I2C Script DIO Read
Line.vi) returns a script read index. Data may be extracted for each script read index in a
script, by wiring each to a separate NI-845x I2C Extract Script Read Data.vi.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

script read index identifies the read in the script whose data should be
extracted.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-23 NI-845x Hardware and Software Manual

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

read data is the data returned for the script command specified by script
read index.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Extract Script Read Data.vi to extract the desired read data from an I2C
script, referenced by i2c script reference in, which has been processed by NI-845x I2C Run
Script.vi. Each I2C script read command (NI-845x I2C Script Read.vi, NI-845x I2C Script
DIO Read Port.vi, NI-845x I2C Script DIO Read Line.vi) returns a script read index.

Data may be extracted for each script read in different ways. For example, you can wire the
script read index output of each script read VI to its own NI-845x I2C Extract Script Read
Data.vi. You can also place NI-845x I2C Extract Script Read Data.vi in a For Loop and
wire the loop iteration terminal to the script read index input. Add one to the script read
index output of the last read and wire this value to the loop count terminal. The output of the
For Loop will be an array of read data arrays.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-24 ni.com

NI-845x I2C Run Script.vi

Purpose
Executes an I2C script referenced by i2c script reference in on the device referenced by
device reference in.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

device reference in is a reference to an NI 845x device.

port specifies the I2C port this script runs on.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-25 NI-845x Hardware and Software Manual

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

device reference out is a reference to the NI 845x device after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Run Script.vi to execute an I2C script referenced by i2c script reference
in on the device referenced by device reference in. You must first create an I2C script using
the I2C scripting VIs. Next, you wire its script reference into i2c script reference in. If you
have multiple NI 845x devices installed in your system, you can select which device to write
your I2C script to by wiring its device reference to device reference in. If your NI 845x device
supports multiple I2C ports, you can also select which port to write your I2C script to. For
single I2C port NI 845x devices, you must use the default port (0). In this way, you can create
one script to run on various NI 845x devices, on various I2C ports within those devices.
NI-845x I2C Run Script.vi loads and executes your I2C script on the NI 845x device and I2C
port you specify, then returns success or error. If your script contained any read commands,
you may use NI-845x I2C Extract Script Read Data.vi to extract the read data after
executing NI-845x I2C Run Script.vi.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-26 ni.com

NI-845x I2C Script ACK Poll Timeout.vi

Purpose
Adds an I2C Script ACK Poll Timeout command to an I2C script referenced by i2c script
reference in. This command sets the I2C ACK poll timeout.

Inputs

i2c script reference in is a reference to an I2C script run on an NI 845x
device.

ACK poll timeout specifies the timeout for ACK poll in milliseconds.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-27 NI-845x Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C ACK Poll Timeout.vi to add an I2C ACK Poll Timeout command to an I2C
script referenced by i2c script reference in. This command sets the I2C ACK poll timeout
when you use NI-845x I2C Run Script.vi to execute the script. When ACK poll timeout is
zero, ACK polling is disabled. A nonzero ACK poll timeout causes NI-845x I2C Script
Address+Write.vi and NI-845x I2C Script Address+Read.vi to ACK poll until an
acknowledge (ACK) is detected or the timeout is reached. If enabled, ACK polling occurs
after either a start condition or a restart condition. ACK poll timeout persists throughout the
script and is reset to the default (0) at the end of the script.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-28 ni.com

NI-845x I2C Script Address+Read.vi

Purpose
Adds an I2C Script Address+Read command to an I2C script referenced by i2c script
reference in. This command writes a 7-bit address to the I2C bus. The direction bit is
internally set to 1 for read.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

address specifies the 7-bit address to read. For 7-bit device addressing, the
NXP I2C Specification defines a 7-bit slave address and a direction bit.
During the address phase of an I2C transaction, these values are sent
across the bus as one byte (slave address in bits 7–1, direction in bit 0).
The NI-845x software follows the convention used in the NXP I2C
Specification and defines an address for a 7-bit device as a 7-bit value.
The NI-845x software internally sets the direction bit to the correct value,
depending on the function (write or read). Some manufacturers specify the
address for their 7-bit device as a byte. In such cases, bits 7–1 contain the
slave address, and bit 0 contains the direction. When using the NI-845x
software, discard the direction bit and right-shift the byte value by one to
create the 7-bit address.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-29 NI-845x Hardware and Software Manual

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script Address+Read.vi to add an I2C Script Address+Read command to
an I2C script referenced by i2c script reference in. This command writes a 7-bit address to
the I2C bus connected to the I2C port you specify when you use NI-845x I2C Run Script.vi
to execute the script. The direction bit is internally set to 1 for read. This command assumes
that a start condition has been previously issued to the I2C bus using an I2C script start
command. It clocks out the 7-bit address and direction bit and then waits for a slave device on
the I2C bus to acknowledge or not acknowledge the address. If a slave does not acknowledge
the address, the NI 845x device ACK polls as set in NI-845x I2C Script ACK Poll
Timeout.vi. (Refer to the I2C ACK Polling section in Chapter 1, Introduction, for more
information about ACK polling.)

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-30 ni.com

NI-845x I2C Script Address+Write.vi

Purpose
Adds an I2C Script Address+Write command to an I2C script referenced by i2c script
reference in. This command writes a 7-bit address to the I2C bus. The direction bit is
internally set to 0 for write.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

address specifies the 7-bit address to write. For 7-bit device addressing, the
NXP I2C Specification defines a 7-bit slave address and a direction bit.
During the address phase of an I2C transaction, these values are sent
across the bus as one byte (slave address in bits 7–1, direction in bit 0).
The NI-845x software follows the convention used in the NXP I2C
Specification and defines an address for a 7-bit device as a 7-bit value.
The NI-845x software internally sets the direction bit to the correct value,
depending on the function (write or read). Some manufacturers specify the
address for their 7-bit device as a byte. In such cases, bits 7–1 contain the
slave address, and bit 0 contains the direction. When using the NI-845x
software, discard the direction bit and right-shift the byte value by one to
create the 7-bit address.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-31 NI-845x Hardware and Software Manual

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script Address+Write.vi to add an I2C Script Address+Write command
to an I2C script referenced by i2c script reference in. This command writes a 7-bit address
to the I2C bus connected to the I2C port you specify when you use NI-845x I2C Run Script.vi
to execute the script. The direction bit is internally set to 0 for write. This command assumes
that a start condition has been previously issued to the I2C bus using an I2C script start
command. It clocks out the 7-bit address and direction bit and then waits for a slave device on
the I2C bus to acknowledge or not acknowledge the address. If a slave does not acknowledge
the address, the NI 845x device ACK polls as set in NI-845x I2C Script ACK Poll
Timeout.vi. (Refer to the I2C ACK Polling section in Chapter 1, Introduction, for more
information about ACK polling.)

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-32 ni.com

NI-845x I2C Script Clock Rate.vi

Purpose
Adds an I2C Script Clock Rate command to an I2C script referenced by i2c script reference
in. This command sets the I2C clock rate.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

clock rate in kHz specifies the I2C clock rate. Refer to Chapter 3, NI
USB-845x Hardware Overview, to determine which clock rates your
NI 845x device supports.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-33 NI-845x Hardware and Software Manual

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script Clock Rate.vi to add an I2C Script Clock Rate command to an I2C
script referenced by i2c script reference in. This command sets the I2C clock rate for the I2C
port you specify when you use NI-845x I2C Run Script.vi to execute the script. The NI 845x
device can clock data only at specific rates. If the selected rate is not one of the rates your
hardware supports, the NI-845x driver adjusts it down to a supported rate and generates a
warning. If the selected rate is lower than all supported rates, an error is generated.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-34 ni.com

NI-845x I2C Script Delay (Microsecond).vi

Purpose
Adds an I2C Script Delay command to an I2C script referenced by i2c script reference in.
This command adds a microsecond delay after the previous I2C script command.

Inputs

i2c script reference in is a reference to an I2C script run on an NI 845x
device.

delay in microseconds specifies the desired delay.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-35 NI-845x Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script Delay.vi to add an I2C Script µs Delay command to an I2C script
referenced by i2c script reference in. This command adds a microsecond delay after the
previous I2C script command.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-36 ni.com

NI-845x I2C Script Delay (Millisecond).vi

Purpose
Adds an I2C Script Delay command to an I2C script referenced by i2c script reference in.
This command adds a millisecond delay after the previous I2C script command.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

delay in milliseconds specifies the desired delay.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-37 NI-845x Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script Delay.vi to add an I2C Script ms Delay command to an I2C script
referenced by i2c script reference in. This command adds a millisecond delay after the
previous I2C script command.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-38 ni.com

NI-845x I2C Script DIO Configure Line.vi

Purpose
Adds an I2C Script DIO Configure Line command to an I2C script referenced by i2c script
reference in. This command configures a DIO line on an NI 845x device.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

port number specifies the DIO port that contains the line number.

line number specifies the DIO line to configure.

configuration specifies the line configuration. configuration uses the
following values:

input The line is configured for input.

output The line is configured for output.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-39 NI-845x Hardware and Software Manual

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script DIO Configure Line.vi to add an I2C Script DIO Configure Line
command to an I2C script referenced by i2c script reference in. This command allows you
to configure one line, specified by line number, of a byte-wide DIO port, as an input or
output. For NI 845x devices with multiple DIO ports, use the port number input to select
the desired port. For NI 845x devices with one DIO port, port number must be left at the
default (0).

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-40 ni.com

NI-845x I2C Script DIO Configure Port.vi

Purpose
Adds an I2C Script DIO Configure Port command to an I2C script referenced by i2c script
reference in. This command configures a DIO port on an NI 845x device.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

port number specifies the DIO port to configure.

configuration value is a bitmap that specifies the function of each
individual line of a port. If bit x = 1, line x is an output. If bit x = 0, line x is
an input.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-41 NI-845x Hardware and Software Manual

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script DIO Configure Port.vi to add an I2C Script DIO Configure Port
command to an I2C script referenced by i2c script reference in. This command allows
you to configure all eight lines of a byte-wide DIO port. Setting a bit to 1 configures the
corresponding DIO port line for output. Setting a bit to 0 configures the corresponding port
line for input. For NI 845x devices with multiple DIO ports, use the port number input to
select the port to configure. For NI 845x devices with one DIO port, port number must be
left at the default (0).

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-42 ni.com

NI-845x I2C Script DIO Read Line.vi

Purpose
Adds an I2C Script DIO Read Line command to an I2C script referenced by i2c script
reference in. This command reads from a DIO line on an NI 845x device.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

port number specifies the DIO port that contains the line number.

line number specifies the DIO line to read.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-43 NI-845x Hardware and Software Manual

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

script read index is the index of the read command within the script. It is
used as an input into NI-845x I2C Extract Script Read Data.vi.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script DIO Read Line.vi to add an I2C Script DIO Read command to an
I2C script referenced by i2c script reference in. This command allows you to read one line,
specified by line number, of a byte-wide DIO port. For NI 845x devices with multiple DIO
ports, use the port number input to select the desired port. For NI 845x devices with one DIO
port, port number must be left at the default (0).

To obtain the logic level read from the specified DIO port line, wire script read index to
NI-845x I2C Extract Script Read Data.vi after script execution. If NI-845x I2C Extract
Script Read Data.vi returns 0, the logic level read on the specified line was low. If
NI-845x I2C Extract Script Read Data.vi returns 1, the logic level read on the specified
line was high.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-44 ni.com

NI-845x I2C Script DIO Read Port.vi

Purpose
Adds an I2C Script DIO Read Port command to an I2C script referenced by i2c script
reference in. This command reads from a DIO port on an NI 845x device.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

port number specifies the DIO port to read.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

script read index is the index of the read command within the script. It is
used as an input into NI-845x I2C Extract Script Read Data.vi.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-45 NI-845x Hardware and Software Manual

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script DIO Read Port.vi to add an I2C Script DIO Read Port command to
an I2C script referenced by i2c script reference in. This command allows you to read all
8 bits on a byte-wide DIO port. For NI 845x devices with multiple DIO ports, use the port
number input to select the desired port. For NI 845x devices with one DIO port, port number
must be left at the default (0).

To obtain the data byte read from the specified DIO port, wire script read index to NI-845x
I2C Extract Script Read Data.vi after script execution, which returns the data byte read by
this script command.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-46 ni.com

NI-845x I2C Script DIO Write Line.vi

Purpose
Adds an I2C Script DIO Write Line command to an I2C script referenced by i2c script
reference in. This command writes to a DIO line on an NI 845x device.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

port number specifies the DIO port that contains the line number.

line number specifies the DIO line to write.

write value specifies the value to write to the line. write value uses the
following values:

0 (Logic Low) The line is set to the logic low state.

1 (Logic High) The line is set to the logic high state.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-47 NI-845x Hardware and Software Manual

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script DIO Write Line.vi to add an I2C Script DIO Write Line command
to an I2C script referenced by i2c script reference in. This command allows you to write one
line, specified by line number, of a byte-wide DIO port. If write value is 1, the specified
line’s output is driven to a high logic level. If write value is 0, the specified line’s output is
driven to a low logic level. For NI 845x devices with multiple DIO ports, use the port number
input to select the desired port. For NI 845x devices with one DIO port, port number must
be left at the default (0).

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-48 ni.com

NI-845x I2C Script DIO Write Port.vi

Purpose
Adds an I2C Script DIO Write Port command to an I2C script referenced by i2c script
reference in. This command writes to a DIO port on an NI 845x device.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

port number specifies the DIO port to write.

write value is the value to write to the DIO port. Only lines configured for
output are updated.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-49 NI-845x Hardware and Software Manual

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script DIO Write Port.vi to add an I2C Script DIO Write Port command
to an I2C script referenced by i2c script reference in. This command allows you to write all
8 bits on a byte-wide DIO port. For NI 845x devices with multiple DIO ports, use the port
number input to select the desired port. For NI 845x devices with one DIO port, port number
must be left at the default (0).

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-50 ni.com

NI-845x I2C Script Pullup Enable.vi

Purpose
Adds an I2C Script Pullup Enable command to an I2C script referenced by i2c script
reference in. This command enables or disables the internal pullups on an NI 845x device.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

pullup enable controls the enabled state of the internal pullups.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-51 NI-845x Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script Pullup Enable.vi to add an I2C Script Pullup Enable command to
an I2C script referenced by i2c script reference in. Use this command to set the status of
onboard pullups for I2C operations. The pullup resistors pull SDA and SCL up to I/O Voltage
Level.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-52 ni.com

NI-845x I2C Script HS Enable.vi

Purpose
Adds an I2C Script HS Enable command to an I2C script referenced by i2c script reference
in. This command enables or disables High Speed mode on an NI 845x device.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

hs enable sets the High Speed mode to enabled or disabled on an NI 845x
device.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-53 NI-845x Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI 845x I2C Script HS Enable.vi to add an I2C Script HS Enable command to an I2C
script referenced by i2c script reference in. Use this command to enable High Speed mode.
High Speed mode must be enabled to use the High Speed clock rate or the High Speed master
code.

High Speed mode is described in the NXP I2C Specification.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-54 ni.com

NI-845x I2C Script HS Master Code.vi

Purpose
Adds an I2C Script HS Master Code command to an I2C script referenced by i2c script
reference in. This command transfers the master code for High Speed mode on an NI 845x
device.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

hs master code sets the lower 3 bits of the master code on the NI 845x
device.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-55 NI-845x Hardware and Software Manual

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI 845x I2C HS Master Code.vi to add an I2C Script HS Master Code command to an
I2C script referenced by i2c script reference in. This command writes a master code to the
I2C bus connected to the I2C port you specify when you use NI-845x I2C Run Script.vi
to execute the script. This command assumes that a start condition previously has been
issued to the I2C bus using an I2C script start command. The master code is internally set
to 00001XXX. The lower three bits are set using the I2C Script HS Master Code command.
After the master code is transferred, the device waits for the slave device on the I2C bus to
acknowledge or not acknowledge the master code. If a slave acknowledges the master code,
NI-845x I2C Run Script.vi exits with an error.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-56 ni.com

NI-845x I2C Script HS Clock Rate.vi

Purpose
Adds an I2C Script HS Clock Rate command to an I2C script referenced by i2c script
reference in. This command sets the I2C High Speed clock rate.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

hs clock rate specifies the I2C High Speed clock rate. Refer to Appendix A,
NI USB-845x Hardware Specifications, to determine which clock rates
your NI 845x device supports.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-57 NI-845x Hardware and Software Manual

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script HS Clock Rate.vi to add an I2C Script High Speed Clock Rate
command to an I2C script referenced by i2c script reference in. This command sets the I2C
High Speed clock rate for the I2C port you specify when you use NI-845x I2C Run Script.vi
to execute the script. The NI 845x device can clock data only at specific rates. If the selected
rate is not one of the rates your hardware supports, the NI-845x driver adjusts it down to a
supported rate and generates a warning. If the selected rate is lower than all supported rates,
an error is generated.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-58 ni.com

NI-845x I2C Script Issue Start.vi

Purpose
Adds an I2C Script Issue Start command to an I2C script referenced by i2c script reference
in. This command issues a start condition on the I2C bus.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-59 NI-845x Hardware and Software Manual

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script Issue Start.vi to add an I2C Script Issue Start command to an I2C
script referenced by i2c script reference in. This command issues a start condition on the I2C
bus connected to the I2C port you specify when you use NI-845x I2C Run Script.vi to
execute the script. This command first waits for the I2C bus to be free. If the I2C bus is not
free within the one second timeout of your NI 845x device, an error is returned when NI-845x
I2C Run Script.vi is executed. If the bus is free before the timeout, the NI 845x device issues
the start condition on the I2C bus connected to the specified I2C port. This command should
also be used to issue a restart condition within an I2C transaction.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-60 ni.com

NI-845x I2C Script Issue Stop.vi

Purpose
Adds an I2C Script Issue Stop command to an I2C script referenced by i2c script reference
in. This command issues a stop condition on the I2C bus.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-61 NI-845x Hardware and Software Manual

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script Issue Stop.vi to add an I2C Script Issue Stop command to an I2C
script referenced by i2c script reference in. This command issues a stop condition on the I2C
bus connected to the I2C port you specify when you use NI-845x I2C Run Script.vi to
execute the script. Per the NXP I2C Specification, all I2C transactions must be terminated with
a stop condition.

NI-845x I2C Script Read.vi

Purpose
Adds an I2C Script Read command to an I2C script referenced by i2c script reference in. This
command reads an array of data from an I2C slave device.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

num bytes to read specifies the number of bytes to read from an I2C slave.

NAK Last Byte? sets whether the last byte read is acknowledged (FALSE)
or not acknowledged (TRUE) by the I2C interface. If NAK Last Byte? is
TRUE, all bytes up to the last byte read are acknowledged. The last byte
read is not acknowledged. If NAK Last Byte? is FALSE, all bytes are
acknowledged.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-63 NI-845x Hardware and Software Manual

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

script read index is the index of the read command within the script. It is
used as an input into NI-845x I2C Extract Script Read Data.vi.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script Read.vi to add an I2C Script Read command to an I2C script
referenced by i2c script reference in. This command reads an array of data from a device
connected to the I2C port you specify when you use NI-845x I2C Run Script.vi to execute
the script. This command assumes that a start condition and address+read condition have been
issued to the I2C bus using prior I2C script commands. It clocks in num bytes to read bytes
from the I2C slave device, acknowledging each byte up to the last one. Depending on the
type of I2C transaction you want to build, you may want to acknowledge (ACK) or not
acknowledge (NAK) the last data byte read, which you can specify with the NAK last
byte? input.

To obtain the data read from the specified I2C port, you can wire script read index to NI-845x
I2C Extract Script Read Data.vi after execution of the script, which returns the data read by
this script command.

Chapter 6 NI-845x I2C API for LabVIEW

NI-845x Hardware and Software Manual 6-64 ni.com

NI-845x I2C Script Write.vi

Purpose
Adds an I2C Script Write command to an I2C script referenced by i2c script reference in.
This command writes an array of data to an I2C slave device.

Inputs

i2c script reference in is a reference to an I2C script that is run on an
NI 845x device.

write data contains an array of data to write to the I2C slave.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

i2c script reference out is a reference to the I2C script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 6 NI-845x I2C API for LabVIEW

© National Instruments 6-65 NI-845x Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Script Write.vi to add an I2C Script Write command to an I2C script
referenced by i2c script reference in. This command writes an array of data to an I2C slave
device connected to the I2C port you specify when you use NI-845x I2C Run Script.vi to
execute the script. This command assumes that a start condition and address+write condition
have been issued to the I2C bus using prior I2C script commands. It clocks the write data
array into the I2C slave device, testing for a slave device acknowledge after transmission of
each byte. If a slave does not acknowledge a byte, NI-845x I2C Run Script.vi exits with an
error.

© National Instruments 7-1 NI-845x Hardware and Software Manual

7
NI-845x I2C API for C

This chapter lists the functions for the NI-845x I2C API and describes the format, purpose,
and parameters for each function. The functions are listed alphabetically in four categories:
general device, configuration, basic, and scripting.

Section Headings
The NI-845x I2C API for C functions include the following section headings.

Purpose
Each function description includes a brief statement of the function purpose.

Format
The format section describes the function format for the C programming language.

Inputs and Outputs
These sections list the function input and output parameters.

Description
The description section gives details about the purpose and effect of each function.

Data Types
The NI-845x I2C API for C functions use the following data types.

Data Type Purpose

uInt8 8-bit unsigned integer

uInt16 16-bit unsigned integer

uInt32 32-bit unsigned integer

int8 8-bit signed integer

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-2 ni.com

List of Functions
The following table contains an alphabetical list of the NI-845x I2C API for C functions.

int16 16-bit signed integer

int32 32-bit signed integer

uInt8 * Pointer to an 8-bit unsigned integer

uInt16 * Pointer to a 16-bit unsigned integer

uInt32 * Pointer to a 32-bit unsigned integer

int8 * Pointer to an 8-bit signed integer

int16 * Pointer to a 16-bit signed integer

int32 * Pointer to a 32-bit signed integer

char * ASCII string represented as an array of characters terminated
by null character ('\0')

NiHandle Operating system independent handle

Function Purpose

ni845xClose Closes a previously opened NI 845x
device.

ni845xCloseFindDeviceHandle Closes the handles created by
ni845xFindDevice.

ni845xDeviceLock Locks NI 845x devices for access by a
single thread.

ni845xDeviceUnlock Unlocks NI 845x devices.

ni845xFindDevice Finds an NI 845x device and returns the
total number of NI 845x devices present.
You can find subsequent devices using
ni845xFindDeviceNext.

ni845xFindDeviceNext Finds subsequent devices after
ni845xFindDevice has been called.

ni845xI2cConfigurationClose Closes an NI-845x I2C I/O configuration.

Data Type Purpose

Chapter 7 NI-845x I2C API for C

© National Instruments 7-3 NI-845x Hardware and Software Manual

ni845xI2cConfigurationGetAckPollTimeout Retrieves the configuration’s ACK poll
timeout in milliseconds.

ni845xI2cConfigurationGetAddress Retrieves the configuration’s address.

ni845xI2cConfigurationGetAddressSize Retrieves the configuration’s address size.

ni845xI2cConfigurationGetClockRate Retrieves the configuration’s clock rate in
kilohertz.

ni845xI2cConfigurationGetHSClockRate Retrieves the configuration’s High Speed
clock rate in kilohertz.

ni845xI2cConfigurationGetHSEnable Retrieves the configuration’s High Speed
enable setting.

ni845xI2cConfigurationGetHSMasterCode Retrieves the configuration’s High Speed
master code.

ni845xI2cConfigurationGetPort Retrieves the configuration’s port value.

ni845xI2cConfigurationOpen Creates a new NI-845x I2C configuration.

ni845xI2cConfigurationSetAckPollTimeout Sets the configuration’s ACK poll timeout
in milliseconds.

ni845xI2cConfigurationSetAddress Sets the configuration’s address.

ni845xI2cConfigurationSetAddressSize Sets the configuration’s address size.

ni845xI2cConfigurationSetClockRate Sets the configuration’s clock rate in
kilohertz.

ni845xI2cConfigurationSetHSClockRate Sets the configuration’s High Speed clock
rate in kilohertz.

ni845xI2cConfigurationSetHSEnable Sets the configuration’s High Speed
enable setting.

ni845xI2cConfigurationSetHSMasterCode Sets the configuration’s High Speed
master code.

ni845xI2cConfigurationSetPort Sets the configuration’s port number.

ni845xI2cRead Reads an array of data from an I2C slave
device.

Function Purpose

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-4 ni.com

ni845xI2cScriptAckPollTimeout Adds an I2C Script ACK Poll Timeout
command to an I2C script referenced by
ScriptHandle. This command sets the
I2C ACK poll timeout.

ni845xI2cScriptAddressRead Adds an I2C Script Address+Read
command to an I2C script referenced by
ScriptHandle. This command writes a
7-bit address to the I2C bus. The direction
bit is internally set to 1 for read. If the
ACK poll timeout is nonzero, this
command performs ACK polling.

ni845xI2cScriptAddressWrite Adds an I2C Script Address+Write
command to an I2C script referenced by
ScriptHandle. This command writes a
7-bit address to the I2C bus. The direction
bit is internally set to 0 for write. If the
ACK poll timeout is nonzero, this
command performs ACK polling.

ni845xI2cScriptClockRate Adds an I2C Script Clock Rate
command to an I2C script referenced by
ScriptHandle. This command sets the
I2C clock rate.

ni845xI2cScriptClose Closes an I2C script.

ni845xI2cScriptDelay Adds an I2C Script Delay command to an
I2C script referenced by ScriptHandle.
This command adds a millisecond delay
after the previous I2C script command.

ni845xI2cScriptDioConfigureLine Adds an I2C Script DIO Configure Line
command to an I2C script referenced by
ScriptHandle. This command
configures a DIO line on an NI 845x
device.

ni845xI2cScriptDioConfigurePort Adds an I2C Script DIO Configure Port
command to an I2C script referenced by
ScriptHandle. This command
configures a DIO port on an NI 845x
device.

Function Purpose

Chapter 7 NI-845x I2C API for C

© National Instruments 7-5 NI-845x Hardware and Software Manual

ni845xI2cScriptDioReadLine Adds an I2C Script DIO Read Line
command to an I2C script referenced by
ScriptHandle. This command reads
from a DIO line on an NI 845x device.

ni845xI2cScriptDioReadPort Adds an I2C Script DIO Read Port
command to an I2C script referenced by
ScriptHandle. This command reads
from a DIO port on an NI 845x device.

ni845xI2cScriptDioWriteLine Adds an I2C Script DIO Write Line
command to an I2C script referenced by
ScriptHandle. This command writes to
a DIO line on an NI 845x device.

ni845xI2cScriptDioWritePort Adds an I2C Script DIO Write Port
command to an I2C script referenced by
ScriptHandle. This command writes to
a DIO port on an NI 845x device.

ni845xI2cScriptPullupEnable Adds an I2C Script Pullup Enable
command to an I2C script referenced by
ScriptHandle. This command enables
or disables the internal I2C pullup
resistors. The pullups connect to
ni845xSetIoVoltageLevel.

ni845xI2cScriptExtractReadData Extracts the desired read data from an I2C
script, referenced by ScriptHandle,
which has been processed by
ni845xI2cScriptRun. Each script read
command (ni845xI2cScriptRead,
ni845xI2cScriptDioReadPort,
ni845xI2cScriptDioReadLine)
returns a script read index. You can
extract data for each script read index
in a script, by passing each index to
ni845xI2cScriptExtractReadData.

Function Purpose

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-6 ni.com

ni845xI2cScriptExtractReadDataSize Retrieves the read data size from an I2C
script, referenced by ScriptHandle,
which has been processed by
ni845xI2cScriptRun. Each script read
command (ni845xI2cScriptRead,
ni845xI2cScriptDioReadPort,
ni845xI2cScriptDioReadLine)
returns a script read index. You can
extract data for each script read index
in a script, by passing each index to
ni845xI2cScriptExtractReadData.

ni845xI2cScriptHSEnable Adds an I2C Script HS Enable command
to an I2C script referenced by
ScriptHandle. This command enables
the I2C port to run in high-speed mode.

ni845xI2cScriptHSMasterCode Adds an I2C Script HS Master Code
command to an I2C script referenced by
ScriptHandle. This command
configures the I2C master code, which is
used to initiate High Speed I2C mode.

ni845xI2cScriptHSClockRate Adds an I2C Script HS Clock Rate
command to an I2C script referenced by
ScriptHandle. This command sets the
High Speed I2C clock rate.

ni845xI2cScriptIssueStart Adds an I2C Script Issue Start command
to an I2C script indicated by
ScriptHandle. This command issues a
start condition on the I2C bus.

ni845xI2cScriptIssueStop Adds an I2C Script Issue Stop command
to an I2C script referenced by
ScriptHandle. This command issues a
stop condition on the I2C bus.

ni845xI2cScriptOpen Opens an empty I2C script to begin
adding commands to.

Function Purpose

Chapter 7 NI-845x I2C API for C

© National Instruments 7-7 NI-845x Hardware and Software Manual

ni845xI2cScriptRead Adds an I2C Script Read command to an
I2C script referenced by ScriptHandle.
This command reads an array of data
from an I2C slave device.

ni845xI2cScriptReset Resets an I2C script referenced by
ScriptHandle to an empty state.

ni845xI2cScriptRun Sends the I2C script to the desired NI
845x device, which then interprets and
runs it.

ni845xI2cScriptUsDelay Adds an I2C Script µs Delay command
to an I2C script referenced by
ScriptHandle. This command adds a
microsecond delay after the previous I2C
script command.

ni845xI2cScriptWrite Adds an I2C Script Write command to an
I2C script referenced by ScriptHandle.
This command writes an array of data to
an I2C slave device.

ni845xI2cSetPullupEnable Enables or disables the onboard I2C
pullups.

ni845xI2cWrite Writes an array of data to an I2C slave
device.

ni845xI2cWriteRead Performs a write followed by read
(combined format) on an I2C slave device.

ni845xOpen Opens an NI 845x device for use with
various write, read, and device property
functions.

ni845xSetIoVoltageLevel Sets the voltage level of the NI-845x I/O
pins (DIO/SPI/VioRef).

ni845xSetTimeout Sets the global timeout value.

ni845xStatusToString Converts a status code into a descriptive
string.

Function Purpose

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-8 ni.com

General Device

ni845xClose

Purpose
Closes a previously opened NI 845x device.

Format
int32 ni845xClose(NiHandle DeviceHandle);

Inputs
NiHandle DeviceHandle

Device handle to be closed.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xClose to close a device handle previously opened by ni845xOpen. Passing an
invalid handle to ni845xClose is ignored.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-9 NI-845x Hardware and Software Manual

ni845xCloseFindDeviceHandle

Purpose
Closes the handles created by ni845xFindDevice.

Format
int32 ni845xCloseFindDeviceHandle (

NiHandle FindDeviceHandle
);

Inputs
NiHandle FindDeviceHandle

Describes a find list. ni845xFindDevice creates this parameter.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xCloseFindDeviceHandle to close a find list. In this process, all allocated data
structures are freed.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-10 ni.com

ni845xDeviceLock

Purpose
Locks NI 845x devices for access by a single thread.

Format
int32 ni845xDeviceLock(NiHandle DeviceHandle);

Inputs
NiHandle DeviceHandle

Device handle to be locked.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
This function locks NI 845x devices and prevents multiple processes or threads from
accessing the device until the process or thread that owns the device lock calls an equal
number of ni845xDeviceUnlock calls. Any thread or process that attempts to call
ni845xDeviceLock when the device is already locked is forced to sleep by the
operating system. This is useful for when multiple Basic API device accesses must occur
uninterrupted by any other processes or threads. If a thread exits without fully unlocking
the device, the device is unlocked. If a thread is the current owner of the lock, and calls
ni845xDeviceLock again, the thread will not deadlock itself, but care must be taken to call
ni845xDeviceUnlock for every ni845xDeviceLock called. This function can possibly
lock a device indefinitely: If a thread never calls ni845xDeviceUnlock, or fails to call
ni845xDeviceUnlock for every ni845xDeviceLock call, and never exits, other processes
and threads are forced to wait. This is not recommended for users unfamiliar with threads or
processes. A simpler alternative is to use scripts. Scripts provide the same capability to ensure
transfers are uninterrupted, and with possible performance benefits.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-11 NI-845x Hardware and Software Manual

ni845xDeviceUnlock

Purpose
Unlocks NI 845x devices.

Format
int32 ni845xDeviceUnlock(NiHandle DeviceHandle);

Inputs
NiHandle DeviceHandle

Device handle to be unlocked.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xDeviceUnlock to unlock access to an NI 845x device previously locked with
ni845xDeviceLock. Every call to ni845xDeviceLock must have a corresponding call to
ni845xDeviceUnlock. Refer to ni845xDeviceLock for more details regarding how to
use device locks.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-12 ni.com

ni845xFindDevice

Purpose
Finds an NI 845x device and returns the total number of NI 845x devices present. You can find
subsequent devices using ni845xFindDeviceNext.

Format
int32 ni845xFindDevice (

char * pFirstDevice,
NiHandle * pFindDeviceHandle,
uInt32 * pNumberFound
);

Inputs
None.

Outputs
char * pFirstDevice

A pointer to the string containing the first NI 845x device found. You can pass this name
to the ni845xOpen function to open the device. If no devices exist, this is an empty
string.

NiHandle * pFindDeviceHandle

Returns a handle identifying this search session. This handle is used as an input in
ni845xFindDeviceNext and ni845xCloseFindDeviceHandle.

uInt32 * pNumberFound

A pointer to the total number of NI 845x devices found in the system. You can use this
number in conjunction with the ni845xFindDeviceNext function to find a particular
device. If no devices exist, this returns 0.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xFindDevice to get a single NI 845x device and the number of NI 845x devices
in the system. You can then pass the string returned to ni845xOpen to access the device. If
you must discover more devices, use ni845xFindDeviceNext with pFindDeviceHandle

Chapter 7 NI-845x I2C API for C

© National Instruments 7-13 NI-845x Hardware and Software Manual

and pNumberFound to find the remaining NI 845x devices in the system. After finding all
desired devices, call ni845xCloseFindDeviceHandle to close the device handle and
relinquish allocated resources.

Note pFirstDevice must be at least 256 bytes.

Note pFindDeviceHandle and pNumberFound are optional parameters. If only the first
match is important, and the total number of matches is not needed, you can pass in a NULL
pointer for both of these parameters, and the NI-845x driver automatically calls
ni845xCloseFindDeviceHandle before this function returns.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-14 ni.com

ni845xFindDeviceNext

Purpose
Finds subsequent devices after ni845xFindDevice has been called.

Format
int32 ni845xFindDeviceNext (

NiHandle FindDeviceHandle,
char * pNextDevice
);

Inputs
NiHandle FindDeviceHandle

Describes a find list. ni845xFindDevice creates this parameter.

Outputs
char * pNextDevice

A pointer to the string containing the next NI 845x device found. This is empty if no
further devices are left.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xFindDeviceNext after first calling ni845xFindDevice to find the remaining
devices in the system. You can then pass the string returned to ni845xOpen to access the
device.

Note pNextDevice must be at least 256 bytes.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-15 NI-845x Hardware and Software Manual

ni845xOpen

Purpose
Opens an NI 845x device for use with various write, read, and device property functions.

Format
int32 ni845xOpen (

char * pResourceName,
NiHandle * pDeviceHandle
);

Inputs
char * pResourceName

A resource name string corresponding to the NI 845x device to be opened.

Outputs
NiHandle * pDeviceHandle

A pointer to the device handle.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xOpen to open an NI 845x device for access. The string passed to
ni845xOpen can be any of the following: an ni845xFindDevice device string, an
ni845xFindDeviceNext device string, a Measurement & Automation Explorer resource
name, or a Measurement & Automation Explorer alias.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-16 ni.com

ni845xSetIoVoltageLevel

Purpose
Modifies the voltage output from a DIO port on an NI 845x device.

Format
int32 ni845xSetIoVoltageLevel (

NiHandle DeviceHandle,
uInt8 VoltageLevel
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt8 VoltageLevel

The desired voltage level. VoltageLevel uses the following values:

• kNi845x33Volts (33): The output I/O high level is 3.3 V.

• kNi845x25Volts (25): The output I/O high level is 2.5 V.

• kNi845x18Volts (18): The output I/O high level is 1.8 V.

• kNi845x15Volts (15): The output I/O high level is 1.5 V.

• kNi845x12Volts (12): The output I/O high level is 1.2 V.

The default value of this property is 3.3 V.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSetIoVoltageLevel to modify the board reference voltage of the NI 845x
device. The board reference voltage is used for SPI, I2C, and DIO. Refer to Chapter 3,
NI USB-845x Hardware Overview, to determine the available voltage levels on your
hardware.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-17 NI-845x Hardware and Software Manual

ni845xI2cSetPullupEnable

Purpose
Modifies the voltage output from a DIO port on an NI 845x device.

Format
int32 ni845xI2cSetPullupEnable (

NiHandle DeviceHandle,
uInt8 Enable
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt8 Enable

The setting for the pullup resistors. Enable uses the following values:

• kNi845xPullupDisable (0): Pullups are disabled.

• kNi845xPullupEnable (1): Pullups are enabled.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cPullupEnable to enable or disable the onboard pullup resistors for I2C
operations. The pullup resistors pull SDA and SCL up to ni845xSetIoVoltageLevel.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-18 ni.com

ni845xStatusToString

Purpose
Converts a status code into a descriptive string.

Format
void ni845xStatusToString (

int32 StatusCode,
uInt32 MaxSize,
int8 * pStatusString
);

Inputs
int32 StatusCode

Status code returned from an NI-845x function.

uInt32 MaxSize

Size of the pStatusString buffer (in bytes).

Outputs
int8 * pStatusString

ASCII string that describes StatusCode.

Description
When the status code returned from an NI-845x function is nonzero, an error or warning is
indicated. This function obtains a description of the error/warning for debugging purposes.

The return code is passed into the StatusCode parameter. The MaxSize parameter
indicates the number of bytes available in pStatusString for the description (including
the NULL character). The description is truncated to size MaxSize if needed, but a size of
1024 characters is large enough to hold any description. The text returned in String is
null-terminated, so you can use it with ANSI C functions such as printf.

For applications written in C or C++, each NI-845x function returns a status code as a signed
32-bit integer. The following table summarizes the NI-845x use of this status.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-19 NI-845x Hardware and Software Manual

NI-845x Status Codes

The application code should check the status returned from every NI-845x function. If an
error is detected, you should close all NI-845x handles, then exit the application. If a warning
is detected, you can display a message for debugging purposes, or simply ignore the warning.

In some situations, you may want to check for specific errors in the code and continue
communication when they occur. For example, when communicating to an I2C EEPROM,
you may expect the device to NAK its address during a write cycle, and you may use this
knowledge to poll for when the write cycle has completed.

Status Code Meaning

Negative Error—Function did not perform expected behavior.

Positive Warning—Function executed, but a condition arose that may
require attention.

Zero Success—Function completed successfully.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-20 ni.com

ni845xSetTimeout

Purpose
Modifies the global timeout for operations when using an NI 845x device.

Format
int32 ni845xSetTimeout (

NiHandle DeviceHandle,
uInt32 Timeout
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt32 Timeout

The timeout value in milliseconds. The minimum timeout is 1000 ms (1 second).

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSetTimeout to set the global timeout for the device. This timeout is the
minimum amount of time an I2C, SPI, or DIO operation is allowed to complete.

The default of this property is 30000 (30 seconds).

Note You should set this property higher than the expected I/O time. For the
NI USB-8451, a timeout may leave the device in an unknown state that may require a
power cycle of the device.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-21 NI-845x Hardware and Software Manual

Configuration

ni845xI2cConfigurationClose

Purpose
Closes an I2C I/O configuration.

Format
int32 ni845xI2cConfigurationClose (

NiHandle ConfigurationHandle
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cConfigurationClose to close a configuration.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-22 ni.com

ni845xI2cConfigurationGetAckPollTimeout

Purpose
Retrieves the configuration ACK poll timeout in milliseconds.

Format
int32 ni845xI2cConfigurationGetAckPollTimeout (

NiHandle ConfigurationHandle,
uInt16 * pTimeout
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

Outputs
uInt16 * pTimeout

A pointer to an unsigned 16-bit integer to store the ACK poll timeout in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cConfigurationGetAckPollTimeout to retrieve the I2C ACK poll
timeout in milliseconds.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-23 NI-845x Hardware and Software Manual

ni845xI2cConfigurationGetAddress

Purpose
Retrieves the configuration address.

Format
int32 ni845xI2cConfigurationGetAddress (

NiHandle ConfigurationHandle,
uInt16 * pAddress
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

Outputs
uInt16 * pAddress

A pointer to an unsigned 16-bit integer to store the I2C slave address in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cConfigurationGetAddress to retrieve the I2C configuration slave
address without the direction bit.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-24 ni.com

ni845xI2cConfigurationGetAddressSize

Purpose
Retrieves the configuration address size.

Format
int32 ni845xI2cConfigurationGetAddressSize (

NiHandle ConfigurationHandle,
int32 * pSize
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

Outputs
int32 * pSize

A pointer to an unsigned 32-bit integer to store the address size in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cConfigurationGetAddressSize to retrieve the addressing scheme to use
when addressing the I2C slave device this configuration describes.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-25 NI-845x Hardware and Software Manual

ni845xI2cConfigurationGetClockRate

Purpose
Retrieves the configuration clock rate in kilohertz.

Format
int32 ni845xI2cConfigurationGetClockRate (

NiHandle ConfigurationHandle,
uInt16 * pClockRate
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

Outputs
uInt16 * pClockRate

A pointer to an unsigned 16-bit integer to store the clock rate in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cConfigurationGetClockRate to retrieve the I2C clock rate in kilohertz.
This retrieves the value currently stored in memory, which may not be compatible with your
NI 845x device.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-26 ni.com

ni845xI2cConfigurationGetHSClockRate

Purpose
Retrieves the configuration High Speed clock rate in kilohertz.

Format
int32 ni845xI2cConfigurationGetHSClockRate (

NiHandle ConfigurationHandle,
uInt16 * pHSClockRate
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

Outputs
uInt16 * pHSClockRate

A pointer to an unsigned 16-bit integer to store the clock rate in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cConfigurationGetHSClockRate to retrieve the I2C High Speed clock
rate in kilohertz. This retrieves the value currently stored in memory, which may not be
compatible with your NI 845x device.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-27 NI-845x Hardware and Software Manual

ni845xI2cConfigurationGetHSEnable

Purpose
Retrieves the configuration High Speed enable status.

Format
int32 ni845xI2cConfigurationGetHSEnable (

NiHandle ConfigurationHandle,
uInt16 * pHSEnable
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

Outputs
uInt8 * pHSEnable

A pointer to an unsigned 8-bit integer to store the enabled status in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cConfigurationGetHSEnable to retrieve the configuration High Speed
enable status. This retrieves the value currently stored in memory, which may not be
compatible with your NI 845x device.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-28 ni.com

ni845xI2cConfigurationGetHSMasterCode

Purpose
Retrieves the configuration master code.

Format
int32 ni845xI2cConfigurationGetHSMasterCode (

NiHandle ConfigurationHandle,
uInt8 * pHSMasterCode
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

Outputs
uInt16 * pHSMasterCode

A pointer to an unsigned 8-bit integer to store the master code in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cConfigurationGetHSMasterCode to retrieve the I2C High Speed master
code. This retrieves the value currently stored in memory, which may not be compatible with
your NI 845x device.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-29 NI-845x Hardware and Software Manual

ni845xI2cConfigurationGetPort

Purpose
Retrieves the configuration port value.

Format
int32 ni845xI2cConfigurationGetPort (

NiHandle ConfigurationHandle,
uInt8 * pPort
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

Outputs
uInt8 * pPort

A pointer to an unsigned byte to store the port value in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cConfigurationGetPort to retrieve the I2C port that this configuration
communicates across.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-30 ni.com

ni845xI2cConfigurationOpen

Purpose
Creates a new NI-845x I2C configuration.

Format
int32 ni845xI2cConfigurationOpen (

NiHandle * pConfigurationHandle
);

Inputs
None.

Outputs
NiHandle * pConfigurationHandle

A pointer to an unsigned 32-bit integer to store the configuration handle in. This must not
be NULL.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use this function to create a new configuration to use with the NI-845x I2C Basic API. Pass
the handles to the ni845xI2cConfigurationSet* series of functions to modify the
configuration properties. Then, pass the configuration to the I2C basic functions to execute
them on the described I2C slave. After you finish communicating with your I2C slave, pass
the handle to the ni845xI2cConfigurationSet* series of functions to reconfigure it or
use ni845xI2cConfigurationClose to delete the configuration.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-31 NI-845x Hardware and Software Manual

ni845xI2cConfigurationSetAckPollTimeout

Purpose
Sets the configuration ACK poll timeout in milliseconds.

Format
int32 ni845xI2cConfigurationSetAckPollTimeout (

NiHandle ConfigurationHandle,
uInt16 Timeout
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

uInt16 Timeout

Specifies the I2C ACK poll timeout in milliseconds. When this value is zero, ACK
polling is disabled. Otherwise, the ni845xI2cRead, ni845xI2cWrite, and
ni845xI2cWriteRead API calls ACK poll until an acknowledge (ACK) is detected or
the timeout is reached.

ACK polling is not supported with 10-bit addressing. If the configuration's address size
is set to 10 bits and Timeout is nonzero, an error is generated when attempting an I/O
API call.

The default value is 0 ms (disabled).

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description

Use ni845xI2cConfigurationSetAckPollTimeout to set the I2C configuration ACK
Poll Timeout in milliseconds.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-32 ni.com

ni845xI2cConfigurationSetAddress

Purpose
Sets the configuration address.

Format
int32 ni845xI2cConfigurationSetAddress (

NiHandle ConfigurationHandle,
uInt16 Address
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

uInt16 Address

The slave address. For 7-bit device addressing, the NXP I2C specification defines a 7-bit
slave address and a direction bit. During the address phase of an I2C transaction, these
values are sent across the bus as one byte (slave address in bits 7–1, direction in bit 0).
The NI-845x software follows the convention used in the NXP I2C specification and
defines an address for a 7-bit device as a 7-bit value. The NI-845x software internally sets
the direction bit to the correct value, depending on the function (write or read). Some
manufacturers specify the address for their 7-bit device as a byte. In such cases, bits 7–1
contain the slave address, and bit 0 contains the direction. When using the NI-845x
software, discard the direction bit and right-shift the byte value by one to create the 7-bit
address.

The address default value is 0.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cConfigurationSetAddress to set the I2C slave address. Do not include
the direction bit.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-33 NI-845x Hardware and Software Manual

ni845xI2cConfigurationSetAddressSize

Purpose
Sets the configuration address size.

Format
int32 ni845xI2cConfigurationSetAddressSize (

NiHandle ConfigurationHandle,
int32 Size
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

int32 Size

The addressing scheme to use when addressing the I2C slave device this configuration
describes. Size uses the following values:

• kNi845xI2cAddress7Bit (0): The NI 845x hardware uses the standard 7-bit
addressing when communicating with the I2C slave device.

• kNi845xI2cAddress10Bit (1): The NI 845x hardware uses the extended 10-bit
addressing when communicating with the I2C slave device.

