
NI-XNET 20.5

2022-07-06

Contents

NI-XNET Hardware and Software Help. 7
Introduction. 8
LabVIEW Project Provider. 10
Troubleshooting and Common Questions. 11
Installation and Configuration. 15

Safety Information. 15
Measurement & Automation Explorer (MAX). 17
Verifying NI-XNET Hardware Installation. 17
XNET Device Firmware Update. 18
Configuring NI-XNET Interfaces. 19
LabVIEW Real-Time (RT) Configuration. 20
Getting Started with CompactRIO. 20
Tools. 26

NI-XNET Hardware Overview. 27
Overview. 27
CAN, FlexRay, and LIN Hardware. 27

CAN Hardware. 27
FlexRay Hardware. 42
LIN Hardware. 44
Isolation. 48
LEDs. 49
Synchronization. 51

NI Automotive Ethernet Hardware. 53
LEDs. 53
Pinout. 54
Synchronization. 54

NI-XNET API for LabVIEW. 57
Getting Started. 57
Basic Programming Model. 60
Interfaces. 62

What Is an Interface?. 62
How Do I View Available Interfaces?. 63

Databases. 65

ni.com2

NI-XNET 20.5

What Is a Database?. 65
What Is an Alias?. 66
Database Programming. 67

Sessions. 72
What Is a Session?. 73
Session Modes. 74
How Do I Create a Session?. 112

Using CAN. 113
Using Ethernet. 115
Using FlexRay. 119
Using LIN. 122
Using LabVIEW Real-Time. 123
System Configuration API. 126

Device. 129
Interface. 129

Automotive Ethernet Socket API. 144
XNET IP Stack. 144
Supported Features. 145

J1939 Sessions. 146
Compatibility Issue. 146
J1939 Basics. 148
Node Addresses in NI-XNET. 149
Address Claiming Procedure. 151
Mixing J1939 and CAN Messages. 151
Transport Protocol (TP). 152
NI-XNET Sessions. 152
Not Supported in the Current NI-XNET Version. 152

Reference. 153
XNET Session Constant. 153
XNET Create Session.vi. 153
XNET Session Node. 169
XNET Read.vi. 350
XNET Write.vi. 402
Database. 431

© National Instruments 3

NI-XNET 20.5

Notify. 620
Advanced. 636
IP Stack. 715
Controls. 748

Appendix. 751
Additional Information. 752
CAN. 798
FlexRay. 810
LIN. 820
XNET I/O Names. 825

NI-XNET API for C. 863
Getting Started. 863
Interfaces. 865

What Is an Interface?. 865
How Do I View Available Interfaces?. 867

Databases. 867
What Is a Database?. 867
What Is an Alias?. 869
Database Programming. 869

Sessions. 872
What is a Session?. 872
Session Modes. 873

Automotive Ethernet Socket API for C. 908
Getting Started. 908
IP Stack. 909
Sockets. 910
Reference. 911

J1939 Sessions. 959
Compatibility Issue. 959
J1939 Basics. 960
Node Addresses in NI-XNET. 962
Address Claiming Procedure. 963
Mixing J1939 and CAN Messages. 964
Transport Protocol (TP). 964

ni.com4

NI-XNET 20.5

NI-XNET Sessions. 965
Not Supported in the Current NI-XNET Version. 965
CAN FD, ISO Versus Non-ISO. 965

Reference. 966
Functions. 966
Properties. 1086

Additional Topics. 1421
Overall. 1421
CAN. 1455
FlexRay. 1465
LIN. 1476

Summary of the CAN Standard. 1481
History and Use of CAN. 1481
CAN Identifiers and Message Priority. 1482
CAN Frames. 1483
CAN FD Frames. 1485
CAN Error Detection and Confinement. 1487

Error Detection. 1487
Error Confinement. 1488

Low-Speed CAN. 1490
Single Wire CAN. 1491

Summary of the Ethernet Standard. 1492
Summary of the FlexRay Standard. 1494

FlexRay Overview. 1494
Increasing Communications Demands. 1495
FlexRay Network. 1495

FlexRay Bus Benefits. 1496
Data Security and Error Handling. 1496
Protocol Operation Control. 1497
Communication Cycle. 1498
Startup. 1499
Clock Synchronization. 1502
Frame Format. 1503

Summary of the LIN Standard. 1505

© National Instruments 5

NI-XNET 20.5

History and Use of LIN. 1505
LIN Topology and Behavior. 1505
LIN Frame Format. 1506
LIN Bus Timing. 1508
LIN Error Detection and Confinement. 1509
LIN Sleep and Wakeup. 1510
Advanced Frame Types. 1510

Bus Monitor. 1512
Overview. 1512

Database Editor. 1513
Why Databases?. 1513
Database Formats. 1513
Clusters. 1514
Frames. 1514
PDUs. 1515
Signals. 1515
ECUs. 1515

Port Configuration Utility. 1517
Overview. 1517

ni.com6

NI-XNET 20.5

August 2020, 372841AD-01

This help describes how to install and configure the NI-XNET hardware and software
and summarizes CAN, FlexRay, LIN, and Ethernet standards. It also includes the NI-
XNET LabVIEW and C API reference.

© National Instruments 7

NI-XNET 20.5

Introduction
Welcome to NI-XNET, the National Instruments software for CAN, FlexRay, LIN, and
Ethernet products.

NI-XNET is designed to meet the following goals:

■ Ease of use: NI-XNET features provide fundamental concepts so that you
can get started with programming.
■ Consistency: NI-XNET uses common industry concepts for embedded
networks such as CAN. These concepts help to abstract the differences
between protocols, so you can focus on your application.
■ Completeness: NI-XNET provides a broad spectrum of features, from easy-
to-use signal I/O, down to more advanced streaming of raw frames. You can
use these features simultaneously on the same interface: input along with
output and signal I/O along with frame I/O.
■ Performance: Read and Write functions are designed to execute quickly,
without loss of data. Performance for LabVIEW Real-Time (RT) applications is a
key focus of NI-XNET software and hardware architecture.

If you are new to one of the supported protocols, refer to one of the following
summaries for an introduction.

■ Summary of the CAN Standard
■ Summary of the FlexRay Standard
■ Summary of the LIN Standard
■ Summary of the Ethernet Standard

If you are new to the CAN protocol, refer to Summary of the CAN Standard for an
introduction. If you are new to the FlexRay protocol, refer to Summary of the
FlexRay Standard for an introduction. If you are new to the LIN protocol, refer to
Summary of the LIN Standard for an introduction.

The NI-XNET Hardware Overview summarizes the features of National Instruments
hardware for CAN, FlexRay, LIN, and Automotive Ethernet.

ni.com8

NI-XNET 20.5

If you use LabVIEW for programming, refer to the Getting Started topic of the NI-
XNET API for LabVIEW for a description of NI-XNET software concepts and
programming models.

If you use C, C++, or another language for programming, refer to the Getting Started
topic of the NI-XNET API for C for a description of NI-XNET software concepts and
programming models.

© National Instruments 9

NI-XNET 20.5

LabVIEW Project Provider
You can use NI-XNET features to create NI-XNET sessions within your LabVIEW
project. You can drag these preconfigured NI-XNET sessions from the project to the
block diagram and wire them directly to the XNET Read and XNET Write VIs.

You typically use a LabVIEW project when your application accesses the network
using a fixed configuration. For example, if you are testing a single product, and your
VI reads/writes a predetermined set of signals, a LabVIEW project is ideal.

Follow these steps to use NI-XNET within a LabVIEW project:

1. Right-click on the LabVIEW target you plan to use with NI-XNET. For Windows,
this is My Computer. For LabVIEW Real-Time (RT), this is an RT target, such as a
PXI controller.

2. Select New»NI-XNET Session.
3. Use the wizard and setup dialog to configure the session. Each configuration

step has online help. When you are done, click OK to close the setup dialog.
4. If you do not have a VI already, add a VI under the LabVIEW target. You must

use the new session within a VI listed under the same target.
5. Drag the new session to the VI block diagram. NI-XNET creates an XNET Read

or XNET Write VI that matches the session mode. You need to make some
changes to the block diagram, such as creating a loop. You now can run the VI.

If you require configuration of NI-XNET sessions at run time, you can use the XNET
Create Session VI as an alternative to a LabVIEW project. For example, if your
application tests a wide variety of products, and the end user of your application
must select a database and its signals using the front panel, the XNET Create
Session VI is ideal.

ni.com10

NI-XNET 20.5

Troubleshooting and Common Questions
Where is my database on my disk?

The NI-XNET driver works with database aliases, which can cause some confusion
when trying to share the actual database file. This also can cause problems if the
database file is deleted on the disk, but the alias remains in the editor. There are two
ways to find the path of your database on your disk:

■ In the NI-XNET database editor, select File»Manage Aliases.
■ In LabVIEW, right-click the I/O control and select Manage Aliases.

The following window appears, and you can see where your database file is on the
disk.

The NIXNET_example database is at C:\Documents and Settings\All Use
rs\Documents\National Instruments\NI-XNET\Examples.

How is the example database alias automatically added?

NI-XNET is hard coded to detect whether you are trying to open a session using the
NIXNET_example database and programmatically add the alias for you if it is not
already present.

© National Instruments 11

NI-XNET 20.5

How is the example database automatically deployed on LabVIEW RT?

The NI-XNET LabVIEW RT installer automatically deploys the NIXNET_example
database during the installation. This makes it easier to test the example on your
LabVIEW RT system.

The example database is added automatically on Windows and LabVIEW RT.
Can I erase all traces of it?

Yes. Complete the following steps to erase all traces of the example database.

On Windows:

1. Open the Manage NI-XNET Databases dialog (see above), select the
NIXNET_example alias on your local machine, and select Remove Alias.

2. Browse to C:\Documents and Settings\All Users\Documents\
National Instruments\NI-XNET\Examples on your local machine
and delete the nixnet_example.xml file.

Notes The NI-XNET LabVIEW, CVI, and C examples work with this database file and therefore
are not guaranteed to work if you delete the database file.

The NI-XNET database is installed automatically with NI-XNET.

On LabVIEW RT:

Open the Manage NI-XNET Databases dialog (see above) and connect to your
LabVIEW RT target by entering the IP address and clicking Connect. Select the
NIXNET_example database and click Undeploy.

Can I permanently set the baud rate setting for my device as in NI-CAN?

There is no way to set the baud rate permanently in NI-XNET. The cluster in the
FIBEX database file sets the baud rate. If you are using a frame streaming session
without a database, you must set the baud rate programmatically.

ni.com12

NI-XNET 20.5

Can I permanently set the transceiver type for my CAN XS device as in NI-
CAN?

There is no way to set the transceiver type permanently in NI-XNET. The NI-XNET
CAN XS device always defaults to a High Speed (HS) transceiver type. If you want a
different transceiver type, you always must set it programmatically. You can set it
programmatically in the following ways.

In LabVIEW:

Use a property node (shown below) for the session.

In C:

Use the following code:

Property = nxCANTcvrType_LS;
//(or Property = nxCANTcvrType_HS or Property = nxCANTcvrT
ype_SW)
nxGetPropertySize (SessionRef, nxPropSession_IntfCANTcvrTy
pe, &PropertySize);
nxSetProperty (SessionRef, nxPropSession_IntfCANTcvrType,
PropertySize, &Property);

Can I change the database or object properties setting programmatically
(for example, change the cycle time of a cyclic frame)?

Yes. You can open an object and change its properties programmatically. This has no
effect on the actual database. It only changes the properties of the objects loaded in
memory until the session is closed and the objects are released from memory. An
example of how to do this is in the example finder at Hardware Input and

Output»CAN»NI-XNET»Intro to Sessions»Frame Sessions»CAN Change Frame
Properties Dynamically.

© National Instruments 13

NI-XNET 20.5

Why is there no XNET Clear VI at the end of the examples?

When the VI or application is stopped, NI-XNET takes care of closing all references
for you. This makes programming simpler and more robust, as you do not need to
ensure all references are closed.

ni.com14

NI-XNET 20.5

Installation and Configuration
The following topics explain how to install and configure NI-XNET hardware:

Safety Information

Measurement & Automation Explorer (MAX)

Verifying NI-XNET Hardware Installation

Configuring NI-XNET Interfaces

LabVIEW Real-Time (RT) Configuration

Tools

Safety Information
The following section contains important safety information that you must follow
when installing and using the module.

Do not operate the module in a manner not specified in this document. Misuse of
the module can result in a hazard. You can compromise the safety protection built
into the module if the module is damaged in any way. If the module is damaged,
return it to National Instruments (NI) for repair.

Do not substitute parts or modify the module except as described in this document.
Use the module only with the chassis, modules, accessories, and cables specified in
the installation instructions. You must have all covers and filler panels installed
during operation of the module.

Do not operate the module in an explosive atmosphere or where there may be
flammable gases or fumes. If you must operate the module in such an environment,
it must be in a suitably rated enclosure.

If you need to clean the module, use a soft, nonmetallic brush. Make sure that the
module is completely dry and free from contaminants before returning it to service.

Operate the module only at or below Pollution Degree 2. Pollution is foreign matter
in a solid, liquid, or gaseous state that can reduce dielectric strength or surface
resistivity. The following is a description of pollution degrees:

© National Instruments 15

NI-XNET 20.5

■ Pollution Degree 1 means no pollution or only dry, nonconductive pollution
occurs. The pollution has no influence.
■ Pollution Degree 2 means that only nonconductive pollution occurs in most
cases. Occasionally, however, a temporary conductivity caused by
condensation must be expected.
■ Pollution Degree 3 means that conductive pollution occurs, or dry,
nonconductive pollution occurs that becomes conductive due to
condensation.

You must insulate signal connections for the maximum voltage for which the
module is rated. Do not exceed the maximum ratings for the module. Do not install
wiring while the module is live with electrical signals.

Do not remove or add connector blocks when power is connected to the system.
Avoid contact between your body and the connector block signal when hot
swapping modules. Remove power from signal lines before connecting them to or
disconnecting them from the module.

Operate the module at or below the installation category1 marked on the
hardware label. Measurement circuits are subjected to working voltages2 and
transient stresses (overvoltage) from the circuit to which they are connected during
measurement or test. Installation categories establish standard impulse withstand
voltage levels that commonly occur in electrical distribution systems. The following
is a description of installation categories:

■ Installation Category I is for measurements performed on circuits not
directly connected to the electrical distribution system referred to as MAINS3

voltage. This category is for measurements of voltages from specially
protected secondary circuits. Such voltage measurements include signal
levels, special equipment, limited-energy parts of equipment, circuits
powered by regulated low-voltage sources, and electronics.
■ Installation Category II is for measurements performed on circuits directly
connected to the electrical distribution system. This category refers to local-
level electrical distribution, such as that provided by a standard wall outlet
(for example, 115 AC voltage for U.S. or 230 AC voltage for Europe). Examples
of Installation Category II are measurements performed on household
appliances, portable tools, and similar modules.

ni.com16

NI-XNET 20.5

■ Installation Category III is for measurements performed in the building
installation at the distribution level. This category refers to measurements on
hard-wired equipment such as equipment in fixed installations, distribution
boards, and circuit breakers. Other examples are wiring, including cables, bus
bars, junction boxes, switches, socket outlets in the fixed installation, and
stationary motors with permanent connections to fixed installations.
■ Installation Category IV is for measurements performed at the primary
electrical supply installation (<1,000 V). Examples include electricity meters
and measurements on primary overcurrent protection devices and on ripple
control units.

1 Installation categories, also referred to as measurement categories, are defined in
electrical safety standard IEC 61010–1.

2 Working voltage is the highest rms value of an AC or DC voltage that can occur
across any particular insulation.

3 MAINS is defined as a hazardous live electrical supply system that powers
equipment. Suitably rated measuring circuits may be connected to the MAINS for
measuring purposes.

Measurement & Automation Explorer (MAX)
You can use Measurement & Automation Explorer (MAX) to access all National
Instruments products. Like other National Instruments hardware products, NI-XNET
uses NI MAX as the centralized location for XNET device configuration.

To launch MAX, click the Measurement & Automation shortcut on the desktop or
select Start»Programs»National Instruments»Measurement & Automation.

For information about the NI-XNET software in MAX, consult the online help at
Help»Help Topics»NI-XNET.

You can view help for NI MAX Configuration tree items using the built-in MAX help
pane. If this help pane does not appear on the right side of the MAX window, click
the Show Help button in the upper right corner.

© National Instruments 17

NI-XNET 20.5

Verifying NI-XNET Hardware Installation
The NI MAX Configuration tree Devices and Interfaces branch lists NI-XNET
hardware (along with other local computer system hardware), as shown in the
following figure.

NI-XNET Hardware Listed in MAX
If the NI-XNET hardware is not listed here, NI MAX is not configured to search for new
devices on startup. To search for the new hardware, press <F5>.

To verify installation of the NI-XNET hardware, right-click the NI-XNET device and
select Self-Test. If the self-test passes, the card icon shows a checkmark. If the self-
test fails, the card icon shows an X mark, and the Test Status in the right pane
describes the problem. Refer to Troubleshooting and Common Questions for
information about resolving hardware installation problems.

ni.com18

NI-XNET 20.5

XNET Device Firmware Update
For PXI Express devices and C Series modules, the firmware is not updated
automatically when you open an XNET session. The right pane in NI MAX displays
the firmware status.

If the firmware on the XNET device does not match the version the XNET software
expects, a yellow warning is displayed on the device icon, and a message is
displayed in the right pane, as shown below. In this case, you can use the Update

Firmware button to apply the proper firmware version to the device.

Configuring NI-XNET Interfaces
The NI-XNET hardware interfaces are listed under the device name. To change the
interface name, select a new one from the Name box in the right pane, as shown
below.

© National Instruments 19

NI-XNET 20.5

LabVIEW Real-Time (RT) Configuration
LabVIEW Real-Time (RT) combines easy-to-use LabVIEW programming with the
power of real-time systems. When you use a National Instruments PXI controller, you
can install an NI-XNET card and use the NI-XNET API to develop real-time
applications. For example, you can simulate the behavior of a control algorithm
within an XNET device, using data from received NI-XNET messages to generate
outgoing NI-XNET messages with deterministic response times.

When you install the NI-XNET software, the installer copies components for LabVIEW
RT to the Windows system. As with any other NI product for LabVIEW RT, you then
download the NI-XNET software to the LabVIEW RT system using the Remote

Systems branch in NI MAX. For more information, refer to the LabVIEW RT
documentation.

After you install the NI-XNET hardware and download the NI-XNET software to the
LabVIEW RT system, you can verify the installation. Find your RT target under
Remote Systems and open the Devices and Interfaces item. Perform a self test for
all installed NI-XNET devices.

ni.com20

NI-XNET 20.5

Getting Started with CompactRIO
When you use a C Series NI-XNET module in a CompactRIO chassis, the NI-XNET
features on LabVIEW RT are the same as on other LabVIEW RT targets, such as PXI.
Nevertheless, the communication between the NI-XNET RT driver and module does
not exist in the default FPGA VI that ships with CompactRIO. Prior to using NI-XNET
features, you must use LabVIEW FPGA to compile and run an FPGA VI that contains
the required communication logic.

The following steps describe how to use a C Series NI-XNET module in a CompactRIO
chassis from its out-of-box configuration.

1. Install the required software to the host computer.

1. LabVIEW (Including RT and FPGA)

Install LabVIEW, LabVIEW Real-Time, LabVIEW FPGA, and NI-RIO.

For supported versions of the software mentioned above, refer to the
Supported Platforms section in the NI-XNET readme file.

2. NI-XNET

Install NI-XNET after the required LabVIEW components.

2. Install NI-XNET to the CompactRIO RT controller.

Use MAX to find your CompactRIO controller under Remote Systems, then
right-click Software and select Change/Remove Software. There are two ways
to install the required components:

■ NI-RIO with NI Scan Engine Support

If this selection is dimmed, refer to the explanation on the right to resolve
the problem, or use custom installation. After selecting this item, the next
page displays a list of add-ons. Scroll down to the bottom of the add-on list
to check NI-XNET.

© National Instruments 21

NI-XNET 20.5

■ Custom Software Installation

Custom installation can be useful on controllers with small amounts of
memory because you can use it to avoid installing unused components.
Select the NI-XNET item, which in turn selects the required dependencies
(for example, NI-RIO IO Scan).

3. Add modules to the LabVIEW project.

To compile an FPGA VI with the required communication logic, you must add
NI-XNET modules in a LabVIEW project.

1. Add the controller.

Assuming your controller is online, you can right-click the project item
and select New»Targets and Devices»Existing target or device, then
select your controller under Real-Time CompactRIO. If your controller is
offline, you can add it by selecting New target or device.

2. Select the chassis programming mode.

When you add the controller, a dialog asks you to select the
programming mode for the chassis. Although NI-XNET uses scan engine
components, you must select LabVIEW FPGA Interface as the chassis
mode. This configures the chassis to support compiling an FPGA VI.

If a Discover C Series Modules? dialog appears, click the Do Not

Discover button and proceed to step d.
3. Ignore errors for discovered NI-XNET modules.

LabVIEW 2010 may report an error for NI-XNET modules, stating that
LabVIEW FPGA is not supported. LabVIEW 2011 or later does not report
this error. Do not change the chassis to Scan Interface mode. Ignore this
error message and click Continue.

4. Add NI-XNET modules.

Right-click the chassis item under the controller (not FPGA) and select

ni.com22

NI-XNET 20.5

New»C Series Modules»Existing target or device. Select the plus sign
to discover and then hold <Shift> to select all NI-XNET modules in the
list. Click OK to add the modules to the project.

You also can add NI-XNET modules offline by selecting New target or

device, then C Series Module, and in the next dialog select the
appropriate Module Type (for example, NI 9862). When you use an NI-
XNET module in a project, you do not necessarily need to have that
module installed physically. For NI-XNET, the module in the project is
simply a signal to the FPGA VI that NI-XNET communication is required
for that slot.

4. Compile and run the FPGA VI.

If you are new to CompactRIO, you can use an empty FPGA VI to get started
quickly with NI-XNET tools and examples. Select the FPGA target in the
LabVIEW project, and then select New»VI. When the front panel opens, click
the LabVIEW run button (the arrow) to compile and run the VI. Although the VI
is empty, it loads the required NI-XNET support. When compilation completes,
and the VI runs the first time, you can close the front panel and proceed to the
next step.

If you have an existing FPGA VI in your project, you must recompile the FPGA
VI to incorporate NI-XNET support for the configured slots. When the FPGA VI
is recompiled, you run it using the same methods you used previously. This
typically is done using Open FPGA VI Reference from a host VI.

The following tables provide a detailed list of actions that cause NI-XNET to
load and unload. NI-XNET must be loaded for its hardware to be detected.
Within the tables, the term XNET-enabled FPGA VI refers to an FPGA VI
compiled with a project that contains at least one NI-XNET module. The term
XNET-disabled FPGA VI refers to an FPGA VI compiled with no NI-XNET
modules.

© National Instruments 23

NI-XNET 20.5

Table 1. Actions That Cause NI-XNET to Load

Action Comment
Invoke Open FPGA VI Reference with an XN
ET-enabled FPGA VI.

NI-XNET loads regardless of whether Run the

FPGA VI is checked in the configuration dial
og.

Run the XNET-enabled FPGA VI using Interac
tive Front Panel Communication.

—

Note NI-XNET does not load when the CompactRIO system powers up. Even if you
configure an XNET-enabled FPGA VI to load automatically on power on, you must
perform an action from Table 1 prior to using NI-XNET.

Table 2. Actions That Cause NI-XNET to Unload

Action Comment
Invoke Close FPGA VI Reference with the s
hortcut option Close and Reset if Last Refe

rence (default).

If the reference is not the last to close, NI-XN
ET remains loaded. The shortcut options Clo

se and Close and Abort without Reference

Counting do not unload NI-XNET.
Power down CompactRIO. —
Run XNET-disabled FPGA VI. This applies to Open FPGA VI Reference or I

nteractive Front Panel Communication.
Invoke Reset using the Invoke Method node
of the FPGA interface.

Reset of an open FPGA reference causes NI-X
NET to unload, and then immediately load a
gain. If you are using NI-XNET sessions durin
g the reset, the sessions are invalidated. Oth
er methods such as Abort do not unload NI-X
NET.

Run a different XNET-enabled FPGA VI from t
he XNET-enabled FPGA VI currently loaded.

When you change FPGA VIs, the effect is the
same as the reset method. NI-XNET unloads
and then immediately loads again.

Note When using FPGA Interactive Front Panel Communication, stopping the FPGA VI
does not unload NI-XNET. This applies to stopping the VI normally (for example, from
the front panel button), or using the LabVIEW abort button (the stop sign).

5. Wait for interfaces to be detected.

After the FPGA runs with NI-XNET support, it may take a few seconds for the

ni.com24

NI-XNET 20.5

new FPGA features to be detected, appropriate RT drivers to load, and NI-
XNET modules to be detected. This delay occurs only after you perform the
action from Table 1.

There are several options for detecting NI-XNET interface hardware:

■ MAX Devices & Interfaces

You can detect the interfaces visually by opening the Devices & Interfaces
tree under the RT controller in NI MAX. Once the hardware is detected, you
can perform a self test to confirm that all hardware and software is ready to
use.
■ LabVIEW Interface I/O Name

When you drop an XNET interface I/O name control on the front panel of an
RT VI, the control uses features similar to NI MAX to display available
interfaces. For interface detection to operate, you must right-click the RT
controller in the LabVIEW project and select Connect (or Deploy). Once
connected, you can use the interface I/O name to select an interface prior to
running the RT VI.
■ System API

If you need to detect interfaces programmatically within a running RT VI,
National Instruments provides APIs for this purpose. The NI System
Configuration API can detect any NI hardware product, including NI-XNET
interfaces. NI-XNET also provides a System API with properties specific to NI-
XNET hardware.

If you run your RT VI as a startup VI (for example, after power on), you must
perform an action from Table 1, then use a System API to wait for the
required interfaces prior to calling XNET Create Session. If you create an I/O
session prior to detecting the specified interface, an interface-not-found
error can occur.

6. Use NI-XNET.

© National Instruments 25

NI-XNET 20.5

Once the interfaces are detected, you are ready to use them. Within your RT VI,
NI-XNET sessions are used to read and write I/O data. For more information,
refer to the Sessions topics.

Tools
NI-XNET includes two tools you can launch from MAX:

■ Bus Monitor—Displays statistics for CAN, FlexRay, or LIN frames. This is a
basic tool for analyzing CAN, FlexRay, or LIN network traffic. Launch this tool
by right-clicking an NI-XNET interface and selecting Bus Monitor from the
context menu.
■ NI I/O Trace—Monitors function calls to the NI-XNET APIs. This tool helps in
debugging application programming problems. To launch this tool, open the
Software branch of the NI MAX Configuration tree, right-click NI I/O Trace,
and select Launch NI I/O Trace.

ni.com26

NI-XNET 20.5

NI-XNET Hardware Overview
The following topics give an overview of the NI-XNET hardware.

Overview

CAN, FLexRay, and LIN Hardware

NI-XNET CAN Hardware

NI-XNET FlexRay Hardware

NI-XNET LIN Hardware

Isolation

LEDs

Synchronization

Automotive Ethernet Hardware

LEDs

Synchronization

Pinout

Overview
NI-XNET CAN, FlexRay, LIN, and Ethernet interfaces are optimized for applications
requiring real-time, high-speed manipulation of hundreds of CAN frames and
signals, such as hardware-in-the-loop simulation, rapid control prototyping, bus
monitoring, and automation control.

CAN, FlexRay, and LIN Hardware
Topics in this section describe the physical layer of NI-XNET CAN, FlexRay, and LIN
hardware.

© National Instruments 27

NI-XNET 20.5

NI-XNET CAN Hardware
The following topics describe the NI-XNET CAN hardware.

High-Speed Physical Layer

■ Transceiver
■ Bus Power Requirements
■ Cabling Requirements for High-Speed CAN
■ Cable Lengths
■ Number of Devices
■ Cable Termination
■ Cabling Example

Low-Speed/Fault-Tolerant Physical Layer

■ Transceiver
■ Bus Power Requirements
■ Cabling Requirements for Low-Speed/Fault-Tolerant CAN
■ Number of Devices
■ Termination
■ Determining the Necessary Termination Resistance for the Board

Single Wire Physical Layer

■ Transceiver
■ Bus Power Requirements
■ Cabling Requirements for Single Wire CAN
■ Cable Length
■ Number of Devices
■ Termination (Bus Loading)

XS Software Selectable Physical Layer

External CAN Transceiver

ni.com28

NI-XNET 20.5

NI-XNET Transceiver Cables

Pinouts

High-Speed CAN Physical Layer
The High-Speed CAN physical layer circuitry interfaces the CAN protocol controller
to the physical bus wires.

Transceiver

NI-XNET CAN High-Speed hardware uses either the NXP TJA1041 or NXP TJA1043
High-Speed CAN transceiver.

The NI-XNET CAN HS/FD Transceiver Cable uses the TJA1043 transceiver. All PXI and
PCI NI-XNET High-Speed CAN interfaces Revision F or earlier use the TJA1041. All PXI
and PCI NI-XNET High-Speed CAN interfaces Revision G or later use the TJA1043. All
USB NI-XNET High-Speed CAN interfaces use the TJA1043.

Both the TJA1041 and TJA1043 are fully compatible with the ISO 11898 standard and
support baud rates of 40 kbps to 1 Mbps. These devices also support advanced
power management through a low-power sleep mode. Refer to the NI-XNET Session
Interface:CAN:Transceiver State property for more information. For detailed
transceiver specifications, refer to the NXP TJA1041 or NXP TJA1043 product data
sheet.

Bus Power Requirements

The High-Speed physical layer on PXI, PCI, USB, and Transceiver Cable NI-XNET
interfaces is internally powered. As such, there is no need to supply bus power. The
COM pin serves as the reference ground for the bus signals. Refer to Pinouts for the
PXI, PCI, and USB NI-XNET CAN interface pinout.

The High-Speed physical layer on C Series NI 9862 requires external power supply of
+9 to +30 V to operate. Connect the external power supply to the Vsup pin on the
module. The COM pins are for reference ground. Refer to Pinouts for the C Series NI-
XNET CAN module pinout.

© National Instruments 29

NI-XNET 20.5

Cabling Requirements for High-Speed CAN

Cables should meet the physical medium requirements specified in ISO 11898,
shown in the following table.

Belden cable (3084A) meets all these requirements and should be suitable for most
applications.

Characteristic Value
Impedance 108 minimum, 120 nominal, 132 maximum
Length-related resistance 70 m /m nominal
Specific line delay 5 ns/m nominal

ISO 11898 Specifications for Characteristics of a CAN_H and CAN_L Pair
of Wires

Cable Lengths

The cabling characteristics and desired bit transmission rate affect the allowable
cable length. Detailed cable length recommendations are in the ISO 11898 and CiA
DS 102 specifications. ISO 11898 specifies 40 m total cable length with a maximum
stub length of 0.3 m for a bit rate of 1 Mbps. The ISO 11898 specification says that
significantly longer cable lengths may be allowed at lower bit rates, but each node
should be analyzed for signal integrity problems.

Number of Devices

The maximum number of devices depends on the electrical characteristics of the
devices on the network. If all devices meet the requirements of ISO 11898, you can
connect at least 30 devices to the bus. You can connect higher numbers of devices if
the device electrical characteristics do not degrade signal quality below ISO 11898
signal level specifications. The NI-XNET CAN hardware electrical characteristics
allow at least 110 CAN ports on the network.

ni.com30

NI-XNET 20.5

Cable Termination

The pair of signal wires (CAN_H and CAN_L) constitutes a transmission line. If the
transmission line is not terminated, each signal change on the line causes
reflections that may cause communication failures.

Because communication flows both ways on the CAN bus, CAN requires that both
ends of the cable be terminated. However, this requirement does not mean that
every device should have a termination resistor. If multiple devices are placed along
the cable, only the devices on the ends of the cable should have termination
resistors. Refer to the following figure for an example of where termination resistors
should be placed in a system with more than two devices.

Termination Resistor Placement
The termination resistors on a cable should match the nominal impedance of the
cable. ISO 11898 requires a cable with a nominal impedance of 120 , so you should
use a 120 resistor at each end of the cable. Each termination resistor should be
capable of dissipating 0.25 W of power.

NI-XNET devices feature software selectable bus termination for High-Speed CAN
transceivers. On the USB-8502, PXI-8512, PCI-8512, PXI-8513 (in high-speed mode),
PCI-8513 (in high-speed mode), USB-8502, and on CAN HS/FD and CAN XS
Transceiver Cables, you can enable 120 termination resistors between CAN_H and
CAN_L through an API call.

Refer to the NI-XNET Session Interface:CAN:Termination property for more
information.

Cabling Example

The following figure shows an example of a cable to connect two CAN devices. For
the internal power configuration, no V+ connection is required.

© National Instruments 31

NI-XNET 20.5

Cable Connecting Two CAN Devices

Low-Speed/Fault-Tolerant CAN Physical Layer
The Low-Speed/Fault-Tolerant CAN physical layer circuitry interfaces the CAN
protocol controller to the physical bus wires.

Transceiver

NI-XNET CAN Low-Speed/Fault-Tolerant hardware uses either the NXP TJA1054A or
NXP TJA1055T Low-Speed/Fault-Tolerant transceiver.

NI PXI and PCI XNET interfaces revision E and higher use the TJA1055T transceiver,
while revision D and lower use the TJA1054A transceiver.

To identify your PCI/PXI NI-XNET hardware revision, refer to the 19xxxx<rev>-4xL
text on the green label in the top left corner on the secondary side of the board;
<rev> indicates the hardware revision.

Both the TJA1054A and TJA1055T support baud rates up to 125 kbps. The transceiver
can detect and automatically recover from the following CAN bus failures:

■ CAN_H wire interrupted

ni.com32

NI-XNET 20.5

■ CAN_L wire interrupted
■ CAN_H short-circuited to battery
■ CAN_L short-circuited to battery
■ CAN_H short-circuited to VCC
■ CAN_L short-circuited to VCC
■ CAN_H short-circuited to ground
■ CAN_L short-circuited to ground
■ CAN_H and CAN_L mutually short-circuited

The TJA1054A and TJA1055T support advanced power management through a low-
power sleep mode. Refer to the NI-XNET Session Interface:CAN:Transceiver State
property for more information. For detailed specifications for the transceivers, refer
to the NXP TJA1054 and NXP TJA1055T product data sheets.

Bus Power Requirements

The Low-Speed/Fault-Tolerant physical layer on PXI and PCI NI-XNET interfaces is
internally powered. As such, there is no need to supply bus power. The COM pin
serves as the reference ground for the bus signals. For details, refer to Pinouts.

The Low-Speed/Fault-Tolerant physical layers on the C Series NI 9861 and the
TRC-8543 Transceiver Cable require an external power supply of +9 V to +30 V to
operate. Connect the external power supply to the VSUP pin on the module. The
COM pins are for reference ground. For details, refer to Pinouts.

Cabling Requirements for Low-Speed/Fault-Tolerant CAN

Cables should meet the physical medium requirements shown in the following
table. Belden cable (3084A) meets all of those requirements and should be suitable
for most applications.

Characteristic Value
Length-related resistance 90 m /m nominal
Length-related capacitance: CAN_L and ground,
CAN_H and ground, CAN_L and CAN_H

30 pF/m nominal

© National Instruments 33

NI-XNET 20.5

Specifications for Characteristics of a CAN_H and CAN_L Pair of Wires

Number of Devices

The maximum number of devices depends on the electrical characteristics of the
devices on the network. If all devices meet the requirements of typical Low-Speed/
Fault-Tolerant CAN, you can connect up to 32 devices to the bus. You can connect
higher numbers of devices if the electrical characteristics of the devices do not
degrade signal quality below Low-Speed/Fault-Tolerant signal level specifications.

Termination

Every device on the Low-Speed CAN network requires a termination resistor for each
CAN data line: RRTH for CAN_H and RRTL for CAN_L.

The following figure shows termination resistor placement in a Low-Speed CAN
network.

Termination Resistor Placement for Low-Speed CAN
The Determining the Necessary Termination Resistance for the Board section
explains how to determine the correct termination resistor values for the Low-Speed
CAN transceiver.

Refer to the NI-XNET Session Interface:CAN:Termination property for more
information.

Determining the Necessary Termination Resistance for the Board

Unlike High-Speed CAN, Low-Speed CAN requires termination at the Low-Speed
CAN transceiver instead of on the cable. The termination requires two resistors: RTH

ni.com34

NI-XNET 20.5

for CAN_H and RTL for CAN_L. This configuration allows the NXP fault-tolerant CAN
transceiver to detect and recover from bus faults. You can use the NI-XNET Low-
Speed/Fault-Tolerant CAN hardware to connect to a Low-Speed CAN network having
from two to 32 nodes as specified by NXP (including the port on the CAN Low-
Speed/Fault-Tolerant interface). You also can use the Low-Speed/Fault-Tolerant
interface to communicate with individual Low-Speed CAN devices. It is important to
determine the overall termination of the existing network, or the individual device
termination, before connecting it to a Low-Speed/Fault-Tolerant port.

NXP recommends an overall RTH and RTL termination of 100–500 (each) for a
properly terminated low-speed network. You can determine the overall network
termination as follows:

NXP also recommends an individual device RTH and RTL termination of 500 –16 K .
After determining the existing network or device termination, you can use the
following formula to indicate which nearest value the termination property needs to
be set to produce the proper overall RTH and RTL termination of 100–500 upon
connection of the card:

where RRTH overall should be 100–500 .

NI-XNET Low-Speed/Fault-Tolerant CAN hardware features software selectable bus
termination resistors, allowing you to adjust the overall network termination
through an API call. In general, if the existing network has an overall network
termination of 125 or less, you should select the 5 K option for your NI-XNET
device. For existing overall network termination above 125 , you should select the 1
K termination option for your NI-XNET device.

© National Instruments 35

NI-XNET 20.5

Single Wire CAN Physical Layer
The Single Wire CAN physical layer circuitry interfaces the CAN protocol controller to
the physical bus wires.

Transceiver

NI-XNET Single Wire hardware uses either the NXP AU5790 or ON Semiconductor
NCV7356 Single Wire CAN transceiver.

NI PCI-8513 and NI PCI-8513/2 software-selectable NI-XNET PCI CAN interfaces
(revision D and higher) use the ON Semiconductor NCV7356 Single Wire transceiver,
while revision C (and lower) uses the NXP AU5790 Single Wire transceiver.

NI PXI-8513 and NI PXI-8513/2 software-selectable NI-XNET PXI CAN interfaces
(revision E and higher) use the ON Semiconductor NCV7356 Single Wire transceiver,
while revision D (and lower) uses the NXP AU5790 Single Wire transceiver.

To identify the your PCI/PXI NI-XNET hardware revision, refer to the 19xxxx<rev>–
4xL text on the green label in the top left corner on the secondary side of the board;
<rev> indicates the hardware revision.

The NI-XNET Single Wire hardware supports baud rates up to 33.3 kbps in normal
transmission mode and 83.3 kbps in High-Speed transmission mode. The achievable
baud rate is primarily a function of the network characteristics (termination and
number of nodes on the bus), and assumes bus loading as per SAE J2411. Each
Single Wire CAN port has a local bus load resistance of 9.09 k between the CAN_H
and RTH pins of the transceiver to provide protection against the loss of ground. NI-
XNET Single Wire hardware also supports advanced power management through
low-power sleep and wake up modes. Refer to the NI-XNET Session
Interface:CAN:Transceiver State property for more information.

For detailed transceiver specifications, refer to their respective data sheets.

Bus Power Requirements

The Single Wire physical layer on PXI and PCI NI-XNET interfaces requires external
power supply of +8 to +18 V (+12 V recommended) to operate. Connect the external

ni.com36

NI-XNET 20.5

power supply to the Ext_Vbat pin on the module. The COM pins are used for
reference ground. Refer to Pinouts for the PXI and PCI NI-XNET CAN module pinout.

Cabling Requirements for Single Wire CAN

The number of nodes on the network, total system cable length, bus loading of each
node, and clock tolerance are all interrelated. It is therefore the system designer's
responsibility to factor in all the above parameters when designing a Single Wire
CAN network. The SAE J2411 standard includes some recommended specifications
that can help in making these decisions.

Cable Length

There can be no more than 60 m between any two ECU nodes.

Number of Devices

As stated previously, the maximum number of Single Wire CAN nodes allowed on
the network depends on the device and cable electrical characteristics. If all devices
and cables meet the requirements of J2411, between 2 and 32 devices may be
networked together.

Termination (Bus Loading)

All NI Single Wire CAN hardware includes a built-in 9.09 k load resistor, as specified
by J2411.

XS Software Selectable Physical Layer
XNET CAN XS hardware allows you to select each port individually in the physical
layer for one of the following transceivers:

■ High-Speed
■ Low-Speed/Fault-Tolerant
■ Single Wire
■ External Transceiver

© National Instruments 37

NI-XNET 20.5

When an XS port is selected as High-Speed, it behaves exactly as a dedicated High-
Speed interface. When an XS port is selected as Low-Speed/Fault-Tolerant, it
behaves exactly as a dedicated Low-Speed/Fault-Tolerant interface. When an XS
port is selected as Single Wire, it behaves exactly as a dedicated Single Wire
interface. The bus power requirements depend on the mode selected. Refer to the
appropriate High-Speed, Low-Speed/Fault-Tolerant, or Single Wire physical layer
section to determine the behavior for the mode selected. For example, the bus
power requirements for an XS port configured for Single Wire mode are identical to
those of a dedicated Single Wire node. This feature is provided as the
Interface:CAN:Transceiver Type property.

When an XS port is selected as External, all onboard transceivers are bypassed, and
the CAN controller signals are routed directly to the 9-pin D-SUB connector. External
mode is intended for interfacing custom physical layer circuits to NI XNET CAN
hardware. Refer to External CAN Transceiver for more details.

External CAN Transceiver
The external CAN transceiver mode on the PXI-8513 and PCI-8513 XS software
selectable interfaces allows you to connect custom CAN transceivers to the NI-XNET
CAN hardware. The DB-9 connector on the PXI-8513 and PCI-8513 interfaces
includes five different pins to connect with the custom transceiver. Refer to Pinouts
for the DB-9 pinout for external CAN transceiver. Refer to Interface:CAN:External
Transceiver Config for more information about configuring the NI-XNET hardware to
communicate with the custom transceiver.

NI-XNET Transceiver Cables
NI-XNET transceiver cables are designed to provide flexibility in connecting a CAN or
LIN bus to multiprotocol interfaces such as the NI 9860, PCIe-8510, and PXIe-8510, or
to the native NI-XNET port on integrated controllers such as the cDAQ-9134/9135.
The isolated transceiver cable implements the physical layer of the interface.

ni.com38

NI-XNET 20.5

Pinouts

PCI and PXI CAN Interface

The following table describes the CAN DB-9 pinout on PCI and PXI CAN interfaces,
such as PCI-8511/8512 and PXI-8511/8512.

D-SUB Pin Signal Description
1 NC No connection
2 CAN_L CAN_L bus line
3 COM CAN reference ground
4 NC No connection
5 (SHLD) Optional CAN shield
6 (COM) Optional CAN reference ground
7 CAN_H CAN_H bus line
8 NC No connection
9 (Ext_Vbat) Optional CAN power supply if b

us power/external VBAT is requi
red (single-wire CAN on XS hard
ware only)

External CAN Transceiver

The following table describes the CAN DB-9 pinout on PCI and PXI CAN interfaces
that provide external CAN transceivers, such as PCI-8513 and PXI-8513.

D-SUB Pin Signal Description
1 Output1 Generic output used to configur

e the transceiver mode
2 Ext_RX Data received from the CAN Bus
3 COM CAN reference ground
4 Output0 Generic output used to configur

e the transceiver mode
5 (SHLD) Optional CAN shield
6 COM CAN reference ground

© National Instruments 39

NI-XNET 20.5

7 Ext_TX Data to transmit on the CAN Bu
s

8 NERR Input to connect to the nERR pi
n of your transceiver to route st
atus back from the transceiver t
o the hardware

9 NC No connection

C Series CAN Interface

The following table describes the CAN DB-9 pinout on C Series CAN interfaces, such
as NI 9861 and NI 9862.

D-SUB Pin Signal Description
1 NC No connection
2 CAN_L CAN_L bus line
3 COM CAN reference ground
4 NC No connection
5 (SHLD) Optional CAN shield
6 (COM) Optional CAN reference ground
7 CAN_H CAN_H bus line
8 NC No connection
9 VSUP External power supply (+9 V to +

30 V) required

CAN HS/FD Transceiver Cable

The following table describes the CAN DB-9 pinout on the TRC-8542 CAN HS/FD
Transceiver Cable.

D-SUB Pin Signal Description
1 NC No connection
2 CAN_L CAN_L bus line

ni.com40

NI-XNET 20.5

3 COM CAN reference ground
4 NC No connection
5 NC No connection
6 COM CAN reference ground
7 CAN_H CAN_H bus line
8 NC No connection
9 NC No connection

CAN HS/FD or LS/FT Transceiver Cable

The following table describes the CAN DB-9 pinout on the TRC-8543 CAN HS/FD
Transceiver Cable.

D-SUB Pin Signal Description
1 NC No connection
2 CAN_L CAN_L bus line
3 COM CAN reference ground
4 NC No connection
5 NC No connection
6 COM CAN reference ground
7 CAN_H CAN_H bus line
8 NC No connection
9 VSUP External power supply (+9 V to +

30 V) required

USB CAN Interface Devices

The following table describes the CAN DB-9 pinout on USB CAN interfaces, such as
USB-8501 and USB-8502.

D-SUB Pin Signal Description
1 NC No connection
2 CAN_L CAN_L bus line

© National Instruments 41

NI-XNET 20.5

3 COM CAN reference ground
4 NC No connection
5 NC No connection
6 COM CAN reference ground
7 CAN_H CAN_H bus line
8 NC No connection
9 NC No connection

NI-XNET FlexRay Hardware
The FlexRay physical layer circuitry interfaces the FlexRay protocol controller to the
physical bus wires. Refer to the following topics, which describe NI-XNET FlexRay
hardware:

■ Transceiver
■ Bus Power Requirements
■ Cabling Requirements for FlexRay
■ Cable Lengths
■ Termination
■ Pinout

Transceiver
NI-XNET FlexRay hardware uses a pair of NXP TJA1080 FlexRay transceivers per port.
The TJA1080 is fully compatible with the FlexRay standard and supports baud rates
up to 10 Mbps. This device also supports advanced power management through a
low-power sleep mode. Refer to the NI-XNET Session Interface:FlexRay:Sleep
property for more information. For detailed TJA1080 specifications, refer to the
NXP TJA1080 product data sheet.

Bus Power Requirements
The FlexRay physical layer on PXI and PCI NI-XNET interfaces is internally powered.
As such, there is no need to supply bus power. The COM pin serves as the reference

ni.com42

NI-XNET 20.5

ground for the bus signals. Refer to Pinout for the PXI and PCI NI-XNET FlexRay
interface pinout.

Cabling Requirements for FlexRay
Cables may be shielded or unshielded and should meet the physical medium
requirements described in the following table.

Characteristic Value
Differential mode impedance @ 10 MHz 80–110
Specific line delay 10 ns/m
Cable attenuation @ 5 MHz (sine wave) 82 dB/km

FlexRay Cable Characteristics

Cable Lengths and Number of Devices
The cabling characteristics, cabling topology, and desired bit transmission rates
affect the allowable cable length. Detailed recommendations for cable length and
number of devices are in the FlexRay Electrical Physical Layer Specification
available from the FlexRay Consortium. In general, the maximum electrical length
for a passive bus topology is 24 m, with the number of devices limited to 22.

Termination
The simplest way to terminate FlexRay networks is with a single termination resistor
between the bus wires Bus Plus and Bus Minus. The specific network topology
determines the optimal termination values.

For all XNET devices, the termination is software selectable. XNET provides the
option of 80 between Bus Plus and Bus Minus or no termination. You cannot set
termination for channel A and channel B independently. Refer to the Termination
attribute in the XNET API for more details. To determine the appropriate termination
for your network, refer to the FlexRay Electrical Physical Layer Specification for
more information.

Refer to the NI-XNET Session Interface:FlexRay:Termination property for more
information.

© National Instruments 43

NI-XNET 20.5

Pinout

PCI and PXI FlexRay Interface

The following table describes the CAN DB-9 pinout on PCI and PXI FlexRay
interfaces, such as PCI-8517 and PXI-8517.

Pin Signal Signal
1 NC No connection
2 FlexRay A BM FlexRay channel A bus minus
3 COM FlexRay reference ground
4 FlexRay B BM FlexRay channel B bus minus
5 SHLD FlexRay shield
6 (COM) Optional FlexRay reference gro

und
7 FlexRay A BP FlexRay channel A bus plus
8 FlexRay B BP FlexRay channel B bus plus
9 (Ext_VBat) Optional external bus voltage

NI-XNET LIN Hardware
The NI-XNET LIN physical layer circuitry interfaces the LIN protocol controller to the
physical bus wires. NI-XNET LIN Interfaces are fully compliant with the LIN
1.3/2.0/2.1/2.2 specification. Refer to the following topics, which describe NI-XNET
LIN hardware:

■ Transceiver
■ Bus Power Requirements
■ Cabling Requirements for LIN
■ Cable Lengths and Number of Devices
■ Termination
■ Pinout

ni.com44

NI-XNET 20.5

Transceiver
NI-XNET LIN hardware uses the Atmel ATA6620 or ATA6625 LIN transceiver for PCI-
XNET and PXI-XNET LIN Interfaces, and the NXP TJA1028 transceiver for USB,
C Series, and Transceiver Cable XNET LIN interfaces.

NI PXI-8516 and PCI-8516 XNET interfaces revision F and higher use the ATA6625 LIN
transceiver, while revision E and lower use the ATA6620 LIN transceiver.

To identify your PCI/PXI NI-XNET hardware revision, refer to the 19xxxx<rev>-4xL
text on the green label in the top left corner on the secondary side of the board;
<rev> indicates the hardware revision.

These transceivers are fully compatible with the ISO-9141 standard and support
baud rates up to 20 kbps. For detailed information, refer to their respective data
sheets.

Bus Power Requirements
The LIN physical layer on NI-XNET interfaces requires an external power supply of +8
to +18 V, as the following table specifies. Connect the external power supply to the
VBat/Vsup pin on the interface. The COM pins are for reference ground. Refer to
Pinout for the PXI and PCI NI-XNET LIN interface pinout.

Characteristic Specification
Voltage +8 to +18 VDC on VBat connector pin (reference

d to COM)
Current 55 mA maximum

NI-XNET LIN Hardware Bus Power Requirements

Cabling Requirements for LIN
LIN cables should meet the physical medium requirement of a bus RC time constant
of 5 µs. For detailed formulas for calculating this value, refer to the Line
Characteristics section of the LIN specification. Belden cable (3084A) and other
unterminated CAN/Serial quality cables meet these requirements and should be
suitable for most applications.

© National Instruments 45

NI-XNET 20.5

Cable Lengths and Number of Devices
According to the local interconnect network (LIN) specification, the maximum
allowable cable length is 40 m and the maximum number of devices on a LIN bus is
16.

Termination
LIN cables require no termination, as nodes are terminated at the transceiver. Slave
nodes typically are pulled up from the LIN bus to VBat with a 30 k resistance and a
serial diode. This termination usually is integrated into the transceiver package. The
master node requires a 1 k resistor and serial diode between the LIN bus and VBat.
On NI-XNET LIN products, master termination is software selectable; you can enable
it in the API with the NI-XNET Session Interface:LIN:Termination property.

Pinouts

PCI and PXI LIN Interface

The following table describes the CAN DB-9 pinout on PCI and PXI LIN interfaces,
such as PCI-8516 and PXI-8516

Pin Signal Description
1 NC No connection
2 NC No connection
3 COM LIN reference ground
4 NC No connection
5 SHLD Optional LIN shield. Connecting

the optional LIN shield may imp
rove signal integrity in a noisy e
nvironment.

6 (COM) Optional LIN reference ground
7 LIN LIN data line
8 NC No connection
9 VBat Supplies bus power to the LIN p

hysical layer, as the LIN specific
ation requires. All NI-XNET LIN i

ni.com46

NI-XNET 20.5

nterfaces require bus power of
+8 to +18 VDC.

C Series CAN Interface

The following table describes the CAN DB-9 pinout on C Series LIN interfaces, such
as NI 9866.

Pin Signal Description
1 NC No connection
2 NC No connection
3 COM LIN reference ground
4 NC No connection
5 (SHLD) Optional LIN shield
6 (COM) Optional LIN reference ground
7 LIN LIN data line
8 NC No connection
9 VSUP External power supply +8 V to +

18 V) required

LIN Transceiver Cable

The following table describes the CAN DB-9 pinout on the TRC-8546 LIN Transceiver
Cable.

D-SUB Pin Signal Description
1 NC No connection
2 NC No connection
3 COM LIN reference ground
4 NC No connection
5 NC No connection
6 (COM) Optional LIN reference ground
7 LIN LIN data line

© National Instruments 47

NI-XNET 20.5

8 NC No connection
9 VSUP External power supply (+8 V to +

18 V) required

USB LIN Interface Devices

The following table describes the CAN DB-9 pinout on USB LIN interfaces, such as
USB-8506.

D-SUB Pin Signal Description
1 NC No connection
2 NC No connection
3 COM LIN reference ground
4 NC No connection
5 (SHLD) Optional LIN shield
6 (COM) Optional LIN reference ground
7 LIN LIN data line
8 NC No connection
9 VSUP External power supply +8 V to +

18 V) required

Isolation
All NI-XNET products protect your equipment from being damaged by high-voltage
spikes on the target bus. Bus ports on USB, PXI, and PCI NI-XNET products support
channel-to-channel and channel-to-bus isolation, and are galvanically isolated up to
60 VDC. This isolation on USB, PXI, and PCI NI-XNET products is intended to prevent
ground loops.

Bus ports on C Series NI-XNET products support channel-to-bus isolation, and are
galvanically isolated up to 500 Vrms (5 s max withstand).

Bus ports on NI-XNET Transceiver Cable products support channel-to-bus isolation,
and are galvanically isolated up to 1000 Vrms (5 s max withstand).

ni.com48

NI-XNET 20.5

Note For Multiprotocol Interface products such as PXIe-8510, PCIe-8510, and NI-9860,
isolation is provided through the NI-XNET Transceiver Cable.

LEDs
NI-XNET PXI and PCI one- and two-port boards and transceiver cables typically have
two LEDs per port to help you monitor hardware and bus status. LED 1 primarily
indicates whether the hardware is currently in use. LED 2 primarily indicates the
activity information of the connected bus.

USB NI-XNET boards have one LED per port and one LED for the USB bus
connection.

Each LED can display two colors, which display in the following four patterns:

Pattern Meaning
Off No LED illumination
Solid LED fully illuminated
Blink Blinks at a constant rate of several times per sec

ond
Activity Blinks in a pseudo-random pattern

PXI Modules/PCI Devices and Transceiver Cables (Two LEDs Per Port)

The following LED functionality is typical for most NI-XNET PXI and PCI hardware.

The following LED indications are protocol independent:

Condition/State LED 1 LED 2
Port identification Blinks green Blinks green
NI-XNET catastrophic error Blinks red Blinks red
No open session on hardware Off Off
Open session on hardware, por
t is properly powered, and hard
ware is not communicating

Solid green Off

Open session on hardware, por
t is missing power

Solid red Off

The following LED conditions are specific to CAN:

© National Instruments 49

NI-XNET 20.5

Condition/State LED 1 LED 2
Hardware is communicating, an
d controller is in Error Active sta
te

Solid green Activity green (returns to idle/of
f one second after last TX or RX)

Hardware is communicating, an
d controller is in Error Passive st
ate

Solid green Activity red (returns to idle/off o
ne second after last TX or RX)

Hardware is running, and contr
oller transitioned to bus off

Solid green Solid red

The following LED conditions are specific to FlexRay:

Condition/State LED 1 LED 2
Hardware is integrated with a Fl
exRay cluster, and controller is i
n Normal Active state

Solid green Activity green (continues while i
ntegrated)

Hardware is integrated with a Fl
exRay cluster, and controller is i
n Normal Passive state

Solid green Activity red (continues while int
egrated)

Hardware was integrated with a
FlexRay cluster and transitione
d to Halt state

Solid green Solid red

The following LED conditions are specific to LIN:

Condition/State LED 1 LED 2
Hardware is communicating Solid green Activity green (returns to idle/of

f one second after last TX or RX)

USB Devices (One LED Per Port)

The following LED indications are for USB connection:

Condition/State Ready LED
Connected to a port supporting at least USB Hig
h Speed operation (USB 2.0+) and usable.

Solid amber

Unusable Off

The following LED indications are for USB CAN HS:

ni.com50

NI-XNET 20.5

Condition/State Ready LED
Port identification Blinks green
NI-XNET catastrophic error Blinks red
No open session on hardware Off
Interface is configured, no activity, in error activ
e state

Solid green

Open session on hardware, port is missing pow
er from bus

Solid red

Hardware is communicating and controller is in
Error Active state

Activity green

Hardware is communicating and controller is in
Error Passive state

Activity amber

Hardware is running and controller transitioned
to bus off

Solid red

The following LED indications are for USB LIN:

Condition/State Ready LED
Port identification Blinks green
NI-XNET catastrophic error Blinks red
No open session on hardware Off
Open session on hardware port is properly pow
ered, and hardware is not communicating

Solid green

Open session on hardware, port is missing pow
er from bus

Solid red

Hardware is communicating Activity green

Synchronization
PXI, PXI Express, PCI, and PCI Express NI-XNET

The PXI and PXI Express chassis features a dedicated synchronization bus integrated
into the backplane. NI-XNET products support use of this bus to synchronize with
other National Instruments hardware products such as DAQ, IMAQ, and motion. The
PXI synchronization bus consists of a flexible interconnect scheme for sharing timing
and triggering signals in a system.

© National Instruments 51

NI-XNET 20.5

For PCI and PCI Express hardware, the RTSI bus interface is a connector at the top of
the card. You can synchronize multiple National Instruments PCI/PCIe cards by
connecting a RTSI ribbon cable between the cards that need to share timing and
triggering signals.

CAN/XS, PCIe-8510 (4-Port), and FlexRay XNET products also feature two
configurable timing and triggering ports on the device front panel. These ports are
TTL-tolerant user-configurable for inputting and outputting timebases and triggers.
These signals are not electrically isolated from the backplane. Refer to the XNET
Connect Terminals function documentation for more details.

C Series NI-XNET

All NI-XNET ports on a particular C Series chassis share a common timebase,
allowing a better correlation of data on the ports. NI-XNET products support use of
this timebase to synchronize with other National Instruments hardware products
such as DAQ modules.

Moreover, on a CompactRIO system, the module's timebase is corrected for drift
with respect to the RT controller's timebase, allowing the capability to correlate
data with other modules in the chassis.

On a CompactDAQ system, you can route the Start Trigger between multiple DAQmx
and XNET modules. For information about performing this routing in LabVIEW, refer
to the LabVIEW API Interface:Source Terminal:Start Trigger property. For information
about performing this routing in C/C++, refer to the C API Interface:Source
Terminal:Start Trigger property.

USB NI-XNET

USB-850x 2-port devices can synchronize with external trigger or clock sources.
Synchronization occurs through a 3-pin Combicon connection allowing for a shared
timestamp clock, start trigger, and ground. USB-850x 2-port devices can
synchronize to timestamp clocks of 20 Mhz, 10 Mhz, or 1 Mhz. For 20 MHz
synchronization, ensure that the synchronization cable is shielded and grounded.
Clock frequency is detected automatically by the hardware, and illegal clock
frequencies are reported as an error. USB-850x 2-port devices can also generate a

ni.com52

NI-XNET 20.5

clock of 1 MHz, allowing for accurate CAN-CAN, CAN-LIN, and LIN-LIN
synchronization.

NI Automotive Ethernet Hardware
The following topics describe NI Automotive Ethernet hardware:

■ LEDs
■ Pinout
■ Synchronization

LEDs
The following table indicates typical LED functionality for NI Automotive Ethernet
hardware. For information about specific models. refer to the model-specific user
manual and specifications, which can be found at ni.com/manuals.

LED Label LED State LED Color Condition
LINK/ACT Off — No link established; def

ault power-up state.
Solid Green Link established
Blinking Green Activity

Status Off — Default power-up state.
Solid Green Direct mode, master (P

HY state)
Amber Direct mode, slave (PH

Y state)

Fade in/out1 Green Tap mode, master (PHY
state)

Amber Tap mode, slave (PHY s
tate)

Blinking Green Port ID
Amber Not synchronized
Red Catastrophic error2

© National Instruments 53

NI-XNET 20.5

1 While in Tap mode, ports that are paired fade in phase with each other, but out of phase with ot
her ports.

2 In the case of a catastrophic error, recover by invoking Reset on the module in MAX. Contact NI f
or further support if the error continues to occur.

Pinout
Ethernet Interface

The following table describes the pinout signals for NI Automotive Ethernet
hardware, such as PXIe-8521.

Pin Number Signal Type Required Signal
Direction

Signal Description Signal Required

1 TRX_P Bidirectional Transceiver plus Required
2 TRX_M Bidirectional Transceiver minus Required
3 Shield — Shield Optional

ni.com54

NI-XNET 20.5

Synchronization
The PXI and PXI Express chassis features a dedicated synchronization bus integrated
into the backplane. NI-XNET products support use this bus to synchronize with
other National Instruments hardware products such as DAQ, IMAQ, and motion. The
PXI synchronization bus consists of a flexible interconnect scheme for sharing timing
and triggering signals in a system.

Local Time

NI Automotive Ethernet modules use PXI_Clk10, a 10 MHz PXI backplane clock
provided by the chassis, to drive the local time keeper and to synchronize with other
modules in the PXI chassis. If the PXI backplane clock is not available, the module
uses its own internal oscillator.

PXI_Clk10 provides frequency but not date/time information. When an NI-XNET
session is created, XNET initializes the date/time information for the local clock
using host time.

Network Time

NI Automotive Ethernet modules can also maintain network time (IEEE 802.1AS) for
each port. When Ethernet frames are received, each packet is time stamped with
network time as well as with local time.

When a port acts as a master, the network time is initialized from host time and is
synchronized to local time.

When a port acts as a slave in an electronic control unit (ECU) network, local time
and network time can eventually drift, relative to each other. The date/time
information for network time is obtained from the ECU that acts as the grandmaster
clock.

Both local and network time can be adjusted using the NI-XNET API.

© National Instruments 55

NI-XNET 20.5

Host Time

Host time is the clock of the operating system where LabVIEW is running. The host
time can obtain time/date information using a real time clock (RTC) or a network
time protocol (NTP) server.

Although host time provides accurate date/time information, the accuracy and
resolution of its clock can often be in tens of milliseconds. In contrast, NI
Automotive Ethernet modules provide resolution for local time and network time in
nanoseconds. Although local time and network time use host time to initialize their
date/time information, they do not use the same physical clock as host time.
Therefore, both local time and network time can eventually drift relative to host
time.

Triggers

Triggers can be simultaneously time stamped by the local time keeper and the
network time keeper for each port. PXI triggers can be used to synchronize the NI
Automotive Ethernet module's time keepers with trigger events on other PXI
modules.

ni.com56

NI-XNET 20.5

NI-XNET API for LabVIEW
This section explains how to use the NI-XNET API for LabVIEW and describes the NI-
XNET LabVIEW VIs and properties.

Getting Started

Basic Programming Model

Interfaces

Databases

Sessions

Using CAN

Using FlexRay

Using LabVIEW Real-Time

NI-XNET API for LabVIEW Reference

Additional Topics

Getting Started
This topic helps you get started using NI-XNET for LabVIEW. It includes information
about using NI-XNET within a LabVIEW project, NI-XNET examples, and using the NI-
XNET palettes to create your own VI.

LabVIEW Project

Within a LabVIEW project, you can create NI-XNET sessions used within a VI to read
or write network data.

Using LabVIEW project sessions is best suited for static applications, in that the
network data does not change from one execution to the next. Even if your
application is more dynamic, a LabVIEW project is an excellent introduction to NI-
XNET concepts.

© National Instruments 57

NI-XNET 20.5

To get started, open a new LabVIEW project, right-click My Computer, and select
New»NI-XNET Session. In the resulting dialog, the window on the left provides an
introduction to the NI-XNET session in the LabVIEW project. The introduction links
to help topics that describe how to create a session in the project, including a
description of the session modes.

NI-XNET Examples

NI-XNET includes LabVIEW examples that demonstrate a wide variety of use cases.
The examples build on the basic concepts to demonstrate more in-depth use cases.
Most of the examples create a session at run time rather than a LabVIEW project.

To view the NI-XNET examples, select Find Examples... from the LabVIEW Help menu.
When you browse examples by task, NI-XNET examples are under Hardware Input

and Output. The examples are grouped by protocol in Automotive Ethernet, CAN,
FlexRay, and LIN folders, and each folder contains shared examples. You can write
NI-XNET applications for any of these protocols; this organization helps you to find
examples for your specific hardware product.

Open an example VI by double-clicking its name in the NI Example Finder. To run the
example, select values using the front panel controls, then read the instructions on
the front panel to run the examples. A few examples are suggested to get started
with NI-XNET:

Automotive Ethernet (Hardware Input and Output»Automotive Ethernet)

■ Ethernet Basic Input and Output.lvproj (Ethernet Reader.vi with Ethernet
Writer.vi)
■ NI-XNET IP Stack Simple TCP.lvproj (Simple TCP - Server.vi with Simple
TCP - Client.vi)

CAN (Hardware Input and Output»CAN»NI-XNET»Intro to Sessions)

Signal Sessions

■ CAN Signal Input Single Point.vi with CAN Signal Output Single Point.vi

■ CAN Signal Input Waveform.vi with CAN Signal Output Waveform.vi

ni.com58

NI-XNET 20.5

Frame Sessions

■ CAN Frame Input Stream.vi with any output example.

FlexRay (Hardware Input and Output»FlexRay»Intro to Sessions)

Signal Sessions

■ FlexRay Signal Input Single Point.vi with FlexRay Signal Output Single

Point.vi

■ FlexRay Signal Input Waveform.vi with FlexRay Signal Output Waveform.vi

Frame Sessions

■ FlexRay Frame Input Stream.vi with any output example.

LIN (Hardware Input and Output»LIN»NI-XNET»Intro to Sessions)

Signal Sessions

■ LIN Signal Input Single Point.vi with LIN Signal Output Single Point.vi

■ LIN Signal Input Waveform.vi with LIN Signal Output Waveform.vi

Frame Sessions

■ LIN Frame Input Stream.vi with any output example.

Palettes

After learning the fundamentals of NI-XNET with a LabVIEW project and the
examples, you can begin to write your own application.

The NI-XNET functions palette includes nodes that you drag to your VI block
diagram. When your VI block diagram is open, this palette is in the Measurement I/

O»XNET functions palette.

To view help for each node in the NI-XNET functions palette, open the context help
window by selecting Show Context Help from the LabVIEW Help menu (or pressing

© National Instruments 59

NI-XNET 20.5

<Ctrl-H>). As you hover over each node or subpalette, a brief summary appears. To
open the complete help, click the Detailed help link in the summary.

The NI-XNET controls palette includes I/O name controls that you drag to the your VI
front panel. These controls enable the VI end user to select NI-XNET objects from the
front panel. You view help for these controls in the same manner as on the functions
palette.

Basic Programming Model
The LabVIEW block diagram in the following figure shows the basic NI-XNET
programming model.

Basic Programming Model for NI-XNET for LabVIEW
Complete the following steps to create this block diagram:

1. Create an NI-XNET session in a LabVIEW project. The session name is
MyInputSession, as shown below, and the mode is Signal Input Single-Point.

ni.com60

NI-XNET 20.5

2. Create a new VI in the project and open the block diagram.
3. Drag a while loop to the diagram. Right-click the loop condition (the stop sign)

and create a control (stop button).
4. Drag the NI-XNET session from a LabVIEW project to the while loop. This

creates the XNET session wired to the corresponding XNET Read VI.

5. Right-click the data output from the XNET Read VI and create an indicator.
6. Run the VI. View the received signal values. Stop the VI when you are done.

When you complete the preceding steps, you have created a fully functional NI-XNET
application.

You can create sessions for other input or output modes using the same technique.
When you drag an output session to the diagram, NI-XNET creates a constant for
data and wires that constant to the XNET Write VI. You can enter constant values to
write, or to change the data at run time, right-click the constant and select Change

to Control.

NI-XNET enables you to create sessions for multiple hardware interfaces. For each
interface, you can use multiple input sessions and multiple output sessions
simultaneously. The sessions can use different modes. For example, you can use a
Signal Input Single-Point session at the same time you use a Frame Input Stream
session.

The NI-XNET functions palette includes nodes that extend this programming model
to perform tasks such as:

© National Instruments 61

NI-XNET 20.5

■ Creating a session at run time (instead of a LabVIEW project).
■ Controlling the configuration and state of a session.
■ Browsing and selecting a hardware interface.
■ Managing and browsing database files.
■ Creating frames or signals at run time (instead of using a database file).

The following topics describe the fundamental concepts used within NI-XNET. Each
topic explains how to perform extended programming tasks.

Interfaces
What is an Interface?

How Do I View Available Interfaces?

What is an Interface?
The interface represents a single CAN, FlexRay, LIN, or Ethernet connector on an NI
hardware device. Within NI-XNET, the interface is the object used to communicate
with external hardware described in the database.

Each interface name uses the following syntax:

<protocol><n>

The <protocol> is one of the following:

■ CAN for a CAN interface
■ FlexRay for a FlexRay interface
■ LIN for a LIN interface
■ ENET for an Ethernet interface

The number <n> identifies the specific interface within the <protocol> scope. The
numbering starts at 1. For example, if you have a two-port CAN device, a two-port
FlexRay device, a two-port LIN device, and a two-port Ethernet device in your
system, the interface names are CAN1, CAN2, FlexRay1, FlexRay2, LIN1, LIN2,

ni.com62

NI-XNET 20.5

ENET1, and ENET2, respectively. Devices that use a transceiver cable receive an
interface name only when the transceiver cable is connected and identified.

Although you can change the interface number <n> within Measurement &
Automation Explorer (MAX), the typical practice is to allow NI-XNET to select the
number automatically. NI-XNET always starts at 1 and increments for each new
interface found. If you do not change the number in MAX, and your system always
uses a single two-port CAN device, you can write all your applications to assume
CAN1 and CAN2. For as long as that CAN card exists in your system, NI-XNET uses the
same interface numbers for that device, even if you add new CAN cards.

NI-XNET also uses the term port to refer to the connector on an NI hardware device.
This physical connector includes the transceiver cable if applicable. The difference
between the terms is that port refers to the hardware object (physical), and
interface refers to the software object (logical). The benefit of this separation is that
you can use the interface name as an alias to any port, so that your application does
not need to change when your hardware configuration changes. For example, if you
have a PXI chassis with a single CAN PXI device in slot 3, the CAN port labeled Port 1
is assigned as interface CAN1. Later on, if you remove the CAN PXI card and connect
a USB device for CAN, the CAN port on the USB device is assigned as interface CAN1.
Although the physical port is in a different place, VIs written to use CAN1 work with
either hardware configuration without change.

For Ethernet interfaces, a special suffix "/monitor" appended to the interface name
indicates the use of a monitor path. For example, "ENET1" specifies use of the
endpoint path, and "ENET1/monitor" specifies use of the monitor path. The monitor
path is used to read Ethernet frames that are received or transmitted on each port.
When Tap is enabled, data received via the monitor path by a Tap pair will be
identical on each port in the pair. Additional information on the monitor and
endpoint paths is provided in Using Ethernet.

How Do I View Available Interfaces?
Measurement and Automation Explorer (MAX)

Use NI MAX to view your available NI-XNET hardware, including all devices and
interfaces.

© National Instruments 63

NI-XNET 20.5

To view hardware in your local Windows system, select Devices and Interfaces

under My System. Each NI-XNET device is listed by hardware model name followed
by port name, for example, NI PCI-8517 "FlexRay1, FlexRay2".

Select each NI-XNET device to view its physical ports. Each port is listed with the
current interface name assignment, such as FlexRay1.

In the selected port's window on the right, you can change one property: the
interface name. Therefore, you can assign a different interface name than the
default. For example, you can change the interface for physical port 2 of a PCI-8517
to FlexRay1 instead of FlexRay2. The blinking LED test panel assists in identifying a
specific port when your system contains multiple instances of the same hardware
product (for example, a chassis with five CAN devices).

To view hardware in a remote LabVIEW Real-Time system, find the desired system
under Remote Systems and select Devices and Interfaces under that system. The
features of NI-XNET devices and interfaces are the same as the local system.

I/O Name

When you create a session at run time, you pass the desired interface to the XNET
Create Session VI. The interface uses the XNET Interface I/O name type.

The XNET Interface I/O name has a drop-down list of all available NI-XNET interfaces.
This list matches the list of interfaces shown in NI MAX. You select a specific interface
from the list for use with the XNET Create Session VI.

By right-clicking the XNET Create Session VI interface input, you can create a
constant or control for the XNET Interface I/O name. The constant is placed on your
block diagram. You typically use a constant when you have only a single NI-XNET
device, to use fixed names such as CAN1 and CAN2. The control is placed on your
front panel. You typically use a control when you have a large number of NI-XNET
devices and want the VI end user to select from available interfaces.

LabVIEW Project

When you create a session in a LabVIEW project, you enter the interface in the
session dialog. This dialog has a list of available interfaces, in a manner similar to
the XNET Interface I/O name.

ni.com64

NI-XNET 20.5

If you are creating a session in a LabVIEW project and do not yet have NI-XNET
hardware in your system, you can type an interface name such as CAN1 in the
dialog. This enables you to create sessions and program VIs prior to installing the
hardware.

System Configuration API

In some cases, you may need to provide features similar to NI MAX within your own
application. For example, if you distribute your LabVIEW application to end users
who are not familiar with MAX, you may need to display a similar view within the
application itself.

The System Configuration API can be used to query for available XNET hardware,
including devices, such as PXIe cards, and interfaces (for example, CAN ports). For
additional information on the System Configuration API, refer to NI System
Configuration API Help, which is available at ni.com/manuals.

Databases
What Is a Database?

What Is an Alias?

Database Programming

What is a Database?
For the NI-XNET interface to communicate with hardware products on the external
network, NI-XNET must understand the communication in the actual embedded
system, such as the vehicle. This embedded communication is described within a
standardized file, such as CANdb (.dbc), FIBEX (.xml), AUTOSAR (.arxml), or LIN
Description File (.ldf). Within NI-XNET, this file is referred to as a database. The
database contains many object classes, each of which describes a distinct entity in
the embedded system.

■ Database: Each database is represented as a distinct instance in NI-XNET.
Although the database typically is a file, you also can create the database at
run time (in memory).

© National Instruments 65

NI-XNET 20.5

■ Cluster: Each database contains one or more clusters, where the cluster
represents a collection of hardware products connected over a shared cabling
harness. In other words, each cluster represents a single CAN, FlexRay, or LIN
network. For example, the database may describe a single vehicle, where the
vehicle contains one CAN cluster Body, another CAN cluster Powertrain, one
FlexRay cluster Chassis, and a LIN cluster PowerSeat.
■ ECU: Each Electronic Control Unit (ECU) represents a single hardware
product in the embedded system. The cluster contains one or more ECUs
connected over a CAN, FlexRay, or LIN cable. It is possible for a single ECU to
be contained in multiple clusters, in which case it behaves as a gateway
between the clusters.)
■ Frame: Each frame represents a unique unit of data transfer over the cluster
cable. The frame bits contain payload data and an identifier that specifies the
data (signal) content. Only one ECU in the cluster transmits (sends) each
frame, and one or more ECUs receive each frame.
■ Signal: Each frame contains zero or more values, each of which is called a
signal. Within the database, each signal specifies its name, position, length of
the raw bits in the frame, and a scaling formula to convert raw bits to/from a
physical unit. The physical unit uses a LabVIEW double-precision floating-
point numeric type.

Other object classes include the PDU, Subframe, LIN Schedule, and LIN Schedule
Entry.

Note that Ethernet interfaces currently do not support databases.

What is an Alias?
When using a database file with NI-XNET, you can specify the file path or an alias to
the file. The alias provides a shorter, easier-to-read name for use within your
application.

For example, for the file path

C:\Documents and Settings\All Users\Documents\Vehicle5\MyD
atabase.dbc

ni.com66

NI-XNET 20.5

you can add an alias named MyDatabase. In addition to improving readability, the
alias concept isolates your LabVIEW application from the specific file path. For
example, if your application uses the alias MyDatabase and you change its file path
to

C:\Embedded\Vehicle5\MyDatabase.dbc
your LabVIEW application continues to run without change.

The alias concept is used in most NI-XNET features for the database classes. The I/O
names for database classes include features for adding a new alias, viewing existing
aliases, deleting an alias, and so on. You also can perform these tasks at run time,
using the VIs available in the NI-XNET functions palette Database»File Mgt
subpalette.

After you create an alias, it exists until you explicitly delete it. If you exit and
relaunch LabVIEW, the aliases from the previous use remain. If you uninstall NI-
XNET, the aliases are deleted; however, if you reinstall (upgrade) NI-XNET, the aliases
from the previous installation remain. Deleting an alias does not delete the
database file itself, but merely the association within NI-XNET.

An alias is required for deploying databases to LabVIEW Real-Time (RT) targets.
When you deploy to a LabVIEW RT target, the large text file is compressed to an
optimized binary format, and that binary file is transferred to the target. For more
information about databases with LabVIEW RT, refer to Using LabVIEW Real-Time.

Database Programming
The NI-XNET software provides various methods for creating your application
database configuration. The following figure shows a process for deciding the
database source. A description of each step in the process follows the flowchart.

© National Instruments 67

NI-XNET 20.5

Decision Process for Choosing Database Source

Already Have File?

If you are testing an ECU used within a vehicle, the vehicle maker (or the maker's
supplier) already may have provided a database file. This file likely would be in
CANdb, FIBEX, AUTOSAR, or LDF format. When you have this file, using NI-XNET is
relatively straightforward.

Can I Use File As Is?

Is the file up to date with respect to your ECU(s)?

If you do not know the answer to this question, the best choice is to assume Yes and
begin using NI-XNET with the file. If you encounter problems, you can use the
techniques discussed in Edit and Select to update your application without
significant redesign.

Select From File
There are three options for selecting the database objects to use for NI-XNET
sessions: a LabVIEW project, I/O names, and property nodes.

ni.com68

NI-XNET 20.5

LabVIEW Project

The NI-XNET session in a LabVIEW project assumes that you have a database file.
The configuration dialog includes controls to browse to your database file, select a
cluster to use, and select a list of frames or signals. For example, if you create a
Signal Input Single-Point session, you enter the database and cluster to use, then
select one or more signals to read.

I/O Names

If you create sessions at run time, you need to wire objects from the database file to
the XNET Create Session VI. The easiest way to do this is to use I/O names for the
objects that you need.

For example, assume that you want to create a Signal Input Single-Point session
and want the VI end user to select signals from the front panel. First, drag the XNET
Create Session VI from the NI-XNET functions palette. Change the VI selector to
Signal Input Single-Point. Right-click the signal list input and select Create»Control.
This creates an array of XNET Signal I/O names on your front panel.

Right-click the signal list control and select Browse for Database File... to find the
database file. For a CANdb file, you can click the drop-down list for each array
element to select from available signals in the file. For a FIBEX, AUTOSAR, or LDF file,
right-click signal list and Select Database to select a specific cluster within the file,
then click the drop-down list to select signals. After you browse to the file and select
a cluster, that information is saved with the VI, so you need to select only signal
names from that point onward.

Most NI-XNET examples use I/O names to select objects (frames or signals). As a
default, the NI-XNET example VIs use an example database file installed with NI-
XNET. You can change this file to a different file using the previous steps.

Property Nodes

If you create a session at run time, you may want to implement your own front panel
controls to select objects from the database, rather than use I/O names. Although
the programming is more advanced than I/O names, you can do this using property

© National Instruments 69

NI-XNET 20.5

nodes for the database classes. These property nodes are found in the NI-XNET
functions palette Database subpalette.

For example, assume you want a tree control on the VI front panel. The tree shows
the frames and signals within a selected cluster. The VI user selects signals from this
tree control. The tree control block diagram uses a programming model similar to
the Advanced System Example Using Property Nodes.

Advanced Database Example Using Property Nodes

The block diagram in the figure above shows how to populate a LabVIEW tree
control with the frames and signals for a specific cluster. Because a cluster
represents a single network connected to your NI-XNET interface, you do not need to
show multiple clusters. First, you get the list of frames from the XNET Cluster node.
For each XNET Frame, you get its name and add that name to the tree. For each
XNET Signal in the frame, you get its name and add that name to the tree (with the
frame as the parent).

If you use this tree control to select signals for session creation, you can use names
from the tree to form the signal names that you wire to the XNET Create Session VI.
For information about signal name syntax, refer to XNET Signal I/O Name.

Edit and Select
There are two options for editing the database objects for the NI-XNET session: edit
in memory and edit the file.

Edit in Memory

First, you select the frames or signals for the NI-XNET session using one of the
options described in Select From File.

ni.com70

NI-XNET 20.5

Next, you wire the selected objects to the corresponding property node and set
properties to change the value. When you edit the object using its property node,
this changes the representation in memory, but does not save the change to the file.
When you pass the object into the XNET Create Session VI, the changes in memory
(not the original file) are used.

Edit the File

The NI-XNET Database Editor is a tool for editing database files for use with NI-XNET.
Using this tool, you open an existing file, edit the objects, and save those changes.
You can save the changes to the existing file or a new file.

When you have a file with the changes you need, you select objects in your
application as described in Select From File.

Want to Use a File?

If you do not have a usable database file, you can choose to create a file or avoid
files altogether for a self-contained application.

Create New File Using Editor
You can use the NI-XNET Database Editor to create a new database file. Once you
have a file, you select objects in your application as described in Select From File.

As a general rule, for FlexRay applications, using a FIBEX file is recommended.
FlexRay communication configuration requires a large number of complex
properties, and storage in a file makes this easier to manage. The NI-XNET Database
Editor has features that facilitate this configuration.

Create in Memory
You can use the XNET Database Create Object VI to create new database objects in
memory. Using this technique, you can avoid files entirely and make your
application self contained.

You configure each object you create using the property node. Each class of
database object contains required properties that you must set (refer to Required
Properties).

© National Instruments 71

NI-XNET 20.5

Because CAN is a more straightforward protocol, it is easier to create a self-
contained application. For example, you can create a session to transmit a CAN
frame with only two objects.

Create Cluster and Frame for CAN

The figure above shows a sample diagram that creates a cluster and frame in
memory. The database name is :memory:. This special database name specifies a
database that does not originate from a file. The cluster name is myCluster. For
CAN, the only property required for the cluster is Baud Rate. The cluster is wired to
create a frame object named myFrame. The frame has several required properties.
The XNET Frame CAN:Timing Type property specifies how to transmit the frame,
with Cyclic Data meaning to transmit every CAN:Transmit Time seconds (0.01, or 10
ms). The remaining properties configure the frame to use 8 bytes of payload data
and CAN standard ID 5. If the subsequent diagram passed the frame to the XNET
Create Session (Frame Output Queued) VI, this would create a session you can use
to write data for transmit.

For additional information on in-memory configurations for CAN, refer to Using CAN.

After you create and configure objects in memory, you can use the XNET Database
Save VI to save the objects to a file. This enables you to implement a database editor
within your application.

Multiple Databases Simultaneously

NI-XNET allows up to 63 database sessions to be open at the same time. You can
open any database from a database file or in memory. To open multiple in-memory
databases, use the name :memory[<digit>]:; for
example, :memory:, :memory1:, :memory2:.

ni.com72

NI-XNET 20.5

Sessions
What Is a Session?

How Do I Create a Session?

What is a Session?
The NI-XNET session represents a connection between your National Instruments
CAN, FlexRay, LIN, or Ethernet hardware and hardware products on the external
network. As discussed in Basic Programming Model, your application uses sessions
to read and write I/O data.

Each session configuration includes:

■ Interface: This specifies the National Instruments hardware to use.
■ Database objects: These describe how external hardware communicates.
■ Mode: This specifies the direction and representation of I/O data.

The links above link to detailed information about each configuration topic. The
mode topic has additional links to topics that explain how to read or write I/O data
for each mode. The I/O data consists of values for frames or signals.

In addition to read/write of I/O data, you can use the session to interact with the
network in other ways. For example, the XNET Read VI includes selections to read
the state of communication, such as whether communication has stopped due to
error detection defined by the protocol standard.

You can use sessions for multiple hardware interfaces. For each interface, you can
use multiple input sessions and multiple output sessions simultaneously. The
sessions can use different modes. For example, you can use a Signal Input Single-
Point session at the same time you use a Frame Input Stream session.

The limitations on sessions relate primarily to a specific frame or its signals. For
example, if you create a Frame Output Queued session for frameA, then create a
Signal Output Single-Point session for frameA.signalB (a signal in frameA), NI-XNET
returns an error. This combination of sessions is not allowed, because writing data

© National Instruments 73

NI-XNET 20.5

for the same frame with two sessions would result in inconsistent sequences of data
on the network.

Session Modes
The session mode specifies the data type (signals or frames), direction (input or
output), and how data is transferred between your application and the network.

The mode is an enumeration of the following:

■ Signal Input Single-Point: Reads the most recent value received for each
signal. This mode typically is used for control or simulation applications, such
as Hardware In the Loop (HIL).
■ Signal Input Waveform: Using the time when the signal frame is received,
resamples the signal data to a waveform with a fixed sample rate. This mode
typically is used for synchronizing XNET data with DAQmx analog/digital input
channels.
■ Signal Input XY: For each frame received, provides its signals as a value/
timestamp pair. This is the recommended mode for reading a sequence of all
signal values.
■ Signal Output Single-Point: Writes signal values for the next frame transmit.
This mode typically is used for control or simulation applications, such as
Hardware In the Loop (HIL).
■ Signal Output Waveform: Using the time when the signal frame is
transmitted according to the database, resamples the signal data from a
waveform with a fixed sample rate. This mode typically is used for
synchronizing XNET data with DAQmx analog/digital output channels.
■ Signal Output XY: Provides a sequence of signal values for transmit using
each frame's timing as the database specifies. This is the recommended mode
for writing a sequence of all signal values.
■ Frame Input Stream: Reads all frames received from the network using a
single stream. This mode typically is used for analyzing and/or logging all
frame traffic in the network.

ni.com74

NI-XNET 20.5

■ Frame Input Queued: Reads data from a dedicated queue per frame. This
mode enables your application to read a sequence of data specific to a frame
(for example, CAN identifier).
■ Frame Input Single-Point: Reads the most recent value received for each
frame. This mode typically is used for control or simulation applications that
require lower level access to frames (not signals).
■ Frame Output Stream: Transmits an arbitrary sequence of frame values
using a single stream. The values are not limited to a single frame in the
database, but can transmit any frame.
■ Frame Output Queued: Provides a sequence of values for a single frame, for
transmit using that frame's timing as the database specifies.
■ Frame Output Single-Point: Writes frame values for the next transmit. This
mode typically is used for control or simulation applications that require
lower level access to frames (not signals).
■ Conversion: This mode does not use any hardware. It is used to convert data
between the signal representation and frame representation.

Note that Ethernet is supported by only two modes, Frame Input Stream and Frame
Output Stream.

Frame Input Queued Mode
This mode reads data from a dedicated queue per frame. It enables your application
to read a sequence of data specific to a frame (for example, a CAN identifier).

You specify only one frame for the session, and the XNET Read VI returns values for
that frame only. If you need sequential data for multiple frames, create multiple
sessions, one per frame.

The input data is returned as an array of frame values. These values represent all
values received for the frame since the previous call to the XNET Read VI.

If the session uses a CAN interface, the XNET Read (Frame CAN) VI is the
recommended way to read data for this mode. This VI returns an array of frames,
where each frame is a LabVIEW cluster specific to the CAN protocol. If the session
uses a FlexRay or LIN interface, the read selection for that protocol is recommended.

© National Instruments 75

NI-XNET 20.5

For more advanced applications, use the XNET Read (Frame Raw) VI, which returns
frames in an optimized, protocol-independent format.

Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2 ms. Frame E is an event-driven frame. For information about cyclic and
event-driven frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

This example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network, followed by two calls to the XNET Read (Frame CAN) VI (one for C
and one for E).

The following figure shows the data returned from the two calls to the XNET Read
(Frame CAN) VI (two different sessions).

ni.com76

NI-XNET 20.5

The first call to the XNET Read (Frame CAN) VI returned an array of values for frame
C, and the second call to the XNET Read (Frame CAN) VI returns an array for frame E.
Each frame is a LabVIEW cluster with CAN-specific elements. The example uses
hexadecimal C and E as the identifier of each frame. The first two payload bytes
contain the signal data. The timestamp represents the absolute time when the XNET
interface received the frame (end of frame), accurate to microseconds.

Compared to the example for the Frame Input Stream mode, this mode effectively
sorts received frames so you can process them on an individual basis.

Frame Input Single-Point Mode
This mode reads the most recent value received for each frame. It typically is used
for control or simulation applications that require lower level access to frames (not
signals).

© National Instruments 77

NI-XNET 20.5

This mode does not use queues to store each received frame. If the interface
receives two frames prior to calling the XNET Read VI, that read returns signals for
the second frame.

The input data is returned as an array of frames, one for each frame specified for the
session.

If the session uses a CAN interface, the XNET Read (Frame CAN) VI is the
recommended way to read data for this mode. This instance returns an array of
frames, where each frame is a LabVIEW cluster specific to the CAN protocol. If the
session uses a FlexRay or LIN interface, the read selection for that protocol is
recommended. For more advanced applications, you can use the XNET Read (Frame
Raw) VI, which returns frames in an optimized, protocol-independent format.

Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2 ms. Frame E is an event-driven frame. For information about cyclic and
event-driven frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network, followed by a single call to the XNET Read (Frame CAN) VI. Each
frame contains its name (C or E), followed by the value of its two signals.

The following figure shows the data returned from each of the three calls to the
XNET Read (Frame CAN) VI. The session contains frame data for two frames: C and E.

ni.com78

NI-XNET 20.5

In the data returned from the first call to the XNET Read (Frame CAN) VI, frame C
contains values 3 and 4 in its payload. The first reception of frame C values (1 and 2)
were lost, because this mode returns the most recent values.

In the frame timeline, Time of 0 ms indicates the time at which the session started to
receive frames. For frame E, no frame is received prior to the first call to the XNET
Read (Frame CAN) VI, so the timestamp is invalid, and the payload is the Default
Payload. For this example we assume that the Default Payload is all 0.

In the data returned from the second call to the XNET Read (Frame CAN) VI, payload
values 3 and 4 are returned again for frame C, because no new frame has been
received since the previous call to the XNET Read (Frame CAN) VI. The timestamp for
frame C is the same as the first call to the XNET Read (Frame CAN) VI.

In the data returned from the third call to the XNET Read (Frame CAN) VI, both frame
C and frame E are received, so both elements return new values.

Frame Input Stream Mode
This mode reads all frames received from the network using a single stream. It
typically is used for analyzing and/or logging all frame traffic in the network.

The input data is returned as an array of frames. Because all frames are returned,
your application must evaluate identification in each frame (such as a CAN identifier
or FlexRay slot/cycle/channel) to interpret the frame payload data.

If the session uses a CAN interface, the XNET Read (Frame CAN) VI is the
recommended way to read data for this mode. This instance returns an array of
frames, where each frame is a LabVIEW cluster specific to the CAN protocol. If the
session uses a FlexRay or LIN interface, the read selection for that protocol is

© National Instruments 79

NI-XNET 20.5

recommended. For more advanced applications, you can use the XNET Read (Frame
Raw) VI, which returns frames in an optimized, protocol-independent format.

Previously, you could use only one Frame Input Stream session for a given interface.
Now, multiple Frame Input Stream sessions can be open at the same time on CAN
and LIN interfaces.

While using one or more Frame Input Stream sessions, you can use other sessions
with different input modes. Received frames are copied to Frame Input Stream
sessions in addition to any other applicable input session. For example, if you create
a Frame Input Single-Point session for FrameA, then create a Frame Input Stream
session, when FrameA is received, its data is returned from the call to the XNET Read
VI of both sessions. This duplication of incoming frames enables you to analyze
overall traffic while running a higher level application that uses specific frame or
signal data.

When used with a FlexRay interface, frames from both channels are returned. For
example, if a frame is received in a static slot on both channel A and channel B, two
frames are returned from the XNET Read VI.

Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2 ms. Frame E is an event-driven frame. For information about cyclic and
event-driven frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network, followed by a single call to the XNET Read (Frame CAN) VI. Each
frame contains its name (C or E), followed by the value of its two signals.

ni.com80

NI-XNET 20.5

The following figure shows the data returned from the XNET Read (Frame CAN) VI.

© National Instruments 81

NI-XNET 20.5

ni.com82

NI-XNET 20.5

Frame C and frame E are returned in a single array of frames. Each frame is a
LabVIEW cluster with CAN-specific elements. This example uses hexadecimal C and
E as the identifier of each frame. The signal data is contained in the first two payload
bytes. The timestamp represents the absolute time when the XNET interface
received the frame (end of frame), accurate to microseconds.

Frame Output Queued Mode
This mode provides a sequence of values for a single frame, for transmit using that
frame's timing as specified in the database.

The output data is provided as an array of frame values, to be transmitted
sequentially for the frame specified in the session.

This mode allows you to specify only one frame for the session. To transmit
sequential values for multiple frames, use a different Frame Output Queued session
for each frame or use the Frame Output Stream mode.

If the session uses a CAN interface, the XNET Write (Frame CAN) VI is the
recommended way to write data for this mode. This instance provides an array of
frame values, where each value is a LabVIEW cluster specific to the CAN protocol. If
the session uses a FlexRay or LIN interface, the write selection for that protocol is
recommended. For more advanced applications, you can use the XNET Write (Frame
Raw) VI, which provides frame values in an optimized, protocol-independent format.

The frame values for this mode are stored in a queue, such that every value
provided is transmitted.

For this mode, NI-XNET transmits each frame according to its properties in the
database. Therefore, when you call the XNET Write VI, the number of payload bytes
in each frame value must match that frame's Payload Length property. The other
frame value elements are ignored, so you can leave them uninitialized. For CAN
interfaces, if the number of payload bytes you write is smaller than the Payload
Length configured in the database, the requested number of bytes transmits. If the
number of payload bytes is larger than the Payload Length configured in the
database, the queue is flushed and no frames transmit. For other interfaces,
transmitting a number of payload bytes different than the frame's payload may
cause unexpected results on the bus.

© National Instruments 83

NI-XNET 20.5

Examples

In this example network, frame C is a cyclic frame that transmits on the network
once every 2.0 ms. Frame E is an event-driven frame that uses a transmit time
(minimum interval) of 2.5 ms. For information about cyclic and event-driven frames,
refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network. Each frame contains its name (C or E), followed by the value of its
two signals. The timeline begins with two calls to the XNET Write (Frame CAN) VI,
one for frame C, followed immediately by another call for frame E.

The following figure shows the data provided to each call to the XNET Write (Frame
CAN) VI. The first array shows data for the session with frame C. The second array
shows data for the session with frame E.

ni.com84

NI-XNET 20.5

Assuming the Auto Start? property uses the default of true, each session starts
within the call to the XNET Write (Frame CAN) VI. Frame C transmits followed by
frame E, both using the frame values from the first element (index 0 of each array).

According to the database, frame C transmits once every 2.0 ms, and frame E is
limited to an event-driven transmit once every 2.5 ms.

At 2.0 ms in the timeline, the frame value with bytes 3, 4 is taken from index 1 of the
frame C array and used for transmit of frame C.

© National Instruments 85

NI-XNET 20.5

When 2.5 ms have elapsed after acknowledgment of the previous transmit of frame
E, the frame value with bytes 5, 8, 0, 0 is taken from index 1 of frame E array and
used for transmit of frame E.

At 4.0 ms in the timeline, the frame value with bytes 5, 6 is taken from index 2 of the
frame C array and used for transmit of frame C.

Because there are no more frame values for frame E, this frame no longer transmits.
Frame E is event-driven, so new frame values are required for each transmit.

Because frame C is a cyclic frame, it transmits repeatedly. Although there are no
more frame values for frame C, the previous frame value is used again at 6.0 ms in
the timeline, and every 2.0 ms thereafter. If the XNET Write (Frame CAN) VI is called
again, the new frame value is used.

Frame Output Single-Point Mode
This mode writes frame values for the next transmit. It typically is used for control or
simulation applications that require lower level access to frames (not signals).

This mode does not use queues to store frame values. If the XNET Write VI is called
twice before the next transmit, the transmitted frame uses the value from the
second call to the XNET Write VI.

The output data is provided as an array of frames, one for each frame specified for
the session.

If the session uses a CAN interface, the XNET Write (Frame CAN) VI is the
recommended way to write data for this mode. This instance provides an array of
frame values, where each value is a LabVIEW cluster specific to the CAN protocol. If
the session uses a FlexRay or LIN interface, the write selection for that protocol is
recommended. For more advanced applications, you can use the XNET Write (Frame
Raw) VI, which provides frame values in an optimized, protocol-independent format.

For this mode, NI-XNET transmits each frame according to its properties in the
database. Therefore, when you call the XNET Write VI, the number of payload bytes
in each frame value must match that frame's Payload Length property. The other
frame value elements are ignored, so you can leave them uninitialized. For CAN
interfaces, if the number of payload bytes you write is smaller than the Payload
Length configured in the database, the requested number of bytes transmits. If the

ni.com86

NI-XNET 20.5

number of payload bytes is larger than the Payload Length configured in the
database, the queue is flushed and no frames transmit. For other interfaces,
transmitting a number of payload bytes different than the frame's payload may
cause unexpected results on the bus.

Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2.0 ms. Frame E is an event-driven frame that uses a transmit time
(minimum interval) of 2.5 ms. For information about cyclic and event-driven frames,
refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network. Each frame contains its name (C or E), followed by the value of its
two signals. The timeline shows three calls to the XNET Write (Frame CAN) VI.

The following figure shows the data provided to each of the three calls to the XNET
Write (Frame CAN) VI. The session contains frame values for two frames: C and E.

© National Instruments 87

NI-XNET 20.5

ni.com88

NI-XNET 20.5

Assuming the Auto Start? property uses the default of true, the session starts within
the first call to the XNET Write (Frame CAN) VI. Frame C transmits followed by frame
E, both using frame values from the first call to the XNET Write (Frame CAN) VI.

After the second call to the XNET Write (Frame CAN) VI, frame C transmits using its
value (bytes 3, 4), but frame E does not transmit, because its minimal interval of 2.5
ms has not elapsed since acknowledgment of the previous transmit.

Because the third call to the XNET Write (Frame CAN) VI occurs before the minimum
interval elapses for frame E, its next transmit uses its value (bytes 3, 4, 0, 0). The
value for frame E in the second call to the XNET Write (Frame CAN) VI is not used.

Frame C transmits the third time using the value from the third call to the XNET
Write (Frame CAN) VI (bytes 5, 6). Because frame C is cyclic, it transmits again using
the same value (bytes 5, 6).

Frame Output Stream Mode
This mode transmits an arbitrary sequence of frame values using a single stream.
The values are not limited to a single frame in the database, but can transmit any
frame.

The data wired to the XNET Write VI is an array of frame values, each of which
transmits as soon as possible. Frames transmit sequentially (one after another).

This mode is not supported for FlexRay.

Like Frame Input Stream sessions, you can create more than one Frame Output
Stream session for a given interface.

For CAN, frame values transmit on the network based entirely on the time when you
call the XNET Write VI. The timing of each frame as specified in the database is
ignored. For example, if you provide four frame values to the XNET Write VI, the first
frame value transmits immediately, followed by the next three values transmitted
back to back. For this mode, the CAN frame payload length in the database is
ignored, and the payload provided to the XNET Write VI is always used.

The XNET Write (Frame CAN) VI is the recommended way to write data for this mode
for CAN. This instance provides an array of frame values, where each value is a
LabVIEW cluster specific to the CAN protocol. The XNET Write (Frame LIN) VI is the
recommended way to write data for this mode for LIN. This instance provides an

© National Instruments 89

NI-XNET 20.5

array of frame values, where each value is a LabVIEW cluster specific to the LIN
protocol. For more advanced applications, you can use the XNET Write (Frame Raw)
VI, which provides frame values in an optimized format.

Similar to CAN, LIN frame values transmit on the network based entirely on the time
when you call the XNET Write VI. The timing of each frame as specified in the
database is ignored. The LIN frame payload length in the database is ignored. For
LIN, this mode is allowed only on the interface as master. If the payload for a frame
is empty, only the header part of the frame is transmitted. For a nonempty payload,
the header + response for the frame is transmitted. If a frame for transmit is defined
in the database (in-memory or otherwise), it is transmitted using its database
checksum type. If the frame for transmit is not defined in the database, it is
transmitted using enhanced checksum.

The XNET Write (Frame LIN) VI is the recommended way to write data for this mode
for LIN. This instance provides an array of frame values, where each value is a
LabVIEW cluster specific to the LIN protocol. For more advanced applications, you
can use the XNET Write (Frame Raw) VI, which provides frame values in an optimized
format.

The frame values for this mode are stored in a queue, such that every value
provided is transmitted.

Example

In this example CAN database, frame C is a cyclic frame that transmits on the
network once every 2.0 ms. Frame E is an event-driven frame that uses a transmit
time (minimum interval) of 2.5 ms. For information about cyclic and event-driven
CAN frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The following figure shows a timeline of a frame transfer on the CAN network. Each
frame contains its name (C or E), followed by the value of its two signals. The
timeline begins with a single call to the XNET Write (Frame CAN) VI.

ni.com90

NI-XNET 20.5

The following figure shows the data provided to the single call to the XNET Write
(Frame CAN) VI. The array provides values for frames C and E.

© National Instruments 91

NI-XNET 20.5

Assuming the Auto Start? property uses the default of true, each session starts
within the call to the XNET Write (Frame CAN) VI. All frame values transmit
immediately, using the same sequence as the array.

Although frame C and E specify a slower timing in the database, the Frame Output
Stream mode disregards this timing and transmits the frame values in quick
succession.

Within each frame values, this example uses an invalid timestamp value (0). This is
acceptable, because each frame value timestamp is ignored for this mode.

ni.com92

NI-XNET 20.5

Although frame C is specified in the database as a cyclic frame, this mode does not
repeat its transmit. Unlike the Frame Output Queued mode, the Frame Output
Stream mode does not use CAN frame properties from the database.

Signal Input Single-Point Mode
This mode reads the most recent value received for each signal. It typically is used
for control or simulation applications, such as Hardware In the Loop (HIL).

This mode does not use queues to store each received frame. If the interface
receives two frames prior to calling the XNET Read VI, that call to the XNET Read VI
returns signals for the second frame.

Use the XNET Read (Signal Single-Point) VI for this mode. For more advanced
applications, you can use the XNET Read (Signal XY) VI, which returns a timestamp
for each signal value. You can use the additional timestamps to determine whether
each value is new since the last read.

You also can specify a trigger signal for a frame. This signal name is :trigger:.<f
rame name>, and once it is specified in the XNET Create Session VI signal list, it
returns a value of 0.0 if the frame did not arrive since the last Read (or Start), and 1.0
if at least one frame of this ID arrived. You can specify multiple trigger signals for
different frames in the same session. For multiplexed signals, a signal may or may
not be contained in a received frame. To define a trigger signal for a multiplexed
signal, use the signal name :trigger:.<frame name>.<signal name>. This signal
returns 1.0 only if a frame with appropriate set multiplexer bit has been received
since the last Read or Start.

Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2 ms. Frame E is an event-driven frame. For information about cyclic and
event-driven frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network. Each frame contains its name (C or E), followed by the value of its

© National Instruments 93

NI-XNET 20.5

two signals. The timelines shows three calls to the XNET Read (Signal Single-Point)
VI.

The following figure shows the data returned from each of the three calls to the
XNET Read (Signal Single-Point) VI. The session contains all four signals.

In the data returned from the first call to the XNET Read (Signal Single-Point) VI,
values 3 and 4 are returned for the signals of frame C. The values of the first
reception of frame C (1 and 2) were lost, because this mode returns the most recent
values.

In the frame timeline, Time of 0 ms indicates the time at which the session started to
receive frames. For frame E, no frame is received prior to the first call to the XNET
Read (Signal Single-Point) VI, so the last two values return the signal Default Values.
For this example, assume that the Default Value is 0.0.

In the data returned from the second call to the XNET Read (Signal Single-Point) VI,
values 3 and 4 are returned again for the signals of frame C, because no new frame
has been received since the previous call to the XNET Read (Signal Single-Point) VI.
New values are returned for frame E (5 and 6).

In the data returned from the third call to the XNET Read (Signal Single-Point) VI,
both frame C and frame E are received, so all signals return new values.

ni.com94

NI-XNET 20.5

The following figure shows the data for the same frame timing, but using the XNET
Read (Signal XY) VI. The signal values are the same, but an additional timestamp is
provided for each signal.

For the first call to the XNET Read (Signal XY) VI, notice that the timestamps for
frame E (last two signals) are invalid (all zero). This indicates that frame E has not
been received since the session started, and therefore the signal values are the
default.

For the second call to the XNET Read (Signal XY) VI, notice that the timestamps for
frame C (first two signals) are the same as the first call to the XNET Read (Signal XY)
VI. This indicates that frame C has not been received since the previous read, and
therefore the signal values are repeated.

Signal Input Waveform Mode
Using the time when the signal frame is received, this mode resamples the signal
data to a waveform with a fixed sample rate. This mode typically is used for
synchronizing XNET data with DAQmx analog/digital input channels.

Use the XNET Read (Signal Waveform) VI for this mode. You can wire the data the
XNET Read (Signal Waveform) VI returns directly to a LabVIEW Waveform Graph or
Waveform Chart. The data consists of an array of waveforms, one for each signal

© National Instruments 95

NI-XNET 20.5

specified for the session. Each waveform contains t0 (timestamp of first sample), dt
(time between samples in seconds), and an array of resampled values for the signal.

You specify the resample rate using the XNET Session Resample Rate property.

Starting a Signal Input Waveform session discards any previous samples and frames
(the same result as running the XNET Flush VI). Note that when calling the XNET
Read (Signal Waveform) VI for the first time on the session, the session will be
started if it was not already. Stopping the session after the first start requires the
session to be explicitly started in the future.

Signal Input Waveform Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2 ms. Frame E is an event-driven frame. For information about cyclic and
event-driven frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network, followed by a single call to the XNET Read (Signal Waveform) VI.
Each frame contains its name (C or E), followed by the value of its two signals.

The following figure shows the data returned from the XNET Read (Signal Waveform)
VI. The session contains all four signals and uses the default resample rate of 1000.0.

ni.com96

NI-XNET 20.5

In the data returned from the XNET Read (Signal Waveform) VI, t0 provides an
absolute timestamp for the first sample. Assuming this is the first call to the XNET
Read (Signal Waveform) VI after starting the session, this t0 reflects that start of the
session, which corresponds to Time 0 ms in the frame timeline. At time 0 ms, no
frame has been received. Therefore, the first sample of each waveform uses the
signal default value. For this example, assume the default value is 0.0.