The address default value is kNi845xI2cAddress7Bit.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cConfigurationSetAddressSize to set the configuration address size as
either 7 bits or 10 bits.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-34 ni.com

ni845xI2cConfigurationSetClockRate

Purpose
Sets the configuration clock rate in kilohertz.

Format
int32 ni845xI2cConfigurationSetClockRate (

NiHandle ConfigurationHandle,
uInt16 ClockRate
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

uInt16 ClockRate

Specifies the I2C clock rate in kilohertz. Refer to Chapter 3, NI USB-845x Hardware
Overview, to determine which clock rates your NI 845x device supports. If your hardware
does not support the supplied clock rate, a warning is generated, and the next smallest
supported clock rate is used. If the supplied clock rate is smaller than the smallest
supported clock rate, an error is generated.

The clock rate default value is 100 kHz.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cConfigurationSetClockRate to set the I2C configuration clock rate in
kilohertz.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-35 NI-845x Hardware and Software Manual

ni845xI2cConfigurationSetHSClockRate

Purpose
Sets the configuration High Speed clock rate in kilohertz.

Format
int32 ni845xI2cConfigurationSetHSClockRate (

NiHandle ConfigurationHandle,
uInt16 HSClockRate
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

uInt16 HSClockRate

Specifies the I2C clock rate in kilohertz. Refer to Appendix A, NI USB-845x Hardware
Specifications, to determine which High Speed clock rates your NI 845x device supports.
If your hardware does not support the supplied clock rate, a warning is generated, and the
next smallest supported clock rate is used. If the supplied clock rate is smaller than the
smallest supported clock rate, an error is generated.

The clock rate default value is 1666 Hz.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cConfigurationSetHSClockRate to set the I2C configuration High Speed
clock rate in kilohertz.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-36 ni.com

ni845xI2cConfigurationSetHSEnable

Purpose
Sets the configuration High Speed enabled status.

Format
int32 ni845xI2cConfigurationSetHSEnable (

NiHandle ConfigurationHandle,
uInt8 HSEnable
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

uInt8 HSEnable

Specifies the I2C High Speed enabled status. Refer to Appendix A, NI USB-845x
Hardware Specifications, to determine if your NI 845x device supports I2C High Speed
mode. If your hardware does not support I2C High Speed Mode, an error is generated.
HSEnable uses the following values:

• kNi845xHSDisable (0): Disable High Speed mode.

• kNi845xHSEnable (1): Enable High Speed mode.

The default value is kNi845xHSDisable.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cConfigurationSetHSEnable to set the I2C High Speed enabled status.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-37 NI-845x Hardware and Software Manual

ni845xI2cConfigurationSetHSMasterCode

Purpose
Sets the configuration High Speed master code.

Format
int32 ni845xI2cConfigurationSetHSMasterCode (

NiHandle ConfigurationHandle,
uInt8 HSMasterCode
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

uInt8 HSMasterCode

Specifies the I2C High Speed master code.

The default value is 1.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cConfigurationSetHSMasterCode to set the I2C configuration High
Speed master code.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-38 ni.com

ni845xI2cConfigurationSetPort

Purpose
Sets the configuration port number.

Format
int32 ni845xI2cConfigurationSetPort (

NiHandle ConfigurationHandle,
uInt8 PortNumber
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cConfigurationOpen.

uInt8 Port

Specifies the I2C port that this configuration communicates across.

Refer to Chapter 3, NI USB-845x Hardware Overview, to determine the number of I2C
ports your NI 845x device supports.

The port number default value is 0.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cConfigurationSetPort to select the port where the I2C slave device
resides.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-39 NI-845x Hardware and Software Manual

Basic

ni845xI2cRead

Purpose
Reads an array of data from an I2C slave device.

Format
int32 ni845xI2cRead (

NiHandle DeviceHandle,
NiHandle ConfigurationHandle,
uInt32 NumBytesToRead,
uInt32 * pReadSize,
uInt8 * pReadData
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

NiHandle ConfigurationHandle

Configuration handle returned from ni845xI2cConfigurationOpen.

uInt32 NumBytesToRead

The number of bytes to read. This must be nonzero.

Outputs
uInt32 * pReadSize

A pointer to the amount of bytes read.

uInt8 * pReadData

A pointer to an array of bytes where the bytes that have been read are stored.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-40 ni.com

Description
Use ni845xI2cRead to read an array of data from an I2C slave device. Per the NXP I2C
specification, each byte read up to the last byte is acknowledged. The last byte is not
acknowledged. This function first waits for the I2C bus to be free. If the I2C bus is not free
within the one second timeout of your NI 845x device, an error is returned. If the bus is free
before the timeout, the NI 845x device executes a 7-bit or 10-bit I2C read transaction, per the
NXP I2C specification. The address type (7-bit or 10-bit) and other configuration parameters
are specified by ConfigurationHandle. If the NI 845x device tries to access the bus at the
same time as another I2C master device and loses arbitration, the read transaction is
terminated and an error is returned. If the slave device does not acknowledge the transaction
address, the NI 845x device ACK polls as specified by ConfigurationHandle. (Refer to
the I2C ACK Polling section in Chapter 1, Introduction, for more information about ACK
polling.) Otherwise, the transaction is completed, and a stop condition is generated per the
NXP I2C specification.

Before using ni845xI2cRead, you must ensure that the configuration parameters specified
in ConfigurationHandle are correct for the device you want to access.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-41 NI-845x Hardware and Software Manual

ni845xI2cWrite

Purpose
Writes an array of data to an I2C slave device.

Format
int32 ni845xI2cWrite (

NiHandle DeviceHandle,
NiHandle ConfigurationHandle,
uInt32 WriteSize,
uInt8 * pWriteData
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

NiHandle ConfigurationHandle

Configuration handle returned from ni845xI2cConfigurationOpen.

uInt32 WriteSize

The number of bytes to write. This must be nonzero.

uInt8 * pWriteData

A pointer to an array of bytes where the data to be written resides.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cWrite to write an array of data to an I2C slave device. This function first
waits for the I2C bus to be free. If the I2C bus is not free within the one second timeout of
your NI 845x device, an error is returned. If the bus is free before the timeout, the NI 845x
device executes a 7-bit or 10-bit I2C write transaction, per the NXP I2C specification.
The address type (7-bit or 10-bit) and other configuration parameters are specified by
ConfigurationHandle. If the NI 845x device tries to access the bus at the same time as
another I2C master device and loses arbitration, the write transaction is terminated and an

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-42 ni.com

error is returned. If the slave device does not acknowledge the address, the NI 845x device
ACK polls as specified by ConfigurationHandle. (Refer to the I2C ACK Polling section
in Chapter 1, Introduction, for more information about ACK polling.) If the slave device does
not acknowledge any transaction byte, an error is returned. Otherwise, the transaction is
completed, and a stop condition is generated per the NXP I2C specification.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-43 NI-845x Hardware and Software Manual

ni845xI2cWriteRead

Purpose
Performs a write followed by read (combined format) on an I2C slave device.

Format
int32 ni845xI2cWriteRead (

NiHandle DeviceHandle,
NiHandle ConfigurationHandle,
uInt32 WriteSize,
uInt8 * pWriteData,
uInt32 NumBytesToRead,
uInt32 * pReadSize,
uInt8 * pReadData
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

NiHandle ConfigurationHandle

Configuration handle returned from ni845xI2cConfigurationOpen.

uInt32 WriteSize

The number of bytes to write. This must be nonzero.

uInt8 * pWriteData

A pointer to an array of bytes where the data to be written resides.

uInt32 NumBytesToRead

An unsigned 32-bit integer corresponding to the number of bytes to read. This must be
nonzero.

Outputs
uInt32 * pReadSize

A pointer to the amount of bytes read.

uInt8 * pReadData

A pointer to an array of bytes where the bytes that have been read are stored.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-44 ni.com

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cWriteRead to perform a write followed by read (combined format) on an
I2C slave device. During the transaction read portion, per the NXP I2C specification, each byte
read up to the last byte is acknowledged. The last byte is not acknowledged. This function
first waits for the I2C bus to be free. If the I2C bus is not free within the one second timeout
of your NI 845x device, an error is returned. If the bus is free before the timeout, the
NI 845x device executes a 7-bit or 10-bit I2C write/read transaction. Per the NXP I2C
specification, the write/read transaction consists of a start-write-restart-read-stop sequence.
The address type (7-bit or 10-bit) and other configuration parameters are specified by
ConfigurationHandle. If the NI 845x device tries to access the bus at the same time as
another I2C master device and loses arbitration, the read transaction is terminated and an error
is returned. If the slave device does not acknowledge the write address, the NI 845x device
ACK polls as specified by ConfigurationHandle. (Refer to the I2C ACK Polling section
in Chapter 1, Introduction, for more information about ACK polling.) If the slave device does
not acknowledge the read address or byte write within the transaction, an error is returned.
Otherwise, the transaction is completed and a stop condition is generated per the NXP I2C
specification. Note that this type of combined transaction is provided because it is commonly
used (for example, with EEPROMs). The NXP I2C specification provides flexibility in the
construction of I2C transactions. The NI-845x I2C scripting functions allow creating and
customizing complex I2C transactions as needed.

Before using ni845xI2cWriteRead, you must ensure that the configuration parameters
specified in ConfigurationHandle are correct for the device you want to access.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-45 NI-845x Hardware and Software Manual

Scripting

ni845xI2cScriptAckPollTimeout

Purpose
Adds an I2C Script AckPoll Timeout command to an I2C script referenced by
ScriptHandle. This command sets the I2C ACK poll timeout.

Format
int32 ni845xI2cScriptAckPollTimeout (

NiHandle ScriptHandle,
uInt16 Timeout
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt16 Timeout

The ACK poll timeout in milliseconds.

Outputs

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptAckPollTimeout to add an I2C Script ACK poll timeout
command to an I2C script referenced by ScriptHandle. This command sets the I2C
ACK poll timeout when you use ni845xI2cScriptRun to execute the script. When
ACK poll timeout is zero, ACK polling is disabled. A nonzero ACK poll timeout causes
ni845xI2cScriptAddressWrite and ni845xI2cScriptAddressRead to ACK poll
until an acknowledge (ACK) is detected or the timeout is reached. If enabled, ACK polling
occurs after either a start condition or a restart condition. The ACK poll timeout value persists
throughout the script and is reset at the end of the script.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-46 ni.com

ni845xI2cScriptAddressRead

Purpose
Adds an I2C Script Address+Read command to an I2C script referenced by ScriptHandle.
This command writes a 7-bit address to the I2C bus. The direction bit is internally set to 1 for
read.

Format
int32 ni845xI2cScriptAddressRead (

NiHandle ScriptHandle,
uInt8 Address
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt8 Address

The 7-bit slave address to read from.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptAddressRead to add an I2C Script Address+Read command to an
I2C script referenced by ScriptHandle. This command writes a 7-bit address to the I2C bus
connected to the I2C port you specify when you use ni845xI2cScriptRun to execute the
script. The direction bit is internally set to 1 for read. This command assumes that a start
condition has been previously issued to the I2C bus using an I2C script start command. It
clocks out the 7-bit address and direction bit and then waits for a slave device on the I2C bus
to acknowledge or not acknowledge the address. If a slave does not acknowledge the address,
the NI 845x device ACK polls as set in ni845xI2cScriptAckPollTimeout. (Refer to the
I2C ACK Polling section in Chapter 1, Introduction, for more information about ACK
polling.)

Chapter 7 NI-845x I2C API for C

© National Instruments 7-47 NI-845x Hardware and Software Manual

ni845xI2cScriptAddressWrite

Purpose
Adds an I2C Script Address+Write command to an I2C script referenced by ScriptHandle.
This command writes a 7-bit address to the I2C bus. The direction bit is internally set to 0 for
write.

Format
int32 ni845xI2cScriptAddressWrite (

NiHandle ScriptHandle,
uInt8 Address
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt8 Address

The 7-bit I2C slave address to write to.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptAddressWrite to add an I2C Script Address+Write command to an
I2C script referenced by ScriptHandle. This command writes a 7-bit address to the I2C bus
connected to the I2C port you specify when you use ni845xI2cScriptRun to execute the
script. The direction bit is internally set to 0 for write. This command assumes that a start
condition has been previously issued to the I2C bus using an I2C script start command. It
clocks out the 7-bit address and direction bit and then waits for a slave device on the I2C bus
to acknowledge or not acknowledge the address. If a slave does not acknowledge the address,
the NI 845x device ACK polls as set in ni845xI2cScriptAckPollTimeout. (Refer to the
I2C ACK Polling section in Chapter 1, Introduction, for more information about ACK
polling.)

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-48 ni.com

ni845xI2cScriptClockRate

Purpose
Adds an I2C Script Clock Rate command to an I2C script referenced by ScriptHandle. This
command sets the I2C clock rate.

Format
int32 ni845xI2cScriptClockRate (

NiHandle ScriptHandle,
uInt16 ClockRate
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt16 ClockRate

The I2C clock rate in kilohertz. Refer to Chapter 3, NI USB-845x Hardware Overview,
to determine which clock rates your NI 845x device supports.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptClockRate to add an I2C Script Clock Rate command to an I2C
script referenced by ScriptHandle. This command sets the I2C clock rate for the I2C port
you specify when you use ni845xI2cScriptRun to execute the script. The NI 845x device
can clock data only at specific rates. If the selected rate is not one of the rates your hardware
supports, the NI-845x driver adjusts it down to a supported rate and generates a warning. If
the selected rate is lower than all supported rates, an error is generated.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-49 NI-845x Hardware and Software Manual

ni845xI2cScriptClose

Purpose
Closes an I2C script.

Format
int32 ni845xI2cScriptClose (NiHandle ScriptHandle);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptClose to delete a script from memory.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-50 ni.com

ni845xI2cScriptDelay

Purpose
Adds an I2C Script Delay command to an I2C script referenced by ScriptHandle. This
command adds a millisecond delay after the previous I2C script command.

Format
int32 ni845xI2cScriptDelay (

NiHandle ScriptHandle,
uInt8 Delay
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt8 Delay

The desired delay in milliseconds.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptDelay to add an I2C Script Delay command to an I2C script
referenced by ScriptHandle. This command adds a delay after the previous I2C script
command in milliseconds.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-51 NI-845x Hardware and Software Manual

ni845xI2cScriptDioConfigureLine

Purpose
Adds an I2C Script DIO Configure Line command to an I2C script referenced by
ScriptHandle. This command configures a DIO line on an NI 845x device.

Format
int32 ni845xI2cScriptDioConfigureLine (

NiHandle ScriptHandle,
uInt8 PortNumber,
uInt8 LineNumber,
int32 ConfigurationValue
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt8 PortNumber

The DIO port that contains the LineNumber.

uInt8 LineNumber

The DIO line to configure.

int32 ConfigurationValue

The line configuration. ConfigurationValue uses the following values:

• kNi845xDioInput (0): The line is configured for input.

• kNi845xDioOutput (1): The line is configured for output.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptDioConfigureLine to add an I2C Script DIO Configure Line
command to an I2C script referenced by ScriptHandle. This command allows you to
configure one line, specified by LineNumber, of a byte-wide DIO port, as an input or output.
For NI 845x devices with multiple DIO ports, use the PortNumber input to select the desired
port. For NI 845x devices with one DIO port, leave PortNumber at the default (0).

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-52 ni.com

ni845xI2cScriptDioConfigurePort

Purpose
Adds an I2C Script DIO Configure Port command to an I2C script referenced by
ScriptHandle. This command configures a DIO port on an NI 845x device.

Format
int32 ni845xI2cScriptDioConfigurePort (

NiHandle ScriptHandle,
uInt8 PortNumber,
uInt8 ConfigurationValue
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt8 PortNumber

The DIO port to configure.

uInt8 ConfigurationValue

Bitmap that specifies the function of each individual line of a port. If bit x = 1, line x is
an output. If bit x = 0, line x is an input.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptDioConfigurePort to add an I2C Script DIO Configure Port
command to an I2C script referenced by ScriptHandle. Use this command to configure all
eight lines of a byte-wide DIO port. Setting a bit to 1 configures the corresponding DIO port
line for output. Setting a bit to 0 configures the corresponding port line for input. For NI 845x
devices with multiple DIO ports, use the PortNumber input to select the port to configure.
For NI 845x devices with one DIO port, leave PortNumber at the default (0).

Chapter 7 NI-845x I2C API for C

© National Instruments 7-53 NI-845x Hardware and Software Manual

ni845xI2cScriptDioReadLine

Purpose
Adds an I2C Script DIO Read Line command to an I2C script referenced by ScriptHandle.
This command reads from a DIO line on an NI 845x device.

Format
int32 ni845xI2cScriptDioReadLine (

NiHandle ScriptHandle,
uInt8 PortNumber,
uInt8 LineNumber,
uInt32* pScriptReadIndex
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt8 PortNumber

The DIO port that contains the LineNumber.

uInt8 LineNumber

The DIO line to read.

Outputs
uInt32 * pScriptReadIndex

An unsigned 32-bit integer pointer that stores the script read index. pScriptReadIndex
is the read command index within the script. It is used as an input into
ni845xI2cScriptExtractReadData.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-54 ni.com

Description
Use ni845xI2cScriptDioReadLine to add an I2C Script DIO Read command to an I2C
script referenced by ScriptHandle. Use this command to read one line, specified by
LineNumber, of a byte-wide DIO port. For NI 845x devices with multiple DIO ports, use the
PortNumber input to select the desired port. For NI 845x devices with one DIO port, leave
PortNumber at the default (0).

To obtain the logic level read from the specified DIO port line, pass the value of
pScriptReadIndex to ni845xI2cScriptExtractReadDataSize to retrieve the
read data size and ni845xI2cScriptExtractReadData after script execution.
ni845xI2cScriptExtractReadData returns either kNi845xDioLogicLow if logic level
read on the specified line was low or kNi845xDioLogicHigh if the logic level read on the
specified line was high.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-55 NI-845x Hardware and Software Manual

ni845xI2cScriptDioReadPort

Purpose
Adds an I2C Script DIO Read Port command to an I2C script referenced by ScriptHandle.
This command reads from a DIO port on an NI 845x device.

Format
int32 ni845xI2cScriptDioReadPort (

NiHandle ScriptHandle,
uInt8 PortNumber,
uInt32 * pScriptReadIndex
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt8 PortNumber

The DIO port to read.

Outputs
uInt32 * pScriptReadIndex

An unsigned 32-bit integer pointer that stores the script read index. pScriptReadIndex
is the read command index within the script. It is used as an input into
ni845xI2cScriptExtractReadData.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptDioReadPort to add an I2C Script DIO Read Port command to an
I2C script referenced by ScriptHandle. Use this command to read all 8 bits on a byte-wide
DIO port. For NI 845x devices with multiple DIO ports, use the PortNumber input to select
the desired port. For NI 845x devices with one DIO port, leave PortNumber at the default (0).

To obtain the data byte read from the specified DIO port, pass the value of
pScriptReadIndex to ni845xI2cScriptExtractReadDataSize to retrieve the read
data size and ni845xI2cScriptExtractReadData after script execution, which returns
the data byte read by this script command.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-56 ni.com

ni845xI2cScriptDioWriteLine

Purpose
Adds an I2C Script DIO Write Line command to an I2C script referenced by ScriptHandle.
This command writes to a DIO line on an NI 845x device.

Format
int32 ni845xI2cScriptDioWriteLine (

NiHandle ScriptHandle,
uInt8 PortNumber,
uInt8 LineNumber,
int32 WriteData
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt8 PortNumber

The DIO port that contains the LineNumber.

uInt8 LineNumber

The DIO line to write.

int32 WriteData

The value to write to the line. WriteData uses the following values:

• kNi845xDioLogicLow (0): The line is set to the logic low state.

• kNi845xDioLogicHigh (1): The line is set to the logic high state.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-57 NI-845x Hardware and Software Manual

Description
Use ni845xI2cScriptDioWriteLine to add an I2C Script DIO Write Line command to
an I2C script referenced by ScriptHandle. Use this command to write one line, specified by
LineNumber, of a byte-wide DIO port. If WriteData is kNi845xDioLogicHigh, the
specified line’s output is driven to a high logic level. If WriteData is
kNi845xDioLogicLow, the specified line’s output is driven to a low logic level. For NI 845x
devices with multiple DIO ports, use the PortNumber input to select the desired port. For
NI 845x devices with one DIO port, leave PortNumber at the default (0).

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-58 ni.com

ni845xI2cScriptDioWritePort

Purpose
Adds an I2C Script DIO Write Port command to an I2C script referenced by ScriptHandle.
This command writes to a DIO port on an NI 845x device.

Format
int32 ni845xI2cScriptDioWritePort (

NiHandle ScriptHandle,
uInt8 PortNumber,
uInt8 WriteData
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt8 PortNumber

The DIO port to write.

uInt8 WriteData

The value to write to the DIO port. Only lines configured for output are updated.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptDioWritePort to add an I2C Script DIO Write Port command to an
I2C script referenced by ScriptHandle. Use this command to write all 8 bits on a byte-wide
DIO port. For NI 845x devices with multiple DIO ports, use the PortNumber input to select
the desired port. For NI 845x devices with one DIO port, leave PortNumber at the default (0).

Chapter 7 NI-845x I2C API for C

© National Instruments 7-59 NI-845x Hardware and Software Manual

ni845xI2cScriptPullupEnable

Purpose
Adds an I2C Script Pullup Enable command to an I2C script referenced by ScriptHandle.
This command enables or disables the onboard pullup resistors on an NI 845x device.

Format
int32 ni845xI2cScriptPullupEnable (

NiHandle ScriptHandle,
uInt8 Enable
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt8 Enable

The setting for the pullup resistors. Enable uses the following values:

• kNi845xPullupDisable (0): Pullups are disabled.

• kNi845xPullupEnable (1): Pullups are enabled.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptPullupEnable to add an I2C Script Pullup Enable command to an
I2C script referenced by ScriptHandle. Use this command to enable or disable the onboard
pullup resistors for I2C operations. The pullup resistors pull SDA and SCL up to
ni845xSetIoVoltageLevel.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-60 ni.com

ni845xI2cScriptExtractReadData

Purpose
Extracts the desired read data from an I2C script, referenced by ScriptHandle,
which has been processed by ni845xI2cScriptRun. Each script read
command (ni845xI2cScriptRead, ni845xI2cScriptDioReadPort,
ni845xI2cScriptDioReadLine) returns a script read index. You can extract
data for each script read index in a script, by passing each index to
ni845xI2cScriptExtractReadData.

Format
int32 ni845xI2cScriptExtractReadData (

NiHandle ScriptHandle,
uInt32 ScriptReadIndex,
uInt8 * pReadData
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt32 ScriptReadIndex

The index within the script whose data should be extracted.

Outputs
uInt8 * pReadData

A pointer to store the data returned for the script command specified by
ScriptReadIndex.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptExtractReadData to extract the desired read data from
an I2C script, indicated by ScriptHandle, which has been processed by
ni845xI2cScriptRun. Each I2C script read command (ni845xI2cScriptRead,
ni845xI2cScriptDioReadPort, ni845xI2cScriptDioReadLine) returns a script read
index.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-61 NI-845x Hardware and Software Manual

ni845xI2cScriptExtractReadDataSize

Purpose
Retrieves the read data size from an I2C script, referenced by ScriptHandle,
which has been processed by ni845xI2cScriptRun. Each script read
command (ni845xI2cScriptRead, ni845xI2cScriptDioReadPort,
ni845xI2cScriptDioReadLine) returns a script read index. You can extract
data for each script read index in a script, by passing each index to
ni845xI2cScriptExtractReadData.

Format
int32 ni845xI2cScriptExtractReadDataSize (

NiHandle ScriptHandle,
uInt32 ScriptReadIndex,
uInt32 * pReadDataSize
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt32 ScriptReadIndex

The read in the script whose data should be extracted.

Outputs
uInt32 * pReadDataSize

Stores the read data buffer size at the given script read index.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptExtractReadDataSize to retrieve the desired read data
size from an I2C script, indicated by ScriptHandle, which has been processed by
ni845xI2cScriptRun. Each I2C script read command (ni845xI2cScriptRead,
ni845xI2cScriptDioReadPort, ni845xI2cScriptDioReadLine) returns a script read
index.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-62 ni.com

ni845xI2cScriptHSEnable

Purpose
Adds an I2C Script HS Enable command to an I2C script referenced by ScriptHandle. This
command enables or disables High Speed mode on an NI 845x device.

Format
int32 ni845xI2cScriptHSEnable (

NiHandle ScriptHandle,
uInt8 HSEnable
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt8 HSEnable

Enables or disables I2C High Speed mode. Refer to Appendix A, NI USB-845x
Hardware Specifications, to determine whether your NI 845x device supports High
Speed mode. HSEnable uses the following values:

• kNi845xHSDisable (0): Disable High Speed mode.

• kNi845xHSEnable (1): Enable High Speed mode.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptHSEnable to add an I2C Script High Speed enable command to an
I2C script referenced by ScriptHandle. This command sets the I2C High Speed enable
status for the I2C port you specify when you use ni845xI2cScriptRun to execute the script.
If the hardware does not support High Speed mode, the NI-845x driver generates an error.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-63 NI-845x Hardware and Software Manual

ni845xI2cScriptHSMasterCode

Purpose
Adds an I2C Script High Speed Master Code command to an I2C script referenced by
ScriptHandle. This command sets the I2C High Speed master code.

Format
int32 ni845xI2cScriptHSMasterCode (

NiHandle ScriptHandle,
uInt8 HSMasterCode
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt8 HSMasterCode

The lower 3 bits of the I2C High Speed master code byte.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptHSMasterCode to add an I2C Script HS Master Code command to
an I2C script referenced by ScriptHandle. This command writes a master code to the I2C
bus connected to the I2C port you specify when you use ni845xI2cScriptRun to execute
the script. This command assumes a start condition previously has been issued to the I2C bus
using an I2C script start command. The master code is internally set to 00001XXX. The lower
three bits are set using HSMasterCode. After the master code is transferred, the device waits
for slave device on the I2C bus to acknowledge or not acknowledge the master code. If a slave
acknowledges the master code, ni845xI2cScriptRun exits with an error.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-64 ni.com

ni845xI2cScriptHSClockRate

Purpose
Adds an I2C Script High Speed Clock Rate command to an I2C script referenced by
ScriptHandle. This command sets the I2C High Speed clock rate.

Format
int32 ni845xI2cScriptHSClockRate (

NiHandle ScriptHandle,
uInt8 HSClockRate
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt16 HSClockRate

Specifies the I2C High Speed clock rate. Refer to Appendix A, NI USB-845x Hardware
Specifications, to determine which High Speed clock rates your NI 845x device supports.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptHSClockRate to add an I2C Script High Speed Clock Rate
command to an I2C script referenced by ScriptHandle. This command sets the I2C High
Speed clock rate for the I2C port you specify when you use ni845xI2cScriptRun to
execute the script. The NI 845x device can clock data only at specific rates. If the selected rate
is not one of the rates your hardware supports, the NI-845x driver adjusts it down to a
supported rate and generates a warning. If the selected rate is lower than all supported rates,
an error is generated.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-65 NI-845x Hardware and Software Manual

ni845xI2cScriptIssueStart

Purpose
Adds an I2C Script Issue Start command to an I2C script indicated by ScriptHandle. This
command issues a start condition on the I2C bus.

Format
int32 ni845xI2cScriptIssueStart (

NiHandle ScriptHandle
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptIssueStart to add an I2C Script Issue Start command to an I2C
script referenced by ScriptHandle. This command issues a start condition on the I2C
bus connected to the I2C port you specify when you use ni845xI2cScriptRun to
execute the script. This command first waits for the I2C bus to be free. If the I2C bus is
not free within the one second timeout of your NI 845x device, an error is returned when
ni845xI2cScriptRun is executed. If the bus is free before the timeout, the NI 845x device
issues the start condition on the I2C bus connected to the specified I2C port. This command
should also be used to issue a restart condition within an I2C transaction.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-66 ni.com

ni845xI2cScriptIssueStop

Purpose
Adds an I2C Script Issue Stop command to an I2C script referenced by ScriptHandle. This
command issues a stop condition on the I2C bus.

Format
int32 ni845xI2cScriptIssueStop (

NiHandle ScriptHandle
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptIssueStop to add an I2C Script Issue Stop command to an I2C
script referenced by ScriptHandle. This command issues a stop condition on the I2C bus
connected to the I2C port you specify when you use ni845xI2cScriptRun to execute the
script. Per the NXP I2C specification, you must terminate all I2C transactions with a stop
condition.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-67 NI-845x Hardware and Software Manual

ni845xI2cScriptOpen

Purpose
Opens an empty I2C script to begin adding commands to.

Format
int32 ni845xI2cScriptOpen (NiHandle * pScriptHandle);

Inputs
None.

Outputs
NiHandle * pScriptHandle

A pointer to an unsigned 32-bit integer to store the new script handle in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptOpen to create a new script to use with the NI-845x I2C Scripting
API. Pass the reference to I2C script functions to create the script. Then, call
ni845xI2cScriptRun to execute your script on your NI 845x device. After you finish
executing your script, use ni845xI2cScriptClose to delete the script.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-68 ni.com

ni845xI2cScriptRead

Purpose
Adds an I2C Script Read command to an I2C script referenced by ScriptHandle. This
command reads an array of data from an I2C slave device.

Format
int32 ni845xI2cScriptRead (

NiHandle ScriptHandle,
uInt32 NumBytesToRead,
int32 NotAcknowledgeLastByte,
uInt32* pScriptReadIndex
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt32 NumBytesToRead

The number of bytes to read. This must be nonzero.

int32 NotAcknowledgeLastByte

Whether the last byte read is acknowledged or not acknowledged by the I2C
interface. If NotAcknowledgeLastByte is kNi845xI2cNakTrue, all bytes
up to the last byte read are acknowledged. The last byte read is not acknowledged.
If NotAcknowledgeLastByte is kNi845xI2cNakFalse (0), all bytes are
acknowledged.

Outputs
uInt32 * pScriptReadIndex

An unsigned 32-bit integer pointer that stores the script read index. pScriptReadIndex
is the read command index within the script. It is used as an input into
ni845xI2cScriptExtractReadData.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-69 NI-845x Hardware and Software Manual

Description
Use ni845xI2cScriptRead to add an I2C Script Read command to an I2C script referenced
by ScriptHandle. This command reads an array of data from a device connected to the I2C
port you specify when you use ni845xI2cScriptRun to execute the script. This command
assumes that a start condition and address+read condition have been issued to the I2C bus
using prior I2C script commands. It clocks in NumBytesToRead bytes from the I2C slave
device, acknowledging each byte up to the last one. Depending on the type of I2C transaction
you want to build, you may want to acknowledge (ACK) or not acknowledge (NAK) the last
data byte read, which you can specify with the NotAcknowledgeLastByte input. To obtain
the data read from the specified I2C port, you can pass the value of pScriptReadIndex after
script execution to ni845xI2cScriptExtractReadDataSize to get the read data size and
then to ni845xI2cScriptExtractReadData after script execution, which returns the data
read by this script command.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-70 ni.com

ni845xI2cScriptReset

Purpose
Resets an I2C script referenced by ScriptHandle to an empty state.

Format
int32 ni845xI2cScriptReset (NiHandle ScriptHandle);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptReset to reset a script to an empty state. Any commands or read data
stored in the script are deleted.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-71 NI-845x Hardware and Software Manual

ni845xI2cScriptRun

Purpose
Sends the I2C script to the desired NI 845x device, which then interprets and runs it.

Format
int32 ni845xI2cScriptRun (

NiHandle ScriptHandle,
NiHandle DeviceHandle,
uInt8 PortNumber
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt8 PortNumber

An unsigned byte that represents the port number to run the script on.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptRun to execute an I2C script indicated by ScriptHandle on the
device indicated by DeviceHandle. You must first create an I2C script using the I2C
scripting commands. Next, pass the script handle into ScriptHandle. If you have multiple
NI 845x devices installed in your system, you can select which device to write your I2C script
to by passing its handle into DeviceHandle. If your NI 845x device supports multiple I2C
ports, you can also select which port to write your I2C script to. For single I2C port NI 845x
devices, you must use the default port (0). In this way, you can create one script to run on
various NI 845x devices, on various I2C ports within those devices. ni845xI2cScriptRun
loads and executes your I2C script on the NI 845x device and I2C port you specify,
then returns success or error. If your script contained any read commands, you may
use ni845xI2cScriptExtractReadDataSize to get the read data size, and
ni845xI2cScriptExtractReadData to extract the read data after executing
ni845xI2cScriptRun.

Chapter 7 NI-845x I2C API for C

NI-845x Hardware and Software Manual 7-72 ni.com

ni845xI2cScriptUsDelay

Purpose
Adds an I2C Script µs Delay command to an I2C script referenced by ScriptHandle. This
command adds a microsecond delay after the previous I2C script command.

Format
int32 ni845xI2cScriptUsDelay (

uInt32 ScriptHandle,
uInt16 Delay
);

Inputs
uInt32 ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt16 Delay

The desired delay in microseconds.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptUsDelay to add an I2C Script µs Delay command to an I2C script
referenced by ScriptHandle. This command adds a delay after the previous I2C script
command in microseconds.

Chapter 7 NI-845x I2C API for C

© National Instruments 7-73 NI-845x Hardware and Software Manual

ni845xI2cScriptWrite

Purpose
Adds an I2C Script Write command to an I2C script referenced by ScriptHandle. This
command writes an array of data to an I2C slave device.

Format
int32 ni845xI2cScriptWrite (

NiHandle ScriptHandle,
uInt32 WriteSize,
uInt8 * pWriteData
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xI2cScriptOpen.

uInt32 WriteSize

The number of bytes to write. This must be nonzero.

uInt8 * pWriteData

A pointer to an array of bytes where the data to be written resides.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cScriptWrite to add an I2C Script Write command to an I2C script
referenced by ScriptHandle. This command writes an array of data to an I2C slave device
connected to the I2C port you specify when you use ni845xI2cScriptRun to execute the
script. This command assumes that a start condition and address+write condition have been
issued to the I2C bus using prior I2C script commands. It clocks the pWriteData array into
the I2C slave device, testing for a slave device acknowledge after transmission of each byte.
If a slave does not acknowledge a byte, ni845xI2cScriptRun exits with an error.

© National Instruments 8-1 NI-845x Hardware and Software Manual

8
Using the NI-845x I2C Slave API

This chapter helps you get started with the I2C Slave API.

I2C Slave Programming Model
The I2C Slave API allows for an event-based programming model to
emulate many of off-the-shelf I2C devices.

When you use the I2C Slave API, the first step is to create an I2C Slave
configuration to describe the communication requirements between the
NI 845x device and the I2C master device. To make an I2C Slave
configuration, create an I2C Slave configuration reference and set the
appropriate properties as desired. You can then wait for the I2C master
device to begin communication.

Chapter 8 Using the NI-845x I2C Slave API

NI-845x Hardware and Software Manual 8-2 ni.com

The diagram in Figure 8-1 describes the programming model for the
NI-845x I2C Slave API. The diagram is followed by a description of each
step in the model.

Figure 8-1. Programming Model for I2C Slave Communication

I2C Slave Configure
Use the NI-845x I2C Slave Configuration Property Node in LabVIEW
and ni845xI2cSlaveConfiguration* calls in other languages to set
the specific I2C configuration that describes the characteristics of the slave
to emulate.

I2C Slave Start
Use NI-845x I2C Slave Start.vi in LabVIEW and
ni845xI2cSlaveStart in other languages to commit the slave
configuration and begin slave operation.

I2C Slave Configure

I2C Slave Read I2C Slave Write I2C Slave Get Write
Information

I2C Slave Start

I2C Slave Wait for Event

I2C Slave Stop

Chapter 8 Using the NI-845x I2C Slave API

© National Instruments 8-3 NI-845x Hardware and Software Manual

I2C Slave Wait For Event
Use NI-845x I2C Slave Wait for Event.vi in LabVIEW and
ni845xI2cSlaveWaitForEvent in other languages to wait for an event
from the I2C Slave and retrieve pertinent event information.

I2C Slave Read
Use NI-845x I2C Slave Read.vi in LabVIEW and
ni845xI2cSlaveRead in other languages to process a data available
event or a command event and read the data read from the I2C master.

I2C Slave Write
Use NI-845x I2C Slave Write.vi in LabVIEW and
ni845xI2cSlaveWrite in other languages to process a data requested
event and provide the data to write to satisfy the I2C master’s read requests.

I2C Slave Get Write Information
Use NI-845x I2C Slave Get Write Info.vi in LabVIEW and
ni845xI2cSlaveGetWriteInfo in other languages to process a write
complete event to retrieve information about the completed write to the I2C
master.

I2C Slave Stop
Use NI-845x I2C Slave Stop.vi in LabVIEW and ni845xI2cSlaveStop
in other languages to stop slave operations.

© National Instruments 9-1 NI-845x Hardware and Software Manual

9
NI-845x I2C Slave API for
LabVIEW

This chapter lists the LabVIEW VIs for the NI-845x I2C Slave API and describes the format,
purpose, and parameters for each VI. The VIs in this chapter are listed alphabetically.

Note The I2C Slave API is not available for the NI USB-8451.

Chapter 9 NI-845x I2C Slave API for LabVIEW

NI-845x Hardware and Software Manual 9-2 ni.com

General Device

NI-845x Close Reference.vi

Purpose
Closes a previously opened reference.

Inputs

reference in is a reference to an NI 845x device, I2C configuration, I2C
Slave configuration, SPI configuration, SPI stream configuration, I2C
script, or SPI script.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI

Chapter 9 NI-845x I2C Slave API for LabVIEW

© National Instruments 9-3 NI-845x Hardware and Software Manual

executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x Close Reference.vi to close a previously opened reference.

Chapter 9 NI-845x I2C Slave API for LabVIEW

NI-845x Hardware and Software Manual 9-4 ni.com

NI-845x Device Property Node

Purpose
A property node with the NI-845x Device class preselected. This property node allows you to
modify properties of your NI 845x device.

Inputs

device reference in is a reference to an NI 845x device.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

device reference out is a reference to an NI 845x device after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

Chapter 9 NI-845x I2C Slave API for LabVIEW

© National Instruments 9-5 NI-845x Hardware and Software Manual

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The list below describes all valid properties for the NI-845x Device Property Node.

DIO:Active Port

The DIO:Active Port property sets the active DIO port for further DIO
port configuration. The format for this property is a decimal string. For
example, the string 0 represents DIO Port 0. The default value of this
property is 0. For NI 845x devices with one DIO port, the port value must
be 0.

DIO:Driver Type

The DIO:Driver Type property configures the active DIO port with the
desired driver type characteristics. DIO:Driver Type uses the following
values:

Open-Drain

The DIO driver type is configured for open-drain.

Push-Pull

The DIO driver type is configured for push-pull. The actual
voltage driven (when sourcing a high value) is determined by the
I/O Voltage Level property.

The default value of this property is Push-Pull.

DIO:Line Direction Map

The DIO:Line Direction Map property sets the line direction map for the
active DIO Port. The value is a bitmap that specifies the function of each
individual line within the port. If bit x = 1, line x is an output. If bit x = 0,
line x is an input.

The default value of this property is 0 (all lines configured for input).

Chapter 9 NI-845x I2C Slave API for LabVIEW

NI-845x Hardware and Software Manual 9-6 ni.com

I/O Voltage Level

The I/O Voltage Level property sets the board voltage. This property sets
the voltage for SPI, I2C, and DIO. The default value for this property is
3.3V. This property uses the following values:

3.3V

I/O Voltage is set to 3.3 V.

2.5V

I/O Voltage is set to 2.5 V.

1.8V

I/O Voltage is set to 1.8 V.

1.5V

I/O Voltage is set to 1.5 V.

1.2V

I/O Voltage is set to 1.2 V.

Refer to Appendix A, NI USB-845x Hardware Specifications, to determine
the available voltage levels on your hardware.

I2C Pullup Enable

The I2C Pullup Enable property enables or disables the internal pullup
resistors connected to SDA and SCL.

Refer to Appendix A, NI USB-845x Hardware Specifications, to determine
whether your hardware has onboard pull-up resistors.

Timeout (ms)

The Timeout (ms) property sets the global timeout for the device. This
timeout is the minimum amount of time an I2C, SPI, or DIO operation is
allowed to complete.

Note It is highly recommended to set this property higher than the expected I/O time. For
the NI USB-8451, a timeout may leave the device in an unknown state that may require a
power cycle of the device.

The default of this property is 30000 (30 seconds).

Chapter 9 NI-845x I2C Slave API for LabVIEW

© National Instruments 9-7 NI-845x Hardware and Software Manual

NI-845x Device Reference

Purpose
Specifies the device resource to be used for communication.

Description
Use the NI-845x Device Reference to describe the NI 845x device to communicate with. You
can wire the reference into a property node to set specific device parameters or to an NI-845x
API call to invoke the function on the associated NI 845x device.

Chapter 9 NI-845x I2C Slave API for LabVIEW

NI-845x Hardware and Software Manual 9-8 ni.com

Configuration

NI-845x I2C Slave Configuration Property Node

Purpose
A property node with the NI-845x I2C Slave Configuration class preselected. This property
node allows you to query and modify I2C Slave configuration properties of your NI 845x
device.

Inputs

i2c slave configuration in is a reference to a specific I2C Slave
configuration that describes the characteristics of the slave to emulate.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

i2c configuration out is a reference to a specific I2C configuration that
describes the characteristics of the device to communicate with.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 9 NI-845x I2C Slave API for LabVIEW

© National Instruments 9-9 NI-845x Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The list below describes all valid properties for the NI-845x I2C Slave Configuration
Property Node.

Address

Specifies the address of the I2C slave. The NXP I2C Specification defines a
7-bit slave address and a direction bit. During the address phase of an I2C
transaction, these values are sent across the bus as one byte (slave address
in bits 7–1, direction in bit 0). The NI-845x software follows the convention
used in the NXP I2C Specification and defines an address for a 7-bit device
as a 7-bit value. The I2C Slave API does not support 10-bit addresses.

The default value of this property is 0. The default value is not
recommended for use as it is reserved by the NXP I2C Standard as the
general call address.

Command Buffer Size

Specifies the number of bytes to be used as a command buffer. This buffer
is used to store the first bytes when the master initiates a write operation.
You can use this buffer if the slave device being emulated requires a
command to be prepended before data can be written to it. When this buffer
is filled or if the write operation is completed, a CmdEvent is generated.

Providing a command buffer size of 0 disables the command buffer.

The default value of this property is 0.

Data Buffer Size

Specifies the number of bytes to be used as a data buffer. This buffer is
used to store data when the master performs a write operation to the
slave. When the command buffer is enabled, only the data after the
command is stored. If this buffer is full or if the write operation is
completed, a DataAvailEvent is generated.

The default value of this property is 128.

Chapter 9 NI-845x I2C Slave API for LabVIEW

NI-845x Hardware and Software Manual 9-10 ni.com

Auto Removal Timeout

Specifies the amount of time in milliseconds to remove the slave from the
I2C bus after the slave has completed reading data from the master.

0 The slave does not remove itself from the bus after reading data
from the master.

> 0 The slave removes itself from the bus for the amount of time
specified by the property.

< 0 The slave removes itself from the bus and immediately stops
operation. It will not return to the I2C bus until NI-845x I2C Slave
Start.vi is called.

You can use this timeout if the slave device being emulated requires time to
processes received data. An example of this is an EEPROM that needs to
simulate the write cycle timing for a page of data.

The default value of this property is 0.

Chapter 9 NI-845x I2C Slave API for LabVIEW

© National Instruments 9-11 NI-845x Hardware and Software Manual

NI-845x I2C Slave Create Configuration Reference.vi

Purpose
Creates a new NI-845x I2C Slave configuration.

Inputs

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

i2c slave configuration is a reference to the newly created NI-845x
I2C Slave configuration.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

Chapter 9 NI-845x I2C Slave API for LabVIEW

NI-845x Hardware and Software Manual 9-12 ni.com

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Slave Create Configuration Reference.vi to create a new configuration
to use with the NI-845x I2C Slave API. Pass the reference to a property node to make the
configuration match the desired settings. Then pass the configuration to the I2C Slave
functions to execute them. After you finish communication, pass the reference into a new
property node to reconfigure it or use NI-845x Close Reference.vi to delete the
configuration.

Chapter 9 NI-845x I2C Slave API for LabVIEW

© National Instruments 9-13 NI-845x Hardware and Software Manual

NI-845x I2C Slave Get Write Info.vi

Purpose
Processes a WriteCompleteEvent.

Inputs

device reference in is a reference to an NI 845x device.

i2c slave configuration in is a reference to a specific I2C Slave
configuration that describes the characteristics of the slave to emulate.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

device reference out is a reference to the NI 845x device after this VI runs.

i2c slave configuration out is a reference to the I2C Slave configuration
after this VI runs.

num bytes written indicates the number of bytes transferred from the slave
to the master during the previous event.

Chapter 9 NI-845x I2C Slave API for LabVIEW

NI-845x Hardware and Software Manual 9-14 ni.com

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Slave Get Write Info.vi to process a WriteCompleteEvent. The number
of bytes written specified indicates the number of bytes written to the master during the
previous DataReqEvent.

Note The I2C Slave API is not available for the NI USB-8451.

Chapter 9 NI-845x I2C Slave API for LabVIEW

© National Instruments 9-15 NI-845x Hardware and Software Manual

NI-845x I2C Slave Read.vi

Purpose
Processes a DataAvailEvent or a CmdEvent.

Inputs

device reference in is a reference to an NI 845x device.

i2c slave configuration in is a reference to a specific I2C Slave
configuration that describes the characteristics of the slave to emulate.

num bytes to read is the maximum number of bytes to read. To complete
processing an event, all of the bytes from the DataAvailEvent or the
CmdEvent must be read. The maximum number of bytes in an event is
defined by the maximum of the properties Data Buffer Size and
Command Buffer Size.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 9 NI-845x I2C Slave API for LabVIEW

NI-845x Hardware and Software Manual 9-16 ni.com

Outputs

device reference out is a reference to the NI 845x device after this VI runs.

i2c slave configuration out is a reference to the I2C Slave configuration
after this VI runs.

read data is the data contained in the event. The amount of data read from
the event is the minimum of num bytes to read and the number of bytes
left in the event.

event cleared? indicates all data has been read from the event and no
further action is required for the current event.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Slave Read.vi to process a DataAvailEvent or CmdEvent. The data
received from the master is contained in read data.

For the CmdEvent, the maximum amount of data is defined by Command Buffer Size. For
the DataAvailEvent, the maximum amount of data is defined by Data Buffer Size.

The event is completely processed when all data has been read from the event.

Note The I2C Slave API is not available for the NI USB-8451.

Chapter 9 NI-845x I2C Slave API for LabVIEW

© National Instruments 9-17 NI-845x Hardware and Software Manual

NI-845x I2C Slave Start.vi

Purpose
Commits the I2C Slave configuration and places the I2C Slave on the bus.