In the frame timeline, frame C is received twice with signal values 3 and 4. In the
waveform diagram, you cannot distinguish this from receiving the frame only once,
because the time of each frame reception is resampled into the waveform timing.

In the frame timeline, frame E is received twice in fast succession, once with signal
values 7 and 8, then again with signals 5 and 6. These two frames are received within
one sample of the waveform (within 1 ms). The effect on the data from the XNET
Read (Signal Waveform) VI is that values for the first frame (7 and 8) are lost.

You can avoid the loss of signal data by setting the session resample rate to a high
rate. NI-XNET timestamps receive frames to an accuracy of 100 ns. Therefore, if you
use a resample rate of 1000000 (1 MHz), each frame's signal values are represented
in the waveforms without loss of data. Nevertheless, using a high resample rate can
result in a large amount of duplicated (redundant) values. For example, if the
resample rate is 1000000, a frame that occurs once per second results in one million
duplicated signal values. This tradeoff between accuracy and efficiency is a
disadvantage of the Signal Input Waveform mode.

The Signal Input XY mode does not have the disadvantages mentioned previously.
The signal value timing is a direct reflection of received frames, and no resampling

© National Instruments 97

NI-XNET 20.5

occurs. Signal Input XY mode provides the most efficient and accurate
representation of a sequence of received signal values.

One of the disadvantages of Signal Input XY mode is that the corresponding
LabVIEW indicator (XY Graph) does not provide the same features as the indicator
for Signal Input Waveform (Waveform Graph). For example, the Waveform Graph can
plot consecutive calls to the XNET Read VI in a history, whereas XY Graph can plot
only values from a single call to the XNET Read VI.

In summary, when reading a sequence of received signal values, use Signal Input
Waveform mode when you need to synchronize CAN/FlexRay/LIN data with DAQmx
analog/digital input waveforms or display CAN/FlexRay/LIN data on the front panel
(without significant validation). Use Signal Input XY mode when you need to analyze
CAN/FlexRay/LIN data on the diagram, for validation purposes.

Signal Input XY Mode
For each frame received, this mode provides the frame signals as a timestamp/value
pair. This is the recommended mode for reading a sequence of all signal values.

The timestamp represents the absolute time when the XNET interface received the
frame (end of frame), accurate to microseconds.

Use the XNET Read (Signal XY) VI for this mode. You can wire the data the XNET Read
(Signal XY) VI returns directly to a LabVIEW XY Graph.

The data consists of an array of LabVIEW clusters, one for each signal specified for
the session. Each cluster contains two arrays, one for timestamp and one for value.
For each signal, the timestamp and value array size is always the same, such that it
represents a single array of timestamp/value pairs.

Each timestamp/value pair represents a value from a received frame. When signals
exist in different frames, the array size may be different from one cluster (signal) to
another.

The received frames for this mode are stored in queues to avoid signal data loss.

ni.com98

NI-XNET 20.5

Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2 ms. Frame E is an event-driven frame. For information about cyclic and
event-driven frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network, followed by a single call to the XNET Read (Signal XY) VI. Each
frame contains its name (C or E), followed by the value of its two signals.

The following figure shows the data returned from the XNET Read (Signal XY) VI. The
session contains all four signals.

Frame C was received four times, resulting in arrays of size 4 in the first two clusters.
Frame E was received three times, resulting in arrays of size 3 in the first two

© National Instruments 99

NI-XNET 20.5

clusters. The timestamp and value arrays are the same size for each signal. The
timestamp represents the end of frame, to microsecond accuracy.

The XY Graph displays the data from the XNET Read (Signal XY) VI. This display is an
accurate representation of signal changes on the network.

Signal Output Single-Point Mode
This mode writes signal values for the next frame transmit. It typically is used for
control or simulation applications, such as Hardware In the Loop (HIL).

This mode does not use queues to store signal values. If the XNET Write VI is called
twice before the next transmit, the transmitted frame uses signal values from the
second call to the XNET Write VI.

Use the XNET Write (Signal Single-Point) VI for this mode.

You also can specify a trigger signal for a frame. This signal name is :trigger:.<f
rame name>, and once it is specified in the XNET Create Session VI signal list, you
can write a value of 0.0 to suppress writing of that frame, or any value not equal to
0.0 to write the frame. You can specify multiple trigger signals for different frames in
the same session.

Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2.0 ms. Frame E is an event-driven frame that uses a transmit time
(minimum interval) of 2.5 ms. For information about cyclic and event-driven frames,
refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network. Each frame contains its name (C or E), followed by the value of its
two signals. The timeline shows three calls to the XNET Write (Signal Single-Point)
VI.

ni.com100

NI-XNET 20.5

The following figure shows the data provided to each of the three calls to the XNET
Write (Signal Single-Point) VI. The session contains all four signals.

Assuming the Auto Start? property uses the default of true, the session starts within
the first call to the XNET Write (Signal Single-Point) VI. Frame C transmits followed
by frame E, both using signal values from the first call to the XNET Write (Signal
Single-Point) VI.

If a transmitted frame contains a signal not included in the output session, that
signal transmits its Default Value. If a transmitted frame contains bits no signal uses,
those bits transmit the Default Payload.

After the second call to the XNET Write (Signal Single-Point) VI, frame C transmits
using its values (3 and 4), but frame E does not transmit, because its minimal
interval of 2.5 ms has not elapsed since acknowledgment of the previous transmit.

Because the third call to the XNET Write (Signal Single-Point) VI occurs before the
minimum interval elapses for frame E, its next transmit uses its values (3 and 4). The
values for frame E in the second call to the XNET Write (Signal Single-Point) VI are
not used.

Frame C transmits the third time using values from the third call to the XNET Write
(Signal Single-Point) VI (5 and 6). Because frame C is cyclic, it transmits again using
the same values (5 and 6).

© National Instruments 101

NI-XNET 20.5

Signal Output Waveform Mode
Using the time when the signal frame is transmitted according to the database, this
mode resamples the signal data from a waveform with a fixed sample rate. This
mode typically is used for synchronizing XNET data with DAQmx analog/digital
output channels.

The resampling translates from the waveform timing to each frame's transmit
timing. When the time for the frame to transmit occurs, it uses the most recent
signal values in the waveform that correspond to that time.

Use the XNET Write (Signal Waveform) VI for this mode. You can wire the data
provided to the XNET Write (Signal Waveform) VI directly from a LabVIEW Waveform
Graph or Waveform Chart. The data consists of an array of waveforms, one for each
signal specified for the session. Each waveform contains an array of resampled
values for the signal.

You specify the resample rate using the Resample Rate property.

The frames for this mode are stored in queues.

This mode is not supported for a LIN interface operating as slave. For more
information, refer to LIN Frame Timing and Session Mode.

Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2.0 ms. Frame E is an event-driven frame that uses a transmit time
(minimum interval) of 2.5 ms. For information about cyclic and event-driven frames,
refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network. Each frame contains its name (C or E), followed by the value of its
two signals. The timeline begins with a single call to the XNET Write (Signal
Waveform) VI.

ni.com102

NI-XNET 20.5

The following figure shows the data provided to the call to the XNET Write (Signal
Waveform) VI. The session contains all four signals and uses the default resample
rate of 1000.0 samples per second.

Assuming the Auto Start? property uses the default of true, the session starts within
the call to the XNET Write (Signal Waveform) VI. Frame C transmits followed by
frame E, both using signal values from the first sample (index 0 of all four Y arrays).

The waveform elements t0 (timestamp of first sample) and dt (time between
samples in seconds) are ignored for the call to the XNET Write (Signal Waveform) VI.
Transmit of frames starts as soon as the XNET session starts. The frame properties in
the database determine the each frame's transmit time. The session resample rate
property determines the time between waveform samples.

In the waveforms, the sample at index 1 occurs at 1.0 ms in the frame timeline.
According to the database, frame C transmits once every 2.0 ms, and frame E is
limited to an event-driven transmit with interval 2.5 ms. Therefore, the sample at
index 1 cannot be resampled to a transmitted frame and is discarded.

© National Instruments 103

NI-XNET 20.5

Index 2 in the waveforms occurs at 2.0 ms in the frame timeline. Frame C is ready for
its next transmit at that time, so signal values 5 and 6 are taken from the first two Y
arrays and used for transmit of frame C. Frame E still has not reached its transmit
time of 2.5 ms from the previous acknowledgment, so signal values 1 and 2 are
discarded.

At index 3, frame E is allowed to transmit again, so signal values 5 and 6 are taken
from the last two Y arrays and used for transmit of frame E. Frame C is not ready for
its next transmit, so signal values 7 and 8 are discarded.

This behavior continues for Y array indices 4 through 7. For the cyclic frame C, every
second sample is used to transmit. For the event-driven frame E, every sample is
interpreted as an event, such that every third sample is used to transmit.

Although not shown in the frame timeline, frame C transmits again at 8.0 ms and
every 2.0 ms thereafter. Frame C repeats signal values 5 and 6 until the next call to
the XNET Write (Signal Waveform) VI. Because frame E is event driven, it does not
transmit after the timeline shown, because no new event has occurred.

Because the waveform timing is fixed, you cannot use it to represent events in the
data. When used for event driven frames, the frame transmits as if each sample was
an event. This mismatch between frame timing and waveform timing is a
disadvantage of the Signal Output Waveform mode.

When you use the Signal Output XY mode, the signal values provided to the XNET
Write (Signal XY) VI are mapped directly to transmitted frames, and no resampling
occurs. Unless your application requires correlation of output data with DAQmx
waveforms, Signal Output XY is the recommended mode for writing a sequence of
signal values.

Signal Output XY Mode
This mode provides a sequence of signal values for transmit using each frame's
timing as specified in the database. This is the recommended mode for writing a
sequence of all signal values.

Use the XNET Write (Signal XY) VI for this mode. The data consists of an array of
LabVIEW clusters, one for each signal specified for the session. Each cluster contains

ni.com104

NI-XNET 20.5

two arrays, one for timestamp and one for value. The timestamp array is unused
(reserved).

Each signal value is mapped to a frame for transmit. Therefore, the array of signal
values is mapped to an array of frames to transmit. When signals exist in the same
frame, signals at the same index in the arrays are mapped to the same frame. When
signals exist in different frames, the array size may be different from one cluster
(signal) to another.

The frames for this mode are stored in queues, such that every signal provided is
transmitted in a frame.

Examples

In this example network, frame C is a cyclic frame that transmits on the network
once every 2.0 ms. Frame E is an event-driven frame that uses a transmit time
(minimum interval) of 2.5 ms. For information about cyclic and event-driven frames,
refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network. Each frame contains its name (C or E), followed by the value of its
two signals. The timeline begins with a single call to the XNET Write (Signal XY) VI.

The following figure shows the data provided to the XNET Write (Signal XY) VI. The
session contains all four signals.

© National Instruments 105

NI-XNET 20.5

Assuming the Auto Start? property uses the default of true, the session starts within
a call to the XNET Write (Signal XY) VI. This occurs at 0 ms in the timeline. Frame C
transmits followed by frame E, both using signal values from the first sample (index
0 of all four Y arrays).

According to the database, frame C transmits once every 2.0 ms, and frame E is
limited to an event-driven interval of 2.5 ms.

At 2.0 ms in the timeline, signal values 3 and 4 are taken from index 1 of the first two
Y arrays and used for transmit of frame C.

At 3.5 ms in the timeline, signal value 5 is taken from index 1 of the third Y array.
Because this is a new value for frame E, it represents a new event, so the frame

ni.com106

NI-XNET 20.5

transmits again. Because no new signal value was provided at index 1 in the fourth
array, the second signal of frame E uses the value 8 from the previous transmit.

At 4.0 ms in the timeline, signal values 5 and 6 are taken from index 2 of the first two
Y arrays and used for transmit of frame C.

Because there are no more signal values for frame E, this frame no longer transmits.
Frame E is event driven, so new signal values are required for each transmit.

Because frame C is a cyclic frame, it transmits repeatedly. Although there are no
more signal values for frame C, the values of the previous frame are used again at
6.0 ms in the timeline and every 2.0 ms thereafter. If the XNET Write (Signal XY) VI is
called again, the new signal values are used.

The next example network demonstrates a potential problem that can occur with
Signal Output XY mode.

In this example network, frame C is a cyclic frame that transmits on the network
once every 2.0 ms. Frame X is a cyclic frame that transmits on the network once
every 1.0 ms. Each frame contains two signals, one in the first byte and another in
the second byte. The timeline begins with a single call to the XNET Write (Signal XY)
VI.

The following figure shows the data provided to the XNET Write (Signal XY) VI. The
session contains all four signals.

© National Instruments 107

NI-XNET 20.5

The number of signal values in all four Y arrays is the same. The four elements of the
arrays are mapped to four frames. The problem is that because frame X transmits
twice as fast as frame C, the frames for the last two arrays transmit twice as fast as
the frames for the first two arrays.

The result is that the last pair of signals for frame X (1 and 2) transmit over and over,
until the timeline has completed for frame C. This sort of behavior usually is
unintended. The Signal Output XY mode goal is to provide a complete sequence of
signal values for each frame.

The best way to resolve this issue is to provide a different number of values for each
signal, such that the number of elements corresponds to the timeline for the
corresponding frame. If the previous call to the XNET Write (Signal XY) VI provided

ni.com108

NI-XNET 20.5

eight elements for frame X (last two Y arrays) instead of just four elements, this
would have created a complete 8.0 ms timeline for both frames.

Although you need to resolve this sort of timeline for cyclic frames, this is not
necessarily true for event-driven frames. For an event-driven frame, you may decide
simply to pass either zero or one set of signal values to the XNET Write (Signal XY) VI.
When you do this, each call to the XNET Write (Signal XY) VI can generate a single
event, and the overall timeline is not a major consideration.

Conversion Mode
This mode is intended to convert NI-XNET signal data to frame data or vice versa. It
does not use any NI-XNET hardware, and you do not specify an interface when
creating this mode.

Conversion occurs with the XNET Convert VI. Neither the XNET Read VI nor the XNET
Write VI work with this mode; they return an error because hardware I/O is not
permitted.

Conversion works similar to Single-Point mode. You specify a set of signals that can
span multiple frames. Signal to frame conversion reads a set of values for the signals
specified and writes them to the respective frame(s). Frame to signal conversion
parses a set of frames and returns the latest signal value read from a corresponding
frame.

Frames can be in any NI-XNET frame representations (CAN, FlexRay, LIN, or Raw).
You select the conversion direction and the frame type by choosing the appropriate
instance of the XNET Convert polymorphic VI.

In addition to numeric signal conversion, the raw bytes that span a signal can be
extracted and inserted. The XNET Convert VI provides modes for this operation. The
conversion must only span one signal for this case, and this signal must be byte
aligned (both start bit and number of bits). If these conditions are not met, the byte
array conversion variants of the XNET Convert VI will return an error. Byte ordering is
ignored in this case; the raw bytes are taken/set in ascending order from/to the
frame. This mode will work for signals > 64 bits as well; it is the only way to access
such signals.

© National Instruments 109

NI-XNET 20.5

Example 1: Conversion of CAN Frames to Signals

Suppose you have a database with a CAN frame with ID 0x123 and two unsigned
byte signals assigned to it (byte 1 and byte 2).

Creating an appropriate conversion session and calling the XNET Convert (Frame
CAN to Signal) VI with the following input

results in the following signal values being returned:

Explanation: The data are taken from frame 4. Frames 1 and 3 are ignored because
they have a wrong (unmatched) ID. Frame 2 is ignored because its data are

ni.com110

NI-XNET 20.5

overwritten later with the values from frame 4, because frames are processed in the
order of input.

Example 2: Conversion of Signals to FlexRay Frames

Suppose you have two FlexRay frames with slot ID 3 and 6, and each one has
assigned a two-byte, Big Endian signal at byte 2 and 3 (zero based). Suppose also
that all relevant default values of other signals in the frame are 0.

Creating an appropriate conversion session and calling the XNET Convert (Signal to
Frame FlexRay) VI with the following input

causes the following frames to be generated:

Explanation: The first signal is converted to the byte sequence 0x01, 0x02 (1 x 256 +
2), and the byte sequence is placed at byte 2 of the frame with slot ID 3. The second

© National Instruments 111

NI-XNET 20.5

signal is converted to byte sequence 0x03, 0x04 (3 x 256 + 4) and placed at byte 2 of
the frame with slot ID 6. All other data are filled with the default values (0).

How Do I Create a Session?
There are two methods for creating a session: a LabVIEW project and the XNET
Create Session VI. You typically use only one method to create all sessions for your
application.

LabVIEW Project

Using LabVIEW project sessions is best suited for applications that are static, in that
the network data does not change from one execution to the next. Refer to Getting
Started for a description of creating a session in a LabVIEW project.

When you configure the session in a LabVIEW project, you select the interface,
mode, and database objects with the NI-XNET user interface. The database objects
(cluster, frames, and signals) must exist in a file. If you do not already have a
database file, you can create one using the NI-XNET Database Editor, which you can
launch from NI-XNET user interface.

XNET Create Session VI

You can use the XNET Create Session VI to create NI-XNET sessions at run time. This
run-time creation has advantages over a LabVIEW project, because the end user of
your application can configure sessions from the front panel. The disadvantage is
that the VI diagram is more complex.

If your application is used for a specific product (for example, an instrument panel
for a specific make/model/year car), and the front panel must be simple (for
example, a test button with a pass/fail LED), a LabVIEW project is the best method to
use for NI-XNET sessions. Because the configuration does not change, a LabVIEW
project provides the easiest programming model.

If your application is used for many different products (for example, a test system for
an engine in any make/model/year car), the XNET Create Session VI is the best
method to use for NI-XNET sessions. On the front panel, the application end user

ni.com112

NI-XNET 20.5

can provide a database file and select the specific frames or signals to read and/or
write.

The XNET Create Session VI takes inputs for the interface, mode, and database
objects. You select the interface using techniques described in How Do I View
Available Interfaces?. The database objects depend on the mode (for example,
Signal Input Waveform requires an array of signals). You select the database objects
using techniques described in Database Programming.

Using CAN
This topic summarizes some useful NI-XNET features specific to the CAN protocol.

CAN FD, ISO Versus Non-ISO

Bosch published several versions of the CAN specification, such as CAN 2.0,
published in 1991. This specification has two parts; part A is for the standard format
with an 11-bit identifier, and part B is for the extended format with a 29-bit
identifier. CAN 2.0 supports frames with payload up to 8 bytes and transmission
speed up to 1 Mbaud.

To allow faster transmission rates, in 2012 Bosch released CAN FD 1.0 (CAN with
Flexible Data-Rate), supporting a payload length up to 64 bytes and faster baud
rates. ISO later standardized CAN FD. ISO CAN FD 11898-1:2015 introduced some
changes to the original CAN FD 1.0 protocol from Bosch, which made the CAN FD 1.0
(non-ISO CAN FD) and ISO CAN FD protocols incompatible. These changes are now
available under ISO 11898-1:2015. The standards cannot communicate with each
other.

NI-XNET supports both ISO CAN FD and non-ISO CAN FD. The default is ISO CAN FD.
The NI-XNET API behavior supporting ISO CAN FD mode has been changed slightly
to allow new features compared to the Non-ISO FD mode. In Non-ISO CAN FD mode,
you must use the Interface:CAN:Transmit I/O Mode session property to switch the
CAN I/O mode of transmitted frames. In ISO CAN FD mode, the transmission mode is
specified in the database (CAN:I/O Mode property) or, when the database is not
used, in the frame type field of the frame header.

© National Instruments 113

NI-XNET 20.5

Received data frames in Non-ISO CAN FD mode always have the type CAN Data,
while in ISO CAN FD mode the type is more specific, indicating the protocol in which
the frame has been transmitted (CAN 2.0, CAN FD, or CAN FD+BRS).

Because an existing CAN FD application developed with NI-XNET 15.0 (which
supported non-ISO CAN FD only) might not work with the API changes for ISO CAN
FD, NI-XNET 15.5 has introduced a Legacy ISO mode. In this mode, the API behavior
is the same as in Non-ISO CAN FD mode, but it communicates on the bus using ISO
CAN FD mode.

You define the ISO CAN FD mode when you add an alias for a database supporting
CAN FD. In a dialog box (or the XNET Database Add Alias VI), you define whether the
mode default is ISO CAN FD, Non-ISO CAN FD, or Legacy ISO mode. In the session,
you still can change the ISO mode with an Interface:CAN:FD ISO Mode property.

Understanding CAN Frame Timing

When you use an NI-XNET database for CAN, the properties of each CAN frame
specify the CAN data transfer timing. To understand how the CAN frame timing
properties apply to NI-XNET sessions, refer to CAN Timing Type and Session Mode.

Configuring Frame I/O Stream Sessions

As described in Database Programming, you typically need to specify database
objects when creating an NI-XNET session.

The CAN protocol supports an exception that makes some applications easier to
program. In sessions with Frame Input Stream or Frame Output Stream mode, you
can read or write arbitrary frames. Because these modes do not use specific frames,
only the database cluster properties apply. For CAN, the only required cluster
property is the baud rate. If the I/O mode of your cluster is CAN FD or CAN FD+BRS,
the FD baud rate also is required.

Although the CAN baud rate applies to all hardware on the bus (cluster), NI-XNET
also provides the baud rate properties as interface properties. You can set these
interface properties using the session property node.

If your application uses only Frame I/O Stream sessions, no database object is
required (no cluster). You simply can call the XNET Create Session VI and then set
the baud rate using the session property node. The following figure shows an

ni.com114

NI-XNET 20.5

example diagram that creates a Frame Input Stream session and sets the baud rate
to 500 kbps. The resulting session operates in the standard CAN I/O mode.

Configure CAN Frame Input Stream
If your application uses only Frame I/O Stream sessions, but you want to connect to
a CAN FD bus, use the in-memory database :can_fd: or :can_fd_brs: as shown in the
following figure. These databases are configured as a CAN cluster with the CAN:I/O
Mode set to CAN FD or CAN FD+BRS, as appropriate. If you use either database, you
must set the Interface:CAN:64bit FD Baud Rate property.

Configure CAN Frame Input Stream for a CAN FD Session

Using Ethernet
This topic summarizes some of the NI-XNET features specific to the Ethernet
protocol.

Hardware Design

Each port has three data paths: XNET monitor, XNET endpoint, and OS stack. All
three data paths can be used simultaneously.

Monitor Path
The monitor path reads and inspects all Ethernet frames that are received or
transmitted on the port. For Ethernet interfaces, the suffix "/monitor" indicates the

© National Instruments 115

NI-XNET 20.5

use of a monitor path when it is appended to the interface name (e.g., ENET1/
monitor). When a port is configured for Direct mode, the monitor path reads frames
that are received on the interface as well as frames that are echoed from transmit by
the interface. When Tap is enabled, the monitor path reads the Ethernet frames that
are received from one Tap partner before being transmitted by the other Tap
partner.

Endpoint Path
An Ethernet interface that is configured to use Direct mode functions as an
endpoint. An endpoint path is the connection between an endpoint and the
channel to which it is connected. The endpoint path transmits and receives Ethernet
frames on the port. The endpoint path is typically used if you need it to act as an
AVB endpoint. NI-XNET represents an endpoint path as the interface name itself,
with no suffix.

OS Stack
The OS stack is the host computer, including operating system, application
software, subroutines, and communication protocols. The OS stack path transmits
and receives data using standard network sockets via the operating system's
network stack. The OS stack is typically used with applications designed to use
traditional TCP- or UDP-based protocols for its network communication.

The OS detects a separate network interface for each physical XNET port present on
the system. The labeling of these ports is OS-specific, but you can determine which
label matches a specific XNET interface by examining the properties reported in
MAX, including the name, MAC address, and IP address. For information about
configuring IP addressing, refer to your operating system instructions. For NI
LabVIEW Real-Time systems, this configuration is exposed in the Network Settings of
the target.

The following figure represents a block diagram of a single port, showing all three
data paths.

ni.com116

NI-XNET 20.5

For Ethernet interfaces, only XNET Create Session Frame Input Stream and Frame
Output Stream are supported; other Create Session modes are not supported. All
other modes, including Conversion Mode, return an invalid mode error, indicating
that the selected session mode is not supported by the protocol of the interface.

Port Modes

An Ethernet interface includes ports that can be configured as independent network
interfaces. On Automotive Ethernet hardware, these ports can function in either
Direct mode or Tap mode. Regardless of mode, traffic on each port can be
monitored. When monitoring is enabled, all traffic that is transmitted or received on
that port is captured.

Note Port mode cannot be changed while an XNET session is started on the port. When the
port mode is changed, port connectivity is lost to configure the change.

© National Instruments 117

NI-XNET 20.5

Direct Mode
In Direct mode, ports are directly connected and function as endpoints; Ethernet
frames received and transmitted on the port have no relationship to any other ports
on the device. Input and output sessions are supported in Direct mode. The
following diagram shows a design with two ports. In this example, the ports are
configured in Direct mode, and each port can run independently.

Tap Mode
In Tap mode, a pair of adjacent ports, called Tap partners, are connected to form a
Tap that allows the interface to monitor traffic. For example, on a 4-port device,
physical ports 1 and 2 might be Tap partners, while ports 3 and 4 are Tap partners. A
frame received on one Tap partner is immediately transmitted out the other Tap
partner, to mimic behavior of an Ethernet cable. When you set Tap mode on one
port, its Tap partner is automatically set to Tap mode as well.

ni.com118

NI-XNET 20.5

The following diagram shows a design using a single Tap. As the connected ports are
configured in Tap mode, traffic received on one Tap partner is transmitted to the
other; monitored frames are also transmitted to the user application at the
controller.

When an input session is created using an XNET interface for either Tap partner, and
the monitor suffix is used with the XNET interface, the session reads frames going
through the Tap partners. Output sessions are not supported in Tap mode.

When Port Mode is set to Tap for the interface, only the monitor names are shown;
otherwise, both the monitor and endpoint names are shown.

Using FlexRay
This topic summarizes some useful NI-XNET features specific to the FlexRay
protocol.

© National Instruments 119

NI-XNET 20.5

Starting Communication

FlexRay is a Time Division Multiple Access (TDMA) protocol, which means that all
hardware products on the network share a synchronized clock. Slots of time for that
clock determine when each frame transmits.

To start communication on FlexRay, the first step is to start the synchronized
network clock. In the FlexRay database, two or more hardware products are
designated to transmit a special startup frame. These products (nodes) are called
coldstart nodes. Each coldstart node uses the startup frame to contribute its local
clock as part of the shared network clock.

Because at least two coldstart nodes are required to start FlexRay communication,
your NI-XNET FlexRay interface may need to act as a coldstart node, and therefore
transmit a special startup frame. The properties of each startup frame (including the
time slot used) are specified in the FlexRay database.

The following scenarios apply to FlexRay startup frames:

■ Port to port: When you get started with your NI-XNET FlexRay hardware, you
can connect two FlexRay interfaces (ports) to run simple programs, such as
the NI-XNET examples. Because this is a cluster with two nodes, each NI-XNET
interface must transmit a different startup frame.
■ Connect to existing cluster: If you connect your NI-XNET FlexRay interface
to an existing cluster (for example, a FlexRay network within a vehicle), that
cluster already must contain coldstart nodes. In this scenario, the NI-XNET
interface should not transmit a startup frame.
■ Test single ECU that is coldstart: If you connect to a single ECU (and
nothing else), and that ECU is a coldstart node, the NI-XNET interface must
transmit a startup frame. The NI-XNET interface must transmit a startup frame
that is different than the startup frame the ECU transmits.
■ Test single ECU that is not coldstart: If you connect to a single ECU (and
nothing else), and that ECU is not a coldstart node, you must connect two NI-
XNET interfaces. The ECU cannot communicate without two coldstart nodes
(two clocks). According to the FlexRay specification, a single FlexRay interface
can transmit only one startup frame. Therefore, you need to connect two NI-

ni.com120

NI-XNET 20.5

XNET FlexRay interfaces to the ECU, and each NI-XNET interface must transmit
a different startup frame.

NI-XNET has two options to transmit a startup frame:

■ Key Slot Identifier: The NI-XNET Session Node includes a property called
Interface:FlexRay:Key Slot Identifier. This property specifies the static slot that
the session interface uses to transmit a startup frame. The value of this
property is zero (0) by default, meaning that no startup frame transmits. If you
set this property, the value specifies the static slot (identifier) to transmit as a
coldstart node. The startup frame transmits automatically when the interface
starts, and its payload is null (no data). The session can be input or output,
and the startup frame is not required in the session's list of frames/signals.
■ Output Startup Frame: If you create an NI-XNET output session, and the
session's list of frames/signals uses a startup frame, the NI-XNET interface acts
as a coldstart node.

To find startup frames in the database, look for a frame with the FlexRay:Startup?
property true. You can use that frame name for an output session or use its identifier
as the key slot. When selecting a startup frame, avoid selecting one that the ECUs
you connect to already transmit.

Understanding FlexRay Frame Timing

When you use an NI-XNET database for FlexRay, the properties of each FlexRay
frame specify the FlexRay data transfer timing. To understand how the FlexRay
frame timing properties apply to NI-XNET sessions, refer to FlexRay Timing Type and
Session Mode.

In LabVIEW Real-Time, NI-XNET provides a timing source you can use to synchronize
your LabVIEW VI with the timing of frames. For more information, refer to Using
LabVIEW Real-Time.

Protocol Data Unit (PDU)

Many FlexRay networks use a Protocol Data Unit (PDU) to implement configurations
similar to CAN. The PDU is a signal container. You can use a single PDU within
multiple frames for faster timing. A single frame can contain multiple PDUs, each

© National Instruments 121

NI-XNET 20.5

updated independently. For more information, refer to Protocol Data Units (PDUs) in
NI-XNET.

Using LIN
This section summarizes some useful NI-XNET features specific to the LIN protocol.

Changing the LIN Schedule

LIN networks (clusters) always include a single ECU in the system called the master.
The master transmits a schedule of frame headers. Each frame header is a remote
request for a specific frame ID. For each header, a single ECU in the network (slave)
responds by transmitting the payload for the requested ID. The master ECU also can
respond to a specific header, and thus the master can transmit payload data for the
slave ECUs to receive.

Unlike some other scheduled protocols such as FlexRay, LIN allows the master ECU
to change the schedule of frame headers. For example, the master can initially use a
"normal" schedule that requests IDs 1, 2, 3, 4, and then the master can change to a
"diagnostic" schedule that requests IDs 60 and 61.

With NI-XNET, you change the LIN schedule using the XNET Write (State LIN
Schedule Change) VI. When you want the NI-XNET interface to act as a master on the
network, you must call this XNET Write VI at least once, to specify the schedule to
run. When you write a schedule change, this automatically configures NI-XNET as
master (the XNET Session Interface:LIN:Master? property is set to true). As a LIN
master, NI-XNET handles all real-time scheduling of frame headers for you, using the
LIN interface hardware onboard processor.

If you do not write a schedule change, NI-XNET leaves the interface at its default
configuration of slave. As a LIN slave, you still can write signal or frame values to an
output session, but NI-XNET waits for each frame's header to arrive before
transmitting payload data.

Understanding LIN Frame Timing

Because LIN is a scheduled network, the headers that the master transmits
determine the timing of all frames. To understand how and when each frame

ni.com122

NI-XNET 20.5

transmits, you must examine the entries in each schedule. Each entry transfers one
frame (or possibly multiple frames). For more information, refer to the XNET LIN
Schedule Entry Type property.

Because it is possible to use a single frame in multiple schedules and schedule
entries, the overall timing for an individual frame can be complex. Nevertheless,
each LIN schedule entry generally fits the concepts of cyclic and event timing that
are common for other protocols such as CAN and FlexRay. For more information
about how these concepts apply to LIN, refer to Cyclic and Event Timing.

LIN Diagnostics

Refer to the XNET Write (State LIN Diagnostic Schedule Change) VI for details.

Special Considerations for Using Stream Output Mode with LIN

Refer to the Interface:Output Stream Timing property for details.

Using LabVIEW Real-Time
The LabVIEW Real-Time (RT) module combines LabVIEW graphical programming
with the power of a real-time operating system, enabling you to build real-time
applications. NI-XNET provides features and performance specifically designed for
LabVIEW RT.

High Priority Loops

Many real-time applications contain at least one loop that must execute at the
highest priority. This high-priority loop typically contains code to read inputs,
execute a control algorithm, and then write outputs. The high-priority loop executes
at a fast period, such as 500 µs (2 kHz). To ensure that the loop diagram executes
within the period, the average execution time (cost) of read and write VIs must be
low. The execution time also must be consistent from one loop iteration to another
(low jitter).

Within NI-XNET, the session modes for single-point I/O are designed for use within
high-priority loops. This applies to all four single-point modes: input, output, signal,

© National Instruments 123

NI-XNET 20.5

or frame. The XNET Read and XNET Write VIs provide fast and consistent execution
time, and they avoid access to shared resources such as the memory manager.

The session modes other than single-point all use queues to store data. Although
you can use the queued session modes within a high priority loop, those modes use
a variable amount of data for each read/write. This requires a variable amount of
time to process the data, which can introduce jitter to the loop. When using the
queued modes, measure the performance of your code within the loop to ensure
that it meets your requirements even when bus traffic is variable.

When the XNET Read and XNET Write VIs execute for the very first loop iteration,
they often perform tasks such as auto-start of the session, allocation of internal
memory, and so on. These tasks result in high cost for the first iteration compared to
any subsequent iteration. When you measure performance of the XNET Read and
XNET Write VIs, discard the first iteration from the measurement.

For another VI or property node (not the XNET Read or XNET Write VI), you must
assume it is not designed for use within high priority loops. The property nodes are
designed for configuration purposes. VIs that change state (for example, the XNET
Start VI) require time for hardware/software configuration. Nevertheless, there are
exceptions for which certain properties and VIs support high-priority use. Refer to
the help for the specific features you want to use within a high priority loop. This
help may specify an exception.

XNET I/O Names

You can use a LabVIEW project to program RT targets. When you open a VI front
panel on an RT target, that front panel accesses the target remotely (over TCP/IP).

When you use an XNET I/O name on a VI front panel on LabVIEW RT, the remote
access provides the user interface features of that I/O name. For example, the drop-
down list of an XNET Interface provides all CAN, FlexRay, and LIN interfaces on the
RT target (for example, a PXI chassis).

For the remote access to operate properly, you must connect the LabVIEW RT target
using a LabVIEW project. To connect the target, right-click the target in a LabVIEW
project and select Connect. The target shows a green LED in project, and the user
interface of I/O names is operational.

ni.com124

NI-XNET 20.5

If the RT target is disconnected in a LabVIEW project, each I/O name displays the text
(target disconnected) in its drop-down list.

Deploying Databases

When you create an NI-XNET application for LabVIEW RT, you must assign an alias to
your database file. When you deploy to the RT target, the text database file is
compressed to an optimized binary format, and that binary file is transferred to the
target.

When you create NI-XNET sessions using a LabVIEW project, you assign the alias
within the session dialog (for example, Browse for Database File). When you drag
the session to a VI under the RT target, then run that VI, NI-XNET automatically
deploys the database file to the target.

When you create NI-XNET sessions at run time, you must explicitly deploy the
database to the RT target. There are two options for this deployment:

■ I/O names: If you are using I/O names for database objects, you can click on
an I/O name and select Manage Database Deployment. This opens a dialog
you can use to assign new aliases and deploy them to the RT target.
■ File Management VIs: To manage database deployment from a VI running
on the host (Windows computer), use VIs in the NI-XNET File Management
palette. This palette includes VIs to add an alias and deploy the database to
the RT target.

To delete the database file from the RT target after execution of a test, you perform
this undeploy using either option described above.

Memory Use for Databases

When you access properties of a database object (for example, cluster, frame, signal)
on the diagram of your VI, NI-XNET opens the database on disk and maintains a
binary image in memory. Use XNET Database Close.vi to close the database prior to
performing memory-sensitive tasks, such as a control loop on LabVIEW Real-Time.

When you pass database objects as input to XNET Create Session.vi, NI-XNET
internally opens the database, reads the information required to create the session,

© National Instruments 125

NI-XNET 20.5

then closes the database. Therefore, there is no need to explicitly close the database
after creating sessions.

FlexRay Timing Source

FlexRay is a deterministic protocol, which means it enables ECUs to synchronize
code execution and data exchange. When you use LabVIEW to test an ECU that uses
these deterministic features, you typically need to synchronize the LabVIEW VI to the
FlexRay communication cycle. For example, to validate that the ECU transmits a
different value each FlexRay cycle, you must read that frame every FlexRay cycle.

NI-XNET provides the XNET Create Timing Source (FlexRay Cycle) VI to create a
LabVIEW timing source. You wire this timing source to a LabVIEW timed loop to
execute LabVIEW code synchronized to the FlexRay cycle. Because the length of
time for each FlexRay cycle is a few milliseconds, LabVIEW RT provides the required
real-time execution.

Creating a Built Real-Time Application

NI-XNET supports creation of a real-time application, which you can set to run
automatically when you power on the RT target. Create the real-time application by
right-clicking Build Specifications under the RT target, then selecting New»Real-

Time Application.

If you created NI-XNET sessions in a LabVIEW project, those sessions are deployed to
the RT target in the same manner as running a VI.

Deployment of databases for a real-time application is the same as running a VI.

System Configuration API
NI-XNET supports the National Instruments System Configuration API, which
provides programmatic access to many operations in NI MAX. This enables you to
perform these operations within your application.

The NI System Configuration API uses product experts to gather information about
devices on local and remote systems. You can create a filter to gather information
for a single type of product, such as filtering for NI-XNET devices only.

ni.com126

NI-XNET 20.5

The NI-XNET expert programmatic name is xnet.

Although XNET System API property nodes (XNET System Node, XNET Device Node,
and XNET Interface Node) are provided for compatibility with previous versions of
NI-XNET, the NI System Configuration API is recommended for the following
advantages:

■ Discovery and configuration of all NI hardware products, not just XNET
hardware
■ Consistency with features available in NI MAX
■ Ability to save configuration changes for use in multiple LabVIEW
applications
■ Remote discovery and configuration for LabVIEW Real-Time (RT) targets

When you physically connect an NI-XNET interface to your network, some properties
must be configured to enable communication. Some of these properties, such as an
Ethernet PHY state or CAN termination, are specific to your interface but are not
necessarily maintained in or provided by a database. These properties can be
written using the NI System Configuration API rather than an NI-XNET session.

When you write a property using the NI System Configuration API, you must invoke
the Save Changes VI in order for the change to take effect. (See Save Changes (VI) in
the NI System Configuration API Help.)

The NI-XNET expert returns a flat list of "hardware resources" to System
Configuration API for each NI-XNET device (i.e., hardware model) and NI-XNET
interface (e.g., port) that is connected to the system. Use the following properties in
System Configuration API to convert the resource list into the typical hierarchy
displayed in NI MAX.

■ Device: IsDevice=T, Devices&Chassis:ProvidesLinkName=<unique-device-
name>
■ Interface: IsDevice=F, Device&Chassis:ConnectsToLinkName=<unique-
device-name>, ExpertInfo:UserAlias=<XNET Interface>

For example, a single, 2-port USB-8506 on Windows returns three hardware
resources:

© National Instruments 127

NI-XNET 20.5

■ Device: ProvidesLinkName="NI USB-8506(SerialNumber01BE2C4C)"
■ Interface (Port 1): ConnectsToLinkName="NI
USB-8506(SerialNumber01BE2C4C)" and UserAlias="LIN1"
■ Interface (Port 2): ConnectsToLinkName="NI
USB-8506(SerialNumber01BE2C4C)" and UserAlias="LIN2"

In the NI System Configuration API, for an interface (IsDevice=F), the NI-XNET expert
returns the UserAlias using the value of the XNET interface name. Therefore, you can
use the UserAlias for the interface input to XNET Create Session.

Note Unlike the XNET Interface I/O control, the System Configuration API does not provide
the "/monitor" suffix for the interface name it returns; you will need to concatenate the
interface name and suffix for the monitor path.

The System Configuration API includes the following hardware properties under the
category "XNET":

■ Device > Number of Ports
■ Interface > Blink
■ Interface > Port Number
■ Interface > Protocol
■ Interface > CAN > Transceiver Capability
■ Interface > CAN > Termination Capability
■ Interface > Dongle > Dongle ID
■ Interface > Dongle > Dongle State
■ Interface > Ethernet > PHY State Configured
■ Interface > Ethernet > Port Mode
■ Interface > Ethernet > Link Speed
■ Interface > Ethernet > Link Speed Configured
■ Interface > Ethernet > Interrupt Moderation
■ Interface > Ethernet > Jumbo Frames
■ Interface > Ethernet > MAC Address
■ Interface > Ethernet > IP4Address

ni.com128

NI-XNET 20.5

■ Interface > Ethernet > OS Network Adapter Name
■ Interface > Ethernet > OS Network Adapter Description

Device Properties
This subcategory includes device-specific properties in the XNET category of the
System Hardware property node.

XNET:Device:Number of Ports
Data Type Direction Required? Default

Read Only No N/A

Property Class

System Hardware, XNET:Device

Short Name

Dev.NumPorts

Description

Returns the number of physical ports (connectors) on the NI-XNET hardware device.

A FlexRay port consists of both channel A and channel B. A physical port is assigned
to a logical interface name using the Measurement and Automation Explorer (MAX),
or the System Configuration VIs.

The NI-XNET expert (xnet) returns a hardware resource for each device (with
IsDevice=true), and a hardware resource for each interface on the device (with
IsDevice=false) to NI System Configuration. Each interface returns a Connects To
Link Name property equal to the parent device's Provides Link Name property.

You can use Number of Ports to confirm that the number of interfaces matches the
number of ports.

© National Instruments 129

NI-XNET 20.5

Interface Properties
This subcategory contains interface-specific properties in the XNET category of the
System Hardware property node.

XNET:Interface:Blink
Data Type Direction Required? Default

Write Only No N/A

Property Class

System Hardware, XNET:Interface

Short Name

Blink

Description

Blinks LEDs for the XNET interface to identify its physical port in the system. This
writable property provides the equivalent to XNET Blink VI. This property is a ring
(enumerated list) with the following values:

Enumeration Value Description

Disable 0 Turns off both LEDs for the port
.

Enable 1 Blinks the LEDs for the port aut
omatically until you disable, so
that there is no need to set Ena
ble repetitively. Both LEDs blink
green. The blinking rate is appr
oximately three times a second.

The value of this property is not saved upon invocation of the System Configuration
Save Changes VI. (See Save Changes (VI) in the NI System Configuration API
Help.)

ni.com130

NI-XNET 20.5

XNET:Interface:Port Number
Data Type Direction Required? Default

Read Only No N/A

Property Class

System Hardware, XNET:Interface

Short Name

PortNum

Description

Returns the physical port number of the interface. Port numbers on an NI-XNET
board are typically printed on the hardware near the port connector.

XNET:Interface:Protocol
Data Type Direction Required? Default

Read Only No N/A

Property Class

System Hardware, XNET:Interface

Short Name

Protocol

Description

Protocol supported by the NI-XNET interface. This property provides the equivalent
to XNET Protocol VI. The property is a ring (enumerated list) with the following
values:

Enumeration Value Description
CAN 0 CAN interface

© National Instruments 131

NI-XNET 20.5

FlexRay 1 FlexRay interface
LIN 2 LIN interface
Ethernet 3 Ethernet interface
Unknown 4294967294 Unknown protocol

The protocol enumeration matches the protocol part of the XNET Interface string
name For example, CAN1 = 0 and FlexRay3 = 1.

Note This property can be useful in the context of the System Configuration Create Filter VI
(in the System Configuration»Utilities subpalette). For example, if you write
XNET:Interface:Protocol to CAN and set Is Device to false, System Configuration filters
results to return only XNET Interfaces for the CAN protocol.

XNET:Interface:CAN:Transceiver Capability

Data Type Direction Required? Default
Read Only No N/A

Property Class

System Hardware, XNET:Interface

Short Name

CAN.TcvrCap

Description

Returns an enumeration indicating the CAN transceiver capability of the hardware.

Enumeration Value
High-Speed/Flexible Data-Rate (HS/FD) 0
Low-Speed/Fault-Tolerant (LS/FT) 1
XS (HS/FD, LS/FT, SW, or External) 3
XS (HS/FD, LS/FT) 4

The XS value in the enumeration indicates the board has multiple physical
transceivers that you can configure in software. XS may support High-Speed and
Flexible Data-Rate (HS/FD), Low-Speed Fault-Tolerant (LS/FT), Single Wire (SW), or

ni.com132

NI-XNET 20.5

can connect to an external transceiver. This value is switchable through the XNET
Session Interface:CAN:Transceiver Type property.

XNET:Interface:CAN:Termination Capability

Data Type Direction Required? Default
Read Only No N/A

Property Class

System Hardware, XNET:Interface

Short Name

CAN.TermCap

Description

Returns an enumeration indicating whether the NI-XNET interface can terminate the
CAN bus.

Enumeration Value
No 0
Yes 1

Signal reflections on the CAN bus can cause communication failure. To prevent
reflections, termination can be present as external resistance or resistance the XNET
board applies internally. This enumeration determines whether the XNET board can
add termination to the bus.

To select the CAN transceiver termination, refer to Interface:CAN:Termination.

XNET:Interface:Dongle:ID

Data Type Direction Required? Default
Read Only No N/A

© National Instruments 133

NI-XNET 20.5

Property Class

System Hardware, XNET:Interface

Short Name

Dngl.ID

Description

Indicates the type of the connected transceiver cable. This property is a ring
(enumerated list) with the following values:

Enumeration Value Description

CAN LS 1 Low-Speed/Fault Tolerant CAN i
nterface transceiver.

CAN HS 2 High-Speed/Flexible Data Rate
CAN interface transceiver.

Single-Wire CAN 3 CAN interface single-wire transc
eiver.

CAN Software-Selectable (XS) 4 Multiple, software-selectable C
AN interface transceivers that c
an be configured in software. X
S may support High-Speed and
Flexible Data-Rate (HS/FD), Low
-Speed Fault-Tolerant (LS/FT), S
ingle Wire (SW), or can connect
to an external transceiver. This
value is switchable through the
XNET Session Interface:CAN:Tra
nsceiver Type property.

LIN 6 LIN interface transceiver.
Dongle-less Design 13 Interface is not a transceiver ca

ble but a regular XNET expansio
n card, cDAQ Module, etc.

Unknown 14 Type is undetermined.

ni.com134

NI-XNET 20.5

XNET:Interface:Dongle:State

Data Type Direction Required? Default
Read Only No N/A

Property Class

System Hardware, XNET:Interface

Short Name

Dngl.State

Description

Returns an enumeration indicating the state of the connected transceiver cable. This
property is a ring (enumerated list) with the following values:

Enumeration Value
No dongle, has external power 2
Has dongle, no external power 3
Ready 4
Busy 5
Comm Error 13
Overcurrent 14

Some transceiver cable types require external power from the network connector
for operation. Refer to the hardware-specific manual for more information.

XNET:Interface:Ethernet:PHY State Configured

Data Type Direction Required? Default
Read/Write No Slave (0)

Property Class

System Hardware, XNET:Interface

© National Instruments 135

NI-XNET 20.5

Short Name

Enet.PhySt

Description

Configures the master/slave state that the interface uses for the Ethernet PHY. This
property is a ring of values, as described in the following table:

Enumeration Value Description
Slave 0 Slave state as defined in IEEE St

d 802.3.
Master 1 Master state as defined in IEEE

Std 802.3.

When Port Mode is Tap on this interface, you need to ensure that PHY State
Configured is set correctly on each of the Tap partners. If you are tapping into
existing cabling between ECUs, one Tap partner is set to Master, and the other Tap
partner is set to Slave. The use of Tap with Slave/Slave or Master/Master
configuration is intended for test-specific cabling that differs from the vehicle's
cabling.

This property cannot be changed while an XNET session is started on the port.

When this property is changed and the Save Changes VI is invoked on the hardware
resource, the link is brought down and back up in order to configure the change.

Two PHYs that are physically connected must be configured to use opposing PHY
States. In other words, one PHY must be configured to be the Master, and the other
PHY must be configured to be the slave. In traditional Ethernet networks, this
master/slave state is negotiated automatically. However, in automotive Ethernet
networks such as IEEE 100BASE-T1, the master/slave state is configured statically
and is typically determined by the PHY State setting of the ECU that you are
connecting to.

XNET:Interface:Ethernet:Port Mode

Data Type Direction Required? Default
Read/Write No Direct

ni.com136

NI-XNET 20.5

Property Class

System Hardware, XNET:Interface

Short Name

Enet.PortMode

Description

Configures hardware connectivity for the Ethernet port. This property uses a ring
(enumerated list) with the following values:

Enumeration Value Description
Direct 0 The port is directly connected; f

rames received and transmitted
on the port have no relationshi
p to any other port on the XNET
device. Input and output sessio
ns are supported in Direct mod
e.

Tap 1 This port is connected to anoth
er port on the XNET device usin
g a Tap, as shown in Using Ether
net. The pair of connected port
s are referred to as Tap partner
s. A frame received on one Tap
partner is immediately transmit
ted out the other Tap partner, t
o mimic behavior of an Etherne
t cable. When an input session i
s created using an XNET interfa
ce for either Tap partner, and th
e monitor suffix is used with the
XNET interface, the session rea
ds frames received on both Tap
partners. Output sessions are n
ot supported in Tap mode. Whe
n you set Tap on this port, the P
ort Mode of its Tap partner is au
tomatically set to Tap as well.

© National Instruments 137

NI-XNET 20.5

For the PXIe-8521, physical port numbers 1 and 2 are Tap partners, and physical port
numbers 3 and 4 are Tap partners. This property cannot be changed while an XNET
session is started on the port. When this property is changed and Save Changes is
invoked on the hardware resource, the link is brought down and back up in order to
configure the change.

XNET:Interface:Ethernet:Link Speed

Data Type Direction Required? Default
Read Only No N/A

Property Class

System Hardware, XNET:Interface

Short Name

Enet.LinkSpeed

Description

Indicates the current link speed on the interface or shows if the link is down. This
property is a ring (enumerated list) with the following values:

Enumeration Value Description
Link Down 0 The link for the Ethernet interfa

ce is down.
100 Mb/s 1 The Ethernet interface is operat

ing at 100 Mb/s (Fast Ethernet) c
apability.

1000 Mb/s 2 The Ethernet interface is operat
ing at 1000 Mb/s (Gigabit Ethern
et) capability.

XNET:Interface:Ethernet:Link Speed Configured

Data Type Direction Required? Default
Read/Write No 100 Mb/s (1)

ni.com138

NI-XNET 20.5

Property Class

System Hardware, XNET:Interface

Short Name

Enet.LinkSpeedConf

Description

Configures the link speed for the Ethernet interface. This property is a ring
(enumerated list) with the following values:

Enumeration Value Description
100 Mb/s 1 The Ethernet interface is config

ured for 100 Mb/s (Fast Ethernet
) capability.

1000 Mb/s 2 The Ethernet interface is config
ured for 1000 Mb/s (Gigabit Eth
ernet) capability.

When Port Mode is configured for Tap on this interface, the Tap partner will
automatically be set to match Link Speed Configured on this interface.

When Link Speed Configured is changed and Port Mode is already Tap, the Tap
partner will automatically be set to match Link Speed Configured on this interface.

This property cannot be changed while an XNET session is started on the port.

When this property is changed and the Save Changes VI is invoked on the hardware
resource, the link is brought down and back up in order to configure the change.

Two PHYs that are physically connected must be configured to use the same link
speed.

XNET:Interface:Ethernet:Interrupt Moderation

Data Type Direction Required? Default
Read/Write No Off

© National Instruments 139

NI-XNET 20.5

Property Class

System Hardware, XNET:Interface

Short Name

Enet.InterruptModeration

Description

Configures interrupt moderation for the interface. Use this property to manage the
rate at which an interface generates interrupts for received packets; interrupts cause
the driver to process packets. Without interrupt moderation, an interrupt can be
generated for every packet received. At higher link speeds, there may be a large
volume of interrupts which can cause high CPU usage. The higher the interrupt
moderation setting used, the less interrupts will be received, which may reduce CPU
usage.

Note Higher interrupt moderation will increase the latency at which the driver handles
packets.

The Interrupt Moderation property is a ring (enumerated list) with the following
values:

Enumeration Value Description
Off 0 Interrupt moderation is disable

d for the current interface.
Low 1 Interrupt moderation is enable

d, reducing the interrupt count
while minimizing latency.

Medium 2 Interrupt moderation is enable
d, balancing a reduction in inter
rupt count while keeping the lat
ency at a reasonable level.

High 3 Interrupt moderation is enable
d, with a large reduction in inter
rupt count. May observe higher
latency.

ni.com140

NI-XNET 20.5

XNET:Interface:Ethernet:Jumbo Frames

Data Type Direction Required? Default
Read/Write No Disabled

Property Class

System Hardware, XNET:Interface

Short Name

Enet.JumboFrames

Description

Configures jumbo frames on the monitor path and the OS stack path of the
interface. Jumbo frames are supported only at 1000 Mb/s.

The Jumbo Frames property is a ring (enumerated list) with the following values:

Enumeration Value Description
Disabled 0 Jumbo frames will not be receiv

ed on the monitor path. Jumbo
frames will not be transmitted o
r received on the OS stack path.

9018 Bytes 1 Jumbo frames up to 9018 bytes
can be received on the monitor
path. Jumbo frames up to 9018
bytes can be transmitted or rec
eived on the OS stack path.

Note The network interface must independently be configured for jumbo frames in the OS in
order to use jumbo frames through the OS stack.

Note Transmitting jumbo frames through the OS stack may affect the transmit bandwidth of
the Endpoint path when both paths are transmitting simultaneously.

Note Jumbo frames are not supported on the Endpoint path.