Inputs

device reference in is a reference to an NI 845x device.

i2c slave configuration in is a reference to a specific I2C Slave
configuration that describes the characteristics of the slave to emulate.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

device reference out is a reference to the NI 845x device after this VI runs.

i2c slave configuration out is a reference to the I2C Slave configuration
after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 9 NI-845x I2C Slave API for LabVIEW

NI-845x Hardware and Software Manual 9-18 ni.com

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Slave Start.vi to commit the I2C Slave configuration and place the
emulated slave on the I2C bus. Once the emulated slave is on the I2C bus, the address specified
in the configuration is acknowledged when addressed by the master. The emulated slave
begins generating events that can be read using NI-845x I2C Slave Wait for Event.vi.

Before using NI-845x I2C Slave Start.vi, ensure that the configuration parameters specified
in i2c slave configuration in are correct for the slave you want to emulate.

Note The I2C Slave API is not available for the NI USB-8451.

Chapter 9 NI-845x I2C Slave API for LabVIEW

© National Instruments 9-19 NI-845x Hardware and Software Manual

NI-845x I2C Slave Stop.vi

Purpose
Removes the I2C Slave from the bus and clears any pending events.

Inputs

device reference in is a reference to an NI 845x device.

i2c slave configuration in is a reference to a specific I2C Slave
configuration that describes the characteristics of the slave to emulate.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

device reference out is a reference to the NI 845x device after this VI runs.

i2c slave configuration out is a reference to the I2C Slave configuration
after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 9 NI-845x I2C Slave API for LabVIEW

NI-845x Hardware and Software Manual 9-20 ni.com

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Slave Stop.vi to remove the emulated slave from the I2C bus and clear any
pending events.

Note The I2C Slave API is not available for the NI USB-8451.

Chapter 9 NI-845x I2C Slave API for LabVIEW

© National Instruments 9-21 NI-845x Hardware and Software Manual

NI-845x I2C Slave Wait for Event.vi

Purpose
Waits for an event to be generated from the I2C Slave.

Inputs

device reference in is a reference to an NI 845x device.

i2c slave configuration in is a reference to a specific I2C Slave
configuration that describes the characteristics of the slave to emulate.

timeout in ms is the amount of time in milliseconds to wait for an event.
When a timeout occurs, NoEvent is returned.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

device reference out is a reference to the NI 845x device after this VI runs.

i2c slave configuration out is a reference to the I2C Slave configuration
after this VI runs.

Chapter 9 NI-845x I2C Slave API for LabVIEW

NI-845x Hardware and Software Manual 9-22 ni.com

event type is the event generated from the I2C Slave. Reading the event
does not complete the event. Each event generated requires further action
to process. event type uses the following values:

NoEvent

No event was generated and a timeout occurred.

No actions are required to process this event.

CmdEvent

A command is available to be read from the slave. This is due to the
master initiating a write operation and filling the slave’s command
buffer with the number of bytes configured in Command Buffer Size
or completing the write operation with a RESTART or STOP condition.

To process this event, NI-845x I2C Slave Read.vi must be called to
read the data written by the I2C master.

DataAvailEvent

Data is available to be read from the slave. This is due to the master
initiating a write operation and filling the slave’s data buffer with the
number of bytes configured in Data Buffer Size, or the write operation
was completed with a RESTART or STOP condition on the I2C bus.

To process this event, NI-845x I2C Slave Read.vi must be called to
read the data written by the I2C master.

DataReqEvent

Data is requested to be written to the master. This is due to the master
requesting data to be read from the emulated slave.

To process this event, NI-845x I2C Slave Write.vi must be called to
provide data to the slave to write to the I2C master.

WriteCompleteEvent

The slave device has completed writing data to the master. This is due
to the master reading a byte from the slave and sending a NACK, or all
data from the previous DataReqEvent has been transferred and the
master is requesting more data. When this event is generated, any
additional write data present on the device is cleared.

To process this event, NI-845x I2C Slave Get Write Info.vi must be
called.

event flags describes the conditions surrounding the creation of the event.

Chapter 9 NI-845x I2C Slave API for LabVIEW

© National Instruments 9-23 NI-845x Hardware and Software Manual

IO Start indicates this is the first event since the I/O operation
began.

IO Complete indicates that the I/O operation has completed for
any reason including a STOP or RESTART condition on the I2C
bus.

IO Complete Stop indicates that the I/O operation has completed
due to a STOP condition on the I2C bus.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Slave Wait For Event.vi to read the latest event that has occurred on the
emulated slave. While in operation, only one event is active at a time and must be fully
processed by the appropriate handler. Each event is mapped to a single handler as described
in the following table.

NI-845x Slave Wait For Event.vi returns an error if a previous event has not been fully
processed.

Note The I2C Slave API is not available for the NI USB-8451.

Event Handler

NoEvent N/A

CmdEvent NI-845x I2C Slave Read.vi

DataAvailEvent NI-845x I2C Slave Read.vi

DataReqEvent NI-845x I2C Slave Write.vi

WriteCompleteEvent NI-845x I2C Slave Get Write Info.vi

Chapter 9 NI-845x I2C Slave API for LabVIEW

NI-845x Hardware and Software Manual 9-24 ni.com

NI-845x I2C Slave Write.vi

Purpose
Processes a DataReqEvent.

Inputs

device reference in is a reference to an NI 845x device.

i2c slave configuration in is a reference to a specific I2C Slave
configuration that describes the characteristics of the slave to emulate.

write data is the buffer of data to be written to the slave. Each time the
master requests a data byte, one byte from the write data is transferred.

Note The maximum amount of write data that is available to the slave is 65,535 bytes per
event. Any additional data is ignored.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 9 NI-845x I2C Slave API for LabVIEW

© National Instruments 9-25 NI-845x Hardware and Software Manual

Outputs

device reference out is a reference to the NI 845x device after this VI runs.

i2c slave configuration out is a reference to the I2C Slave configuration
after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x I2C Slave Write.vi to process a DataReqEvent. Data provided is used to
satisfy read requests from the master. When all provided write data has been transmitted, a
WriteCompleteEvent is generated followed by a DataReqEvent if the master is
requesting more data.

On completion of the master’s read sequence, any extra write data pending transmission from
the slave is discarded.

Note The I2C Slave API is not available for the NI USB-8451.

© National Instruments 10-1 NI-845x Hardware and Software Manual

10
NI-845x I2C Slave API for C

This chapter lists the functions for the NI-845x I2C Slave API and describes the format,
purpose, and parameters for each function. The functions are listed alphabetically in three
categories: general device, configuration, and slave.

Note The I2C Slave API is not available fo rthe NI USB-8451.

Section Headings
The NI-845x I2C Slave API for C functions include the following section headings.

Purpose
Each function description includes a brief statement of the function purpose.

Format
The format section describes the function format for the C programming language.

Inputs and Outputs
These sections list the function input and output parameters.

Description
The description section gives details about the purpose and effect of each function.

Data Types
The NI-845x I2C Slave API for C functions use the following data types.

Data Type Purpose

uInt8 8-bit unsigned integer

uInt16 16-bit unsigned integer

uInt32 32-bit unsigned integer

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-2 ni.com

List of Functions
The following table contains an alphabetical list of the NI-845x I2C Slave API for C functions.

int8 8-bit signed integer

int16 16-bit signed integer

int32 32-bit signed integer

uInt8 * Pointer to an 8-bit unsigned integer

uInt16 * Pointer to a 16-bit unsigned integer

uInt32 * Pointer to a 32-bit unsigned integer

int8 * Pointer to an 8-bit signed integer

int16 * Pointer to a 16-bit signed integer

int32 * Pointer to a 32-bit signed integer

char * ASCII string represented as an array of characters terminated
by null character ('\0')

NiHandle Operating system independent handle

Function Purpose

ni845xClose Closes a previously opened
NI 845x device.

ni845xCloseFindDeviceHandle Closes the handles created
by ni845xFindDevice.

ni845xDeviceLock Locks NI 845x devices for
access by a single thread.

ni845xDeviceUnlock Unlocks NI 845x devices.

ni845xFindDevice Finds an NI 845x device and
returns the total number of
NI 845x devices present. You
can find subsequent devices
using
ni845xFindDeviceNext.

Data Type Purpose

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-3 NI-845x Hardware and Software Manual

ni845xFindDeviceNext Finds subsequent devices
after ni845xFindDevice
has been called.

ni845xI2cSetPullupEnable Modifies the voltage output
from a DIO port on an
NI 845x device.

ni845xI2cSlaveConfigurationClose Closes an NI-845x I2C Slave
I/O configuration.

ni845xI2cSlaveConfigurationGetAddress Retrieves the configuration’s
address.

ni845xI2cSlaveConfigurationGetAutoRemovalTimeout Retrieves the configuration’s
auto removal timeout.

ni845xI2cSlaveConfigurationGetCommandBufferSize Retrieves the configuration’s
command buffer size.

ni845xI2cSlaveConfigurationGetDataBufferSize Retrieves the configuration’s
data buffer size.

ni845xI2cSlaveConfigurationOpen Creates a new NI-845x I2C
Slave configuration.

ni845xI2cSlaveConfigurationSetAddress Sets the configuration’s
address.

ni845xI2cSlaveConfigurationSetAutoRemovalTimeout Sets the configuration’s auto
removal timeout.

ni845xI2cSlaveConfigurationSetCommandBufferSize Sets the configuration’s
command buffer size.

ni845xI2cSlaveConfigurationSetDataBufferSize Sets the configuration’s data
buffer size.

ni845xI2cSlaveGetWriteInfo Processes a Write
Complete Event.

ni845xI2cSlaveRead Processes a Data
Available Event or a
Command Event.

Function Purpose

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-4 ni.com

ni845xI2cSlaveStart Commits the I2C Slave
configuration and places the
I2C Slave on the bus.

ni845xI2cSlaveStop Removes the I2C Slave from
the bus and clears any
pending events.

ni845xI2cSlaveWaitForEvent Waits for an event to be
generated from the I2C
Slave.

ni845xI2cSlaveWrite Processes a Data
Requested Event.

ni845xOpen Opens an NI 845x device for
use with various write, read,
and device property
functions.

ni845xSetIoVoltageLevel Sets the voltage level of the
NI-845x I/O pins
(DIO/SPI/VioRef).

ni845xSetTimeout Sets the global timeout
value.

ni845xStatusToString Converts a status code into a
descriptive string.

Function Purpose

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-5 NI-845x Hardware and Software Manual

General Device

ni845xClose

Purpose
Closes a previously opened NI 845x device.

Format
int32 ni845xClose(NiHandle DeviceHandle);

Inputs
NiHandle DeviceHandle

Device handle to be closed.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xClose to close a device handle previously opened by ni845xOpen. Passing an
invalid handle to ni845xClose is ignored.

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-6 ni.com

ni845xCloseFindDeviceHandle

Purpose
Closes the handles created by ni845xFindDevice.

Format
int32 ni845xCloseFindDeviceHandle (

NiHandle FindDeviceHandle
);

Inputs
NiHandle FindDeviceHandle

Describes a find list. ni845xFindDevice creates this parameter.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xCloseFindDeviceHandle to close a find list. In this process, all allocated data
structures are freed.

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-7 NI-845x Hardware and Software Manual

ni845xDeviceLock

Purpose
Locks NI 845x devices for access by a single thread.

Format
int32 ni845xDeviceLock(NiHandle DeviceHandle);

Inputs
NiHandle DeviceHandle

Device handle to be locked.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
This function locks NI 845x devices and prevents multiple processes or threads from
accessing the device until the process or thread that owns the device lock calls an equal
number of ni845xDeviceUnlock calls. Any thread or process that attempts to call
ni845xDeviceLock when the device is already locked is forced to sleep by the
operating system. This is useful for when multiple Basic API device accesses must occur
uninterrupted by any other processes or threads. If a thread exits without fully unlocking
the device, the device is unlocked. If a thread is the current owner of the lock, and calls
ni845xDeviceLock again, the thread will not deadlock itself, but care must be taken to call
ni845xDeviceUnlock for every ni845xDeviceLock called. This function can possibly
lock a device indefinitely: If a thread never calls ni845xDeviceUnlock, or fails to call
ni845xDeviceUnlock for every ni845xDeviceLock call, and never exits, other processes
and threads are forced to wait. This is not recommended for users unfamiliar with threads or
processes. A simpler alternative is to use scripts. Scripts provide the same capability to ensure
transfers are uninterrupted, and with possible performance benefits.

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-8 ni.com

ni845xDeviceUnlock

Purpose
Unlocks NI 845x devices.

Format
int32 ni845xDeviceUnlock(NiHandle DeviceHandle);

Inputs
NiHandle DeviceHandle

Device handle to be unlocked.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xDeviceUnlock to unlock access to an NI 845x device previously locked with
ni845xDeviceLock. Every call to ni845xDeviceLock must have a corresponding call to
ni845xDeviceUnlock. Refer to ni845xDeviceLock for more details regarding how to
use device locks.

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-9 NI-845x Hardware and Software Manual

ni845xFindDevice

Purpose
Finds an NI 845x device and returns the total number of NI 845x devices present. You can find
subsequent devices using ni845xFindDeviceNext.

Format
int32 ni845xFindDevice (

char * pFirstDevice,
NiHandle * pFindDeviceHandle,
uInt32 * pNumberFound
);

Inputs
None.

Outputs
char * pFirstDevice

A pointer to the string containing the first NI 845x device found. You can pass this name
to the ni845xOpen function to open the device. If no devices exist, this is an empty
string.

NiHandle * pFindDeviceHandle

Returns a handle identifying this search session. This handle is used as an input in
ni845xFindDeviceNext and ni845xCloseFindDeviceHandle.

uInt32 * pNumberFound

A pointer to the total number of NI 845x devices found in the system. You can use this
number in conjunction with the ni845xFindDeviceNext function to find a particular
device. If no devices exist, this returns 0.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-10 ni.com

Description
Use ni845xFindDevice to get a single NI 845x device and the number of NI 845x devices
in the system. You can then pass the string returned to ni845xOpen to access the device. If
you must discover more devices, use ni845xFindDeviceNext with pFindDeviceHandle
and pNumberFound to find the remaining NI 845x devices in the system. After finding all
desired devices, call ni845xCloseFindDeviceHandle to close the device handle and
relinquish allocated resources.

Note pFirstDevice must be at least 256 bytes.

Note pFindDeviceHandle and pNumberFound are optional parameters. If only the first
match is important, and the total number of matches is not needed, you can pass in a NULL
pointer for both of these parameters, and the NI-845x driver automatically calls
ni845xCloseFindDeviceHandle before this function returns.

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-11 NI-845x Hardware and Software Manual

ni845xFindDeviceNext

Purpose
Finds subsequent devices after ni845xFindDevice has been called.

Format
int32 ni845xFindDeviceNext (

NiHandle FindDeviceHandle,
char * pNextDevice
);

Inputs
NiHandle FindDeviceHandle

Describes a find list. ni845xFindDevice creates this parameter.

Outputs
char * pNextDevice

A pointer to the string containing the next NI 845x device found. This is empty if no
further devices are left.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xFindDeviceNext after first calling ni845xFindDevice to find the remaining
devices in the system. You can then pass the string returned to ni845xOpen to access the
device.

Note pNextDevice must be at least 256 bytes.

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-12 ni.com

ni845xOpen

Purpose
Opens an NI 845x device for use with various write, read, and device property functions.

Format
int32 ni845xOpen (

char * pResourceName,
NiHandle * pDeviceHandle
);

Inputs
char * pResourceName

A resource name string corresponding to the NI 845x device to be opened.

Outputs
NiHandle * pDeviceHandle

A pointer to the device handle.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xOpen to open an NI 845x device for access. The string passed to
ni845xOpen can be any of the following: an ni845xFindDevice device string, an
ni845xFindDeviceNext device string, a Measurement & Automation Explorer resource
name, or a Measurement & Automation Explorer alias.

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-13 NI-845x Hardware and Software Manual

ni845xSetIoVoltageLevel

Purpose
Modifies the voltage output from a DIO port on an NI 845x device.

Format
int32 ni845xSetIoVoltageLevel (

NiHandle DeviceHandle,
uInt8 VoltageLevel
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt8 VoltageLevel

The desired voltage level. VoltageLevel uses the following values:

• kNi845x33Volts (33): The output I/O high level is 3.3 V.

• kNi845x25Volts (25): The output I/O high level is 2.5 V.

• kNi845x18Volts (18): The output I/O high level is 1.8 V.

• kNi845x15Volts (15): The output I/O high level is 1.5 V.

• kNi845x12Volts (12): The output I/O high level is 1.2 V.

The default value of this property is 3.3 V.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSetIoVoltageLevel to modify the board reference voltage of the NI 845x
device. The board reference voltage is used for SPI, I2C, and DIO. Refer to Chapter 3,
NI USB-845x Hardware Overview, to determine the available voltage levels on your
hardware.

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-14 ni.com

ni845xI2cSetPullupEnable

Purpose
Modifies the voltage output from a DIO port on an NI 845x device.

Format
int32 ni845xI2cSetPullupEnable (

NiHandle DeviceHandle,
uInt8 Enable
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt8 Enable

The setting for the pullup resistors. Enable uses the following values:

• kNi845xPullupDisable (0): Pullups are disabled.

• kNi845xPullupEnable (1): Pullups are enabled.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cPullupEnable to enable or disable the onboard pullup resistors for I2C
operations. The pullup resistors pull SDA and SCL up to ni845xSetIoVoltageLevel.

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-15 NI-845x Hardware and Software Manual

ni845xSetTimeout

Purpose
Modifies the global timeout for operations when using an NI 845x device.

Format
int32 ni845xSetTimeout (

NiHandle DeviceHandle,
uInt32 Timeout
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt32 Timeout

The timeout value in milliseconds. The minimum timeout is 1000 ms (1 second).

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSetTimeout to set the global timeout for the device. This timeout is the
minimum amount of time an I2C, SPI, or DIO operation is allowed to complete.

The default of this property is 30000 (30 seconds).

Note You should set this property higher than the expected I/O time. For the
NI USB-8451, a timeout may leave the device in an unknown state that may require a
power cycle of the device.

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-16 ni.com

ni845xStatusToString

Purpose
Converts a status code into a descriptive string.

Format
void ni845xStatusToString (

int32 StatusCode,
uInt32 MaxSize,
int8 * pStatusString
);

Inputs
int32 StatusCode

Status code returned from an NI-845x function.

uInt32 MaxSize

Size of the pStatusString buffer (in bytes).

Outputs
int8 * pStatusString

ASCII string that describes StatusCode.

Description
When the status code returned from an NI-845x function is nonzero, an error or warning is
indicated. This function obtains a description of the error/warning for debugging purposes.

The return code is passed into the StatusCode parameter. The MaxSize parameter
indicates the number of bytes available in pStatusString for the description (including
the NULL character). The description is truncated to size MaxSize if needed, but a size of
1024 characters is large enough to hold any description. The text returned in String is
null-terminated, so you can use it with ANSI C functions such as printf.

For applications written in C or C++, each NI-845x function returns a status code as a signed
32-bit integer. The following table summarizes the NI-845x use of this status.

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-17 NI-845x Hardware and Software Manual

NI-845x Status Codes

The application code should check the status returned from every NI-845x function. If an
error is detected, you should close all NI-845x handles, then exit the application. If a warning
is detected, you can display a message for debugging purposes, or simply ignore the warning.

In some situations, you may want to check for specific errors in the code and continue
communication when they occur. For example, when communicating to an I2C EEPROM,
you may expect the device to NAK its address during a write cycle, and you may use this
knowledge to poll for when the write cycle has completed.

Status Code Meaning

Negative Error—Function did not perform expected behavior.

Positive Warning—Function executed, but a condition arose that may
require attention.

Zero Success—Function completed successfully.

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-18 ni.com

Configuration

ni845xI2cSlaveConfigurationClose

Purpose
Closes an I2C Slave I/O configuration.

Format
int32 ni845xI2cSlaveConfigurationClose (

NiHandle ConfigurationHandle
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cSlaveConfigurationOpen.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSlaveConfigurationClose to close a configuration.

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-19 NI-845x Hardware and Software Manual

ni845xI2cSlaveConfigurationGetAddress

Purpose
Retrieves the configuration address.

Format
int32 ni845xI2cSlaveConfigurationGetAddress (

NiHandle ConfigurationHandle,
uInt16 * pAddress
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cSlaveConfigurationOpen.

Outputs
uInt16 * pAddress

A pointer to an unsigned 16-bit integer to store the configuration’s address in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSlaveConfigurationGetAddress to retrieve the configuration’s slave
address.

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-20 ni.com

ni845xI2cSlaveConfigurationGetAutoRemovalTimeout

Purpose
Retrieves the configuration’s auto removal timeout.

Format
int32 ni845xI2cSlaveConfigurationGetAutoRemovalTimeout (

NiHandle ConfigurationHandle,
int32 * pAutoRemovalTimeout
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cSlaveConfigurationOpen.

Outputs
int32 * pAutoRemovalTimeout

A pointer to a signed 32-bit integer to store the auto removal timeout.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSlaveConfigurationGetAutoRemovalTimeout to retrieve the
configuration’s autoremoval timeout.

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-21 NI-845x Hardware and Software Manual

ni845xI2cSlaveConfigurationGetCommandBufferSize

Purpose
Retrieves the configuration’s command buffer size.

Format
int32 ni845xI2cSlaveConfigurationGetCommandBufferSize (

NiHandle ConfigurationHandle,
uInt16 * pCommandBufferSize
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cSlaveConfigurationOpen.

Outputs
uInt16 * pCommandBufferSize

A pointer to an unsigned 16-bit integer to store the command buffer size.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSlaveConfigurationGetCommandBufferSize to retrieve the
configuration’s command buffer size.

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-22 ni.com

ni845xI2cSlaveConfigurationGetDataBufferSize

Purpose
Retrieves the configuration’s data buffer size.

Format
int32 ni845xI2cSlaveConfigurationGetDataBufferSize (

NiHandle ConfigurationHandle,
uInt16 * pDataBufferSize
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cSlaveConfigurationOpen.

Outputs
uInt16 * pDataBufferSize

A pointer to an unsigned 16-bit integer to store the data buffer size.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSlaveConfigurationGetDataBufferSize to retrieve the
configuration’s data buffer size.

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-23 NI-845x Hardware and Software Manual

ni845xI2cSlaveConfigurationOpen

Purpose
Creates a new NI-845x I2C Slave configuration.

Format
int32 ni845xI2cSlaveConfigurationOpen (

NiHandle * pConfigurationHandle
);

Inputs
NiHandle * pConfigurationHandle

The a pointer to an NiHandle to store the created configuration handle. This must not be
NULL.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use this function to create a new configuration to use with the NI-845x I2C Slave API. Pass
the handles to the ni845xI2cSlaveConfigurationSet* series of functions to modify the
configuration properties. Then, pass the configuration to the I2C slave functions to execute
them. After you finish emulating the slave, pass the handle to the
ni845xI2cSlaveConfigurationSet* series of functions to reconfigure it or use
ni845xI2cSlaveConfigurationClose to delete the configuration.

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-24 ni.com

ni845xI2cSlaveConfigurationSetAddress

Purpose
Sets the configuration’s I2C slave address.

Format
int32 ni845xI2cSlaveConfigurationSetAddress (

NiHandle ConfigurationHandle,
uInt16 Address
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cSlaveConfigurationOpen.

uInt16 Address

Specifies the address of the I2C Slave. The NXP I2C Specification defines a 7-bit slave
address and a direction bit. During the address phase of an I2C transaction, these values
are sent across the bus as one byte (slave address in bits 7–1, direction in bit 0). The
NI-845x software follows the convention used in the NXP I2C Specification and defines
an address for a 7-bit device as a 7-bit value. The I2C Slave does not support 10-bit
addresses.

The default value of this property is 0. The default value is not recommended for use, as
it is reserved by the NXP I2C Standard as the general call address.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSlaveConfigurationSetAddress to set the I2C slave address. This is a
7-bit number; do not include a direction bit.

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-25 NI-845x Hardware and Software Manual

ni845xI2cSlaveConfigurationSetAutoRemovalTimeout

Purpose
Sets the configuration’s auto removal timeout.

Format
int32 ni845xI2cSlaveConfigurationSetAutoRemovalTimeout (

NiHandle ConfigurationHandle,
int32 AutoRemovalTimeout
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cSlaveConfigurationOpen.

int32 AutoRemovalTimeout

A signed 32-bit integer to store the auto removal timeout.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSlaveConfigurationSetAutoRemovalTimeout to set the
configuration’s autoremoval timeout in milliseconds. The timeout removes the slave from the
I2C bus after the slave has completed reading from the master.

Valid values for AutoRemovalTimeout include:

0 The slave does not remove itself from the bus after reading data from the master.

> 0 The slave removes itself from the bus for the amount of time specified by the
property.

< 0 The slave removes itself from the bus and immediately stops operation. It will not
return to the I2C bus until ni845xI2cSlaveStart is called.

You can use this timeout if the slave device being emulated requires time to processes
received data. An example of this is an EEPROM that needs to simulate the write cycle timing
for a page of data.

The default value of this property is 0.

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-26 ni.com

ni845xI2cSlaveConfigurationSetCommandBufferSize

Purpose
Sets the configuration’s command buffer size.

Format
int32 ni845xI2cSlaveConfigurationSetCommandBufferSize (

NiHandle ConfigurationHandle,
uInt16 CommandBufferSize
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cSlaveConfigurationOpen.

uInt16 CommandBufferSize

Specifies the number of bytes to be used as a command buffer. This buffer is used to store
the first bytes when the master initiates a write operation. You can use this buffer if the
slave device being emulated requires a command to be prepended before data can be
written to it. When this buffer is filled, a Command Event is generated.

Providing a command buffer size of 0 disables the command buffer.

The default value of this property is 0.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSlaveConfigurationSetCommandBufferSize to set the command
buffer size.

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-27 NI-845x Hardware and Software Manual

ni845xI2cSlaveConfigurationSetDataBufferSize

Purpose
Sets the configuration’s data buffer size.

Format
int32 ni845xI2cSlaveConfigurationSetDataBufferSize (

NiHandle ConfigurationHandle,
uInt16 DataBufferSize
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cSlaveConfigurationOpen.

uInt16 DataBufferSize

Specifies the number of bytes to be used as a data buffer. This buffer is used to store data
when the master performs a write operation to the slave. When the command buffer is
enabled, only the data after the command is stored in the data buffer. If this buffer is full
or if the write operation is completed, a Data Available Event is generated.

The default value of this property is 128.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSlaveConfigurationSetDataBufferSize to set the data buffer size.

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-28 ni.com

Slave

ni845xI2cSlaveGetWriteInfo

Purpose
Processes a Write Complete Event.

Format
int32 ni845xI2cSlaveGetWriteInfo (

NiHandle DeviceHandle,
NiHandle ConfigurationHandle,
uInt16 * pNumBytesWritten
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cSlaveConfigurationOpen.

Outputs
uInt16 * pNumBytesWritten

A pointer to the number of bytes transferred from the slave to the master during the
previous write operation.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSlaveGetWriteInfo to process a Write Complete Event. The number
of bytes written specified indicates the number of bytes written to the master following the
previous Data Requested Event. Each Data Requested Event is paired with a Write
Complete Event to provide information on the completed transfer.

Note The I2C Slave API is not available for the NI USB-8451.

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-29 NI-845x Hardware and Software Manual

ni845xI2cSlaveRead

Purpose
Processes a Data Available Event or a Command Event.

Format
int32 ni845xI2cSlaveRead(

NiHandle DeviceHandle,
NiHandle ConfigurationHandle,
uInt16 NumBytesToRead,
uInt16 * pReadSize,
uInt8 * pReadData,
bool * pEventCleared
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cSlaveConfigurationOpen.

uInt16 NumBytesToRead

The maximum number of bytes to read. To complete processing an event, all bytes from
the Data Available Event or the Command Event must be read. The maximum
number of bytes in an event is defined by the maximum of the properties set using
ni845xI2cSlaveConfigurationSetCommandBufferSize and
ni845xI2cSlaveConfigurationSetDataBufferSize.

Outputs
uInt16 * pReadSize

A pointer to the number of bytes stored in pReadData.

uInt8 * pReadData

A pointer to a buffer that holds the data contained in the event. The amount of data read
from the event is the minimum of NumBytesToRead and the number of bytes left in the
event.

bool * pEventCleared

A pointer to a Boolean value that indicates if the Data Available Event or Command
Event has been processed.

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-30 ni.com

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description

Use ni845xI2cSlaveRead to process a Data Available Event or Command Event.
The data received from the master is contained in pReadData.

Note The I2C Slave API is not available for the NI USB-8451.

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-31 NI-845x Hardware and Software Manual

ni845xI2cSlaveStart

Purpose
Commits the I2C Slave configuration and places the I2C Slave on the bus.

Format
int32 ni845xI2cSlaveStart (

NiHandle DeviceHandle,
NiHandle ConfigurationHandle
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cSlaveConfigurationOpen.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSlaveStart to commit the I2C Slave configuration and place the slave on
the I2C bus. Once the slave is on the I2C bus, the address specified in the configuration is
acknowledged when addressed by the master. The slave begins generating events that can be
read using ni845xI2cSlaveWaitForEvent. Before using ni845xI2cSlaveStart,
ensure that the configuration parameters specified in ConfigurationHandle are correct for
the slave you want to emulate.

Note The I2C Slave API is not available for the NI USB-8451.

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-32 ni.com

ni845xI2cSlaveStop

Purpose
Removes the I2C Slave from the bus and clears any pending events.

Format
int32 ni845xI2cSlaveStop (

NiHandle DeviceHandle,
NiHandle ConfigurationHandle
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cSlaveConfigurationOpen.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description

Use ni845xI2cSlaveStop to remove the slave from the I2C bus and clear any pending
events.

Note The I2C Slave API is not available for the NI USB-8451.

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-33 NI-845x Hardware and Software Manual

ni845xI2cSlaveWaitForEvent

Purpose
Waits for an event to be generated from the I2C slave.

Format
int32 ni845xI2cSlaveWaitForEvent (

NiHandle DeviceHandle,
NiHandle ConfigurationHandle,
uInt32 Timeout,
uInt8 * pEventType,
uInt16 * pEventFlags
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cSlaveConfigurationOpen.

uInt32 Timeout

The amount of time in milliseconds to wait for an event. If a timeout occurs,
pEventType contains the value 0 indicating that no event is available.

Outputs

Note The following table lists the event names and their corresponding values.

Event Value

Command Event kNi845xI2cSlaveEventCmdEvent (0x01)

Data Available Event kNi845xI2cSlaveEventDataAvailEvent (0x02)

Data Requested Event kNi845xI2cSlaveEventDataReqEvent (0x03)

Write Complete Event kNi845xI2cSlaveEventWriteCompleteEvent (0x04)

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-34 ni.com

uInt8 * pEventType

The event generated from the I2C Slave. Reading the event does not complete the
processing of the event. All events generated except kNi845xI2cSlaveEventNoEvent
require further action to process. pEventType uses the following values:

• kNi845xI2cSlaveEventNoEvent (0x00)

No event was generated and a timeout occurred.

No actions are required to process this event.

• kNi845xI2cSlaveEventCmdEvent (0x01)

A command is available to be read from the slave. This is due to the master initiating
a write operation and filling the slave’s command buffer with the number of bytes
configured using ni845xI2cSlaveConfigurationSetCommandBufferSize or
completing the write operation with a RESTART or STOP condition.

To process this event, ni845xI2cSlaveRead must be called to read the data written
by the I2C master.

• kNi845xI2cSlaveEventDataAvailEvent (0x02)

Data is available to be read from the slave. This is due to the master initiating a write
operation and filling the slave’s data buffer with the number of bytes configured in
ni845xI2cSlaveConfigurationSetDataBufferSize or the write operation
was completed with a RESTART or STOP condition on the I2C bus.

To process this event, ni845xI2cSlaveRead must be called to read the data written
by the I2C master.

• kNi845xI2cSlaveEventDataReqEvent (0x03)

Data is requested to be written to the master. This is due to the master requesting data
to be read from the slave.

To process this event, ni845xI2cSlaveWrite must be called to provide data to the
slave to write to the I2C master.

• kNi845xI2cSlaveEventWriteCompleteEvent (0x04)

The slave device has completed writing data to the master. This is due to the master
reading a byte from the slave and sending a NACK or all data from the previous
Data Requested Event has been transferred. When this event is generated, any
additional write data present on the device is cleared.

To process this event, ni845xI2cSlaveGetWriteInfo must be called.
uInt16 * pEventFlags

A bit field that describes the conditions surrounding the creation of the event.

Possible flags include:

• kNi845xI2cEventFlagIoStart (0x01)

Indicates that this is the first event since the I/O operation began.

• kNi845xI2cEventFlagIoComplete (0x02)

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-35 NI-845x Hardware and Software Manual

Indicates that the I/O operation has completed for any reason including a STOP or
RESTART condition on the I2C bus.

• kNi845xI2cEventFlagIoCompleteStop (0x04)

Indicates that the I/O operation has completed due to a STOP condition on the I2C
bus.

Note Multiple flags may be set at one time depending on the bus conditions that caused
the event.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSlaveWaitForEvent to read the latest event that has occurred on the slave.
While in operation, only one event is active at a time and must be fully processed by the
appropriate handler. Each event is mapped to a single handler as described in the table below:

ni845xI2cSlaveWaitForEvent returns an error if a previous event has not been fully
processed.

Note The I2C Slave API is not available for the NI USB-8451.

Event Handler

No Event N/A

Command Event ni845xI2cSlaveRead

Data Available Event ni845xI2cSlaveRead

Data Requested Event ni845xI2cSlaveWrite

Write Complete Event ni845xI2cSlaveGetWriteInfo

Chapter 10 NI-845x I2C Slave API for C

NI-845x Hardware and Software Manual 10-36 ni.com

ni845xI2cSlaveWrite

Purpose
Processes a Data Requested Event.

Format
int32 ni845xI2cSlaveWrite (

NiHandle DeviceHandle,
NiHandle ConfigurationHandle,
uInt16 WriteSize,
uInt8 * pWriteData
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

NiHandle ConfigurationHandle

The configuration handle returned from ni845xI2cSlaveConfigurationOpen.

uInt16 WriteSize

Size of WriteData.

uInt8 * pWriteData

The buffer of data to be written to the slave. Each time the master requests a data byte,
one byte from pWriteData is transferred.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description

Use ni845xI2cSlaveWrite to process a Data Requested Event. Data provided is used
to satisfy read requests from the master. When all provided write data has been transmitted, a
Write Complete Event is generated. If the master requests more data, a new Data
Requested Event is generated.

Chapter 10 NI-845x I2C Slave API for C

© National Instruments 10-37 NI-845x Hardware and Software Manual

Upon completion of the master’s read sequence, a Write Complete Event is generated,
and any extra write data pending transmission from the slave is discarded.

Note The I2C Slave API is not available for the NI USB-8451.

© National Instruments 11-1 NI-845x Hardware and Software Manual

11
Using the NI-845x SPI API

This chapter helps you get started with the SPI API.

NI-845x SPI Basic Programming Model
The SPI Basic API provides the most fundamental SPI transaction type:
write/read. You can access most off-the-shelf SPI devices using this
transaction. The SPI Basic API allows you to easily and quickly develop
applications to communicate with these devices. For those situations in
which the SPI Basic API does not provide the functionality you need, use
the SPI Scripting API to create custom SPI transactions.

When you use the SPI Basic API, the first step is to create an SPI
configuration to describe the communication requirements between the
845x and the SPI device. To make an SPI configuration, create an SPI
configuration reference and set the appropriate properties as desired. You
can then read or write data to the SPI device.

The diagram in Figure 11-1 describes the programming model for
the NI-845x SPI Basic API. Within the application, you repeat this
programming model for each SPI device. The diagram is followed by
a description of each step in the model.

Figure 11-1. NI-845x SPI API Basic Programming Model

SPI Configure

SPI Write/Read

Chapter 11 Using the NI-845x SPI API

NI-845x Hardware and Software Manual 11-2 ni.com

SPI Configure
Use the NI-845x SPI Configuration Property Node in LabVIEW
and ni845xSpiConfiguration* calls in other languages to set the
specific SPI configuration that describes the characteristics of the device to
communicate with.

SPI Write Read
Use NI-845x SPI Write Read.vi in LabVIEW and
ni845xSpiWriteRead in other languages to exchange an array of data
with an SPI slave device.

SPI Timing Characteristics
Figure 11-2 and Tables 11-1 and 11-2 show the timing characteristics of
the SPI bus when using the SPI Basic API. If the timing characteristics of
your device do not fit within these parameters, you can use the SPI
Scripting API to adjust the bus characteristics to match those of your
device.

Figure 11-2. SPI Waveform

Table 11-1. NI USB-8451 Basic API SPI Timing Characteristics

Symbol Parameter Min Max Units

t1 CS(0:7) assertion to first SCLK edge 5 15.4 μs

t2 SCLK period 0.08333 20.83 μs

t3 SCLK setup time 8.5 19 μs

t4 Last SCLK edge to CS(0:7) deassertion 7.4 8.24 μs

CS(0:7)

SCLK

t1

t2 t3

t4

Chapter 11 Using the NI-845x SPI API

© National Instruments 11-3 NI-845x Hardware and Software Manual

NI-845x SPI Scripting Programming Model
The SPI Scripting API provides a set of script commands that allow you
great flexibility to construct custom SPI transactions to address your
particular needs. For example, you can use scripting in the following
scenarios:

• Executing individual byte transfers on the bus, with or without variable
delays in between, so that you can observe device response.

• Issuing a transaction to a device and measuring its responses (using
NI 845x DIO pins configured for input) at multiple points within the
transaction.

• Doing performance testing, in which you see how a device responds to
a variable delay, clock rate change, etc. between each byte transfer
within a transaction.

• Gang programming a set of EEPROMs, then verifying the data by
reading from each one afterwards.

• Communicating with devices that have an active high chip select line.

When you use the SPI Scripting API, the first step is to create a script that
describes the communication between an SPI master and an SPI slave
device. Then you execute the script and extract the read data if needed. The
script size is limited only by the amount of memory available on your PC.
The number of read commands, SPI Script Write Read, SPI Script DIO
Read Port, and SPI Script DIO Read Line within each script is limited to 64.

Table 11-2. NI USB-8452 Basic API SPI Timing Characteristics

Symbol Parameter Min Max Units

t1 CS(0:7) assertion to first SCLK edge 2.2 5 + ½ t2 μs

t2 SCLK period 0.02 1000 μs

t3 SCLK setup time 2.0 5 + ½ t2 μs

t4 Last SCLK edge to CS(0:7) deassertion 2.2 5 + ½ t2 μs

Chapter 11 Using the NI-845x SPI API

NI-845x Hardware and Software Manual 11-4 ni.com

The diagram in Figure 11-3 describes an example of programming with the
scripting functions for the NI-845x SPI Scripting API. The diagram is
followed by a description of each step in the model.

Figure 11-3. Scripting Functions Programming Example

Script: Enable SPI

Script: Configure Phase,
Polarity, Clock Rate,

Number of Bits

Script: Chip Select Low

Script: Write Read

Script: Chip Select High

Script: Disable SPI

Run Script

Extract Read Data

Chapter 11 Using the NI-845x SPI API

© National Instruments 11-5 NI-845x Hardware and Software Manual

Script: Enable SPI
Use NI-845x SPI Script Enable SPI.vi in LabVIEW and
ni845xSpiScriptEnableSPI in other languages to add an SPI Script
Enable SPI command to the SPI script. This command switches the pins on
the SPI port you specify when you run the script from tristate to master
mode function.

Script: Configure Phase, Polarity, Clock Rate, Number of Bits
Use NI-845x SPI Script Clock Polarity Phase.vi in LabVIEW and
ni845xSpiScriptClockPolarityPhase in other languages to add an
SPI Script Clock Polarity Phase command to the SPI script. This command
sets the SPI clock idle state (CPOL) and clock edge position within each
data bit (CPHA) for the SPI port you specify when you run the script.

Use NI-845x SPI Script Clock Rate.vi in LabVIEW and
ni845xSpiScriptClockRate in other languages to add an SPI Script
Clock Rate command to the SPI script. This command sets the SPI clock
rate for the SPI port you specify when you run the script.

Use NI-845x SPI Script Num Bits Per Sample.vi in LabVIEW and
ni845xSpiScriptNumBitsPerSample in other languages to add an SPI
Script Number of Bits per Sample command to the SPI script. This
command sets the number of bits per sample for the SPI port you specify
when you run the script.

Script: Chip Select Low
Use NI-845x SPI Script CS Low.vi in LabVIEW and
ni845xSpiScriptCSLow in other languages to add an SPI Script CS Low
command to the SPI script. This command sets an SPI chip select to the
logic low state when you run the script.

Script: Write Read
Use NI-845x SPI Script Write Read.vi in LabVIEW and
ni845xSpiScriptWriteRead in other languages to add an SPI Script
Write Read command to the SPI script. This command exchanges an array
of data with an SPI slave device connected to the SPI port you specify when
you run the script.

Chapter 11 Using the NI-845x SPI API

NI-845x Hardware and Software Manual 11-6 ni.com

Script: Chip Select High
Use NI-845x SPI Script CS High.vi in LabVIEW and
ni845xSpiScriptCSHigh in other languages to add an SPI Script CS
High command to the SPI script. This command sets an SPI chip select to
the logic high state when you run the script.

Script: Disable SPI
Use NI-845x SPI Script Disable SPI.vi in LabVIEW and
ni845xSpiScriptDisableSPI in other languages to add an SPI Script
Disable SPI command to the SPI script. This command tristates the pins on
the SPI port you specify when you run the script.

Run Script
Use NI-845x SPI Run Script.vi in LabVIEW and ni845xSpiScriptRun
in other languages to execute an SPI script on the desired device.

Extract Read Data
Use NI-845x SPI Extract Script Read Data.vi in LabVIEW and
ni845xSpiScriptExtractReadData in other languages to extract the
desired read data from a previously run SPI script. Each SPI script read
command (SPI Script Read, SPI Script DIO Read Port, SPI Script DIO
Read Line) returns a script read index to be passed into the Extract Read
Data function.

© National Instruments 12-1 NI-845x Hardware and Software Manual

12
NI-845x SPI API for LabVIEW

This chapter lists the LabVIEW VIs for the NI-845x SPI API and describes the format,
purpose, and parameters for each VI. The VIs in this chapter are listed alphabetically.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-2 ni.com

General Device

NI-845x Close Reference.vi

Purpose
Closes a previously opened reference.

Inputs

reference in is a reference to an NI 845x device, I2C configuration, I2C
Slave configuration, SPI configuration, SPI stream configuration, I2C
script, or SPI script.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-3 NI-845x Hardware and Software Manual

executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x Close Reference.vi to close a previously opened reference.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-4 ni.com

NI-845x Device Property Node

Purpose
A property node with the NI-845x Device class preselected. This property node allows you to
modify properties of your NI 845x device.

Inputs

device reference in is a reference to an NI 845x device.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

device reference out is a reference to an NI 845x device after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-5 NI-845x Hardware and Software Manual

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The list below describes all valid properties for the NI-845x Device Property Node.

DIO:Active Port

The DIO:Active Port property sets the active DIO port for further DIO
port configuration. The format for this property is a decimal string. For
example, the string 0 represents DIO Port 0. The default value of this
property is 0. For NI 845x devices with one DIO port, the port value must
be 0.

DIO:Driver Type

The DIO:Driver Type property configures the active DIO port with the
desired driver type characteristics. DIO:Driver Type uses the following
values:

Open-Drain

The DIO driver type is configured for open-drain.

Push-Pull

The DIO driver type is configured for push-pull. The actual
voltage driven (when sourcing a high value) is determined by the
I/O Voltage Level property.

The default value of this property is Push-Pull.

DIO:Line Direction Map

The DIO:Line Direction Map property sets the line direction map for the
active DIO Port. The value is a bitmap that specifies the function of each
individual line within the port. If bit x = 1, line x is an output. If bit x = 0,
line x is an input.

The default value of this property is 0 (all lines configured for input).

I/O Voltage Level

The I/O Voltage Level property sets the board voltage. This property sets
the voltage for SPI, I2C, and DIO. The default value for this property is
3.3V. This property uses the following values:

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-6 ni.com

3.3V

I/O Voltage is set to 3.3 V.

2.5V

I/O Voltage is set to 2.5 V.

1.8V

I/O Voltage is set to 1.8 V.

1.5V

I/O Voltage is set to 1.5 V.

1.2V

I/O Voltage is set to 1.2 V.

Refer to Appendix A, NI USB-845x Hardware Specifications, to determine
the available voltage levels on your hardware.

I2C Pullup Enable

The I2C Pullup Enable property enables or disables the internal pullup
resistors connected to SDA and SCL.

Refer to Appendix A, NI USB-845x Hardware Specifications, to determine
whether your hardware has onboard pull-up resistors.

Timeout (ms)

The Timeout (ms) property sets the global timeout for the device. This
timeout is the minimum amount of time an I2C, SPI, or DIO operation is
allowed to complete.

Note It is highly recommended to set this property higher than the expected I/O time. For
the NI USB-8451, a timeout may leave the device in an unknown state that may require a
power cycle of the device.

The default of this property is 30000 (30 seconds).

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-7 NI-845x Hardware and Software Manual

NI-845x Device Reference

Purpose
Specifies the device resource to be used for communication.

Description
Use the NI-845x Device Reference to describe the NI 845x device to communicate with. You
can wire the reference into a property node to set specific device parameters or to an NI-845x
API call to invoke the function on the associated NI 845x device.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-8 ni.com

Configuration

NI-845x SPI Configuration Property Node

Purpose
A property node with the NI-845x SPI Configuration class preselected. This property node
allows you to query and modify SPI configuration properties of your NI 845x device.

Inputs

spi configuration in is a reference to a specific SPI configuration that
describes the characteristics of the device to communicate with.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi configuration out is a reference to a specific SPI configuration that
describes the characteristics of the device to communicate with.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-9 NI-845x Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The list below describes all valid properties for the NI-845x SPI Configuration Property
Node.

Chip Select

Selects the chip select line for this configuration.

The default value for this property is 0.

Port

Specifies the SPI port that this configuration communicates across.

The default value for this property is 0.

Refer to Chapter 3, NI USB-845x Hardware Overview, to determine the
number of SPI ports your NI 845x device supports.

Clock Rate in kHz

Specifies the SPI clock rate. Refer to Chapter 3, NI USB-845x Hardware
Overview, to determine which clock rates your NI 845x device supports. If
your hardware does not support the supplied clock rate, a warning is
generated, and the next smallest supported clock rate is used. If the supplied
clock rate is smaller than the smallest supported clock rate, an error is
generated. The configuration does not validate the clock rate until it is
committed to hardware.

The default value for this property is 1000 kHz (1 MHz).

Clock Polarity

Sets the idle state of the clock line for the SPI Port. Clock Polarity uses the
following values:

0 (Idle Low)

Clock is low in the idle state.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-10 ni.com

1 (Idle High)

Clock is high in the idle state.

The default value for this property is 0 (Idle Low).

Clock Phase

Sets the positioning of the data bits relative to the clock edges for the SPI
Port. Clock Phase uses the following values:

0 (First Edge)

Data is centered on the first edge of the clock period.

1 (Second Edge)

Data is centered on the second edge of the clock period.

The default value for this property is 0 (First Edge).

Number of Bits Per Sample

Sets the number of bits per to be clocked per sample. Refer to Appendix A,
NI USB-845x Hardware Specifications, for valid settings for this property.

The default value for this property is 8.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-11 NI-845x Hardware and Software Manual

NI-845x SPI Create Configuration Reference.vi

Purpose
Creates a new NI-845x SPI configuration.

Inputs

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi configuration is a reference to the newly created NI-845x SPI
configuration.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-12 ni.com

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Create Configuration Reference.vi to create a new configuration to
use with the NI-845x SPI Basic API. Pass the reference to a property node to make the
configuration match the settings of your SPI slave. Then, pass the configuration to the SPI
basic functions to execute them on the described SPI slave. After you finish communicating
with your SPI slave, pass the reference into a new property node to reconfigure it or use
NI-845x Close Reference.vi to delete the configuration.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-13 NI-845x Hardware and Software Manual

Basic

NI-845x SPI Write Read.vi

Purpose
Exchanges an array of data with an SPI slave device.

Inputs

device reference in is a reference to an NI 845x device.

spi configuration in is a reference to a specific SPI configuration that
describes the characteristics of the device to communicate with. Connect
this configuration reference into a property node to set the specific
configuration parameters.

write data contains an array of data to write to the SPI slave.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-14 ni.com

Outputs

device reference out is a reference to the NI 845x device after this VI runs.

spi configuration out is a reference to the SPI configuration after this
VI runs.

read data contains an array of read data from an SPI interface.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Write Read.vi to exchange an array of data with an SPI slave device. Due
to the full-duplex nature of SPI, the size of the read data equals the size of the write data,
unless there is an error. Some SPI devices act as receivers only and require one or more
command and data bytes to be sent to them in one SPI transaction. As this is device specific,
you need to review the device datasheet to package the required commands and data into the
write data array. Other SPI devices act as transceivers. These devices can receive data much
like receiver-only devices. But they can also transmit data, which usually requires writing one
or more command bytes plus a number of bytes equal to the number of bytes desired to be
read from the device. In most cases, the values of these bytes are not important, as they serve
only to clock data out of the device. Here again, the SPI transaction formats are device
specific, so you need to review the device datasheet to package the required commands and
data into the write data array.

Data provided in write data and returned in read data is organized in big endian format.
Each sample is stored using the minimum number of bytes required, with the most significant
bits padded with 0.

For example, if spi configuration in is using 12 as the Number of Bits Per Sample, each
sample requires 2 bytes, and the 4 most significant bits are ignored.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-15 NI-845x Hardware and Software Manual

Any partial samples are discarded, and a warning is generated.

Before using NI-845x SPI Write Read.vi, you need to ensure that the configuration
parameters specified in spi configuration in are correct for the device you currently want to
access.

XXXXB11B10B9B8 B7B6B5B4B3B2B1B0 XXXXB11B10B9B8 B7B6B5B4B3B2B1B0

Sample 1 Sample 2

[0] [1] [2] [3]

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-16 ni.com

Scripting

NI-845x SPI Create Script Reference.vi

Purpose
Creates a new NI-845x SPI script.

Inputs

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi script reference is a reference to the newly created NI-845x SPI script.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-17 NI-845x Hardware and Software Manual

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Create Script Reference.vi to create a new script to use with the NI-845x
SPI Scripting API. Pass the reference to SPI script functions to create the script. Then, call
NI-845x SPI Run Script.vi to execute your script on your NI 845x device. After you have
finished executing your script, use NI-845x Close Reference.vi to delete the script.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-18 ni.com

NI-845x SPI Extract Script Read Data.vi

Purpose
Extracts the desired read data from an SPI script, referenced by spi script reference in, which
has been processed by NI-845x SPI Run Script.vi. Each script read command (NI-845x SPI
Script Write Read.vi, NI-845x SPI Script DIO Read Port.vi, NI-845x SPI Script DIO
Read Line.vi) returns a script read index. Data may be extracted for each script read index in
a script, by wiring each to a separate NI-845x SPI Extract Script Read Data.vi.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

script read index identifies the read in the script whose data should be
extracted.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-19 NI-845x Hardware and Software Manual

Outputs

spi script reference out is a reference to an SPI script after this VI runs.

read data is the data returned for the script command specified by script
read index.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Extract Script Read Data.vi to extract the desired read data from an SPI
script, referenced by spi script reference in, which has been processed by NI-845x SPI Run
Script.vi. Each SPI script read command (NI-845x SPI Script Write Read.vi, NI-845x SPI
Script DIO Read Port.vi, NI-845x SPI Script DIO Read Line.vi) returns a script read
index.

Data may be extracted for each script read in different ways. For example, you can wire the
script read index output of each script read VI to its own NI-845x SPI Extract Script Read
Data.vi. You can also place NI-845x SPI Extract Script Read Data.vi in a For Loop and
wire the loop iteration terminal to the script read index input. Add one to the script read
index output of the last read and wire this value to the loop count terminal. The output of the
For Loop will be an array of read data arrays.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-20 ni.com

NI-845x SPI Run Script.vi

Purpose
Executes an SPI script referenced by spi script reference in on the device referenced by
device reference in.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

device reference in is a reference to an NI 845x device.

port specifies the SPI port this script will run on.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

device reference out is a reference to the NI 845x device after this VI runs.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-21 NI-845x Hardware and Software Manual

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Run Script.vi to execute an SPI script referenced by spi script reference
in on the device referenced by device reference in. You must first create an SPI script using
the SPI scripting VIs. Next, wire its script reference into spi script reference in.

If you have multiple NI 845x devices installed in your system, you can select which device to
write your SPI script to by wiring its device reference to device reference in. If your NI 845x
device supports multiple SPI ports, you can also select which port to write your SPI script to.
For single SPI port NI 845x devices, you must use the default port (0). In this way, you can
create one script to run on various NI 845x devices, on various SPI ports within those devices.

NI-845x SPI Run Script.vi loads and executes your SPI script on the NI 845x device and SPI
port you specify, then returns success or error. If your script contained any read commands,
you may use NI-845x SPI Extract Script Read Data.vi to extract the read data after
executing NI-845x SPI Run Script.vi.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-22 ni.com

NI-845x SPI Script Clock Polarity Phase.vi

Purpose
Adds an SPI Script Clock Polarity Phase command to an SPI script referenced by spi script
reference in. This command sets the SPI clock idle state (CPOL) and clock edge position
within each data bit (CPHA).

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

clock polarity sets the idle state of the clock line. The values for clock
polarity are:

0 (Idle Low) low in idle state

1 (Idle High) high in idle state

clock phase sets the positioning of the data bits relative to the clock edges.
The values for clock phase are:

0 (First Edge) data centered on first edge of clock period

1 (Second Edge) data centered on second edge of clock period

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-23 NI-845x Hardware and Software Manual

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Script Clock Polarity Phase.vi to add an SPI Script Clock Polarity Phase
command to an SPI script referenced by spi script reference in. This command sets the SPI
clock idle state (CPOL) and clock edge position within each data bit (CPHA) for the SPI port
you specify when you use NI-845x SPI Run Script.vi to execute the script.

Clock polarity sets the idle state of the SPI clock line. The default (0) sets the clock line to
idle at a low logic level. Setting the clock polarity to 1 sets the clock line to idle at a high logic
level. Clock phase sets the SPI clock edge on which the NI 845x SPI port centers each MOSI
data bit. The default (0) centers each MOSI data bit on the first edge of each clock cycle.
Setting the clock phase to 1 causes each MOSI data bit to be centered on the second edge of
each clock cycle.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-24 ni.com

NI-845x SPI Script Clock Rate.vi

Purpose
Adds an SPI Script Clock Rate command to an SPI script referenced by spi script reference
in. This command sets the SPI clock rate.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

clock rate in kHz specifies the SPI clock rate. Refer to Chapter 3,
NI USB-845x Hardware Overview, which clock rates your NI 845x device
supports.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-25 NI-845x Hardware and Software Manual

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Script Clock Rate.vi to add an SPI Script Clock Rate command to an SPI
script referenced by spi script reference in. This command sets the SPI clock rate for the SPI
port you specify when you use NI-845x SPI Run Script.vi to execute the script. The NI 845x
device can clock data only at specific rates. If the selected rate is not one of the rates your
hardware supports, the NI-845x software adjusts it down to a supported rate and generates a
warning. If the selected rate is lower than all supported rates, an error is generated.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-26 ni.com

NI-845x SPI Script CS High.vi

Purpose
Adds an SPI Script CS High command to an SPI script referenced by spi script reference in.
This command sets an SPI chip select to the logic high state.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

chip select specifies the chip select to set high.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-27 NI-845x Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Script CS High.vi to add an SPI Script CS High command to an SPI
script referenced by spi script reference in. This command sets an SPI chip select to the
logic high state.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-28 ni.com

NI-845x SPI Script CS Low.vi

Purpose
Adds an SPI Script CS Low command to an SPI script referenced by spi script reference in.
This command sets an SPI chip select to the logic low state.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

chip select specifies the chip select to set low.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-29 NI-845x Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Script CS Low.vi to add an SPI Script CS Low command to an SPI
script referenced by spi script reference in. This command sets an SPI chip select to the
logic low state.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-30 ni.com

NI-845x SPI Script Delay (Microsecond).vi

Purpose
Adds an SPI Script Delay command to an SPI script referenced by spi script reference in.
This command adds a microsecond delay after the previous SPI script command.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

delay in microseconds specifies the desired delay.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-31 NI-845x Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Script Delay.vi to add an SPI Script µs Delay command to an SPI script
referenced by spi script reference in. This command adds a microsecond delay after the
previous SPI script command.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-32 ni.com

NI-845x SPI Script Delay (Millisecond).vi

Purpose
Adds an SPI Script Delay command to an SPI script referenced by spi script reference in.
This command adds a millisecond delay after the previous SPI script command.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

delay in milliseconds specifies the desired delay.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-33 NI-845x Hardware and Software Manual

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Script Delay.vi to add an SPI Script Delay command to an SPI script
referenced by spi script reference in. This command adds a millisecond delay after the
previous SPI script command.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-34 ni.com

NI-845x SPI Script DIO Configure Line.vi

Purpose
Adds an SPI Script DIO Configure Line command to an SPI script referenced by spi script
reference in. This command configures a DIO line on an NI 845x device.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

port number specifies the DIO port that contains the line number.

line number specifies the DIO line to configure.

configuration specifies the line configuration. configuration uses the
following values:

input The line is configured for input.

output The line is configured for output.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-35 NI-845x Hardware and Software Manual

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Script DIO Configure Line.vi to add an SPI Script DIO Configure Line
command to an SPI script referenced by spi script reference in. This command allows you
to configure one line, specified by line number, of a byte-wide DIO port, as in input or
output. For NI 845x devices with multiple DIO ports, use the port number input to select the
desired port. For NI 845x devices with one DIO port, port number must be left at the default
(0).

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-36 ni.com

NI-845x SPI Script DIO Configure Port.vi

Purpose
Adds an SPI Script DIO Configure Port command to an SPI script referenced by spi script
reference in. This command configures a DIO port on an NI 845x device.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

port number specifies the DIO port to configure.

configuration value is a bitmap that specifies the function of each
individual line of a port. If bit x = 1, line x is an output. If bit x = 0,
line x is an input.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-37 NI-845x Hardware and Software Manual

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Script DIO Configure Port.vi to add an SPI Script DIO Configure Port
command to an SPI script referenced by spi script reference in. This command allows
you to configure all eight lines of a byte-wide DIO port. Setting a bit to 1 configures the
corresponding DIO port line for output. Setting a bit to 0 configures the corresponding port
line for input. For NI 845x devices with multiple DIO ports, use the port number input to
select the desired port. For NI 845x devices with one DIO port, port number must be left at
the default (0).

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-38 ni.com

NI-845x SPI Script DIO Read Line.vi

Purpose
Adds an SPI Script DIO Read Line command to an SPI script referenced by spi script
reference in. This command reads from a DIO port on an NI 845x device.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

port number specifies the DIO port that contains the line number.

line number specifies the DIO line to read.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-39 NI-845x Hardware and Software Manual

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

script read index is the index of the read command within the script. It is
used as an input into NI-845x SPI Extract Script Read Data.vi.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Script DIO Read Line.vi to add an SPI Script DIO Read command to an
SPI script referenced by spi script reference in. This command allows you to read one line,
specified by line number, of a byte-wide DIO port. For NI 845x devices with multiple DIO
ports, use the port number input to select the desired port. For NI 845x devices with one DIO
port, port number must be left at the default (0).

To obtain the logic level read from the specified DIO port line, wire script read index to
NI-845x SPI Extract Script Read Data.vi after script execution. If NI-845x SPI Extract
Script Read Data.vi returns 0, the logic level read on the specified line was low. If
NI-845x SPI Extract Script Read Data.vi returns 1, the logic level read on the specified
line was high.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-40 ni.com

NI-845x SPI Script DIO Read Port.vi

Purpose
Adds an SPI Script DIO Read Port command to an SPI script referenced by spi script
reference in. This command reads from a DIO port on an NI 845x device.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

port number specifies the DIO port to read.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

script read index is the index of the read command within the script. It is
used as an input into NI-845x SPI Extract Script Read Data.vi.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-41 NI-845x Hardware and Software Manual

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Script DIO Read Port.vi to add an SPI Script DIO Read Port command
to an SPI script referenced by spi script reference in. This command allows you to read all
8 bits on a byte-wide DIO port. For NI 845x devices with multiple DIO ports, use the port
number input to select the desired port. For NI 845x devices with one DIO port, port number
must be left at the default (0).

To obtain the data byte read from the specified DIO port, wire script read index to NI-845x
SPI Extract Script Read Data.vi after script execution, which returns the data byte read by
this script command.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-42 ni.com

NI-845x SPI Script DIO Write Line.vi

Purpose
Adds an SPI Script DIO Write Line command to an SPI script referenced by spi script
reference in. This command writes to a DIO line on an NI 845x device.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

port number specifies the DIO port that contains the line number.

line number specifies the DIO line to write.

write value specifies the value to write to the line. write value uses the
following values:

0 (Logic Low) The line is set to the logic low state.

1 (Logic High) The line is set to the logic high state.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-43 NI-845x Hardware and Software Manual

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Script DIO Write Line.vi to add an SPI Script DIO Write command to an
SPI script referenced by spi script reference in. This command allows you to write one line,
specified by line number, of a byte-wide DIO port. If write value is 1, the specified line’s
output is driven to a high logic level. If write value is 0, the specified line’s output is driven
to a low logic level. For NI 845x devices with multiple DIO ports, use the port number input
to select the desired port. For NI 845x devices with one DIO port, port number must be left
at the default (0).

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-44 ni.com

NI-845x SPI Script DIO Write Port.vi

Purpose
Adds an SPI Script DIO Write Port command to an SPI script referenced by spi script
reference in. This command writes to a DIO port on an NI 845x device.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

port number specifies the DIO port to write.

write value is the value to write to the DIO port. Only lines configured for
output are updated.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-45 NI-845x Hardware and Software Manual

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Script DIO Write Port.vi to add an SPI Script DIO Write Port command
to an SPI script referenced by spi script reference in. This command allows you to write all
8 bits on a byte-wide DIO port. For NI 845x devices with multiple DIO ports, use the port
number input to select the desired port. For NI 845x devices with one DIO port, port number
must be left at the default (0).

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-46 ni.com

NI-845x SPI Script Disable SPI.vi

Purpose
Adds an SPI Script Disable SPI command to an SPI script referenced by spi script reference
in. This command tristates the pins on an SPI port specified using NI-845x SPI Run
Script.vi. It also tristates all chip select pins.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-47 NI-845x Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Script Disable SPI.vi to add an SPI Script Disable SPI command to an SPI
script referenced by spi script reference in. This command tristates the pins on the SPI port
you specify when you use NI-845x SPI Run Script.vi. All chip select pins are also tristated.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-48 ni.com

NI-845x SPI Script Enable SPI.vi

Purpose
Adds an SPI Script Enable SPI command to an SPI script referenced by spi script reference
in. This command switches the pins on an SPI port specified using NI-845x SPI Run
Script.vi to master mode function. All chip select pins are switched from tristate to push-pull
output driven high.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-49 NI-845x Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Script Enable SPI.vi to add an SPI Script Enable SPI command to an SPI
script referenced by spi script reference in. This command switches the pins on the SPI port
you specify when you use NI-845x SPI Run Script.vi, from tristate to master mode function.

Also, all chip select pins are switched from tristate to push-pull output driven high. It is
important to keep this in mind if you are creating a script to access a device with an active
high chip select input. You need to enable SPI and write the device chip select low until you
want to access it, at which time you set the chip select high, perform the write/read, and then
set the chip select low.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-50 ni.com

NI-845x SPI Script Num Bits Per Sample.vi

Purpose
Adds an SPI Script Number of Bits per Sample command to an SPI script referenced by spi
script reference in. This command sets the number of bits per sample on an SPI port
specified using NI-845x SPI Run Script.vi.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

num bits per sample contains the number of bits per sample to be clocked
each SPI transmission. Refer to Appendix A, NI USB-845x Hardware
Specifications, for valid settings for this property.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-51 NI-845x Hardware and Software Manual

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Script Num Bits Per Sample.vi to add an SPI Script Number of Bits per
Sample command to an SPI script referenced by spi script reference in. This command sets
the number of bits per sample on an SPI port specified using NI-845x SPI Run Script.vi.

This setting remains active until the script is complete or the setting is changed.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-52 ni.com

NI-845x SPI Script Write Read.vi

Purpose
Adds an SPI Script Write Read command to an SPI script referenced by spi script reference
in. This command exchanges an array of data with an SPI slave device.

Inputs

spi script reference in is a reference to an SPI script that is run on an
NI 845x device.

write data contains an array of data to write to the SPI slave.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi script reference out is a reference to the SPI script after this VI runs.

script read index is the index of the write/read command within the script.
It is used as an input into NI-845x SPI Extract Script Read Data.vi.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

Chapter 12 NI-845x SPI API for LabVIEW

© National Instruments 12-53 NI-845x Hardware and Software Manual

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Script Write Read.vi to add an SPI Script Write Read command to an SPI
script referenced by spi script reference in. This command exchanges an array of data with
an SPI slave device connected to the SPI port you specify when you use NI-845x SPI Run
Script.vi to execute the script.

Due to the full-duplex nature of SPI, the size of the read data equals the size of the write data,
unless there is an error. Some SPI devices act as receivers only and require one or more
command and data bytes to be sent to them in one SPI transaction. As this is device specific,
you need to review the device datasheet to package the required commands and data into the
write data array. Other SPI devices act as transceivers. These devices can receive data much
like receiver-only devices. But they can also transmit data, which usually requires writing one
or more command bytes plus a number of bytes equal to the number of bytes desired to be
read from the device. In most cases, the values of these bytes are not important, as they serve
only to clock data out of the device. Here again, the SPI transaction formats are device
specific, so you need to review the device datasheet to package the required commands and
data into the write data array.

To obtain the data read from the specified SPI port, wire script read index to NI-845x SPI
Extract Script Read Data.vi after script execution, which returns the data read by this script
command.

Data provided in write data and read back using script read index is organized in big endian
format. Each sample is stored using the minimum number of bytes required, with the most
significant bits padded with 0.

For example, if the Number of Bits Per Sample is set to 12, each sample requires 2 bytes, and
the 4 most significant bits are ignored.

Chapter 12 NI-845x SPI API for LabVIEW

NI-845x Hardware and Software Manual 12-54 ni.com

Any partial samples are discarded and a warning is generated.

XXXXB11B10B9B8 B7B6B5B4B3B2B1B0 XXXXB11B10B9B8 B7B6B5B4B3B2B1B0

Sample 1 Sample 2

[0] [1] [2] [3]

© National Instruments 13-1 NI-845x Hardware and Software Manual

13
NI-845x SPI API for C

This chapter lists the functions for the NI-845x SPI API for C and describes the format,
purpose, and parameters for each function. The functions are listed alphabetically in four
categories: general device, configuration, basic, and scripting.

Section Headings
The NI-845x SPI API for C functions include the following section headings.

Purpose
Each function description includes a brief statement of the function purpose.

Format
The format section describes the function format for the C programming language.

Inputs and Outputs
These sections list the function input and output parameters.

Description
The description section gives details about the purpose and effect of each function.

Data Types
The NI-845x SPI API for C functions use the following data types.

Data Type Purpose

uInt8 8-bit unsigned integer

uInt16 16-bit unsigned integer

uInt32 32-bit unsigned integer

int8 8-bit signed integer

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-2 ni.com

List of Functions
The following table contains an alphabetical list of the NI-845x SPI API for C functions.

int16 16-bit signed integer

int32 32-bit signed integer

uInt8 * Pointer to an 8-bit unsigned integer

uInt16 * Pointer to a 16-bit unsigned integer

uInt32 * Pointer to a 32-bit unsigned integer

int8 * Pointer to an 8-bit signed integer

int16 * Pointer to a 16-bit signed integer

int32 * Pointer to a 32-bit signed integer

char * ASCII string represented as an array of characters terminated
by null character ('\0')

NiHandle Operating system independent handle

Function Purpose

ni845xClose Closes a previously opened NI 845x
device.

ni845xCloseFindDeviceHandle Closes the handles created by
ni845xFindDevice.

ni845xDeviceLock Locks NI 845x devices for access by a
single thread.

ni845xDeviceUnlock Unlocks NI 845x devices.

ni845xFindDevice Finds an NI 845x device and returns the
total number of NI 845x devices
present. You can find subsequent
devices using
ni845xFindDeviceNext.

ni845xFindDeviceNext Finds subsequent devices after
ni845xFindDevice has been called.

Data Type Purpose

Chapter 13 NI-845x SPI API for C

© National Instruments 13-3 NI-845x Hardware and Software Manual

ni845xOpen Opens an NI 845x device for use with
various write, read, and device property
functions.

ni845xSetIoVoltageLevel Sets the voltage level of the NI-845x I/O
pins (DIO/SPI/VioRef).

ni845xSpiConfigurationClose Closes a previously opened
configuration.

ni845xSpiConfigurationGetChipSelect Retrieves the configuration chip select
value.

ni845xSpiConfigurationGetClockPhase Retrieves the configuration clock phase.

ni845xSpiConfigurationGetClockPolarity Retrieves the configuration clock
polarity.

ni845xSpiConfigurationGetClockRate Retrieves the configuration clock rate in
kilohertz.

ni845xSpiConfigurationGetNumBitsPerSample Retrieves the configuration number of
bits per sample.

ni845xSpiConfigurationGetPort Retrieves the configuration port value.

ni845xSpiConfigurationOpen Creates a new NI-845x SPI
configuration.

ni845xSpiConfigurationSetChipSelect Sets the configuration chip select.

ni845xSpiConfigurationSetClockPhase Sets the configuration clock phase.

ni845xSpiConfigurationSetClockPolarity Sets the configuration clock polarity.

ni845xSpiConfigurationSetClockRate Sets the configuration clock rate in
kilohertz.

ni845xSpiConfigurationSetNumBitsPerSample Sets the configuration number of bits
per sample.

ni845xSpiConfigurationSetPort Sets the configuration port number.

Function Purpose

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-4 ni.com

ni845xSpiScriptClockPolarityPhase Adds an SPI Script Clock Polarity
Phase command to an SPI script
referenced by ScriptHandle. This
command sets the SPI clock idle state
(CPOL) and clock edge position within
each data bit (CPHA).

ni845xSpiScriptClockRate Adds an SPI Script Clock Rate
command to an SPI script referenced by
ScriptHandle. This command sets
the SPI clock rate in kilohertz.

ni845xSpiScriptClose Closes a previously opened script
handle.

ni845xSpiScriptCSHigh Adds an SPI Script CS High command
to an SPI script referenced by
ScriptHandle. This command sets an
SPI chip select to the logic high state.

ni845xSpiScriptCSLow Adds an SPI Script CS Low command
to an SPI script referenced by
ScriptHandle. This command sets an
SPI chip select to the logic low state.

ni845xSpiScriptDelay Adds an SPI Script Delay command to
an SPI script referenced by
ScriptHandle. This command adds a
millisecond delay after the previous SPI
script command.

ni845xSpiScriptDioConfigureLine Adds an SPI Script DIO Configure Line
command to an SPI script referenced by
ScriptHandle. This command
configures a DIO line on an NI 845x
device.

ni845xSpiScriptDioConfigurePort Adds an SPI Script DIO Configure Port
command to an SPI script referenced by
ScriptHandle. This command
configures a DIO port on an NI 845x
device.

Function Purpose

Chapter 13 NI-845x SPI API for C

© National Instruments 13-5 NI-845x Hardware and Software Manual

ni845xSpiScriptDioReadLine Adds an SPI Script DIO Read Line
command to an SPI script referenced by
ScriptHandle. This command reads
from a DIO line on an NI 845x device.

ni845xSpiScriptDioReadPort Adds an SPI Script DIO Read Port
command to an SPI script referenced by
ScriptHandle. This command reads
from a DIO port on an NI 845x device.

ni845xSpiScriptDioWriteLine Adds an SPI Script DIO Write Line
command to an SPI script referenced by
ScriptHandle. This command writes
to a DIO line on an NI 845x device.

ni845xSpiScriptDioWritePort Adds an SPI Script DIO Write Port
command to an SPI script referenced by
ScriptHandle. This command writes
to a DIO port on an NI 845x device.

ni845xSpiScriptDisableSPI Adds an SPI Script Disable SPI
command to an SPI script referenced by
ScriptHandle. This command
tristates the pins on an SPI port
specified using
ni845xSpiScriptRun. It also
tristates all chip select pins.

ni845xSpiScriptEnableSPI Adds an SPI Script Enable SPI
command to an SPI script referenced by
ScriptHandle. This command
switches the pins on an SPI port
specified using ni845xSpiScriptRun
to master mode function. All chip select
pins are switched from tristate to
push-pull output driven high.

Function Purpose

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-6 ni.com

ni845xSpiScriptExtractReadData Extracts the desired read data from
an SPI script, referenced by
ScriptHandle, which has been
processed by ni845xSpiScriptRun.
Each script read command
(ni845xSpiScriptWriteRead,
ni845xSpiScriptDioReadPort,
ni845xSpiScriptDioReadLine)
returns a script read index. You can
extract data for each script read index in
a script, by passing each index to a
separate call of
ni845xSpiScriptExtractReadDat

a.

ni845xSpiScriptExtractReadDataSize Retrieves the read data size from
an SPI script, referenced by
ScriptHandle, which has been
processed by ni845xSpiScriptRun.
Each script read command
(ni845xSpiScriptWriteRead,
ni845xSpiScriptDioReadPort,
ni845xSpiScriptDioReadLine)
returns a script read index. You can
extract data for each script read index
in a script, by passing each index to
ni845xSpiScriptExtractReadDat

a.

ni845xSpiScriptNumBitsPerSample Adds an SPI Number of Bits per Sample
command to an SPI script referenced by
ScriptHandle. This command sets
the number of bits per sample for SPI
transfers.

ni845xSpiScriptOpen Creates a new NI-845x SPI script.

ni845xSpiScriptReset Resets an SPI script referenced by
ScriptHandle to an empty state.

ni845xSpiScriptRun Sends the SPI script to the desired
NI 845x device, which then interprets
and runs it.

Function Purpose

Chapter 13 NI-845x SPI API for C

© National Instruments 13-7 NI-845x Hardware and Software Manual

ni845xSpiScriptUsDelay Adds an SPI Script µs Delay command
to an SPI script referenced by
ScriptHandle. This command adds a
microsecond delay after the previous
SPI script command.

ni845xSpiScriptWriteRead Adds an SPI Script Write Read
command to an SPI script referenced by
ScriptHandle. This command
exchanges an array of data with an SPI
slave device.

ni845xSpiWriteRead Exchanges an array of data with an SPI
slave device.

ni845xSetTimeout Sets the global timeout value.

ni845xStatusToString Converts a status code into a descriptive
string.

Function Purpose

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-8 ni.com

General Device

ni845xClose

Purpose
Closes a previously opened NI 845x device.

Format
int32 ni845xClose(NiHandle DeviceHandle);

Inputs
NiHandle DeviceHandle

Device handle to be closed.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xClose to close a device handle previously opened by ni845xOpen. Passing an
invalid handle to ni845xClose is ignored.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-9 NI-845x Hardware and Software Manual

ni845xCloseFindDeviceHandle

Purpose
Closes the handles created by ni845xFindDevice.

Format
int32 ni845xCloseFindDeviceHandle (

NiHandle FindDeviceHandle
);

Inputs
NiHandle FindDeviceHandle

Describes a find list. ni845xFindDevice creates this parameter.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xCloseFindDeviceHandle to close a find list. In this process, all allocated data
structures are freed.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-10 ni.com

ni845xDeviceLock

Purpose
Locks NI 845x devices for access by a single thread.

Format
int32 ni845xDeviceLock(NiHandle DeviceHandle);

Inputs
NiHandle DeviceHandle

Device handle to be locked.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
This function locks NI 845x devices and prevents multiple processes or threads from
accessing the device until the process or thread that owns the device lock calls an equal
number of ni845xDeviceUnlock calls. Any thread or process that attempts to call
ni845xDeviceLock when the device is already locked is forced to sleep by the
operating system. This is useful for when multiple Basic API device accesses must occur
uninterrupted by any other processes or threads. If a thread exits without fully unlocking
the device, the device is unlocked. If a thread is the current owner of the lock, and calls
ni845xDeviceLock again, the thread will not deadlock itself, but care must be taken to call
ni845xDeviceUnlock for every ni845xDeviceLock called. This function can possibly
lock a device indefinitely: If a thread never calls ni845xDeviceUnlock, or fails to call
ni845xDeviceUnlock for every ni845xDeviceLock call, and never exits, other processes
and threads are forced to wait. This is not recommended for users unfamiliar with threads or
processes. A simpler alternative is to use scripts. Scripts provide the same capability to ensure
transfers are uninterrupted, and with possible performance benefits.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-11 NI-845x Hardware and Software Manual

ni845xDeviceUnlock

Purpose
Unlocks NI 845x devices.

Format
int32 ni845xDeviceUnlock(NiHandle DeviceHandle);

Inputs
NiHandle DeviceHandle

Device handle to be unlocked.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xDeviceUnlock to unlock access to an NI 845x device previously locked with
ni845xDeviceLock. Every call to ni845xDeviceLock must have a corresponding call to
ni845xDeviceUnlock. Refer to ni845xDeviceLock for more details regarding how to
use device locks.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-12 ni.com

ni845xFindDevice

Purpose
Finds an NI 845x device and returns the total number of NI 845x devices present. You can find
subsequent devices using ni845xFindDeviceNext.

Format
int32 ni845xFindDevice (

char * pFirstDevice,
NiHandle * pFindDeviceHandle,
uInt32 * pNumberFound
);

Inputs
None.

Outputs
char * pFirstDevice

A pointer to the string containing the first NI 845x device found. You can pass this name
to the ni845xOpen function to open the device. If no devices exist, this is an empty
string.

NiHandle * pFindDeviceHandle

Returns a handle identifying this search session. This handle is used as an input in
ni845xFindDeviceNext and ni845xCloseFindDeviceHandle.

uInt32 * pNumberFound

A pointer to the total number of NI 845x devices found in the system. You can use this
number in conjunction with the ni845xFindDeviceNext function to find a particular
device. If no devices exist, this returns 0.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xFindDevice to get a single NI 845x device and the number of NI 845x devices
in the system. You can then pass the string returned to ni845xOpen to access the device. If
you must discover more devices, use ni845xFindDeviceNext with pFindDeviceHandle

Chapter 13 NI-845x SPI API for C

© National Instruments 13-13 NI-845x Hardware and Software Manual

and pNumberFound to find the remaining NI 845x devices in the system. After finding all
desired devices, call ni845xCloseFindDeviceHandle to close the device handle and
relinquish allocated resources.

Note pFirstDevice must be at least 256 bytes.

Note pFindDeviceHandle and pNumberFound are optional parameters. If only the first
match is important, and the total number of matches is not needed, you can pass in a NULL
pointer for both of these parameters, and the NI-845x driver automatically calls
ni845xCloseFindDeviceHandle before this function returns.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-14 ni.com

ni845xFindDeviceNext

Purpose
Finds subsequent devices after ni845xFindDevice has been called.

Format
int32 ni845xFindDeviceNext (

NiHandle FindDeviceHandle,
char * pNextDevice
);

Inputs
NiHandle FindDeviceHandle

Describes a find list. ni845xFindDevice creates this parameter.

Outputs
char * pNextDevice

A pointer to the string containing the next NI 845x device found. This is empty if no
further devices are left.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xFindDeviceNext after first calling ni845xFindDevice to find the remaining
devices in the system. You can then pass the string returned to ni845xOpen to access the
device.

Note pNextDevice must be at least 256 bytes.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-15 NI-845x Hardware and Software Manual

ni845xOpen

Purpose
Opens an NI 845x device for use with various write, read, and device property functions.

Format
int32 ni845xOpen (

char * pResourceName,
NiHandle * pDeviceHandle
);

Inputs
char * pResourceName

A resource name string corresponding to the NI 845x device to be opened.

Outputs
NiHandle * pDeviceHandle

A pointer to the device handle.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xOpen to open an NI 845x device for access. The string passed to
ni845xOpen can be any of the following: an ni845xFindDevice device string, an
ni845xFindDeviceNext device string, a Measurement & Automation Explorer resource
name, or a Measurement & Automation Explorer alias.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-16 ni.com

ni845xSetIoVoltageLevel

Purpose
Modifies the voltage output from a DIO port on an NI 845x device.

Format
int32 ni845xSetIoVoltageLevel (

NiHandle DeviceHandle,
uInt8 VoltageLevel
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt8 VoltageLevel

The desired voltage level. VoltageLevel uses the following values:

• kNi845x33Volts (33): The output I/O high level is 3.3 V.

• kNi845x25Volts (25): The output I/O high level is 2.5 V.

• kNi845x18Volts (18): The output I/O high level is 1.8 V.

• kNi845x15Volts (15): The output I/O high level is 1.5 V.

• kNi845x12Volts (12): The output I/O high level is 1.2 V.

The default value of this property is 3.3 V.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSetIoVoltageLevel to modify the board reference voltage of the NI 845x
device. The board reference voltage is used for SPI, I2C, and DIO. Refer to Appendix A,
NI USB-845x Hardware Specifications, to determine the available voltage levels on your
hardware.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-17 NI-845x Hardware and Software Manual

ni845xSetTimeout

Purpose
Modifies the global timeout for operations when using an NI 845x device.

Format
int32 ni845xSetTimeout (

NiHandle DeviceHandle,
uInt32 Timeout
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt32 Timeout

The timeout value in milliseconds. The minimum timeout is 1000 ms (1 second).

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSetTimeout to set the global timeout for the device. This timeout is the
minimum amount of time an I2C, SPI, or DIO operation is allowed to complete.

The default of this property is 30000 (30 seconds).

Note You should set this property higher than the expected I/O time. For the
NI USB-8451, a timeout may leave the device in an unknown state that may require a
power cycle of the device.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-18 ni.com

ni845xStatusToString

Purpose
Converts a status code into a descriptive string.

Format
void ni845xStatusToString (

int32 StatusCode,
uInt32 MaxSize,
int8 * pStatusString
);

Inputs
int32 StatusCode

Status code returned from an NI-845x function.

uInt32 MaxSize

Size of the pStatusString buffer (in bytes).

Outputs
int8 * pStatusString

ASCII string that describes StatusCode.

Description
When the status code returned from an NI-845x function is nonzero, an error or warning is
indicated. This function obtains a description of the error/warning for debugging purposes.

The return code is passed into the StatusCode parameter. The MaxSize parameter
indicates the number of bytes available in pStatusString for the description (including
the NULL character). The description is truncated to size MaxSize if needed, but a size of
1024 characters is large enough to hold any description. The text returned in String is
null-terminated, so you can use it with ANSI C functions such as printf.

For applications written in C or C++, each NI-845x function returns a status code as a signed
32-bit integer. The following table summarizes the NI-845x use of this status.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-19 NI-845x Hardware and Software Manual

NI-845x Status Codes

The application code should check the status returned from every NI-845x function. If an
error is detected, you should close all NI-845x handles, then exit the application. If a warning
is detected, you can display a message for debugging purposes, or simply ignore the warning.

In some situations, you may want to check for specific errors in the code and continue
communication when they occur. For example, when communicating to an I2C EEPROM,
you may expect the device to NAK its address during a write cycle, and you may use this
knowledge to poll for when the write cycle has completed.

Status Code Meaning

Negative Error—Function did not perform expected behavior.

Positive Warning—Function executed, but a condition arose that may
require attention.

Zero Success—Function completed successfully.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-20 ni.com

Configuration

ni845xSpiConfigurationClose

Purpose
Closes a previously opened configuration.

Format
int32 ni845xSpiConfigurationClose (

NiHandle ConfigurationHandle
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiConfigurationOpen.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiConfigurationClose to close a previously opened configuration handle.
Invalid configuration handles are ignored.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-21 NI-845x Hardware and Software Manual

ni845xSpiConfigurationGetChipSelect

Purpose
Retrieves the configuration chip select value.

Format
int32 ni845xSpiConfigurationGetChipSelect (

NiHandle ConfigurationHandle,
uInt32 * pChipSelect
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiConfigurationOpen.

Outputs
uInt32 * pChipSelect

A pointer to an unsigned 32-bit integer to store the chip select value in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiConfigurationGetChipSelect to retrieve the chip select stored in the
configuration.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-22 ni.com

ni845xSpiConfigurationGetClockPhase

Purpose
Retrieves the configuration clock phase.

Format
int32 ni845xSpiConfigurationGetClockPhase (

NiHandle ConfigurationHandle,
int32 * pClockPhase
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiConfigurationOpen.

Outputs
int32 * pClockPhase

A pointer to an integer to store the clock phase in. pClockPhase uses the following
values:

• kNi845xSpiClockPhaseFirstEdge (0): Data is centered on the first edge of the
clock period.

• kNi845xSpiClockPhaseSecondEdge (1): Data is centered on the second edge of
the clock period.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiConfigurationGetClockPhase to retrieve the value of the clock phase
that ConfigurationHandle uses.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-23 NI-845x Hardware and Software Manual

ni845xSpiConfigurationGetClockPolarity

Purpose
Retrieves the configuration clock polarity.

Format
int32 ni845xSpiConfigurationGetClockPolarity (

NiHandle ConfigurationHandle,
int32 * pClockPolarity
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiConfigurationOpen.

Outputs
int32 * pClockPolarity

A pointer to an integer to store the clock polarity in. pClockPolarity uses the
following values:

• kNi845xSpiClockPolarityIdleLow (0): Clock is low in the idle state.

• kNi845xSpiClockPolarityIdleHigh (1): Clock is high in the idle state.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiConfigurationGetClockPolarity to retrieve the value of the clock
polarity that the ConfigurationHandle uses to communicate with.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-24 ni.com

ni845xSpiConfigurationGetClockRate

Purpose
Retrieves the configuration clock rate in kilohertz.

Format
int32 ni845xSpiConfigurationGetClockRate (

NiHandle ConfigurationHandle,
uInt16 * pClockRate
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiConfigurationOpen.

Outputs
uInt16 * pClockRate

A pointer to an unsigned 16-bit integer to store the clock rate in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiConfigurationGetClockRate to retrieve the SPI clock rate in kilohertz
that the ConfigurationHandle runs at.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-25 NI-845x Hardware and Software Manual

ni845xSpiConfigurationGetNumBitsPerSample

Purpose
Retrieves the configuration number of bits per sample.

Format
int32 ni845xSpiConfigurationGetNumBitsPerSample (

NiHandle ConfigurationHandle,
uInt16 * pNumBitsPerSample
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiConfigurationOpen.

Outputs
uInt16 * pNumBitsPerSample

A pointer to an unsigned 16-bit integer to store the number of bits per sample in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiConfigurationGetNumBitsPerSample to retrieve the number of bits per
sample set in ConfigurationHandle for SPI transfers.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-26 ni.com

ni845xSpiConfigurationGetPort

Purpose
Retrieves the configuration port value.

Format
int32 ni845xSpiConfigurationGetPort (

NiHandle ConfigurationHandle,
uInt8 * pPort
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiConfigurationOpen.

Outputs
uInt8 * pPort

A pointer to an unsigned byte to store the port value in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiConfigurationGetPort to retrieve the SPI port that the
ConfigurationHandle communicates across.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-27 NI-845x Hardware and Software Manual

ni845xSpiConfigurationOpen

Purpose
Creates a new NI-845x SPI configuration.

Format
int32 ni845xSpiConfigurationOpen (

NiHandle * pConfigurationHandle
);

Inputs
None.

Outputs
NiHandle * pConfigurationHandle

A pointer to an unsigned 32-bit integer to store the configuration handle in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiConfigurationOpen to create a new configuration to use with the NI-845x
SPI Basic API. Pass the configuration handle to the ni845xSpiConfigurationSet* series
of functions to make the configuration match the settings of your SPI slave. Then, pass the
configuration handle to the SPI basic functions to execute them on the described SPI slave.
After you finish communicating with your SPI slave, pass the configuration handle to the
ni845xSpiConfigurationSet* series of functions to reconfigure it or use
ni845xSpiConfigurationClose to delete the configuration.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-28 ni.com

ni845xSpiConfigurationSetChipSelect

Purpose
Sets the configuration chip select.

Format
int32 ni845xSpiConfigurationSetChipSelect (

NiHandle ConfigurationHandle,
uInt32 ChipSelect
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiConfigurationOpen.

uInt32 ChipSelect

Selects the chip select line for this configuration.

The default value for the chip select is 0.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiConfigurationSetChipSelect to select the chip select where the SPI
slave device resides.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-29 NI-845x Hardware and Software Manual

ni845xSpiConfigurationSetClockPhase

Purpose
Sets the configuration clock phase.

Format
int32 ni845xSpiConfigurationSetClockPhase (

NiHandle ConfigurationHandle,
int32 ClockPhase
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiConfigurationOpen.

int32 ClockPhase

Sets the positioning of the data bits relative to the clock edges for the SPI Port.
ClockPhase uses the following values:

• kNi845xSpiClockPhaseFirstEdge (0): Data is centered on the first edge of the
clock period.

• kNi845xSpiClockPhaseSecondEdge (1): Data is centered on the second edge of
the clock period.

The default value for this property is kNi845xSpiClockPhaseFirstEdge.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiConfigurationSetClockPhase to set the clock phase to use when
communicating with an SPI slave device.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-30 ni.com

ni845xSpiConfigurationSetClockPolarity

Purpose
Sets the configuration clock polarity.

Format
int32 ni845xSpiConfigurationSetClockPolarity (

NiHandle ConfigurationHandle,
int32 ClockPolarity
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiConfigurationOpen.

int32 ClockPolarity

Sets the clock line idle state for the SPI Port. ClockPolarity uses the following values:

• kNi845xSpiClockPolarityIdleLow (0): Clock is low in the idle state.

• kNi845xSpiClockPolarityIdleHigh (1): Clock is high in the idle state.

The default value for this property is kNi845xSpiClockPolarityIdleLow.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiConfigurationSetClockPolarity to set the clock polarity to use when
communicating with the SPI slave device.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-31 NI-845x Hardware and Software Manual

ni845xSpiConfigurationSetClockRate

Purpose
Sets the configuration clock rate in kilohertz.

Format
int32 ni845xSpiConfigurationSetClockRate (

NiHandle ConfigurationHandle,
uInt16 ClockRate
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiConfigurationOpen.

uInt16 ClockRate

Specifies the SPI clock rate. Refer to Chapter 3, NI USB-845x Hardware Overview, to
determine which clock rates your NI 845x device supports. If your hardware does not
support the supplied clock rate, a warning is generated, and the next smallest supported
clock rate is used.

If the supplied clock rate is smaller than the smallest supported clock rate, an error is
generated. The configuration does not validate the clock rate until it is committed to
hardware.

The default value for the clock rate is 1000 kHz (1 MHz).

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiConfigurationSetClockRate to set the SPI configuration clock rate in
kilohertz.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-32 ni.com

ni845xSpiConfigurationSetNumBitsPerSample

Purpose
Sets the configuration number of bits per sample.

Format
int32 ni845xSpiConfigurationSetNumBitsPerSample (

NiHandle ConfigurationHandle,
uInt16 NumBitsPerSample
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiConfigurationOpen.

uInt16 NumBitsPerSample

Specifies the number of bits per sample to be used for SPI transmissions.

The default value for the number of bits per sample is 8.

Refer to Appendix A, NI USB-845x Hardware Specifications, for valid settings for this
property.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiConfigurationSetNumBitsPerSample to set the number of bits per
sample for an SPI transmission.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-33 NI-845x Hardware and Software Manual

ni845xSpiConfigurationSetPort

Purpose
Sets the configuration port number.

Format
int32 ni845xSpiConfigurationSetPort (

NiHandle ConfigurationHandle,
uInt8 Port
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiConfigurationOpen.

uInt8 Port

Specifies the SPI port that this configuration communicates across.

Refer to Chapter 3, NI USB-845x Hardware Overview, to determine the number of SPI
ports your NI 845x device supports.

The default value for the port number is 0.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiConfigurationSetPort to select the SPI port where the SPI slave resides.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-34 ni.com

Basic

ni845xSpiWriteRead

Purpose
Exchanges an array of data with an SPI slave device.

Format
int32 ni845xSpiWriteRead (

NiHandle DeviceHandle,
NiHandle ConfigurationHandle,
uInt32 WriteSize,
uInt8 * pWriteData,
uInt32 * pReadSize,
uInt8 * pReadData
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiConfigurationOpen.

uInt32 WriteSize

The number of bytes to write. This must be nonzero.

uInt8 * pWriteData

The data bytes to be written.

Outputs
uInt32 * pReadSize

A pointer to the amount of bytes read.

uInt8 * pReadData

A pointer to an array of bytes where the bytes that have been read are stored.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-35 NI-845x Hardware and Software Manual

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiWriteRead to exchange an array of data with an SPI slave device. Due to
the full-duplex nature of SPI, the read data size equals the write data size, unless there is an
error. Some SPI devices act as receivers only and require one or more command and data
bytes to be sent to them in one SPI transaction. As this is device specific, you must review
the device datasheet to package the required commands and data into the write data array.
Other SPI devices act as transceivers. These devices can receive data much like receiver-only
devices. But they can also transmit data, which usually requires writing one or more command
bytes plus a number of bytes equal to the number of bytes desired to be read from the device.
In most cases, the values of these bytes are not important, as they serve only to clock data out
of the device. Here again, the SPI transaction formats are device specific, so you must review
the device datasheet to package the required commands and data into the write data array.

Before using ni845xSpiWriteRead, you must ensure that the configuration parameters
specified in ConfigurationHandle are correct for the device you currently want to access.

Data provided in pWriteData and retrieved using pReadData is organized in big endian
format. Each sample is stored using the minimum number of bytes required with the most
significant bits padded with 0.

For example, if the number of bits per sample is set to 12, each sample requires 2 bytes and
the 4 most significant bits are ignored.

Any partial samples are discarded, and a warning is generated.