© National Instruments 141

NI-XNET 20.5

XNET:Interface:Ethernet:MAC Address

Data Type Direction Required? Default
Read Only No N/A

Property Class

System Hardware, XNET:Interface

Short Name

Enet.MacAddr

Description

Indicates the MAC address that uniquely identifies the XNET Interface in the
network. This MAC address applies to the endpoint as well as the OS stack. The MAC
address is an individual (unicast) EUI-48 MAC address that is assigned to the
hardware according to the requirements of IEEE Std 802.

The MAC address is returned as a string of six octets. Each octet consists of two
hexadecimal (0-9, A-F) digits; the octets are separated by colon. For example, 00:80
:2F:AB:CD:EF.

XNET:Interface:Ethernet:IPv4 Address

Data Type Direction Required? Default
Read Only No N/A

Property Class

System Hardware, XNET:Interface

Short Name

Enet.IpV4Addr

ni.com142

NI-XNET 20.5

Description

Indicates the IPv4 address that is configured on the the NI-XNET interface in the
network by the OS stack. The IPv4 address is returned as a string in dotted-decimal
notation. For example, 192.0.2.1.

XNET:Interface:Ethernet:OS Network Adapter Name

Data Type Direction Required? Default
Read Only No N/A

Property Class

System Hardware, XNET:Interface

Short Name

Enet.OsAdapterName

Description

On NI-XNET Ethernet hardware, each port can be accessed as an XNET interface, or
using operating system (OS) APIs for Ethernet. The OS Network Adapter Name
property returns the name of the Ethernet interface for this XNET session as the
interface is represented in the OS.

■ On Windows, this is the network adapter name.
■ On Linux, this is the network interface name.
■ In NI MAX, this name is shown in the Network Settings tab for the system,
listed under Network Adapters.

XNET:Interface:Ethernet:OS Network Adapter Description

Data Type Direction Required? Default
Read Only No N/A

© National Instruments 143

NI-XNET 20.5

Property Class

System Hardware, XNET:Interface

Short Name

Enet.OsAdapterDesc

Description

On NI-XNET Ethernet hardware, each port can be accessed as an XNET interface, or
using operating system (OS) APIs for Ethernet. The OS Network Adapter Description
property returns the description of the Ethernet interface for this XNET session as
the interface is represented in the OS.

■ On Windows, this is the network adapter description in network properties.
■ On Linux, this is the network interface name and is the same as the OS
Network Adapter Name property.
■ In NI MAX, this name is shown on the Network Settings tab for the system,
listed under Network Adapters.

Automotive Ethernet Socket API
The XNET Automotive Ethernet Socket API enables you to create BSD-like network
sockets for TCP and UDP communication using the TCP and UDP Socket VIs in the IP
Stack subpalette. This implementation is independent of the limitations of the IP
stack native to your operating system.

XNET IP Stack
An XNET IP stack is an implementation of the TCP/IP protocol suite. The IP stack
provides tools to create everything required for TCP and UDP communication,
independent from the limitations of the IP stack native to your operating system
(OS). A test application typically uses a single XNET IP Stack for each XNET Interface
(physical port), but more complex configurations are possible.

ni.com144

NI-XNET 20.5

For example, suppose that you are testing eight identical instances of an ECU, each
instance connected to a distinct XNET Interface (e.g., two 4-port Automotive
Ethernet Interface Modules). For each of the eight repeated test setups, you could
use the same static IP address for each XNET Interface, and communicate with the
same static IP address in the ECU. This configuration is difficult to achieve using the
native Windows or Linux IP stack, because the OS assumes that each interface uses
a different unicast IP address.

As another example, to fully test a physical ECU, suppose you need to simulate six
real ECUs that are part of a single in-vehicle network. (This is sometimes called
"restbus simulation.") The XNET IP stack enables you to configure six distinct virtual
interfaces in the IP stack to represent multiple simulated ECUs. These virtual
interfaces can all run on the IP stack associated with a single XNET Interface
(physical port) that is connected to your real ECU under test.

After you configure the IP stacks as needed for your test, you can use the Automotive
Ethernet Socket API for TCP and/or UDP communication. The Socket API is
analogous to LabVIEW's built-in TCP/UDP palettes for the OS stack, which you can
find on the Functions Palette under Data Communication » Protocols. The
alignment of these socket APIs is intended to reduce the learning curve and to
facilitate re-use of code between stacks.

For a given XNET Interface, TCP and UDP traffic switch from the OS stack to XNET IP
Stack when you call XNET IP Stack Create.vi the first time for that XNET Interface.
Communication changes back to the OS stack when you call XNET IP Stack Clear.vi
the last time for that XNET Interface. When you are viewing traffic on the XNET
Interface (e.g., Wireshark on ENET2), you might notice that some protocols run in
the OS stack (e.g., Windows running DHCPv6), but those protocols cease after XNET
IP Stack Create.vi.

Supported Features
Beginning with NI-XNET 20.5, the Automotive Ethernet Socket API supports IPv4 and
IPv6 addresses. The XNET IP Stack supports the following protocols:

■ Transmission Control Protocol (TCP)
■ Universal Datagram Protocol (UDP)

© National Instruments 145

NI-XNET 20.5

■ Address Resolution Protocol (ARP)
■ Internet Control Message Protocol, v4 (ICMPv4)
■ Internet Control Message Protocol, v6 (ICMPv6)
■ Internet Group Management Protocol (IGMP)

Each XNET IP stack that you create supports one NI-XNET interface. The NI-XNET
interface can be used simultaneously with one or more XNET IP Stacks and with the
XNET Session palette in LabVIEW. Note that more than one stack can use the same
XNET interface.

The NI-XNET interface contains one or more MACs (simulated hardware ports), each
with a distinct MAC address. For a given XNET interface, each MAC address must be
unique across all stacks.

Each MAC contains one or more virtual interfaces (VLANs), each with a distinct VLAN
ID. The VLAN ID is either untagged or a 12-bit tagged ID. Each MAC supports jumbo
frames if the XNET interface operates at gigabit speed (e.g., 1000BASE-T1).

Each virtual interface contains one IPv4 address (unicast) and one IPv4 gateway
address. All virtual interfaces can use a static IPv4 address. Within each stack, one
virtual interface can use link-local addressing (also known as Auto IP).

J1939 Sessions
If you use a DBC file defining a J1939 database or create a stream session with the
cluster name :can_j1939:, you will create a J1939 XNET session. If the session is
running in J1939 mode, the session property application protocol returns J1939
instead of None. This property is read only, as you cannot change the application
protocol while the session is running.

FIBEX databases do not define support for J1939 in the standard. If you save a J1939
database to FIBEX in the NI-XNET Database Editor or with the XNET Database Save
VI, the J1939 properties are saved in a FIBEX extension defined by National
Instruments in the FIBEX XML file.

ni.com146

NI-XNET 20.5

Compatibility Issue
If you have used a J1939 database with a version of NI-XNET that does not support
J1939, the session now opens in J1939 mode, which defines a different behavior
than a non-J1939 session. This may break the compatibility of your application. To
avoid issues, you can ignore the application protocol for the database alias in
question.

Complete the following steps to set whether the database application protocol is
used or ignored when the alias is added:

1. Launch the NI-XNET Database Editor.

2. From the main menu, select File»Manage Aliases, which opens the Manage

NI-XNET Databases dialog.

3. In the Manage NI-XNET Databases dialog, click the Add Alias button, which
opens the Add Alias to NI-XNET Database... dialog.

4. Browse to the database file to add, then click OK to continue. If the protocol
for the selected database is CAN and the application protocol is J1939, an
Ignore Application Protocol checkbox is displayed, as shown in the following
figure. (The Baud Rate control may or may not be displayed, depending on
whether the database specifies it.)

© National Instruments 147

NI-XNET 20.5

5. To have NI-XNET interpret the alias as an alias for a J1939 database, leave
Ignore Application Protocol unchecked. To have NI-XNET interpret the alias as
an alias for a plain CAN database, check Ignore Application Protocol.

6. Click OK to complete the alias addition.

J1939 Basics
A J1939 network consists of ECUs connected by a CAN bus running at 250 k baud
rate. Some newer networks might use a 500 k baud rate. A physical ECU can contain
one or more logical ECUs called nodes or Controller Applications. This description
refers to it as a node or ECU.

J1939 application protocol uses a 29-bit extended frame identifier. The ID is divided
into several parts:

■ Source Address (8 bits): Determines the address of the node transmitting
the frame. By examining the Source Address part of the ID, the receiving
session can recognize which node has sent the frame.
■ PGN (18 bits): Identifies the frame and defines which signals it contains.
■ Priority (3 bits): Priority is used when multiple CAN frames are sent on the
bus at exactly the same time. In this case, the CAN frame with the higher
priority (lower number) is transmitted before the lower priority frame. The
CAN standard defines the CAN frames priority (lower IDs have higher priority).
Therefore, the J1939 priority bits are the most significant bits in the ID. This
ensures that the ID value with a higher priority is always lower, independent
of the PGN and Source Address, as shown in the following figure.

You can send a frame to a global address (all nodes) or a specific address (node with
this address). This information is coded inside the PGN, as shown in the following
figure.

ni.com148

NI-XNET 20.5

The PF value in the identifier defines whether the message has a global or specific
destination:

■ 0–239 (0x00–0xEF): specific destination
■ 240–255 (0xF0–0xFF): global destination

In the CAN identifier, this looks like the following (X = don't care):

■ 0xXXF0XXXX to 0xXXFFXXXX are messages with global destination
(broadcast)
■ 0xXX00XXXX to 0xXXEFXXXX are messages with specific destination

For global messages, the PS byte of the ID defines group extension. This extends the
number of possible global PGNs to 4096 (0xF000 to 0xFFFF).

For destination-specific messages, PS defines the destination address, so PF defines
only 240 destination-specific PGNs (0–239).

DP and EDP bits increase the number of possible PGNs by defining data pages. EDP,
however, always is set to 0 in J1939, so only DP can be set to 0 or 1, which doubles
the number of PGNs described above. The maximum number of possible PGNs (and
so, different messages) in J1939 is 2*(4096 + 240) = 8672.

For node addresses (source address and destination address), the ID reserves 8 bit,
which allows values from 0 to 255. Two values have a special meaning:

■ 254 is the null address. This means there is no valid address assigned to a
node yet.
■ 255 is the global address. This allows sending even PGNs with PF 0 to 239 to
a global destination.

Node Addresses in NI-XNET
A newly created XNET session has no node address. If you read the J1939 Node
Address property after creating a session, it returns the value 254 (null address).

A receiving XNET session without address can read all frames from the bus. A
receiving XNET session with an assigned address can read only frames with a global
destination address (255) and frames sent to this address, but not frames sent to

© National Instruments 149

NI-XNET 20.5

other nodes. A read session with a null (254) or global (255) address observes all
messages on the bus, without participating in any J1939 handshakes.

A transmitting XNET session requires a node address. A write session with a null
(254) or global (255) address transmits messages only if a valid source address is set
in the frame identifier. A write session with a valid claimed address always
substitutes the source address portion of the frame identifier with the node's
claimed address.

All nodes in the network must have different node addresses; otherwise, two nodes
could send a frame with the same CAN identifier, which is not allowed by the CAN
standard. To ensure that each node has a different address, J1939 defines a
procedure called address claiming to obtain an address on the network. There are
two properties required for address claiming:

■ Node name (64 bit value)
■ Node address

The node name identifies a node (ECU) and usually is saved in the database. Each
ECU in the network has a unique node name. For the address claiming procedure,
there are two important features of the node name value:

■ Priority: The lower name value has the higher priority.
■ Arbitrary address capability (bit 63 = 1): This node can use a different
address than specified in case of conflict.

The arbitrary address capability is defined in the highest significant bit of the value
(bit 63). All arbitrary-capable names have a lower priority than nonarbitrary-capable
names.

Transmitting Frames

When transmitting frames, the granted address of the node automatically replaces
the source address portion of the frame identifier.

In your application, you may want a session to transmit frames using the source
address provided in the identifier in the database or the frame data. If you do not
assign a valid address to a session (or set the address to 254 explicitly), NI-XNET
does not change the address in your frame identifier before transmitting. An error is

ni.com150

NI-XNET 20.5

returned when a transmitting session without an address tries to send a frame
without a valid address in the identifier.

Address Claiming Procedure
To obtain an address on the network, set the J1939/Node Name and J1939/Node
Address properties or set the J1939/ECU property (which is equivalent to setting the
other properties using the values in the ECU object in the database). After setting
the Node Address (to a value less than 254), XNET sends an address claimed
message and waits 300 ms for the response from the network. If no other node is
using this address, there is no response to the message; after the timeout, the
address is granted to the session and the session can transmit frames on the
network.

Setting the Node Address causes NI-XNET to start the interface; you must set any
properties that are to be set before the interface starts before setting Node Address.
Setting the Node Address does not start the session. J1939 traffic is not retained by
an input session until Start or Read are explicitly called.

During the claiming procedure, the node address property returns the null address
(254), so you can poll this address until it gets a valid value.

If the address cannot be granted to the session (for example, when the name is not
arbitrary and another node with higher priority uses the node address), the address
is not granted. After timeout, the J1939 CommState indicates the reason for failed
address claiming. If the node name is arbitrary address capable, NI-XNET tries to
find another address and claim it. This procedure can take some time depending on
how fast the other nodes respond to the address claimed message.

NI-XNET examples contain the address claiming procedure, which you can use in
your applications.

The frames transmitted during address claiming are not passed to the J1939 input
session. To see those frames, open a non-J1939 CAN session, which can be running
parallel with a J1939 session on the same interface.

© National Instruments 151

NI-XNET 20.5

Mixing J1939 and CAN Messages
J1939 frames in the database and CAN frames data in XNET include the Application
Protocol property. This means you can mix J1939 and standard CAN messages in
one session. Standard CAN messages cannot exceed 8 bytes and do not use the
node address.

In standard CAN frames, the complete identifier is considered as the CAN message
identifier; in J1939, only the PGN determines the message. Frames with the same
PGN but different priority or source address are considered the same message.

Received frames with extended identifier always are considered J1939 frames. If you
use extended CAN frames as non-J1939 frames, you must process the received data
to update the Application Protocol property.

Transport Protocol (TP)
When you use frames with more than 8 bytes, NI-XNET automatically uses the J1939
transport protocol to transmit and receive the frames. You do not receive any
transport protocol management messages in the sessions. When this is required,
you must open a non-J1939 CAN session, which can be running parallel to a J1939
session on the same interface.

Transport protocol defines many properties used to change the behavior (for
example, timing).

If errors occur in the transport protocol, they are not reported directly from the read
function. You can monitor errors in the TP by reading the J1939 CommState
function.

Note that the transport protocol is not using the priority in the identifier, and the
priority value is not transmitted with the TP. Received TP messages have the priority
always set to 0.

NI-XNET Sessions
You can use all NI-XNET session modes with J1939 protocol, whether or not the
frames use transport protocol. This includes frame and signal sessions in queued,
single point, or stream mode.

ni.com152

NI-XNET 20.5

Not Supported in the Current NI-XNET Version
Signal Ranges

For coded signal values in frames, J1939 reserves special values to transmit specific
indicators (for example, the error indicator). The current NI-XNET version does not
support this; those values are converted to signal values. This behavior may change
in a future NI-XNET version.

NI-XNET API for LabVIEW Reference
The topics in this section describe the NI-XNET LabVIEW APIs and properties.

XNET Session Constant

XNET Create Session.vi

XNET Session Node

XNET Read.vi

XNET Write.vi

Database

Notify

Advanced

Controls

XNET Session Constant
This constant provides the constant form of the XNET Session I/O name. You drag a
constant to the block diagram of your VI, then select a session. You can change
constants only during configuration, prior to running the VI. For a complete
description, refer to XNET Session I/O Name.

© National Instruments 153

NI-XNET 20.5

XNET Create Session.vi
Purpose

Creates an XNET session to read/write data on the network.

Description

The XNET session specifies a relationship between National Instruments interface
hardware and frames or signals to access on the external network (cluster). The
XNET session also specifies the input/output direction and how data is transferred
between your application and the network. For more information about NI-XNET
concepts and object classes, refer to Interfaces, Databases, and Sessions.

Use this VI to create a session at run time. Run-time creation is useful when the
session configuration must be selected using the front panel. If you prefer to create
a session at edit time (static configuration), refer to LabVIEW Project Provider.

The instances of this polymorphic VI specify the session mode to create:

■ Signal Input Single-Point

■ Signal Input Waveform

■ Signal Input XY

■ Signal Output Single-Point

■ Signal Output Waveform

■ Signal Output XY

■ Frame Input Stream

■ Frame Input Queued

■ Frame Input Single-Point

■ PDU Input Queued

■ PDU Input Single-Point

■ Frame Output Stream

■ Frame Output Queued

■ Frame Output Single-Point

■ PDU Output Queued

ni.com154

NI-XNET 20.5

■ PDU Output Single-Point

■ Generic (This instance is used for advanced applications, when you need to
specify the configuration as strings.)
■ Conversion

XNET Create Session (Conversion).vi

Purpose

Creates an XNET session at run time for the Conversion Mode.

Format

Inputs

signal list is the array of XNET signals to convert to or from frames. These signals are
specified in your database and describe the values encoded in one or more frames.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

XNET Create Session (Frame Input Queued).vi

Purpose

Creates an XNET session at run time for the Frame Input Queued mode.

© National Instruments 155

NI-XNET 20.5

Format

Inputs

frame is the XNET Frame to read. This mode supports only one frame per session. Your
database specifies this frame.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

XNET Create Session (Frame Input Single-Point).vi

Purpose

Creates an XNET session at run time for the Frame Input Single-Point mode.

Format

Inputs

frame list is the array of XNET Frames to read. Your database specifies these frames.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

ni.com156

NI-XNET 20.5

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

XNET Create Session (Frame Input Stream).vi

Purpose

Creates an XNET session at run time for the Frame Input Stream mode.

Format

Inputs

cluster is the XNET Cluster I/O Name to use for interface configuration. The default value
is :memory:, the in-memory database.

There are six options:

■ Empty in-memory database: cluster is unwired, and the in-memory database is
empty (the XNET Database Create Object VI is not used). This option is supported for
CAN and Ethernet only (not FlexRay or LIN).

For CAN, after you create the session, you must set the XNET Session Interface:64bit
Baud Rate property using a Session node. You must set the baud rate prior to starting
the session.

For Ethernet, before you create the session, use NI MAX or the System Configuration
API to set the Port Mode and PHY state for the interface. These properties relate to the
physical connection to your ECU network and they apply to all sessions. If you are
using IEEE Std 802.1AS for time synchronization, after you create the session,
configure BMCA Enabled? as desired, and then use Protocol Enabled? to enable the
protocol.

© National Instruments 157

NI-XNET 20.5

■ Pre-defined CAN FD in-memory database: Pass in special in-memory
databases :can_fd: and :can_fd_brs:, as the cluster (the XNET Database Create Object
VI is not used). These databases are similar to the empty in-memory database
(:memory:), but configure the cluster in either CAN FD or CAN FD+BRS mode,
respectively. After you create the session, you must set the XNET Session
Interface:64bit Baud Rate and Interface:CAN:64bit FD Baud Rate properties using a
Session node. You must set these baud rates prior to starting the session.
■ Pre-defined SAE J1939 Database: Pass in the special in-memory
database :can_j1939:. This database is similar to the empty in-memory database
(:memory:), but configures the cluster in CAN SAE J1939 application protocol mode.
After you create the session, you must set the XNET Session Interface:64bit Baud Rate
property using a Session node. You must set this baud rate prior to starting the
session.
■ Cluster within database file: cluster specifies a cluster within a database file. This is
the most common option used with FlexRay. The cluster within the FIBEX and
AUTOSAR database files contains all required properties to configure the interface.
For CANdb files, although the file itself does not specify a CAN baud rate, you provide
this when you add an alias to the file within NI-XNET. For LIN, the LDF file format
already specifies the baud rate.
■ Nonempty in-memory database: Call the XNET Database Create Object VI to create a
cluster within the in-memory database, use the XNET Cluster property node to set
properties (such as baud rate), then wire from the Cluster node to this cluster.
■ Subordinate: Wire in cluster of :subordinate:. A subordinate session uses the
cluster and interface configuration from other sessions. For example, you may have a
test application with which the end user specifies the database file, cluster, and
signals to read/write. You also have a second application with which you want to log
all received frames (input stream), but that application does not specify a database.
You run this second application using a subordinate session, meaning it does not
configure or start the interface, but depends on the primary test application. For a
subordinate session, start and stop of the interface (using the XNET Start VI) is
ignored. The subordinate session reads frames only when another non-subordinate
session starts the interface.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

ni.com158

NI-XNET 20.5

error out is the error cluster output (refer to Error Handling).

XNET Create Session (PDU Input Queued).vi

Purpose

Creates an XNET session at run time for the PDU Input Queued Mode. XNET Create
Session (PDU Input Queued).vi uses a PDU instead of a frame, but otherwise it is the
same as the XNET Create Session (Frame Input Queued) VI. You read PDU data using
the XNET Read VI frame selections. The payload in each frame value contains the
PDU's data, not the entire frame.

Format

Inputs

PDU is the

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

XNET Create Session (PDU Input Single Point).vi

Purpose

Creates an XNET session at run time for the Frame Input Single-Point Mode.

This selection uses one or more PDUs instead of frames, but otherwise it is the same
as the XNET Create Session (Frame Input Single-Point) VI. You read PDU data using

© National Instruments 159

NI-XNET 20.5

the XNET Read VI frame selections. The payload in each frame value contains the
PDU's data, not the entire frame.

XNET Create Session (Frame Output Queued).vi

Purpose

Creates an XNET session at run time for the Frame Output Queued mode.

Format

Inputs

frame is the XNET Frame to write. This mode supports only one frame per session. Your
database specifies this frame.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

XNET Create Session (Frame Output Single-Point).vi

Purpose

Creates an XNET session at run time for the Frame Output Single-Point mode.

Format

ni.com160

NI-XNET 20.5

Inputs

frame list is the array of XNET Frames to write. Your database specifies these frames.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

XNET Create Session (Frame Output Stream).vi

Purpose

Creates an XNET session at run time for the Frame Output Stream mode.

Format

Inputs

cluster is the XNET Cluster I/O Name to use for interface configuration. The default value
is :memory:, the in-memory database.

There are five options:

■ Empty in-memory database: cluster is unwired, and the in-memory database is
empty (the XNET Database Create Object VI is not used). This option is supported for
CAN and Ethernet only (not FlexRay or LIN).

For CAN, after you create the session, you must set the XNET Session Interface:64bit
Baud Rate property using a Session node. You must set the baud rate prior to starting

© National Instruments 161

NI-XNET 20.5

the session.

For Ethernet, before you create the session, use NI MAX or the System Configuration
API to set the Port Mode and PHY state for the interface. These properties relate to the
physical connection to your ECU network and they apply to all sessions. If you are
using IEEE Std 802.1AS for time synchronization, after you create the session,
configure BMCA Enabled? as desired, and then use Protocol Enabled? to enable the
protocol.
■ Pre-defined CAN FD in-memory database: Pass in special in-memory
databases :can_fd: and :can_fd_brs:, as the cluster (the XNET Database Create Object
VI is not used). These databases are similar to the empty in-memory database
(:memory:), but configure the cluster in either CAN FD or CAN FD+BRS mode,
respectively. After you create the session, you must set the XNET Session
Interface:64bit Baud Rate and Interface:CAN:64bit FD Baud Rate properties using a
Session node. You must set these baud rates prior to starting the session.
■ Pre-defined SAE J1939 Database: Pass in the special in-memory
database :can_j1939:. This database is similar to the empty in-memory database
(:memory:), but configures the cluster in CAN SAE J1939 application protocol mode.
After you create the session, you must set the XNET Session Interface:64bit Baud Rate
property using a Session node. You must set this baud rate prior to starting the
session.
■ Cluster within database file: cluster specifies a cluster within a database file. For
CANdb files, although the file itself does not specify a CAN baud rate, you provide this
when you add an alias to the file within NI-XNET.
■ Nonempty in-memory database: Call the XNET Database Create Object VI to create a
cluster within the in-memory database, use the Cluster node to set properties (such
as baud rate), then wire from the Cluster node to this cluster.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

ni.com162

NI-XNET 20.5

XNET Create Session (PDU Output Queued).vi

Purpose

Creates an XNET session at run time for the Frame Output Queued Mode.

This selection uses a PDU instead of a frame, but otherwise it is the same as the
XNET Create Session (Frame Output Queued) VI. You write PDU data using the XNET
Write VI frame selections. The payload in each frame value contains the PDU's data,
not the entire frame.

XNET Create Session (PDU Output Single-Point).vi

Purpose

Creates an XNET session at run time for the Frame Output Single-Point Mode.

This selection uses a PDU instead of a frame, but otherwise it is the same as the
XNET Create Session (Frame Output Single-Point) VI. You write PDU data using the
XNET Write VI frame selections. The payload in each frame value contains the PDU's
data, not the entire frame.

XNET Create Session (Generic).vi

Purpose

Creates an XNET session at run time using strings instead of XNET I/O names. This VI
is for advanced applications, when you need to store the configuration as strings
(such as within a text file).

Format

© National Instruments 163

NI-XNET 20.5

Inputs

list provides the list of signals or frames for the session.

The list syntax depends on the mode:

Mode list Syntax

Signal Input Single-Point, Signal Output Sin
gle-Point

list contains one or more XNET Signal names
. If more than one name is provided, a comm
a must separate each name. Each name mus
t use the <signal> or <frame.signal> syntax
as specified for the I/O name (new line and <
dbSelection> not included).

Signal Input Waveform, Signal Output Wavef
orm

list contains one or more XNET Signal names
. If more than one name is provided, a comm
a must separate each name. Each name mus
t use the <signal> or <frame.signal> syntax
as specified for the I/O name (new line and <
dbSelection> not included).

Signal Input XY, Signal Output XY list contains one or more XNET Signal names
. If more than one name is provided, a comm
a must separate each name. Each name mus
t use the <signal> or <frame.signal> syntax
as specified for the I/O name (new line and <
dbSelection> not included).

Frame Input Stream, Frame Output Stream list is empty (unwired).

Frame Input Queued, Frame Output Queued list contains only one XNET Frame name. Onl
y one name is supported. The frame name m
ust use the <frame> syntax as specified for t
he I/O name (new line and <dbSelection> n
ot included).

Frame Input Single-Point, Frame Output Sin
gle-Point

list contains one or more XNET Frame names
. If more than one name is provided, a comm
a must separate each name. The frame nam
e must use the <frame> syntax as specified f
or the I/O name (new line and <dbSelection
> not included).

ni.com164

NI-XNET 20.5

mode is the session mode.

interface is the XNET Interface to use for this session.

database is the XNET Database to use for interface configuration. The database name must
use the <alias> or <filepath> syntax specified for the I/O name. The default value
is :memory:, the in-memory database.

cluster is the XNET Cluster I/O Name to use for interface configuration. The cluster name
must use the <cluster> syntax specified for the I/O name (<alias>. prefix not included).

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

XNET Create Session (Signal Input Single-Point).vi

Purpose

Creates an XNET session at run time for the Signal Input Single-Point mode.

Format

Inputs

signal list is the array of XNET Signals to read. These signals are specified in your database
and describe the values encoded in one or more frames, or they are trigger signals for
frames. For more information about trigger signals, refer to Signal Input Single-Point Mode.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

© National Instruments 165

NI-XNET 20.5

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

XNET Create Session (Signal Input Waveform).vi

Purpose

Creates an XNET session at run time for the Signal Input Waveform mode.

Format

Inputs

signal list is the array of XNET Signals to read. These signals are specified in your database
and describe the values encoded in one or more frames.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

XNET Create Session (Signal Input XY).vi

Purpose

Creates an XNET session at run time for the Signal Input XY mode.

ni.com166

NI-XNET 20.5

Format

Inputs

signal list is the array of XNET Signals to read. These signals are specified in your database
and describe the values encoded in one or more frames.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

XNET Create Session (Signal Output Single-Point).vi

Purpose

Creates an XNET session at run time for the Signal Output Single-Point mode.

Format

Inputs

signal list is the array of XNET Signals to write. These signals are specified in your database
and describe the values encoded in one or more frames, or they are trigger signals for
frames. For information about trigger signals, refer to Signal Output Single-Point Mode.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

© National Instruments 167

NI-XNET 20.5

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

XNET Create Session (Signal Output Waveform).vi

Purpose

Creates an XNET session at run time for the Signal Output Waveform mode.

Format

Inputs

signal list is the array of XNET Signals to write. These signals are specified in your database
and describe the values encoded in one or more frames.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

XNET Create Session (Signal Output XY).vi

Purpose

Creates an XNET session at run time for the Signal Output XY mode.

ni.com168

NI-XNET 20.5

Format

Inputs

signal list is the array of XNET Signals to write. These signals are specified in your database
and describe the values encoded in one or more frames.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

XNET Session Node
Format

Description

Property node used to read/write properties for an XNET Session I/O name.

Pull down this node to add properties. Right-click to change direction between read
and write. Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>)
and move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help
(select LabVIEW Help... from the Help menu) and look for the Property Nodes topic
in the index.

© National Instruments 169

NI-XNET 20.5

Application Protocol
Data Type Direction Required? Default

Read Only N/A None

Property Class

XNET Session

Short Name

ApplProtocol

Description

This property returns the application protocol that the session uses.

The database used with the XNET Create Session VI determines the application
protocol.

The values (enumeration) for this property are:

0 None
1 J1939

Auto Start?
Data Type Direction Required? Default

Read/Write No True

Property Class

XNET Session

Short Name

AutoStart?

ni.com170

NI-XNET 20.5

Description

Automatically starts the output session on the first call to the XNET Write VI.

For output sessions, as long as the first call to the XNET Write VI contains valid data,
you can leave this property at its default value of true. If you need to call the XNET
Write VI multiple times prior to starting the session, or if you are starting multiple
sessions simultaneously, you can set this property to false. After calling the XNET
Write VI as desired, you can call the XNET Start VI to start the session(s).

When automatic start is performed, it is equivalent to the XNET Start VI with scope
set to Normal, and it does not wait for a start trigger. This starts the session itself,
and if the interface is not already started, it starts the interface also.

For input sessions, AutoStart? is implicitly set to True and cannot be set to False.
Start always is performed within the first call to the XNET Read VI (if not already
started using the XNET Start VI).

For Signal Input Waveform sessions, when calling the XNET Read (Signal Waveform)
VI for the first time on the session, the session will be started if it was not already.
Stopping the session after the first start requires the session to be explicitly started
in the future. This permits reading of the pending signal values without an implicit
state transition, which would result in more signal values. This behavior is shared
with frame input stream sessions when used with Ethernet interfaces. Other input
session types, when used with CAN, FlexRay, or LIN interfaces, will implicitly start
upon any call to XNET Read VI, not just the first; this behavior could be altered in a
future release to match Signal Input Waveforms.

Cluster
Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

© National Instruments 171

NI-XNET 20.5

Short Name

Cluster

Description

This property returns the cluster (network) used with the XNET Create Session VI.

Use this property on the block diagram as follows:

■ As a refnum wired to a property node to access information for the cluster
and its objects (frames, signals, etc.).
■ As a string containing the cluster name. This name typically is the database
alias followed by the cluster name.

Database
Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

Database

Description

This property returns the database used with the XNET Create Session VI.

Use this property on the block diagram as follows:

■ As a refnum wired to a property node to access information for the database
and its objects (frames, signals, and so on).
■ As a string containing the database name. This is the name of the database
alias or in-memory database. If the database was opened using a file path that

ni.com172

NI-XNET 20.5

does not correlate to an assigned alias, a unique identifier based on file name
and content is returned.

List of Signals
Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

ListSigs

Description

This property returns the list of signals in the session.

This property is valid only for sessions of Signal Input or Signal Output mode. For a
Frame Input/Output session, use the List of Frames property.

Use each array element on the block diagram as follows:

■ As a refnum wired to a property node to access information for the signal.
■ As a string containing the signal name. The name is the one used to create
the session.

List of Frames
Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

© National Instruments 173

NI-XNET 20.5

Short Name

ListFrms

Description

This property returns the list of frames in the session.

This property is valid only for sessions of Frame Input or Frame Output mode. For a
Signal Input/Output session, use the List of Signals property.

Use each array element on the block diagram as follows:

■ As a refnum wired to a property node to access information for the frame.
■ As a string containing the frame name. The name is the one used to create
the session.

Payload Length Maximum
Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

PayldLenMax

Description

This property returns the maximum payload length of all frames in this session,
expressed as bytes.

This property does not apply to Signal sessions (only Frame sessions).

For CAN Stream (Input and Output), this property depends on the XNET Cluster
CAN:I/O Mode property. If the I/O mode is CAN, this property is 8 bytes. If the I/O
mode is CAN FD or CAN FD+BRS, this property is 64 bytes.

ni.com174

NI-XNET 20.5

For LIN Stream (Input and Output), this property always is 8 bytes. For FlexRay
Stream (Input and Output), this property is the same as the XNET Cluster
FlexRay:Payload Length Maximum property value. For Queued and Single-Point
(Input and Output), this is the maximum payload of all frames specified in the List of
Frames property.

For Ethernet Stream (Input and Output), this property is the maximum length of the
frame data in each frame, which includes the Ethernet header in addition to the
Ethernet payload (MSDU).

Protocol
Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

Protocol

Description

This property returns the protocol that the interface in the session uses.

The values (enumeration) for this property are:

0 CAN
1 FlexRay
2 LIN
3 Ethernet

Mode
Data Type Direction Required? Default

Read Only N/A N/A

© National Instruments 175

NI-XNET 20.5

Property Class

XNET Session

Short Name

Mode

Description

This property returns the session mode (ring). You provided this mode when you
created the session. For more information, refer to Session Modes.

Number in List
Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

NumInList

Description

This property returns the number of frames or signals in the session's list. This is a
quick way to get the size of the List of Frames or List of Signals property.

Number of Values Pending
Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

ni.com176

NI-XNET 20.5

Short Name

NumPend

Description

This property returns the number of values (frames or signals) pending for the
session.

For input sessions, this is the number of frame/signal values available to the XNET
Read VI. If you call the XNET Read VI with number to read of this number and timeout
of 0.0, the XNET Read VI should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided to the XNET
Write VI but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of
frames. In these cases, this property assumes the largest possible frame size. If you
use smaller frames, the real number of pending values might be higher.

The largest possible frames sizes are:

■ CAN FD: 64 byte payload.
■ FlexRay: The higher value of the frame size in the static segment and the
maximum frame size in the dynamic segment. The XNET Cluster
FlexRay:Payload Length Maximum property provides this value.

The execution time to read this property is sufficient for use in a high-priority loop
on LabVIEW Real-Time (RT).

Number of Values Unused
Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

© National Instruments 177

NI-XNET 20.5

Short Name

NumUnused

Description

This property returns the number of values (frames or signals) unused for the
session. If you get this property prior to starting the session, it provides the size of
the underlying queue(s). Contrary to the Queue Size property, this value is in
number of frames for Frame I/O, not number of bytes; for Signal I/O, it is the number
of signal values in both cases. After start, this property returns the queue size minus
the Number of Values Pending property.

For input sessions, this is the number of frame/signal values unused in the
underlying queue(s).

For output sessions, this is the number of frame/signal values you can provide to a
subsequent Write. If you call the XNET Write VI with this number of values and
timeout of 0.0, the XNET Write VI should return success.

Stream frame sessions using the FlexRay, CAN FD, or Ethernet protocol may use
frames that vary in size. In these cases, this property assumes the largest possible
frame size. If you use smaller frames, the real number of pending values might be
higher.

The largest possible frames sizes are:

■ CAN FD: 64 byte payload.
■ FlexRay: The higher value of the frame size in the static segment and the
maximum frame size in the dynamic segment. The XNET Cluster
FlexRay:Payload Length Maximum property provides this value.
■ Ethernet: The Payload Length Maximum property provides this value.

The execution time to read this property is sufficient for use in a high-priority loop
on LabVIEW Real-Time (RT).

Resample Rate
Data Type Direction Required? Default

ni.com178

NI-XNET 20.5

Read/Write No 1000.0 (Sample Every Millisecond)

Property Class

XNET Session

Short Name

ResampRate

Description

Rate used to resample frame data to/from signal data in waveforms.

This property applies only when the session mode is Signal Input Waveform or
Signal Output Waveform. This property is ignored for all other modes.

The data type is 64-bit floating point (DBL). The units are in Hertz (samples per
second).

Queue Size
Data Type Direction Required? Default

Read/Write No Refer to Description

Property Class

XNET Session

Short Name

QueueSize

Description

For output sessions, queues store data passed to the XNET Write VI and not yet
transmitted onto the network. For input sessions, queues store data received from
the network and not yet obtained using the XNET Read VI.

© National Instruments 179

NI-XNET 20.5

For most applications, the default queue sizes are sufficient. You can write to this
property to override the default. When you write (set) this property, you must do so
prior to the first session start. You cannot set this property again after calling the
XNET Stop VI.

For signal I/O sessions, this property is the number of signal values stored. This is
analogous to the number of values you use with the XNET Read VI or XNET Write VI.

For frame I/O sessions, this property is the number of bytes of frame data stored.

For standard CAN and LIN frame I/O sessions, each frame uses exactly 24 bytes. You
can use this number to convert the Queue Size (in bytes) to/from the number of
frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can vary
depending on the payload length. For more information, refer to Raw Frame
Format.

For Signal I/O XY sessions, you can use signals from more than one frame. Within the
implementation, each frame uses a dedicated queue. According to the formulas
below, the default queue sizes can be different for each frame. If you read the
default Queue Size property for a Signal Input XY session, the largest queue size is
returned, so that a call to the XNET Read VI of that size can empty all queues. If you
read the default Queue Size property for a Signal Output XY session, the smallest
queue size is returned, so that a call to the XNET Write VI of that size can succeed
when all queues are empty. If you write the Queue Size property for a Signal I/O XY
session, that size is used for all frames, so you must ensure that it is sufficient for the
frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one frame.
Within the implementation, each frame uses a dedicated queue. The Queue Size
property does not represent the memory in these queues, but rather the amount of
time stored. The default queue allocations store Application Time worth of
resampled signal values. If you read the default Queue Size property for a Signal I/O
Waveform session, it returns Application Time multiplied by the time Resample
Rate. If you write the Queue Size property for a Signal I/O Waveform session, that
value is translated from a number of samples to a time, and that time is used to
allocate memory for each queue.

ni.com180

NI-XNET 20.5

For Single-Point sessions (signal or frame), this property is ignored. Single-Point
sessions always use a value of 1 as the effective queue size.

Default Value

You calculate the default queue size based on the following assumptions:

■ Application Time: The time between calls to the XNET Read VI/XNET Write VI
in your application.
■ Frame Time: The time between frames on the network for this session.

The following pseudo code describes the default queue size formula:

 if (session is Signal I/O Waveform)
 Queue_Size = (Application_Time * Resample_Rate);
 else
 Queue_Size = (Application_Time / Frame_Time);
 if (Queue_Size < 64)
 Queue_Size = 64;
 if (session mode is Frame I/O)
 Queue_Size = Queue_Size * Frame_Size;

For Signal I/O Waveform sessions, the initial formula calculates the number of
resampled values that occur within the Application Time. This is done by
multiplying Application Time by the XNET Session Resample Rate property.

For all other session modes, the initial formula divides Application Time by Frame
Time.

The minimum for this formula is 64. This minimum ensures that you can read or
write at least 64 elements. If you need to read or write more elements for a slow
frame, you can set the Queue Size property to a larger number than the default. If
you set a large Queue Size, this may limit the maximum number of frames you can
use in all sessions.

For Frame I/O sessions, this formula result is multiplied by each frame value size to
obtain a queue size in bytes.

For Signal I/O sessions, this formula result is used directly for the queue size
property to provide the number of signal values for the XNET Read VI or XNET Write

© National Instruments 181

NI-XNET 20.5

VI. Within the Signal I/O session, the memory allocated for the queue incorporates
frame sizes, because the signal values are mapped to/from frame values internally.

Application Time
The LabVIEW target in which your application runs determines the Application Time:

■ Windows: 400 ms (0.4 s)
■ LabVIEW Real-Time (RT): 100 ms (0.1 s)

This works under the assumption that for Windows, more memory is available for
input queues, and you have limited control over the application timing. LabVIEW RT
targets typically have less available memory, but your application has better control
over application timing.

Frame Time
Frame Time is calculated differently for Frame I/O Stream sessions compared to
other modes. For Frame I/O Stream, you access all frames in the network (cluster),
so the Frame Time is related to the average bus load on your network. For other
modes, you access specific frames only, so the Frame Time is obtained from
database properties for those frames.

The Frame Time used for the default varies by session mode and protocol, as
described below.

CAN, Frame I/O Stream

Frame Time is 100 µs (0.0001 s).

This time assumes a baud rate of 1 Mbps, with frames back to back (100 percent
busload).

For CAN sessions created for a standard CAN bus, the Frame Size is 24 bytes. For CAN
sessions created for a CAN FD Bus (the cluster I/O mode is CAN FD or CAN FD+BRS),
the frame size can vary up to 64 bytes. However, the default queue size is based on
the 24-byte frame time. When connecting to a CAN FD bus, you may need to adjust
this size as necessary.

ni.com182

NI-XNET 20.5

When you create an application to stress test NI-XNET performance, it is possible to
generate CAN frames faster than 100 µs. For this application, you must set the queue
size to larger than the default.

FlexRay, Frame I/O Stream

Frame Time is 20 µs (0.00002 s).

This time assumes a baud rate of 10 Mbps, with a cycle containing static slots only
(no minislots or NIT), and frames on channel A only.

Small frames at a fast rate require a larger queue size than large frames at a slow
rate. Therefore, this default assumes static slots with 4 bytes, for a Frame Size of 24
bytes.

When you create an application to stress test NI-XNET performance, it is possible to
generate FlexRay frames faster than 20 µs. For this application, you must set the
queue size to larger than the default.

LIN, Frame I/O Stream

Frame Time is 2 ms (0.002 s).

This time assumes a baud rate of 20 kbps, with 1 byte frames back to back (100
percent busload).

For all LIN sessions, Frame Size is 24 bytes.

CAN, Other Modes

For Frame I/O Queued, Signal I/O XY, and Signal I/O Waveform, the Frame Time is
different for each frame in the session (or frame within which signals are contained).

For CAN frames, Frame Time is the frame property CAN Transmit Time, which
specifies the time between successive frames (in floating-point seconds).

If the frame's CAN Transmit Time is 0, this implies the possibility of back-to-back
frames on the network. Nevertheless, this back-to-back traffic typically occurs in
bursts, and the average rate over a long period of time is relatively slow. To keep the
default queue size to a reasonable value, when CAN Transmit Time is 0, the formula
uses a Frame Time of 50 ms (0.05 s).

For CAN sessions using a standard CAN cluster, the frame size is 24 bytes. For CAN
sessions using a CAN FD cluster, the frame size may differ for each frame in the

© National Instruments 183

NI-XNET 20.5

session. Each frame size is obtained from its XNET Frame Payload Length property in
the database.

FlexRay, Other Modes

For Frame I/O Queued, Signal I/O XY, and Signal I/O Waveform, the Frame Time is
different for each frame in the session (or frame within which signals are contained).

For FlexRay frames, Frame Time is the time between successive frames (in floating-
point seconds), calculated from cluster and frame properties. For example, if a
cluster Cycle (cycle duration) is 10000 µs, and the frame Base Cycle is 0 and Cycle
Repetition is 1, the frame's Transmit Time is 0.01 (10 ms).

For these session modes, the Frame Size is different for each frame in the session.
Each Frame Size is obtained from its XNET Frame Payload Length property in the
database.

LIN, Other Modes

For LIN frames, Frame Time is a property of the schedule running in the LIN master
node. It is assumed that the Frame Time for a single frame always is larger than 8
ms, so that the default queue size is set to 64 frames throughout.

For all LIN sessions, Frame Size is 24 bytes.

Examples
The following table lists example session configurations and the resulting default
queue sizes.

Session Configuration Default Queue Size Formula
Frame Input Stream, CAN, Wind
ows

96000 (0.4 / 0.0001) = 4000;
4000 x 24 bytes

Frame Output Stream, CAN, Wi
ndows

96000 (0.4 / 0.0001) = 4000;
4000 x 24 bytes;
output is always same as input

Frame Input Stream, FlexRay, W
indows

480000 (0.4 / 0.00002) = 20000;
20000 x 24 bytes

Frame Input Stream, CAN, LabV
IEW RT

24000 (0.1 / 0.0001) = 1000;
1000 x 24 bytes

ni.com184

NI-XNET 20.5

Frame Input Stream, FlexRay, L
abVIEW RT

120000 (0.1 / 0.00002) = 5000;
5000 x 24 bytes

Frame Input Queued, CAN, Tran
smit Time 0.0, Windows

1536* (0.4 / 0.05) = 8;
Transmit Time 0 uses Frame Ti
me 50 ms;
use minimum of 64 frames (64 x
24)

Frame Input Queued, CAN, Tran
smit Time 0.0005, Windows

19200* (0.4 / 0.0005) = 800;
800 x 24 bytes

Frame Input Queued, CAN, Tran
smit Time 1.0 (1 s), Windows

1536* (0.4 / 1.0) = 0.4;
use minimum of 64 frames (64 x
24)

Frame Input Queued, FlexRay, e
very 2 ms cycle,
payload length 4, Windows

4800 (0.4 / 0.002) = 200;
200 x 24 bytes

Frame Input Queued, FlexRay,
every 2 ms cycle, payload lengt
h 16, LabVIEW RT

2048 (0.1 / 0.002) = 50, use minimum
of 64;
payload length 16 requires 32 b
ytes;
64 x 32 bytes

Signal Input XY, two CAN frames
,
Transmit Time 0.0 and 0.0005,
Windows

64* and 800*
(read as 800)

(0.4 / 0.05) = 8, use minimum of
64;
(0.4 / 0.0005) = 800;
expressed as signal values

Signal Output XY, two CAN fram
es,
Transmit Time 0.0 and 0.0005,
Windows

64* and 800*
(read as 64)

(0.4 / 0.05) = 8, use minimum of
64;
(0.4 / 0.0005) = 800;
expressed as signal values

Signal Output Waveform, two C
AN frames, 1 ms and 400 ms,
resample rate 1000 Hz, Window
s

400* Memory allocation is 400 and 6
4 frames
to provide 0.4 sec of storage,
queue size represents number
of samples,
or (0.4 x 1000.0)

*For a CAN FD cluster, the default queue size is based on the frame's database payload length, wh
ich may be larger than 24 bytes (up to 64 bytes).

© National Instruments 185

NI-XNET 20.5

Ethernet Properties
This category includes the Ethernet-specific properties in the Session Node.

Ethernet:Filtering:Frame Filter
Data Type Direction Required? Default

Read/Write No N/A

Property Class

XNET Session

Short Name

Enet.Filtering.FrmFilter

Description

Specifies a string to be applied as a filter for incoming frames. Only frames that
match the filter will be received on this stream. The filter uses the pcap-filter syntax,
which is the industry standard used by network analysis tools such as tcpdump and
Wireshark.

Ethernet Logging Properties

This category contains properties for logging Ethernet frame data.

Logging for Ethernet interfaces in XNET uses the PCAP Next Generation file format.
Log files use the extension .pcapng, and are supported by popular network protocol
analyzers such as WireShark.

To log Ethernet data using the session, set the Mode, Filepath, and other properties,
and then start the interface and session. XNET will log Ethernet frames to the file as
long as the session is running. If you stop the session, you can change logging
properties (such as specifying a new filepath) and start logging again.

Each input session retains a distinct value for logging properties. The logging
properties are ignored for output sessions.

ni.com186

NI-XNET 20.5

Ethernet:Logging:Error?
Data Type Direction Required? Default

Read No False

Property Class

XNET Session

Short Name

Enet.Log.Error?

Description

Indicates whether an error has occurred in the logging thread.

To view the error information, use XNET Stop to stop the session; the error from the
logging thread will be merged with the error of the XNET Stop VI.

Ethernet:Logging:Mode
Data Type Direction Required? Default

Read/Write Yes Off

Property Class

XNET Session

Short Name

Enet.Log.Mode

Description

This property enables or disables logging. The value is Off by default; to enable
logging, you must write this property to the log. This property uses a ring
(enumerated list) with the following values:

© National Instruments 187

NI-XNET 20.5

String Value Description
Off 0 Disable logging for the session.
Log 1 Enable logging for the session.

You cannot read data using XNE
T Read when using this mode. If
you require access to the data, r
ead from the log file.

When logging is enabled, you must use the Filepath property to specify a valid path
for the log file.

Ethernet:Logging:Filepath
Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET Session

Short Name

Enet.Log.File

Description

This property specifies the path to the file in which you want to log data. The file
must use the .pcap extension.

No default file path is provided; you must write this property with a valid file path
when you use the Mode property to enable logging. The operation used to create
the file is determined by the Operation property.

Ethernet:Logging:Operation
Data Type Direction Required? Default

Read/Write No Create or Replace

ni.com188

NI-XNET 20.5

Property Class

XNET Session

Short Name

Enet.Log.Op

Description

This property specifies the operation used to create the log file. This property uses a
ring (enumerated list) with the following values:

Enumeration Value Description
Create or Replace 0 Create a new log file, or replace

an existing log file.
Create 1 Create a new log file. If the file a

lready exists, XNET returns an e
rror.

Ethernet:Number of Frames Received

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Session

Short Name

Enet.NumFramesReceived

Description

This is a cumulative count of frames received by the session while started. When
logging is off, these frames can be obtained from XNET Read. When logging is on,
these frames are stored in the log file. When an input session is used for the Ethernet

© National Instruments 189

NI-XNET 20.5

endpoint, the Interface:Ethernet:Endpoint:Receive Filter property determines which
frames are received by the session.

This count resets to zero when the session starts. The count is unchanged when the
session stops.

Ethernet:Source MAC Address Auto?

Data Type Direction Required? Default
Read/Write No True

Property Class

XNET Session

Short Name

Enet.SrcMacAuto?

Description

Configures whether the output session automatically uses the MAC Address
property as the source MAC address in transmitted frames.

When this property is true (default), the endpoint ignores the source MAC address in
frame data provided to XNET Write (for example, XNET Write (Frame Ethernet)). The
endpoint automatically replaces the source MAC address in frame data with the MAC
Address property for the endpoint, and uses that for the transmitted frame. This
convenience allows you to leave the source MAC address uninitialized (e.g. all zero)
in frame data.

When this property is false, the endpoint uses the source MAC address in frame data
for each transmitted frame. You must provide a valid source MAC address in frame
data provided to XNET Write. This can be useful if you are simulating a specific ECU
in the network. Each output session retains a distinct value for this property. This
property is ignored for input sessions.

ni.com190

NI-XNET 20.5

Frame Properties
This category includes the frame-specific properties in the Session Node.

Frame:Active

Data Type Direction Required? Default
Write Only No 0

Property Class

XNET Session

Short Name

Frm.Active

Description

This property provides access to properties for a specific frame running within the
session. Writing this property sets the active frame for subsequent properties in the
Frame category.

The string syntax supports the following options:

■ Decimal number: This is interpreted as the index of the signal or frame in the
session's list. If the session is signal I/O, subsequent frame properties change
the signal's parent frame.
■ XNET Frame: If the session is frame I/O, you can wire a frame name from the
session's List of Frames property.
■ XNET Signal: If the session is signal I/O, you can wire a signal name from the
session's List of Signals property. Subsequent frame properties change the
signal's parent frame.

If the session is Frame Stream Input or Frame Stream Output, this property has no
effect, because stream I/O sessions do not use specific frames.

© National Instruments 191

NI-XNET 20.5

The default value of this property is 0, the first frame or signal in the session's list. If
the empty string is wired to this property, this is converted to 0 internally.

Note The Active Frame property only applies to other properties in the same property node.

Frame:Output Queue Update Frequency

Data Type Direction Required? Default
Write Only No 0

Property Class

XNET Session

Short Name

Frm.OutQueUpdFreq

Description

Note This property should usually not be changed and is provided for advanced users.

The value is given in 6-byte packets. The maximum value is 0xFFFF bytes, which
results in 10922 6-byte packets. Setting the property to 0 will use the internally
defined update frequency.

The property determines how often the NI-XNET firmware notifies the NI-XNET
driver of frames being consumed from the output queue. The default value is
related to the queue size. Very large queues can cause updates to be delayed. This
property can be used to make the updates more frequently.

Note This property affects the active frame object in the session. Review the Frame:Active
property to learn more about setting a property on an active frame.

Frame:Skip N Cyclic Frames

Data Type Direction Required? Default
Write Only No 0

ni.com192

NI-XNET 20.5

Property Class

XNET Session

Short Name

Frm.SkipNCyclic

Description

Note Only CAN interfaces currently support this property.

When set to a nonzero value, this property causes the next N cyclic frames to be
skipped. When the frame's transmission time arrives and the skip count is nonzero,
a frame value is dequeued (if this is not a single-point session), and the skip count is
decremented, but the frame actually is not transmitted across the bus. When the
skip count decrements to 0, subsequent cyclic transmissions resume. This property
is valid only for output sessions and frames with cyclic timing (that is, not event-
based frames).

This property is useful for testing of ECU behavior when a cyclic frame is expected,
but is missing for N cycles.

Note This property affects the active frame object in the session. Review the Frame:Active
property to learn more about setting a property on an active frame.

CAN Frame Properties

This category includes CAN-specific frame properties.

Frame:CAN:Start Time Offset
Data Type Direction Required? Default

Write Only No –1

Property Class

XNET Session

© National Instruments 193

NI-XNET 20.5

Short Name

Frm.CAN.StartTimeOff

Description

Use this property to configure the amount of time that must elapse between the
session being started and the time that the first frame is transmitted across the bus.
This is different than the cyclic rate, which determines the time between
subsequent frame transmissions.

Use this property to have more control over the schedule of frames on the bus, to
offer more determinism by configuring cyclic frames to be spaced evenly.

If you do not set this property or you set it to a negative number, NI-XNET chooses
this start time offset based on the arbitration identifier and periodic transmit time.

This property takes effect whenever a session is started. If you stop a session and
restart it, the start time offset is re-evaluated.

Note This property affects the active frame object in the session. Review the Frame:Active
property to learn more about setting a property on an active frame.

Frame:CAN:Transmit Time
Data Type Direction Required? Default

Write Only No From Database

Property Class

XNET Session

Short Name

Frm.CAN.TxTime

Description

Use this property to change the frame's transmit time while the session is running.
The transmit time is the amount of time that must elapse between subsequent

ni.com194

NI-XNET 20.5

transmissions of a cyclic frame. The default value of this property comes from the
database (the XNET Frame CAN:Transmit Time property).

If you set this property while a frame object is currently started, the frame object is
stopped, the cyclic rate updated, and then the frame object is restarted. Because of
the stopping and starting, the frame's start time offset is re-evaluated.

Note This property affects the active frame object in the session. Review the Frame:Active
property to learn more about setting property on an active frame.

Note The first time a queued frame object is started, the XNET frame's transmit time
determines the object's default queue size. Changing this rate has no impact on the queue
size. Depending on how you change the rate, the queue may not be sufficient to store data
for an extended period of time. You can mitigate this by setting the session Queue Size
property to provide sufficient storage for all rates you use. If you are using a single-point
session, this is not relevant.

LIN Frame Properties

This category includes LIN-specific frame properties.

Frame:LIN:Transmit N Corrupted Checksums
Data Type Direction Required? Default

Write Only No 0

Property Class

XNET Session

Short Name

Frm.LIN.TxNCrptChks

Description

When set to a nonzero value, this property causes the next N number of checksums
to be corrupted. The checksum is corrupted by negating the value calculated per the
database; (EnhancedValue * -1) or (ClassicValue * -1). This property is

© National Instruments 195

NI-XNET 20.5

valid only for output sessions. If the frame is transmitted in an unconditional or
sporadic schedule slot, N is always decremented for each frame transmission. If the
frame is transmitted in an event-triggered slot and a collision occurs, N is not
decremented. In that case, N is decremented only when the collision resolving
schedule is executed and the frame is successfully transmitted. If the frame is the
only one to transmit in the event-triggered slot (no collision), N is decremented at
event-triggered slot time.

This property is useful for testing ECU behavior when a corrupted checksum is
transmitted.

Note This property affects the active frame object in the session. Review the Frame:Active
property to learn more about setting a property on an active frame.

SAE J1939 Frame Properties

This category includes SAE J1939-specific frame properties.

Frame:SAE J1939:Address Filter
Data Type Direction Required? Default

Write Only No ""

Property Class

XNET Session

Short Name

Frm.J1939.AddrFilt

Description

You can use this property in input sessions only. It defines a filter for the source
address of the PGN transmitting node. You can use it when multiple nodes with
different addresses are transmitting the same PGN.

ni.com196

NI-XNET 20.5

If the filter is active, the session accepts only frames transmitted by a node with the
defined address. All other frames with the same PGN but transmitted by other nodes
are ignored.

The value is a string representing the decimal value of the address. Use the Number

to Decimal String VI if your address is given as a number.

To reset the filter, set the value to empty string (default).

Note This property affects the active frame object in the session. Review the Frame:Active
property to learn more about setting a property on an active frame.

Interface Properties
Properties in the Interface category apply to the interface and not the session. If
more than one session exists for the interface, changing an interface property
affects all the sessions.

Interface:64bit Baud Rate

Data Type Direction Required? Default
Read/Write Yes (If Not in Database) 0 (If Not in Database)

Property Class

XNET Session

Short Name

Intf.BaudRate64

Description

Note You can modify this property only when the interface is stopped.

Note This property replaces the former 32-bit property. You still can use the baud rate values
used with the 32-bit property. The custom 64-bit baud rate setting requires using values
greater than 32 bit.

© National Instruments 197

NI-XNET 20.5

The Interface:64bit Baud Rate property sets the CAN, FlexRay, or LIN interface baud
rate. The default value for this interface property is the same as the cluster's baud
rate in the database. Your application can set this interface baud rate to override the
value in the database, or when no database is used.

CAN

When the upper nibble (0xF0000000) is clear, this is a numeric baud rate (for
example, 500000).

NI-XNET CAN hardware currently accepts the following numeric baud rates: 33333,
40000, 50000, 62500, 80000, 83333, 100000, 125000, 160000, 200000, 250000,
400000, 500000, 800000, and 1000000.

Note The 33333 baud rate is supported with single-wire transceivers only.

Note Baud rates greater than 125000 are supported with high-speed transceivers only.

When the upper nibble of the lower 32 bit is set to 0xA (that is, 0xA0000000), the
remaining bits provide fields for more custom CAN communication baud rate
programming. The fields are shown in the following table:

 63..32 31..28 27..0
Normal Res b0000 Baud Rate (33.3 k–1 M)

 63..46 45..32 31..28 27..23 22..16 15..8 7 6..0
Custom 6
4-bit

Res Tq b1010 Res NSJW NTSEG1 Res NTSEG2

■ Time quantum (Tq), which is used to program the baud rate prescaler.

■ Valid values are 25–12800, in increments of 0x19 (25 decimal).
■ This is the time quantum from ISO 11898-1, 12.4.1 Bit Encoding/
Decoding.

■ (Re-)Synchronization Jump Width (NSJW)

■ Valid values are 0–127.
■ The actual hardware interpretation of this value is one more than the
programmed value.

ni.com198

NI-XNET 20.5

■ Time Segment 1 (NTSEG1), which is the time segment before the sample
point.

■ Valid values are 1–0xFF (1–255 decimal).
■ This is the NTSEG1 value from the Bosch M_CAN Controller Area
Network User's Manual, version 3.2.1.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ Time Segment 2 (NTSEG2), which is the time segment after the sample
point.

■ Valid values are 0–0x7F (0–127 decimal).
■ This is the NTSEG2 value from the Bosch M_CAN Controller Are a
Network User's Manual, version 3.2.1.
■ The actual hardware interpretation of this value is one more than the
programmed value.

For the former 32-bit baud rate property, the following table is valid.

When the upper nibble is set to 0x8 (that is, 0x80000000), the remaining bits provide
fields for more custom CAN communication baud rate programming. Additionally, if
the upper nibble is set to 0xC (that is, 0xC0000000), the remaining bits provide fields
for higher-precision custom CAN communication baud rate programming. The
higher-precision bit timings facilitate connectivity to a CAN FD cluster.

 31..28 27..26 25..24 23 22..20 19..16 15..14 13..12 11..8 7..4 3..0
Custo
m

b1000 Res SJW
(0–3)

TSEG2 (0–7) TSEG1
(1–15)

Res Tq (125–0x3200)

High P
recisio
n

b1100 SJW (0–15) TSEG2 (0–15) TSEG1 (1–63) Tq (25–0x3200)

■ (Re-)Synchronization Jump Width (SJW)

■ Valid programmed values are 0–3 in normal custom mode and 0–15 in
high-precision custom mode.
■ The actual hardware interpretation of this value is one more than the
programmed value.

© National Instruments 199

NI-XNET 20.5

■ Time Segment 2 (TSEG2), which is the time segment after the sample point.

■ Valid programmed values are 0–7 in normal custom mode and 0–15 in
high-precision custom mode.
■ This is the Phase_Seg2 time from ISO 11898–1, 12.4.1 Bit Encoding/
Decoding.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ Time Segment 1 (TSEG1), which is the time segment before the sample
point.

■ Valid programmed values are 1–0xF (1–15 decimal) in normal custom
mode and 1–0x3F (1–63 decimal) in high-precision custom mode.
■ This is the combination of the Prop_Seg and Phase_Seg1 time from ISO
11898–1, 12.4.1 Bit Encoding/Decoding.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ Time quantum (Tq), which is used to program the baud rate prescaler

■ Valid programmed values are 125–12800, in increments of 0x7D (125
decimal) ns for normal custom mode and 25–12800, in increments of 0x19
(25 decimal) ns for high-precision custom mode.
■ This is the time quantum from ISO 11898–1, 12.4.1 Bit Encoding/
Decoding.

An advanced baud rate example is 0x8014007D. This example breaks down into the
following values:

■ SJW = 0x0 (0x01 in hardware, due to the + 1)

ni.com200

NI-XNET 20.5

■ TSEG2 = 0x1 (0x02 in hardware, due to the + 1)
■ TSEG 1 = 0x4 (0x05 in hardware, due to the + 1)
■ Tq = 0x7D (125 ns in hardware)

Each time quanta is 125 ns. From IS0 11898–1, 12.4.1.2 Programming of Bit Time,
the nominal time segments length is Sync_Seg (Fixed at 1) + (Prop_Seg +
Phase_Seg1)(B) + Phase_Seg2(C) = 1 + 2 + 5 = 8. So, the total time for a bit in this
example is 8 * 125 ns = 1000 ns = 1 µs. A 1 µs bit time is equivalent to a 1 MHz baud
rate.

Formulas

Baud rate = 1/(Bit time) = [Tq (Sync_seg + TSEG1 + TSEG2)]-1

where Tq = (m)(Tq_min) = (BRP)(minimum time quantum)

Sample Point = (TSEG1 + Sync_Seg) / (TSEG1 + Sync_Seg + TSEG2)

LIN

When the upper nibble (0xF0000000) is clear, you can set only baud rates within the
LIN-specified range (2400 to 20000) for the interface.

When the upper nibble is set to 0x8 (0x80000000), no check for baud rate within LIN-
specified range is performed, and the lowest 16 bits of the value may contain the
custom baud rate. Any custom value higher than 65535 is masked to a 16-bit value.
As with the non-custom values, the interface internally calculates the appropriate
divisor values to program into its UART. Because the interface uses the Atmel
ATA6620 LIN transceiver, which is guaranteed to operate within the LIN 2.0
specification limits, there are some special considerations when programming
custom baud rates for LIN:

■ The ATA6620 transceiver incorporates a TX dominant timeout function to
prevent a faulty device that it is built into from holding the LIN dominant
indefinitely. If the TX line into the transceiver is held in the dominant state for
too long, the transceiver switches its driver to the recessive state. This places a
limit on how long the LIN header break field that the interface transmits may
be, and thus limits the lowest baud rate you can set. At the point the baud rate

© National Instruments 201

NI-XNET 20.5

or break length is set for the interface, it uses the baud rate bit time and break
length settings internally to calculate the resulting break duration and returns
an error if that duration is long enough to trigger the TX dominant timeout.
■ At the other end of the baud range, the ATA6620 is specified to work up to
20000 baud. While you can use the custom bit to program rates higher than
that, the transceiver behavior when operating above that rate is not
guaranteed.

Interface:Bus Error Frames to Input Stream?

Data Type Direction Required? Default
Read/Write No False

Property Class

XNET Session

Short Name

Intf.BusErrToInStrm?

Description

Note Only CAN and LIN interfaces currently support this property.

The Bus Error Frames to Input Stream? property configures the hardware to place a
CAN or LIN bus error frame into the Stream Input queue after it is generated. A bus
error frame is generated when the hardware detects a bus error. For more
information about the bus error frame, refer to Special Frames.

Interface:Echo Transmit?

Data Type Direction Required? Default
Read/Write No False

Property Class

XNET Session

ni.com202

NI-XNET 20.5

Short Name

Intf.EchoTx?

Description

The Interface:Echo Transmit? property determines whether Frame Input or Signal
Input sessions contain frames that the interface transmits.

When this property is true, and a frame transmit is complete for an Output session,
the frame is echoed to the Input session. Frame Input sessions can use the Flags
field to differentiate frames received from the bus and frames the interface
transmits. When using the XNET Read (Frame CAN) VI, XNET Read (Frame FlexRay) VI,
or XNET Read (Frame LIN) VI, the Flags field is parsed into an echo? Boolean in the
frame cluster. When using the XNET Read (Frame Raw) VI, you can parse the Flags
field manually by reviewing the Raw Frame Format section. Signal Input sessions
cannot differentiate the origin of the incoming data.

Note Echoed frames are placed into the input sessions only after the frame transmit is
complete. If there are bus problems (for example, no listener) such that the frame did not
transmit, the frame is not received.

Interface:I/O Name

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Session

Short Name

Intf.IOName

Description

The I/O Name property returns a reference to the interface used to create the
session.

© National Instruments 203

NI-XNET 20.5

You can pass this I/O into an XNET Interface property node to retrieve hardware
information for the interface, such as the name and serial number. The I/O Name is
the same reference available from the XNET System property node, which is used to
read information for all XNET hardware in the system.

You can use this property on the diagram to:

■ Display a string that contains the name of the interface as shown in
Measurement and Automation Explorer (MAX).
■ Provide a refnum you can wire to a property node to read information for
the interface.

Interface:Output Stream List

Data Type Direction Required? Default
Read/Write No Empty Array

Property Class

XNET Session

Short Name

Intf.OutStrmList

Description

Note Only CAN and LIN interfaces currently support this property.

The Output Stream List property provides a list of frames for use with the replay
feature (Interface:Output Stream Timing property set to Replay Exclusive or Replay
Inclusive). In Replay Exclusive mode, the hardware transmits only frames that do
not appear in the list. In Replay Inclusive mode, the hardware transmits only frames
that appear in the list. For a LIN interface, the header of each frame written to
stream output is transmitted, and the Exclusive or Inclusive mode controls the
response transmission. Using these modes, you can either emulate an ECU (Replay
Inclusive, where the list contains the frames the ECU transmits) or test an ECU

ni.com204

NI-XNET 20.5

(Replay Exclusive, where the list contains the frames the ECU transmits), or some
other combination.

This property's data type is an array of XNET Frame from a database. When you are
using a database file such as CANdb FIBEX or AUTOSAR, each XNET frame uses the
string name. If you are not using a database file or prefer to specify the frames using
CAN arbitration IDs or LIN unprotected IDs, you can use Interface:Output Stream List
By ID instead of this property.

Interface:Output Stream List By ID

Data Type Direction Required? Default
Read/Write No Empty Array

Property Class

XNET Session

Short Name

Intf.OutStrmListById

Description

Note Only CAN and LIN interfaces currently support this property.

The Output Stream List By ID property provides a list of frames for use with the
replay feature (Interface:Output Stream Timing property set to Replay Exclusive or
Replay Inclusive).

This property serves the same purpose as Interface:Output Stream List, in that it
provides a list of frames for replay filtering. This property provides an alternate
format for you to specify the frames by their CAN arbitration ID or LIN unprotected
ID. The property's data type is an array of unsigned 32-bit integer (U32). Each integer
represents a CAN or LIN frame's identifier, using the same encoding as the Raw
Frame Format.

Within each CAN frame ID value, bit 29 (hex 20000000) indicates the CAN identifier
format (set for extended, clear for standard). If bit 29 is clear, the lower 11 bits (0–10)
contain the CAN frame identifier. If bit 29 is set, the lower 29 bits (0–28) contain the

© National Instruments 205

NI-XNET 20.5

CAN frame identifier. LIN frame ID values may be within the range of possible LIN IDs
(0-63).

Interface:Output Stream Timing

Data Type Direction Required? Default
Read/Write No Immediate

Property Class

XNET Session

Short Name

Intf.OutStrmTimng

Description

Note Only CAN and LIN interfaces currently support this property.

The Output Stream Timing property configures how the hardware transmits frames
queued using a Frame Output Stream session. The following table lists the accepted
values:

Enumeration Value
Immediate 0
Replay Exclusive 1
Replay Inclusive 2

When you configure this property to be Immediate, frames are dequeued from the
queue and transmitted immediately to the bus. The hardware transmits all frames
in the queue as fast as possible.

When you configure this property as Replay Exclusive or Replay Inclusive, the
hardware is placed into a Replay mode. In this mode, the hardware evaluates the
frame timestamps and attempts to maintain the original transmission times as the
timestamp stored in the frame indicates. The actual transmission time is based on

ni.com206

NI-XNET 20.5

the relative time difference between the first dequeued frame and the time
contained in the dequeued frame.

When in one of the replay modes, you can use the Interface:Output Stream List
property to supply a list. In Replay Exclusive mode, the hardware transmits only
frames that do not appear in the list. In Replay Inclusive mode, the hardware
transmits only frames that appear in the list. Using these modes, you can either
emulate an ECU (Replay Inclusive, where the list contains the frames the ECU
transmits) or test an ECU (Replay Exclusive, where the list contains the frames the
ECU transmits), or some other combination. You can replay all frames by using
Replay Exclusive mode without setting any list.

Runtime Behavior

When the hardware is in a replay mode, the first frame received from the application
is considered the start time, and all subsequent frames are transmitted at the
appropriate delta from the start time. For example, if the first frame has a
timestamp of 12:01.123, and the second frame has a timestamp of 12:01.456, the
second frame is transmitted 333 ms after the first frame.

If a frame's time is identical or goes backwards relative to the first timestamp, this is
treated as a new start time, and the frame is transmitted immediately on the bus.
Subsequent frames are compared to this new start time to determine the
transmission time. For example, assume that the application sends the hardware
four frames with the following timestamps: 12:01.123, 12:01.456, 12:01.100, and
12:02.100. In this scenario, the first frame transmits immediately, the second frame
transmits 333 ms after the first, the third transmits immediately after the second,
and the fourth transmits one second after the third. Using this behavior, you can
replay a logfile of frames repeatedly, and each new replay of the file begins with new
timing.

A frame whose timestamp goes backwards relative to the previous timestamp, but
still is forward relative to the start time, is transmitted immediately. For example,
assume that the application sends the hardware four frames with the following
timestamps: 12:01.123, 12:01.456, 12:01.400, and 12:02.100. In this scenario, the first
frame transmits immediately, the second frame transmits 333 ms after the first, the
third transmits immediately after the second, and the fourth transmits 544 ms after
the third.

© National Instruments 207

NI-XNET 20.5

When a frame with a Delay Frame frame type is received, the hardware delays for
the requested time. The next frame to be dequeued is treated as a new first frame
and transmitted immediately. You can use a Delay Frame with a time of 0 to restart
time quickly. If you replay a logfile of frames repeatedly, you can insert a Delay
Frame at the start of each replay to insert a delay between each iteration through
the file.

When a frame with a Start Trigger frame type is received, the hardware treats this
frame as a new first frame and uses the absolute time associated with this frame as
the new start time. Subsequent frames are compared to this new start time to
determine the transmission time. Using a Start Trigger is especially useful when
synchronizing with data acquisition products, so that you can replay the first frame
at the correct time relative to the start trigger for accurate synchronized replay.

Special Considerations for LIN

Only LIN interface as Master supports stream output. You do not need to set the
interface explicitly to Master if you want to use stream output. Just create a stream
output session, and the driver automatically sets the interface to Master at interface
start.

You can use immediate mode to transmit a header or full frame. You can transmit
only the header for a frame by writing the frame to stream output with the desired
ID and an empty data payload. You can transmit a full frame by writing the frame to
stream output with the desired ID and data payload. If you write a full frame for ID n
to stream output, and you have created a frame output session for frame with ID n,
the stream output data takes priority (the stream output frame data is transmitted
and not the frame output data). If you write a full frame to stream output, but the
frame has not been defined in the database, the frame transmits with Enhanced
checksum. To control the checksum type transmitted for a frame, you first must
create the frame in the database and assign it to an ECU using the LIN specification
you desire (the specification number determines the checksum type). You then must
create a frame output object to transmit the response for the frame, and use stream
output to transmit the header. Similarly, to transmit n corrupted checksums for a
frame, you first must create a frame object in the database, create a frame output
session for it, set the transmit n corrupted checksums property, and then use stream
output to transmit the header.

ni.com208

NI-XNET 20.5

Regarding event-triggered frame handling for immediate mode, if the hardware can
determine that an ID is for an event-triggered frame, which means an event-
triggered frame has been defined for the ID in the database, the frame is processed
as if it were in an event-triggered slot in a schedule. If you write a full frame with
event-triggered ID, the full frame is transmitted. If there is no collision, the next
stream output frame is processed. If there is a collision, the hardware executes the
collision-resolving schedule. The hardware retransmits the frame response at the
corresponding slot time in the collision resolving schedule. If you write a header
frame with an event-triggered ID and there is no collision, the next stream output
frame is processed. If there is a collision, the hardware executes the collision-
resolving schedule.

You can mix use of the hardware scheduler and stream output immediate mode.
Basically, the hardware treats each stream output frame as a separate run-once
schedule containing a single slot for the frame. Transmission of a stream output
frame may interrupt a run-continuous schedule, but may not interrupt a run-once
schedule. Transmission of stream output frames is interleaved with run-continuous
schedule slot executions, depending on the application timing of writes to stream
output. Stream output is prioritized to the equivalent of the lowest priority level for
a run-once schedule. If you write one or more run-once schedules with higher-than-
lowest priority and write frames to stream output, all the run-once schedules are
executed before stream output transmits anything. If you write one or more run-
once schedules with the lowest priority and write frames to stream output, the run-
once schedules execute in the order you wrote them, and are interleaved with
stream output frames, depending on the application timing of writes to stream
output and writes of run-once schedule changes.

In contrast to the immediate mode, neither replay mode allows for the concurrent
use of the hardware scheduler, and an error is reported if you attempt to do so.
Event-triggered frame handling is different for the replay modes. If the hardware can
determine that an ID is for an event-triggered frame, which means an event-
triggered frame has been defined for the ID in the database, the frame is transmitted
as if it were being transmitted during the collision-resolving schedule for the event
triggered frame. The full frame is transmitted with the Data[0] value (the underlying
unconditional frame ID), copied into the header ID. If a frame cannot be found in the
database, it is transmitted with Enhanced checksum. Otherwise, it is transmitted
with the checksum type defined in the database.

© National Instruments 209

NI-XNET 20.5

The reply modes provide an easy means to replay headers only, full frames only, or
some mix of the two. For either replay mode, the header for each frame is always
transmitted and the slot delay is preserved. For replay inclusive, if you want only to
replay headers, leave the Interface:Output Stream List property empty. To replay
some of the responses, add their frames to Interface:Output Stream List. For frames
that are not in Interface:Output Stream List, you are free to create frame output
objects for them, for which you can change the checksum type or transmit
corrupted checksums.

There is another consideration for the replay of diagnostic slave response frames.
Because the master always transmits only the diagnostic slave response header,
and a slave transmits the response if its NAD matches the one transmitted in the
preceding master request frame, an array of frames for replay might include
multiple slave response frames (each having the same slave response header ID)
transmitted by different slaves (each having a different NAD value in the data
payload). If you are using inclusive mode, you can choose not to replay any slave
response frames by not including the slave response frame in Interface:Output
Stream List. You can choose to replay some or all of the slave response frames by
first including the slave response frame in Interface:Output Stream List, then
including the NAD values for the slave responses you want to play back, in
Interface:LIN:Output Stream Slave Response List By NAD. In this way, you have
complete control over which slave responses are replayed (which diagnostic slaves
you emulate). Replay of a diagnostic master request frame is handled like replay of
any other frame; the header is always transmitted. Using the inclusive mode as an
example, the response may or may not be transmitted depending on whether or not
the master request frame is in Interface:Output Stream List.

Restrictions on Other Sessions

When you use Immediate mode, there are no restrictions on frames that you use in
other sessions.

When you use Replay Inclusive mode, you can create output sessions that use
frames that do not appear in the Interface:Output Stream List property. Attempting
to create an output session that uses a frame from the Interface:Output Stream List
property results in an error. Input sessions have no restrictions.

ni.com210

NI-XNET 20.5

When you use Replay Exclusive mode, you cannot create any other output sessions.
Attempting to create an output session returns an error. Input sessions have no
restrictions.

Interface:Start Trigger Frames to Input Stream?

Data Type Direction Required? Default
Read/Write No False

Property Class

XNET Session

Short Name

Intf.StartTrigToInStrm?

Description

The Start Trigger Frames to Input Stream? property configures the hardware to place
a start trigger frame into the Stream Input queue after it is generated. A Start Trigger
frame is generated when the interface is started. The interface start process is
described in Interface Transitions. For more information about the start trigger
frame, refer to Special Frames.

The start trigger frame is especially useful if you plan to log and replay CAN data.

CAN Interface Properties

This category includes CAN-specific interface properties.

Properties in the Interface category apply to the interface and not the session. If
more than one session exists for the interface, changing an interface property
affects all the sessions.

Interface:CAN:External Transceiver Config
Data Type Direction Required? Default

© National Instruments 211

NI-XNET 20.5

Write Only No 0x00000007

Property Class

XNET Session

Short Name

Intf.CAN.ExtTcvrCfg

Description

This property allows you to configure XS series CAN hardware to communicate
properly with your external transceiver. The connector on your XS series CAN
hardware has five lines for communicating with your transceiver.

Line Direction Purpose
Ext_RX In Data received from the CAN bus

.
Ext_TX Out Data to transmit on the CAN bu

s.
Output0 Out Generic output used to configur

e the transceiver mode.
Output1 Out Generic output used to configur

e the transceiver mode.
NERR In Input to connect to the nERR pi

n of your transceiver to route st
atus back from the transceiver t
o the hardware.

The Ext_RX and Ext_TX lines are self explanatory and provide for the transfer of CAN
data to and from the transceiver. The remaining three lines are for configuring the
transceiver and retrieving status from the transceivers. Not all transceivers use all
pins. Typically, a transceiver has one or two lines that can configure the transceiver
mode. The NI-XNET driver natively supports five transceiver modes: Normal, Sleep,
Single Wire Wakeup, Single Wire High Speed, and Power-On. This property
configures how the NI-XNET driver sets the outputs of your external transceiver for
each mode.

ni.com212

NI-XNET 20.5

The configuration is in the form of a U32 written as a bitmask. The U32 bitmask is
defined as:

31 30..15 14..12 11..9 8..6 5..3 2..0
nERR Conne
cted

Reserved PowerOn Co
nfiguration

SWHighSpee
d Configurati
on

SWWakeup C
onfiguration

Sleep Config
uration

Normal Conf
iguration

Where each configuration is a 3-bit value defined as:

2 1 0
State Supported Output1 Value Output0 Value

The Interface:CAN:Transceiver State property changes the transceiver state. Based
on the transceiver configuration, if the state is supported, the configuration
determines how the two pins are set. If the state is not supported, an error is
returned, because you tried to set an invalid configuration. Note that all transceivers
must support a Normal state, so the State Supported bit for that configuration is
ignored.

Other internal state changes may occur. For example, if you put the transceiver to
sleep and a remote wakeup occurs, the transceiver automatically is changed to the
normal state. For information about the state machine for the transceiver state,
refer to CAN Transceiver State Machine in Additional Topics.

If nERR Connected is set, the nERR pin into the connector determines a transceiver
error. It is active low, meaning a value of 0 on this pin indicates an error. A value of 1
indicates no error. If this line is connected, the NI-XNET driver monitors this line and
reports its status via the transceiver error? field of the NI-XNET Read (State CAN
Comm) VI.

Examples

TJA1041 (HS): To connect to the TJA1041 transceiver, connect Output0 to the nSTB
pin and Output1 to the EN pin. The TJA1041 does have an nERR pin, so that should
be connected to the nERR input. The TJA1041 supports a power-on state, a sleep
state, and a normal state. As this is not a single wire transceiver, it does not support
any single wire state. For normal operation, the TJA1041 uses a 1 for both nSTB and
EN. For sleep, the TJA1041 uses the standby mode, which uses a 0 for both nSTB and

© National Instruments 213

NI-XNET 20.5

EN. For power-on, the TJA1041 uses a 1 for nSTB and a 0 for EN. The final
configuration is 0x80005027.

TJA1054 (LS): You can connect and configure the TJA1054 identically to the
TJA1041.

AU5790 (SW): To connect to the AU5790 transceiver, connect Output0 to the nSTB
pin and Output1 to the EN pin. The AU5790 does not support any transceiver status,
so you do not need to connect the nERR pin. The AU5790 supports all states. For
normal operation, the AU5790 uses a 1 for both nSTB and EN. For sleep, the AU5790
uses a 0 for both nSTB and EN. For Single Wire Wakeup, the AU5790 requires nSTB to
be a 0 and EN to be a 1. For Single Wire High-Speed, the AU5790 requires nSTB to be
a 1, and EN to be a 0. For power-on, the sleep state is used so there is less
interference on the bus. The final configuration is 0x00004DA7.

Interface:CAN:64bit FD Baud Rate
Data Type Direction Required? Default

Read/Write No 0

Property Class

XNET Session

Short Name

Intf.CAN.FdBaudRate64

Description

Note You can modify this property only when the interface is stopped.

Note This property replaces the former 32-bit property. You still can use the baud rate values
used with the 32-bit property. The new custom 64-bit baud rate setting requires using values
greater than 32 bit.

The Interface:CAN:64bit FD Baud Rate property sets the fast data baud rate for CAN
FD+BRS CAN:I/O Mode. The default value for this interface property is the same as

ni.com214

NI-XNET 20.5

the cluster's FD baud rate in the database. Your application can set this interface FD
baud rate to override the value in the database.

When the upper nibble (0xF0000000) is clear, this is a numeric baud rate (for
example, 500000).

NI-XNET CAN hardware currently accepts the following numeric baud rates: 200000,
250000, 400000, 500000, 800000, 1000000, 1250000, 1600000, 2000000, 2500000,
4000000, 5000000, and 8000000.

Note Not all CAN transceivers are rated to transmit at the requested rate. If you attempt to
use a rate that exceeds the transceiver's qualified rate, XNET Start returns a warning. NI-
XNET Hardware Overview describes the CAN transceivers' limitations.

When the upper nibble of the lower 32 bit is set to 0xA (that is, 0xA0000000), the
remaining bits provide fields for more custom CAN communication baud rate
programming. The fields are shown in the following table:

 63..32 31..28 27..0
Normal Res b0000 Baud Rate (200 k–8 M)

 63..56 55 54..47 46..40 39 38..32 31..28 27 26..13 12..8 7..4 3..0
Custo
m 64
Bit

Res TDC Res TDCO Res TDCF b1010 Res Tq DTSEG
1

DTSEG
2

DSJW

■ Transmitter Delay Compensation (TDC) enables or disables this feature.

■ 0: TDC disabled
■ 1: TDC enabled

■ Transmitter Delay Compensation Offset (TDCO)

■ Valid values are 0–127.
■ Defines the distance between the delay from transmit to receive point and
secondary sample point.

■ Transmitter Delay Compensation Filter Window Length (TDCF)

■ Valid values are 0–127.

© National Instruments 215

NI-XNET 20.5

■ Defines the minimum value for the secondary sample point position. It is
enabled when TDCF is greater than TDCO.

■ Time quantum (Tq) is used to program the baud rate prescaler.

■ Valid values are 25–800, in increments of 25 ns.

■ Time Segment 1 (DTSEG1) is the time segment before the sample point.

■ Valid values are 0–31.
■ This is the DTSEG1 value from the Bosch M_CAN Controller Area
Network User's Manual, version 3.2.1.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ Time Segment 2 (DTSEG2) is the time segment after the sample point.

■ Valid values are 0–15.
■ This is the DTSEG2 value from the Bosch M_CAN Controller Area
Network User's Manual, version 3.2.1.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ (Re-)Synchronization Jump Width (DSJW)

■ Valid values are 0–15.
■ The actual hardware interpretation of this value is one more than the
programmed value.

For the former 32-bit baud rate property, the following table is valid.

When the upper nibble of the lower 32 bit is set to 0x8 (that is, 0x80000000), the
remaining bits provide fields for more custom CAN communication baud rate
programming.

 31..28 27..26 25..24 23..20 19..16 15..10 9..8 7..0
Custom b1000 Res SJW (0–3) TSEG2 (0–

7)
TSEG1 (1–

15)
Res Tq (25–800)

■ (Re-)Synchronization Jump Width (SJW)

ni.com216

NI-XNET 20.5

■ Valid programmed values are 0–3.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ Time Segment 2 (TSEG2) is the time segment after the sample point.

■ Valid values are 0–7.
■ This is the Phase_Seg2(D) from the Bosch CAN with Flexible Data-Rate
specification, version 1.0.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ Time Segment 1 (TSEG1) is the time segment before the sample point.

■ Valid programmed values are 1–15.
■ This is the combination of Prop_Seg(D) and Phase_Seg1(D) from the
Bosch CAN with Flexible Data-Rate specification, version 1.0.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ Time quantum (Tq) is used to program the baud rate prescaler.

■ Valid programmed values are 25–800, in increments of 25 ns.

Formulas

Baud rate = 1/(Bit time) = [Tq (Sync_seg + TSEG1 + TSEG2)]-1

where Tq = (m)(Tq_min) = (BRP)(minimum time quantum)

Sample Point = (TSEG1 + Sync_Seg) / (TSEG1 + Sync_Seg + TSEG2)

© National Instruments 217

NI-XNET 20.5

Interface:CAN:I/O Mode
Data Type Direction Required? Default

Read Only — Same as XNET Cluster CAN:I/O Mode

Property Class

XNET Session

Short Name

Intf.CAN.IoMode

Description

This property indicates the I/O Mode the interface is using. It is a ring of three values,
as described in the following table:

Enumeration Value Meaning
CAN 0 This is the default CAN 2.0 A/B s

tandard I/O mode as defined in
ISO 11898-1:2003. A fixed baud
rate is used for transfer, and the
payload length is limited to 8 by
tes.

CAN FD 1 This is the CAN FD mode as spe
cified in the CAN with Flexible
Data-Rate specification, versio
n 1.0. Payload lengths are allow
ed up to 64 bytes, but they are t
ransmitted at a single fixed bau
d rate (defined by XNET Cluster
64bit Baud Rate or Interface:64
bit Baud Rate).

CAN FD+BRS 2 This is the CAN FD mode as spe
cified in the CAN with Flexible
Data-Rate specification, versio
n 1.0, with the optional Baud Ra
te Switching enabled. The same

ni.com218

NI-XNET 20.5

payload lengths as CAN FD mod
e are allowed; additionally, the
data portion of the CAN frame i
s transferred at a different (high
er) baud rate (defined by XNET
Cluster CAN:64bit FD Baud Rate
or Interface:CAN:64bit FD Baud
Rate).

The value is initialized from the database cluster when the session is created and
cannot be changed later. However, you can transmit standard CAN frames on a CAN
FD network. Refer to the Interface:CAN:Transmit I/O Mode property.

Interface:CAN:Listen Only?
Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.CAN.LstnOnly?

Description

Note You can modify this property only when the interface is stopped.

The Listen Only? property configures whether the CAN interface transmits any
information to the CAN bus.

When this property is false, the interface can transmit CAN frames and acknowledge
received CAN frames.

When this property is true, the interface can neither transmit CAN frames nor
acknowledge a received CAN frame. The true value enables passive monitoring of
network traffic, which can be useful for debugging scenarios when you do not want
to interfere with a communicating network cluster.

© National Instruments 219

NI-XNET 20.5

Interface:CAN:Pending Transmit Order
Data Type Direction Required? Default

Read/Write No As Submitted

Property Class

XNET Session

Short Name

Intf.CAN.PendTxOrder

Description

Note You can modify this property only when the interface is stopped.

Note Setting this property causes the internal queue to be flushed. If you start a session,
queue frames, and then stop the session and change this mode, some frames may be lost.
Set this property to the desired value once; do not constantly change modes.

The Pending Transmit Order property configures how the CAN interface manages
the internal queue of frames. More than one frame may desire to transmit at the
same time. NI-XNET stores the frames in an internal queue and transmits them onto
the CAN bus when the bus is idle.

This property modifies how NI-XNET handles this queue of frames. The following
table lists the accepted values:

Enumeration Value
As Submitted 0
By Identifier 1

When you configure this property to be As Submitted, frames are transmitted in the
order that they were submitted into the queue. There is no reordering of any frames,
and a higher priority frame may be delayed due to the transmission or
retransmission of a previously submitted frame. However, this mode has the highest
performance.

ni.com220

NI-XNET 20.5

When you configure this property to be By Identifier, frames with the highest priority
identifier (lower CAN ID value) transmit first. The frames are stored in a priority
queue sorted by ID. If a frame currently being transmitted requires retransmission
(for example, it lost arbitration or failed with a bus error), and a higher priority frame
is queued in the meantime, the lower priority frame is not immediately retried, but
the higher priority frame is transmitted instead. In this mode, you can emulate
multiple ECUs and still see a behavior similar to a real bus in that the highest priority
message is transmitted on the bus. This mode may be slower in performance
(possible delays between transmissions as the queue is re-evaluated), and lower
priority messages may be delayed indefinitely due to frequent high-priority
messages.

Interface:CAN:Single Shot Transmit?
Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.CAN.SingShot?

Description

Note You can modify this property only when the interface is stopped.

Note Setting this property causes the internal queue to be flushed. If you start a session,
queue frames, and then stop the session and change this mode, some frames may be lost.
Set this property to the desired value once; do not constantly change modes.

The Single Shot Transmit? property configures whether the CAN interface retries
failed transmissions.

When this property is false, failed transmissions retry as specified by the CAN
protocol (ISO 11898–1, 6.11 Automatic Retransmission). If a CAN frame is not

© National Instruments 221

NI-XNET 20.5

transmitted successfully, the interface attempts to retransmit the frame as soon as
the bus is idle again. This retransmit process continues until the frame is
successfully transmitted.

When this property is true, failed transmissions do not retry. If a CAN frame is not
transmitted successfully, no further transmissions are attempted.

Interface:CAN:Termination
Data Type Direction Required? Default

Read/Write No Off (0)

Property Class

XNET Session

Short Name

Intf.CAN.Term

Description

Notes You can modify this property only when the interface is stopped.

This property does not take effect until the interface is started.

The Termination property configures the onboard termination of the NI-XNET
interface CAN connector (port). The enumeration is generic and supports two
values: Off and On. However, different CAN hardware has different termination
requirements, and the Off and On values have different meanings, as described
below.

High-Speed CAN

High-Speed CAN networks are typically terminated on the bus itself instead of
within a node. However, NI-XNET allows you to configure termination within the
node to simplify testing. If your bus already has the correct amount of termination,

ni.com222

NI-XNET 20.5

leave this property in the default state of Off. However, if you require termination,
set this property to On.

Value Meaning Description
Off Disabled Termination is disabled.
On Enabled Termination (120 Ω) is enabled.

Low-Speed/Fault-Tolerant CAN

Every node on a Low-Speed CAN network requires termination for each CAN data
line (CAN_H and CAN_L). This configuration allows the Low-Speed/Fault-Tolerant
CAN port to provide fault detection and recovery. Refer to Termination for more
information about low-speed termination. In general, if the existing network has an
overall network termination of 125 Ω or less, select the default 4.99 kΩ option.
Otherwise, you should turn on termination to enable the 1.11 kΩ option.

Value Meaning Description
Off 4.99 kΩ Termination is set to 4.99 kΩ.
On 1.11 kΩ Termination is set to 1.11 kΩ.

Single-Wire CAN

The ISO standard requires Single-Wire transceivers to have a 9.09 kΩ resistor, and no
additional configuration is supported.

Interface:CAN:Transceiver State
Data Type Direction Required? Default

Read/Write No Normal (0)

Property Class

XNET Session

Short Name

Intf.CAN.TcvrState

© National Instruments 223

NI-XNET 20.5

Description

The Transceiver State property configures the CAN transceiver and CAN controller
modes. The transceiver state controls whether the transceiver is asleep or
communicating, as well as configuring other special modes. The following table lists
the accepted values.

Enumeration Value
Normal 0
Sleep 1

Single Wire Wakeup 2
Single Wire High-Speed 3

Normal
This state sets the transceiver to normal communication mode. If the transceiver is
in the Sleep mode, this performs a local wakeup of the transceiver and CAN
controller chip.

Sleep
This state sets the transceiver and CAN controller chip to Sleep (or standby) mode.
You can set the interface to Sleep mode only while the interface is communicating. If
the interface has not been started, setting the transceiver to Sleep mode returns an
error.

Before going to sleep, all pending transmissions are transmitted onto the CAN bus.
Once all pending frames have been transmitted, the interface and transceiver go
into Sleep (or standby) mode. Once the interface enters Sleep mode, further
communication is not possible until a wakeup occurs. The transceiver and CAN
controller wake from Sleep mode when either a local wakeup or remote wakeup
occurs.

A local wakeup occurs when the application sets the transceiver state to either
Normal or Single Wire Wakeup.

A remote wakeup occurs when a remote node transmits a CAN frame (referred to as
the wakeup frame). The wakeup frame wakes up the NI-XNET interface transceiver
and CAN controller chip. The CAN controller chip does not receive or acknowledge

ni.com224

NI-XNET 20.5

the wakeup frame. After detecting the wakeup frame and idle bus, the CAN interface
enters Normal mode.

When the local or remote wakeup occurs, frame transmissions resume from the
point at which the original Sleep mode was set.

You can use the XNET Read (State CAN Comm) VI to detect when a wakeup occurs.
To suspend the application while waiting for the remote wakeup, use the XNET Wait
(CAN Remote Wakeup) VI.

Single Wire Wakeup
For a remote wakeup to occur for Single Wire transceivers, the node that transmits
the wakeup frame first must place the network into the Single Wire Wakeup
Transmission mode by asserting a higher voltage.

This state sets a Single Wire transceiver into the Single Wire Wakeup Transmission
mode, which forces the Single Wire transceiver to drive a higher voltage level on the
network to wake up all sleeping nodes. Other than this higher voltage, this mode is
similar to Normal mode. CAN frames can be received and transmitted normally.

If you are not using a Single Wire transceiver, setting this state returns an error. If
your current mode is Single Wire High-Speed, setting this mode returns an error
because you are not allowed to wake up the bus in high-speed mode.

The application controls the timing of how long the wakeup voltage is driven. The
application typically changes to Single Wire Wakeup mode, transmits a single
wakeup frame, and then returns to Normal mode.

Single Wire High-Speed
This state sets a Single Wire transceiver into Single Wire High-Speed Communication
mode. If you are not using a Single Wire transceiver, setting this state returns an
error.

Single Wire High-Speed Communication mode disables the transceiver's internal
waveshaping function, allowing the SAE J2411 High Speed baud rate of 83.333
kbytes/s to be used. The disadvantage versus Single Wire Normal Communication
mode, which only allows the SAE J2411 baud rate of 33.333 kbytes/s, is degraded

© National Instruments 225

NI-XNET 20.5

EMC performance. Other than the disabled waveshaping, this mode is similar to
Normal mode. CAN frames can be received and transmitted normally.

This mode has no relationship to High-Speed transceivers. It is merely a higher
speed mode of the Single Wire transceiver, typically used to download data when
the onboard network is attached to an offboard tester ECU.

The Single Wire transceiver does not support use of this mode in conjunction with
Sleep mode. For example, a remote wakeup cannot transition from sleep to this
Single Wire High-Speed mode. Therefore, setting the mode to Sleep from Single
Wire High-Speed mode returns an error.

Interface:CAN:Transceiver Type
Data Type Direction Required? Default

Read/Write No High-Speed (0) for High-Speed and XS Hardware;
Low-Speed (1) for Low-Speed Hardware

Property Class

XNET Session

Short Name

Intf.CAN.TcvrType

Description

Notes You can modify this property only when the interface is stopped.

For XNET hardware that provides a software-selectable transceiver, the Transceiver
Type property allows you to set the transceiver type. Use the XNET Interface
CAN.Transceiver Capability property to determine whether your hardware supports
a software-selectable transceiver.

You also can use this property to determine the currently configured transceiver
type.

The following table lists the accepted values:

ni.com226

NI-XNET 20.5

Enumeration Value
High-Speed (HS) 0
Low-Speed (LS) 1
Single Wire (SW) 2

External (Ext) 3
Disconnect (Disc) 4

The default value for this property depends on your type of hardware. If you have
fixed-personality hardware, the default value is the hardware value. If you have
hardware that supports software-selectable transceivers, the default is High-Speed.

This attribute uses the following values:

High-Speed
This configuration enables the High-Speed transceiver. This transceiver supports
baud rates of 40 kbaud to 1 Mbaud. When using a High-Speed transceiver, you also
can communicate with a CAN FD bus. Refer to NI-XNET Hardware Overview to
determine which CAN FD baud rates are supported.

Low-Speed/Fault-Tolerant
This configuration enables the Low-Speed/Fault-Tolerant transceiver. This
transceiver supports baud rates of 40–125 kbaud.

Single Wire
This configuration enables the Single Wire transceiver. This transceiver supports
baud rates of 33.333 kbaud and 83.333 kbaud.

External
This configuration allows you to use an external transceiver to connect to your CAN
bus. Refer to Interface:CAN:External Transceiver Config for more information.

© National Instruments 227

NI-XNET 20.5

Disconnect
This configuration allows you to disconnect the CAN controller chip from the
connector. You can use this value when you physically change the external
transceiver.

Interface:CAN:Transmit I/O Mode
Data Type Direction Required? Default

Read/Write No Same as Interface:CAN:I/O Mode

Property Class

XNET Session

Short Name

Intf.CAN.TxIoMode

Description

This property specifies the I/O Mode the interface uses when transmitting a CAN
frame. By default, it is the same as the XNET Cluster CAN:I/O Mode property.
However, even if the interface is in CAN FD+BRS mode, you can force it to transmit
frames in the standard CAN format. For this purpose, set this property to CAN.

Note This property is not supported in CAN FD+BRS ISO mode. If you are using ISO CAN FD
mode, you define the transmit I/O mode in the database with the I/O Mode property of the
frame. (When a database is not used (for example, in frame stream mode), define the
transmit I/O mode with the frame type field of the frame data.) Note that ISO CAN FD mode is
the default mode for CAN FD in NI-XNET.

Note This property affects only the transmission of frames. Even if you set the transmit I/O
mode to CAN, the interface still can receive frames in FD modes (if the XNET Cluster CAN:I/O
Mode property is configured in an FD mode).

The Transmit I/O mode may not exceed the mode set by the XNET Cluster CAN:I/O
Mode property.

ni.com228

NI-XNET 20.5

Interface:CAN:FD ISO Mode
Data Type Direction Required? Default

Read/Write No ISO

Property Class

XNET Session

Short Name

Intf.CAN.FdIsoMode

Description

This property is valid only when the interface is in CAN FD(+BRS) mode. It specifies
whether the interface is working in the ISO CAN FD standard (ISO standard
11898-1:2015) or non-ISO CAN FD standard (Bosch CAN FD 1.0 specification). Two
ports using different standards (ISO CAN FD vs. non-ISO CAN FD) cannot
communicate with each other.

When you use a CAN FD database (DBC or FIBEX file created with NI-XNET), you can
specify the ISO CAN FD mode when creating an alias name for the database. An alias
is created automatically when you open a new database in the NI-XNET Database
Editor. The specified ISO CAN FD mode is used as default, which you can change in
the session using this property.

Note In ISO CAN FD mode, for every transmitted frame, you can specify in the database or
frame header whether a frame must be sent in CAN 2.0, CAN FD, or CAN FD+BRS mode. In the
frame type field of the frame header, received frames indicate whether they have been sent
with CAN 2.0, CAN FD, or CAN FD+BRS. You cannot use the Interface:CAN:Transmit I/O Mode
property in ISO CAN FD mode, as the frame defines the transmit mode.

Note In Non-ISO CAN FD mode, CAN data frames are received at CAN data typed frames,
which is either CAN 2.0, CAN FD, or CAN FD+BRS, but you cannot distinguish the standard in
which the frame has been transmitted.

Note You also can set the mode to Legacy ISO mode. In this mode, the behavior is the same
as in Non-ISO CAN FD mode (Interface:CAN:Transmit I/O Mode is working, and received
frames have the CAN data type). But the interface is working in ISO CAN FD mode, so you can

© National Instruments 229

NI-XNET 20.5

communicate with other ISO CAN FD devices. Use this mode only for compatibility with
existing applications.

Interface:CAN:Enable Edge Filter
Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.CAN.EdgeFilter

Description

When this property is enabled, the CAN hardware requires two consecutive
dominant tq for hard synchronization.

Interface:CAN:Transmit Pause
Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.CAN.TxPause

Description

When this property is enabled, the CAN hardware waits for two bit times before
transmitting the next frame. This allows other CAN nodes to transmit lower priority

ni.com230

NI-XNET 20.5

CAN messages while this CAN node is transmitting high-priority CAN messages with
high speed.

Interface:CAN:Disable Protocol Exception
Handling
Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.CAN.DisProtExcHdlng

Description

A protocol exception occurs when the CAN hardware detects an invalid combination
of bits on the CAN bus reserved for a future protocol expansion. NI-XNET allows you
to define how the hardware should behave in case of a protocol exception:

■ When this property is enabled (false, default), the CAN hardware stops
receiving frames and starts a bus integration.
■ When this property is disabled (true), the CAN hardware transmits an error
frame when it detects a protocol exception condition.

Ethernet Interface Properties

This category includes Ethernet-specific interface properties.

Properties in the Interface category apply to the interface and not the session. If
more than one session exists for the interface, changing an interface property
affects all the sessions.

© National Instruments 231

NI-XNET 20.5

Interface:Ethernet:Adjust Local Time
Data Type Direction Required? Default

Write Only No 0

Property Class

XNET Interface

Short Name

Intf.Enet.Adjust

Description

A write of this property applies a positive or negative phase adjustment, in
nanoseconds, to the local time that is used to timestamp Ethernet frames (see XNET
Read (Frame Ethernet).vi). This adjustment can be used to align the local time with
another timescale.

As an example for using this property, consider an application that synchronizes a
DAQmx and XNET device using a start trigger signal. The start trigger signal ensures
that the hardware devices begin their I/O simultaneously, but the resulting
timestamps (e.g., t0 in waveforms) might appear different because each driver
initializes its time from the operating system at a different time. The difference in
appearance is cosmetic, as the I/O is actually synchronized. In order to mitigate this
difference, you can retrieve the timestamp of the start trigger from DAQmx and
XNET, subtract one from the other, and write that difference to this property.

Interface:Ethernet:IPv4 Address
Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Interface

ni.com232

NI-XNET 20.5

Short Name

Intf.Enet.IpV4Addr

Description

Indicates the IPv4 address that is configured on the the XNET interface in the
network by the OS stack. The IPv4 address is returned as a string in dotted-decimal
notation. For example, 192.0.2.1.

Interface:Ethernet:Link Speed
Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Interface

Short Name

Enet.LinkSpeed

Description

Indicates the current link speed on the interface or shows if the link is down. This
property is a ring (enumerated list) with the following values:

Enumeration Value Description
Link Down 0 The link for the Ethernet interfa

ce is down.
100 Mb/s 1 The Ethernet interface is operat

ing at 100 Mb/s (Fast Ethernet) c
apability.

1000 Mb/s 2 The Ethernet interface is operat
ing at 1000 Mb/s (Gigabit Ethern
et) capability.

© National Instruments 233

NI-XNET 20.5

Interface:Ethernet:Link Speed Configured
Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Interface

Short Name

Enet.LinkSpeedConf

Description

Indicates the link speed that is configured for the Ethernet interface. This property is
configured using MAX or the System Configuration property Link Speed Configured.
This property is a ring (enumerated list) with the following values:

Enumeration Value Description
100 Mb/s 1 The Ethernet interface is config

ured for 100 Mb/s (Fast Ethernet
) capability.

1000 Mb/s 2 The Ethernet interface is config
ured for 1000 Mb/s (Gigabit Eth
ernet) capability.

Interface:Ethernet:Jumbo Frames
Data Type Direction Required? Default

Read Only No Disabled

Property Class

XNET Interface

ni.com234

NI-XNET 20.5

Short Name

Enet.JumboFrames

Description

Indicates the jumbo frame setting for the interface. Use NI-MAX or the System
Configuration XNET:Interface:Ethernet:Jumbo Frames property to change the
Jumbo Frames property.

The Jumbo Frames property is a ring (enumerated list) with the following values:

Enumeration Value Description
Disabled 0 Jumbo frames will not be receiv

ed on the monitor path. Jumbo
frames will not be transmitted o
r received on the OS stack path.

9018 Bytes 1 Jumbo frames up to 9018 bytes
can be received on the monitor
path. Jumbo frames up to 9018
bytes can be transmitted or rec
eived on the OS stack path.

Note The network interface must independently be configured for jumbo frames in the OS in
order to use jumbo frames through the OS stack.

Note Jumbo frames are not supported on the Endpoint path.

Interface:Ethernet:MAC Address
Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Interface

© National Instruments 235

NI-XNET 20.5

Short Name

Intf.Enet.MacAddr

Description

Indicates the MAC address that uniquely identifies the XNET Interface in the
network. This MAC address applies to the endpoint as well as the OS stack. The MAC
address is an individual (unicast) EUI-48 MAC address that is assigned to the
hardware according to the requirements of IEEE Std 802.

The MAC address is returned as a string of six octets. Each octet consists of two
hexadecimal (0-9, A-F) digits; the octets are separated by colon. For example, 00:80
:2F:AB:CD:EF.

Interface:Ethernet:Operational Status
Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.OpStat

Description

Indicates the operational status of the interface (that is, communicating or not). It is
a ring as described in the following table:

String Value Description
Down 0 The interface cannot transmit o

r receive frames (packets).
Up 1 The interface is ready to transm

it and receive frames (packets).

ni.com236

NI-XNET 20.5

This property corresponds to interface operational status as specified in IETF
management standards like RFC 2863 and RFC 8343.

Interface state
The XNET interface Communicating state behaves differently for Ethernet compared
to other XNET protocols, such as CAN. The OS stack provides a network interface,
and the operating system brings its network interface to communicating state ("link
up") at power on. The operating system keeps the interface in communicating state
until it is powered off. Therefore, the Ethernet interface is communicating at its
physical layer (PHY) before and after the existence of any XNET session.