XXXXB11B10B9B8 B7B6B5B4B3B2B1B0 XXXXB11B10B9B8 B7B6B5B4B3B2B1B0

Sample 1 Sample 2

[0] [1] [2] [3]

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-36 ni.com

Scripting

ni845xSpiScriptClockPolarityPhase

Purpose
Adds an SPI Script Clock Polarity Phase command to an SPI script referenced by
ScriptHandle. This command sets the SPI clock idle state (CPOL) and clock edge
position within each data bit (CPHA).

Format
int32 ni845xSpiScriptClockPolarityPhase (

NiHandle ScriptHandle,
int32 Polarity,
int32 Phase
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

int32 Polarity

The clock line idle state for the SPI Port. Polarity uses the following values:

• kNi845xSpiClockPolarityIdleLow (0): Clock is low in the idle state.

• kNi845xSpiClockPolarityIdleHigh (1): Clock is high in the idle state.

int32 Phase

The positioning of the data bits relative to the clock edges for the SPI Port. Phase uses
the following values:

• kNi845xSpiClockPhaseFirstEdge (0): Data is centered on the first edge of the
clock period.

• kNi845xSpiClockPhaseSecondEdge (1): Data is centered on the second edge of
the clock period.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-37 NI-845x Hardware and Software Manual

Description
Use ni845xSpiScriptClockPolarityPhase to add an SPI Script Clock Polarity Phase
command to an SPI script referenced by ScriptHandle. This command sets the SPI clock
idle state (CPOL) and clock edge position within each data bit (CPHA) for the SPI port
you specify when you use ni845xSpiScriptRun to execute the script. Polarity
sets SPI clock line idle state. The default (kNi845xSpiClockPolarityIdleLow)
sets the clock line to idle at a low logic level. Setting the clock polarity to
kNi845xSpiClockPolarityIdleHigh sets the clock line to idle at a high logic level.
Phase sets the SPI clock edge on which the NI-845x SPI port centers each MOSI data bit.
The default (kNi845xSpiClockPhaseFirstEdge) centers each MOSI data bit on the first
edge of each clock cycle. Setting the clock phase to kNi845xSpiClockPhaseSecondEdge
causes each MOSI data bit to be centered on the second edge of each clock cycle.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-38 ni.com

ni845xSpiScriptClockRate

Purpose
Adds an SPI Script Clock Rate command to an SPI script referenced by ScriptHandle. This
command sets the SPI clock rate in kilohertz.

Format
int32 ni845xSpiScriptClockRate (

NiHandle ScriptHandle,
uInt16 ClockRate
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

uInt16 ClockRate

The SPI clock rate in kilohertz. Refer to Chapter 3, NI USB-845x Hardware Overview,
to determine which clock rates your NI 845x device supports.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptClockRate to add an SPI Script Clock Rate command to an SPI
script referenced by ScriptHandle. This command sets the SPI clock rate for the SPI port
you specify when you use ni845xSpiScriptRun to execute the script. The NI 845x device
can clock data only at specific rates. If the selected rate is not one of the rates your hardware
supports, the NI-845x software adjusts it down to a supported rate and generates a warning.
If the selected rate is lower than all supported rates, an error is generated.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-39 NI-845x Hardware and Software Manual

ni845xSpiScriptClose

Purpose
Closes a previously opened script handle.

Format
int32 ni845xSpiScriptClose (NiHandle ScriptHandle);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptClose to close a previously opened reference.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-40 ni.com

ni845xSpiScriptCSHigh

Purpose
Adds an SPI Script CS High command to an SPI script referenced by ScriptHandle. This
command sets an SPI chip select to the logic high state.

Format
int32 ni845xSpiScriptCSHigh (

NiHandle ScriptHandle,
uInt32 ChipSelectNum
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

uInt32 ChipSelect

The chip select to set high.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptCSHigh to add an SPI Script CS High command to an SPI script
referenced by ScriptHandle. This command sets an SPI chip select to the logic high state.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-41 NI-845x Hardware and Software Manual

ni845xSpiScriptCSLow

Purpose
Adds an SPI Script CS Low command to an SPI script referenced by ScriptHandle. This
command sets an SPI chip select to the logic low state.

Format
int32 ni845xSpiScriptCSLow (

NiHandle ScriptHandle,
uInt32 ChipSelectNum
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

uInt32 ChipSelect

The chip select to set low.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptCSLow to add an SPI Script CS Low command to an SPI script
referenced by ScriptHandle. This command sets an SPI chip select to the logic low state.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-42 ni.com

ni845xSpiScriptDelay

Purpose
Adds an SPI Script Delay command to an SPI script referenced by ScriptHandle. This
command adds a millisecond delay after the previous SPI script command.

Format
int32 ni845xSpiScriptDelay (

NiHandle ScriptHandle,
uInt8 Delay
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

uInt8 Delay

The desired delay in milliseconds.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptDelay to add an SPI Script Delay command to an SPI script
referenced by ScriptHandle. This command adds a millisecond delay after the previous
SPI script command.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-43 NI-845x Hardware and Software Manual

ni845xSpiScriptDioConfigureLine

Purpose
Adds an SPI Script DIO Configure Line command to an SPI script referenced by
ScriptHandle. This command configures a DIO line on an NI 845x device.

Format
int32 ni845xSpiScriptDioConfigureLine (

NiHandle ScriptHandle,
uInt8 PortNumber,
uInt8 LineNumber,
int32 ConfigurationValue
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

uInt8 PortNumber

The DIO port that contains the LineNumber.

uInt8 LineNumber

The DIO line to configure.

int32 ConfigurationValue

The line configuration. ConfigurationValue uses the following values:

• kNi845xDioInput (0): The line is configured for input.

• kNi845xDioOutput (1): The line is configured for output.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptDioConfigureLine to add an SPI Script DIO Configure Line
command to an SPI script referenced by ScriptHandle. This command allows you to
configure one line, specified by LineNumber, of a byte-wide DIO port, as an input or output.
For NI 845x devices with multiple DIO ports, use the PortNumber input to select the desired
port. For NI 845x devices with one DIO port, leave PortNumber at the default (0).

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-44 ni.com

ni845xSpiScriptDioConfigurePort

Purpose
Adds an SPI Script DIO Configure Port command to an SPI script referenced by
ScriptHandle. This command configures a DIO port on an NI 845x device.

Format
int32 ni845xSpiScriptDioConfigurePort (

NiHandle ScriptHandle,
uInt8 PortNumber,
uInt8 ConfigurationValue
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

uInt8 PortNumber

The DIO port to configure.

uInt8 ConfigurationValue

A bitmap that specifies the function of each individual line of a port. If bit x = 1, line x is
an output. If bit x = 0, line x is an input.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptDioConfigurePort to add an SPI Script DIO Configure Port
command to an SPI script referenced by ScriptHandle. This command allows you
to configure all eight lines of a byte-wide DIO port. Setting a bit to 1 configures the
corresponding DIO port line for output. Setting a bit to 0 configures the corresponding port
line for input. For NI 845x devices with multiple DIO ports, use the PortNumber input to
select the port to configure. For NI 845x devices with one DIO port, leave PortNumber at the
default (0).

Chapter 13 NI-845x SPI API for C

© National Instruments 13-45 NI-845x Hardware and Software Manual

ni845xSpiScriptDioReadLine

Purpose
Adds an SPI Script DIO Read Line command to an SPI script referenced by ScriptHandle.
This command reads from a DIO line on an NI 845x device.

Format
int32 ni845xSpiScriptDioReadLine(

NiHandle ScriptHandle,
uInt8 PortNumber,
uInt8 LineNumber,
uInt32 * pScriptReadIndex
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

uInt8 PortNumber

The DIO port that contains the LineNumber.

uInt8 LineNumber

The DIO line to read.

Outputs
uInt32 * pScriptReadIndex

An unsigned 32-bit integer pointer that stores the script read index. pScriptReadIndex
is the index of the read command within the script. It is used as an input into
ni845xSpiScriptExtractReadData.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptDioReadLine to add an SPI Script DIO Read command to an SPI
script referenced by ScriptHandle. This command allows you to read one line, specified by
LineNumber, of a byte-wide DIO port. For NI 845x devices with multiple DIO ports, use the

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-46 ni.com

PortNumber input to select the desired port. For NI 845x devices with one DIO port, leave
PortNumber at the default (0).

To obtain the logic level read from the specified DIO port line, pass the value of
pScriptReadIndex to ni845xSpiScriptExtractReadDataSize to retrieve
the read data size and ni845xSpiScriptExtractReadData after script execution.
ni845xSpiScriptExtractReadData returns either kNi845xDioLogicLow if the logic
level read on the specified line was low or kNi845xDioLogicHigh if the logic level read
on the specified line was high.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-47 NI-845x Hardware and Software Manual

ni845xSpiScriptDioReadPort

Purpose
Adds an SPI Script DIO Read Port command to an SPI script referenced by ScriptHandle.
This command reads from a DIO port on an NI 845x device.

Format
int32 ni845xSpiScriptDioReadPort (

NiHandle ScriptHandle,
uInt8 PortNumber,
uInt32 * pScriptReadIndex
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

uInt8 PortNumber

The DIO port to read.

Outputs
uInt32 * pScriptReadIndex

An unsigned 32-bit integer pointer that stores the script read index. pScriptReadIndex
is the index of the read command within the script. It is used as an input into
ni845xSpiScriptExtractReadData.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptDioReadPort to add an SPI Script DIO Read Port command to an
SPI script referenced by ScriptHandle. Use this command to read all 8 bits on a byte-wide
DIO port. For NI 845x devices with multiple DIO ports, use the PortNumber input to select
the desired port. For NI 845x devices with one DIO port, leave PortNumber at the default (0).

To obtain the data byte read from the specified DIO port, pass the value of
pScriptReadIndex to ni845xSpiScriptExtractReadDataSize to retrieve the read
data size and ni845xSpiScriptExtractReadData after script execution, which returns
the data byte read by this script command.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-48 ni.com

ni845xSpiScriptDioWriteLine

Purpose
Adds an SPI Script DIO Write Line command to an SPI script referenced by ScriptHandle.
This command writes to a DIO line on an NI 845x device.

Format
int32 ni845xSpiScriptDioWriteLine (

NiHandle ScriptHandle,
uInt8 PortNumber,
uInt8 LineNumber,
int32 WriteData
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

uInt8 PortNumber

The DIO port that contains the LineNumber.

uInt8 LineNumber

The DIO line to write.

int32 WriteData

The value to write to the line. WriteData uses the following values:

• kNi845xDioLogicLow (0): The line is set to the logic low state.

• kNi845xDioLogicHigh (1): The line is set to the logic high state.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptDioWriteLine to add an SPI Script DIO Write Line
command to an SPI script referenced by ScriptHandle. Use this command to write
one line, specified by LineNumber, of a byte-wide DIO port. If WriteData is

Chapter 13 NI-845x SPI API for C

© National Instruments 13-49 NI-845x Hardware and Software Manual

kNi845xDioLogicHigh, the specified line’s output is driven to a high logic level. If
WriteData is kNi845xDioLogicLow, the specified line’s output is driven to a low logic
level. For NI 845x devices with multiple DIO ports, use the PortNumber input to select the
desired port. For NI 845x devices with one DIO port, leave PortNumber at the default (0).

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-50 ni.com

ni845xSpiScriptDioWritePort

Purpose
Adds an SPI Script DIO Write Port command to an SPI script referenced by ScriptHandle.
This command writes to a DIO port on an NI 845x device.

Format
int32 ni845xSpiScriptDioWritePort (

NiHandle ScriptHandle,
uInt8 PortNumber,
uInt8 WriteData
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

uInt8 PortNumber

The DIO port to write.

uInt8 WriteData

The value to write to the DIO port. Only lines configured for output are updated.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptDioWritePort to add an SPI Script DIO Write Port command to an
SPI script referenced by ScriptHandle. Use this command to write all 8 bits on a byte-wide
DIO port. For NI 845x devices with multiple DIO ports, use the PortNumber input to select
the desired port. For NI 845x devices with one DIO port, leave PortNumber at the default (0).

Chapter 13 NI-845x SPI API for C

© National Instruments 13-51 NI-845x Hardware and Software Manual

ni845xSpiScriptDisableSPI

Purpose
Adds an SPI Script Disable SPI command to an SPI script referenced by ScriptHandle.
This command tristates the pins on an SPI port specified using ni845xSpiScriptRun. It
also tristates all chip select pins.

Format
int32 ni845xSpiScriptDisableSPI (

NiHandle ScriptHandle
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptDisableSPI to add an SPI Script Disable SPI command to an SPI
script referenced by ScriptHandle. This command tristates the pins on the SPI port you
specify when you use ni845xSpiScriptRun. All chip select pins are also tristated.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-52 ni.com

ni845xSpiScriptEnableSPI

Purpose
Adds an SPI Script Enable SPI command to an SPI script referenced by ScriptHandle. This
command switches the pins on an SPI port specified using ni845xSpiScriptRun to master
mode function. All chip select pins are switched from tristate to push-pull output driven high.

Format
int32 ni845xSpiScriptEnableSPI (

NiHandle ScriptHandle
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptEnableSPI to add an SPI Script Enable SPI command to an SPI
script referenced by ScriptHandle. This command switches the pins on the SPI port you
specify when you use ni845xSpiScriptRun, from tristate to master mode function. Also,
all chip select pins are switched from tristate to push-pull output driven high. It is important
to keep this in mind if you are creating a script to access a device with an active high chip
select input. You need to enable SPI and write the device chip select low until you want to
access it, at which time you set the chip select high, perform the write/read, and then set the
chip select low.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-53 NI-845x Hardware and Software Manual

ni845xSpiScriptExtractReadData

Purpose
Extracts the desired read data from an SPI script, referenced by ScriptHandle,
which has been processed by ni845xSpiScriptRun. Each script read
command (ni845xSpiScriptWriteRead, ni845xSpiScriptDioReadPort,
ni845xSpiScriptDioReadLine) returns a script read index. You can extract data
for each script read index in a script, by passing each index to a separate call of
ni845xSpiScriptExtractReadData.

Format
int32 ni845xSpiScriptExtractReadData (

NiHandle ScriptHandle,
uInt32 ScriptReadIndex,
uInt8 * pReadData
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

uInt32 ScriptReadIndex

Identifies the read in the script whose data should be extracted.

Outputs
uInt8 * pReadData

The data returned for the script command specified by ScriptReadIndex.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptExtractReadData to extract the desired read data
from an SPI script, indicated by ScriptHandle, which has been processed by
ni845xSpiScriptRun. Each SPI script read command (ni845xSpiScriptWriteRead,
ni845xSpiScriptDioReadPort, ni845xSpiScriptDioReadLine) returns a script read
index.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-54 ni.com

ni845xSpiScriptExtractReadDataSize

Purpose
Retrieves the read data size from an SPI script, referenced by ScriptHandle,
which has been processed by ni845xSpiScriptRun. Each script read
command (ni845xSpiScriptWriteRead, ni845xSpiScriptDioReadPort,
ni845xSpiScriptDioReadLine) returns a script read index. You can extract data
for each script read index in a script, by passing each index to
ni845xSpiScriptExtractReadData.

Format
int32 ni845xSpiScriptExtractReadDataSize (

NiHandle ScriptHandle,
uInt32 ScriptReadIndex,
uInt32 * pReadDataSize
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

uInt32 ScriptReadIndex

Identifies the read in the script whose data size should be extracted.

Outputs
uInt32 * pReadDataSize

Stores the read data buffer size at the given index.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptExtractReadDataSize to retrieve the desired read data
size from an SPI script, indicated by ScriptHandle, which has been processed by
ni845xSpiScriptRun. Each SPI script read command (ni845xSpiScriptWriteRead,
ni845xSpiScriptDioReadPort, ni845xSpiScriptDioReadLine) returns a script read
index.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-55 NI-845x Hardware and Software Manual

ni845xSpiScriptNumBitsPerSample

Purpose
Adds an SPI Script Number of Bits per Sample command to an SPI script referenced by
pScriptHandle. This command sets the number of bits per sample on an SPI port specified
with ni845xSpiScriptRun.

Format
int32 ni845xSpiScriptNumBitsPerSample (

NiHandle pScriptHandle,
uInt16 NumBitsPerSample
);

Inputs
NiHandle pScriptHandle

The script handle returned from ni845xSpiScriptOpen.

uInt16 NumBitsPerSample

Sets the number of bits per sample to be clocked each SPI transmission. Refer to
Appendix A, NI USB-845x Hardware Specifications. for valid settings for this property.

Outputs
None

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptNumBitsPerSample to add an SPI Script Number of Bits per
Sample command to an SPI script referenced by pScriptHandle. This command sets the
number of bits per sample on an SPI port specified using ni845xSpiScriptRun.

This setting remains active until the script is complete or the setting is changed.

ni845xSpiScriptOpen

Purpose
Creates a new NI-845x SPI script.

Format
int32 ni845xSpiScriptOpen (NiHandle * pScriptHandle);

Inputs
None.

Outputs
NiHandle * pScriptHandle

A pointer to an unsigned 32-bit integer to store the new script handle in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptOpen to create a new script to use with the NI-845x SPI
Scripting API. Pass the reference to SPI script functions to create the script. Then, call
ni845xSpiScriptRun to execute your script on your NI 845x device. After you finish
executing your script, use ni845xSpiScriptClose to delete the script.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-57 NI-845x Hardware and Software Manual

ni845xSpiScriptReset

Purpose
Resets an SPI script referenced by ScriptHandle to an empty state.

Format
int32 ni845xSpiScriptReset (NiHandle ScriptHandle);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptReset to reset a script to an empty state. Any commands or read data
stored in the script are deleted.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-58 ni.com

ni845xSpiScriptRun

Purpose
Sends the SPI script to the desired NI 845x device, which then interprets and runs it.

Format
int32 ni845xSpiScriptRun (

NiHandle ScriptHandle,
NiHandle DeviceHandle,
uInt8 PortNumber
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt8 PortNumber

The SPI port this script runs on.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptRun to execute an SPI script referenced by ScriptHandle on the
device referenced by DeviceHandle. You must first create an SPI script using the SPI
scripting functions. Next, pass the script handle into ScriptHandle. If you have multiple
NI 845x devices installed in your system, you can select which device to write your SPI script
to by passing its handle into DeviceHandle. If your NI 845x device supports multiple SPI
ports, you can also select which port to write your SPI script to. For single SPI port NI 845x
devices, you must use the default port (0). In this way, you can create one script to run on
various NI 845x devices, on various SPI ports within those devices. ni845xSpiScriptRun
loads and executes your SPI script on the NI 845x device and SPI port you specify, then
returns success or error. If your script contained any read commands, you can use
ni845xSpiScriptExtractReadData to extract the read data after executing
ni845xSpiScriptRun.

Chapter 13 NI-845x SPI API for C

© National Instruments 13-59 NI-845x Hardware and Software Manual

ni845xSpiScriptUsDelay

Purpose
Adds an SPI Script µs Delay command to an SPI script referenced by ScriptHandle. This
command adds a microsecond delay after the previous SPI script command.

Format
int32 ni845xSpiScriptUsDelay (

NiHandle ScriptHandle,
uInt16 Delay
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

uInt16 Delay

The desired delay in microseconds.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptUsDelay to add an SPI Script µs Delay command to an SPI script
referenced by ScriptHandle. This command adds a microsecond delay after the previous
SPI script command.

Chapter 13 NI-845x SPI API for C

NI-845x Hardware and Software Manual 13-60 ni.com

ni845xSpiScriptWriteRead

Purpose
Adds an SPI Script Write Read command to an SPI script referenced by ScriptHandle. This
command exchanges an array of data with an SPI slave device.

Format
int32 ni845xSpiScriptWriteRead (

NiHandle ScriptHandle,
uInt32 WriteSize,
uInt8 * pWriteData,
uInt32 * pScriptReadIndex
);

Inputs
NiHandle ScriptHandle

The script handle returned from ni845xSpiScriptOpen.

uInt32 WriteSize

The number of bytes to write. This must be nonzero.

uInt8 * pWriteData

The bytes to write.

Outputs
uInt32 * pScriptReadIndex

A pointer to the write/read command index within the script. It is used as an input into
ni845xSpiScriptExtractReadData.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiScriptWriteRead to add an SPI Script Write Read command to an SPI
script referenced by ScriptHandle. This command exchanges an array of data with an SPI
slave device connected to the SPI port you specify when you use ni845xSpiScriptRun to
execute the script. Due to the full-duplex nature of SPI, the read data size equals the write data
size, unless there is an error. Some SPI devices act as receivers only and require one or more
command and data bytes to be sent to them in one SPI transaction. As this is device specific,

Chapter 13 NI-845x SPI API for C

© National Instruments 13-61 NI-845x Hardware and Software Manual

you need to review the device datasheet to package the required commands and data into the
write data array. Other SPI devices act as transceivers. These devices can receive data much
like receiver-only devices. But they can also transmit data, which usually requires writing one
or more command bytes plus a number of bytes equal to the number of bytes desired to be
read from the device. In most cases, the values of these bytes are not important, as they serve
only to clock data out of the device. Here again, the SPI transaction formats are device
specific, so you need to review the device datasheet to package the required commands and
data into the write data array. To obtain the data read from the specified SPI port, pass the
value of pScriptReadIndex to ni845xSpiScriptExtractReadData after script
execution, which returns the data read by this script command.

Data provided in pWriteData and read back using pScriptReadIndex is organized in big
endian format. Each sample is stored using the minimum number of bytes required with the
most significant bits padded with 0.

For example, if the number of bits per sample is set to 12, each sample requires 2 bytes and
the 4 most significant bits are ignored.

Any partial samples will be discarded and a warning will be generated.

XXXXB11B10B9B8 B7B6B5B4B3B2B1B0 XXXXB11B10B9B8 B7B6B5B4B3B2B1B0

Sample 1 Sample 2

[0] [1] [2] [3]

© National Instruments 14-1 NI-845x Hardware and Software Manual

14
Using the NI-845x SPI
Stream API

This chapter helps you get started with the NI-845x SPI Stream API.

NI-845x SPI Stream Programming Model
The SPI Stream API provides the highest performance SPI transaction by
allowing you to configure a timing waveform for SPI and DIO signals. This
API is ideal for reading high-speed streaming data from an SPI slave
device, such as an analog-to-digital converter (ADC).

When using the SPI Stream API, the first step is to create an SPI
stream configuration to describe the streaming waveform, as shown in
Figure 14-1. To make an SPI stream configuration, create an SPI stream
configuration reference and set the appropriate properties. Once the
configuration has the desired settings, start the streaming operation on
the hardware. Your NI 845x device then generates the waveform that the
configuration specifies onto the SPI bus and buffer data on board. To pull
data from the buffer, use the API to read data. This does not interrupt SPI
transactions occurring on the device. Once the desired amount of data has
been read, stop the streaming operation on the device to return to normal
mode.

Note Data continues to be buffered on the device until the specified number of samples
are acquired or the streaming mode is stopped.

Chapter 14 Using the NI-845x SPI Stream API

NI-845x Hardware and Software Manual 14-2 ni.com

Figure 14-1. NI-845x SPI API Stream Programming Model

SPI Stream Configure
Use the NI-845x SPI Stream Configuration Property Node in LabVIEW
and ni845xSpiStreamConfiguration* calls in other languages to set
the specific SPI stream configuration that describes the characteristics of
the device to communicate with.

SPI Stream Start
Use NI-845x SPI Stream Start.vi in LabVIEW and
ni845xSpiStreamStart in other languages to change the device mode
to streaming and start generating the specified waveform on the SPI bus.

SPI Stream Read
Use NI-845x SPI Stream Read.vi in LabVIEW and
ni845xSpiStreamRead in other languages to read data from the buffer
on the NI 845x device.

SPI Stream Stop
Use NI-845x SPI Stream Stop.vi in LabVIEW and
ni845xSpiStreamStop in other languages to change the device mode to
normal mode.

SPI Stream Configure

SPI Stream Start

SPI Stream Read

SPI Stream Stop

Chapter 14 Using the NI-845x SPI Stream API

© National Instruments 14-3 NI-845x Hardware and Software Manual

Waveform 1
Figure 14-2 shows the waveform 1 timing diagram. Each timing
parameter is specified as a number of system clocks. Refer to Appendix A,
NI USB-845x Hardware Specifications, for a system clock description.

Depending on your pin configuration, not all timing parameters are used.
Only the necessary timing parameters are applied when generating the
waveform.

Figure 14-2. Waveform 1 Timing Diagram

Table 14-1 describes the timing parameters used depending on your pin
configuration. Using the timing parameters and pin configurations, you can
configure the waveform to communicate with an SPI slave.

CONV

DRDY

SPI
CS

SPI
SCLK

SPI
MOSI

SPI
MISO

T1

T4

T2
T7

T3

T5 n Bits

T6

T8

T9T11

T10
T12

SCLK SCLK
High Low

Chapter 14 Using the NI-845x SPI Stream API

NI-845x Hardware and Software Manual 14-4 ni.com

Extra SPI Pin Descriptions

CONV
The CONV pin is commonly used to signal an SPI slave to begin data
conversion. When the CONV pin is configured as Active High, Active
Low, Drive High, or Drive Low, the pin is configured as an output using
GPIO0.

DRDY
The DRDY pin is commonly used to signal your NI 845x device that data
is ready to be read. When the DRDY pin is configured as Active High or
Active Low, the pin is configured as an input using GPIO1.

Chip Select
The Chip Select (CS) pin is commonly used to signal an SPI slave that your
NI 845x device is intending to communicate with it. When the CS pin is
configured as Active High, Active Low, Drive High, or Drive Low, the pin
is configured as an output using CS0.

Note Refer to Chapter 3, NI USB-845x Hardware Overview, for the pinout of your
NI 845x device.

Table 14-1. Timing Parameters

Active Pin(s)1 SCLKH SCLKL T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

None — — — — — — — — — — —

CONV — — — — — — — — —

DRDY — — — — — — — — — — —

CS — — — — — — — — —

CONV, CS — — — — — — —

CONV, DRDY — — — — — — — — —

DRDY, CS — — — — — — — — —

CONV, DRDY,
CS

 — — — — — — —

1 Pins are considered active if configured as active high or active low.

© National Instruments 15-1 NI-845x Hardware and Software Manual

15
NI-845x SPI Stream API for
LabVIEW

This chapter lists the LabVIEW VIs for the NI-845x SPI Stream API and describes the format,
purpose, and parameters for each VI. The VIs in this chapter are listed alphabetically.

Note The SPI Stream API is not available for the NI USB-8451.

Chapter 15 NI-845x SPI Stream API for LabVIEW

NI-845x Hardware and Software Manual 15-2 ni.com

General Device

NI-845x Close Reference.vi

Purpose
Closes a previously opened reference.

Inputs

reference in is a reference to an NI 845x device, I2C configuration, I2C
Slave configuration, SPI configuration, SPI stream configuration, I2C
script, or SPI script.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI

Chapter 15 NI-845x SPI Stream API for LabVIEW

© National Instruments 15-3 NI-845x Hardware and Software Manual

executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x Close Reference.vi to close a previously opened reference.

Chapter 15 NI-845x SPI Stream API for LabVIEW

NI-845x Hardware and Software Manual 15-4 ni.com

NI-845x Device Property Node

Purpose
A property node with the NI-845x Device class preselected. This property node allows you to
modify properties of your NI 845x device.

Inputs

device reference in is a reference to an NI 845x device.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

device reference out is a reference to an NI 845x device after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

Chapter 15 NI-845x SPI Stream API for LabVIEW

© National Instruments 15-5 NI-845x Hardware and Software Manual

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The list below describes all valid properties for the NI-845x Device Property Node.

DIO:Active Port

The DIO:Active Port property sets the active DIO port for further DIO
port configuration. The format for this property is a decimal string. For
example, the string 0 represents DIO Port 0. The default value of this
property is 0. For NI 845x devices with one DIO port, the port value must
be 0.

DIO:Driver Type

The DIO:Driver Type property configures the active DIO port with the
desired driver type characteristics. DIO:Driver Type uses the following
values:

Open-Drain

The DIO driver type is configured for open-drain.

Push-Pull

The DIO driver type is configured for push-pull. The actual
voltage driven (when sourcing a high value) is determined by the
I/O Voltage Level property.

The default value of this property is Push-Pull.

DIO:Line Direction Map

The DIO:Line Direction Map property sets the line direction map for the
active DIO Port. The value is a bitmap that specifies the function of each
individual line within the port. If bit x = 1, line x is an output. If bit x = 0,
line x is an input.

The default value of this property is 0 (all lines configured for input).

I/O Voltage Level

The I/O Voltage Level property sets the board voltage. This property sets
the voltage for SPI, I2C, and DIO. The default value for this property is
3.3V. This property uses the following values:

Chapter 15 NI-845x SPI Stream API for LabVIEW

NI-845x Hardware and Software Manual 15-6 ni.com

3.3V

I/O Voltage is set to 3.3 V.

2.5V

I/O Voltage is set to 2.5 V.

1.8V

I/O Voltage is set to 1.8 V.

1.5V

I/O Voltage is set to 1.5 V.

1.2V

I/O Voltage is set to 1.2 V.

Refer to Appendix A, NI USB-845x Hardware Specifications, to determine
the available voltage levels on your hardware.

I2C Pullup Enable

The I2C Pullup Enable property enables or disables the internal pullup
resistors connected to SDA and SCL.

Refer to Appendix A, NI USB-845x Hardware Specifications, to determine
whether your hardware has onboard pull-up resistors.

Timeout (ms)

The Timeout (ms) property sets the global timeout for the device. This
timeout is the minimum amount of time an I2C, SPI, or DIO operation is
allowed to complete.

Note It is highly recommended to set this property higher than the expected I/O time. For
the NI USB-8451, a timeout may leave the device in an unknown state that may require a
power cycle of the device.

The default of this property is 30000 (30 seconds).

Chapter 15 NI-845x SPI Stream API for LabVIEW

© National Instruments 15-7 NI-845x Hardware and Software Manual

NI-845x Device Reference

Purpose
Specifies the device resource to be used for communication.

Description
Use the NI-845x Device Reference to describe the NI 845x device to communicate with. You
can wire the reference into a property node to set specific device parameters or to an NI-845x
API call to invoke the function on the associated NI 845x device.

Chapter 15 NI-845x SPI Stream API for LabVIEW

NI-845x Hardware and Software Manual 15-8 ni.com

Configuration

NI-845x SPI Stream Configuration Property Node

Purpose
A property node with the NI-845x SPI Stream Configuration class preselected. This property
node allows you to query and modify SPI Stream configuration properties.

Inputs

spi stream configuration in is a reference to a specific SPI stream
configuration that describes the waveform to generate during streaming
operations.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi stream configuration out is a reference to a specific SPI stream
configuration that describes the waveform to generate during streaming
operations.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

Chapter 15 NI-845x SPI Stream API for LabVIEW

© National Instruments 15-9 NI-845x Hardware and Software Manual

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The list below describes all valid properties for the NI-845x SPI Stream Configuration
Property Node.

Number of Samples

Sets the number of samples to acquire. For continuous streaming, this
property should be set to 0.

The default value for this property is 0 (continuous streaming).

Number of Bits Per Sample

Sets the number of bits to be clocked in per sample. Refer to Appendix A,
NI USB-845x Hardware Specifications, for valid settings for this property.

The default value for this property is 8.

Clock Polarity

Sets the idle state of the clock line during SPI Streaming. Clock Polarity
uses the following values:

0 (Idle Low)

Clock is low in the idle state.

1 (Idle High)

Clock is high in the idle state.

The default value for this property is 0 (Idle Low).

Chapter 15 NI-845x SPI Stream API for LabVIEW

NI-845x Hardware and Software Manual 15-10 ni.com

Clock Phase

Sets the positioning of the data bits relative to the clock during SPI
Streaming. Clock Phase uses the following values:

0 (First Edge)

Data is centered on the first edge of the clock period.

1 (Second Edge)

Data is centered on the second edge of the clock period.

The default value for this property is 0 (First Edge).

Packet Size

Sets the packet size for transfers between the host and your NI 845x device.
If this property is set to 0, transfers between the host and your device occur
at the standard USB packet size. For most applications, this value is
optimal.

For most applications, set this parameter to a multiple of 512 bytes for
optimal performance.

This setting can affect the performance of data streaming to the host from
your NI 845x device. For slow SPI streaming configurations, setting this
property below 512 allows data to transfer to the host more often. Setting
the packet size too small, however, may cause the onboard buffer to
overflow for high-speed SPI streaming operations.

The default value for this property is 0.

Waveform1:MOSI Data

Sets the data to be used to transfer on MOSI during an SPI operation.

The data must be organized in big endian format. Using the array below as
an example, if you were to pass in the array below, MOSI Data[N-1]
contains the least-significant bits and MOSI Data[0] contains the
most-significant bits.

If the total number of bits to transmit, as configured in Number of Bits Per
Sample, is smaller than the total number of bits in the array, only the

[0] [1] [2] ... [N-2] [N-1]

Chapter 15 NI-845x SPI Stream API for LabVIEW

© National Instruments 15-11 NI-845x Hardware and Software Manual

minimum required bytes are used (starting at index 0), but they remain big
endian.

For example, if the configuration has the number of bits set to 12, 12 bits
are transferred. This requires 2 bytes. If you provide a data array with N
elements, where N ≥ 2, MOSI Data[0] contains bits 11:8 (in bits 3:0) and
MOSI Data[1] contains bits 7:0. Any additional data is ignored.

If you provided MOSI Data with N elements where N < 2, the provided
bytes are used as the most significant bits and additional required bytes are
appended as zeros. In the example above, if you only supplied MOSI
Data[0], the bit pattern on the bus would be B11B10 B9 B800000000.

Note The NI USB-8452 uses a 100 MHz system clock. The period of each system clock
is 10 ns. The SPI Stream API is not available for the NI USB-8451.

Waveform1:Timing:SCLKLow

Sets the number of system clocks for the SCLK low period for Waveform 1.

The default value is 1.

Waveform1:Timing:SCLKHigh

Sets the number of system clocks for the SCLK high period for
Waveform 1.

The default value is 1.

Waveform1:Timing:T1(convA->convD)

Sets the number of system clocks between CONV assert and CONV
deassert for Waveform 1. Depending on pin settings, this timing parameter
may not be applicable. The value stored in this setting is ignored at runtime
if the timing parameter is not necessary. Refer to Figure 14-2, Waveform 1
Timing Diagram, in Chapter 14, Using the NI-845x SPI Stream API, to
determine the timing parameters used for your application.

The default value is 1.

[0] [1] [2] ... [N-2] [N-1]

XXXXB11B10B9B8 B7B6B5B4B3B2B1B0 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

Chapter 15 NI-845x SPI Stream API for LabVIEW

NI-845x Hardware and Software Manual 15-12 ni.com

Waveform1:Timing:T2(convD->csA)

Sets the number of system clocks between CONV deassert and Chip Select
assert for Waveform 1. Depending on pin settings, this timing parameter
may not be applicable. The value stored in this setting is ignored at runtime
if the timing parameter is not necessary. Refer to Figure 14-2, Waveform 1
Timing Diagram, in Chapter 14, Using the NI-845x SPI Stream API, to
determine the timing parameters used for your application.

The default value is 1.

Waveform1:Timing:T3(convD->sclkA)

Sets the number of system clocks between CONV deassert and SCLK
assert (first bit) for Waveform 1. Depending on pin settings, this timing
parameter may not be applicable. The value stored in this setting is ignored
at runtime if the timing parameter is not necessary. Refer to Figure 14-2,
Waveform 1 Timing Diagram, in Chapter 14, Using the NI-845x SPI
Stream API, to determine the timing parameters used for your application.

The default value is 1.

Waveform1:Timing:T4(drdyA->csA)

Sets the number of system clocks between DRDY assert and Chip Select
assert for Waveform 1. Depending on pin settings, this timing parameter
may not be applicable. The value stored in this setting is ignored at runtime
if the timing parameter is not necessary. Refer to Figure 14-2, Waveform 1
Timing Diagram, in Chapter 14, Using the NI-845x SPI Stream API, to
determine the timing parameters used for your application.

The default value is 2.

Note This timing parameter may be slightly longer than specified because DRDY is an
asynchronous input.

Waveform1:Timing:T5(drdyA->sclkA)

Sets the number of system clocks between DRDY assert and SCLK assert
(first bit) for Waveform 1. Depending on pin settings, this timing parameter
may not be applicable. The value stored in this setting is ignored at runtime
if the timing parameter is not necessary. Refer to Figure 14-2, Waveform 1
Timing Diagram, in Chapter 14, Using the NI-845x SPI Stream API, to
determine the timing parameters used for your application.

The default value is 2.

Chapter 15 NI-845x SPI Stream API for LabVIEW

© National Instruments 15-13 NI-845x Hardware and Software Manual

Note This timing parameter may be slightly longer than specified because DRDY is an
asynchronous input.

Waveform1:Timing:T6(drdyD->convA)

Sets the number of system clocks between DRDY deassert and CONV
assert for Waveform 1. Depending on pin settings, this timing parameter
may not be applicable. The value stored in this setting is ignored at runtime
if the timing parameter is not necessary. Refer to Figure 14-2, Waveform 1
Timing Diagram, in Chapter 14, Using the NI-845x SPI Stream API, to
determine the timing parameters used for your application.

The default value is 2.

Note This timing parameter may be slightly longer than specified because DRDY is an
asynchronous input.

Waveform1:Timing:T7(csA->sclkA)

Sets the number of system clocks between Chip Select assert and SCLK
assert (first bit) for Waveform 1. Depending on pin settings, this timing
parameter may not be applicable. The value stored in this setting is ignored
at runtime if the timing parameter is not necessary. Refer to Figure 14-2,
Waveform 1 Timing Diagram, in Chapter 14, Using the NI-845x SPI
Stream API, to determine the timing parameters used for your application.

The default value is 1.

Waveform1:Timing:T8(csD->convA)

Sets the number of system clocks between Chip Select deassert and CONV
assert for Waveform 1. Depending on pin settings, this timing parameter
may not be applicable. The value stored in this setting is ignored at runtime
if the timing parameter is not necessary. Refer to Figure 14-2, Waveform 1
Timing Diagram, in Chapter 14, Using the NI-845x SPI Stream API, to
determine the timing parameters used for your application.

The default value is 1.

Waveform1:Timing:T9(csD->csA)

Sets the number of system clocks between Chip Select deassert and Chip
Select assert (first bit) for Waveform 1. Depending on pin settings, this
timing parameter may not be applicable. The value stored in this setting is
ignored at runtime if the timing parameter is not necessary. Refer to
Figure 14-2, Waveform 1 Timing Diagram, in Chapter 14, Using the

Chapter 15 NI-845x SPI Stream API for LabVIEW

NI-845x Hardware and Software Manual 15-14 ni.com

NI-845x SPI Stream API, to determine the timing parameters used for your
application.

The default value is 1.

Waveform1:Timing:T10(sclkD->convA)

Sets the number of system clocks between SCLK deassert (last bit) and
CONV assert for Waveform 1. Depending on pin settings, this timing
parameter may not be applicable. The value stored in this setting is ignored
at runtime if the timing parameter is not necessary. Refer to Figure 14-2,
Waveform 1 Timing Diagram, in Chapter 14, Using the NI-845x SPI
Stream API, to determine the timing parameters used for your application.

The default value is 1.

Waveform1:Timing:T11(sclkD->csD)

Sets the number of system clocks between SCLK deassert (last bit) and CS
deassert for Waveform 1. Depending on pin settings, this timing parameter
may not be applicable. The value stored in this setting is ignored at runtime
if the timing parameter is not necessary. Refer to Figure 14-2, Waveform 1
Timing Diagram, in Chapter 14, Using the NI-845x SPI Stream API, to
determine the timing parameters used for your application.

The default value is 1.

Waveform1:Timing:T12(sclkD->sclkA)

Sets the number of system clocks between SCLK deassert (last bit) and
SCLK assert (first bit) for Waveform 1. Depending on pin settings, this
timing parameter may not be applicable. The value stored in this setting is
ignored at runtime if the timing parameter is not necessary. Refer to
Figure 14-2, Waveform 1 Timing Diagram, in Chapter 14, Using the
NI-845x SPI Stream API, to determine the timing parameters used for your
application.

The default value is 1.

Waveform1:Pin:CONV

Sets the configuration for the CONV pin. Waveform1:Pin:CONV uses
the following values:

Disabled

The pin is disabled.

Active High

Chapter 15 NI-845x SPI Stream API for LabVIEW

© National Instruments 15-15 NI-845x Hardware and Software Manual

The pin is set to active high.

Active Low

The pin is set to active low.

Drive High

The pin is driven high.

Drive Low

The pin is driven low.

Waveform1:Pin:DRDY

Sets the configuration for the DRDY pin. Waveform1:Pin:DRDY uses the
following values:

Disabled

The pin is disabled.

Active High

The pin is set to active high.

Active Low

The pin is set to active low.

Waveform1:Pin:CS

Sets the configuration for the Chip Select pin. Waveform1:Pin:CS uses
the following values:

Disabled

The pin is disabled.

Active High

The pin is set to active high.

Active Low

The pin is set to active low.

Drive High

The pin is driven high.

Drive Low

The pin is driven low.

Chapter 15 NI-845x SPI Stream API for LabVIEW

NI-845x Hardware and Software Manual 15-16 ni.com

NI-845x SPI Stream Create Configuration Reference.vi

Purpose
Creates a new NI-845x SPI Stream configuration.

Inputs

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

spi stream configuration is a reference to the newly created NI-845x SPI
stream configuration.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

Chapter 15 NI-845x SPI Stream API for LabVIEW

© National Instruments 15-17 NI-845x Hardware and Software Manual

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Stream Create Configuration Reference.vi to create a new configuration
to use with the NI-845x SPI Stream API. Pass the reference to a property node to make the
configuration match the settings of your SPI slave. Then, pass the configuration to the SPI
stream functions to execute them on the described SPI slave. After you finish communicating
with your SPI slave, pass the reference into a new property node to reconfigure it or use
NI-845x Close Reference.vi to delete the configuration.

Chapter 15 NI-845x SPI Stream API for LabVIEW

NI-845x Hardware and Software Manual 15-18 ni.com

Streaming

NI-845x SPI Stream Read.vi

Purpose
Reads data from an SPI slave device

Inputs

device reference in is a reference to an NI 845x device.

spi stream configuration in is a reference to a specific SPI stream
configuration that describes the waveform to generate during streaming
operations. Connect this configuration reference to a property node to set
the specific configuration parameters.

num bytes per read contains the number of bytes to attempt to read.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 15 NI-845x SPI Stream API for LabVIEW

© National Instruments 15-19 NI-845x Hardware and Software Manual

Outputs

device reference out is a reference to the NI 845x device after this VI runs.

spi stream configuration out is a reference to the SPI stream configuration
after this VI runs.

read data contains an array of read data from an SPI interface. All data is
padded to the nearest byte with zeros as the most significant bits.

Note A pad byte of 0 may be added to the end of a finite acquisition if the total number of
bytes read from the NI 845x device is not even.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Stream Read.vi to read data from an SPI slave device. The read size is less
than or equal to the value passed into num bytes per read and is dependent on the Packet
Size.

While your NI 845x device is in streaming mode, SPI operations continue to occur and buffer
onboard. NI-845x SPI Stream Read.vi does not affect SPI operations on the SPI bus. This
function reads the result of the started SPI streaming operation.

Note The SPI Stream API is not available for the NI USB-8451.

Chapter 15 NI-845x SPI Stream API for LabVIEW

NI-845x Hardware and Software Manual 15-20 ni.com

NI-845x SPI Stream Start.vi

Purpose
Starts the streaming operation on an NI 845x device.

Inputs

device reference in is a reference to an NI 845x device.

spi stream configuration in is a reference to a specific SPI stream
configuration that describes the waveform to generate during streaming
operations. Connect this configuration reference to a property node to set
the specific configuration parameters.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

device reference out is a reference to the NI 845x device after this VI runs.

spi stream configuration out is a reference to the SPI stream configuration
after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

Chapter 15 NI-845x SPI Stream API for LabVIEW

© National Instruments 15-21 NI-845x Hardware and Software Manual

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Stream Start.vi to put your NI 845x device into streaming mode. Once in
streaming mode, your NI 845x device generates the waveform described by spi stream
configuration in. Your NI 845x device remains in streaming mode until NI-845x SPI Stream
Stop.vi is called.

The data set in Waveform1:MOSI Data is output on MOSI on each SPI operation during
streaming. You can use this data to set up the SPI slave if necessary, but not all SPI slaves
require it.

Before using NI-845x SPI Stream Start.vi, you must ensure that the configuration
parameters specified in spi stream configuration in are correct for the device you currently
want to access.

Note The SPI Stream API is not available for the NI USB-8451.

Chapter 15 NI-845x SPI Stream API for LabVIEW

NI-845x Hardware and Software Manual 15-22 ni.com

NI-845x SPI Stream Stop.vi

Purpose
Stops a streaming operation on an NI 845x device.

Inputs

device reference in is a reference to an NI 845x device.

spi stream configuration in is a reference to a specific SPI stream
configuration that describes the waveform to generate during streaming
operations. Connect this configuration reference to a property node to set
the specific configuration parameters.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

device reference out is a reference to the NI 845x device after this VI runs.

spi stream configuration out is a reference to the SPI stream configuration
after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

Chapter 15 NI-845x SPI Stream API for LabVIEW

© National Instruments 15-23 NI-845x Hardware and Software Manual

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x SPI Stream Stop.vi to remove your NI 845x device from streaming mode.
When stopping, the device waits for the final SPI operation to complete if one is occurring.
No data can be read from the device once stopped. All unread data is discarded.

Note The SPI Stream API is not available for the NI USB-8451.

© National Instruments 16-1 NI-845x Hardware and Software Manual

16
NI-845x SPI Stream API for C

This chapter lists the functions for the NI-845x SPI Stream API for C and describes the
format, purpose, and parameters for each function. The functions are listed alphabetically in
three categories: general device, configuration, and streaming.

Section Headings
The NI-845x SPI Stream API for C functions include the following section headings.

Purpose
Each function description includes a brief statement of the function purpose.

Format
The format section describes the function format for the C programming language.

Inputs and Outputs
These sections list the function input and output parameters.

Description
The description section gives details about the purpose and effect of each function.

Data Types
The NI-845x SPI Stream API for C functions use the following data types.

Data Type Purpose

uInt8 8-bit unsigned integer

uInt16 16-bit unsigned integer

uInt32 32-bit unsigned integer

int8 8-bit signed integer

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-2 ni.com

List of Functions
The following table contains an alphabetical list of the NI-845x SPI Stream API for C
functions.

int16 16-bit signed integer

int32 32-bit signed integer

uInt8 * Pointer to an 8-bit unsigned integer

uInt16 * Pointer to a 16-bit unsigned integer

uInt32 * Pointer to a 32-bit unsigned integer

int8 * Pointer to an 8-bit signed integer

int16 * Pointer to a 16-bit signed integer

int32 * Pointer to a 32-bit signed integer

char * ASCII string represented as an array of characters terminated
by null character ('\0')

NiHandle Operating system independent handle

Function Purpose

ni845xClose Closes a previously opened NI
845x device.

ni845xCloseFindDeviceHandle Closes the handles created by
ni845xFindDevice.

ni845xDeviceLock Locks NI 845x devices for
access by a single thread.

ni845xDeviceUnlock Unlocks NI 845x devices.

ni845xFindDevice Finds an NI 845x device and
returns the total number of NI
845x devices present. You can
find subsequent devices using
ni845xFindDeviceNext.