XNET interface states have a limited context; they control the transfer of frames to/
from the XNET endpoint and monitor paths, but they do not control the actual
communicating state ("link up" or "link down") of the interface. The Operational
Status property returns the actual communicating state of the interface.

As a consequence of this state behavior, it is possible to enable the time sync
protocol prior to starting the XNET interface because the time sync protocol
operates independently from the endpoint and monitor paths (like the OS stack).

Read behavior
Although the link is up prior to XNET interface start, if a frame is received prior to the
initial XNET start and would normally be received by endpoint or monitor, XNET
Read will not return the frame.

The XNET Start VI discards all unread frames from the receive queue.

The XNET Stop VI has no effect on the receive queue, and link down/up events have
no effect on the receive queue. If frames are received but not read, and your
application stops the interface without restarting, XNET Read will return the
previously received frames.

All unread frames are discarded from the receive queue when the XNET session is
cleared.

© National Instruments 237

NI-XNET 20.5

Write behavior
When the XNET Stop VI is invoked, or when the link goes down, pending frames in
the XNET transmit queues are discarded.

XNET Write ignores the operational status of the link when the XNET interface is not
running. If you invoke XNET Write prior to starting the XNET interface, the frame is
queued regardless of the operational status. If the link is up when XNET Start VI is
invoked, those queued frames are transmitted. If the link is down when XNET Start is
invoked, those queued frames are discarded.

If you invoke XNET Write on a started XNET interface and the link is down, the frame
is not queued and an error is returned. After the link comes back up, when you
invoke XNET Write again, frames are queued for transmission (with no need to
restart the XNET interface).

You can use XNET Wait (Transmit Complete) to ensure that frames are transmitted
before you clear the XNET session.

Interface:Ethernet:OS Network Adapter Name
Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.OsAdapterName

Description

On NI-XNET Ethernet hardware, each port can be accessed as an XNET interface, or
using operating system (OS) APIs for Ethernet. The OS Network Adapter Name
property returns the name of the Ethernet interface for this XNET session as the
interface is represented in the OS.

ni.com238

NI-XNET 20.5

■ On Windows, this is the network adapter name.
■ On Linux, this is the network interface name.

This name is used in applications such as Wireshark.

Interface:Ethernet:OS Network Adapter
Description
Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.OsAdapterDesc

Description

On NI-XNET Ethernet hardware, each port can be accessed as an XNET interface, or
using operating system (OS) APIs for Ethernet. The OS Network Adapter Description
property returns the description of the Ethernet interface for this XNET session as
the interface is represented in the OS.

■ In NI MAX, this name is shown on the Network Settings tab for the system,
listed under Network Adapters.
■ On Windows, this is the network adapter description in network properties.
■ On Linux, this is the network interface name and is the same as the OS
Network Adapter Name property.

Interface:Ethernet:PHY State
Data Type Direction Required? Default

Read Only No N/A

© National Instruments 239

NI-XNET 20.5

Property Class

XNET Interface

Short Name

Intf.Enet.PhySt

Description

Indicates the master/slave state that the interface is using for the Ethernet PHY. This
property is configured using NI MAX or the System Configuration property PHY State
Configured. This property is a ring of values, as described in the following table:

String Value Description
Slave 0 Slave state as defined in IEEE St

d 802.3.
Master 1 Master state as defined in IEEE

Std 802.3.

Two PHYs that are physically connected must be configured to use opposing PHY
States. In other words, one PHY must be configured to be the Master, and the other
PHY must be configured to be the slave. In traditional Ethernet networks, this
master/slave state is negotiated automatically. However, in automotive Ethernet
networks such as IEEE 100BASE-T1, the master/slave state is configured statically
and is typically determined by the PHY State setting of the ECU that you are
connecting to.

Interface:Ethernet:Port Mode
Data Type Direction Required? Default

Read Only Yes Direct

Property Class

XNET Interface

ni.com240

NI-XNET 20.5

Short Name

Intf.Enet.PortMode

Description

Indicates the hardware connectivity for the port. This property is configured using
NI MAX or the System Configuration property PHY State Configured. This property
uses a ring (enumerated list) with the following values:

Enumeration Value Description
Direct 0 The port is directly connected; f

rames received and transmitted
on the port have no relationshi
p to any other port on the XNET
device. Input and output sessio
ns are supported in Direct mod
e.

Tap 1 This port is connected to anoth
er port on the XNET device usin
g a Tap, as shown in Using Ether
net. The pair of connected port
s are referred to as Tap partner
s. A frame received on one Tap
partner is immediately transmit
ted out the other Tap partner, t
o mimic behavior of an Etherne
t cable. When an input session i
s created using an XNET interfa
ce for either Tap partner, and th
e monitor suffix is used with the
XNET interface, the session rea
ds frames received on both Tap
partners. Output sessions are n
ot supported in Tap mode. Whe
n you set Tap on this port, the P
ort Mode of its Tap partner is au
tomatically set to Tap as well.

For the PXIe-8521, physical port numbers 1 and 2 are Tap partners, and physical port
numbers 3 and 4 are Tap partners. This property cannot be changed while an XNET

© National Instruments 241

NI-XNET 20.5

session is started on the port. When this property is changed and Save Changes is
invoked on the hardware resource, the link is brought down and back up in order to
configure the change.

Ethernet Statistics Properties
This category includes statistical counters for the session's Ethernet interface.

Counter Names and Counter Values properties each return an array of strings (both
same size), displaying all name/value pairs. Each string is returned separately so
that you can customize the display.

Receive (Rx) and Transmit (Tx) statistics (for example, see Rx Bytes) return more
specific statistics as unsigned long integers (U64 datatype).

When the Port Mode of the session interface is Direct, receive and transmit statistics
are relative to this interface. When the Port Mode is Tap, receive statistics refer to
this session's interface, and the values of all transmit statistics do not increment. (To
obtain statistics for frames received by the Tap partner, use a session with the Tap
partner interface.) Refer to Using Ethernet for more information about Direct and
Tap port modes.

When the description of a statistic refers to frame length, that length is measured
from the start of the destination MAC address to the last octet of the Frame Check
Sequence.

The statistics refer to good (error-free) frames and bad frames. On the endpoint path
(e.g., "ENET1"), only good frames are returned from XNET Read. On the monitor
path (e.g., "ENET1/monitor"), good and bad frames are returned from XNET Read.

These statistics are counted at the Media Access Control (MAC) layer. Therefore,
when Port Mode is Direct, the statistics apply to all receives frames, including those
forwarded to the OS stack as well as the XNET endpoint (see
Interface:Ethernet:Endpoint:Receive Filter). The number of good frames returned
from XNET Read might not match with the number of good frames counted by these
statistics.

Note All statistics are reset when the system powers up or the device is reset.

ni.com242

NI-XNET 20.5

List of Ethernet Statistics

The following table lists the name and description of each Ethernet statistic in this
version of NI-XNET. Some statistics in this table might not provide a named property
to obtain a single value, with the expectation that the statistic is only appropriate for
display purposes.

Name Description
Rx Bytes Count of the number of bytes (octets) received.

The count for each frame is its frame length. Ba
d frames are counted in addition to good frames
. Read this counter twice to obtain an estimate o
f received bandwidth over the time between the
two reads.
This statistic corresponds to etherStatsOct
ets as described in RFC 2819.

Rx Good Frames Count of error-free frames received. This count i
s equal to (Rx Good Unicast + Rx Good Multica
st + Rx Good Broadcast).

Rx Bad Frames Count of frames received with an error detected
by the Ethernet MAC and/or PHY.
This statistic corresponds to ifInErrors as d
escribed in RFC 2863.

Rx Good Unicast Count of error-free unicast frames received. A u
nicast frame contains a destination MAC addres
s with an I/G bit of 0 (individual address).
This statistic corresponds to ifHCInUcastPk
ts in RFC 2863.

Rx Good Multicast Count of error-free multicast frames received. A
multicast frame contains a destination MAC add
ress with an I/G bit of 1 (group address), and an
address that is not the all-stations broadcast ad
dress (all 1's).
This statistic corresponds to ifHCInMultica
stPkts in RFC 2863, and etherStatsMulti
castPkts in RFC 2819.

© National Instruments 243

NI-XNET 20.5

Rx Good Broadcast Count of error-free broadcast frames received. A
broadcast frame contains a destination MAC ad
dress with an I/G bit of 1 (group address), and us
es the all-stations broadcast address (all 1's).
This statistic corresponds to ifHCInBroadca
stPkts in RFC 2863, and etherStatsBroad
castPkts in RFC 2819.

Rx Good VLAN Tagged Count of error-free VLAN tagged frames received
. For information on VLAN tagged frames, refer t
o Interface:Ethernet:Endpoint:Receive Filter.

Rx Good Pause Frames Count of error-free PAUSE frames received. A PA
USE frame contains EtherType of 8808 hex (MAC
Control), and payload with an opcode of PAUSE.

Rx Good 64 Byte Frames Count of error-free frames received with a frame
length of exactly 64 bytes.
This statistic corresponds to etherStatsPkt
s64Octets as described in RFC 2819.

Rx Good 65 to 127 Byte Frames Count of error-free frames received with a frame
length between 65 and 127 bytes.
This statistic corresponds to etherStatsPkt
s65to127Octets as described in RFC 2819.

Rx Good 128 to 255 Byte Frames Count of error-free frames received with a frame
length between 128 and 255 bytes.
This statistic corresponds to etherStatsPkt
s128to255Octets as described in RFC 2819.

Rx Good 256 to 511 Byte Frames Count of error-free frames received with a frame
length between 256 and 511 bytes.
This statistic corresponds to etherStatsPkt
s256to511Octets as described in RFC 2819.

Rx Good 512 to 1023 Byte Frames Count of error-free frames received with a frame
length between 512 and 1023 bytes.
This statistic corresponds to etherStatsPkt
s512to1023Octets as described in RFC 281
9.

Rx Good 1024 to Max Byte Frames Count of error-free frames received with a frame
length between 1024 and the maximum specifie

ni.com244

NI-XNET 20.5

d by IEEE Std 802.3. For information on maximu
m frame length, refer to Read (Frame Ethernet).
This statistic corresponds to etherStatsPkt
s1024to1518Octets as described in RFC 28
19.

Rx Frame Check Sequence Errors Count of received frames that had a bad Frame
Check Sequence, and frame length is between 6
4 and the maximum specified by IEEE Std 802.3.
This statistic corresponds to etherStatsCRC
AlignErrors as described in RFC 2819.

Rx Undersize Frames Count of received frames that were fewer than 6
4 bytes in length, but otherwise well formed.
This statistic corresponds to etherStatsUnd
ersizePkts as described in RFC 2819.

Rx Fragment Frames Count of received frames that were fewer than 6
4 bytes in length, and had a bad Frame Check Se
quence.
This statistic corresponds to etherStatsFra
gments as described in RFC 2819.

Rx Oversize Frames Count of received frames that exceeded the max
imum frame length specified by IEEE Std 802.3.
For information on maximum frame length, refe
r to Read (Frame Ethernet).
This statistic corresponds to etherStatsOve
rsizePkts as described in RFC 2819.

Rx Invalid Opcode Count of frames received with EtherType of 880
8 hex (MAC Control), and payload with an opcod
e that was not PAUSE.

Tx Bytes Count of the number of bytes (octets) transmitt
ed. The count for each frame is its frame length.
Read this counter twice to obtain an estimate of
transmitted bandwidth over the time between t
he two reads.

Tx Good Frames Count of error-free frames transmitted. This cou
nt is equal to (Tx Good Unicast + Tx Good Multi
cast + Tx Good Broadcast).

© National Instruments 245

NI-XNET 20.5

Tx Good Unicast Count of error-free unicast frames transmitted.
A unicast frame contains a destination MAC addr
ess with an I/G bit of 0 (individual address).
This statistic corresponds to ifHCOutUcastP
kts in RFC 2863.

Tx Good Multicast Count of error-free multicast frames transmitted
. A multicast frame contains a destination MAC a
ddress with an I/G bit of 1 (group address), and
an address that is not the all-stations broadcast
address (all 1's).
This statistic corresponds to ifHCOutMultic
astPkts in RFC 2863.

Tx Good Broadcast Count of error-free broadcast frames transmitte
d. A broadcast frame contains a destination MAC
address with an I/G bit of 1 (group address), and
uses the all-stations broadcast address (all 1's).
This statistic corresponds to ifHCOutBroadc
astPkts in RFC 2863.

Tx Good VLAN Tagged Count of error-free VLAN tagged frames transmit
ted. For information on VLAN tagged frames, ref
er to Interface:Ethernet:Endpoint:Receive Filter.

Tx Good Pause Frames Count of error-free PAUSE frames transmitted. A
PAUSE frame contains EtherType of 8808 hex (M
AC Control), and payload with an opcode of PAU
SE.

Tx Good 64 Byte Frames Count of error-free frames transmitted with a fra
me length of exactly 64 bytes.

Tx Good 65-127 Byte Frames Count of error-free frames transmitted with a fra
me length between 65 and 127 bytes.

Tx Good 128-255 Byte Frames Count of error-free frames transmitted with a fra
me length between 128 and 255 bytes.

Tx Good 256-511 Byte Frames Count of error-free frames transmitted with a fra
me length between 256 and 511 bytes.

Tx Good 512-1023 Byte Frames Count of error-free frames transmitted with a fra
me length between 512 and 1023 bytes.

Tx Good 1024-Max Byte Frames Count of error-free frames transmitted with a fra
me length between 1024 and the maximum spe

ni.com246

NI-XNET 20.5

cified by IEEE Std 802.3. For information on max
imum frame length, refer to a Write (Frame Ethe
rnet).

Interface:Ethernet:Statistics:Counter Names

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.St.CtrNames

Description

This property returns the name of each Ethernet statistics property supported by
XNET. The name uses uppercase for the first letter of each word, with space as a
separator between words.

The name at a specific index corresponds to the counter at the same index in
Counter Values. The array of strings for this property is the same size as the Counter
Values array of strings.

The Counter Names and Counter Values properties are intended to be used together
to display all statistics on the front panel. These properties do not require
knowledge of specific property names. For example, if a new version of NI-XNET
adds a statistic property (to the end of the arrays), the new property will display
without change to your LabVIEW application.

Statistics are grouped as receive (rx) and transmit (tx).

When the Port Mode of the session's interface is set to Direct, receive and transmit
are relative to that interface.

When the Port Mode is set to Tap, receive statistics refer to this session's interface,
and all transmit statistics are zero. If you want to get statistics for frames received by
the Tap partner, use a session with the Tap partner's interface.

© National Instruments 247

NI-XNET 20.5

All statistics reset to zero when the system powers up or the device is reset.
Interface:Ethernet:Statistics:Counter Values

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.St.CtrValues

Description

This property returns the counter value of each Ethernet statistics property
supported by XNET. Each counter value is returned as a string for display, but the
internal counter uses a 64-bit unsigned integer (U64) data type to avoid rollover. The
counter resets to zero when the system powers up or the device is reset, and
increments according to the description in Counter Names.

The counter value at a specific index corresponds to the name at the same index in
Counter Names. The array of strings for this property is the same size as the Counter
Names array of strings. Refer to Counter Names for a description of each counter
value.

The array of counters are not provided as a single snapshot in time. For example, it
is possible that a new frame is received as the values are returned, such that index 3
does not count the new frame, and index 4 does count the new frame.
Interface:Ethernet:Statistics:Rx Bytes Count

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

ni.com248

NI-XNET 20.5

Short Name

Intf.Enet.St.RxBytes

Description

This is a count of the number of bytes (octets) received. The count for each frame is
its frame length. Bad frames are counted in addition to good frames. Reading this
counter twice can be used to obtain an estimate of received bandwidth over the
time between the two reads.

This statistic is analogous to the etherStatsOctets parameter as described in RFC
2819.
Interface:Ethernet:Statistics:Rx Good Frames
Count

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.St.RxGood

Description

This is a count of error-free frames received. This count is equal to (Rx Good Unicast
+ Rx Good Multicast + Rx Good Broadcast).
Interface:Ethernet:Statistics:Rx Bad Frames
Count

Data Type Direction Required? Default
Read Only No N/A

© National Instruments 249

NI-XNET 20.5

Property Class

XNET Interface

Short Name

Intf.Enet.St.RxBad

Description

This is a count of frames received with an error detected by the Ethernet MAC and/or
PHY. This statistic is analogous to the ifInErrors parameter as described in RFC 2863.
Interface:Ethernet:Statistics:Tx Bytes Count

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.St.TxBytes

Description

This is a count of the number of bytes (octets) transmitted. The count for each frame
is its frame length. Reading this counter twice can be used to obtain an estimate of
transmitted bandwidth over the time between the two reads.
Interface:Ethernet:Statistics:Tx Good Frames
Count

Data Type Direction Required? Default
Read Only No N/A

ni.com250

NI-XNET 20.5

Property Class

XNET Interface

Short Name

Intf.Enet.St.TxGood

Description

This is a count of error-free frames transmitted. This count is equal to (Tx Good
Unicast + Tx Good Multicast + Tx Good Broadcast).

Ethernet Endpoint Properties
This category includes properties related to the endpoint path of the session's
Ethernet interface, as described in Using Ethernet.
Interface:Ethernet:Endpoint:Receive Filter

Data Type Direction Required? Default
Read/Write No Refer to Description

Property Class

XNET Interface

Short Name

Intf.Enet.Ept.RxFilter

Description

Each frame that is received by the interface is forwarded to either the XNET
endpoint or the OS stack (not both). The Receive Filter property configures zero,
one, or two identification elements (filters) for this forwarding decision.

The following C language pseudo-code describes how XNET forwards each received
frame to either the XNET endpoint or the OS stack:

© National Instruments 251

NI-XNET 20.5

 // TRUE forwards to XNET endpoint, FALSE forwards to OS stack
Boolean forwardFrameToEndpoint = FALSE;
for (int i = 0; i < 2; i++)
{
 boolean endpointMatch =
 (RxFilter[i].useVID || RxFilter[i].usePriority ||
RxFilter[i].useDestinationMAC);

 if (RxFilter[i].useVID && (RxFilter[i].VID != frameVID)
 endpointMatch = FALSE;

 if (RxFilter[i].usePriority && (RxFilter[i].Priority != framePriority))
 endpointMatch = FALSE;

 if (RxFilter[i].useDestinationMAC && (RxFilter[i].DestinationMAC !=
frameDestinationMAC))
 endpointMatch = FALSE;

 // Only one element must match in order to forward to XNET endpoint.
 forwardFrameToEndpoint = forwardFrameToEndpoint || endpointMatch;
}

The default value is:

RxFilter[0].UseVID = TRUE, RxFilter[0].VID = 2,
RxFilter[0].UsePriority = TRUE, RxFilter[0].Priority = 3,
RxFilter[0].UseDestinationMAC = FALSE,
RxFilter[1].UseVID = TRUE, RxFilter[1].VID = 2,
RxFilter[1]UsePriority = TRUE, RxFilter[1].Priority = 2,
RxFilter[1].UseDestinationMAC = FALSE

This default value corresponds to AVB traffic (SR class A and B) using the defaults
specified for the credit-based shaper in IEEE Std 802.1Q.

If an XNET input session is not started for the interface's endpoint (e.g., Frame Input
Stream session on "ENET1"), all frames are forwarded to the OS stack. As described
in Using Ethernet, an XNET input session for the interface's monitor (e.g., Frame
Input Stream session on "ENET1/monitor") receives all frames regardless of the
value of this property.

ni.com252

NI-XNET 20.5

If you write this property with fewer than two elements, the missing element is
configured with all three "use" flags set to false. For example, if you write zero
elements (an empty array), all traffic is forwarded to the OS stack.

IEEE Std 802.1Q specifies that VLAN ID (VID) and destination MAC address can be
used for forwarding decisions. The VID is typically used for a type of traffic, and
destination MAC address is used for a specific stream (flow). The Priority Code Point
(PCP) determines how the frame travels through transmit queues in the network.
The PCP is commonly known as priority.

The data type for VID is U16. Each VID value ranges from 1 to 4094. The VID in this
property applies only to a tagged frame. The tagged frame must use a Tag Protocol
Identification (TPID) of hex 8100, which is the Customer VLAN Tag (C-TAG) format
commonly known as a VLAN tag. This property's VID value is compared to the VID
value in the Tag Control Info of the frame. An untagged frame has an implicit VID of
1, but if this property's UseVID is true and VID is 1, the untagged frame forwards to
the OS stack.

The data type for priority is U8. Each priority value ranges from 0 to 7. The priority in
this property applies only to a tagged frame. The tagged frame must use a Tag
Protocol Identification (TPID) of hex 8100, which is the Customer VLAN Tag (C-TAG)
format commonly known as a VLAN tag. This property's priority value is compared
to the Priority Code Point (PCP) value in the Tag Control Info of the frame. An
untagged frame has an implicit priority of 0, but if this property's UsePriority is true
and Priority is 0, the untagged frame forwards to the OS stack.

The destination MAC address is a string of six octets. Each octet consists of two
hexadecimal (0-9, A-F) digits. The octets are separated by colon. For example:
00:80:2F:AB:CD:EF.
Interface:Ethernet:Endpoint:Transmit
Bandwidth

Data Type Direction Required? Default
Read/Write No Refer to Description

© National Instruments 253

NI-XNET 20.5

Property Class

XNET Interface

Short Name

Intf.Enet.Ept.TxBandw

Description

This property configures the maximum bandwidth for the credit-based shaper
algorithm specified in IEEE Std 802.1Q, which is used for all transmissions from the
endpoint. The value is in units of bits per second.

This property applies when you call XNET Write (Frame Ethernet) to transmit frames
using an endpoint session. The endpoint is the highest importance for transmit, and
the OS stack is lower importance. This property corresponds to the adminIdleSlope
parameter as described in IEEE Std 802.1Q. The default value corresponds to 75% of
the default link speed. On devices that support multiple link speeds, the Transmit
Bandwidth will be coerced to the closest valid value when the link speed changes to
a speed less than the Transmit Bandwidth.

Ethernet Time Sync Properties
This category includes properties for the time synchronization protocol (IEEE Std
802.1AS) that operates on the XNET Interface. XNET refers to the synchronized time
on the network as network time.

XNET uses the generic term clock for a distinct instance of the protocol that keeps
synchronized time. You can think of the clock as representing the software (code)
that is running in order to implement the protocol. IEEE Std 802.1AS refers to clock
as a time-aware system.

XNET uses the generic term port to reference the physical port that exchanges
protocol messages to synchronize time. Each clock contains one or more ports. In
XNET, there is a one-to-one relationship between a time sync port and an XNET
Interface. In IEEE Std 802.1AS-2011, a time-aware end station is a clock with one
port, and a time-aware bridge is a clock with two or more ports. An Ordinary Clock

ni.com254

NI-XNET 20.5

in IEEE Std 1588-2008 is a clock with one port, and a Boundary Clock is a clock with
two or more ports.

XNET uses the the term grandmaster to refer to the clock in the network that acts
as the source of time for other clocks in the network. A clock that receives time from
the grandmaster is a slave clock.

In the XNET Session, properties listed directly in the Time Sync category apply to
the clock in the protocol. Properties listed in the Time Sync»Port category apply to
a specific port of the clock, and the port corresponds to the current XNET Interface
of the session.

By default, each XNET interface uses a distinct clock, and therefore the Time Sync

properties and Time Sync»Port properties apply to the same entity. For example,
for a 4-port Ethernet card using time synchronization protocol, each physical port
runs as a time-aware end station by default, and the ports are unrelated to one
another.
Interface:Ethernet:Time Sync:Protocol

Data Type Direction Required? Default
Read/Write No IEEE Std 802.1AS-2011 (0)

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Prot

Description

This property configures the time synchronization protocol that the clock is using.
This protocol is indicated in all time sync messages that are transmitted by the
session's interface (port). This property uses a ring (enumerated list) with the
following values:

Enumeration Value Description

© National Instruments 255

NI-XNET 20.5

IEEE Std 802.1AS-2011 0 IEEE Standard 802.1AS-2011: Ti
ming and Synchronization for T
ime-Sensitive Applications in Br
idged Local Area Networks.

Note This property currently supports only one protocol; in future releases, it may be
expanded to support additional protocols.

Interface:Ethernet:Time Sync:Protocol Enabled?

Data Type Direction Required? Default
Read/Write No False

Property Class

XNET Interface

Short Name

Intf.Enet.Time.ProtEn?

Description

This property enables (runs) or disables the time synchronization protocol:

■ When this property is true, the protocol transmits and receives messages in
order to synchronize time with its neighboring ports.
■ When this property is false, the protocol does not transmit messages, and
messages received for the protocol are ignored.

This property must be written to false prior to changing the value of the Protocol
property. All other writable Time Sync properties can be changed while this
property is true.

The Protocol Enabled? property is created only when at least one XNET Session
exists on the Ethernet interface; therefore, this property is effectively false when no
XNET Session is created. The time synchronization protocol does not run outside the
context of XNET sessions.

ni.com256

NI-XNET 20.5

This property is not associated with the state of input/output on the session (see
State Models). It is possible to enable the time synchronization protocol prior to
starting the session (e.g., to wait for Synced to equal true prior to timestamping
received frames). It is also possible to start the session with the time
synchronization protocol disabled, in which case frames from Read (Frame
Ethernet) contain a network synced? flag of false.

For the Protocol of IEEE Std 802.1AS-2011, a property value of true
corresponds to running the clock's protocol, as described in 7.4 of IEEE Std
802.1AS-2011. A property value of true does not necessarily indicate that time is
synchronized with the neighboring port. The AS Capable property is used to
determine if the neighboring port is running 802.1AS.
Interface:Ethernet:Time Sync:BMCA Enabled?

Data Type Direction Required? Default
Read/Write No True

Property Class

XNET Interface

Short Name

Intf.Enet.Time.BMCA

Description

Enables (runs) the Best Master Clock Algorithm (BMCA) of the time synchronization
Protocol. The BMCA dynamically exchanges messages over the network to select the
best grandmaster in the network, and to change all port states in order to transfer
timing messages from the selected grandmaster to slaves.

When this property is true, Protocol runs the BMCA. The Port State property is
determined from operation of the BMCA. The XNET interface is capable of acting as a
grandmaster. Therefore, the BMCA can set the Port State property to Slave (i.e.,
XNET interface receives time) or Master (XNET interface sends time). The Port State
Configured property is not used while the BMCA is enabled. The BMCA uses the

© National Instruments 257

NI-XNET 20.5

following properties in order for its selection of grandmaster (with exceptions for
topology):

■ Priority1
■ Clock Class
■ Clock Accuracy
■ Clock Offset Scaled Log Variance
■ Priority2
■ Clock ID

When this property is false, the BMCA is not operational. The false value is useful for
in-vehicle applications in which the topology for time synchronization is considered
to be part of the vehicle's static design. The Port State Configured property must be
written in order to specify the Master or Slave state for the port. The read-only Port
State property reflects Port State Configured.

This property becomes read only when a port is in Tap mode.
Interface:Ethernet:Time Sync:Offset From Master

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.OffMaster

Description

This property provides the positive or negative offset in time between this clock and
the grandmaster. Offset From Master can be used to determine when this XNET
interface is sufficiently synchronized to the grandmaster in order to continue.

ni.com258

NI-XNET 20.5

The time synchronization protocol specifies that this offset is received by a slave
port, and that offset is used to compute the offset that transmits on a master port to
the next clock in the network. Technically, the offset is relative to the previous
master port (i.e., nearest neighbor); but practically, the offset is relative to the
grandmaster. This offset does not account for clock inaccuracies in the
communication path from grandmaster to slave (e.g., switches).

When Port State is Master, this XNET interface acts as grandmaster, and therefore
this property returns 0.0.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
offsetFromMaster parameter as described in 14.3.2 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Clock ID

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.ClkID

Description

This property uniquely identifies the clock in the network.

The Clock ID is formed by taking the MAC address assigned to the clock and
mapping it to an array of eight bytes, according to rules in the IEEE Std 802 EUI-48
standard. The best master clock algorithm (BMCA) uses this property as a tie-
breaker among clocks that would otherwise be equal.

The Clock ID is returned as a string of eight octets. Each octet consists of two
hexadecimal (0-9, A-F) digits. The octets are separated by colon. For example,
00:80:2F:AB:CD:EF:00:01

© National Instruments 259

NI-XNET 20.5

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
clockIdentity parameter as described in 14.2.1 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Clock Class

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.ClkCls

Description

This property provides the traceability of time or frequency distributed by the clock
when it is the grandmaster.The value for this property is an integer.

Integer Clock Class Specification

6 The clock is synchronized to a primary time refe
rence. The distributed timescale is PTP. A clock i
n this class cannot be a slave to another clock in
the domain.

7 The clock has previously been designated as Clo
ck Class 6, but has lost the ability to synchronize
to a primary time reference. A clock in this class
is in holdover mode and operates within holdov
er specifications. The distributed timescale is PT
P. A clock in this class cannot be a slave to anoth
er clock in the domain.

13 The clock is synchronized to an application-spe
cific time source. The distributed timescale is AR
B. A clock in this class cannot be a slave to anot
her clock in the domain.

14 The clock has previously been designated as Clo
ck Class 13, but has lost the ability to synchroniz
e to an application-specific time source. A clock

ni.com260

NI-XNET 20.5

in this class is in holdover mode and operates w
ithin holdover specifications. The distributed ti
mescale is ARB. A clock in this class cannot be a
slave to another clock in the domain.

52 The clock is degradation alternative A for a Cloc
k Class 7 clock that is not within holdover specif
ication. A clock in this class cannot be a slave to
another clock in the domain.

58 The clock is degradation alternative A for a Cloc
k Class 14 clock that is not within holdover speci
fication. A clock in this class cannot be a slave to
another clock in the domain.

68—122 The clock uses an alternate PTP profile.
133—170 The clock uses an alternate PTP profile.
187 The clock is degradation alternative B for a Cloc

k Class 7 clock that is not within holdover specif
ication. A clock in this class can be a slave to an
other clock in the domain.

193 The clock is degradation alternative B for a Cloc
k Class 14 clock that is not within holdover speci
fication. A clock of this class can be a slave to an
other clock in the domain.

216—232 The clock uses an alternate PTP profile.
248 The default Clock Class. This class is used if non

e of the other class definitions apply.
255 The clock is a slave-only clock.

The best master clock algorithm (BMCA) uses this property in its comparison of
clock quality.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
clockClass parameter as described in 14.2.3 of IEEE Std 802.1AS-2011, which in turn
references 7.6.2.4 of IEEE Std 1588-2008, which describes the clock class
specification.
Interface:Ethernet:Time Sync:Clock Accuracy

Data Type Direction Required? Default
Read Only No N/A

© National Instruments 261

NI-XNET 20.5

Property Class

XNET Interface

Short Name

Intf.Enet.Time.ClkAccy

Description

This property provides the accuracy of the hardware clock (e.g., oscillator)
distributed by the clock when it is the grandmaster. This property uses a ring
(enumerated list) with the following values:

Enumeration Value Description
Within25nsec 32 Time is accurate to within 25 ns
Within100nsec 33 Time is accurate to within 100 n

s
Within250nsec 34 Time is accurate to within 250 n

s
Within1usec 35 Time is accurate to within 1 µs
Within2500nsec 36 Time is accurate to within 2500

ns
Within10usec 37 Time is accurate to within 10 µs
Within25usec 38 Time is accurate to within 25 µs
Within100usec 39 Time is accurate to within 100 µ

s
Within250usec 40 Time is accurate to within 250 µ

s
Within1msec 41 Time is accurate to within 1 ms
Within2500usec 42 Time is accurate to within 2500

µs
Within10msec 43 Time is accurate to within 10 m

s
Within25msec 44 Time is accurate to within 25 m

s

ni.com262

NI-XNET 20.5

Within100msec 45 Time is accurate to within 100
ms

Within250msec 46 Time is accurate to within 250
ms

Within1sec 47 Time is accurate to within 1 s
Within10sec 48 Time is accurate to within 10 s
GreaterThan10sec 49 Time accuracy is greater than 1

0 s
Unknown 254 Clock is not synchronized

The best master clock algorithm (BMCA) uses this property in its comparison of
clock quality.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
clockAccuracy parameter as described in 14.2.4 of IEEE Std 802.1AS-2011, which in
turn references 7.6.2.5 of IEEE Std 1588-2008, which describes clock accuracy values.
Interface:Ethernet:Time Sync:Clock Offset Scaled
Log Variance

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.ClkOffVar

Description

This property provides an estimate of the precision of the timestamping that the
clock uses for the protocol. This estimate depends on the stability of the hardware
clock (e.g., oscillator), as well as any error introduced in the timestamping process.
The estimate is a second-order statistic on the variation of the frequency of the
hardware clock. Valid values range from 0 to 65535.

© National Instruments 263

NI-XNET 20.5

The best master clock algorithm (BMCA) uses this property in its comparison of
clock quality.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
offsetScaledLogVariance attribute, specified in 14.2.5 of IEEE Std 802.1AS-2011,
which in turn references 7.6.3 of IEEE Std 1588-2008.
Interface:Ethernet:Time Sync:Priority1

Data Type Direction Required? Default
Read/Write No 246

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Pri1

Description

The best master clock algorithm (BMCA) uses this property as the first comparison
to determine the grandmaster. Lower values take precedence. Valid values range
from 0 to 255. The value 255 specifies that the clock is not grandmaster-capable
(slave only). For example, if you write this property to zero, and all other clocks in
the network have a Priority1 greater than zero, this clock is likely to be selected as
grandmaster.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
priority1 attribute, specified in 14.2.6 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Priority2

Data Type Direction Required? Default
Read/Write No 248

Property Class

XNET Interface

ni.com264

NI-XNET 20.5

Short Name

Intf.Enet.Time.Pri2

Description

The best master clock algorithm (BMCA) uses this property as a secondary
comparison, after comparing the properties for clock quality, and before using Clock
ID as a tie-breaker. Lower values take precedence. Valid values range from 0 to 255.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
priority2 attribute, specified in 14.2.7 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Steps to
Grandmaster

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.StepsGM

Description

This property provides the number of steps that this clock is removed from the
grandmaster. For example, if there is a single Ethernet cable that connects this clock
to the grandmaster, this property returns the value 1.

The best master clock algorithm (BMCA) uses this property for topology analysis. If
two potentially equal grandmasters provide the same timescale, the BMCA can
select the one that is closer, with the rationale that each step has an adverse effect
on accuracy.

© National Instruments 265

NI-XNET 20.5

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
stepsRemoved attribute, specified in 14.3.1 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Grandmaster Clock
ID

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.GMClkID

Description

This property provides the Clock ID of the currently selected grandmaster for this
clock.

The Grandmaster Clock ID is returned as a string of eight octets. Each octet consists
of two hexadecimal (0-9, A-F) digits. The octets are separated by colon. For example,
00:80:2F:AB:CD:EF:00:12.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
grandmasterIdentity attribute, specified in 14.4.3 of IEEE Std 802.1AS-2011. This
property also uses the gmPresent Boolean specified in 10.2.3.13 of IEEE Std
802.1AS-2011. If gmPresent is true, this property returns the Clock ID of the
grandmaster. If gmPresent is false, this property returns the Clock ID of the XNET
Interface. If grandmaster information has not been received (e.g., Protocol Enabled
is false, or BMCA is disabled and the slave does not receive announce messages),
this property returns the invalid value of all zeroes.

ni.com266

NI-XNET 20.5

Interface:Ethernet:Time Sync:Grandmaster Clock
Class

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.GMClkCls

Description

This property provides the Clock Class of the currently selected grandmaster for this
clock.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to
grandmasterClockClass, specified in 14.4.4 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Grandmaster Clock
Accuracy

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.GMClkAccy

© National Instruments 267

NI-XNET 20.5

Description

This property provides the Clock Accuracy of the currently selected grandmaster for
this clock.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
grandmasterClockAccuracy attribute, specified in 14.4.5 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Grandmaster Clock
Offset Scaled Log Variance

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.GMClkOffVar

Description

This property provides the Clock Offset Scaled Log Variance of the currently selected
grandmaster for this clock.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
grandmasterOffsetScaledLogVariance attribute, specified in 14.4.6 of IEEE Std
802.1AS-2011.
Interface:Ethernet:Time Sync:Grandmaster
Priority1

Data Type Direction Required? Default
Read Only No N/A

ni.com268

NI-XNET 20.5

Property Class

XNET Interface

Short Name

Intf.Enet.Time.GMPri1

Description

This property provides the Priority1 of the currently selected grandmaster for this
clock.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
grandmasterPriority1 attribute, specified in 14.4.7 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Grandmaster
Priority2

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.GMPri2

Description

This property provides the Priority2 of the currently selected grandmaster for this
clock.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
grandmasterPriority2 attribute, specified in 14.4.8 of IEEE Std 802.1AS-2011.

© National Instruments 269

NI-XNET 20.5

Interface:Ethernet:Time Sync:Adjust Network
Time

Data Type Direction Required? Default
Write Only No 0

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Adjust

Description

When this clock is the grandmaster (that is, the Grandmaster Clock ID equals the
Clock ID), a write of this property applies a positive or negative adjustment to the
time distributed to the network. This can be used to align network time with
another timescale.

When this clock is a slave (not the grandmaster), a write of this property has no
effect (error returned); the adjustment will be overridden when time is received
from the grandmaster.

This property corresponds to the lastGmPhaseChange parameter of the
ClockSourceTime.invoke function, specified in the IEEE Std 802.1AS-2011.
Time Sync Port Properties
This category includes port properties for the session's Ethernet interface on which
time synchronization protocol (IEEE Std 802.1AS) is operating. For more
information, refer to Ethernet Time Sync Properties.

ni.com270

NI-XNET 20.5

Interface:Ethernet:Time Sync:Port:Port State
Configured

Data Type Direction Required? Default
Read/Write No Slave

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.PortStConf

Description

This property configures the Port State when BMCA Enabled? is false. Valid values
are Master and Slave. If BMCA Enabled? is true, the value in this property is
ignored.

This property becomes read only when a port is in Tap mode.
Interface:Ethernet:Time Sync:Port:Port State

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.PortSt

© National Instruments 271

NI-XNET 20.5

Description

Provides the current state of the port. This property uses a ring (enumerated list)
with the following values:

Enumeration Value Description
Disabled 3 The protocol is disabled on the

port. No protocol messages are
transmitted in this state. The po
rt discards received messages f
or the protocol. The port is in th
is state when Protocol Enabled?
is false.

Master 6 Port is sending time. If the clock
has only one port, the port is ac
ting as grandmaster.

Passive 7 Port is exchanging messages to
measure Propagation Delay but
is not sending time (Master) or r
eceiving time (Slave).

Slave 9 Port is receiving time. In IEEE St
d 802.1AS, the port is not neces
sarily synchronized (calibrated)
. In IEEE Std 1588, the port is as
sumed to be synchronized.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
portRole parameter, specified in 14.6.3 of IEEE Std 802.1AS-2011, which in turn
references 8.2.5.3.1 of IEEE Std 1588-2008. The only valid values for IEEE Std
802.1AS-2011 are Disabled, Master, Slave, and Passive.
Interface:Ethernet:Time Sync:Port:Propagation
Delay

Data Type Direction Required? Default
Read Only No N/A

ni.com272

NI-XNET 20.5

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.PropDly

Description

This property provides the propagation delay for the Ethernet cable between this
clock and its neighboring clock. Propagation delay is the time it takes for a single bit
to travel along the wire (i.e., PHY to PHY). Propagation delay is a fundamental
measurement that is required for time synchronization.

This property uses a double-precision floating-point, and the value is provided in
seconds, which is typically used in LabVIEW for relative times. To convert the value
to nanoseconds, multiply this property value by 1,000,000,000.

The propagation speed for copper wires is close to 2 * 10^8 meters/second
(5 nanoseconds/meter). Therefore, multiplying this property value by 200,000,000
provides a close approximation of the cable length in meters. For example,
800 nanoseconds of propagation delay occurs with approximately 160 meters of
copper cable.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
neighborPropDelay attribute, specified in 14.6.7 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Port:Propagation
Delay Configured

Data Type Direction Required? Default
Read/Write No 0

Property Class

XNET Interface

© National Instruments 273

NI-XNET 20.5

Short Name

Intf.Enet.Time.Port.PropDlyConf

Description

Configures the Propagation Delay when Pdelay Enabled? is false. If Pdelay Enabled?
is true, the value in this property is ignored.
Interface:Ethernet:Time Sync:Port:Propagation
Delay Threshold

Data Type Direction Required? Default
Read/Write No 0.0000008 (800 ns)

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.PropDlyTh

Description

For IEEE Std 802.1AS, if the Propagation Delay exceeds the threshold in this
property, the protocol assumes that a switch or router that is not 802.1AS-capable
exists between this clock and the neighboring 802.1AS-capable clock. The resulting
asymmetries would have an adverse effect on time synchronization accuracy, so
this port sets AS Capable? to false. If Pdelay Enabled? is false, this property is
ignored.

This property uses a double-precision floating-point, and the value is provided in
seconds, which is typically used in LabVIEW for relative times. To convert the value
to nanoseconds, multiply this property value by 1000000000 (for read).

The propagation speed for copper wires is close to 2 * 10^8 meters/second
(5 nanoseconds/meter). Therefore, multiplying this property value by 200000000
provides a close approximation of the cable length in meters. For example,

ni.com274

NI-XNET 20.5

800 nanoseconds of propagation delay occurs with approximately 160 meters of
copper cable.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
neighborPropDelayThresh parameter, specified in 14.6.8 of IEEE Std 802.1AS-2011.
The default value is specified in IEEE Std 802.1AS-2011/Cor1-2013.

This property becomes read only when a port is in Tap mode.
Interface:Ethernet:Time Sync:Port:Pdelay
Enabled?

Data Type Direction Required? Default
Read/Write No True

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.Pdly?

Description

Enables the exchange of Pdelay (peer-to-peer delay) messages, as a means of
measuring Propagation Delay.

When this property is true, the port transmits Pdelay request messages
(Pdelay_Req) to the neighboring clock and processes received Pdelay response
messages (Pdelay_Resp). The port also processes received Pdelay request messages
and transmits Pdelay response messages. The Propagation Delay is measured using
this message exchange. The Propagation Delay Configured property is not used
while Pdelay is enabled.

When this property is false, Pdelay messages are not transmitted, and received
Pdelay messages are ignored. The false value is useful for in-vehicle applications in
which the topology for time synchronization is considered to be part of the vehicle's
static design. The Propagation Delay Configured property must be used in order to

© National Instruments 275

NI-XNET 20.5

specify the propagation delay for the port. The read-only Propagation Delay
property reflects Propagation Delay Configured.

For the Protocol of IEEE Std 802.1AS-2011, a property value of true
corresponds to propagation delay measurement as described in 11.1.2 of IEEE Std
802.1AS-2011. A property value of false is not specified in IEEE Std 802.1AS-2011.
Behavior analogous to a property value of false is specified for 802.1AS as part of
the AUTOSAR Specification of Time Synchronization over Ethernet, and the Avnu
Automotive Ethernet AVB Functional and Interoperability Specification.
Interface:Ethernet:Time Sync:Port:Log
Pdelay_Req Interval Configured

Data Type Direction Required? Default
Read/Write No 1 second (0)

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.PdlyIntvlConf

Description

If Pdelay Enabled? is true, this property configures the interval between successive
transmissions of the Pdelay_Req message by this port.

According to the standards, a message transmission interval is a signed integer in
the range -128 to 127, represented as the logarithm to the base 2 of the time interval
measured in seconds. For example, value 0 is 1 second, and value -3 is 125
milliseconds. In LabVIEW, the interval is provided as a ring (enumerated list) for
usability:

Enumeration Value Description
125 milliseconds -3 Message transmission interval

of 125 milliseconds.

ni.com276

NI-XNET 20.5

250 milliseconds -2 Message transmission interval
of 250 milliseconds.

500 milliseconds -1 Message transmission interval
of 500 milliseconds. This value i
s supported on all NI products.

1 second 0 Message transmission interval
of 1 second. This value is suppo
rted on all NI products.

2 seconds 1 Message transmission interval
of 2 second. This value is suppo
rted on all NI products.

The LabVIEW ring is limited to values that are practical in implementation, but not
all values are supported for all NI products. All NI products support the values listed
as such in the table.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
initialLogPdelayReqInterval parameter as described in 14.6.18 of IEEE Std
802.1AS-2011. The initialLogPdelayReqInterval parameter is used for the initial
transmit interval of Pdelay_Req, but afterward the interval can only be changed by
receiving a special Signaling message from the neighboring clock (see 10.5.4.3 of
IEEE Std 802.1AS-2011). The Signaling message is optional, and if not used in the
network, this property configures the interval exclusively.

This property becomes read only when a port is in Tap mode.
Interface:Ethernet:Time Sync:Port:Log
Pdelay_Req Interval

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.PdlyIntvl

© National Instruments 277

NI-XNET 20.5

Description

If Pdelay Enabled? is true, this property provides the current interval used for
successive transmissions of the Pdelay_Req message by this port.

According to the standards, a message transmission interval is a signed integer in
the range -128 to 127, represented as the logarithm to the base 2 of the time interval
measured in seconds. For example, value 0 is 1 second, and value -3 is 125
milliseconds. In LabVIEW, the interval is provided as a ring (enumerated list) for
usability:

Enumeration Value Description
125 milliseconds -3 Message transmission interval

of 125 milliseconds.
250 milliseconds -2 Message transmission interval

of 250 milliseconds.
500 milliseconds -1 Message transmission interval

of 500 milliseconds. This value i
s supported on all NI products.

1 second 0 Message transmission interval
of 1 second. This value is suppo
rted on all NI products.

2 seconds 1 Message transmission interval
of 2 second. This value is suppo
rted on all NI products.

The LabVIEW ring is limited to values that are practical in implementation, but not
all values are supported for all NI products. All NI products support the values listed
as such in the table.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
currentLogPdelayReqInterval parameter as described in 14.6.19 of IEEE Std
802.1AS-2011. If the optional Signaling message is used in the network, the
currentLogPdelayReqInterval parameter can be different from its initial value (see
Log Pdelay_Req Interval Configured).

ni.com278

NI-XNET 20.5

Interface:Ethernet:Time Sync:Port:Log Sync
Interval Configured

Data Type Direction Required? Default
Read/Write No 125 milliseconds (-3)

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.SyncIntvlConf

Description

If Port State is Master, this property configures the interval between successive
transmissions of the sync message by this port.

According to the standards, a message transmission interval is a signed integer in
the range -128 to 127, represented as the logarithm to the base 2 of the time interval
measured in seconds. For example, value 0 is 1 second, and value -3 is 125
milliseconds. In LabVIEW, the interval is provided as a ring (enumerated list) for
usability:

Enumeration Value Description
125 milliseconds -3 Message transmission interval

of 125 milliseconds.
250 milliseconds -2 Message transmission interval

of 250 milliseconds.
500 milliseconds -1 Message transmission interval

of 500 milliseconds. This value i
s supported on all NI products.

1 second 0 Message transmission interval
of 1 second. This value is suppo
rted on all NI products.

© National Instruments 279

NI-XNET 20.5

2 seconds 1 Message transmission interval
of 2 second. This value is suppo
rted on all NI products.

The LabVIEW ring is limited to values that are practical in implementation, but not
all values are supported for all NI products. All NI products support the values listed
as such in the table.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
initialLogSyncInterval parameter as described in 14.6.14 of IEEE Std 802.1AS-2011.
The initialLogSyncInterval parameter is used for the initial transmit interval of
Synch, but afterward the interval can only be changed by receiving a special
Signaling message from the neighboring clock (see 10.5.4.3 of IEEE Std
802.1AS-2011). The Signaling message is optional, and if not used in the network,
this property configures the interval exclusively.
Interface:Ethernet:Time Sync:Port:Log Sync
Interval

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.SyncIntvl

Description

If Port State is Master, this property provides the current interval used for successive
transmissions of the sync message by this port.

According to the standards, a message transmission interval is a signed integer in
the range -128 to 127, represented as the logarithm to the base 2 of the time interval
measured in seconds. For example, value 0 is 1 second, and value -3 is 125

ni.com280

NI-XNET 20.5

milliseconds. In LabVIEW, the interval is provided as a ring (enumerated list) for
usability:

Enumeration Value Description
125 milliseconds -3 Message transmission interval

of 125 milliseconds.
250 milliseconds -2 Message transmission interval

of 250 milliseconds.
500 milliseconds -1 Message transmission interval

of 500 milliseconds. This value i
s supported on all NI products.

1 second 0 Message transmission interval
of 1 second. This value is suppo
rted on all NI products.

2 seconds 1 Message transmission interval
of 2 second. This value is suppo
rted on all NI products.

The LabVIEW ring is limited to values that are practical in implementation, but not
all values are supported for all NI products. All NI products support the values listed
as such in the table.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
currentLogSyncInterval parameter as described in 14.6.15 of IEEE Std 802.1AS-2011.
If the optional Signaling message is used in the network, the currentLogSyncInterval
parameter can be different from its initial value (see Log Sync Interval Configured).
Interface:Ethernet:Time Sync:Port:Sync Receipt
Timeout

Data Type Direction Required? Default
Read/Write No 3

Property Class

XNET Interface

© National Instruments 281

NI-XNET 20.5

Short Name

Intf.Enet.Time.Port.SyncTmout

Description

If Port State is Slave, this property configures the number of sync intervals (see Log
Sync Interval) to wait without receiving a sync message before assuming that the
neighboring Master is no longer available and that the best master clock algorithm
(BMCA) needs to run, if enabled.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
syncReceiptTimeout parameter as described in 14.6.16 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Port:Log Announce
Interval Configured

Data Type Direction Required? Default
Read/Write No 1 second (0)

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.AnnIntvlConf

Description

If Announce Transmit Enabled? is true, this property configures the interval between
successive transmissions of the announce message by this port.

According to the standards, a message transmission interval is a signed integer in
the range -128 to 127, represented as the logarithm to the base 2 of the time interval
measured in seconds. For example, value 0 is 1 second, and value -3 is 125
milliseconds. In LabVIEW, the interval is provided as a ring (enumerated list) for
usability:

ni.com282

NI-XNET 20.5

Enumeration Value Description
125 milliseconds -3 Message transmission interval

of 125 milliseconds.
250 milliseconds -2 Message transmission interval

of 250 milliseconds.
500 milliseconds -1 Message transmission interval

of 500 milliseconds. This value i
s supported on all NI products.

1 second 0 Message transmission interval
of 1 second. This value is suppo
rted on all NI products.

2 seconds 1 Message transmission interval
of 2 second. This value is suppo
rted on all NI products.

The LabVIEW ring is limited to values that are practical in implementation, but not
all values are supported for all NI products. All NI products support the values listed
as such in the table.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
initialLogAnnounceInterval attribute as described in 14.6.11 of IEEE Std
802.1AS-2011. The initialLogAnnounceInterval parameter is used for the initial
transmit interval of Announce, but afterward the interval can only be changed by
receiving a special Signaling message from the neighboring clock (see 10.5.4.3 of
IEEE Std 802.1AS-2011). The Signaling message is optional, and if not used in the
network, this property configures the interval exclusively.
Interface:Ethernet:Time Sync:Port:Log Announce
Interval

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

© National Instruments 283

NI-XNET 20.5

Short Name

Intf.Enet.Time.Port.AnnIntvl

Description

If Announce Transmit Enabled? is true, this property provides the current interval
used for successive transmissions of the announce message by this port.

According to the standards, a message transmission interval is a signed integer in
the range -128 to 127, represented as the logarithm to the base 2 of the time interval
measured in seconds. For example, value 0 is 1 second, and value -3 is 125
milliseconds. In LabVIEW, the interval is provided as a ring (enumerated list) for
usability:

Enumeration Value Description
125 milliseconds -3 Message transmission interval

of 125 milliseconds.
250 milliseconds -2 Message transmission interval

of 250 milliseconds.
500 milliseconds -1 Message transmission interval

of 500 milliseconds. This value i
s supported on all NI products.

1 second 0 Message transmission interval
of 1 second. This value is suppo
rted on all NI products.

2 seconds 1 Message transmission interval
of 2 second. This value is suppo
rted on all NI products.

The LabVIEW ring is limited to values that are practical in implementation, but not
all values are supported for all NI products. All NI products support the values listed
as such in the table.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
currentLogAnnounceInterval parameter as described in 14.6.12 of IEEE Std
802.1AS-2011. If the optional Signaling message is used in the network, the
currentLogAnnounceInterval parameter can be different from its initial value (see
Log Announce Interval Configured).

ni.com284

NI-XNET 20.5

Interface:Ethernet:Time Sync:Port:Announce
Transmit Enabled?

Data Type Direction Required? Default
Read/Write No True

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.AnnTx?

Description

Enables the transmit of announce messages, which provide properties of this port
as a potential grandmaster. Announce messages are required for proper operation
of the best master clock algorithm (BMCA), so this property is ignored when BMCA
Enabled? is true.

When this property is true, the port transmits announce messages. This value is the
default behavior as specified in the protocol standard.

When this property is false, the port does not transmit announce messages. When
this property is false in the grandmaster, slave ports will not receive information
about that grandmaster (e.g. properties like Grandmaster Clock Accuracy).
Therefore, the false value is useful for in-vehicle applications in which each slave
assumes properties for its grandmaster as part of the vehicle's static design.

For the Protocol of IEEE Std 802.1AS-2011, a property value of true
corresponds to announce message transmission as described in 10.3 of IEEE Std
802.1AS-2011. A property value of false is not specified in IEEE Std 802.1AS-2011.
Behavior analogous to a property value of false is specified for 802.1AS as part of the
AUTOSAR Specification of Time Synchronization over Ethernet, and the Avnu
Automotive Ethernet AVB Functional and Interoperability Specification.