Data Type Purpose

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-3 NI-845x Hardware and Software Manual

ni845xFindDeviceNext Finds subsequent devices after
ni845xFindDevice has been
called.

ni845xOpen Opens an NI 845x device for
use with various write, read,
and device property functions.

ni845xSpiStreamConfigurationClose Closes an NI-845x SPI Stream
Configuration.

ni845xSpiStreamConfigurationOpen Creates a new NI-845x SPI
Stream Configuration.

ni845xSpiStreamConfigurationGetNumBits Retrieves the configuration’s
number of bits per sample.

ni845xSpiStreamConfigurationGetNumSamples Retrieves the configuration’s
number of samples to acquire.

ni845xSpiStreamConfigurationGetPacketSize Retrieves the configuration’s
packet size.

ni845xSpiStreamConfigurationGetClockPhase Retrieves the configuration’s
clock phase.

ni845xSpiStreamConfigurationWave1GetPinConfig Retrieves the configuration’s
setting for an individual pin.

ni845xSpiStreamConfigurationGetClockPolarity Retrieves the configuration’s
clock polarity.

ni845xSpiStreamConfigurationWave1GetTimingParam Retrieves the configuration’s
setting for an individual timing
parameter.

ni845xSpiStreamRead Reads data from the NI 845x
device.

ni845xSpiStreamConfigurationWave1SetMosiData Sets the configuration’s data to
be transferred on MOSI.

ni845xSpiStreamConfigurationSetNumBits Sets the configuration’s number
of bits to be transferred.

ni845xSpiStreamConfigurationSetNumSamples Sets the configuration’s number
of samples to be transferred.

Function Purpose

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-4 ni.com

ni845xSpiStreamConfigurationSetPacketSize Sets the configuration’s packet
size.

ni845xSpiStreamConfigurationSetClockPhase Sets the configuration’s clock
phase.

ni845xSpiStreamConfigurationWave1SetPinConfig Sets the configuration’s setting
for an individual pin.

ni845xSpiStreamConfigurationSetClockPolarity Sets the configuration’s clock
polarity.

ni845xSpiStreamConfigurationWave1SetTimingParam Sets the configuration’s setting
for an individual timing
parameter.

ni845xSpiStreamStart Starts the streaming operation.

ni845xSpiStreamStop Stops the streaming operation.

ni845xSetTimeout Sets the global timeout value.

ni845xStatusToString Converts a status code into a
descriptive string.

Function Purpose

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-5 NI-845x Hardware and Software Manual

General Device

ni845xClose

Purpose
Closes a previously opened NI 845x device.

Format
int32 ni845xClose(NiHandle DeviceHandle);

Inputs
NiHandle DeviceHandle

Device handle to be closed.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xClose to close a device handle previously opened by ni845xOpen. Passing an
invalid handle to ni845xClose is ignored.

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-6 ni.com

ni845xCloseFindDeviceHandle

Purpose
Closes the handles created by ni845xFindDevice.

Format
int32 ni845xCloseFindDeviceHandle (

NiHandle FindDeviceHandle
);

Inputs
NiHandle FindDeviceHandle

Describes a find list. ni845xFindDevice creates this parameter.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xCloseFindDeviceHandle to close a find list. In this process, all allocated data
structures are freed.

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-7 NI-845x Hardware and Software Manual

ni845xDeviceLock

Purpose
Locks NI 845x devices for access by a single thread.

Format
int32 ni845xDeviceLock(NiHandle DeviceHandle);

Inputs
NiHandle DeviceHandle

Device handle to be locked.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
This function locks NI 845x devices and prevents multiple processes or threads from
accessing the device until the process or thread that owns the device lock calls an equal
number of ni845xDeviceUnlock calls. Any thread or process that attempts to call
ni845xDeviceLock when the device is already locked is forced to sleep by the
operating system. This is useful for when multiple Basic API device accesses must occur
uninterrupted by any other processes or threads. If a thread exits without fully unlocking
the device, the device is unlocked. If a thread is the current owner of the lock, and calls
ni845xDeviceLock again, the thread will not deadlock itself, but care must be taken to call
ni845xDeviceUnlock for every ni845xDeviceLock called. This function can possibly
lock a device indefinitely: If a thread never calls ni845xDeviceUnlock, or fails to call
ni845xDeviceUnlock for every ni845xDeviceLock call, and never exits, other processes
and threads are forced to wait. This is not recommended for users unfamiliar with threads or
processes. A simpler alternative is to use scripts. Scripts provide the same capability to ensure
transfers are uninterrupted, and with possible performance benefits.

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-8 ni.com

ni845xDeviceUnlock

Purpose
Unlocks NI 845x devices.

Format
int32 ni845xDeviceUnlock(NiHandle DeviceHandle);

Inputs
NiHandle DeviceHandle

Device handle to be unlocked.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xDeviceUnlock to unlock access to an NI 845x device previously locked with
ni845xDeviceLock. Every call to ni845xDeviceLock must have a corresponding call to
ni845xDeviceUnlock. Refer to ni845xDeviceLock for more details regarding how to
use device locks.

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-9 NI-845x Hardware and Software Manual

ni845xFindDevice

Purpose
Finds an NI 845x device and returns the total number of NI 845x devices present. You can find
subsequent devices using ni845xFindDeviceNext.

Format
int32 ni845xFindDevice (

char * FirstDevice,
NiHandle * FindDeviceHandle,
uInt32 * NumberFound
);

Inputs
None.

Outputs
char * FirstDevice

A pointer to the string containing the first NI 845x device found. You can pass this name
to the ni845xOpen function to open the device. If no devices exist, this is an empty
string.

NiHandle * FindDeviceHandle

Returns a handle identifying this search session. This handle is used as an input in
ni845xFindDeviceNext and ni845xCloseFindDeviceHandle.

uInt32 * NumberFound

A pointer to the total number of NI 845x devices found in the system. You can use this
number in conjunction with the ni845xFindDeviceNext function to find a particular
device. If no devices exist, this returns 0.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xFindDevice to get a single NI 845x device and the number of NI 845x devices
in the system. You can then pass the string returned to ni845xOpen to access the device. If
you must discover more devices, use ni845xFindDeviceNext with FindDeviceHandle

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-10 ni.com

and NumberFound to find the remaining NI 845x devices in the system. After finding all
desired devices, call ni845xCloseFindDeviceHandle to close the device handle and
relinquish allocated resources.

Note FirstDevice must be at least 256 bytes.

Note FindDeviceHandle and NumberFound are optional parameters. If only the first
match is important, and the total number of matches is not needed, you can pass in a NULL
pointer for both of these parameters, and the NI-845x driver automatically calls
ni845xCloseFindDeviceHandle before this function returns.

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-11 NI-845x Hardware and Software Manual

ni845xFindDeviceNext

Purpose
Finds subsequent devices after ni845xFindDevice has been called.

Format
int32 ni845xFindDeviceNext (

NiHandle FindDeviceHandle,
char * NextDevice
);

Inputs
NiHandle FindDeviceHandle

Describes a find list. ni845xFindDevice creates this parameter.

Outputs
char * NextDevice

A pointer to the string containing the next NI 845x device found. This is empty if no
further devices are left.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xFindDeviceNext after first calling ni845xFindDevice to find the remaining
devices in the system. You can then pass the string returned to ni845xOpen to access the
device.

Note NextDevice must be at least 256 bytes.

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-12 ni.com

ni845xOpen

Purpose
Opens an NI 845x device for use with various write, read, and device property functions.

Format
int32 ni845xOpen (

char * ResourceName,
NiHandle * DeviceHandle
);

Inputs
char * ResourceName

A resource name string corresponding to the NI 845x device to be opened.

Outputs
NiHandle * DeviceHandle

A pointer to the device handle.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xOpen to open an NI 845x device for access. The string passed to
ni845xOpen can be any of the following: an ni845xFindDevice device string, an
ni845xFindDeviceNext device string, a Measurement & Automation Explorer resource
name, or a Measurement & Automation Explorer alias.

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-13 NI-845x Hardware and Software Manual

ni845xSetTimeout

Purpose
Modifies the global timeout for operations when using an NI 845x device.

Format
int32 ni845xSetTimeout (

NiHandle DeviceHandle,
uInt32 Timeout
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt32 Timeout

The timeout value in milliseconds. The minimum timeout is 1000 ms (1 second).

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSetTimeout to set the global timeout for the device. This timeout is the
minimum amount of time an I2C, SPI, or DIO operation is allowed to complete.

The default of this property is 30000 (30 seconds).

Note You should set this property higher than the expected I/O time. For the
NI USB-8451, a timeout may leave the device in an unknown state that may require a
power cycle of the device.

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-14 ni.com

ni845xStatusToString

Purpose
Converts a status code into a descriptive string.

Format
void ni845xStatusToString (

int32 StatusCode,
uInt32 MaxSize,
int8 * StatusString
);

Inputs
int32 StatusCode

Status code returned from an NI-845x function.

uInt32 MaxSize

Size of the StatusString buffer (in bytes).

Outputs
int8 * StatusString

ASCII string that describes StatusCode.

Description
When the status code returned from an NI-845x function is nonzero, an error or warning is
indicated. This function obtains a description of the error/warning for debugging purposes.

The return code is passed into the StatusCode parameter. The MaxSize parameter
indicates the number of bytes available in StatusString for the description (including
the NULL character). The description is truncated to size MaxSize if needed, but a size of
1024 characters is large enough to hold any description. The text returned in String is
null-terminated, so you can use it with ANSI C functions such as printf.

For applications written in C or C++, each NI-845x function returns a status code as a signed
32-bit integer. The following table summarizes the NI-845x use of this status.

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-15 NI-845x Hardware and Software Manual

NI-845x Status Codes

The application code should check the status returned from every NI-845x function. If an
error is detected, you should close all NI-845x handles, then exit the application. If a warning
is detected, you can display a message for debugging purposes, or simply ignore the warning.

In some situations, you may want to check for specific errors in the code and continue
communication when they occur. For example, when communicating to an I2C EEPROM,
you may expect the device to NAK its address during a write cycle, and you may use this
knowledge to poll for when the write cycle has completed.

Status Code Meaning

Negative Error—Function did not perform expected behavior.

Positive Warning—Function executed, but a condition arose that may
require attention.

Zero Success—Function completed successfully.

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-16 ni.com

Configuration

ni845xSpiStreamConfigurationClose

Purpose
Closes a previously opened SPI stream configuration.

Format
int32 ni845xSpiStreamConfigurationClose (

NiHandle ConfigurationHandle
);

Inputs
NiHandle ConfigurationHandle

The SPI stream configuration handle returned from
ni845xSpiStreamConfigurationOpen.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationClose to close a previously opened SPI stream
configuration handle. Invalid SPI stream configuration handles are ignored.

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-17 NI-845x Hardware and Software Manual

ni845xSpiStreamConfigurationOpen

Purpose
Creates a new NI-845x SPI stream configuration.

Format
int32 ni845xSpiStreamConfigurationOpen (

NiHandle * ConfigurationHandle
);

Inputs
None.

Outputs
NiHandle * ConfigurationHandle

A pointer to an unsigned 32-bit integer to store the configuration handle in.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationOpen to create a new configuration
to use with the NI-845x SPI Stream API. Pass the configuration handle to the
ni845xSpiConfigurationSet* series of functions to make the configuration match
the settings of your SPI slave. Then, pass the configuration handle to the SPI stream functions
to execute them on the described SPI slave. After you finish communicating with your SPI
slave, pass the configuration handle to the ni845xSpiStreamConfigurationSet* series
of functions to reconfigure it or use ni845xSpiStreamConfigurationClose to delete the
configuration.

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-18 ni.com

ni845xSpiStreamConfigurationGetNumBits

Purpose
Retrieves the configuration’s number of bits per sample.

Format
int32 ni845xSpiStreamConfigurationGetNumBits (

NiHandle ConfigurationHandle,
uInt8 * NumBits
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

Outputs
uInt8 * NumBits

A pointer to an unsigned 8-bit integer to store the number of bits per sample.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationGetNumBits to retrieve the number of bits per
sample.

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-19 NI-845x Hardware and Software Manual

ni845xSpiStreamConfigurationGetNumSamples

Purpose
Retrieves the configuration’s number of samples to acquire.

Format
int32 ni845xSpiStreamConfigurationGetNumSamples (

NiHandle ConfigurationHandle,
uInt32 * NumSamples
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

Outputs
uInt32 * NumSamples

A pointer to an unsigned 32-bit integer to store the number of samples to stream.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationGetNumSamples to retrieve the number of
samples to stream.

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-20 ni.com

ni845xSpiStreamConfigurationGetPacketSize

Purpose
Retrieves the configuration’s packet size.

Format
int32 ni845xSpiStreamConfigurationGetPacketSize (

NiHandle ConfigurationHandle,
uInt32 * PacketSize
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

Outputs
uInt32 * PacketSize

A pointer to an unsigned 32-bit integer to store the configuration’s packet size.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationGetPacketSize to retrieve the package size
between the host and your NI 845x device.

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-21 NI-845x Hardware and Software Manual

ni845xSpiStreamConfigurationGetClockPhase

Purpose
Retrieves the configuration’s clock phase.

Format
int32 ni845xSpiStreamConfigurationGetClockPhase (

NiHandle ConfigurationHandle,
uInt8 * ClockPhase
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

Outputs
uInt32 * ClockPhase

A pointer to an unsigned 8-bit integer to store the clock phase uses the following values:

• kNi845xSpiStreamClockPhaseFirstEdge (0): Data is updated on the first edge
of the clock period.

• kNi845xSpiStreamClockPhaseSecondEdge (1): Data is updated on the second
edge of the clock period.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationGetClockPhase to retrieve the clock phase used
by ConfigurationHandle.

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-22 ni.com

ni845xSpiStreamConfigurationWave1GetPinConfig

Purpose
Retrieves the configuration’s setting for an individual pin.

Format
int32 ni845xSpiStreamConfigurationWave1GetPinConfig (

NiHandle ConfigurationHandle,
uInt8 PinNumber,
uInt8 * Mode
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

uInt8 PinNumber

An unsigned 8-bit integer to determine the pin uses the following values:

• kNi845xSpiStreamWave1ConvPin (0): CONV pin for Waveform 1.

• kNi845xSpiStreamWave1DrdyPin (1): DRDY pin for Waveform 1.

• kNi845xSpiStreamWave1CsPin (2): Chip Select pin for Waveform 1.

Outputs
uInt8 * Mode

A pointer to an 8-bit unsigned integer to store the pin mode that uses the following values:

• kNi845xSpiStreamDisabled (0): Pin is disabled.

• kNi845xSpiStreamActiveHigh (1): Pin is set to active high.

• kNi845xSpiStreamActiveLow (2): Pin is set to active low.

• kNi845xSpiStreamDriveHigh (3): Pin driven high.

• kNi845xSpiStreamDriveLow (4): Pin driven low.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationWave1GetPinConfig to retrieve the
configuration setting for a specific pin.

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-23 NI-845x Hardware and Software Manual

ni845xSpiStreamConfigurationGetClockPolarity

Purpose
Retrieves the configuration’s clock polarity.

Format
int32 ni845xSpiStreamConfigurationGetClockPolarity (

NiHandle ConfigurationHandle,
uInt8 * ClockPolarity
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

Outputs
uInt32 * ClockPolarity

A pointer to an unsigned 8-bit integer to store the clock phase uses the following values:

• kNi845xSpiStreamClockPolarityIdleLow (0): Clock is low in the idle state.

• kNi845xSpiStreamClockPolarityIdleHigh (1): Clock is high in the idle
state.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationGetClockPolarity to retrieve the clock polarity
used by ConfigurationHandle.

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-24 ni.com

ni845xSpiStreamConfigurationWave1GetTimingParam

Purpose
Retrieves the configuration’s setting for an individual timing parameter.

Format
int32 ni845xSpiStreamConfigurationWave1GetTimingParam (

NiHandle ConfigurationHandle,
uInt8 TimingParameter,
uInt32 * ParameterValue
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

uInt8 TimingParameter

An unsigned 8-bit integer to determine the timing parameter uses the following values:

• kNi845xSpiStreamWave1SclkL (0): SCLK low period for Waveform 1.

• kNi845xSpiStreamWave1SclkH (1): SCLK high period for Waveform 1.

• kNi845xSpiStreamWave1T1 (2): Timing Parameter T1—CONV assert to CONV
deassert for Waveform 1.

• kNi845xSpiStreamWave1T2 (3): Timing Parameter T2—CONV deassert to Chip
Select assert for Waveform 1.

• kNi845xSpiStreamWave1T3 (4): Timing Parameter T3—CONV deassert to
SCLK assert (first bit) for Waveform 1.

• kNi845xSpiStreamWave1T4 (5): Timing Parameter T4—DRDY assert to Chip
Select assert for Waveform 1.

• kNi845xSpiStreamWave1T5 (6): Timing Parameter T5—DRDY assert to SCLK
assert (first bit) for Waveform 1.

• kNi845xSpiStreamWave1T6 (7): Timing Parameter T6—DRDY deassert to
CONV assert for Waveform 1.

• kNi845xSpiStreamWave1T7 (8): Timing Parameter T7—Chip Select assert to
SCLK assert (first bit) for Waveform 1.

• kNi845xSpiStreamWave1T8 (9): Timing Parameter T8—Chip Select deassert to
CONV assert for Waveform 1.

• kNi845xSpiStreamWave1T9 (10): Timing Parameter T9—Chip Select deassert to
Chip Select assert.

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-25 NI-845x Hardware and Software Manual

• kNi845xSpiStreamWave1T10 (11): Timing Parameter T10—SCLK deassert (last
bit) to CONV assert for Waveform 1.

• kNi845xSpiStreamWave1T11 (12): Timing Parameter T11—SCLK deassert (last
bit) to Chip Select deassert for Waveform 1.

• kNi845xSpiStreamWave1T12 (13): Timing Parameter T12—SCLK deassert (last
bit) to SCLK assert (first bit) for Waveform 1.

Outputs
uInt32 * ParameterValue

A pointer to an 32-bit unsigned integer to store the timing parameter in system clocks.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationWave1GetTimingParam to retrieve a specific
timing parameter. Timing parameters are returned as number of system clocks. Refer to
Appendix A, NI USB-845x Hardware Specifications, for a description of the system clock on
your NI 845x device.

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-26 ni.com

ni845xSpiStreamConfigurationWave1SetMosiData

Purpose
Sets the configuration MOSI data.

Format
int32 ni845xSpiStreamConfigurationWave1SetMosiData (

NiHandle ConfigurationHandle,
uInt8 * DataArray,
uInt32 ArraySize
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

uInt8* DataArray

An array of unsigned 8-bit integers used to specify the data transferred on MOSI. The
data must be organized in big endian format. Using the array below as an example, if you
were to pass in the array below, DataArray[N-1] contains the least-significant bits and
DataArray[0] contains the most-significant bits.

If the total number of bits to transmit, as configured in
ni845xSpiStreamConfigurationSetNumBits, is smaller than the total number of
bits in the array, only the minimum required bytes are used (starting at index 0), but they
remain big endian.

For example, if the configuration has the number of bits set to 12, 12 bits are transferred.
This requires 2 bytes. If you provide a data array with N elements, where N ≥ 2,
DataArray[0] contains bits 11:8 (in bits 3:0) and DataArray[1] contains bits 7:0. Any
additional data is ignored.

If you provided DataArray with N elements where N < 2, the provided bytes are used as
the most significant bits and additional required bytes are appended as zeros. In the
example above, if you only supplied DataArray[0], the bit pattern on the bus would be
B11B10 B9 B800000000.

[0] [1] [2] ... [N-2] [N-1]

[0] [1] [2] ... [N-2] [N-1]

XXXXB11B10B9B8 B7B6B5B4B3B2B1B0 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-27 NI-845x Hardware and Software Manual

uInt32 ArraySize

Size of DataArray supplied.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationWave1SetMosiData to set the data for
transferring on MOSI during an SPI operation. The number of bits per sample determines the
number of bytes used from the array. During an SPI sample, only the least significant bits
necessary are transferred.

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-28 ni.com

ni845xSpiStreamConfigurationSetNumBits

Purpose
Sets the configuration’s number of bits per sample.

Format
int32 ni845xSpiStreamConfigurationSetNumBits (

NiHandle ConfigurationHandle,
uInt8 NumBits
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

uInt8 NumBits

An unsigned 8-bit integer that contains the number of bits per sample.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationSetNumBits to set the number of bits per sample.
Each SPI operation uses the number of bits this function specifies. The default for this setting
is 8-bit transfers. Refer to Appendix A, NI USB-845x Hardware Specifications, for valid
settings for this property.

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-29 NI-845x Hardware and Software Manual

ni845xSpiStreamConfigurationSetNumSamples

Purpose
Sets the configuration’s number of samples to acquire.

Format
int32 ni845xSpiStreamConfigurationSetNumSamples (

NiHandle ConfigurationHandle,
uInt32 NumSamples
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

uInt32 NumSamples

An unsigned 32-bit integer to set the number of samples to stream.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationSetNumSamples to set the number of samples to
stream. Setting this parameter to 0 indicates infinite streaming. If this parameter is nonzero,
the NI 845x device automatically stops streaming after the specified number of samples have
been transferred.

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-30 ni.com

ni845xSpiStreamConfigurationSetPacketSize

Purpose
Sets the configuration’s packet size.

Format
int32 ni845xSpiStreamConfigurationSetPacketSize (

NiHandle ConfigurationHandle,
uInt32 PacketSize
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

uInt32 PacketSize

An unsigned 32-bit integer to set the packet size.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationSetPacketSize to configure the packet size
between the host and your NI 845x device. If this property is set to 0, transfers between the
host and your device occur at the standard USB packet size. For most applications, this value
is optimal.

For most applications, this parameter should be set to a multiple of 512 bytes for optimal
performance. This setting can affect the performance of data streaming to the host from your
NI 845x device. For slow SPI streaming configurations, this setting allows data to transfer to
the host more often. Setting the packet size too small may cause the onboard buffer to
overflow for high-speed SPI streaming operations.

The default value of this property is 0.

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-31 NI-845x Hardware and Software Manual

ni845xSpiStreamConfigurationSetClockPhase

Purpose
Sets the configuration’s clock phase.

Format
int32 ni845xSpiStreamConfigurationSetClockPhase (

NiHandle ConfigurationHandle,
uInt8 ClockPhase
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

uInt32 ClockPhase

An unsigned 8-bit integer to store the clock phase uses the following values:

• kNi845xSpiStreamClockPhaseFirstEdge (0): Data is updated on the first edge
of the clock period.

• kNi845xSpiStreamClockPhaseSecondEdge (1): Data is updated on the second
edge of the clock period.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationSetClockPhase to set clock phase used by
ConfigurationHandle when communicating with an SPI slave device.

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-32 ni.com

ni845xSpiStreamConfigurationWave1SetPinConfig

Purpose
Sets the configuration’s setting for an individual pin.

Format
int32 ni845xSpiStreamConfigurationWave1SetPinConfig (

NiHandle ConfigurationHandle,
uInt8 PinNumber,
uInt8 Mode
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

uInt8 PinNumber

An unsigned 8-bit integer to determine the pin uses the following values:

• kNi845xSpiStreamWave1ConvPin (0): CONV output for Waveform 1.

• kNi845xSpiStreamWave1DrdyPin (1): DRDY input for Waveform 1.

• kNi845xSpiStreamWave1CsPin (2): Chip Select output for Waveform 1.

uInt8 Mode

An 8-bit unsigned integer to set the pin mode that uses the following values:

• kNi845xSpiStreamDisabled (0): Pin is disabled.

• kNi845xSpiStreamActiveHigh (1): Pin is set to active high.

• kNi845xSpiStreamActiveLow (2): Pin is set to active low.

• kNi845xSpiStreamDriveHigh (3): Pin driven high.

• kNi845xSpiStreamDriveLow (4): Pin driven low.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationWave1SetPinConfig to set the configuration for
a specific pin. If a pin is described as an output, all modes are available. If a pin is described
as an input, kNi845xSpiStreamDriveHigh and kNi845xSpiStreamDriveHigh cannot
be used.

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-33 NI-845x Hardware and Software Manual

ni845xSpiStreamConfigurationSetClockPolarity

Purpose
Sets the configuration’s clock polarity.

Format
int32 ni845xSpiStreamConfigurationSetClockPolarity (

NiHandle ConfigurationHandle,
uInt8 ClockPolarity
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

uInt32 ClockPolarity

An unsigned 8-bit integer to set the clock phase uses the following values:

• kNi845xSpiStreamClockPolarityIdleLow (0): Clock is low in the idle state.

• kNi845xSpiStreamClockPolarityIdleHigh (1): Clock is high in the idle
state.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationSetClockPolarity to set the clock polarity used
by ConfigurationHandle when communicating with an SPI slave device.

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-34 ni.com

ni845xSpiStreamConfigurationWave1SetTimingParam

Purpose
Retrieves the configuration’s setting for an individual timing parameter.

Format
int32 ni845xSpiStreamConfigurationWave1SetTimingParam (

NiHandle ConfigurationHandle,
uInt8 TimingParameter,
uInt32 ParameterValue
);

Inputs
NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

uInt8 TimingParameter

An unsigned 8-bit integer to determine the timing parameter uses the following values:

• kNi845xSpiStreamWave1SclkL (0): SCLK low period for Waveform 1.

• kNi845xSpiStreamWave1SclkH (1): SCLK high period for Waveform 1.

• kNi845xSpiStreamWave1T1 (2): Timing Parameter T1—CONV assert to CONV
deassert for Waveform 1.

• kNi845xSpiStreamWave1T2 (3): Timing Parameter T2—CONV deassert to Chip
Select assert for Waveform 1.

• kNi845xSpiStreamWave1T3 (4): Timing Parameter T3—CONV deassert to
SCLK assert (first bit) for Waveform 1.

• kNi845xSpiStreamWave1T4 (5): Timing Parameter T4—DRDY assert to Chip
Select assert for Waveform 1.

• kNi845xSpiStreamWave1T5 (6): Timing Parameter T5—DRDY assert to SCLK
assert (first bit) for Waveform 1.

• kNi845xSpiStreamWave1T6 (7): Timing Parameter T6—DRDY deassert to
CONV assert for Waveform 1.

• kNi845xSpiStreamWave1T7 (8): Timing Parameter T7—Chip Select assert to
SCLK assert (first bit) for Waveform 1.

• kNi845xSpiStreamWave1T8 (9): Timing Parameter T8—Chip Select deassert to
CONV assert for Waveform 1.

• kNi845xSpiStreamWave1T9 (10): Timing Parameter T9—Chip Select deassert to
Chip Select assert.

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-35 NI-845x Hardware and Software Manual

• kNi845xSpiStreamWave1T10 (11): Timing Parameter T10—SCLK deassert (last
bit) to CONV assert for Waveform 1.

• kNi845xSpiStreamWave1T11 (12): Timing Parameter T11—SCLK deassert (last
bit) to Chip Select deassert for Waveform 1.

• kNi845xSpiStreamWave1T12 (13): Timing Parameter T12—SCLK deassert (last
bit) to SCLK assert (first bit) for Waveform 1.

uInt32 ParameterValue

A 32-bit unsigned integer to set the timing parameter in system clocks.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamConfigurationWave1SetTimingParam to set an individual
timing parameter. Timing parameters are returned as number of system clocks. Refer to
Appendix A, NI USB-845x Hardware Specifications, for a description of the system clock
and valid timing values on your NI 845x device.

Note The NI USB-8452 uses a 100 MHz system clock. The period of each system clock
is 10 ns. The SPI Stream API is not available for the NI USB-8451.

Note Timing parameters using DRDY may be slightly longer than specified because
DRDY is an asynchronous input.

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-36 ni.com

Streaming

ni845xSpiStreamRead

Purpose
Reads streaming data from an NI 845x device.

Format
int32 ni845xSpiStreamRead (

NiHandle DeviceHandle,
NiHandle ConfigurationHandle,
uint32 NumBytesToRead,
uInt8 * ReadData,
uInt32 * ReadSize
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

uInt32 NumBytesToRead

The number of bytes to read. This number must be nonzero. ReadData must be large
enough to read the requested number of bytes.

Outputs
uInt8 * ReadData

A pointer to an array of bytes where the bytes that have been read are stored.

uInt32 * ReadSize

A pointer to the amount of bytes actually read.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-37 NI-845x Hardware and Software Manual

Description
Use ni845xSpiStreamRead to read data from an SPI slave device. The read size is less than
or equal to the value passed into ReadSize and is dependent on the packet size.

While your NI 845x device is in streaming mode, SPI operations continue to occur and buffer
on board. ni845xSpiStreamRead does not affect SPI operations on the SPI. This function
is reading the result of the streaming SPI operation started using ni845xSpiStreamStart.

Note The SPI Stream API is not available for the NI USB-8451.

Chapter 16 NI-845x SPI Stream API for C

NI-845x Hardware and Software Manual 16-38 ni.com

ni845xSpiStreamStart

Purpose
Starts the streaming operation on an NI 845x device.

Format
int32 ni845xSpiStreamStart (

NiHandle DeviceHandle,
NiHandle ConfigurationHandle
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamStart to put your NI 845x device into streaming mode. Once in
streaming mode, your NI 845x device performs the SPI operations set to
ConfigurationHandle. Your NI 845x device remains in streaming mode until
ni845xSpiStreamStop is called.

The data set in ni845xSpiStreamConfigurationWave1SetMosiData is output on
MOSI on each SPI operation during streaming. You can use this data to set up the SPI slave
if necessary, but not all SPI slaves require it.

Before using ni845xSpiStreamStart, you must ensure that the configuration parameters
specified in ConfigurationHandle are correct for the device you currently want to access.

Note The SPI Stream API is not available for the NI USB-8451.

Chapter 16 NI-845x SPI Stream API for C

© National Instruments 16-39 NI-845x Hardware and Software Manual

ni845xSpiStreamStop

Purpose
Stops a streaming operation on an NI 845x device.

Format
int32 ni845xSpiStreamStop (

NiHandle DeviceHandle,
NiHandle ConfigurationHandle
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

NiHandle ConfigurationHandle

The configuration handle returned from ni845xSpiStreamConfigurationOpen.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSpiStreamStop to remove your NI 845x device from streaming mode. When
stopping, the device waits for the final SPI operation to complete if one is occurring. No data
can be read from the device once stopped.

Note The SPI Stream API is not available for the NI USB-8451.

© National Instruments 17-1 NI-845x Hardware and Software Manual

17
Using the NI-845x DIO API

This chapter helps you get started with the DIO API.

NI-845x DIO Basic Programming Model
When you use the DIO API, the first step is to configure the DIO port to be
set for input or output as desired. Once the port is configured, you can write
or read lines from the port. You can use either port or line I/O for all DIO
calls. With the port calls, you can read or write all lines in a port at one time.
Alternately, with the line calls, you can read or write the lines in a port one
line at a time.

The diagram in Figure 17-1 describes the basic programming model for
the NI-845x DIO API. Within the application, you repeat this basic
programming model for each DIO call you need to make. The diagram
is followed by a description of each step in the model.

Figure 17-1. Basic Programming Model for DIO Communication

DIO Port Configure

DIO Port Write DIO Port Read DIO Line Write DIO Line Read

Chapter 17 Using the NI-845x DIO API

NI-845x Hardware and Software Manual 17-2 ni.com

DIO Port Configure
The DIO Port configuration is set with the NI-845x Device Property Node
in LabVIEW and ni845xDioSet* calls in other languages. The following
parameters are available for configuring the DIO Port:

• DIO:Active Port (LabVIEW only) is the active DIO port to configure.
The subsequent property settings affect only the selected DIO port.

• DIO:Driver Type configures the driver type used when sourcing DIO
signals. The two options are open-drain and push-pull.

• DIO:Line Direction Map indicates the direction (input or output) for
each line in the 8-bit DIO port.

• I/O Voltage Level indicates the voltage level (when sourcing a high
value) used for all push-pull I/O pins (SPI lines and DIO lines). It also
affects the reference voltage that I2C pins are pulled-up to if using
internal I2C pull-ups.

Note For other languages, this API call is ni845xSetIoVoltageLevel (this is a global
property, not scoped to the DIO subsystem).

DIO Port Write
Use NI-845x DIO Port Write.vi in LabVIEW and
ni845xDioWritePort in other languages to write an 8-bit pattern to the
selected DIO port.

DIO Port Read
Use NI-845x DIO Port Read.vi in LabVIEW and ni845xDioReadPort
in other languages to read an 8-bit pattern from the selected DIO port.

DIO Line Write
Use NI-845x DIO Line Write.vi in LabVIEW and
ni845xDioWriteLine in other languages to write a value to a particular
line within the selected DIO port.

DIO Line Read
Use NI-845x DIO Line Read.vi in LabVIEW and ni845xDioReadLine
in other languages to read a value from a particular line within the selected
DIO port.

© National Instruments 18-1 NI-845x Hardware and Software Manual

18
NI-845x DIO API for LabVIEW

This chapter lists the LabVIEW VIs for the NI-845x DIO API and describes the format,
purpose, and parameters for each VI. The VIs in this chapter are listed alphabetically.

Chapter 18 NI-845x DIO API for LabVIEW

NI-845x Hardware and Software Manual 18-2 ni.com

General Device

NI-845x Close Reference.vi

Purpose
Closes a previously opened reference.

Inputs

reference in is a reference to an NI 845x device, I2C configuration, I2C
Slave configuration, SPI configuration, SPI stream configuration, I2C
script, or SPI script.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI

Chapter 18 NI-845x DIO API for LabVIEW

© National Instruments 18-3 NI-845x Hardware and Software Manual

executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x Close Reference.vi to close a previously opened reference.

Chapter 18 NI-845x DIO API for LabVIEW

NI-845x Hardware and Software Manual 18-4 ni.com

NI-845x Device Property Node

Purpose
A property node with the NI-845x Device class preselected. This property node allows you to
modify properties of your NI 845x device.

Inputs

device reference in is a reference to an NI 845x device.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

device reference out is a reference to an NI 845x device after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

Chapter 18 NI-845x DIO API for LabVIEW

© National Instruments 18-5 NI-845x Hardware and Software Manual

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The list below describes all valid properties for the NI-845x Device Property Node.

DIO:Active Port

The DIO:Active Port property sets the active DIO port for further DIO
port configuration. The format for this property is a decimal string. For
example, the string 0 represents DIO Port 0. The default value of this
property is 0. For NI 845x devices with one DIO port, the port value must
be 0.

DIO:Driver Type

The DIO:Driver Type property configures the active DIO port with the
desired driver type characteristics. DIO:Driver Type uses the following
values:

Open-Drain

The DIO driver type is configured for open-drain.

Push-Pull

The DIO driver type is configured for push-pull. The actual
voltage driven (when sourcing a high value) is determined by the
I/O Voltage Level property.

The default value of this property is Push-Pull.

DIO:Line Direction Map

The DIO:Line Direction Map property sets the line direction map for the
active DIO Port. The value is a bitmap that specifies the function of each
individual line within the port. If bit x = 1, line x is an output. If bit x = 0,
line x is an input.

The default value of this property is 0 (all lines configured for input).

I/O Voltage Level

The I/O Voltage Level property sets the board voltage. This property sets
the voltage for SPI, I2C, and DIO. The default value for this property is
3.3V. This property uses the following values:

Chapter 18 NI-845x DIO API for LabVIEW

NI-845x Hardware and Software Manual 18-6 ni.com

3.3V

I/O Voltage is set to 3.3 V.

2.5V

I/O Voltage is set to 2.5 V.

1.8V

I/O Voltage is set to 1.8 V.

1.5V

I/O Voltage is set to 1.5 V.

1.2V

I/O Voltage is set to 1.2 V.

Refer to Appendix A, NI USB-845x Hardware Specifications, to determine
the available voltage levels on your hardware.

I2C Pullup Enable

The I2C Pullup Enable property enables or disables the internal pullup
resistors connected to SDA and SCL.

Refer to Appendix A, NI USB-845x Hardware Specifications, to determine
whether your hardware has onboard pull-up resistors.

Timeout (ms)

The Timeout (ms) property sets the global timeout for the device. This
timeout is the minimum amount of time an I2C, SPI, or DIO operation is
allowed to complete.

Note It is highly recommended to set this property higher than the expected I/O time. For
the NI USB-8451, a timeout may leave the device in an unknown state that may require a
power cycle of the device.

The default of this property is 30000 (30 seconds).

Chapter 18 NI-845x DIO API for LabVIEW

© National Instruments 18-7 NI-845x Hardware and Software Manual

NI-845x Device Reference

Purpose
Specifies the device resource to be used for communication.

Description
Use the NI-845x Device Reference to describe the NI 845x device to communicate with. You
can wire the reference into a property node to set specific device parameters or to an NI-845x
API call to invoke the function on the associated NI 845x device.

Chapter 18 NI-845x DIO API for LabVIEW

NI-845x Hardware and Software Manual 18-8 ni.com

Basic

NI-845x DIO Read Line.vi

Purpose
Reads from a DIO line on an NI 845x device.

Inputs

device reference in is a reference to an NI 845x device.

port number specifies the DIO port that contains the line number.

line number specifies the DIO line to read.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 18 NI-845x DIO API for LabVIEW

© National Instruments 18-9 NI-845x Hardware and Software Manual

Outputs

device reference out is a reference to the NI 845x device after this VI runs.

read value is the value read from the line. read value uses the following
values:

0 (Logic Low) The line read is in the logic low state.

1 (Logic High) The line read is in the logic high state.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x DIO Read Line.vi to read one line, specified by line number, of a byte-wide
DIO port. For NI 845x devices with multiple DIO ports, use the port number input to select
the desired port. For NI 845x devices with one DIO port, port number must be left at the
default (0). If read value is 0, the logic level read on the specified line was low. If read value
is 1, the logic level read on the specified line was high.

Chapter 18 NI-845x DIO API for LabVIEW

NI-845x Hardware and Software Manual 18-10 ni.com

NI-845x DIO Read Port.vi

Purpose
Reads from a DIO port on an NI 845x device.

Inputs

device reference in is a reference to an NI 845x device.

port number specifies the DIO port to read.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

device reference out is a reference to the NI 845x device after this VI runs.

read value is the value read from the DIO port. If a DIO pin was previously
configured for input, the logic level being driven onto it by external
circuitry is returned. If a DIO pin was previously configured for output,
the logic level driven onto the pin internally is returned. read value bit
n = DIO n.

Chapter 18 NI-845x DIO API for LabVIEW

© National Instruments 18-11 NI-845x Hardware and Software Manual

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x DIO Read Port.vi to read all 8 bits on a byte-wide DIO port. For NI 845x
devices with multiple DIO ports, use the port number input to select the desired port. For
NI 845x devices with one DIO port, port number must be left at the default (0).

Chapter 18 NI-845x DIO API for LabVIEW

NI-845x Hardware and Software Manual 18-12 ni.com

NI-845x DIO Write Line.vi

Purpose
Writes to a DIO line on an NI 845x device.

Inputs

device reference in is a reference to an NI 845x device.

port number specifies the DIO port that contains the line number.

line number specifies the DIO line to write.

write value specifies the value to write to the line. write value uses the
following values:

0 (Logic Low) The line is set to the logic low state.

1 (Logic High) The line is set to the logic high state.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 18 NI-845x DIO API for LabVIEW

© National Instruments 18-13 NI-845x Hardware and Software Manual

Outputs

device reference out is a reference to the NI 845x device after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x DIO Write Line.vi to write one line, specified by line number, of a byte-wide
DIO port. If write value is 1, the specified line’s output is driven to a high logic level. If write
value is 0, the specified line’s output is driven to a low logic level. For NI 845x devices with
multiple DIO ports, use the port number input to select the desired port. For NI 845x devices
with one DIO port, port number must be left at the default (0).

Chapter 18 NI-845x DIO API for LabVIEW

NI-845x Hardware and Software Manual 18-14 ni.com

NI-845x DIO Write Port.vi

Purpose
Writes to a DIO port on an NI 845x device.

Inputs

device reference in is a reference to an NI 845x device.

port number specifies the DIO port to write.

write value is the value to write to the DIO port. Only lines configured for
output are updated.

error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the error in cluster
in error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

device reference out is a reference to the NI 845x device after this VI runs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 18 NI-845x DIO API for LabVIEW

© National Instruments 18-15 NI-845x Hardware and Software Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use NI-845x DIO Write Port.vi to write all 8 bits on a byte-wide DIO port. For NI 845x
devices with multiple DIO ports, use the port number input to select the desired port. For
NI 845x devices with one DIO port, port number must be left at the default (0).

© National Instruments 19-1 NI-845x Hardware and Software Manual

19
NI-845x DIO API for C

This chapter lists the functions for the NI-845x DIO API. The following topics describe the
format, purpose, and parameters for each function. The functions are listed alphabetically in
two categories: general device and basic.

Section Headings
The NI-845x DIO API for C functions include the following section headings.

Purpose
Each function description includes a brief statement of the function purpose.

Format
The format section describes the function format for the C programming language.

Inputs and Outputs
These sections list the function input and output parameters.

Description
The description section gives details about the purpose and effect of each function.

Data Types
The NI-845x DIO API for C functions use the following data types.

Data Type Purpose

uInt8 8-bit unsigned integer

uInt16 16-bit unsigned integer

uInt32 32-bit unsigned integer

int8 8-bit signed integer

Chapter 19 NI-845x DIO API for C

NI-845x Hardware and Software Manual 19-2 ni.com

List of Functions
The following table contains an alphabetical list of the NI-845x DIO API for C functions.

int16 16-bit signed integer

int32 32-bit signed integer

uInt8 * Pointer to an 8-bit unsigned integer

uInt16 * Pointer to a 16-bit unsigned integer

uInt32 * Pointer to a 32-bit unsigned integer

int8 * Pointer to an 8-bit signed integer

int16 * Pointer to a 16-bit signed integer

int32 * Pointer to a 32-bit signed integer

char * ASCII string represented as an array of characters terminated
by null character ('\0')

NiHandle Operating system independent handle

Function Purpose

ni845xClose Closes a previously opened NI 845x device.

ni845xCloseFindDeviceHandle Closes the handles created by
ni845xFindDevice.

ni845xDeviceLock Locks NI 845x devices for access by a single
thread.

ni845xDeviceUnlock Unlocks NI 845x devices.

ni845xDioReadLine Reads from a DIO line on an NI 845x device.

ni845xDioReadPort Reads from a DIO port on an NI 845x device.

ni845xDioSetDriverType Configures the driver type used when sourcing
DIO signals on an NI 845x device.

ni845xDioSetPortLineDirectionMap Configures a DIO port on an NI 845x device for
input or output.

ni845xDioWriteLine Writes to a DIO line on an NI 845x device.

Data Type Purpose

Chapter 19 NI-845x DIO API for C

© National Instruments 19-3 NI-845x Hardware and Software Manual

ni845xDioWritePort Writes to a DIO port on an NI 845x device.

ni845xFindDevice Finds an NI 845x device and returns the total
number of NI 845x devices present. You can find
subsequent devices using
ni845xFindDeviceNext.

ni845xFindDeviceNext Finds subsequent devices after
ni845xFindDevice has been called.

ni845xOpen Opens an NI 845x device for use with various
write, read, and device property functions.

ni845xSetIoVoltageLevel Sets the voltage level of the NI-845x I/O pins
(DIO/SPI/VioRef).

ni845xSetTimeout Sets the global timeout value.

ni845xStatusToString Converts a status code into a descriptive string.

Function Purpose

Chapter 19 NI-845x DIO API for C

NI-845x Hardware and Software Manual 19-4 ni.com

General Device

ni845xClose

Purpose
Closes a previously opened NI 845x device.

Format
int32 ni845xClose(NiHandle DeviceHandle);

Inputs
NiHandle DeviceHandle

Device handle to be closed.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xClose to close a device handle previously opened by ni845xOpen. Passing an
invalid handle to ni845xClose is ignored.

Chapter 19 NI-845x DIO API for C

© National Instruments 19-5 NI-845x Hardware and Software Manual

ni845xCloseFindDeviceHandle

Purpose
Closes the handles created by ni845xFindDevice.

Format
int32 ni845xCloseFindDeviceHandle (

NiHandle FindDeviceHandle
);

Inputs
NiHandle FindDeviceHandle

Describes a find list. ni845xFindDevice creates this parameter.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xCloseFindDeviceHandle to close a find list. In this process, all allocated data
structures are freed.

Chapter 19 NI-845x DIO API for C

NI-845x Hardware and Software Manual 19-6 ni.com

ni845xDeviceLock

Purpose
Locks NI 845x devices for access by a single thread.

Format
int32 ni845xDeviceLock(NiHandle DeviceHandle);

Inputs
NiHandle DeviceHandle

Device handle to be locked.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
This function locks NI 845x devices and prevents multiple processes or threads from
accessing the device until the process or thread that owns the device lock calls an equal
number of ni845xDeviceUnlock calls. Any thread or process that attempts to call
ni845xDeviceLock when the device is already locked is forced to sleep by the
operating system. This is useful for when multiple Basic API device accesses must occur
uninterrupted by any other processes or threads. If a thread exits without fully unlocking
the device, the device is unlocked. If a thread is the current owner of the lock, and calls
ni845xDeviceLock again, the thread will not deadlock itself, but care must be taken to call
ni845xDeviceUnlock for every ni845xDeviceLock called. This function can possibly
lock a device indefinitely: If a thread never calls ni845xDeviceUnlock, or fails to call
ni845xDeviceUnlock for every ni845xDeviceLock call, and never exits, other processes
and threads are forced to wait. This is not recommended for users unfamiliar with threads or
processes. A simpler alternative is to use scripts. Scripts provide the same capability to ensure
transfers are uninterrupted, and with possible performance benefits.

Chapter 19 NI-845x DIO API for C

© National Instruments 19-7 NI-845x Hardware and Software Manual

ni845xDeviceUnlock

Purpose
Unlocks NI 845x devices.

Format
int32 ni845xDeviceUnlock(NiHandle DeviceHandle);

Inputs
NiHandle DeviceHandle

Device handle to be unlocked.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xDeviceUnlock to unlock access to an NI 845x device previously locked with
ni845xDeviceLock. Every call to ni845xDeviceLock must have a corresponding call to
ni845xDeviceUnlock. Refer to ni845xDeviceLock for more details regarding how to
use device locks.

Chapter 19 NI-845x DIO API for C

NI-845x Hardware and Software Manual 19-8 ni.com

ni845xFindDevice

Purpose
Finds an NI 845x device and returns the total number of NI 845x devices present. You can find
subsequent devices using ni845xFindDeviceNext.

Format
int32 ni845xFindDevice (

char * pFirstDevice,
NiHandle * pFindDeviceHandle,
uInt32 * pNumberFound
);

Inputs
None.

Outputs
char * pFirstDevice

A pointer to the string containing the first NI 845x device found. You can pass this name
to the ni845xOpen function to open the device. If no devices exist, this is an empty
string.

NiHandle * pFindDeviceHandle

Returns a handle identifying this search session. This handle is used as an input in
ni845xFindDeviceNext and ni845xCloseFindDeviceHandle.

uInt32 * pNumberFound

A pointer to the total number of NI 845x devices found in the system. You can use this
number in conjunction with the ni845xFindDeviceNext function to find a particular
device. If no devices exist, this returns 0.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Chapter 19 NI-845x DIO API for C

© National Instruments 19-9 NI-845x Hardware and Software Manual

Description
Use ni845xFindDevice to get a single NI 845x device and the number of NI 845x devices
in the system. You can then pass the string returned to ni845xOpen to access the device. If
you must discover more devices, use ni845xFindDeviceNext with pFindDeviceHandle
and pNumberFound to find the remaining NI 845x devices in the system. After finding all
desired devices, call ni845xCloseFindDeviceHandle to close the device handle and
relinquish allocated resources.

Note pFirstDevice must be at least 256 bytes.

Note pFindDeviceHandle and pNumberFound are optional parameters. If only the first
match is important, and the total number of matches is not needed, you can pass in a NULL
pointer for both of these parameters, and the NI-845x driver automatically calls
ni845xCloseFindDeviceHandle before this function returns.

Chapter 19 NI-845x DIO API for C

NI-845x Hardware and Software Manual 19-10 ni.com

ni845xFindDeviceNext

Purpose
Finds subsequent devices after ni845xFindDevice has been called.

Format
int32 ni845xFindDeviceNext (

NiHandle FindDeviceHandle,
char * pNextDevice
);

Inputs
NiHandle FindDeviceHandle

Describes a find list. ni845xFindDevice creates this parameter.

Outputs
char * pNextDevice

A pointer to the string containing the next NI 845x device found. This is empty if no
further devices are left.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xFindDeviceNext after first calling ni845xFindDevice to find the remaining
devices in the system. You can then pass the string returned to ni845xOpen to access the
device.

Note pNextDevice must be at least 256 bytes.

Chapter 19 NI-845x DIO API for C

© National Instruments 19-11 NI-845x Hardware and Software Manual

ni845xOpen

Purpose
Opens an NI 845x device for use with various write, read, and device property functions.

Format
int32 ni845xOpen (

char * pResourceName,
NiHandle * pDeviceHandle
);

Inputs
char * pResourceName

A resource name string corresponding to the NI 845x device to be opened.

Outputs
NiHandle * pDeviceHandle

A pointer to the device handle.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xOpen to open an NI 845x device for access. The string passed to
ni845xOpen can be any of the following: an ni845xFindDevice device string, an
ni845xFindDeviceNext device string, a Measurement & Automation Explorer resource
name, or a Measurement & Automation Explorer alias.

Chapter 19 NI-845x DIO API for C

NI-845x Hardware and Software Manual 19-12 ni.com

ni845xSetIoVoltageLevel

Purpose
Modifies the voltage output from a DIO port on an NI 845x device.

Format
int32 ni845xSetIoVoltageLevel (

NiHandle DeviceHandle,
uInt8 VoltageLevel
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt8 VoltageLevel

The desired voltage level. VoltageLevel uses the following values:

• kNi845x33Volts (33): The output I/O high level is 3.3 V.

• kNi845x25Volts (25): The output I/O high level is 2.5 V.

• kNi845x18Volts (18): The output I/O high level is 1.8 V.

• kNi845x15Volts (15): The output I/O high level is 1.5 V.

• kNi845x12Volts (12): The output I/O high level is 1.2 V.

The default value of this property is 3.3 V.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xSetIoVoltageLevel to modify the board reference voltage of the NI 845x
device. The board reference voltage is used for SPI, I2C, and DIO. Refer to Appendix A, NI
USB-845x Hardware Specifications, to determine the available voltage levels on your
hardware.

Chapter 19 NI-845x DIO API for C

© National Instruments 19-13 NI-845x Hardware and Software Manual

ni845xSetTimeout

Purpose
Modifies the global timeout for operations when using an NI 845x device.

Format
int32 ni845xSetTimeout (

NiHandle DeviceHandle,
uInt32 Timeout
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt32 Timeout

The timeout value in milliseconds. The minimum timeout is 1000 ms (1 second).

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xI2cSetTimeout to set the global timeout for the device. This timeout is the
minimum amount of time an I2C, SPI, or DIO operation is allowed to complete.

The default of this property is 30000 (30 seconds).

Note You should set this property higher than the expected I/O time. For the
NI USB-8451, a timeout may leave the device in an unknown state that may require a
power cycle of the device.

Chapter 19 NI-845x DIO API for C

NI-845x Hardware and Software Manual 19-14 ni.com

ni845xStatusToString

Purpose
Converts a status code into a descriptive string.

Format
void ni845xStatusToString (

int32 StatusCode,
uInt32 MaxSize,
int8 * pStatusString
);

Inputs
int32 StatusCode

Status code returned from an NI-845x function.

uInt32 MaxSize

Size of the pStatusString buffer (in bytes).

Outputs
int8 * pStatusString

ASCII string that describes StatusCode.

Description
When the status code returned from an NI-845x function is nonzero, an error or warning is
indicated. This function obtains a description of the error/warning for debugging purposes.

The return code is passed into the StatusCode parameter. The MaxSize parameter
indicates the number of bytes available in pStatusString for the description (including
the NULL character). The description is truncated to size MaxSize if needed, but a size of
1024 characters is large enough to hold any description. The text returned in String is
null-terminated, so you can use it with ANSI C functions such as printf.

For applications written in C or C++, each NI-845x function returns a status code as a signed
32-bit integer. The following table summarizes the NI-845x use of this status.

Chapter 19 NI-845x DIO API for C

© National Instruments 19-15 NI-845x Hardware and Software Manual

NI-845x Status Codes

The application code should check the status returned from every NI-845x function. If an
error is detected, you should close all NI-845x handles, then exit the application. If a warning
is detected, you can display a message for debugging purposes, or simply ignore the warning.

In some situations, you may want to check for specific errors in the code and continue
communication when they occur. For example, when communicating to an I2C EEPROM,
you may expect the device to NAK its address during a write cycle, and you may use this
knowledge to poll for when the write cycle has completed.

Status Code Meaning

Negative Error—Function did not perform expected behavior.

Positive Warning—Function executed, but a condition arose that may
require attention.

Zero Success—Function completed successfully.

Chapter 19 NI-845x DIO API for C

NI-845x Hardware and Software Manual 19-16 ni.com

Basic

ni845xDioReadLine

Purpose
Reads from a DIO line on an NI 845x device.

Format
int32 ni845xDioReadLine (

NiHandle DeviceHandle,
uInt8 PortNumber,
uInt8 LineNumber,
int32 * pReadData
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt8 PortNumber

PortNumber specifies the DIO port that contains the LineNumber.

uInt8 LineNumber

LineNumber specifies the DIO line to read.

Outputs
int32 * pReadData

Contains the value read from the line. pReadData uses the following values:

• kNi845xDioLogicLow (0): The line is set to the logic low state.

• kNi845xDioLogicHigh (1): The line is set to the logic high state.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Chapter 19 NI-845x DIO API for C

© National Instruments 19-17 NI-845x Hardware and Software Manual

Description
Use ni845xDioReadLine to read one line, specified by LineNumber, of a byte-wide DIO
port. For NI 845x devices with multiple DIO ports, use the PortNumber input to select the
desired port. For NI 845x devices with one DIO port, leave PortNumber at the default (0). If
pReadData is kNi845xDioLogicLow, the logic level read on the specified line was low. If
pReadData is kNi845xDioLogicHigh, the logic level read on the specified line was high.

Chapter 19 NI-845x DIO API for C

NI-845x Hardware and Software Manual 19-18 ni.com

ni845xDioReadPort

Purpose
Reads from a DIO port on an NI 845x device.

Format
int32 ni845xDioReadPort (

NiHandle DeviceHandle,
uInt8 PortNumber,
uInt8 * pReadData
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt8 PortNumber

PortNumber specifies the DIO port to read.

Outputs
uInt8 * pReadData

Contains the value read from the DIO port. If a DIO pin was previously configured for
input, the logic level being driven onto it by external circuitry is returned. If a DIO pin
was previously configured for output, the logic level driven onto the pin internally is
returned. pReadData bit n = DIO n.

Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xDioReadPort to read all 8 bits on a byte-wide DIO port. For NI 845x devices
with multiple DIO ports, use the PortNumber input to select the desired port. For NI 845x
devices with one DIO port, leave PortNumber at the default (0).

Chapter 19 NI-845x DIO API for C

© National Instruments 19-19 NI-845x Hardware and Software Manual

ni845xDioSetPortLineDirectionMap

Purpose
Configures a DIO port on an NI 845x device for input or output.

Format
int32 ni845xDioSetPortLineDirectionMap (

NiHandle DeviceHandle,
uInt8 DioPort,
uInt8 Map
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt8 DioPort

The DIO port that contains the LineNumber.

uInt8 Map

Sets the line direction map for the active DIO Port. The value is a bitmap that specifies
the function of each individual line within the port. If bit x = 1, line x is an output. If bit
x = 0, line x is an input.

The default value of this property is 0 (all lines configured for input).

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xDioSetPortLineDirectionMap to modify a DIO port on an NI 845x device
for input or output.

Chapter 19 NI-845x DIO API for C

NI-845x Hardware and Software Manual 19-20 ni.com

ni845xDioSetDriverType

Purpose
Configures the driver type used when sourcing DIO signals on an NI 845x device.

Format
int32 ni845xDioSetDriverType (

NiHandle DeviceHandle,
uInt8 DioPort,
uInt8 Type
);

Inputs

NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt8 DioPort

The DIO port that contains the LineNumber.

uInt8 Type

The desired output driver type. Type uses the following values:

• kNi845xOpenDrain (0): The port is configured for open-drain.

• kNi845xPushPull (1): The port is configured for push-pull.

The default value of this property is Push-Pull.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xDioSetDriverType to modify the DIO driver type that the NI 845x device uses
to source DIO signals.

Chapter 19 NI-845x DIO API for C

© National Instruments 19-21 NI-845x Hardware and Software Manual

ni845xDioWriteLine

Purpose
Writes to a DIO line on an NI 845x device.

Format
int32 ni845xDioWriteLine (

NiHandle DeviceHandle,
uInt8 PortNumber,
uInt8 LineNumber,
int32 WriteData
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt8 PortNumber

The DIO port that contains the LineNumber.

uInt8 LineNumber

The DIO line to write.

int32 WriteData

The value to write to the line. WriteData uses the following values:

• kNi845xDioLogicLow (0): The line is set to the logic low state.

• kNi845xDioLogicHigh (1): The line is set to the logic high state.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xDioWriteLine to write one line, specified by LineNumber, of a byte-wide DIO
port. If WriteData is kNi845xDioLogicHigh, the specified line’s output is driven to a high
logic level. If WriteData is kNi845xDioLogicLow, the specified line’s output is driven to
a low logic level. For NI 845x devices with multiple DIO ports, use the PortNumber input to
select the desired port. For NI 845x devices with one DIO port, leave PortNumber at the
default (0).

Chapter 19 NI-845x DIO API for C

NI-845x Hardware and Software Manual 19-22 ni.com

ni845xDioWritePort

Purpose
Writes to a DIO port on an NI 845x device.

Format
int32 ni845xDioWritePort (

NiHandle DeviceHandle,
uInt8 PortNumber,
uInt8 WriteData
);

Inputs
NiHandle DeviceHandle

Device handle returned from ni845xOpen.

uInt8 PortNumber

The DIO port to write.

uInt8 WriteData

The value to write to the DIO port. Only lines configured for output are updated.

Outputs
Return Value
The function call status. Zero means the function executed successfully. Negative specifies
an error, meaning the function did not perform the expected behavior. Positive specifies a
warning, meaning the function performed as expected, but a condition arose that might
require attention. For more information, refer to ni845xStatusToString.

Description
Use ni845xDioWritePort to write all 8 bits on a byte-wide DIO port. For NI 845x devices
with multiple DIO ports, use the PortNumber input to select the desired port. For NI 845x
devices with one DIO port, leave PortNumber at the default (0).

© National Instruments A-1 NI-845x Hardware and Software Manual

A
NI USB-845x Hardware
Specifications

This appendix lists the NI USB-845x hardware specifications.

NI USB-8451
The following specifications are typical at 25 °C unless otherwise noted.

Digital I/O (DIO)
Number of lines

P0.<0..7>... 8

Direction control Input or output, software
selectable

Output driver type Push-pull (active drive) or
open-drain, software selectable

Absolute voltage range........................... –0.5 to +5.8 V with respect to
GND

Power-on state.. Input (high impedance)

Appendix A NI USB-845x Hardware Specifications

NI-845x Hardware and Software Manual A-2 ni.com

Digital logic levels

SPI Interface
Signals

SPI CS <0..7>..................................Output

SPI MOSI (SDO).............................Output

SPI MISO (SDI)Input

SPI CLK (SCLK)Output (12 MHz max)

Supported clock rates..............................48 kHz, 50 kHz, 60 kHz, 75 kHz,
80 kHz, 96 kHz, 100 kHz,
120 kHz, 125 kHz, 150 kHz,
160 kHz, 200 kHz, 240 kHz,
250 kHz, 300 kHz, 375 kHz,
400 kHz, 480 kHz, 500 kHz,
600 kHz, 750 kHz, 800 kHz,
1 MHz, 1.2 MHz, 1.5 MHz,
2 MHz, 2.4 MHz, 3 MHz, 4 MHz,
6 MHz, 12 MHz

Output driver type...................................Push-pull (active drive)

Absolute voltage range–0.5 to +5.8 V with respect to
GND

Power-on state ..Input (high impedance)

Transfer size ...8 bits

Level Min Max Units

Input
Input low voltage
Input high voltage
Input leakage current

–0.3
2.0
—

0.8
5.8
50

V
V

μA

Output
Output low voltage (I = 8.5 mA)
Output high voltage

Push-pull (active drive), I = –8.5 mA
Open-drain

—

2.0
Vcc

1

0.8

3.5
Vcc

1

V

V
V

1 Vcc refers to the pull-up voltage you select.

Appendix A NI USB-845x Hardware Specifications

© National Instruments A-3 NI-845x Hardware and Software Manual

Digital logic levels

I2C Interface
Signals

SDA .. Output/input

SCL ... Output (250 kHz max)

Supported clock rates

I2C Standard Mode.......................... 32 kHz, 40 kHz, 50 kHz, 64 kHz,
80 kHz, 100 kHz

I2C Fast Mode 125 kHz, 160 kHz, 200 kHz,
250 kHz

Fast Mode Plus................................ Not supported

I2C High Speed Mode Not supported

Output driver type Open-drain

Absolute voltage range........................... –0.5 to +5.8 V with respect to
GND

Power-on state.. Input (high impedance)

Digital logic levels

Note This interface is compatible with both I2C and SMBus devices.

Level Min Max Units

Input
Input low voltage
Input high voltage
Input leakage current

–0.3
2.0
—

0.8
5.8
50

V
V

μA

Output
Output low voltage (I = 8.5 mA)
Output high voltage

Push-pull (active drive), I = –8.5 mA

—

2.0

0.8

3.5

V

V

Level Min Max Units

Output
Output low voltage (I = 8.5 mA)
Output high voltage

Open-drain with external pull-up resistor

—

2.0

0.8

—

V

V

Appendix A NI USB-845x Hardware Specifications

NI-845x Hardware and Software Manual A-4 ni.com

Bus Interface
USB specificationFull-speed (12 Mb/s)

Power Requirements
USB

4.10 to 5.25 VDC.............................80 mA typical, 500 mA max

USB Suspend...................................300 µA standby mode,
500 µA max

Output Voltage Sources
+5 V output

Voltage ..4.10 V min, 5.25 V max

Current...230 mA max

Physical Characteristics

NI USB-8451
Dimensions

Without connectors..........................6.35 cm × 8.51 cm × 2.31 cm
(2.50 in. × 3.35 in. × 0.91 in.)

With connectors...............................8.18 cm × 8.51 cm × 2.31 cm
(3.22 in. × 3.35 in. × 0.91 in.)

I/O connectors...USB series B receptacle,
two 16-position (screw terminal)
plug headers

Screw-terminal wiring16 AWG to 28 AWG copper
conductor wire with 10 mm
(0.39 in.) of insulation stripped
from the end

Torque for screw terminals.....................0.22 to 0.25 N • m
(2.0 to 2.2 lb • in.)

Weight ..84 g (3 oz)

Appendix A NI USB-845x Hardware Specifications

© National Instruments A-5 NI-845x Hardware and Software Manual

NI USB-8451 OEM
Dimensions... 5.74 cm × 6.73 cm × 1.15 cm

(2.26 in. × 2.65 in. × 0.45 in.)

I/O connectors .. USB series B receptacle;
34-p IDC ribbon cable header

Weight .. 21 g (0.74 oz)

Dimensional drawings

Figure A-1 shows a top view of the USB-8451 OEM. Figure A-2
shows the front and rear dimensions.

Figure A-1. USB-8451 OEM Dimensions (Top View)

Figure A-2. USB-8451 OEM Dimensions (Front and Rear Views)

2.260 in. (57.40 mm)
1.780 in. (45.21 mm)
1.605 in. (40.77 mm)
1.445 in. (36.70 mm)
1.367 in. (34.72 mm)
0.893 in. (22.68 mm)

0.480 in. (12.19 mm)

–0.183 in. (–4.65 mm)

0.000 in. (0.00 mm)

2.130 in. (54.10 mm)

1.130 in. (28.70 mm)

0.130 in. (3.30 mm)

2.650 in. (67.31 mm)
2.410 in. (61.21 mm)
2.040 in. (51.82 mm)
1.660 in. (42.16 mm)

3 x 0.125 in.
(3.18 mm) Diameter

0.000 in. (0.00 mm)
0.325 in. (8.26 mm)

–0.033 in. (–0.84 mm)
0.176 in. (4.47 mm)

0.454 in. (11.53 mm)

–0.165 in. (4.19 mm)

Pin 1

0.340 in. (8.64 mm)

0.453 in.
(11.51 mm)

0.250 in.
(6.35 mm)

0.062 in.
(1.57 mm)

0.134 in. (3.40 mm)
Diameter

0.735 in.
(18.67 mm)

0.120 in.
(3.05 mm)

Appendix A NI USB-845x Hardware Specifications

NI-845x Hardware and Software Manual A-6 ni.com

Overvoltage Protection
Connect only voltages that are within these limits.

Channel-to-COM (one channel)± 30 V max,
Measurement Category I

Channels-to-COM
(one port, all channels) ± 8.9 V max,

Measurement Category I

Measurement Category I is for measurements performed on circuits not
directly connected to the electrical distribution system referred to as
MAINS voltage. MAINS is a hazardous live electrical supply system that
powers equipment. This category is for measurements of voltages from
specially protected secondary circuits. Such voltage measurements include
signal levels, special equipment, limited-energy parts of equipment,
circuits powered by regulated low-voltage sources, and electronics.

Caution Do not use this module for connection to signals or for measurements within
Measurement Categories II, III, or IV.

NI USB-8452
The following specifications are typical at 25 °C, unless otherwise noted.

Digital I/O(DIO)
Number of lines

DIO <0..7>8

Direction control.....................................Input or output, software
selectable

Output driver type...................................Push-pull (active drive) or
open-drain, software selectable

Absolute voltage range–0.5 to +5.5 V with respect to
GND

Power-on state ..Tri-state with weak (40 kΩ) pull
down to GND

Appendix A NI USB-845x Hardware Specifications

© National Instruments A-7 NI-845x Hardware and Software Manual

I/O specifications under different logic levels

Output Specifications

Logic Family

Voltage Low Level
(VOL)

(Full Temperature)

Voltage High Level
(VOH)

(Full Temperature)
Output Drive Strength

(IO_MAX)

Max (IOL = 100 uA) Min (IOH = 100 uA) Max

1.2 V 0.2 V 1.0 V ±3 mA

1.5 V 0.2 V 1.3 V ±6 mA

1.8 V 0.2 V 1.6 V ±8 mA

2.5 V 0.2 V 2.3 V ±9 mA

3.3 V 0.2 V 3.1 V ±12 mA

Output Impedance 70 Ω (typical)

Input Specifications

Logic Family Input Voltage Low (VIL) Max Input Voltage High (VIH) Min

1.2 V 0.42 V 0.78 V

1.5 V 0.525 V 0.975 V

1.8 V 0.63 V 1.17 V

2.5 V 0.7 V 1.6 V

3.3 V 0.8 V 2 V

Input Impedance High impedance

Input Protection –0.5 V to +5.5 V, ±50 mA maximum

Appendix A NI USB-845x Hardware Specifications

NI-845x Hardware and Software Manual A-8 ni.com

SPI Interface
Signals

SPI CS <0..7>..................................Output

SPI MOSI (SDO).............................Output

SPI MISO (SDI)Input

SPI CLK (SCLK)Output (50 MHz max)

SPI system clock.....................................100 MHz (10 ns period)

Supported clock rates..............................25 kHz, 32 kHz, 40 kHz, 50 kHz,
80 kHz, 100 kHz, 125 kHz,
160 kHz, 200 kHz, 250 kHz,
400 kHz, 500 kHz, 625 kHz,
800 kHz, 1 MHz, 1.25 MHz,
2.5 MHz, 3.125 MHz, 4 MHz,
5 MHz, 6.25 MHz, 10 MHz,
12.5 MHz, 20 MHz, 25 MHz,
33.33 MHz, 50 MHz

Output driver type...................................Push-pull (active drive)

Absolute voltage range–0.5 to +5.5 V with respect to
GND

Power-on state ..Tri-state with weak (40 kΩ) pull
down to GND

Transfer size ...4 to 64 bits, software selectable

Bit ordering...Most significant bit (msb) first

Appendix A NI USB-845x Hardware Specifications

© National Instruments A-9 NI-845x Hardware and Software Manual

SPI specifications under different logic levels

Output Specifications

Logic Family

Voltage Low Level
(VOL)

(Full Temperature)

Voltage High Level
(VOH)

(Full Temperature)
Output Drive Strength

(IO_MAX)

Max (IOL = 100 uA) Min (IOH = 100 uA) Max

1.2 V 0.2 V 1.0 V ±3 mA

1.5 V 0.2 V 1.3 V ±6 mA

1.8 V 0.2 V 1.6 V ±8 mA

2.5 V 0.2 V 2.3 V ±9 mA

3.3 V 0.2 V 3.1 V ±12 mA

Output Impedance 70 Ω (typical)

Input Specifications

Logic Family Input Voltage Low (VIL) Max Input Voltage High (VIH) Min

1.2 V 0.42 V 0.78 V

1.5 V 0.525 V 0.975 V

1.8 V 0.63 V 1.17 V

2.5 V 0.7 V 1.6 V

3.3 V 0.8 V 2 V

Input Impedance High impedance

Input Protection –0.5 V to +5.5 V, ±50 mA maximum

Appendix A NI USB-845x Hardware Specifications

NI-845x Hardware and Software Manual A-10 ni.com

SPI timing requirements

SPI timing diagram

I2C Interface
Signals

SDA ...Output/input

SCL..Output/input

Timing Parameter1 Min Max Unit

tclk SCLK period 20 — ns

tclkl SCLK low time 9 — ns

tclkh SCLK high time 9 — ns

tskew MOSI output skew (with regard to
SCLK edge)

–2 2 ns

t1 MISO hold time 5 — ns

t2 MISO setup time 4 — ns

1 All timing parameters are measured/required at IDC connector.

SCLK

MOSI

MISO

D15 D14 D13 D12

D15 D14 D13 D12

tclk

tclkh tclkl

tskew

t1 t2

MISO Sampling Edge MOSI Update Edge

Appendix A NI USB-845x Hardware Specifications

© National Instruments A-11 NI-845x Hardware and Software Manual

Supported clock rates (Master Mode)

I2C Standard Mode 16 kHz, 20 kHz, 25 kHz, 31 kHz,
40 kHz, 50 kHz, 62 kHz, 80 kHz,
100 kHz

I2C Fast Mode 125 kHz, 200 kHz, 250 kHz,
400 kHz

I2C Fast Mode Plus 500 kHz, 1 MHz

I2C High Speed Mode 1.11 MHz, 1.33 MHz, 2.22 MHz,
3.33 MHz

Supported clock rates (Slave Mode) Up to 3.4 MHz1

Output driver type Open-drain

Absolute voltage range........................... –0.5 V to +5.5 V with respect to
GND

Absolute input current............................ 40 mA max

Power-on state.. High impedance without pull-up

I2C I/O specifications under different logic levels

1 To support Slave Mode under logic standards below 2.5 V, the master device should meet 70 ns setup time between SDA
and SCL.

Logic Family
Output Voltage Low (VOL)

Max
Input Voltage Low (VIL)

Max

1.2 V 0.2 V 0.4 V

1.5 V 0.2 V 0.4 V

1.8 V 0.2 V 0.4 V

2.5 V 0.2 V 0.4 V

3.3 V 0.2 V 0.4 V

Pull-up current 3 mA (max)1

Onboard capacitance 70 pF (max)

Input protection 40 mA (max)

1 With onboard pull-up resistors enabled (tested under VOL = 0.24 V)

Appendix A NI USB-845x Hardware Specifications

NI-845x Hardware and Software Manual A-12 ni.com

Note This interface is compatible with both I2C and SMBus devices. (SMBus
compatibility is only under Vref= 3.3 V and using external pull-up resistors instead of
onboard pull-ups. For a proper pull-up value, refer to the SMBus specifications.)

Bus Interface
USB specificationUSB 2.0 High-Speed (480 Mb/s)

Power Requirements
USB high-power bus-powered device

Input voltage....................................4.5 V min, 5.25 V max

Working mode current.....................500 mA maximum,
250 mA typical

USB suspend2.5 mA maximum (all front
I/O lines disconnected)

Output Voltage Sources
+5 V output

Voltage ..4.75 V min, 5.25 V max

Current...20 mA max

Vref I/O reference output

Voltage ..1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V,
with ±10% tolerance, software
selectable

Current...20 mA max

Physical Characteristics

NI USB-8452
Dimensions ...7.26 cm × 9.19 cm × 2.03 cm

(2.86 in. × 3.62 in. × 0.8 in.)

I/O connectors...1 × right angle USB series B
receptacle
1 × right angle male IDE cable
receptacle

Weight ..79 g (2.8 oz)

Appendix A NI USB-845x Hardware Specifications

© National Instruments A-13 NI-845x Hardware and Software Manual

NI USB-8452 OEM
Dimensions... 6.65 cm × 8.86 cm

(2.62 in. × 3.49 in.)

I/O connectors................................. 1 × right angle USB series B
receptacle
1 × right angle male IDE cable
receptacle

Weight... 35 g (1.23 oz)

Dimensional drawings

Figure A-3 shows a top view of the NI USB-8452 OEM. Figure A-4
shows the front and rear dimensions.

Figure A-3. USB-8452 OEM Dimensions (Top View)

 3.
22

5
in

. (
81

.9
0

m
m

)

2.
90

0
in

. (
73

.6
5

m
m

)

2
x

0.
05

5
in

. (
1.

38
 m

m
)

2
x

–0
.1

27
 in

. (
–3

.2
1

m
m

)
–0

.1
63

 in
. (

–4
.1

3
m

m
)

2.458 in. (62.42 mm)

2.295 in. (58.29 mm)
1.743 in. (44.26 mm)
1.562 in. (39.66 mm)
1.478 in. (37.53 mm)
1.384 in. (35.16 mm)
0.911 in. (23.13 mm)
0.818 in. (20.76 mm)
0.734 in. (18.63 mm)
0.553 in. (14.03 mm)

–0.163 in. (–4.13 mm)

0.
55

8
in

. (
14

.1
6

m
m

)

0.
08

3
in

. (
2.

10
 m

m
)

–0
.0

61
 in

. (
–1

.5
4

m
m

)

0.00 in. (0.00 mm)

0.
00

0
in

. (
0.

00
 m

m
)

2.
56

0
in

. (
65

.0
1

m
m

)

2.
98

0
in

. (
75

.6
8

m
m

)

3.
33

0
in

. (
84

.5
7

m
m

)

0.003 in. (0.06 mm)

2.298 in. (58.36 mm)

4
x

0.
12

5
in

.
(3

.1
8

m
m

)
D

ia
m

et
er

2 x 0.063 in.
(1.59 mm) Radius

–0
.2

69
 in

. (
–6

.8
2

m
m

)

2
x

0.
04

7
in

.
(1

.1
9

m
m

)
R

ad
iu

s

4 x 0.163 in.
(4.13 mm) Radius

Appendix A NI USB-845x Hardware Specifications

NI-845x Hardware and Software Manual A-14 ni.com

Figure A-4. USB-8452 OEM Dimensions (Front and Rear Views)

Safety

Safety Standards
The NI USB-845x modules meet the requirements of the following
standards of safety for electrical equipment for measurement, control, and
laboratory use:

• IEC 61010-1, EN 61010-1

• UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the Online
Product Certification section.

Hazardous Locations
The NI USB-845x modules are not certified for use in hazardous locations.

Electromagnetic Compatibility

NI USB-8451
This product meets the requirements of the following EMC standards for
electrical equipment for measurement, control, and laboratory use:

• EN 61326 (IEC 61326): Class A emissions; Basic immunity

• EN 55011 (CISPR 11): Group 1, Class A emissions

• AS/NZS CISPR 11: Group 1, Class A emissions

• FCC 47 CFR Part 15B: Class A emissions

• ICES-001: Class A emissions

Pin 1

0.365 in. (9.27 mm)

0.453 in.
(11.50 mm)

 0.340 in. (8.64 mm)

0.062 in.
(1.57 mm)

 0.250 in. (6.35 mm)

 2 x 0.114 in.
(2.90 mm) Diameter

0.806 in.
(20.46 mm)

1.009 in.
(25.63 mm)

Appendix A NI USB-845x Hardware Specifications

© National Instruments A-15 NI-845x Hardware and Software Manual

Note For the standards applied to assess the EMC of this product, refer to the Online
Product Certification section.

Note For EMC compliance, operate this product according to the documentation.

NI USB-8452
This product meets the requirements of the following EMC standards for
electrical equipment for measurement, control, and laboratory use:

• EN 61326 (IEC 61326): Class A emissions; Basic immunity

• EN 55011 (CISPR 11): Group 1, Class A emissions

• AS/NZS CISPR 11: Group 1, Class A emissions

• FCC 47 CFR Part 15B: Class A emissions

• ICES-001: Class A emissions

NI USB-8451 OEM, NI USB-8452 OEM
The NI USB-8451 OEM and NI USB-8452 OEM devices are intended for
use as part of a system. To ensure that your system meets the appropriate
EMC standards, you must test the entire system.

Note For the standards applied to assess the EMC of this product, refer to the Online
Product Certification section.

Note For EMC compliance, operate this product according to the documentation.

CE Compliance

NI USB-8451
This product meets the essential requirements of applicable European
Directives as follows:

• 2006/95/EC; Low-Voltage Directive (safety)

• 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

NI USB-8452
This product meets the essential requirements of applicable European
Directives as follows:

• 2006/95/EC; Low-Voltage Directive (safety)

• 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Appendix A NI USB-845x Hardware Specifications

NI-845x Hardware and Software Manual A-16 ni.com

NI USB-8451 OEM, NI USB-8452 OEM
The NI USB-8451 OEM and NI USB-8452 OEM devices are intended for
use as part of a system. To ensure that your system meets the appropriate
CE Compliance regulations, you must test the entire system.

Online Product Certification
Refer to the product Declaration of Conformity (DoC) for additional
regulatory compliance information. To obtain product certifications and
the DoC for this product, visit ni.com/certification, search by model
number or product line, and click the appropriate link in the Certification
column.

Environmental
The NI USB-845x modules are intended for indoor use only.

Operating temperature
(IEC 60068-2-1 and IEC 60068-2-2)......0 to 45 °C

Operating humidity (IEC 60068-2-56) ...10 to 90% RH, noncondensing

Maximum altitude...................................2,000 m (at 25°C ambient
temperature)

Storage temperature (IEC 60068-2-1
and IEC 60068-2-2)–40 to 85 °C

Storage humidity (IEC 60068-2-56).......5 to 90% RH, noncondensing

Pollution Degree (IEC 60664)2

Environmental Management
NI is committed to designing and manufacturing products in an
environmentally responsible manner. NI recognizes that eliminating
certain hazardous substances from our products is beneficial to the
environment and to NI customers.

For additional environmental information, refer to the Minimize Our
Environmental Impact web page at ni.com/environment. This page
contains the environmental regulations and directives with which NI
complies, as well as other environmental information not included in this
document.

Appendix A NI USB-845x Hardware Specifications

© National Instruments A-17 NI-845x Hardware and Software Manual

Waste Electrical and Electronic Equipment (WEEE)
EU Customers At the end of the product life cycle, all products must be sent to a WEEE
recycling center. For more information about WEEE recycling centers, National
Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on
Waste and Electronic Equipment, visit ni.com/environment/weee.

RoHS
National Instruments (RoHS)

National Instruments RoHS ni.com/environment/rohs_china
(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

© National Instruments B-1 NI-845x Hardware and Software Manual

B
Technical Support and
Professional Services

Log in to your National Instruments ni.com User Profile to get
personalized access to your services. Visit the following sections of
ni.com for technical support and professional services:

• Support—Technical support at ni.com/support includes the
following resources:

– Self-Help Technical Resources—For answers and solutions,
visit ni.com/support for software drivers and updates,
a searchable KnowledgeBase, product manuals, step-by-step
troubleshooting wizards, thousands of example programs,
tutorials, application notes, instrument drivers, and so on.
Registered users also receive access to the NI Discussion Forums
at ni.com/forums. NI Applications Engineers make sure every
question submitted online receives an answer.

– Standard Service Program Membership—This program
entitles members to direct access to NI Applications Engineers
via phone and email for one-to-one technical support, as well as
exclusive access to self-paced online training modules at
ni.com/self-paced-training. All customers automatically
receive a one-year membership in the Standard Service Program
(SSP) with the purchase of most software products and bundles
including NI Developer Suite. NI also offers flexible extended
contract options that guarantee your SSP benefits are available
without interruption for as long as you need them. Visit ni.com/
ssp for more information.

For information about other technical support options in your
area, visit ni.com/services, or contact your local office at
ni.com/contact.

Appendix B Technical Support and Professional Services

NI-845x Hardware and Software Manual B-2 ni.com

• Training and Certification—Visit ni.com/training for training
and certification program information. You can also register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. To learn more, call your local
NI office or visit ni.com/alliance.

You also can visit the Worldwide Offices section of ni.com/niglobal
to access the branch office Web sites, which provide up-to-date contact
information, support phone numbers, email addresses, and current events.

© National Instruments G-1 NI-845x Hardware and Software Manual

Glossary

Symbol Prefix Value

p pico 10–12

n nano 10–9

μ micro 10– 6

m milli 10–3

k kilo 103

M mega 106

G giga 109

T tera 1012

A

ACK Poll The process of resending a slave address until it is acknowledged or a
timeout occurs.

Arbitration The procedure to allow multiple masters to determine which single master
controls the bus for a particular transfer time.

C

CLK CLocK. The clock is generated by the master device and controls when data
is sent and read.

CPHA Clock PHAse. This controls the positioning of the data bits relative to the
clock edges.

CPOL Clock POLarity. The polarity indicating whether the clock makes positive
or negative pulses.

CS or SS Chip Select or Slave Select. Connection from the master to a slave that
signals the slave to listen for SPI clock and data signals.

Glossary

NI-845x Hardware and Software Manual G-2 ni.com

I

I2C Inter-IC

M

Master On the I2C bus, a device that can initiate and terminate a transfer on the bus.
The master is responsible for generating the clock (SCL) signal.

On the SPI bus, the master device provides the clock signal and determines
the chip select line state.

MISO Master Input, Slave Output. The MISO carries data from the slave to the
master.

MOSI Master Output, Slave Input. The MOSI line carries data from the master to
the slave.

Multimaster The ability for more than one master to co-exist on the bus concurrently
without data loss.

R

Receiver Device receiving data from the bus.

S

SCL Serial CLock (clock signal line).

SDA Serial DAta (data signal line).

Shift Register A shift register is connected to the MOSI and MISO lines. As data is read
from the input, it is placed into the shift register. Data from the shift register
is placed into the output, creating a full-duplex communication loop.

Slave On the I2C bus, a device addressed by the master.

On the SPI bus, the slave device receives the clock and chip select from the
master. The maximum number of slaves is dependent on the number of
available chip select lines.

Glossary

© National Instruments G-3 NI-845x Hardware and Software Manual

SMBus System Management Bus

Synchronization The defined procedure to allow the clock signals provided by two or more
masters to be synchronized.

T

Transmitter Device transmitting data on the bus.

© National Instruments I-1 NI-845x Hardware and Software Manual

Index

Symbols
+5 V power source

NI USB-8451, 3-11
NI USB-8452, 3-21

A
ACK polling, 1-4
arbitration, 1-2

B
basic functions, 7-39, 13-34, 19-16
basic VIs, 6-14, 12-13, 18-8
block diagram (figure)

NI USB-8451, 3-2
NI USB-8452, 3-12

bus interface specifications
NI USB-8451, A-4
NI USB-8452, A-12

C
C functions

basic functions, 7-39, 13-34, 19-16
configuration functions, 7-21, 10-18,

13-20, 16-16
data types, 7-1, 10-1, 13-1, 16-1, 19-1
general device functions, 7-8, 10-5, 13-8,

16-5, 19-4
ni845xClose, 7-8, 10-5, 13-8, 16-5, 19-4
ni845xCloseFindDeviceHandle, 7-9,

10-6, 13-9, 16-6, 19-5
ni845xDeviceLock, 7-10, 10-7, 13-10,

16-7, 19-6
ni845xDeviceUnlock, 7-11, 10-8, 13-11,

16-8, 19-7
ni845xDioReadLine, 19-16

ni845xDioReadPort, 19-18
ni845xDioSetDriverType, 19-20
ni845xDioSetPortLineDirection

Map, 19-19
ni845xDioWriteLine, 19-21
ni845xDioWritePort, 19-22
ni845xFindDevice, 7-12, 10-9, 13-12,

16-9, 19-8
ni845xFindDeviceNext, 7-14, 10-11,

13-14, 16-11, 19-10
ni845xI2cConfigurationClose, 7-21
ni845xI2cConfigurationGetAckPollTime

out, 7-22
ni845xI2cConfigurationGetAddress, 7-23
ni845xI2cConfigurationGetAddress

Size, 7-24
ni845xI2cConfigurationGetClock

Rate, 7-25
ni845xI2cConfigurationGetHSClock

Rate, 7-26
ni845xI2cConfigurationGetHS

Enable, 7-27
ni845xI2cConfigurationGetHSMaster

Code, 7-28
ni845xI2cConfigurationGetPort, 7-29
ni845xI2cConfigurationOpen, 7-30
ni845xI2cConfigurationSetAckPollTime

out, 7-31
ni845xI2cConfigurationSetAddress, 7-32
ni845xI2cConfigurationSetAddress

Size, 7-33
ni845xI2cConfigurationSetClock

Rate, 7-34
ni845xI2cConfigurationSetHSClock

Rate, 7-35
ni845xI2cConfigurationSetHS

Enable, 7-36

Index

NI-845x Hardware and Software Manual I-2 ni.com

ni845xI2cConfigurationSetHSMaster
Code, 7-37

ni845xI2cConfigurationSetPort, 7-38
ni845xI2cRead, 7-39
ni845xI2cScriptAckPollTimeout, 7-45
ni845xI2cScriptAddressRead, 7-46
ni845xI2cScriptAddressWrite, 7-47
ni845xI2cScriptClockRate, 7-48
ni845xI2cScriptClose, 7-49
ni845xI2cScriptDelay, 7-50
ni845xI2cScriptDioConfigureLine, 7-51
ni845xI2cScriptDioConfigurePort, 7-52
ni845xI2cScriptDioReadLine, 7-53
ni845xI2cScriptDioReadPort, 7-55
ni845xI2cScriptDioWriteLine, 7-56
ni845xI2cScriptDioWritePort, 7-58
ni845xI2cScriptExtractReadData, 7-60
ni845xI2cScriptExtractReadData

Size, 7-61
ni845xI2cScriptHSClockRate, 7-64
ni845xI2cScriptHSEnable, 7-62
ni845xI2cScriptHSMasterCode, 7-63
ni845xI2cScriptIssueStart, 7-65
ni845xI2cScriptIssueStop, 7-66
ni845xI2cScriptOpen, 7-67
ni845xI2cScriptPullupEnable, 7-59
ni845xI2cScriptRead, 7-68
ni845xI2cScriptReset, 7-70
ni845xI2cScriptRun, 7-71
ni845xI2cScriptWrite, 7-73
ni845xI2cScriptµUsDelay, 7-72
ni845xI2cSetPullupEnable, 7-17, 10-14
ni845xI2cSlaveConfiguration

Close, 10-18
ni845xI2cSlaveConfigurationGet

Address, 10-19
ni845xI2cSlaveConfigurationGetAuto

RemovalTimeout, 10-20
ni845xI2cSlaveConfigurationGetCommand

BufferSize, 10-21

ni845xI2cSlaveConfigurationGetData
BufferSize, 10-22

ni845xI2cSlaveConfigurationOpen,
10-23

ni845xI2cSlaveConfigurationSet
Address, 10-24

ni845xI2cSlaveConfigurationSetAuto
RemovalTimeout, 10-25

ni845xI2cSlaveConfigurationSetCommand
BufferSize, 10-26

ni845xI2cSlaveConfigurationSetDataBuffer
Size, 10-27

ni845xI2cSlaveGetWriteInfo, 10-28
ni845xI2cSlaveRead, 10-29
ni845xI2cSlaveStart, 10-31
ni845xI2cSlaveStop, 10-32
ni845xI2cSlaveWaitForEvent, 10-33
ni845xI2cSlaveWrite, 10-36
ni845xI2cWrite, 7-41
ni845xI2cWriteRead, 7-43
ni845xOpen, 7-15, 10-12, 13-15, 16-12,

19-11
ni845xSetIoVoltageLevel, 7-16, 10-13,

13-16, 19-12
ni845xSetTimeout, 7-20, 10-15, 13-17,

16-13, 19-13
ni845xSpiConfigurationClose, 13-20
ni845xSpiConfigurationGetChip

Select, 13-21
ni845xSpiConfigurationGetClock

Phase, 13-22
ni845xSpiConfigurationGetClock

Polarity, 13-23
ni845xSpiConfigurationGetClock

Rate, 13-24
ni845xSpiConfigurationGetNumBitsPer

Sample, 13-25
ni845xSpiConfigurationGetPort, 13-26
ni845xSpiConfigurationOpen, 13-27
ni845xSpiConfigurationSetChip

Select, 13-28

Index

© National Instruments I-3 NI-845x Hardware and Software Manual

ni845xSpiConfigurationSetClock
Phase, 13-29

ni845xSpiConfigurationSetClock
Polarity, 13-30

ni845xSpiConfigurationSetClock
Rate, 13-31

ni845xSpiConfigurationSetNumBitsPer
Sample, 13-32

ni845xSpiConfigurationSetPort, 13-33
ni845xSpiScriptClockPolarity

Phase, 13-36
ni845xSpiScriptClockRate, 13-38
ni845xSpiScriptClose, 13-39
ni845xSpiScriptCSHigh, 13-40
ni845xSpiScriptCSLow, 13-41
ni845xSpiScriptDelay, 13-42
ni845xSpiScriptDioConfigureLine, 13-43
ni845xSpiScriptDioConfigurePort, 13-44
ni845xSpiScriptDioReadLine, 13-45
ni845xSpiScriptDioReadPort, 13-47
ni845xSpiScriptDioWriteLine, 13-48
ni845xSpiScriptDioWritePort, 13-50
ni845xSpiScriptDisableSPI, 13-51
ni845xSpiScriptEnableSPI, 13-52
ni845xSpiScriptExtractReadData, 13-53
ni845xSpiScriptExtractReadData

Size, 13-54
ni845xSpiScriptNumBitsPer

Sample, 13-55
ni845xSpiScriptOpen, 13-56
ni845xSpiScriptReset, 13-57
ni845xSpiScriptRun, 13-58
ni845xSpiScriptUsDelay, 13-59
ni845xSpiScriptWriteRead, 13-60
ni845xSpiStreamConfiguration

Close, 16-16
ni845xSpiStreamConfigurationGetClock

Phase, 16-21
ni845xSpiStreamConfigurationGetClock

Polarity, 16-23

ni845xSpiStreamConfigurationGetNum
Bits, 16-18

ni845xSpiStreamConfigurationGetNum
Samples, 16-19

ni845xSpiStreamConfigurationGetPacket
Size, 16-20

ni845xSpiStreamConfiguration
Open, 16-17

ni845xSpiStreamConfigurationSetClock
Phase, 16-31

ni845xSpiStreamConfigurationSetClock
Polarity, 16-33

ni845xSpiStreamConfigurationSetNum
Bits, 16-28

ni845xSpiStreamConfigurationSetNum
Samples, 16-29

ni845xSpiStreamConfigurationSetPacket
Size, 16-30

ni845xSpiStreamConfigurationWave1Get
PinConfig, 16-22

ni845xSpiStreamConfigurationWave1Get
TimingParam, 16-24

ni845xSpiStreamConfigurationWave1Set
MosiData, 16-26

ni845xSpiStreamConfigurationWave1Set
PinConfig, 16-32

ni845xSpiStreamConfigurationWave1Set
TimingParam, 16-34

ni845xSpiStreamRead, 16-36
ni845xSpiStreamStart, 16-38
ni845xSpiStreamStop, 16-39
ni845xSpiWriteRead, 13-34
ni845xStatusToString, 7-18, 10-16,

13-18, 16-14, 19-14
scripting functions, 7-45, 13-36
section headings, 7-1, 10-1, 13-1, 16-1,

19-1
slave functions, 10-28
streaming functions, 16-36

CE compliance specifications, A-15

Index

NI-845x Hardware and Software Manual I-4 ni.com

Chip Select pin, 14-4
clock and polarity, 1-7
clock stretching, 1-4
configuration functions, 7-21, 10-18, 13-20,

16-16
configuration VIs, 6-8, 9-8, 12-8, 15-8
CONV pin, 14-4
conventions used in the manual, xxi
current levels, 1-6

D
diagnostic tools (NI resources), B-1
digital I/O

NI USB-8451, 3-7
NI USB-8452, 3-19
specifications

NI USB-8451, A-1
NI USB-8452, A-6

digital terminal assignments (figure)
NI USB-8451, 3-4

dimensions
front and rear view (figure)