© National Instruments 285

NI-XNET 20.5

This property becomes read only when a port is in Tap mode.
Interface:Ethernet:Time Sync:Port:Announce
Receipt Timeout

Data Type Direction Required? Default
Read/Write No 3

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.AnnTmout

Description

If Port State is Slave, this property configures the number of announce intervals (see
Log Announce Interval) to wait without receiving an announce message before
assuming that the neighboring Master is no longer available and that the best
master clock algorithm (BMCA) needs to run, if enabled.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
announceReceiptTimeout parameter as described in 14.6.13 of IEEE Std
802.1AS-2011.
Interface:Ethernet:Time Sync:Port:AS Capable?

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.AScap?

ni.com286

NI-XNET 20.5

Description

This property is specific to the IEEE Std 802.1AS Protocol. It returns true if the
neighboring port is running the protocol according to the requirements in the
standard; it returns false otherwise.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
asCapable parameter as described in 14.6.6 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Port:Synced?

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.Sync?

Description

This property indicates whether the clock using the time synchronization protocol is
successfully synchronized to other clocks in the network.

For the Protocol of IEEE Std 802.1AS-2011, this property is true when AS
Capable is true and the following conditions apply:

■ If Port State is Slave, XNET clock adjustment algorithm (servo) is in its final
stage (calibrated). Sufficient messages have been exchanged such that
synchronization quality (e.g., Offset From Master) is unlikely to improve
significantly, but no fixed metric is applied as a threshold.
■ If Port State is Master and best master clock algorithm (BMCA) is enabled, at
least two announce intervals have elapsed. Master state means that the XNET
port is acting as grandmaster (the source of time in the network), so Synced?
would normally be true immediately. When using the BMCA, the XNET port
initializes assuming that it is a potential grandmaster (Master), but when it

© National Instruments 287

NI-XNET 20.5

receives an announce message from a better grandmaster, the Port State
changes to Slave. By waiting up to two announce intervals, the XNET port
avoids reporting a false-positive from Synced? (i.e., true because it was Master
upon initialization, then false when a better grandmaster is detected, and
then true again after slave calibration).
■ If Port State is Master and BMCA is disabled, Synced? is true immediately. As
BMCA is disabled, this XNET port will act as the Master (grandmaster)
indefinitely.

In the IEEE 1588-2008 standard (on which IEEE Std 802.1AS-2011 is based), this
Synced? flag is analogous to transition out of the UNCALIBRATED state. For 802.1AS,
behavior similar to this property is specified as the AVB_Sync state of the Avnu
Automotive Ethernet AVB Functional and Interoperability Specification.

Note Time synchronization occurs independently from start of the interface. For example,
you can read and write Ethernet frames when time sync is not enabled, or when the time
sync protocol is not synced.

Interface:Ethernet:Time Sync:Port:Sync Status

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.SyncStat

Description

This property provides the current synchronization status of the time
synchronization protocol. This property uses a ring (enumerated list) with the
following values:

Enumeration Value Description

ni.com288

NI-XNET 20.5

Synced 0 The clock using the time synchr
onization protocol is successfull
y synchronized with other clock
s in the network. This value is re
turned when the time synchron
ization protocol's Synced prope
rty is true.

EnetLinkDown 1 The interface cannot transmit o
r receive frames (packets).

ProtocolDisabled 2 Time synchronization protocol i
s disabled.

MeasuringPropDelay 3 The port is exchanging message
s to measure Propagation Delay
, but the port is not sending tim
e (master) or receiving time (sla
ve).

MasterPendingAnnounce 4 The Port State is master with th
e BMCA enabled and is waiting
until at least two Announce Inte
rvals have elapsed before decla
ring the port synchronized. This
avoids reporting a false-positiv
e when the best master clock al
gorithm (BMCA) has not finishe
d electing the best master.

WaitingForMaster 5 The Port State is slave and a syn
c message has not been receive
d from the master.

SyncingToMaster 6 The Port State is slave and the X
NET clock adjustment algorith
m (servo) has not reached its fi
nal state (calibrated). A sufficie
nt number of messages need to
be exchanged so that synchroni
zation quality (e.g., Offset From
Master) is unlikely to improve si
gnificantly, but no fixed metric i
s applied as a threshold.

PeerNotProtoCapable 7 The time synchronization proto
col is not detecting a neighbor t

© National Instruments 289

NI-XNET 20.5

hat is running the protocol acco
rding to the requirements in the
standard.

PropDelayExceedsTreshold 8 For IEEE Std 802.1AS, the meas
ured propagation delay exceed
s the value specified by the pro
perty Propagation Delay Thresh
old. As a result, the time synchr
onization protocol sets the AS C
apable? property to false.

SyncReceiptTimeout 9 The Port State is slave and the t
ime synchronization protocol h
as not received a sync message
from the Master in at least the n
umber of sync intervals specifie
d by the Sync Receipt Timeout
property.

FrequencyOutOfRange 10 The Port State is slave and the g
randmaster clock has exceeded
the frequency range of the XNE
T clock (±100 ppm).

SyncIntervalOutOfRange 11 The Port State is slave and the
master is sending sync message
s outside of the supported sync
interval range.

MultipleMastersDetected 12 The Port State is configured as
master with the BMCA disabled
and another master has been d
etected by the time synchroniza
tion protocol.

Port Statistics Properties
This category contains statistical counters for the Time Sync Port associated with
this session's Ethernet interface.

Counter Names and Counter Values properties each return an array of strings (both
same size), displaying all name/counter pairs. Each string is returned separately so
that you can customize the display.

ni.com290

NI-XNET 20.5

Receive (Rx) and Transmit (Tx) statistics (for example, see Rx Sync Count) return
more specific statistics as unsigned long integers (U64 datatype).

Statistics are grouped as receive (rx) and transmit (tx).

When the Port Mode of the session interface is Direct, receive and transmit statistics
are relative to this interface. When the Port Mode is Tap, receive statistics refer to
this session's interface, and the values of all transmit statistics are zero. (To obtain
statistics for frames received by the Tap partner, use a session with the Tap partner
interface.) Refer to Using Ethernet for more information about Direct and Tap port
modes.

All statistics reset to zero when the system powers up or the device is reset.
Interface:Ethernet:Time
Sync:Port:Statistics:Counter Names
Interface:Ethernet:Time
Sync:Port:Statistics:Counter Names

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.St.CtrNames

Description

This property returns the name of each Ethernet statistics property supported by
XNET. The name uses uppercase for the first letter of each word, with space as a
separator between words.

© National Instruments 291

NI-XNET 20.5

The name at a specific index corresponds to the counter at the same index in
Counter Values. The array of strings for this property is the same size as the Counter
Values array of strings.

The Counter Names and Counter Values properties are intended to be used together
to display all statistics on the front panel. These properties do not require
knowledge of specific property names. For example, if a new version of NI-XNET
adds a statistic property (to the end of the arrays), the new property will display
without change to your LabVIEW application.

Statistics are grouped as receive (rx) and transmit (tx).

When the Port Mode of the session's interface is set to Direct, receive and transmit
are relative to that interface.

When the Port Mode is set to Tap, receive statistics refer to this session's interface,
and all transmit statistics are zero. If you want to get statistics for frames received by
the Tap partner, use a session with the Tap partner's interface.

All statistics reset to zero when the system powers up or the device is reset.
Interface:Ethernet:Time
Sync:Port:Statistics:Counter Values
Interface:Ethernet:Time
Sync:Port:Statistics:Counter Values

Data Type Direction Required? Default

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.St.CtrValues

ni.com292

NI-XNET 20.5

Description

This property returns the counter value of each Time Sync Port statistics property
supported by XNET. Each counter value is returned as a string for display, but the
internal counter uses a 64-bit unsigned integer (U64) data type to avoid rollover. The
counter resets to zero when the system powers up or the device is reset, and
increments according to the description in Counter Names.

The counter value at a specific index corresponds to the name at the same index in
Counter Names. The array of strings for this property is the same size as the Counter
Names array of strings. Refer to Counter Names for a description of each counter
value.

The array of counters are not provided as a single snapshot in time. For example, it
is possible that a new frame is received as the values are returned, such that index 3
does not count the new frame, and index 4 does count the new frame.
Interface:Ethernet:Time
Sync:Port:Statistics:Rx Sync Count
Interface:Ethernet:Time Sync:Port:Statistics:Rx
Sync Count

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.St.RxSync

Description

A count of the number of Sync messages received.

© National Instruments 293

NI-XNET 20.5

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
rxSyncCount parameter as described in 14.7.2 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time
Sync:Port:Statistics:Rx Announce Count
Interface:Ethernet:Time Sync:Port:Statistics:Rx
Announce Count

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.St.RxAnn

Description

A count of the number of announce messages received.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
rxAnnounceCount parameter as described in 14.7.7 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time
Sync:Port:Statistics:Rx Pdelay Request Count
Interface:Ethernet:Time Sync:Port:Statistics:Rx
Pdelay Request Count

Data Type Direction Required? Default
Read Only No N/A

ni.com294

NI-XNET 20.5

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.St.RxPDReq

Description

A count of the number of Pdelay_Req messages received.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
rxPdelayRequestCount parameter as described in 14.7.4 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time
Sync:Port:Statistics:Tx Sync Count
Interface:Ethernet:Time Sync:Port:Statistics:Tx
Sync Count

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.St.TxSync

Description

A count of the number of Sync messages transmitted.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
txSyncCount parameter as described in 14.7.12 of IEEE Std 802.1AS-2011.

© National Instruments 295

NI-XNET 20.5

Interface:Ethernet:Time
Sync:Port:Statistics:Tx Announce Count
Interface:Ethernet:Time Sync:Port:Statistics:Tx
Announce Count

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.St.TxAnn

Description

A count of the number of announce messages transmitted.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
txAnnounceCount parameter as described in 14.7.17 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time
Sync:Port:Statistics:Tx Pdelay Request Count
Interface:Ethernet:Time Sync:Port:Statistics:Tx
Pdelay Request Count

Data Type Direction Required? Default
Read Only No N/A

ni.com296

NI-XNET 20.5

Property Class

XNET Interface

Short Name

Intf.Enet.Time.Port.St.TxPDReq

Description

A count of the number of Pdelay_Req messages transmitted.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
txPdelayRequestCount parameter as described in 14.7.14 of IEEE Std 802.1AS-2011.

FlexRay Interface Properties

This category includes FlexRay-specific interface properties.

Properties in the Interface category apply to the interface and not the session. If
more than one session exists for the interface, changing an interface property
affects all the sessions.

These properties are calculated based on constraints in the FlexRay Protocol
Specification. To calculate these properties, the constraints use cluster settings and
knowledge of the oscillator that the FlexRay interface uses.

At Create Session time, the XNET driver automatically calculates these properties,
and they are passed down to the hardware. However, you can use the XNET
property node to change these settings.

Note Changing the interface properties can affect the integration and communication of the
XNET FlexRay interface with the cluster.

Interface:FlexRay:Accepted Startup Range
Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

© National Instruments 297

NI-XNET 20.5

Property Class

XNET Session

Short Name

Intf.FlexRay.AccStartRng

Description

Range of measure clock deviation allowed for startup frames during node
integration. This property corresponds to the pdAcceptedStartupRange node
parameter in the FlexRay Protocol Specification.

The range for this property is 0–1875 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.

Interface:FlexRay:Allow Halt Due To Clock?
Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.FlexRay.AlwHltClk?

Description

Controls the FlexRay interface transition to the POC: halt state due to clock
synchronization errors. If set to true, the node can transition to the POC: halt state. If
set to false, the node does not transition to the POC: halt state and remains in the
POC: normal passive state, allowing for self recovery.

ni.com298

NI-XNET 20.5

This property corresponds to the pAllowHaltDueToClock node parameter in the
FlexRay Protocol Specification.

The property is a Boolean flag.

The default value of this property is false.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.

Refer to the XNET Read (State FlexRay Comm) VI for more information about the
POC: halt and POC: normal passive states.

Interface:FlexRay:Allow Passive to Active
Data Type Direction Required? Default

Read/Write No 0

Property Class

XNET Session

Short Name

Intf.FlexRay.AlwPassAct

Description

Number of consecutive even/odd cycle pairs that must have valid clock correction
terms before the FlexRay node can transition from the POC: normal-passive to the
POC: normal-active state. If set to zero, the node cannot transition from POC:
normal-passive to POC: normal-active.

This property corresponds to the pAllowPassiveToActive node parameter in the
FlexRay Protocol Specification.

The property is expressed as the number of even/odd cycle pairs, with values of 0–
31.

The default value of this property is zero.

© National Instruments 299

NI-XNET 20.5

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.

Refer to the XNET Read (State FlexRay Comm) VI for more information about the
POC: normal-active and POC: normal-passive states.

Interface:FlexRay:Auto Asleep When Stopped?
Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.AutoAslpWhnStp?

Description

This property indicates whether the FlexRay interface (node) automatically places
the FlexRay transceiver and controller into sleep when the interface is stopped. The
default value of this property is False, and you must handle the wakeup/sleep
processing manually using the XNET Session Interface:FlexRay:Sleep property.

When this property is called with the value True while the interface is asleep, the
interface is put to sleep immediately. When this property is called with the value
False, the interface is set to a local awake state immediately.

If the interface is asleep when the XNET Start VI is called, the FlexRay interface waits
for a wakeup pattern on the bus before transitioning out of the POC:READY state. To
initiate a bus wakeup, you can set the XNET Session Interface:FlexRay:Sleep
property with a value of Remote Wake.

After the XNET Stop VI is called, if this property is True, the FlexRay interface
automatically goes back to sleep to be ready to handle the wakeup on subsequent
XNET Start VI calls. When this property is False when the XNET Stop VI is called, the
FlexRay interface remains in the sleep state it was in prior to the XNET Stop VI call.

ni.com300

NI-XNET 20.5

You can overwrite the default value by writing this property prior to starting the
FlexRay interface (refer to Session States for more information).

Interface:FlexRay:Cluster Drift Damping
Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.ClstDriftDmp

Description

Local cluster drift damping factor used for rate correction.

This property corresponds to the pAllowPassiveToActive node parameter in the
FlexRay Protocol Specification.

The range for the property is 0–20 MT.

The cluster drift damping property should be configured in such a way that the
damping values in all nodes within the same cluster have approximately the same
duration.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.

Interface:FlexRay:Coldstart?
Data Type Direction Required? Default

Read Only No False

© National Instruments 301

NI-XNET 20.5

Property Class

XNET Session

Short Name

Intf.FlexRay.Coldstart?

Description

This property specifies whether the FlexRay interface operates as a coldstart node
on the cluster. This property is read only and calculated from the XNET Session
Interface:FlexRay:Key Slot Identifier property. If the KeySlot Identifier is 0 (invalid
slot identifier), the XNET FlexRay interface does not act as a coldstart node, and this
property is false. If the KeySlot Identifier is 1 or more, the XNET FlexRay interface
transmits a startup frame from that slot, and the Interface:FlexRay:Coldstart?
property is true.

This property returns a Boolean flag (true/false).

The default value of this property is false.

Interface:FlexRay:Connected Channels
Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.ConnectedChs

Description

This property specifies the channel(s) that the FlexRay interface (node) is physically
connected to. The default value of this property is connected to all channels

ni.com302

NI-XNET 20.5

available on the cluster. However, if you are using a node connected to only one
channel of a multichannel cluster that uses wakeup, you must set the value
properly. If you do not, your node may not wake up, as the wakeup pattern cannot
be received on a channel not physically connected.

This property corresponds to the pChannels node parameter in the FlexRay
Protocol Specification.

The values supported for this property (enumeration) are A = 1, B = 2, and A and B =
3.

You can overwrite the default value by writing this property prior to starting the
FlexRay interface (refer to Session States for more information).

Interface:FlexRay:Decoding Correction
Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.DecCorr

Description

This property specifies the value that the receiving FlexRay node uses to calculate
the difference between the primary time reference point and secondary reference
point. The clock synchronization algorithm uses the primary time reference and the
sync frame's expected arrival time to calculate and compensate for the node's local
clock deviation.

This property corresponds to the pDecodingCorrection node parameter in the
FlexRay Protocol Specification.

The range for the property is 14–143 MT.

© National Instruments 303

NI-XNET 20.5

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.

Interface:FlexRay:Delay Compensation Ch A
Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.DelayCompA

Description

This property specifies the value that the XNET FlexRay interface (node) uses to
compensate for reception delays on channel A. This takes into account the assumed
propagation delay up to the maximum allowed propagation delay
(cPropagationDelayMax) for microticks in the 0.0125–0.05 range. In practice, you
should apply the minimum of the propagation delays of all sync nodes.

This property corresponds to the pDelayCompensation[A] node parameter in the
FlexRay Protocol Specification.

The property range is 0–200 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.

Interface:FlexRay:Delay Compensation Ch B
Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

ni.com304

NI-XNET 20.5

Property Class

XNET Session

Short Name

Intf.FlexRay.DelayCompB

Description

This property specifies the value that the XNET FlexRay interface (node) uses to
compensate for reception delays on channel B. This takes into account the assumed
propagation delay up to the maximum allowed propagation delay (Propagation

Delay Max) for microticks in the 0.0125–0.05 range. In practice, you should apply the
minimum of the propagation delays of all sync nodes.

This property corresponds to the pDelayCompensation[B] node parameter in the
FlexRay Protocol Specification.

The property range is 0–200 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.

Interface:FlexRay:Key Slot Identifier
Data Type Direction Required? Default

Read/Write No 0

Property Class

XNET Session

Short Name

Intf.FlexRay.KeySlotID

© National Instruments 305

NI-XNET 20.5

Description

This property specifies the FlexRay slot number from which the XNET FlexRay
interface transmits a startup frame, during the process of integration with other
cluster nodes.

For a network (cluster) of FlexRay nodes to start up for communication, at least two
nodes must transmit startup frames. If your application is designed to test only one
external ECU, you must configure the XNET FlexRay interface to transmit a startup
frame. If the one external ECU does not transmit a startup frame itself, you must use
two XNET FlexRay interfaces for the test, each of which must transmit a startup
frame.

There are two methods for configuring the XNET FlexRay interface as a coldstart
node (transmit startup frame).

Output Session with Startup Frame
Create an output session that contains a startup frame (or one of its signals). The
XNET Frame FlexRay:Startup? property is true for a startup frame. If you use this
method, this Key Slot Identifier property contains the identifier property of that
startup frame. You do not write this property.

Write this Key Slot Identifier Property
This interface uses the identifier (slot) you write to transmit a startup frame using
that slot.

Note If you create an output session that contains the startup frame, with the same
identifier as that specified in the Key Slot Identifier property, the data you write to the
session transmits in the frame. If you do not create an output session that contains the
startup frame, the interface transmits a null frame for startup purposes.

If you create an output session that contains a startup frame with an identifier that does not
match the Key Slot Identifier property, an error is returned.

The default value of this property is 0 (no startup frame).

ni.com306

NI-XNET 20.5

You can overwrite the default value by writing an identifier that corresponds to the
identifier of a startup frame prior to starting the FlexRay interface (refer to Session
States for more information).

Interface:FlexRay:Latest Tx
Data Type Direction Required? Default

Read Only No 0

Property Class

XNET Session

Short Name

Intf.FlexRay.LatestTx

Description

This property specifies the number of the last minislot in which a frame
transmission can start in the dynamic segment. This is a read-only property, as the
FlexRay controller evaluates it based on the configuration of the frames in the
dynamic segment.

This property corresponds to the pLatestTx node parameter in the FlexRay
Protocol Specification.

The range of values for this property is 0–7981 minislots.

This property can be read any time prior to closing the FlexRay interface.

Interface:FlexRay:Listen Timeout
Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

© National Instruments 307

NI-XNET 20.5

Property Class

XNET Session

Short Name

Intf.FlexRay.ListTimo

Description

This property specifies the upper limit for the startup listen timeout and wakeup
listen timeout.

Refer to Summary of the FlexRay Standard for more information about startup and
wakeup procedures within the FlexRay protocol.

This property corresponds to the pdListenTimeout node parameter in the FlexRay
Protocol Specification.

The range of values for this property is 1284–1283846 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.

Interface:FlexRay:Macro Initial Offset Ch A
Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.MacInitOffA

ni.com308

NI-XNET 20.5

Description

This property specifies the integer number of macroticks between the static slot
boundary and the following macrotick boundary of the secondary time reference
point based on the nominal macrotick duration. This property applies only to
Channel A.

This property corresponds to the pMacroInitialOffset[A] node parameter in the
FlexRay Protocol Specification.

The range of values for this property is 2–72 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.

Interface:FlexRay:Macro Initial Offset Ch B
Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.MacInitOffB

Description

This property specifies the integer number of macroticks between the static slot
boundary and the following macrotick boundary of the secondary time reference
point based on the nominal macrotick duration. This property applies only to
Channel B.

This property corresponds to the pMacroInitialOffset[B] node parameter in the
FlexRay Protocol Specification.

The range of values for this property is 2–72 MT.

© National Instruments 309

NI-XNET 20.5

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.

Interface:FlexRay:Max Drift
Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.MaxDrift

Description

This property specifies the maximum drift offset between two nodes that operate
with unsynchronized clocks over one communication cycle.

This property corresponds to the pdMaxDrift node parameter in the FlexRay
Protocol Specification.

The range of values for this property is 2–1923 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface (refer to Session States for more
information).

Interface:FlexRay:Micro Initial Offset Ch A
Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

ni.com310

NI-XNET 20.5

Short Name

Intf.FlexRay.MicInitOffA

Description

This property specifies the number of microticks between the closest macrotick
boundary described by the Macro Initial Offset Ch A property and the secondary
time reference point. This parameter depends on the Interface:FlexRay:Delay
Compensation property for Channel A, and therefore you must set it independently
for each channel.

This property corresponds to the pMicroInitialOffset[A] node parameter in the
FlexRay Protocol Specification.

The range of values for this property is 0–240 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.

Interface:FlexRay:Micro Initial Offset Ch B
Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.MicInitOffB

Description

This property specifies the number of microticks between the closest macrotick
boundary described by the Macro Initial Offset Ch B property and the secondary
time reference point. This parameter depends on the Interface:FlexRay:Delay

© National Instruments 311

NI-XNET 20.5

Compensation property for Channel B, and therefore you must set it independently
for each channel.

This property corresponds to the pMicroInitialOffset[B] node parameter in the
FlexRay Protocol Specification.

The range of values for this property is 0–240 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.

Interface:FlexRay:Microtick
Data Type Direction Required? Default

Read Only No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.Microtick

Description

This property specifies the duration of a microtick. This property is calculated based
on the product of the Samples per Microtick interface property and the BaudRate
cluster. This is a read-only property.

This property corresponds to the pdMicrotick node parameter in the FlexRay
Protocol Specification.

This property can be read any time prior to closing the FlexRay interface.

Interface:FlexRay:Null Frames To Input Stream?
Data Type Direction Required? Default

Read/Write No False

ni.com312

NI-XNET 20.5

Property Class

XNET Session

Short Name

Intf.FlexRay.NullToInStrm?

Description

This property indicates whether the Frame Input Stream session should return
FlexRay null frames from the XNET Read VI.

When this property uses the default value of false, FlexRay null frames are not
returned for a Frame Input Stream session. This behavior is consistent with the
other two frame input modes (Frame Input Single-Point and Frame Input Queued),
which never return FlexRay null frames from the XNET Read VI.

When you set this property to true for a Frame Input Stream session, the XNET Read
VI returns all FlexRay null frames that are received by the interface. This feature is
used to monitor all frames that occur on the network, regardless of whether new
payload is available or not. When you use the Frame FlexRay instance of the XNET
Read VI, each frame's type field indicates a null frame.

You can overwrite the default value prior to starting the FlexRay interface (refer to
Session States for more information).

Interface:FlexRay:Offset Correction
Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Session

Short Name

Intf.FlexRay.OffCorr

© National Instruments 313

NI-XNET 20.5

Description

This property provides the maximum permissible offset correction value, expressed
in microticks. The offset correction synchronizes the cycle start time. The value
indicates the number of microticks added or subtracted to the offset correction
portion of the network idle time, to synchronize the interface to the FlexRay
network. The value is returned as a signed 32–bit integer (I32). The offset correction
value calculation takes place every cycle, but the correction is applied only at the
end of odd cycles. This is a read-only property.

This property can be read anytime prior to closing the FlexRay interface.

Interface:FlexRay:Offset Correction Out
Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.OffCorrOut

Description

This property specifies the magnitude of the maximum permissible offset correction
value. This node parameter is based on the value of the maximum offset correction
for the specific cluster.

This property corresponds to the pOffsetCorrectionOut node parameter in the
FlexRay Protocol Specification.

The value range for this property is 5–15266 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface (refer to Session States for more
information).

ni.com314

NI-XNET 20.5

Interface:FlexRay:Rate Correction
Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Session

Short Name

Intf.FlexRay.RateCorr

Description

Read-only property that provides the rate correction value, expressed in microticks.
The rate correction synchronizes frequency. The value indicates the number of
microticks added to or subtracted from the configured number of microticks in a
cycle, to synchronize the interface to the FlexRay network.

The value is returned as a signed 32-bit integer (I32). The rate correction value
calculation takes place in the static segment of an odd cycle, based on values
measured in an even-odd double cycle.

This property can be read prior to closing the FlexRay interface.

Interface:FlexRay:Rate Correction Out
Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.RateCorrOut

© National Instruments 315

NI-XNET 20.5

Description

This property specifies the magnitude of the maximum permissible rate correction
value. This node parameter is based on the value of the maximum rate correction for
the specific cluster.

This property corresponds to the pRateCorrectionOut node parameter in the
FlexRay Protocol Specification.

The range of values for this property is 2–1923 MT.

This property is calculated from the microticks per cycle and clock accuracy.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface (refer to Session States for more
information).

Interface:FlexRay:Samples Per Microtick
Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.SampPerMicro

Description

This property specifies the number of samples per microtick.

There is a defined relationship between the "ticks" of the microtick timebase and
the sample ticks of bit sampling. Specifically, a microtick consists of an integral
number of samples.

As a result, there is a fixed phase relationship between the microtick timebase and
the sample clock ticks.

ni.com316

NI-XNET 20.5

This property corresponds to the pSamplesPerMicrotick node parameter in the
FlexRay Protocol Specification.

The supported values for this property are 1, 2, and 4 samples.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface (refer to Session States for more
information).

Interface:FlexRay:Sleep
Data Type Direction Required? Default

Write Only No N/A

Property Class

XNET Session

Short Name

Intf.FlexRay.Sleep

Description

Use the Sleep property to change the NI-XNET FlexRay interface sleep/awake state
and optionally to initiate a wakeup on the FlexRay cluster.

The property is a ring (enumerated list) with the following values:

String Value Description
Local Sleep 0 Set interface and transceiver(s)

to sleep
Local Wake 1 Set interface and transceiver(s)

to awake
Remote Wake 2 Set interface and transceivers t

o awake and attempt to wake u
p the FlexRay bus by sending th
e wakeup pattern on the config
ured wakeup channel

© National Instruments 317

NI-XNET 20.5

This property is write only. Setting a new value is effectively a request, and the
property node returns before the request is complete. To detect the current
interface sleep/wake state, use the XNET Read (State FlexRay Comm) VI.

The FlexRay interface maintains a state machine to determine the action to perform
when this property is set (request). The following table specifies the sleep/wake
action on the FlexRay interface.

Request Current Local State
Sleep Awake

Local Sleep No action Change local state
Local Wake Attempt to integrate with the b

us (move from POC:READY to P
OC:NORMAL)

No action

Remote Wake Attempt to wake up the bus foll
owed by an attempt to integrat
e with the bus (move from POC:
READY to POC:NORMAL ACTIVE)
. If the interface is not yet starte
d, setting Remote Wake schedul
es a remote wake to be generat
ed once the interface has starte
d.

No action

Interface:FlexRay:Single Slot Enabled?
Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.FlexRay.SingSlotEn?

ni.com318

NI-XNET 20.5

Description

This property serves as a flag to indicate whether the FlexRay interface (node)
should enter single slot mode following startup.

This Boolean property supports a strategy to limit frame transmissions following
startup to a single frame (designated by the XNET Session Interface:FlexRay:Key Slot
Identifier property). If you leave this property false prior to start (default), all
configured output frames transmit. If you set this property to true prior to start, only
the key slot transmits. After the interface is communicating (integrated), you can set
this property to false at runtime to enable the remaining transmissions (the
protocol's ALL_SLOTS command). After the interface is communicating, you cannot
set this property from false to true.

This property corresponds to the pSingleSlotEnabled node parameter in the FlexRay
Protocol Specification.

You can overwrite the default value prior to starting the FlexRay interface (refer to
Session States for more information).

Interface:FlexRay:Statistics Enabled?
Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.FlexRay.StatisticsEn?

Description

This XNET Boolean property enables reporting FlexRay error statistics. When this
property is false (default), calls to the XNET Read (State FlexRay Statistics) VI always

© National Instruments 319

NI-XNET 20.5

return zero for each statistic. To enable FlexRay statistics, set this property to true in
your application.

You can overwrite the default value prior to starting the FlexRay interface (refer to
Session States for more information).

Interface:FlexRay:Symbol Frames To Input
Stream?
Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.FlexRay.SymToInStrm?

Description

This property indicates whether the Frame Input Stream Mode session should return
FlexRay symbols from the XNET Read VI.

When this property uses the default value of False, FlexRay symbols are not returned
for a Frame Input Stream Mode session. This behavior is consistent with the other
two frame input modes (Frame Input Single-Point Mode and Frame Input Queued
Mode), which never return FlexRay symbols from the XNET Read VI.

When you set this property to true for a Frame Input Stream Mode session, the XNET
Read VI returns all FlexRay symbols the interface receives. This feature detects
wakeup symbols and Media Access Test Symbols (MTS). When you use the the XNET
Read (Frame FlexRay) VI instance of the XNET Read VI, each frame type field
indicates a symbol.

When the frame type is FlexRay Symbol, the first payload byte (offset 0) specifies the
type of symbol: 0 for MTS or 1 for wakeup. The frame payload length is 1 or higher,

ni.com320

NI-XNET 20.5

with bytes beyond the first reserved for future use. The frame timestamp specifies
when the symbol window occurred. The cycle count, channel A indicator, and
channel B indicator are encoded the same as FlexRay data frames. All other fields in
the frame are unused (0).

You can overwrite the default value prior to starting the FlexRay interface (refer to
Session States for more information).

Interface:FlexRay:Sync Frames Channel A Even
Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Session

Short Name

Intf.FlexRay.SyncChAEven

Description

This property returns an array of sync frames (slot IDs) transmitted or received on
channel A during the last even cycle. This read-only property returns an array in
which each element holds the slot ID of a sync frame. If the interface is not started,
this returns an empty array. If you start the interface, but it fails to communicate
(integrate), this property may be helpful in diagnosing the problem.

Refer to Summary of the FlexRay Standard for more information about the FlexRay
protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

Interface:FlexRay:Sync Frames Channel A Odd
Data Type Direction Required? Default

Read Only No N/A

© National Instruments 321

NI-XNET 20.5

Property Class

XNET Session

Short Name

Intf.FlexRay.SyncChAOdd

Description

This property returns an array of sync frames (slot IDs) transmitted or received on
channel A during the last odd cycle. This read-only property returns an array in
which each element holds the slot ID of a sync frame. If the interface is not started,
this returns an empty array. If you start the interface, but it fails to communicate
(integrate), this property may be helpful in diagnosing the problem.

Refer to Summary of the FlexRay Standard for more information about the FlexRay
protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

Interface:FlexRay:Sync Frames Channel B Even
Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Session

Short Name

Intf.FlexRay.SyncChBEven

Description

This property returns an array of sync frames (slot IDs) transmitted or received on
channel B during the last even cycle. This read-only property returns an array in
which each element holds the slot ID of a sync frame. If the interface is not started,

ni.com322

NI-XNET 20.5

this returns an empty array. If you start the interface, but it fails to communicate
(integrate), this property may be helpful in diagnosing the problem.

Refer to Summary of the FlexRay Standard for more information about the FlexRay
protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

Interface:FlexRay:Sync Frames Channel B Odd
Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Session

Short Name

Intf.FlexRay.SyncChBOdd

Description

This property returns an array of sync frames (slot IDs) transmitted or received on
channel B during the last odd cycle. This read-only property returns an array in
which each element holds the slot ID of a sync frame. If the interface is not started,
this returns an empty array. If you start the interface, but it fails to communicate
(integrate), this property may be helpful in diagnosing the problem.

Refer to Summary of the FlexRay Standard for more information about the FlexRay
protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

Interface:FlexRay:Sync Frame Status
Data Type Direction Required? Default

Read Only No N/A

© National Instruments 323

NI-XNET 20.5

Property Class

XNET Session

Short Name

Intf.FlexRay.SyncStatus

Description

This property returns the status of sync frames since the interface (enumeration)
start. Within Limits means the number of sync frames is within the protocol's limits
since the interface start. Below Minimum means that in at least one cycle, the
number of sync frames was below the limit the protocol requires (2 or 3, depending
on number of nodes). Overflow means that in at least one cycle, the number of sync
frames was above the limit set by the XNET Cluster FlexRay:Sync Node Max
property. Both Min and Max means that both minimum and overflow errors have
occurred (this is unlikely).

If the interface is not started, this property returns Within Limits. If you start the
interface, but it fails to communicate (integrate), this property may be helpful in
diagnosing the problem.

Refer to Summary of the FlexRay Standard for more information about the FlexRay
protocol startup and cluster integration procedure.

This property can be read any time prior to closing the FlexRay interface.

Interface:FlexRay:Termination
Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

ni.com324

NI-XNET 20.5

Short Name

Intf.FlexRay.Term

Description

This property controls termination at the NI-XNET interface (enumeration)
connector (port). This applies to both channels (A and B) on each FlexRay interface.
False means the interface is not terminated (default). True means the interface is
terminated.

You can overwrite the default value by writing this property prior to starting the
FlexRay interface (refer to Session States for more information). You can start the
FlexRay interface by calling the XNET Start VI with scope set to either Normal or
Interface Only on the session.

Interface:FlexRay:Wakeup Channel
Data Type Direction Required? Default

Read/Write No A

Property Class

XNET Session

Short Name

Intf.FlexRay.WakeupCh

Description

This property specifies the channel the FlexRay interface (node) uses to send a
wakeup pattern. This property is used only when the XNET Session
Interface:FlexRay:Sleep property is set to Remote Wake.

This property corresponds to the pWakeupChannel node parameter in the FlexRay
Protocol Specification.

The values supported for this property (enumeration) are A = 0 and B = 1.

© National Instruments 325

NI-XNET 20.5

You can overwrite the default value by writing this property prior to starting the
FlexRay interface (refer to Session States for more information).

Interface:FlexRay:Wakeup Pattern
Data Type Direction Required? Default

Read/Write No 2

Property Class

XNET Session

Short Name

Intf.FlexRay.WakeupPtrn

Description

This property specifies the number of repetitions of the wakeup symbol that are
combined to form a wakeup pattern when the FlexRay interface (node) enters the
POC:wakeup-send state. The POC:wakeup send state is one of the FlexRay controller
state transitions during the wakeup process. In this state, the controller sends the
wakeup pattern on the specified Wakeup Channel and checks for collisions on the
bus.

This property corresponds to the pWakeupPattern node parameter in the FlexRay
Protocol Specification.

The supported values for this property are 2–63.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface (refer to Session States for more
information).

LIN Interface Properties

This category includes LIN-specific interface properties.

ni.com326

NI-XNET 20.5

Properties in the Interface category apply to the interface and not the session. If
more than one session exists for the interface, changing an interface property
affects all the sessions.

Interface:LIN:Break Delimiter Length
Data Type Direction Required? Default

Read/Write No 0

Property Class

XNET Session

Short Name

Intf.LIN.BreakDelimLen

Description

This property determines the length of the delimiter placed between the break and
sync in the frame header.

This length is in addition to the length internally added by the hardware serial UART,
which is approximately equal to one bit time at a baud rate equal to (9 /
break bit length) × bus baud rate.

The value is specified in bit times at the bus baud rate. As shown in the following
table, the maximum value varies per the break length value in order to keep the
overall break transmit time below the maximum specified for LIN (1.4 × 14 bit
times).

Break Bit Length Break Delimiter Length (Max)
10 8
11 7
12 6
13 5
14 4

© National Instruments 327

NI-XNET 20.5

15 2
16 1

17 or greater 0

Interface:LIN:Break Length
Data Type Direction Required? Default

Read/Write No 13

Property Class

XNET Session

Short Name

Intf.LIN.BreakLen

Description

This property determines the length of the serial break used at the start of a frame
header (schedule entry). The value is specified in bit-times.

The valid range is 10–36 (inclusive). The default value is 13, which is the value the
LIN standard specifies.

At baud rates below 9600, the upper limit may be lower than 36 to avoid violating
hold times for the bus. For example, at 2400 baud, the valid range is 10–14.

This property is applicable only when the interface is the master.

Interface:LIN:DiagP2min
Data Type Direction Required? Default

Read/Write No 0.05

Property Class

XNET Session

ni.com328

NI-XNET 20.5

Short Name

Intf.LIN.DiagP2min

Description

When the interface is the slave, this is the minimum time in seconds between
reception of the last frame of the diagnostic request message and transmission of
the response for the first frame in the diagnostic response message by the slave.

This property applies only to the interface as slave. An attempt to write the property
for interface as master results in error nxErrInvalidPropertyValue being reported.

Interface:LIN:DiagSTmin
Data Type Direction Required? Default

Read/Write No 0

Property Class

XNET Session

Short Name

Intf.LIN.DiagSTmin

Description

When the interface is the slave, this property sets the minimum time in seconds it
places between the end of transmission of a frame in a diagnostic response message
and the start of transmission of the response for the next frame in the diagnostic
response message.

When the interface is the master, this property sets the minimum time in seconds it
places between the end of transmission of a frame in a diagnostic request message
and the start of transmission of the next frame in the diagnostic request message.

© National Instruments 329

NI-XNET 20.5

Interface:LIN:Master?
Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.LIN.Master?

Description

Note You can set this property only when the interface is stopped.

This Boolean property specifies the NI-XNET LIN interface role on the network:
master (true) or slave (false).

In a LIN network (cluster), there always is a single ECU in the system called the
master. The master transmits a schedule of frame headers. Each frame header is a
remote request for a specific frame ID. For each header, typically a single ECU in the
network (slave) responds by transmitting the requested ID payload. The master ECU
can respond to a specific header as well, and thus the master can transmit payload
data for the slave ECUs to receive. For more information, refer to Summary of the
LIN Standard.

The default value for this property is false (slave). This means that by default, the
interface does not transmit frame headers onto the network. When you use input
sessions, you read frames that other ECUs transmit. When you use output sessions,
the NI-XNET interface waits for the remote master to send a header for a frame in the
output sessions, then the interface responds with data for the requested frame.

If you call the XNET Write (State LIN Schedule Change) VI to request execution of a
schedule, that implicitly sets this property to true (master). You also can set this
property to true using a property node, but no schedule is active by default, so you

ni.com330

NI-XNET 20.5

still must call the XNET Write (State LIN Schedule Change) VI at some point to
request a specific schedule.

Regardless of this property's value, you use can input and output sessions. This
property specifies which hardware transmits the scheduled frame headers: NI-XNET
(true) or a remote master ECU (false).

Interface:LIN:Output Stream Slave Response List
By NAD
Data Type Direction Required? Default

Read/Write No Empty Array

Property Class

XNET Session

Short Name

Intf.LIN.OutStrmSlvRspListByNAD

Description

The Output Stream Slave Response List by NAD property provides a list of NADs for
use with the replay feature (Interface:Output Stream Timing property set to Replay
Exclusive or Replay Inclusive).

For LIN, the array of frames to replay might contain multiple slave response frames,
each with the same slave response identifier, but each having been transmitted by a
different slave (per the NAD value in the data payload). This means that processing
slave response frames for replay requires two levels of filtering. First, you can
include or exclude the slave response frame or ID for replay using Interface:Output
Stream List or Interface:Output Stream List By ID. If you do not include the slave
response frame or ID for replay, no slave responses are transmitted. If you do
include the slave response frame or ID for replay, you can use the Output Stream
Slave Response List by NAD property to filter which slave responses (per the NAD
values in the array) are transmitted. This property is always inclusive, regardless of

© National Instruments 331

NI-XNET 20.5

the replay mode (inclusive or exclusive). If the NAD is in the list and the response
frame or ID has been enabled for replay, any slave response for that NAD is
transmitted. If the NAD is not in the list, no slave response for that NAD is
transmitted. The property's data type is an array of unsigned 32-bit integer (u32).
Currently, only byte 0 is required to hold the NAD value. The remaining bits are
reserved for future use.

Interface:LIN:Schedules
Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Session

Short Name

Intf.LIN.Schedules

Description

This property provides the list of schedules for use when the NI-XNET LIN interface
acts as a master (Interface:LIN:Master? is true). When the interface is master, you can
wire one of these schedules to the XNET Write (State LIN Schedule Change) VI to
request a schedule change.

When the interface does not act as a master, you cannot control the schedule, and
the XNET Write (State LIN Schedule Change) VI returns an error if it cannot set the
interface into master mode (for example, if the interface already is started).

This array of XNET LIN Schedule I/O names is the same list as the XNET Cluster
LIN:Schedules property used to configure the session.

Interface:LIN:Sleep
Data Type Direction Required? Default

ni.com332

NI-XNET 20.5

Write Only No N/A

Property Class

XNET Session

Short Name

Intf.LIN.Sleep

Description

Use the Sleep property to change the NI-XNET LIN interface sleep/awake state and
optionally to change remote node (ECU) sleep/awake states.

The property is a ring (enumerated list) with the following values:

String Value Description
Remote Sleep 0 Set interface to sleep locally an

d transmit sleep requests to re
mote nodes

Remote Wake 1 Set interface to awake locally a
nd transmit wakeup requests to
remote nodes

Local Sleep 2 Set interface to sleep locally an
d not to interact with the netwo
rk

Local Wake 3 Set interface to awake locally a
nd not to interact with the netw
ork

The property is write only. Setting a new value is effectively a request, and the
property node returns before the request is complete. To detect the current
interface sleep/wake state, use the XNET Read (State LIN Comm) VI.

The LIN interface maintains a state machine to determine the action to perform
when this property is set (request). The following sections specify the action when
the interface is master and slave.

© National Instruments 333

NI-XNET 20.5

Sleep/Wake Action for Master

Request Current Local State
Sleep Awake

Remote Sleep No action Change local state; pause sched
uler; transmit go-to-sleep reque
st frame

Remote Wake Change local state; transmit ma
ster wakeup pattern (serial brea
k); resume scheduler

No action

Local Sleep No action Change local state
Local Wake Change local state; resume sch

eduler
No action

When the master's scheduler pauses, it finishes the pending entry (slot) and saves
its current position. When the master's scheduler resumes, it continues with the
schedule where it left off (entry after the pause).

The go-to-sleep request is frame ID 60, payload length 8, payload byte 0 has the
value 0, and the remaining bytes have the value 0xFF.

If the master is in the Sleep state, and a remote slave (ECU) transmits the slave
wakeup pattern, this is equivalent to setting this property to Local Wake. In addition,
a pending XNET Wait (LIN Remote Wakeup) VI returns. This XNET Wait VI does not
apply to setting this property, because you know when you set it.

Sleep/Wake Action for Slave

Request Current Local State
Sleep Awake

Remote Sleep Error Error
Remote Wake Transmit slave wakeup pattern;

change local state when first br
eak from master is received

No action

Local Sleep No action Change local state
Local Wake Change local state No action

ni.com334

NI-XNET 20.5

According to the LIN protocol standard, Remote Sleep is not supported for slave
mode, so that request returns an error.

If the slave is in Sleep state, and a remote master (ECU) transmits the master
wakeup pattern, this is equivalent to setting this property to Local Wake. In addition,
a pending XNET Wait (LIN Remote Wakeup) VI returns. This XNET Wait VI does not
apply to setting this property, because you know when you set it.

Interface:LIN:Start Allowed without Bus Power?
Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.LIN.StrtWoPwr?

Description

Note You can modify this property only when the interface is stopped.

The Start Allowed Without Bus Power? property configures whether the LIN
interface does not check for bus power present at interface start, or checks and
reports an error if bus power is missing.

When this property is true, the LIN interface does not check for bus power present at
start, so no error is reported if the interface is started without bus power.

When this property is false, the LIN interface checks for bus power present at start,
and nxErrMissingBusPower is reported if the interface is started without bus power.

Interface:LIN:Termination
Data Type Direction Required? Default

© National Instruments 335

NI-XNET 20.5

Read/Write No Off (0)

Property Class

XNET Session

Short Name

Intf.LIN.Term

Description

Notes You can modify this property only when the interface is stopped.

This property does not take effect until the interface is started.

The Termination property configures the NI-XNET interface LIN connector (port)
onboard termination. The enumeration is generic and supports two values: Off
(disabled) and On (enabled).

The property is a ring (enumerated list) with the following values:

String Value
Off 0
On 1

Per the LIN 2.1 standard, the Master ECU has a ~1 k termination resistor between
Vbat and Vbus. Therefore, use this property only if you are using your interface as
the master and do not already have external termination.

For more information about LIN cabling and termination, refer to NI-XNET LIN
Hardware.

Interface:LIN:No Response Frames to Input
Stream?
Data Type Direction Required? Default

Read/Write No False

ni.com336

NI-XNET 20.5

Property Class

XNET Session

Short Name

Intf.LIN.NoRespToInStrm?

Description

This property configures the hardware to place a LIN no response frame in the
Stream Input queue after it is generated. A no response frame is generated when the
hardware detects a header with no response. For more information about the no
response frame, refer to Special Frames.

Interface:LIN:Checksum to Input Stream?
Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.LIN.ChecksumToInStrm?

Description

This property configures the hardware to place the received checksum for each LIN
Data frame into the Event ID (Info) field. When false, the Event ID field contains 0 for
all LIN Data stream input frames.

Source Terminal Interface Properties

This category includes properties to route trigger signals between multiple DAQmx
and XNET devices.

© National Instruments 337

NI-XNET 20.5

Interface:Source Terminal:Start Trigger
Data Type Direction Required? Default

Read/Write No (Disconnected)

Property Class

XNET Session

Short Name

Intf.SrcTerm.StartTrigger

Description

This property specifies the name of the internal terminal to use as the interface Start
Trigger. The data type is NI Terminal (DAQmx terminal).

This property is supported for C Series modules in a CompactDAQ chassis. It is not
supported for CompactRIO, PXI, or PCI (refer to the XNET Connect Terminals VI for
those platforms).

The digital trigger signal at this terminal is for the Start Interface transition, to begin
communication for all sessions that use the interface. This property routes the start
trigger, but not the timebase (used for timestamp of received frames and cyclic
transmit of frames). Timebase routing is not required for CompactDAQ, because all
modules in the chassis automatically use a shared timebase.

Use this property to connect the interface Start Trigger to triggers in other modules
and/or interfaces. When you read this property, you specify the interface Start
Trigger as the source of a connection. When you write this property, you specify the
interface Start Trigger as the destination of a connection, and the value you write
represents the source. For examples that demonstrate use of this property to
synchronize NI-XNET and NI-DAQmx hardware, refer to the Synchronization category
within the NI-XNET examples.

The connection this property creates is disconnected when you clear (close) all
sessions that use the interface.

ni.com338

NI-XNET 20.5

SAE J1939 Properties
This category includes the SAE J1939-specific properties in the Session Node.

SAE J1939:Node Address

Data Type Direction Required? Default
Read/Write No Null (254)

Property Class

XNET Session

Short Name

J1939.Address

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the node address of a J1939 session by starting an address
claiming procedure. Setting the SAE J1939:Node Address property causes NI-XNET
to start the interface, but it does not start the session. Any properties that are to be
set before the interface starts must be set before you set this property. J1939 traffic
is not retained by an input session until XNET Start.vi or XNET Read.vi are explicitly
called.

After setting this property to a valid value (≤ 253), reading the property returns the
null address (254) until the address is granted. Poll the property and wait until the
address gets to a valid value again before starting to write. Refer to the NI-XNET
examples that demonstrate this procedure.

The node address value determines the source address in a transmitting session or a
destination address in a receiving session. The source address in the extended
frame identifier is overwritten with the node address of the session before
transmitting.

In NI-XNET, you can assign the same J1939 node address to multiple sessions
running on the same interface (for example, CAN1). Those sessions represent one

© National Instruments 339

NI-XNET 20.5

J1939 node. By assigning different J1939 node addresses to multiple sessions
running on the same interface, you also can create multiple nodes on the same
interface.

If a J1939 ECU is assigned to multiple sessions, changing the address in one session
also changes the address in all other sessions with the same assigned ECU.

For more information, refer to the SAE J1939:ECU property.

SAE J1939:ECU Busy

Data Type Direction Required? Default
Read/Write No False

Property Class

XNET Session

Short Name

J1939.Busy

Description

Note This property applies to only the CAN J1939 application protocol.

Busy is a special ECU state defined in the SAE J1939 standard. A busy ECU receives
subsequent RTS messages while handling a previous RTS/CTS communication.

If the ECU cannot respond immediately to an RTS request, the ECU may send CTS
Hold messages. In this case, the originator receives information about the busy state
and waits until the ECU leaves the busy state. (That is, the ECU no longer sends CTS
Hold messages and sends the first CTS message with the requested data.)

Use the ECU Busy property to simulate this ECU behavior. If a busy XNET ECU
receives a CTS message, it sends CTS Hold messages instead of CTS data messages
immediately. Afterward, if clearing the busy property, the XNET ECU resumes
handling the transport protocol starting with CTS data messages, as the originator
expects.

ni.com340

NI-XNET 20.5

SAE J1939:ECU

Data Type Direction Required? Default
Write Only No Unassigned

Property Class

XNET Session

Short Name

J1939.ECU

Description

Note This property applies to only the CAN J1939 application protocol.

This property assigns a database ECU to a J1939 session. Setting this property
changes the node address and J1939 64-bit ECU name of the session to the values
stored in the database ECU object. Changing the node address starts an address
claiming procedure, as described in the SAE J1939:Node Address property.

Changing the node address causes NI-XNET to start the interface; you must set any
properties that are to be set before the interface starts before changing the node
address. Also, note that setting the node address does not start the session. J1939
traffic is not retained by an input session until XNET Start.vi or XNET Read.vi are
explicitly called.

You can assign the same ECU to multiple sessions running on the same CAN
interface (for example, CAN1). All sessions with the same assigned ECU represent
one J1939 node.

If multiple sessions have been assigned the same ECU, setting the SAE J1939:Node
Address property in one session changes the address in all sessions with the same
assigned ECU running on the same CAN interface.

For more information, refer to the SAE J1939:Node Address property.

© National Instruments 341

NI-XNET 20.5

SAE J1939:NodeName

Data Type Direction Required? Default
Read/Write Yes 0

Property Class

XNET Session

Short Name

J1939.NodeName

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the name value of a J1939 session. The name is an unsigned
64-bit integer value. Beside the SAE J1939:Node Address property, the value is
specific to the ECU you want to emulate using the session. That means the session
can act as if it were the real-world ECU, using the identical address and name value.

The name value is used within the address claiming procedure. If the ECU (session)
wants to claim its address, it sends out an address claiming message. That message
contains the ECU address and the name value of the current session's ECU. If there is
another ECU within the network with an identical address but lower name value, the
current session loses its address. In this case, the session cannot send out further
messages, and all addressed messages using the previous address of the current
session are addressed to another ECU within the network.

The most significant bit (bit 63) in the Node Name defines the ECU's arbitrary
address capability (bit 63 = 1 means it is arbitrary address capable). If the node
cannot use the assigned address, it automatically tries to claim another random
value between 128 and 247 until it is successful.

The name value has multiple bit fields, as described in SAE J1939-81 (Network
Management). A single 64-bit value represents the name value within XNET.

For more information, refer to the SAE J1939:Node Address property.

ni.com342

NI-XNET 20.5

SAE J1939:Maximum Repeat CTS

Data Type Direction Required? Default
Read/Write No 2

Property Class

XNET Session

Short Name

J1939.MAXReptCTS

Description

Note This property applies to only the CAN J1939 application protocol.

This property limits the number of requests for retransmission of data packet(s)
using the TP.CM_CTS message.

This property is related to handling the transport protocol.

SAE J1939:Number of Packets Received

Data Type Direction Required? Default
Read/Write No 255

Property Class

XNET Session

Short Name

J1939.NumPktsRecv

Description

Note This property applies to only the CAN J1939 application protocol.

© National Instruments 343

NI-XNET 20.5

This property changes the maximum number of data packet(s) that can be received
in one block at the responder node.

This property is related to handling the transport protocol.

SAE J1939:Number of Packets Response

Data Type Direction Required? Default
Read/Write No 255

Property Class

XNET Session

Short Name

J1939.NumPktsResp

Description

Note This property applies to only the CAN J1939 application protocol.

This property limits the maximum number of packets in a response. This allows the
originator node to limit the number of packets in the TP.CM_CTS message. When the
responder complies with this limit, it ensures the sender always can retransmit
packets that the responder may not have received.

This property is related to handling the transport protocol.

SAE J1939:Include Destination Address in PGN

Data Type Direction Required? Default
Read/Write No False

Property Class

XNET Session

ni.com344

NI-XNET 20.5

Short Name

J1939.IncludeDestAddrInPGN

Description

Note This property applies only to the CAN J1939 application protocol.

Incoming J1939 frames are matched to an XNET database by the Parameter Group
Number (PGN) of the frame. When receiving PDU1 frames, the destination address
of the frame (J1939 PS field) is ignored when calculating the PGN, in accordance to
the J1939 specification. This causes an XNET session to receive all frames that share
the same PGN, making it difficult to distinguish destinations for traffic.

When set to True, this property instructs NI-XNET to include the destination address
when extracting the PGN from the frame. This allows the same PGN sent to different
destination addresses to be handled by separate input sessions.

This property may be set at any time. When set after session start, it will not affect
frames already received.

The SAE J1939:Include Destination Address in PGN property is
valid only for input sessions. It is not valid for stream sessions. This property affects
all frames in a session.