NI USB-8451 OEM, A-5
NI USB-8452 OEM, A-14

top view (figure)
NI USB-8451 OEM, A-5
NI USB-8452 OEM, A-13

DIO line read, 17-2
DIO line write, 17-2
DIO port configure, 17-2
DIO port read, 17-2
DIO port write, 17-2
documentation

conventions used in manual, xxi
NI resources, B-1

DRDY pin, 14-4
drivers (NI resources), B-1

E
electromagnetic compatibility

specifications, A-14
environmental management

specifications, A-16
environmental specifications, A-16
error handling, 1-8
examples (NI resources), B-1
extended (10-bit) addressing, 1-4
external user-provided resistor, connection

example (figure)
NI USB-8451, 3-7

extract read data
I2C API, 5-6
SPI API, 11-6

G
general device functions, 7-8, 10-5, 13-8, 16-5,

19-4
general device VIs, 6-2, 9-2, 12-2, 15-2, 18-2

H
hardware

installation, 2-1
overview, 3-1

NI USB-8451, 3-1
NI USB-8452, 3-11

setup
NI USB-8451, 3-2
NI USB-8451 OEM, 3-3
NI USB-8452, 3-13

specifications, A-1
hazardous locations, A-14
help, technical support, B-1

Index

© National Instruments I-5 NI-845x Hardware and Software Manual

I
I/O connector and cable

NI USB-8451, 3-4
NI USB-8451 OEM, 3-5

I/O protection
NI USB-8451, 3-10
NI USB-8452, 3-21

I2C bus, 1-1, 1-2
ACK polling, 1-4
arbitration, 1-2
clock stretching, 1-4
extended (10-bit) addressing, 1-4
High Speed master code, 1-5
terminology, 1-1
transfers (figure), 1-3

I2C configure, 5-2
I2C interface

NI USB-8451, 3-10
NI USB-8452, 3-18
specifications

NI USB-8451, A-3
NI USB-8452, A-10

to two peripherals (figure)
NI USB-8451, 3-10
NI USB-8452, 3-19

I2C read, 5-2
I2C slave configure, 8-2
I2C slave get write information, 8-3
I2C slave read, 8-3
I2C slave start, 8-2
I2C slave stop, 8-3
I2C slave wait for event, 8-3
I2C slave write, 8-3
I2C vs. SMBus, 1-5

current levels, 1-6
logic levels, 1-5
timeout and clock rates, 1-5

I2C write, 5-2
I2C write read, 5-2

installation
hardware, 2-1
software, 2-1

instrument drivers (NI resources), B-1
introduction, 1-1

K
KnowledgeBase, B-1

L
LabVIEW VIs

basic VIs, 6-14, 12-13, 18-8
configuration VIs, 6-8, 9-8, 12-8, 15-8
general device VIs, 6-2, 9-2, 12-2, 15-2,

18-2
NI-845x Close Reference.vi, 6-2, 9-2,

12-2, 15-2, 18-2
NI-845x Device Property Node, 6-4, 9-4,

12-4, 15-4, 18-4
NI-845x Device Reference, 6-7, 9-7, 12-7,

15-7, 18-7
NI-845x DIO Read Line.vi, 18-8
NI-845x DIO Read Port.vi, 18-10
NI-845x DIO Write Line.vi, 18-12
NI-845x DIO Write Port.vi, 18-14
NI-845x I2C Configuration Property

Node, 6-8
NI-845x I2C Create Configuration

Reference.vi, 6-12
NI-845x I2C Create Script

Reference.vi, 6-20
NI-845x I2C Extract Script Read

Data.vi, 6-22
NI-845x I2C Read.vi, 6-14
NI-845x I2C Run Script.vi, 6-24
NI-845x I2C Script ACK Poll

Timeout.vi, 6-26
NI-845x I2C Script

Address+Read.vi, 6-28

Index

NI-845x Hardware and Software Manual I-6 ni.com

NI-845x I2C Script
Address+Write.vi, 6-30

NI-845x I2C Script Clock Rate.vi, 6-32
NI-845x I2C Script Delay

(Microsecond).vi, 6-34
NI-845x I2C Script Delay

(Millisecond).vi, 6-36
NI-845x I2C Script DIO Configure

Line.vi, 6-38
NI-845x I2C Script DIO Configure

Port.vi, 6-40
NI-845x I2C Script DIO Read

Line.vi, 6-42
NI-845x I2C Script DIO Read

Port.vi, 6-44
NI-845x I2C Script DIO Write

Line.vi, 6-46
NI-845x I2C Script DIO Write

Port.vi, 6-48
NI-845x I2C Script HS Clock

Rate.vi, 6-56
NI-845x I2C Script HS Enable.vi, 6-52
NI-845x I2C Script HS Master

Code.vi, 6-54
NI-845x I2C Script Issue Start.vi, 6-58
NI-845x I2C Script Issue Stop.vi, 6-60
NI-845x I2C Script Pullup Enable.vi, 6-50
NI-845x I2C Script Read.vi, 6-62
NI-845x I2C Script Write.vi, 6-64
NI-845x I2C Slave Configuration

Property Node, 9-8
NI-845x I2C Slave Create Configuration

Reference.vi, 9-11
NI-845x I2C Slave Get Write Info.vi, 9-13
NI-845x I2C Slave Read.vi, 9-15
NI-845x I2C Slave Start.vi, 9-17
NI-845x I2C Slave Stop.vi, 9-19
NI-845x I2C Slave Wait for Event.vi, 9-21
NI-845x I2C Slave Write.vi, 9-24
NI-845x I2C Write Read.vi, 6-18
NI-845x I2C Write.vi, 6-16

NI-845x SPI Configuration Property
Node, 12-8

NI-845x SPI Create Configuration
Reference.vi, 12-11

NI-845x SPI Create Script
Reference.vi, 12-16

NI-845x SPI Extract Script Read
Data.vi, 12-18

NI-845x SPI Run Script.vi, 12-20
NI-845x SPI Script Clock Polarity

Phase.vi, 12-22
NI-845x SPI Script Clock Rate.vi, 12-24
NI-845x SPI Script CS High.vi, 12-26
NI-845x SPI Script CS Low.vi, 12-28
NI-845x SPI Script Delay

(Microsecond).vi, 12-30
NI-845x SPI Script Delay

(Millisecond).vi, 12-32
NI-845x SPI Script DIO Configure

Line.vi, 12-34
NI-845x SPI Script DIO Configure

Port.vi, 12-36
NI-845x SPI Script DIO Read

Line.vi, 12-38
NI-845x SPI Script DIO Read

Port.vi, 12-40
NI-845x SPI Script DIO Write

Line.vi, 12-42
NI-845x SPI Script DIO Write

Port.vi, 12-44
NI-845x SPI Script Disable SPI.vi, 12-46
NI-845x SPI Script Enable SPI.vi, 12-48
NI-845x SPI Script Num Bits Per

Sample.vi, 12-50
NI-845x SPI Script Write Read.vi, 12-52
NI-845x SPI Stream Configuration

Property Node, 15-8
NI-845x SPI Stream Create Configuration

Reference.vi, 15-16
NI-845x SPI Stream Read.vi, 15-18,

15-20, 15-22

Index

© National Instruments I-7 NI-845x Hardware and Software Manual

NI-845x SPI Stream Start.vi, 15-20
NI-845x SPI Stream Stop.vi, 15-22
NI-845x SPI Write Read.vi, 12-13
scripting VIs, 6-20, 12-16
streaming VIs, 15-18

LED indicators
NI USB-8452 (figure), 3-20
NI USB-8452 OEM, 3-20

load connection example (figure)
NI USB-8451, 3-8

logic levels, 1-5

N
National Instruments support and

services, B-1
NI USB-8451, 3-1

+5 V power source, 3-11
block diagram (figure), 3-2
digital I/O, 3-7
digital terminal assignments (figure), 3-4
external user-provided resistor,

connection example (figure), 3-7
hardware

overview, 3-1
setup, 3-2

I/O connector and cable, 3-4
I/O protection, 3-10
I2C interface, 3-10

to two peripherals (figure), 3-10
load connection example (figure), 3-8
power-on states, 3-11
signal descriptions (table), 3-6
signal label application diagram

(figure), 3-3
software installation, 3-2
specifications, A-1
SPI interface, 3-9

to three peripherals (figure), 3-9

NI USB-8451 OEM
hardware setup, 3-3
I/O connector and cable, 3-5
pin assignments (table), 3-5

NI USB-8452, 3-11
+5 V power source, 3-21
block diagram (figure), 3-12
digital I/O, 3-19
hardware

overview, 3-11
setup, 3-13

I/O protection, 3-21
I2C interface, 3-18

to two peripherals (figure), 3-19
LED indicators (figure), 3-20
pin assignments (figure), 3-14
power-on states, 3-21
signal descriptions (table), 3-14
software installation, 3-13
specifications, A-6
SPI interface, 3-16

standard mode, 3-18
stream mode, 3-18
to three peripherals (figure), 3-17

Vref I/O reference voltage, 3-22
with enclosure (figure), 3-12

NI USB-8452 OEM
LED indicators (figure), 3-20

NI-845x API, 4-1
NI-845x Close Reference.vi, 6-2, 9-2, 12-2,

15-2, 18-2
NI-845x Device Property Node, 6-4, 9-4, 12-4,

15-4, 18-4
NI-845x Device Reference, 6-7, 9-7, 12-7,

15-7, 18-7
NI-845x DIO API, 17-1

basic programming model, 17-1
DIO line read, 17-2
DIO line write, 17-2

Index

NI-845x Hardware and Software Manual I-8 ni.com

DIO port configure, 17-2
DIO port read, 17-2
DIO port write, 17-2

C functions, 19-1
LabVIEW VIs, 18-1
list of C functions, 19-2

NI-845x DIO Read Line.vi, 18-8
NI-845x DIO Read Port.vi, 18-10
NI-845x DIO Write Line.vi, 18-12
NI-845x DIO Write Port.vi, 18-14
NI-845x I2C API, 5-1

advanced programming model
extract read data, 5-6
run script, 5-6
script: issue start condition, 5-5
script: issue stop condition, 5-6
script: pullup enable, 5-4
script: read, 5-5
script: send address + read, 5-5
script: send address + write, 5-5
script: send High Speed master

code, 5-5
script: set I2C ACK poll timeout, 5-4
script: set I2C clock rate, 5-4
script: set I2C High Speed clock

rate, 5-4
script: set I2C High Speed enable, 5-4
script: write, 5-6

basic programming model, 5-1
I2C configure, 5-2
I2C read, 5-2
I2C write, 5-2
I2C write read, 5-2

C functions, 7-1
LabVIEW VIs, 6-1, 9-1
list of C functions, 7-2, 10-2
scripting programming model, 5-2

example (figure), 5-3
NI-845x I2C Configuration Property

Node, 6-8

NI-845x I2C Create Configuration
Reference.vi, 6-12

NI-845x I2C Create Script Reference.vi, 6-20
NI-845x I2C Extract Script Read Data.vi, 6-22
NI-845x I2C Read.vi, 6-14
NI-845x I2C Run Script.vi, 6-24
NI-845x I2C Script ACK Poll

Timeout.vi, 6-26
NI-845x I2C Script Address+Read.vi, 6-28
NI-845x I2C Script Address+Write.vi, 6-30
NI-845x I2C Script Clock Rate.vi, 6-32
NI-845x I2C Script Delay

(Microsecond).vi, 6-34
NI-845x I2C Script Delay

(Millisecond).vi, 6-36
NI-845x I2C Script DIO Configure

Line.vi, 6-38
NI-845x I2C Script DIO Configure

Port.vi, 6-40
NI-845x I2C Script DIO Read Line.vi, 6-42
NI-845x I2C Script DIO Read Port.vi, 6-44
NI-845x I2C Script DIO Write Line.vi, 6-46
NI-845x I2C Script DIO Write Port.vi, 6-48
NI-845x I2C Script HS Clock Rate.vi, 6-56
NI-845x I2C Script HS Enable.vi, 6-52
NI-845x I2C Script HS Master Code.vi, 6-54
NI-845x I2C Script Issue Start.vi, 6-58
NI-845x I2C Script Issue Stop.vi, 6-60
NI-845x I2C Script Pullup Enable.vi, 6-50
NI-845x I2C Script Read.vi, 6-62
NI-845x I2C Script Write.vi, 6-64
NI-845x I2C Slave API, 8-1

C functions, 10-1
programming model, 8-1

I2C slave configure, 8-2
I2C slave get write information, 8-3
I2C slave read, 8-3
I2C slave start, 8-2
I2C slave stop, 8-3
I2C slave wait for event, 8-3
I2C slave write, 8-3

Index

© National Instruments I-9 NI-845x Hardware and Software Manual

NI-845x I2C Slave Configuration Property
Node, 9-8

NI-845x I2C Slave Create Configuration
Reference.vi, 9-11

NI-845x I2C Slave Get Write Info.vi, 9-13
NI-845x I2C Slave Read.vi, 9-15
NI-845x I2C Slave Start.vi, 9-17
NI-845x I2C Slave Stop.vi, 9-19
NI-845x I2C Slave Wait for Event.vi, 9-21
NI-845x I2C Slave Write.vi, 9-24
NI-845x I2C Write Read.vi, 6-18
NI-845x I2C Write.vi, 6-16
NI-845x SPI API, 11-1

advanced programming model
extract read data, 11-6
run script, 11-6
script: chip select high, 11-6
script: chip select low, 11-5
script: configure phase, polarity,

clock rate, number of bits, 11-5
script: disable SPI, 11-6
script: enable SPI, 11-5
script: write read, 11-5
scripting functions programming

example (figure), 11-4
basic programming model, 11-1

SPI configure, 11-2
SPI timing characteristics, 11-2
SPI write read, 11-2

C functions, 13-1
LabVIEW VIs, 12-1
list of C functions, 13-2
scripting programming model, 11-3

NI-845x SPI Configuration Property
Node, 12-8

NI-845x SPI Create Configuration
Reference.vi, 12-11

NI-845x SPI Create Script Reference.vi, 12-16
NI-845x SPI Extract Script Read

Data.vi, 12-18
NI-845x SPI Run Script.vi, 12-20

NI-845x SPI Script Clock Polarity
Phase.vi, 12-22

NI-845x SPI Script Clock Rate.vi, 12-24
NI-845x SPI Script CS High.vi, 12-26
NI-845x SPI Script CS Low.vi, 12-28
NI-845x SPI Script Delay

(Microsecond).vi, 12-30
NI-845x SPI Script Delay

(Millisecond).vi, 12-32
NI-845x SPI Script DIO Configure

Line.vi, 12-34
NI-845x SPI Script DIO Configure

Port.vi, 12-36
NI-845x SPI Script DIO Read Line.vi, 12-38
NI-845x SPI Script DIO Read Port.vi, 12-40
NI-845x SPI Script DIO Write Line.vi, 12-42
NI-845x SPI Script DIO Write Port.vi, 12-44
NI-845x SPI Script Disable SPI.vi, 12-46
NI-845x SPI Script Enable SPI.vi, 12-48
NI-845x SPI Script Num Bits Per

Sample.vi, 12-50
NI-845x SPI Script Write Read.vi, 12-52
NI-845x SPI Stream API

C functions, 16-1
Chip Select pin, 14-4
CONV pin, 14-4
DRDY pin, 14-4
extra SPI pin descriptions, 14-4
LabVIEW VIs, 15-1
list of C functions, 16-2
programming model, 14-1
SPI stream configure, 14-2
SPI stream read, 14-2
SPI stream start, 14-2
SPI stream stop, 14-2
using, 14-1
waveform 1, 14-3

timing diagram (figure), 14-3
timing parameters (table), 14-4

NI-845x SPI Stream Configuration Property
Node, 15-8

Index

NI-845x Hardware and Software Manual I-10 ni.com

NI-845x SPI Stream Create Configuration
Reference.vi, 15-16

NI-845x SPI Stream Read.vi, 15-18, 15-20,
15-22

NI-845x SPI Stream Start.vi, 15-20
NI-845x SPI Stream Stop.vi, 15-22
NI-845x SPI Write Read.vi, 12-13
ni845xClose, 7-8, 10-5, 13-8, 16-5, 19-4
ni845xCloseFindDeviceHandle, 7-9, 10-6,

13-9, 16-6, 19-5
ni845xDeviceLock, 7-10, 10-7, 13-10, 16-7,

19-6
ni845xDeviceUnlock, 7-11, 10-8, 13-11, 16-8,

19-7
ni845xDioReadLine, 19-16
ni845xDioReadPort, 19-18
ni845xDioSetDriverType, 19-20
ni845xDioSetPortLineDirectionMap, 19-19
ni845xDioWriteLine, 19-21
ni845xDioWritePort, 19-22
ni845xFindDevice, 7-12, 10-9, 13-12, 16-9,

19-8
ni845xFindDeviceNext, 7-14, 10-11, 13-14,

16-11, 19-10
ni845xI2cConfigurationClose, 7-21
ni845xI2cConfigurationGetAckPoll

Timeout, 7-22
ni845xI2cConfigurationGetAddress, 7-23
ni845xI2cConfigurationGetAddressSize, 7-24
ni845xI2cConfigurationGetClockRate, 7-25
ni845xI2cConfigurationGetHSClock

Rate, 7-26
ni845xI2cConfigurationGetHSEnable, 7-27
ni845xI2cConfigurationGetHSMaster

Code, 7-28
ni845xI2cConfigurationGetPort, 7-29
ni845xI2cConfigurationOpen, 7-30
ni845xI2cConfigurationSetAckPoll

Timeout, 7-31
ni845xI2cConfigurationSetAddress, 7-32
ni845xI2cConfigurationSetAddressSize, 7-33

ni845xI2cConfigurationSetClockRate, 7-34
ni845xI2cConfigurationSetHSClock

Rate, 7-35
ni845xI2cConfigurationSetHSEnable, 7-36
ni845xI2cConfigurationSetHSMaster

Code, 7-37
ni845xI2cConfigurationSetPort, 7-38
ni845xI2cRead, 7-39
ni845xI2cScriptAckPollTimeout, 7-45
ni845xI2cScriptAddressRead, 7-46
ni845xI2cScriptAddressWrite, 7-47
ni845xI2cScriptClockRate, 7-48
ni845xI2cScriptClose, 7-49
ni845xI2cScriptDelay, 7-50
ni845xI2cScriptDioConfigureLine, 7-51
ni845xI2cScriptDioConfigurePort, 7-52
ni845xI2cScriptDioReadLine, 7-53
ni845xI2cScriptDioReadPort, 7-55
ni845xI2cScriptDioWriteLine, 7-56
ni845xI2cScriptDioWritePort, 7-58
ni845xI2cScriptExtractReadData, 7-60
ni845xI2cScriptExtractReadDataSize, 7-61
ni845xI2cScriptHSClockRate, 7-64
ni845xI2cScriptHSEnable, 7-62
ni845xI2cScriptHSMasterCode, 7-63
ni845xI2cScriptIssueStart, 7-65
ni845xI2cScriptIssueStop, 7-66
ni845xI2cScriptOpen, 7-67
ni845xI2cScriptPullupEnable, 7-59
ni845xI2cScriptRead, 7-68
ni845xI2cScriptReset, 7-70
ni845xI2cScriptRun, 7-71
ni845xI2cScriptUsDelay, 7-72
ni845xI2cScriptWrite, 7-73
ni845xI2cSetPullupEnable, 7-17, 10-14
ni845xI2cSlaveConfigurationClose, 10-18
ni845xI2cSlaveConfigurationGet

Address, 10-19
ni845xI2cSlaveConfigurationGetAutoRemoval

Timeout, 10-20

Index

© National Instruments I-11 NI-845x Hardware and Software Manual

ni845xI2cSlaveConfigurationGetCommand
BufferSize, 10-21

ni845xI2cSlaveConfigurationGetDataBuffer
Size, 10-22

ni845xI2cSlaveConfigurationOpen, 10-23
ni845xI2cSlaveConfigurationSet

Address, 10-24
ni845xI2cSlaveConfigurationSetAutoRemoval

Timeout, 10-25
ni845xI2cSlaveConfigurationSetCommand

BufferSize, 10-26
ni845xI2cSlaveConfigurationSetDataBuffer

Size, 10-27
ni845xI2cSlaveGetWriteInfo, 10-28
ni845xI2cSlaveRead, 10-29
ni845xI2cSlaveStart, 10-31
ni845xI2cSlaveStop, 10-32
ni845xI2cSlaveWaitForEvent, 10-33
ni845xI2cSlaveWrite, 10-36
ni845xI2cWrite, 7-41
ni845xI2cWriteRead, 7-43
ni845xOpen, 7-15, 10-12, 13-15, 16-12, 19-11
ni845xSetIoVoltageLevel, 7-16, 10-13, 13-16,

19-12
ni845xSetTimeout, 7-20, 10-15, 13-17, 16-13,

19-13
ni845xSpiConfigurationClose, 13-20
ni845xSpiConfigurationGetChipSelect, 13-21
ni845xSpiConfigurationGetClock

Phase, 13-22
ni845xSpiConfigurationGetClock

Polarity, 13-23
ni845xSpiConfigurationGetClockRate, 13-24
ni845xSpiConfigurationGetNumBitsPer

Sample, 13-25
ni845xSpiConfigurationGetPort, 13-26
ni845xSpiConfigurationOpen, 13-27
ni845xSpiConfigurationSetChipSelect, 13-28
ni845xSpiConfigurationSetClock

Phase, 13-29

ni845xSpiConfigurationSetClock
Polarity, 13-30

ni845xSpiConfigurationSetClockRate, 13-31
ni845xSpiConfigurationSetNumBitsPer

Sample, 13-32
ni845xSpiConfigurationSetPort, 13-33
ni845xSpiScriptClockPolarityPhase, 13-36
ni845xSpiScriptClockRate, 13-38
ni845xSpiScriptClose, 13-39
ni845xSpiScriptCSHigh, 13-40
ni845xSpiScriptCSLow, 13-41
ni845xSpiScriptDelay, 13-42
ni845xSpiScriptDioConfigureLine, 13-43
ni845xSpiScriptDioConfigurePort, 13-44
ni845xSpiScriptDioReadLine, 13-45
ni845xSpiScriptDioReadPort, 13-47
ni845xSpiScriptDioWriteLine, 13-48
ni845xSpiScriptDioWritePort, 13-50
ni845xSpiScriptDisableSPI, 13-51
ni845xSpiScriptEnableSPI, 13-52
ni845xSpiScriptExtractReadData, 13-53
ni845xSpiScriptExtractReadDataSize, 13-54
ni845xSpiScriptNumBitsPerSample, 13-55
ni845xSpiScriptOpen, 13-56
ni845xSpiScriptReset, 13-57
ni845xSpiScriptRun, 13-58
ni845xSpiScriptUsDelay, 13-59
ni845xSpiScriptWriteRead, 13-60
ni845xSpiStreamConfigurationClose, 16-16
ni845xSpiStreamConfigurationGetClock

Phase, 16-21
ni845xSpiStreamConfigurationGetClock

Polarity, 16-23
ni845xSpiStreamConfigurationGetNum

Bits, 16-18
ni845xSpiStreamConfigurationGetNum

Samples, 16-19
ni845xSpiStreamConfigurationGetPacket

Size, 16-20
ni845xSpiStreamConfigurationOpen, 16-17

Index

NI-845x Hardware and Software Manual I-12 ni.com

ni845xSpiStreamConfigurationSetClock
Phase, 16-31

ni845xSpiStreamConfigurationSetClockPolar
ity, 16-33

ni845xSpiStreamConfigurationSetNumBits,
16-28

ni845xSpiStreamConfigurationSetNum
Samples, 16-29

ni845xSpiStreamConfigurationSetPacket
Size, 16-30

ni845xSpiStreamConfigurationWave1GetPin
Config, 16-22

ni845xSpiStreamConfigurationWave1Get
TimingParam, 16-24

ni845xSpiStreamConfigurationWave1Set
MosiData, 16-26

ni845xSpiStreamConfigurationWave1SetPin
Config, 16-32

ni845xSpiStreamConfigurationWave1Set
TimingParam, 16-34

ni845xSpiStreamRead, 16-36
ni845xSpiStreamStart, 16-38
ni845xSpiStreamStop, 16-39
ni845xSpiWriteRead, 13-34
ni845xStatusToString, 7-18, 10-16, 13-18,

16-14, 19-14

O
online product certification

specifications, A-16
output voltage source specifications

NI USB-8451, A-4
NI USB-8452, A-12

overvoltage protection specifications
NI USB-8451, A-6

P
physical characteristic specifications

NI USB-8451, A-4
NI USB-8451 OEM, A-5

NI USB-8452, A-12
NI USB-8452 OEM, A-13

pin assignments
NI USB-8451 OEM, 3-5
NI USB-8452, 3-14

power requirements specifications
NI USB-8451, A-4
NI USB-8452, A-12

power-on states
NI USB-8451, 3-11
NI USB-8452, 3-21

programming examples (NI resources), B-1

R
run script

I2C API, 5-6
SPI API, 11-6

S
safety specifications, A-14
scripting functions, 7-45, 13-36
scripting VIs, 6-20, 12-16
scripts

chip select high, 11-6
chip select low, 11-5
configure phase, polarity, clock rate,

number of bits, 11-5
disable SPI, 11-6
enable SPI, 11-5
issue start condition, 5-5
issue stop condition, 5-6
pullup enable, 5-4
read, 5-5
send address + read, 5-5
send address + write, 5-5
send High Speed master code, 5-5
set I2C ACK poll timeout, 5-4
set I2C clock rate, 5-4
set I2C High Speed clock rate, 5-4

Index

© National Instruments I-13 NI-845x Hardware and Software Manual

set I2C High Speed Enable, 5-4
write, 5-6
write read, 11-5

signal descriptions (table)
NI USB-8451, 3-6
NI USB-8452, 3-14

signal label application diagram (figure), 3-3
slave functions, 10-28
SMBus

current levels, 1-6
logic levels, 1-5
timeout and clock rates, 1-5

software
installation, 2-1

NI USB-8451, 3-2
NI USB-8452, 3-13

software (NI resources), B-1
specifications, A-1

CE compliance, A-15
electromagnetic compatibility, A-14
environmental, A-16
environmental management, A-16
NI USB-8451, A-1

bus interface, A-4
digital I/0, A-1
I2C interface, A-3
output voltage sources, A-4
overvoltage protection, A-6
physical characteristics, A-4
power requirements, A-4
SPI interface, A-2

NI USB-8451 OEM
front and rear view dimensions

(figure), A-5
physical characteristics, A-5
top view dimensions (figure), A-5

NI USB-8452, A-6
bus interface, A-12
digital I/0, A-6
I2C interface, A-10
output voltage sources, A-12

physical characteristics, A-12
power requirements, A-12
SPI interface, A-8

NI USB-8452 OEM
front and rear view dimensions

(figure), A-14
physical characteristics, A-13
top view dimensions (figure), A-13

online product certification, A-16
safety, A-14

hazardous locations, A-14
SPI bus, 1-6

clock and polarity, 1-7
error handling, 1-8
overview, 1-7
terminology, 1-6

SPI configure, 11-2
SPI interface

NI USB-8451, 3-9
NI USB-8452, 3-16
specifications

NI USB-8451, A-2
NI USB-8452, A-8

standard mode
NI USB-8452, 3-18

stream mode
NI USB-8452, 3-18

to three peripherals (figure)
NI USB-8451, 3-9
NI USB-8452, 3-17

SPI pin descriptions, 14-4
SPI Stream API, 14-1

extra pin descriptions, 14-4
programming model, 14-1
waveform 1, 14-3

SPI stream configure, 14-2
SPI stream read, 14-2
SPI stream start, 14-2
SPI stream stop, 14-2
SPI timing characteristics, 11-2
SPI write read, 11-2

Index

NI-845x Hardware and Software Manual I-14 ni.com

streaming functions, 16-36
streaming VIs, 15-18
support, technical, B-1
system configuration API, 2-3

T
technical support, B-1
terminology

I2C bus, 1-1
SPI bus, 1-6

timeout and clock rates, 1-5
training and certification (NI resources), B-2
troubleshooting (NI resources), B-1

V
Vref I/O reference voltage

NI USB-8452, 3-22

W
waveform 1

timing diagram (figure), 14-3
timing paremeters (table), 14-4

waveform1, 14-3
Web resources, B-1

	NI-845x Hardware and Software Manual
	Support
	Worldwide Technical Support and Product Information
	Worldwide Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	End-User License Agreements and Third-Party Legal Notices
	Trademarks
	Patents
	Export Compliance Information
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Compliance
	Contents
	About This Manual
	Conventions

	Chapter 1 Introduction
	I2C Bus
	I2C Terminology
	I2C Bus
	I2C Arbitration
	I2C Transfers
	Figure 1-1. I2C Transfers

	I2C ACK Polling
	I2C Clock Stretching
	I2C Extended (10-Bit) Addressing
	I2C High Speed Master Code
	I2C vs. SMBus

	SPI Bus
	SPI Terminology
	SPI Bus
	Clock and Polarity
	Table 1-1. SPI Modes
	Figure 1-2. SPI Polarity Phase Differences

	Error Handling

	Chapter 2 Installation
	Software Installation
	Hardware Installation
	System Configuration API

	Chapter 3 NI USB-845x Hardware Overview
	Overview
	NI USB-8451
	Overview
	Block Diagram
	Figure 3-1. NI USB-8451 Block Diagram

	Installing Software
	Setting Up Hardware
	NI USB-8451
	Figure 3-2. Signal Label Application Diagram
	NI USB-8451 OEM

	I/O Connector and Cable
	NI USB-8451
	Table 3-1. Digital Terminal Assignments
	NI USB-8451 OEM
	Table 3-2. Pin Assignments

	Signal Descriptions
	Table 3-3. Signal Descriptions

	Front-End I/O Interfaces
	Digital I/O (DIO)
	Figure 3-3. Example of Connecting External User-Provided Resistor
	Figure 3-4. Example of Connecting a Load
	SPI Interface
	Figure 3-5. SPI Interface to Three Peripherals
	I2C Interface
	Figure 3-6. I2C Interface to Two Peripherals

	I/O Protection
	Power-On States
	+5 V Power Source

	NI USB-8452
	Overview
	Figure 3-7. NI USB-8452 with Enclosure

	Block Diagram
	Figure 3-8. NI USB-8452 Block Diagram

	Installing Software
	Setting Up Hardware
	Figure 3-9. IDE-40 Connector Pin Assignments

	Signal Descriptions
	Table 3-4. Signal Descriptions

	Front-End I/O Interfaces
	SPI Interface
	Figure 3-10. SPI Interface to Three Peripherals
	I2C Interface
	Figure 3-11. I2C Interface to Two Peripherals
	Digital I/O (DIO)

	LED Indicators
	Figure 3-12. LED Indicators on NI USB-8452
	Figure 3-13. LED Indicators on NI USB-8452 OEM

	I/O Protection
	Power-On States
	Power Sources
	+5 V Power Source
	Vref I/O Reference Voltage

	Chapter 4 Using the NI-845x API
	Chapter 5 Using the NI-845x I2C API
	I2C Basic Programming Model
	Figure 5-1. Basic Programming Model for I2C Communication
	I2C Configure
	I2C Write
	I2C Read
	I2C Write Read

	I2C Scripting Programming Model
	Figure 5-2. Example of Scripting Programming Model with Scripting API for I2C Communication
	Script: Set I2C Clock Rate
	Script: Set I2C ACK Poll Timeout
	Script: Pullup Enable
	Script: Set I2C High Speed Clock Rate
	Script: Set I2C High Speed Enable
	Script: Issue Start Condition
	Script: Send High Speed Master Code
	Script: Send Address + Read
	Script: Read
	Script: Send Address + Write
	Script: Write
	Script: Issue Stop Condition
	Run Script
	Extract Read Data

	Chapter 6 NI-845x I2C API for LabVIEW
	General Device
	NI-845x Close Reference.vi
	NI-845x Device Property Node
	NI-845x Device Reference

	Configuration
	NI-845x I2C Configuration Property Node
	NI-845x I2C Create Configuration Reference.vi

	Basic
	NI-845x I2C Read.vi
	NI-845x I2C Write.vi
	NI-845x I2C Write Read.vi

	Scripting
	NI-845x I2C Create Script Reference.vi
	NI-845x I2C Extract Script Read Data.vi
	NI-845x I2C Run Script.vi
	NI-845x I2C Script ACK Poll Timeout.vi
	NI-845x I2C Script Address+Read.vi
	NI-845x I2C Script Address+Write.vi
	NI-845x I2C Script Clock Rate.vi
	NI-845x I2C Script Delay (Microsecond).vi
	NI-845x I2C Script Delay (Millisecond).vi
	NI-845x I2C Script DIO Configure Line.vi
	NI-845x I2C Script DIO Configure Port.vi
	NI-845x I2C Script DIO Read Line.vi
	NI-845x I2C Script DIO Read Port.vi
	NI-845x I2C Script DIO Write Line.vi
	NI-845x I2C Script DIO Write Port.vi
	NI-845x I2C Script Pullup Enable.vi
	NI-845x I2C Script HS Enable.vi
	NI-845x I2C Script HS Master Code.vi
	NI-845x I2C Script HS Clock Rate.vi
	NI-845x I2C Script Issue Start.vi
	NI-845x I2C Script Issue Stop.vi
	NI-845x I2C Script Read.vi
	NI-845x I2C Script Write.vi

	Chapter 7 NI-845x I2C API for C
	Section Headings
	Purpose
	Format
	Inputs and Outputs
	Description

	Data Types
	List of Functions
	General Device
	ni845xClose
	ni845xCloseFindDeviceHandle
	ni845xDeviceLock
	ni845xDeviceUnlock
	ni845xFindDevice
	ni845xFindDeviceNext
	ni845xOpen
	ni845xSetIoVoltageLevel
	ni845xI2cSetPullupEnable
	ni845xStatusToString
	ni845xSetTimeout

	Configuration
	ni845xI2cConfigurationClose
	ni845xI2cConfigurationGetAckPollTimeout
	ni845xI2cConfigurationGetAddress
	ni845xI2cConfigurationGetAddressSize
	ni845xI2cConfigurationGetClockRate
	ni845xI2cConfigurationGetHSClockRate
	ni845xI2cConfigurationGetHSEnable
	ni845xI2cConfigurationGetHSMasterCode
	ni845xI2cConfigurationGetPort
	ni845xI2cConfigurationOpen
	ni845xI2cConfigurationSetAckPollTimeout
	ni845xI2cConfigurationSetAddress
	ni845xI2cConfigurationSetAddressSize
	ni845xI2cConfigurationSetClockRate
	ni845xI2cConfigurationSetHSClockRate
	ni845xI2cConfigurationSetHSEnable
	ni845xI2cConfigurationSetHSMasterCode
	ni845xI2cConfigurationSetPort

	Basic
	ni845xI2cRead
	ni845xI2cWrite
	ni845xI2cWriteRead

	Scripting
	ni845xI2cScriptAckPollTimeout
	ni845xI2cScriptAddressRead
	ni845xI2cScriptAddressWrite
	ni845xI2cScriptClockRate
	ni845xI2cScriptClose
	ni845xI2cScriptDelay
	ni845xI2cScriptDioConfigureLine
	ni845xI2cScriptDioConfigurePort
	ni845xI2cScriptDioReadLine
	ni845xI2cScriptDioReadPort
	ni845xI2cScriptDioWriteLine
	ni845xI2cScriptDioWritePort
	ni845xI2cScriptPullupEnable
	ni845xI2cScriptExtractReadData
	ni845xI2cScriptExtractReadDataSize
	ni845xI2cScriptHSEnable
	ni845xI2cScriptHSMasterCode
	ni845xI2cScriptHSClockRate
	ni845xI2cScriptIssueStart
	ni845xI2cScriptIssueStop
	ni845xI2cScriptOpen
	ni845xI2cScriptRead
	ni845xI2cScriptReset
	ni845xI2cScriptRun
	ni845xI2cScriptUsDelay
	ni845xI2cScriptWrite

	Chapter 8 Using the NI-845x I2C Slave API
	I2C Slave Programming Model
	Figure 8-1. Programming Model for I2C Slave Communication
	I2C Slave Configure
	I2C Slave Start
	I2C Slave Wait For Event
	I2C Slave Read
	I2C Slave Write
	I2C Slave Get Write Information
	I2C Slave Stop

	Chapter 9 NI-845x I2C Slave API for LabVIEW
	General Device
	NI-845x Close Reference.vi
	NI-845x Device Property Node
	NI-845x Device Reference

	Configuration
	NI-845x I2C Slave Configuration Property Node
	NI-845x I2C Slave Create Configuration Reference.vi
	NI-845x I2C Slave Get Write Info.vi
	NI-845x I2C Slave Read.vi
	NI-845x I2C Slave Start.vi
	NI-845x I2C Slave Stop.vi
	NI-845x I2C Slave Wait for Event.vi
	NI-845x I2C Slave Write.vi

	Chapter 10 NI-845x I2C Slave API for C
	Section Headings
	Purpose
	Format
	Inputs and Outputs
	Description

	Data Types
	List of Functions
	General Device
	ni845xClose
	ni845xCloseFindDeviceHandle
	ni845xDeviceLock
	ni845xDeviceUnlock
	ni845xFindDevice
	ni845xFindDeviceNext
	ni845xOpen
	ni845xSetIoVoltageLevel
	ni845xI2cSetPullupEnable
	ni845xSetTimeout
	ni845xStatusToString

	Configuration
	ni845xI2cSlaveConfigurationClose
	ni845xI2cSlaveConfigurationGetAddress
	ni845xI2cSlaveConfigurationGetAutoRemovalTimeout
	ni845xI2cSlaveConfigurationGetCommandBufferSize
	ni845xI2cSlaveConfigurationGetDataBufferSize
	ni845xI2cSlaveConfigurationOpen
	ni845xI2cSlaveConfigurationSetAddress
	ni845xI2cSlaveConfigurationSetAutoRemovalTimeout
	ni845xI2cSlaveConfigurationSetCommandBufferSize
	ni845xI2cSlaveConfigurationSetDataBufferSize

	Slave
	ni845xI2cSlaveGetWriteInfo
	ni845xI2cSlaveRead
	ni845xI2cSlaveStart
	ni845xI2cSlaveStop
	ni845xI2cSlaveWaitForEvent
	ni845xI2cSlaveWrite

	Chapter 11 Using the NI-845x SPI API
	NI-845x SPI Basic Programming Model
	Figure 11-1. NI-845x SPI API Basic Programming Model
	SPI Configure
	SPI Write Read
	SPI Timing Characteristics
	Figure 11-2. SPI Waveform
	Table 11-1. NI USB-8451 Basic API SPI Timing Characteristics
	Table 11-2. NI USB-8452 Basic API SPI Timing Characteristics

	NI-845x SPI Scripting Programming Model
	Figure 11-3. Scripting Functions Programming Example
	Script: Enable SPI
	Script: Configure Phase, Polarity, Clock Rate, Number of Bits
	Script: Chip Select Low
	Script: Write Read
	Script: Chip Select High
	Script: Disable SPI
	Run Script
	Extract Read Data

	Chapter 12 NI-845x SPI API for LabVIEW
	General Device
	NI-845x Close Reference.vi
	NI-845x Device Property Node
	NI-845x Device Reference

	Configuration
	NI-845x SPI Configuration Property Node
	NI-845x SPI Create Configuration Reference.vi

	Basic
	NI-845x SPI Write Read.vi

	Scripting
	NI-845x SPI Create Script Reference.vi
	NI-845x SPI Extract Script Read Data.vi
	NI-845x SPI Run Script.vi
	NI-845x SPI Script Clock Polarity Phase.vi
	NI-845x SPI Script Clock Rate.vi
	NI-845x SPI Script CS High.vi
	NI-845x SPI Script CS Low.vi
	NI-845x SPI Script Delay (Microsecond).vi
	NI-845x SPI Script Delay (Millisecond).vi
	NI-845x SPI Script DIO Configure Line.vi
	NI-845x SPI Script DIO Configure Port.vi
	NI-845x SPI Script DIO Read Line.vi
	NI-845x SPI Script DIO Read Port.vi
	NI-845x SPI Script DIO Write Line.vi
	NI-845x SPI Script DIO Write Port.vi
	NI-845x SPI Script Disable SPI.vi
	NI-845x SPI Script Enable SPI.vi
	NI-845x SPI Script Num Bits Per Sample.vi
	NI-845x SPI Script Write Read.vi

	Chapter 13 NI-845x SPI API for C
	Section Headings
	Purpose
	Format
	Inputs and Outputs
	Description

	Data Types
	List of Functions
	General Device
	ni845xClose
	ni845xCloseFindDeviceHandle
	ni845xDeviceLock
	ni845xDeviceUnlock
	ni845xFindDevice
	ni845xFindDeviceNext
	ni845xOpen
	ni845xSetIoVoltageLevel
	ni845xSetTimeout
	ni845xStatusToString

	Configuration
	ni845xSpiConfigurationClose
	ni845xSpiConfigurationGetChipSelect
	ni845xSpiConfigurationGetClockPhase
	ni845xSpiConfigurationGetClockPolarity
	ni845xSpiConfigurationGetClockRate
	ni845xSpiConfigurationGetNumBitsPerSample
	ni845xSpiConfigurationGetPort
	ni845xSpiConfigurationOpen
	ni845xSpiConfigurationSetChipSelect
	ni845xSpiConfigurationSetClockPhase
	ni845xSpiConfigurationSetClockPolarity
	ni845xSpiConfigurationSetClockRate
	ni845xSpiConfigurationSetNumBitsPerSample
	ni845xSpiConfigurationSetPort

	Basic
	ni845xSpiWriteRead

	Scripting
	ni845xSpiScriptClockPolarityPhase
	ni845xSpiScriptClockRate
	ni845xSpiScriptClose
	ni845xSpiScriptCSHigh
	ni845xSpiScriptCSLow
	ni845xSpiScriptDelay
	ni845xSpiScriptDioConfigureLine
	ni845xSpiScriptDioConfigurePort
	ni845xSpiScriptDioReadLine
	ni845xSpiScriptDioReadPort
	ni845xSpiScriptDioWriteLine
	ni845xSpiScriptDioWritePort
	ni845xSpiScriptDisableSPI
	ni845xSpiScriptEnableSPI
	ni845xSpiScriptExtractReadData
	ni845xSpiScriptExtractReadDataSize
	ni845xSpiScriptNumBitsPerSample
	ni845xSpiScriptOpen
	ni845xSpiScriptReset
	ni845xSpiScriptRun
	ni845xSpiScriptUsDelay
	ni845xSpiScriptWriteRead

	Chapter 14 Using the NI-845x SPI Stream API
	NI-845x SPI Stream Programming Model
	Figure 14-1. NI-845x SPI API Stream Programming Model
	SPI Stream Configure
	SPI Stream Start
	SPI Stream Read
	SPI Stream Stop

	Waveform 1
	Figure 14-2. Waveform 1 Timing Diagram
	Table 14-1. Timing Parameters

	Extra SPI Pin Descriptions
	CONV
	DRDY
	Chip Select

	Chapter 15 NI-845x SPI Stream API for LabVIEW
	General Device
	NI-845x Close Reference.vi
	NI-845x Device Property Node
	NI-845x Device Reference

	Configuration
	NI-845x SPI Stream Configuration Property Node
	NI-845x SPI Stream Create Configuration Reference.vi

	Streaming
	NI-845x SPI Stream Read.vi
	NI-845x SPI Stream Start.vi
	NI-845x SPI Stream Stop.vi

	Chapter 16 NI-845x SPI Stream API for C
	Section Headings
	Purpose
	Format
	Inputs and Outputs
	Description

	Data Types
	List of Functions
	General Device
	ni845xClose
	ni845xCloseFindDeviceHandle
	ni845xDeviceLock
	ni845xDeviceUnlock
	ni845xFindDevice
	ni845xFindDeviceNext
	ni845xOpen
	ni845xSetTimeout
	ni845xStatusToString

	Configuration
	ni845xSpiStreamConfigurationClose
	ni845xSpiStreamConfigurationOpen
	ni845xSpiStreamConfigurationGetNumBits
	ni845xSpiStreamConfigurationGetNumSamples
	ni845xSpiStreamConfigurationGetPacketSize
	ni845xSpiStreamConfigurationGetClockPhase
	ni845xSpiStreamConfigurationWave1GetPinConfig
	ni845xSpiStreamConfigurationGetClockPolarity
	ni845xSpiStreamConfigurationWave1GetTimingParam
	ni845xSpiStreamConfigurationWave1SetMosiData
	ni845xSpiStreamConfigurationSetNumBits
	ni845xSpiStreamConfigurationSetNumSamples
	ni845xSpiStreamConfigurationSetPacketSize
	ni845xSpiStreamConfigurationSetClockPhase
	ni845xSpiStreamConfigurationWave1SetPinConfig
	ni845xSpiStreamConfigurationSetClockPolarity
	ni845xSpiStreamConfigurationWave1SetTimingParam

	Streaming
	ni845xSpiStreamRead
	ni845xSpiStreamStart
	ni845xSpiStreamStop

	Chapter 17 Using the NI-845x DIO API
	NI-845x DIO Basic Programming Model
	Figure 17-1. Basic Programming Model for DIO Communication
	DIO Port Configure
	DIO Port Write
	DIO Port Read
	DIO Line Write
	DIO Line Read

	Chapter 18 NI-845x DIO API for LabVIEW
	General Device
	NI-845x Close Reference.vi
	NI-845x Device Property Node
	NI-845x Device Reference

	Basic
	NI-845x DIO Read Line.vi
	NI-845x DIO Read Port.vi
	NI-845x DIO Write Line.vi
	NI-845x DIO Write Port.vi

	Chapter 19 NI-845x DIO API for C
	Section Headings
	Purpose
	Format
	Inputs and Outputs
	Description

	Data Types
	List of Functions
	General Device
	ni845xClose
	ni845xCloseFindDeviceHandle
	ni845xDeviceLock
	ni845xDeviceUnlock
	ni845xFindDevice
	ni845xFindDeviceNext
	ni845xOpen
	ni845xSetIoVoltageLevel
	ni845xSetTimeout
	ni845xStatusToString

	Basic
	ni845xDioReadLine
	ni845xDioReadPort
	ni845xDioSetPortLineDirectionMap
	ni845xDioSetDriverType
	ni845xDioWriteLine
	ni845xDioWritePort

	Appendix A NI USB-845x Hardware Specifications
	NI USB-8451
	Digital I/O (DIO)
	SPI Interface
	I2C Interface
	Bus Interface
	Power Requirements
	Output Voltage Sources
	Physical Characteristics
	NI USB-8451
	NI USB-8451 OEM
	Figure A-1. USB-8451 OEM Dimensions (Top View)
	Figure A-2. USB-8451 OEM Dimensions (Front and Rear Views)

	Overvoltage Protection

	NI USB-8452
	Digital I/O(DIO)
	SPI Interface
	I2C Interface
	Bus Interface
	Power Requirements
	Output Voltage Sources
	Physical Characteristics
	NI USB-8452
	NI USB-8452 OEM
	Figure A-3. USB-8452 OEM Dimensions (Top View)
	Figure A-4. USB-8452 OEM Dimensions (Front and Rear Views)

	Safety
	Safety Standards
	Hazardous Locations
	Electromagnetic Compatibility
	NI USB-8451
	NI USB-8452
	NI USB-8451 OEM, NI USB-8452 OEM

	CE Compliance
	NI USB-8451
	NI USB-8452
	NI USB-8451 OEM, NI USB-8452 OEM

	Online Product Certification
	Environmental
	Environmental Management

	Appendix B Technical Support and Professional Services
	Glossary
	A-C
	I-S
	T

	Index
	Symbols
	A-C
	D-H
	I-L
	N
	O-S
	T-W