SAE J1939:Timing:Hold Time Th
Data Type Direction Required? Default

Read/Write No 0.5 s

Property Class

XNET Session

Short Name

J1939.HoldTimeTh

© National Instruments 345

NI-XNET 20.5

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the Hold Time Timeout value at the responder node. The
value specifies the minimum delay between a TP.CM_CTS hold message and the
next TP.CM_CTS message, in seconds.

This property is related to handling the transport protocol.

SAE J1939:Timing:Response Time Tr_SD
Data Type Direction Required? Default

Read/Write No 0 s

Property Class

XNET Session

Short Name

J1939.RespTimeTrSD

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the Device Response Time value for specific destination
messages (TP.CM_RTS/CTS messages). The value specifies the minimum delay
between receipt of a message and sending a response. This value also specifies a
minimum time delay between packets of a multipacket message directed to a
specific destination.

According to the J1939 specification, the time between packets of a multipacket
message directed to a specific destination may be 0 ms to 200 ms. Increasing the
value of nxPropSession_J1939ResponseTimeTrSD can adversely affect
performance in handling multipacket messages.

ni.com346

NI-XNET 20.5

SAE J1939:Timing:Response Time Tr_GD
Data Type Direction Required? Default

Read/Write No 0.05 s

Property Class

XNET Session

Short Name

J1939.RespTimeTrGD

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the Device Response Time for global destination messages
(TP.CM_BAM messages). The value is the minimum delay between sending two
TP.CM_BAM messages, in seconds. The recommended range is 0.05 s to 0.200 s.

This property is related to handling the transport protocol.

SAE J1939:Timing:Timeout T1
Data Type Direction Required? Default

Read/Write No 0.75 s

Property Class

XNET Session

Short Name

J1939.TimeoutT1

© National Instruments 347

NI-XNET 20.5

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T1 value for the responder node. The value is the
maximum gap between two received TP.DT messages, in seconds.

This property is related to handling the transport protocol.

SAE J1939:Timing:Timeout T2
Data Type Direction Required? Default

Read/Write No 1.25 s

Property Class

XNET Session

Short Name

J1939.TimeoutT2

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T2 value at the responder node. This value is the
maximum gap between sending out the TP.CM_CTS message and receiving the next
TP.DT message, in seconds.

This property is related to handling the transport protocol.

SAE J1939:Timing:Timeout T3
Data Type Direction Required? Default

Read/Write No 1.25 s

ni.com348

NI-XNET 20.5

Property Class

XNET Session

Short Name

J1939.TimeoutT3

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T3 value at the originator node. The value is the
maximum gap between sending out a TP.CM_RTS message or the last TP.DT
message and receiving the TP.CM_CTS response, in seconds.

This property is related to handling the transport protocol.

SAE J1939:Timing:Timeout T4
Data Type Direction Required? Default

Read/Write No 1.05 s

Property Class

XNET Session

Short Name

J1939.TimeoutT4

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T4 value at the originator node. This value is the
maximum gap between the TP.CM_CTS hold message and the next TP.CM_CTS
message, in seconds.

© National Instruments 349

NI-XNET 20.5

This property is related to handling the transport protocol.

XNET Read.vi
Purpose

Reads data from the network using an XNET session.

Description

The instances of this polymorphic VI specify the type of data returned.

The XNET Read and XNET Write VIs are optimized for real-time performance. The
XNET Read VI executes quickly and avoids access to shared resources that can
induce jitter on other VI priorities.

There are three categories of XNET Read instance VIs:

■ Signal: Use when the session mode is Signal Input. The XNET Read VI
instance must match the mode exactly (for example, the Signal Waveform
instance when mode is Signal Input Waveform).
■ Frame: Use when the session mode is Frame Input. The XNET Read VI
instance specifies the desired data type for frames and is not related to the
mode. For an easy-to-use data type, use the CAN, FlexRay, or LIN instance.
■ State: Use to read state, status, and time information for the session
interface. You can use these instances in addition to Signal or Frame instances,
and they are not related to the mode. The data these instances return is
optimized for performance. Although property nodes may return similar
runtime data, those properties are not necessarily optimized for real-time
loops.

The XNET Read instance VIs are:

■ Signal Single-Point: The session mode is Signal Single-Point.
■ Signal Waveform: The session mode is Signal Waveform.
■ Signal XY: The session mode is Signal Input XY.

ni.com350

NI-XNET 20.5

■ Frame CAN: The session uses a CAN interface, and the mode is Frame Input
Stream, Frame Input Queued, or Frame Input Single-Point.
■ Frame Ethernet: Reads data from a session as an array of Ethernet frames.
The session must use an Ethernet interface and a mode of Frame Input
Stream.
■ Frame FlexRay: The session uses a FlexRay interface, and the mode is Frame
Input Stream, Frame Input Queued, Frame Input Single-Point, PDU Input
Queued (similar to Frame Input Queued), and PDU Input Single-Point (similar
to Frame Input Single-Point).
■ Frame LIN: The session uses a LIN interface, and the mode is Frame Input
Stream, Frame Input Queued, or Frame Input Single-Point.
■ Frame Raw: A data type for frame input that is protocol independent and
more efficient than the protocol-specific instances.
■ State CAN Comm: Returns the CAN interface's communication state.
■ State FlexRay Comm: Returns the FlexRay interface's communication state.
■ State FlexRay Cycle Macrotick: Returns the current global time of the
session FlexRay interface, represented as cycle and macrotick.
■ State FlexRay Statistics: Returns the communication statistics for the
session FlexRay interface.
■ State LIN Comm: Returns the LIN interface's communication state.
■ State SAE J1939 Comm: Returns the state of J1939 communication.
■ State Time Comm: Returns the LabVIEW timestamp at which
communication began for the session interface.
■ State Time Current: Returns the session interface current time as a LabVIEW
timestamp.
■ State Time Start: Returns the LabVIEW timestamp at which communication
started for the session interface. This time always precedes the
Communication time.
■ State Time Trigger: Reads the captured timestamp for an imported Time
Trigger.
■ State Session Info: Returns the current state for the session provided.

© National Instruments 351

NI-XNET 20.5

Note: If an overflow error occurs while multiple input stream sessions are open on the same
interface, all input stream sessions must be either stopped or flushed before new data can
be received. For more information, refer to XNET Flush.vi.

XNET Read (Signal Single-Point).vi

Purpose

Reads data from a session of Signal Input Single-Point mode.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session mode must be Signal Input Single-
Point.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

data returns a one-dimensional array of signal values. Each signal value is scaled, 64-bit
floating point.

Each array element corresponds to a signal configured for the session. The order of signals
in the array corresponds to the order in the session list.

The data returns the most recent value received for each signal. If multiple frames for a
signal are received since the previous call to the XNET Read (Signal Single-Point) VI (or
session start), only signal data from the most recent frame is returned.

If no frame is received for the corresponding signals since you started the session, the signal
Default Value is returned.

ni.com352

NI-XNET 20.5

For an example of how this data applies to network traffic, refer to Signal Input Single-Point
Mode.

A trigger signal returns a value of 1.0 or 0.0, depending on whether its frame arrived since
the last Read (or Start) or not. For more information about trigger signals, refer to Signal
Input Single-Point Mode.

error out is the error cluster output (refer to Error Handling).

XNET Read (Signal Waveform).vi

Purpose

Reads data from a session of Signal Input Waveform mode.

The data represents a waveform of resampled values for each signal in the session.
You can wire the data directly to a LabVIEW Waveform Graph for display.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session mode must be Signal Input
Waveform.

number to read is the number of samples desired.

If number to read is positive (or 0), the number of samples returned (size of Y arrays) is no
greater than this number. If timeout is nonzero, the number returned is exactly this number
on success.

If number to read is negative (typically –1), the maximum number of samples is returned. If
number to read is negative, you must use a timeout of zero.

This input is optional. The default value is –1.

© National Instruments 353

NI-XNET 20.5

timeout is the time to wait for number to read samples to become available.

The timeout is a LabVIEW relative time, represented as 64-bit floating-point in units of
seconds.

If timeout is positive, the XNET Read (Signal Waveform) VI waits for number to read

samples, then returns that number. If the samples do not arrive prior to the timeout, an
error is returned.

If timeout is negative, the XNET Read (Signal Waveform) VI waits indefinitely for
number to read samples.

If timeout is zero, the XNET Read (Signal Waveform) VI does not wait and immediately
returns all available samples up to the limit number to read specifies.

Because time determines sample availability, typical values for this timeout are 0 (return
available) or a large positive value such as 100.0 (wait for a specific number to read). This
input is optional. The default value is 0.0.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

data returns a one-dimensional array of LabVIEW waveforms.

Each array element corresponds to a signal configured for the session. The order of signals
in the array corresponds to the order in the session list.

The waveform elements are:

t0 is the waveform start time. This is a LabVIEW absolute timestamp that specifies the
time for the first sample in the Y array.

dt is the waveform delta time. This is a LabVIEW relative time that specifies the time
between each sample in the Y array. LabVIEW relative time is represented as 64-bit
floating point in units of seconds. The waveform dt always is the inverse of the XNET
Session Resample Rate property.

ni.com354

NI-XNET 20.5

Y is the array of resampled signal values. Each signal value is scaled, 64-bit floating
point.

The Y array size is the same for all waveforms returned, because it is determined
based on time, and not the number of frames received.

If no frame is received for the corresponding signals since you started the session, the
XNET Signal Default Value is returned.

For an example of how this data applies to network traffic, refer to Signal Input Waveform
Mode.

error out is the error cluster output (refer to Error Handling).

XNET Read (Signal XY).vi

Purpose

Reads data from a session of Signal Input XY mode.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session mode must be Signal Input XY.

number to read is the number of values desired.

If number to read is positive (or 0), the size of value arrays is no greater than this number.

If number to read is negative (typically –1), the maximum number of values is returned.

This input is optional. The default value is –1.

If number to read values are received for any signal, the XNET Read (Signal XY) VI returns

© National Instruments 355

NI-XNET 20.5

those values, even if the time limit has not occurred. Therefore, to read values up to the
time limit, leave number to read unwired (–1).

time limit is the timestamp to wait for before returning signal values.

If time limit is valid, the XNET Read (Signal XY) VI waits for the timestamp to occur, then
returns available values (up to number to read). If you increment time limit by a fixed
number of seconds for each call to the XNET Read (Signal XY) VI, you effectively obtain a
moving window of signal values.

If time limit is unwired (invalid), the XNET Read (Signal XY) VI returns immediately all
available values up to the current time (up to number to read).

This input is optional. The default value is an invalid timestamp.

The timeout of other XNET Read VI instances specifies the maximum amount time to wait
for a specific number to read values. The time limit of the XNET Read (Signal XY) VI does not
specify a worst-case timeout value, but rather a specific absolute timestamp to wait for.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

data returns an array of LabVIEW clusters.

Each array element corresponds to a signal configured for the session. The order of signals
in the array corresponds to the order in the session list.

Each cluster contains two arrays, one for timestamp and one for value. For each signal, the
size of the timestamp and value arrays always is the same, such that it represents a single
array of timestamp/value pairs.

Each timestamp/value pair represents a value from a received frame. When signals exist in
different frames, the array sizes may be different from one cluster (signal) to another.

The cluster elements are:

ni.com356

NI-XNET 20.5

timestamp is the array of LabVIEW timestamps, one for each frame received that
contains the signal.

Each timestamp represents the absolute time when the XNET interface received the
frame (end of frame), accurate to microseconds.

value is the array of signal values, one for each frame received that contains the
signal.

Each signal value is scaled, 64-bit floating point.

The value array size is the same as the timestamp array size.

For an example of how this data applies to network traffic, refer to Signal Input XY Mode.

When you use this instance with a session of Signal Input Single-Point mode, time limit and
number to read are ignored, and the timestamp and value arrays always contain only one
element per signal. This effectively returns a single pair of timestamp and value for every
signal.

error out is the error cluster output (refer to Error Handling).

Description

You also can use this instance to read data from a session of Signal Input Single-
Point mode, although the XNET Read (Signal Single-Point) VI is more common for
that mode.

The data represents an XY plot of timestamp/value pairs for each signal in the
session. You can wire the data directly to a LabVIEW XY Graph for display.

XNET Read (Frame CAN).vi

Purpose

Reads data from a session as an array of CAN frames. The session must use a CAN
interface and a mode of Frame Input Stream, Frame Input Queued, or Frame Input
Single-Point.

© National Instruments 357

NI-XNET 20.5

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session mode must be Frame Input Stream,
Frame Input Queued, or Frame Input Single-Point.

number to read is the number of frame values desired.

If number to read is positive (or 0), the data array size is no greater than this number.

If number to read is negative (typically –1), all available frame values are returned. If
number to read is negative, you must use timeout of 0.

This input is optional. The default value is –1.

If the session mode is Frame Input Single-Point, set number to read to either –1 or the
number of frames in the sessions list. This ensures that the XNET Read (Frame CAN) VI can
return the current value of all session frames.

timeout is the time to wait for number to read frame values to become available.

The timeout is a LabVIEW relative time, represented as 64-bit floating-point in units of
seconds.

If timeout is positive, the XNET Read (Frame CAN) VI waits for number to read frame values,
then returns that number. If the values do not arrive prior to the timeout, an error is
returned.

If timeout is negative, the XNET Read (Frame CAN) VI waits indefinitely for number to read

frame values.

If timeout is zero, the XNET Read (Frame CAN) VI does not wait and immediately returns all
available frame values up to the limit number to read specifies.

ni.com358

NI-XNET 20.5

This input is optional. The default value is 0.0.

If the session mode is Frame Input Single-Point, you must leave timeout unwired (0.0).
Because this mode reads the most recent value of each frame, timeout does not apply.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

data returns an array of LabVIEW clusters.

Each array element corresponds to a frame the session receives.

For a Frame Input Single-Point session mode, the order of frames in the array corresponds
to the order in the session list.

The elements of each cluster are specific to the CAN protocol. For more information, refer to
Summary of the CAN Standard or the CAN protocol specification.

The cluster elements are:

identifier is the CAN frame arbitration identifier.

If extended? Is false, the identifier uses standard format, so 11 bits of this identifier
are valid. If extended? Is true, the identifier uses extended format, so 29 bits of this
identifier are valid.

extended? is a Boolean value that determines whether the identifier uses extended
format (true) or standard format (false).

echo? is a Boolean value that determines whether the frame was an echo of a
successful transmit (true), or received from the network (false).

This value is true only when you enable echo of transmitted frames by setting the
XNET Session Interface:Echo Transmit? property to True.

type is the frame type (decimal value in parentheses):

CAN Data (0) The CAN data frame contains payload data. This is the most
commonly used frame type for CAN. In ISO CAN FD mode,
the CAN data type is more specific and is one of the types
listed below.

© National Instruments 359

NI-XNET 20.5

CAN 2.0 Data (8) The frame contains payload data and has been transmitted
in an ISO CAN FD session using the CAN 2.0 standard.

CAN FD Data (16) The frame contains payload data and has been transmitted
in an ISO CAN FD session using the ISO CAN FD standard.

CAN FD+BRS Data
(24)

The frame contains payload data and has been transmitted
in an ISO CAN FD session using the CAN FD+BRS standard.

CAN Remote (1) A CAN remote frame. An ECU transmits a CAN remote frame
to request data for the corresponding identifier. Your
application can respond by writing a CAN data frame for the
identifier.

Log Trigger (225) A Log Trigger frame. This frame is generated when a trigger
occurs on an external connection (for example, PXI_Trig0).
For information about this frame, including the other frame
fields, refer to Special Frames.

Start Trigger (226) A Start Trigger frame is generated when the interface is
started (refer to Start Interface for more information). For
information about this frame, including the other frame
fields, refer to Special Frames.

CAN Bus Error (2) A CAN Bus Error frame is generated when a bus error is
detected on the CAN bus. For information about this frame,
including the other frame fields, refer to Special Frames.

timestamp represents the absolute time when the XNET interface received the frame
(sampled the Ack bit), accurate to microseconds. The timestamp uses the LabVIEW
absolute timestamp type.

payload is the array of data bytes for the CAN data frame.

The array size indicates the received frame value payload length. According to the
CAN protocol, this payload length range is 0–8. For CAN FD, the range can be 0–8, 12,
16, 20, 24, 32, 48, or 64.

For a received remote frame (type of CAN Remote), the payload length in the frame
value specifies the number of payload bytes requested. This payload length is
provided to your application by filling payload with the requested number of bytes.
Your application can use the payload array size, but you must ignore the actual values
in the payload bytes.

ni.com360

NI-XNET 20.5

For an example of how this data applies to network traffic, refer to Frame Input Stream
Mode, Frame Input Queued Mode, or Frame Input Single-Point Mode.

error out is the error cluster output (refer to Error Handling).

Description

The data represents an array of CAN frames. Each CAN frame uses a LabVIEW cluster
with CAN-specific elements.

The CAN frames are associated to the session's list of frames as follows:

■ Frame Input Stream: Array of all frame values received (list ignored).
■ Frame Input Queued: Array of frame values received for the single frame
specified in the list.
■ Frame Input Single-Point: Array of single frame values, one for each frame
specified in the list.

Due to issues with LabVIEW memory allocation for clusters with an array, this XNET

Read VI instance can introduce jitter to a high-priority loop on LabVIEW Real-Time
(RT). The XNET Read (Frame Raw) VI instance provides optimal performance for
high-priority loops.

XNET Read (Frame Ethernet).vi

Purpose

Reads data from a session as an array of Ethernet frames. The session must use an
Ethernet interface and a mode of Frame Input Stream.

Format

© National Instruments 361

NI-XNET 20.5

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session mode must be Frame Input Stream.

number to read is the number of frame values desired.
If number to read is positive (or 0), the data array size is no greater than this number.

If number to read is negative (typically –1), all available frame values are returned. If
number to read is negative, you must use timeout of 0.

This input is optional. The default value is –1.

timeout is the time to wait for number to read frame values to become available. The
timeout is a LabVIEW relative time, represented as 64-bit floating-point in units of seconds.
If timeout is positive, the XNET Read (Frame Ethernet) VI waits for number to read frame
values, then returns that number. If the values do not arrive prior to the timeout, an error is
returned.

If timeout is negative, the XNET Read (Frame Ethernet) VI waits indefinitely for
number to read frame values.

If timeout is zero, the XNET Read (Frame Ethernet) VI does not wait and immediately returns
all available frame values up to the limit specified by number to read.

This input is optional. The default value is 0.0.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

data returns an array of LabVIEW clusters.
Each array element corresponds to a frame that the session receives. The elements of each
cluster are specific to the Ethernet protocol.

type is the type of Ethernet frame. It is a ring (enumerated list) with the following
values:

Enumeration Value Description

ni.com362

NI-XNET 20.5

Ethernet Data 0 Ethernet frame received or
transmitted.

local timestamp is a timestamp using XNET local time. The timestamp uses the
LabVIEW absolute timestamp type.
The timestamp point in the Ethernet frame occurs at the beginning of the first
symbol following the start of frame delimiter.

The location of the timestamp point depends on the Port Mode of the session
interface. When Port Mode is Direct, the location of the timestamp point corresponds
to time synchronization protocols, using the reference plane marking the boundary
between the port's connector (copper wire) and PHY. When Port Mode is Tap, the
location of the timestamp point is the midpoint between the connector/PHY
reference plane of this session's interface and the connector/PHY reference plane of
the tap partner.

network timestamp is a timestamp using network time (clock of the network's time
synchronization protocol, such as IEEE Std 802.1AS). The timestamp uses the
LabVIEW absolute timestamp type.
The timestamp point in the Ethernet frame occurs at the beginning of the first
symbol following the start of frame delimiter.

The location of the timestamp point depends on the Port Mode of the session
interface. When Port Mode is Direct, the location of the timestamp point corresponds
to time synchronization protocols, using the reference plane marking the boundary
between the port's connector (copper wire) and PHY. When Port Mode is Tap, the
location of the timestamp point is the midpoint between the connector/PHY
reference plane of this session's interface and the connector/PHY reference plane of
the tap partner.

network synced? contains the value of the Synced property at the time that both
timestamps are acquired, to specify whether the network timestamp is synchronized
to the network (true) or not (false).

receive? indicates whether the frame occurred due to receive (true) or not (false).
For XNET Read on the monitor path:

■ When Port Mode of this session's interface is Direct, this flag is true when a
frame is received on the interface.
■ When Port Mode of this session's interface is Tap, the value true indicates
that the frame was received by this interface, and will be transmitted on the
tap partner.

© National Instruments 363

NI-XNET 20.5

For XNET Read on the endpoint path, this flag is always true.

transmit? indicates whether the frame occurred due to transmit (true) or not (false).
For XNET Read on the monitor path:

■ When Port Mode of this session's interface is Direct, the monitor path echoes
each transmit that was submitted to XNET Write on the endpoint path.
■ When Port Mode of this session's interface is Tap, the value true indicates
that the frame was received by the tap partner and transmitted on this
interface (i.e., not an echo of Write).

For XNET Read on the endpoint path, this flag is always false.

error? indicates that an error occurred during reception/transmission of the frame
(false = good frame, true = bad frame).

frame data is an array of bytes that provides the data of the Ethernet frame.
Using the terminology from IEEE Std 802.3, the frame data begins with the first byte
of the destination MAC address, and ends with the last byte of the
mac_service_data_unit (MSDU). For examples of two commonly used formats for
frame data, refer to the Raw Frame Format.

In order to obtain the payload data that is contained in the frame, your code must
decode the layered headers in frame data. For example, for an IPv4 UDP packet, you
decode the Ethernet header, including the EtherType, to determine that the
remaining data is an IPv4 packet; then you decode the IPv4 header, including the
Protocol, to determine that the remaining data is a UDP packet; and then you decode
the UDP header and its payload data.

The maximum length of this array is provided in the Payload Length Maximum
property.

fcs is the IEEE Std 802.3 Frame Check Sequence (FCS) that was received with the
frame.

error out is the error cluster output (refer to Error Handling).

Description

The data represents an array of Ethernet frames. Each Ethernet frame uses a
LabVIEW cluster with Ethernet-specific elements.

ni.com364

NI-XNET 20.5

XNET Read (Frame FlexRay).vi

Purpose

Reads data from a session as an array of FlexRay frames. The session must use a
FlexRay interface and a mode of Frame Input Stream, Frame Input Queued, or Frame
Input Single-Point.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session mode must be Frame Input Stream,
Frame Input Queued, or Frame Input Single-Point.

number to read is the number of frame values desired.

If number to read is positive (or 0), the data array size is no greater than this number.

If number to read is negative (typically –1), all available frame values are returned. If
number to read is negative, you must use a timeout of 0.

This input is optional. The default value is –1.

If the session mode is Frame Input Single-Point, set number to read to either –1 or the
number of frames in the session list. This ensures that the XNET Read (Frame FlexRay) VI
can return the current value of all session frames.

timeout is the time to wait for number to read frame values to become available.

The timeout is a LabVIEW relative time, represented as 64-bit floating-point in units of
seconds.

If timeout is positive, the XNET Read (Frame FlexRay) VI waits for number to read frame
values, then returns that number. If the values do not arrive prior to the timeout, an error is

© National Instruments 365

NI-XNET 20.5

returned.

If timeout is negative, the XNET Read (Frame FlexRay) VI waits indefinitely for
number to read frame values.

If timeout is zero, the XNET Read (Frame FlexRay) VI does not wait and immediately returns
all available frame values up to the limit number to read specifies.

This input is optional. The default value is 0.0.

If the session mode is Frame Input Single-Point, you must leave timeout unwired (0.0).
Because this mode reads the most recent value of each frame, timeout does not apply.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

data returns an array of LabVIEW clusters.

Each array element corresponds to a frame the session receives.

For the Frame Input Single-Point and PDU Input Single-Point session modes, the order of
frames/payload in the array corresponds to the order in the session list.

The elements of each cluster are specific to the FlexRay protocol. For more information,
refer to Summary of the FlexRay Standard or the FlexRay protocol specification.

The cluster elements are:

slot specifies the slot number within the FlexRay cycle.

cycle count specifies the cycle number.

The FlexRay cycle count increments from 0 to 63, then rolls over back to 0.

startup? is a Boolean value that specifies whether the frame is a startup frame (true)
or not (false).

sync? is a Boolean value that specifies whether the frame is a sync frame (true) or not
(false).

ni.com366

NI-XNET 20.5

preamble? is a Boolean value that specifies the value of the payload preamble
indicator in the frame header.

If the frame is in the static segment, preamble? being true indicates the presence of a
network management vector at the beginning of the payload. The XNET Cluster
FlexRay:Network Management Vector Length property specifies the number of bytes
at the beginning.

If the frame is in the dynamic segment, preamble? being true indicates the presence
of a message ID at the beginning of the payload. The message ID is always 2 bytes in
length.

If preamble? is false, the payload does not contain a network management vector or a
message ID.

chA is a Boolean value that specifies whether the frame was received on channel A
(true) or not (false).

chB is a Boolean value that specifies whether the frame was received on channel B
(true) or not (false).

echo? Is a Boolean value that determines whether the frame was an echo of a
successful transmit (true) or received from the network (false).

This value is true only when you enable echo of transmitted frames by setting the
XNET Session Interface:Echo Transmit? property to true. Frames are echoed only to a
session with the Frame Input Stream mode.

type is the frame type (decimal value in parentheses):

FlexRay
Data (32)

FlexRay data frame. The frame contains payload data. This is the most
commonly used frame type for FlexRay. All elements in the frame are
applicable.

FlexRay
Null (33)

FlexRay null frame. When a FlexRay null frame is received, it indicates
that the transmitting ECU did not have new data for the current cycle.

Null frames occur in the static segment only. This frame type does not
apply to frames in the dynamic segment.

This frame type occurs only when you set the XNET Session
Interface:FlexRay:Null Frames To Input Stream? property to true. This
property enables logging of received null frames to a session with the
Frame Input Stream mode. Other sessions are not affected.

© National Instruments 367

NI-XNET 20.5

For this frame type, the payload array is empty (size 0), and preamble?

and echo? are false. The remaining elements in the frame reflect the
data in the received null frame and the timestamp when it was received.

FlexRay
Symbol
(34)

FlexRay symbol frame. The frame contains a symbol received on the
FlexRay bus.

For this frame type, the first payload byte (offset 0) specifies the type of
symbol: 0 for MTS, 1 for wakeup. The frame payload length is 1 or higher,
with bytes beyond the first byte reserved for future use. The frame
timestamp specifies when the symbol window occurred. The cycle
count, channel A indicator, and channel B indicator are encoded the
same as FlexRay data frames. All other fields in the frame are unused (0).

Log
Trigger
(225)

A Log Trigger frame. This frame is generated when a trigger occurs on an
external connection (for example, PXI_Trig0). For information about this
frame, including the other frame fields, refer to Special Frames.

Start
Trigger
(226)

A Start Trigger frame is generated when the interface is started (refer to
Start Interface for more information). For information about this frame,
including the other frame fields, refer to Special Frames.

timestamp represents the absolute time when the XNET interface received the frame
(end of frame), accurate to microseconds. The timestamp uses the LabVIEW absolute
timestamp type.

While the NI-XNET FlexRay interface is communicating (integrated), this timestamp is
normally derived from FlexRay global time, the FlexRay network timebase. Under
this configuration, the timestamp does not drift as compared to the FlexRay global
time (the XNET Read (State Flexray Cycle Macrotick) VI), but it may drift relative to
other NI hardware products and the LabVIEW absolute timebase. If you prefer to
synchronize this timestamp to other sources, you can use the
XNET Connect Terminals VI to change the source of the Master Timebase terminal.

payload is the array of data bytes for FlexRay frames of type FlexRay Data or
FlexRay Null.

The array size indicates the received frame value payload length. According to the
FlexRay protocol, this length range is 0–254.

ni.com368

NI-XNET 20.5

For PDU session modes, only the payload for the particular PDU is returned, not the
entire frame.

For an example of how this data applies to network traffic, refer to Frame Input Stream
Mode, Frame Input Queued Mode, or Frame Input Single-Point Mode.

error out is the error cluster output (refer to Error Handling).

Description

The data represents an array of FlexRay frames. Each FlexRay frame uses a LabVIEW
cluster with FlexRay-specific elements.

The FlexRay frames are associated to the session list of frames as follows:

■ Frame Input Stream: Array of all frame values received (list ignored).
■ Frame Input Queued: Array of frame values received for the single frame
specified in the list.
■ Frame Input Single-Point: Array of single frame values, one for each frame
specified in the list.
■ PDU Input Queued: Array of frame (PDU payload) values received for the
single PDU specified in the list. This mode is similar to Frame Input Queued.
■ PDU Input Single-Point: Array of single frame (PDU payload) values, one for
each PDU specified in the list. This mode is similar to Frame Input Single-

Point.

Due to issues with LabVIEW memory allocation for clusters with an array, this XNET

Read VI instance can introduce jitter to a high-priority loop on LabVIEW Real-Time
(RT). The XNET Read (Frame Raw) VI instance provides optimal performance for
high-priority loops.

XNET Read (Frame LIN).vi

Purpose

Reads data from a session as an array of LIN frames. The session must use a LIN
interface and a mode of Frame Input Stream, Frame Input Queued, or Frame Input
Single-Point.

© National Instruments 369

NI-XNET 20.5

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session mode must be Frame Input Stream,
Frame Input Queued, or Frame Input Single-Point.

number to read is the number of frame values desired.

If number to read is positive (or 0), the data array size is no greater than this number.

If number to read is negative (typically –1), all available frame values are returned. If
number to read is negative, you must use timeout of 0.

This input is optional. The default value is –1.

If the session mode is Frame Input Single-Point, set number to read to either –1 or the
number of frames in the sessions list. This ensures that the XNET Read (Frame LIN) VI can
return the current value of all session frames.

timeout is the time to wait for number to read frame values to become available.

The timeout is a LabVIEW relative time, represented as 64-bit floating-point in units of
seconds.

If timeout is positive, the XNET Read (Frame LIN) VI waits for number to read frame values,
then returns that number. If the values do not arrive prior to the timeout, an error is
returned.

If timeout is negative, the XNET Read (Frame LIN) VI waits indefinitely for number to read

frame values.

If timeout is zero, the XNET Read (Frame LIN) VI does not wait and immediately returns all
available frame values up to the limit number to read specifies.

ni.com370

NI-XNET 20.5

This input is optional. The default value is 0.0.

If the session mode is Frame Input Single-Point, you must leave timeout unwired (0.0).
Because this mode reads the most recent value of each frame, timeout does not apply.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

data returns an array of LabVIEW clusters.

Each array element corresponds to a frame the session receives.

For a Frame Input Single-Point session mode, the order of frames in the array corresponds
to the order in the session list.

The elements of each cluster are specific to the LIN protocol. For more information, refer to
Summary of the LIN Standard or the LIN protocol specification.

For the Frame Input Stream session mode, LIN frames are read in their raw form, without
interpretation of their elements using the database. For the Frame Input Single-point and
Frame Input Queued session modes, information from the database is used to interpret the
LIN frames for ease of use.

The following cluster description applies to session modes Frame Input Single-point and
Frame Input Queued. For these modes, the cluster elements are:

identifier is the LIN frame identifier.

The identifier is a number from 0 to 63. This number identifies the content of the data
contained within payload.

The location of this ID within the frame depends on the value of event slot?. If
event slot? is false, this ID is taken from the frame's header. If event slot? is true, this
ID is taken from the first payload byte. This ensures that the number identifies the
payload, regardless of how it was scheduled.

Regardless of its location, this is the unprotected ID, without parity applied. For more
information about LIN ID protection, refer to Summary of the LIN Standard.

© National Instruments 371

NI-XNET 20.5

event slot? is a Boolean value that specifies whether the frame was received within
an event-triggered schedule entry (slot). If the value is true, the frame was received
within an event-triggered slot. If the value is false, the frame was received within an
unconditional or sporadic slot.

When this value is true, event ID contains the ID from the frame's header.

event ID is the identifier for an event-triggered slot (event slot? true).

When event slot? is true, event ID is the ID from the frame's header. The event ID is a
number from 0 to 63. This is the unprotected ID, without parity applied.

When event slot? is false, this value does not apply (it is 0).

For a stream input session only, if Interface:LIN:Checksum to Input Stream? is false
(default), event ID contains 0 for each frame. If true, event ID contains the received
checksum for each frame.

echo? is a Boolean value that determines whether the frame was an echo of a
successful transmit (true), or received from the network (false).

This value is true only when you enable echo of transmitted frames by setting the
XNET Session Interface:Echo Transmit? property to True.

type is the frame type (decimal value in parentheses):

LIN Data (64) The LIN data frame contains payload data.

Log Trigger (225) A Log Trigger frame. This frame is generated when a trigger
occurs on an external connection (for example, PXI_Trig0). For
information about this frame, including the other frame fields,
refer to Special Frames.

Start Trigger (226) A Start Trigger frame is generated when the interface is started
(refer to refer to Start Interface for more information). For
information about this frame, including the other frame fields,
refer to Special Frames.

LIN Bus Error (65) A LIN Bus Error frame is generated when a bus error is detected
on the LIN bus. For information about this frame, including the
other frame fields, refer to Special Frames.

LIN No Response
(66)

A LIN No Response frame is generated when a header with no
response is detected on the LIN bus. For information about this
frame, including the other frame fields, refer to Special Frames.

ni.com372

NI-XNET 20.5

timestamp represents the absolute time when the XNET interface received the frame
(end of frame), accurate to microseconds. The timestamp uses the LabVIEW absolute
timestamp type.

payload is the array of data bytes for the LIN data frame.

The array size indicates the received frame's payload length. According to the LIN
protocol, this payload is 0–8 bytes in length.

If the frame payload is used within an event-triggered schedule entry (slot), the first
byte of payload is the identifier of the frame in its protected form (checksum applied).
This is required by the LIN standard even if the frame transmits in an unconditional
or sporadic slot. For this type of LIN frame, the actual data (for example, signal
values) is limited to 7 bytes.

For example, assume that frame ID 5 is received in an unconditional slot and an
event-triggered slot of ID 9. When you receive from the unconditional slot, identifier is
5, event slot? is false, event ID is 0, and the first payload byte contains 5 with
checksum applied. When you receive from the event-triggered slot, identifier is 5,
event slot? is true, event ID is 9, and the first payload byte contains 5 with checksum
applied. Regardless of how the frame is received, you can use the identifier to
determine the contents of the actual payload data contents in bytes 2–8.

The following cluster description applies to session mode Frame Input Stream. For this
mode, the cluster elements are:

identifier is the identifier received within the frame's header.

The identifier is a number from 0 to 63.

If the schedule entry (slot) is unconditional or sporadic, this identifies the payload
data (LIN frame). If the schedule entry is event triggered, this identifies the schedule
entry itself, and the protected ID contained in the first payload byte identifies the
payload.

event slot? is not used. This element is false.

event ID is not used. This element is 0.

echo? uses the same semantics as the previous description for Frame Input Queued.

type uses the same semantics as the previous description for Frame Input Queued.

© National Instruments 373

NI-XNET 20.5

timestamp uses the same semantics as the previous description for Frame Input
Queued.

payload uses the same semantics as the previous description for Frame Input
Queued.

For an example of how this data applies to network traffic, refer to Frame Input Stream
Mode, Frame Input Queued Mode, or Frame Input Single-Point Mode.

error out is the error cluster output (refer to Error Handling).

Description

The data represents an array of LIN frames. Each LIN frame uses a LabVIEW cluster
with LIN-specific elements.

The LIN frames are associated to the session's list of frames as follows:

■ Frame Input Stream: Array of all frame values received (list ignored).
■ Frame Input Queued: Array of frame values received for the single frame
specified in the list.
■ Frame Input Single-Point: Array of single frame values, one for each frame
specified in the list.

Due to issues with LabVIEW memory allocation for clusters with an array, this XNET

Read VI instance can introduce jitter to a high-priority loop on LabVIEW Real-Time
(RT). The XNET Read (Frame Raw) VI instance provides optimal performance for
high-priority loops.

XNET Read (Frame Raw).vi

Purpose

Reads data from a session as an array of raw bytes.

Format

ni.com374

NI-XNET 20.5

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session mode must be Frame Input Stream,
Frame Input Queued, or Frame Input Single-Point.

number to read is the number of bytes (U8) desired.

This number does not represent the number of frames to read. As encoded in raw data,
each frame can vary in length. Therefore, the number represents the maximum raw bytes to
read, not the number of frames.

Standard CAN and LIN frames are always 24 bytes in length. If you want to read a specific
number of frames, multiply that number by 24.

CAN FD and FlexRay frames vary in length. For example, if you pass number to read of 91,
the data might return 80 bytes, within which the first 24 bytes encode the first frame, and
the next 56 bytes encode the second frame.

If number to read is positive (or 0), the data array size is no greater than this number. The
minimum size for a single frame is 24 bytes.

If number to read is negative (typically –1), all available raw data is returned. If
number to read is negative, you must use a timeout of 0.

This input is optional. The default value is –1.

If the session mode is Frame Input Single-Point, set number to read to –1. This ensures that
the XNET Read (Frame Raw) VI can return the current value of all session frames.

timeout is the time to wait for number to read frame bytes to become available.

To avoid returning a partial frame, even when number to read bytes are available from the
hardware, this read may return fewer bytes in data. For example, assume you pass
number to read of 70 bytes and timeout of 10 seconds. During the read, two frames are
received, the first 24 bytes in size, and the second 56 bytes in size, for a total of 80 bytes. The
read returns after the two frames are received, but only the first frame is copied to data. If
the read copied 46 bytes of the second frame (up to the limit of 70), that frame would be
incomplete and therefore difficult to interpret. To avoid this problem, the read always
returns complete frames in data.

© National Instruments 375

NI-XNET 20.5

The timeout is a LabVIEW relative time, represented as 64-bit floating-point in units of
seconds.

If timeout is positive, the XNET Read (Frame Raw) VI waits for number to read frame bytes to
be received, then returns complete frames up to that number. If the bytes do not arrive
prior to the timeout, an error is returned.

If timeout is negative, the XNET Read (Frame Raw) VI waits indefinitely for number to read

frame bytes.

If timeout is zero, the XNET Read (Frame Raw) VI does not wait and immediately returns all
available frame bytes up to the limit number to read specifies.

This input is optional. The default value is 0.0.

If the session mode is Frame Input Single-Point, you must leave timeout unwired (0.0).
Because this mode reads the most recent value of each frame, timeout does not apply.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

data returns an array of bytes.

The raw bytes encode one or more frames using the Raw Frame Format. This frame format
is the same for read and write of raw data, and it is also used for log file examples.

The data always returns complete frames.
CAN, FlexRay, and LIN: For information about which elements of the raw frame are
applicable, refer to the frame read for the protocol in use (the Read (Frame CAN) VI, Read
(Frame FlexRay) VI, or Read (Frame LIN) VI). For example, when you read FlexRay frames for
a Frame Input Queued session, the only frame type is FlexRay Data (other types apply to
Frame Input Stream only).

Ethernet: Ethernet specifies its own encoding in the Raw Frame Format.

For an example of how this data applies to network traffic, refer to Frame Input Stream
Mode, Frame Input Queued Mode, or Frame Input Single-Point Mode.

ni.com376

NI-XNET 20.5

error out is the error cluster output (refer to Error Handling).

Description

The raw bytes encode one or more frames using the Raw Frame Format. The session
must use a mode of Frame Input Stream, Frame Input Queued, Frame Input Single-
Point, PDU Input Queued (similar to Frame Input Queued), or PDU Input Single-
Point (similar to Frame Input Single-Point). The raw frame format is protocol
independent, so the session can use a CAN, FlexRay, LIN, or Ethernet interface.

The raw frame format matches the format of data transferred to/from the XNET
hardware. Because it is not converted to/from LabVIEW clusters for ease of use, it is
more efficient with regard to performance. This XNET Read VI instance typically is
used to read raw frame data from the interface and log the data to a file for later
analysis. The NI-XNET examples provide code to read the raw frame data from the
log file and convert the raw data into protocol-specific LabVIEW clusters.

The raw frames are associated to the session's list of frames as follows:

■ Frame Input Stream: Array of all frame values received (list ignored).
■ Frame Input Queued: Array of frame values received for the single frame
specified in the list.
■ Frame Input Single-Point: Array of single frame values, one for each frame
specified in the list.
■ PDU Input Queued: Array of frame (PDU payload) values received for the
single PDU specified in the list. This mode is similar to Frame Input Queued.
■ PDU Input Single-Point: Array of single frame (PDU payload) values, one for
each PDU specified in the list. This mode is similar to Frame Input Single-

Point.

XNET Read (State CAN Comm).vi

Purpose

Reads the state of CAN communication using an XNET session.

© National Instruments 377

NI-XNET 20.5

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

CAN comm returns a LabVIEW cluster containing the communication elements. The
elements are:

communication state specifies the CAN interface state with respect to error
confinement (decimal value in parentheses):

Error Active (0) This state reflects normal communication, with few errors
detected. The CAN interface remains in this state as long as
receive error counter and transmit error counter are both below
128.

Error Passive (1) If either the receive error counter or transmit error counter

increment above 127, the CAN interface transitions into this
state. Although communication proceeds, the CAN device
generally is assumed to have problems with receiving frames.

When a CAN interface is in error passive state, acknowledgement
errors do not increment the transmit error counter. Therefore, if
the CAN interface transmits a frame with no other device (ECU)
connected, it eventually enters error passive state due to
retransmissions, but does not enter bus off state.

Bus Off (2) If the transmit error counter increments above 255, the CAN
interface transitions into this state. Communication immediately
stops under the assumption that the CAN interface must be
isolated from other devices.

ni.com378

NI-XNET 20.5

When a CAN interface transitions to the bus off state,
communication stops for the interface. All NI-XNET sessions for
the interface no longer receive or transmit frame values. To
restart the CAN interface and all its sessions, call the XNET Start

VI.

Init (3) This is the CAN interface initial state on power-up. The interface is
essentially off, in that it is not attempting to communicate with
other nodes (ECUs).

When the start trigger occurs for the CAN interface, it transitions
from the Init state to the Error Active state. When the interface
stops due to a call to the XNET Stop VI, the CAN interface
transitions from either Error Active or Error Passive to the Init
state. When the interface stops due to the Bus Off state, it
remains in that state until you restart.

transceiver error? indicates whether an error condition exists on the physical
transceiver. This is typically referred to as the transceiver chip NERR pin. False
indicates normal operation (no error), and true indicates an error.

sleep? indicates whether the transceiver and communication controller are in their
sleep state. False indicates normal operation (awake), and true indicates sleep.

last error specifies the status of the last attempt to receive or transmit a frame
(decimal value in parentheses):

None (0) The last receive or transmit was successful.

Stuff (1) More than 5 equal bits have occurred in sequence, which the CAN
specification does not allow.

Form (2) A fixed format part of the received frame used the wrong format.

Ack (3) Another node (ECU) did not acknowledge the frame transmit.

If you call the XNET Write VI and do not have a cable connected, or the
cable is connected to a node that is not communicating, you see this
error repeatedly. The CAN communication state eventually transitions to
Error Passive, and the frame transmit retries indefinitely.

Bit 1 (4) During a frame transmit (with the exception of the arbitration ID field),
the interface wanted to send a recessive bit (logical 1), but the
monitored bus value was dominant (logical 0).

© National Instruments 379

NI-XNET 20.5

Bit 0 (5) During a frame transmit (with the exception of the arbitration ID field),
the interface wanted to send a dominant bit (logical 0), but the
monitored bus value was recessive (logical 1).

CRC (6) The CRC contained within a received frame does not match the CRC
calculated for the incoming bits.

The receive error counter begins at 0 when communication starts on the CAN
interface. The counter increments when an error is detected for a received frame and
decrements when a frame is received successfully. The counter increases more for an
error than it is decreased for success. This ensures that the counter generally
increases when a certain ratio of frames (roughly 1/8) encounter errors.

The transmit error counter begins at 0 when communication starts on the CAN
interface. The counter increments when an error is detected for a transmitted frame
and decrements when a frame transmits successfully. The counter increases more for
an error than it is decreased for success. This ensures that the counter generally
increases when a certain ratio of frames (roughly 1/8) encounter errors.

When communication state transitions to Bus Off, the transmit error counter no
longer is valid.

fault? indicates that a fault occurred, and its code is available as fault code.

fault code returns a numeric code you can use to obtain a description of the fault. If
fault? is false, the fault code is 0.

A fault is an error that occurs asynchronously to the NI-XNET VIs your application
calls. The fault cause may be related to CAN communication, but it also can be
related to XNET hardware, such as a fault in the onboard processor. Although faults
are extremely rare, the XNET Read (State CAN Comm) VI provides a detection
method distinct from the error out of NI-XNET VIs, yet easy to use alongside the
common practice of checking the communication state.

To obtain a fault description, wire the fault code into the LabVIEW
Simple Error Handler VI error code input and view the resulting message. You also
can bundle the fault code into a LabVIEW error cluster as the code element and use
front panel features to view the error description.

error out is the error cluster output (refer to Error Handling).

ni.com380

NI-XNET 20.5

Description

You can use the XNET Read (State CAN Comm) VI with any XNET session mode, as
long as the session interface is CAN. Because the state reflects the CAN interface, it
can apply to multiple sessions.

Your application can use the XNET Read (State CAN Comm) VI to check for
problems on the CAN network independently from other aspects of your
application. For example, you intentionally may introduce noise into the CAN cables
to test how your ECU behaves under these conditions. When you do this, you do not
want the error out of NI-XNET VIs to return errors, because this may cause your
application to stop. Your application can use the XNET Read (State CAN Comm) VI
to read the CAN network state quickly as data, so that it does not introduce errors
into the flow of your LabVIEW VIs.

Alternately, to log bus errors, you can set the Interface:Bus Error Frames to Input
Stream? property to cause CAN bus errors to be logged as a special frame (refer to
Special Frames for more information) into a Frame Stream Input queue.

XNET Read (State FlexRay Comm).vi

Purpose

Reads the state of FlexRay communication using an XNET session.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI.

error in is the error cluster input (refer to Error Handling).

© National Instruments 381

NI-XNET 20.5

Outputs

session out is the same as session in, provided for use with subsequent VIs.

FlexRay comm returns a LabVIEW cluster containing the communication elements. The
elements are:

POC state specifies the FlexRay interface state (decimal value in parentheses):

Default Config (0) This is the FlexRay interface initial state on power-up. The
interface is essentially off, in that it is not configured and is not
attempting to communicate with other nodes (ECUs).

Ready (1) When the interface starts, it first enters Config state to validate
the FlexRay cluster and interface properties. Assuming the
properties are valid, the interface transitions to this Ready
state.

In the Ready state, the FlexRay interface attempts to integrate
(synchronize) with other nodes in the network cluster. This
integration process can take several FlexRay cycles, up to 200
ms. If the integration succeeds, the interface transitions to
Normal Active.

You can use the XNET Read (State Time Start) VI to read the
time when the FlexRay interface entered Ready. If integration
succeeds, you can use the XNET Read (State Time Comm) VI to
read the time when the FlexRay entered Normal Active.

Normal Active (2) This is the normal operation state. The NI-XNET interface is
adequately synchronized to the cluster to allow continued
frame transmission without disrupting the transmissions of
other nodes (ECUs). If synchronization problems occur, the
interface can transition from this state to Normal Passive.

Normal Passive (3) Frame reception is allowed, but frame transmission is disabled
due to degraded synchronization with the cluster remainder. If
synchronization improves, the interface can transition to
Normal Active. If synchronization continues to degrade, the
interface transitions to Halt.

Halt (4) Communication halted due to synchronization problems.

When the FlexRay interface is in Halt state, all NI-XNET sessions
for the interface stop, and no frame values are received or
transmitted. To restart the FlexRay interface, you must restart

ni.com382

NI-XNET 20.5

the NI-XNET sessions.

If you clear (close) all NI-XNET sessions for the interface, it
transitions from Halt to Default Config state.

Config (15) This state is transitional when configuration is valid. If you
detect this state after starting the interface, it typically indicates
a problem with the configuration. Check the fault? output for a
fault. If no fault is returned, check your FlexRay cluster and
interface properties. You can check the validity of these
properties using the NI-XNET Database Editor, which displays
invalid configuration properties.

In the FlexRay specification, this value is referred to as the Protocol Operation
Control (POC) state. For more information about the FlexRay POC state, refer to
Summary of the FlexRay Standard.

clock correction failed returns the number of consecutive even/odd cycle pairs that
have occurred without successful clock synchronization.

If this count reaches the value in the XNET Cluster FlexRay:Max Without Clock
Correction Passive property, the FlexRay interface POC state transitions from Normal
Active to Normal Passive state. If this count reaches the value in the XNET Cluster
FlexRay:Max Without Clock Correction Fatal property, the FlexRay interface POC state
transitions from Normal Passive to Halt state.

In the FlexRay specification, this value is referred to as vClockCorrectionFailed.

passive to active count returns the number of consecutive even/odd cycle pairs that
have occurred with successful clock synchronization.

This count increments while the FlexRay interface is in POC state Error Passive. If the
count reaches the value in the XNET Session Interface:FlexRay:Allow Passive to Active
property, the interface POC state transitions to Normal Active.

In the FlexRay specification, this value is referred to as vAllowPassiveToActive.

fault? indicates that a fault occurred, and its code is available is fault code.

fault code returns a numeric code you can use to obtain a fault description. If fault? is
false, the fault code is 0.

A fault is an error that occurs asynchronously to the NI-XNET VIs your application
calls. The fault cause may be related to FlexRay communication, but it also can be
related to XNET hardware, such as a fault in the onboard processor. Although faults

© National Instruments 383

NI-XNET 20.5

are extremely rare, the XNET Read (State FlexRay Comm) VI provides a detection
method distinct from the error out of NI-XNET VIs, yet easy to use alongside the
common practice of checking the communication state.

To obtain a fault description fault, wire the fault code into the LabVIEW
Simple Error Handler VI error code input and view the resulting message. You also
can bundle the fault code into a LabVIEW error cluster as the code element and use
front panel features to view the error description.

channel A sleep? indicates whether channel A currently is asleep.

channel B sleep? indicates whether channel B currently is asleep.

error out is the error cluster output (refer to Error Handling).

Description

You can use the XNET Read (State FlexRay Comm) VI with any XNET session mode,
as long as the session interface is FlexRay. Because the state reflects the FlexRay
interface, it can apply to multiple sessions.

Your application can use the XNET Read (State FlexRay Comm) VI to check for
problems on the FlexRay network independently from the other aspects of your
application. For example, you intentionally may introduce noise into the FlexRay
cables to test how your ECU behaves under these conditions. When you do this, you
do not want the error out of NI-XNET VIs to return errors, because this may cause
your application to stop. Your application can use the XNET Read (State FlexRay

Comm) VI to read the FlexRay network state quickly as data, so that it does not
introduce errors into the flow of your LabVIEW VIs.

XNET Read (State FlexRay Cycle Macrotick).vi

Purpose

Reads the current FlexRay global time using an XNET session.

ni.com384

NI-XNET 20.5

Format

Inputs

session in is the session to read. This session is selected from a LabVIEW project or returned
from the XNET Create Session VI.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

cycle returns the current FlexRay cycle counter. The cycle counter range is 0–63. In the
FlexRay specification, the current cycle counter is referred to as vCycleCounter.

The XNET Cluster FlexRay:Cycle property returns the cycle length in microseconds.

macrotick returns the current FlexRay macrotick. In the FlexRay specification, the current
macrotick is referred to as vMacrotick.

The XNET Cluster FlexRay:Macro Per Cycle property returns the number of macroticks in the
cycle. The current macrotick returned from this XNET Read VI instance ranges from 0 to
(FlexRay:Macro Per Cycle – 1).

The XNET Cluster FlexRay:Macrotick property returns the macrotick length in floating-point
seconds.

error out is the error cluster output (refer to Error Handling).

Description

Global time represents the timebase that all ECUs on the FlexRay network cluster
share. You use sync frames to synchronize the global time. The global time
components are the current cycle counter and macrotick within the cycle. For more
information about global time, refer to Summary of the FlexRay Standard.

© National Instruments 385

NI-XNET 20.5

You can use this XNET Read VI instance with any XNET session mode, as long as the
session interface is FlexRay. Because the state reflects the FlexRay interface, it can
apply to multiple sessions.

For this VI to operate properly, you must connect FlexRay global time as the FlexRay
interface timebase source. To do this, you must call the XNET Connect Terminals VI
with a source of FlexRay Macrotick and destination of Master Timebase. If the
terminals are not connected in this manner, this XNET Read VI instance returns an
error.

When using LabVIEW Real-Time, this VI often is useful in conjunction with the XNET

Create Timing Source (FlexRay Cycle) VI. The FlexRay Cycle timing source enables a
LabVIEW timed loop to execute at a specific macrotick within the cycle. Only one
FlexRay Cycle timing source is allowed within the cycle. Within the timed loop, you
can read the current FlexRay global time to measure performance or synchronize
LabVIEW code to additional macroticks in the cycle.

XNET Read (State FlexRay Statistics).vi

Purpose

Reads statistics for FlexRay communication using an XNET session.

Format

Inputs

session in is the session to read. This session is selected from a LabVIEW project or returned
from the XNET Create Session VI.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

ni.com386

NI-XNET 20.5

FlexRay statistics returns a LabVIEW cluster that contains the statistical elements. The
elements are:

num syntax error ch A is the number of syntax errors that have occurred on channel
A since communication started.

A syntax error occurs if:

■ A node starts transmitting while the channel is not in the idle state.
■ There is a decoding error.
■ A frame is decoded in the symbol window or in the network idle time.
■ A symbol is decoded in the static segment, dynamic segment, or network
idle time.
■ A frame is received within the slot after reception of a semantically correct
frame (two frames in one slot).
■ Two or more symbols are received within the symbol window.

num syntax error ch B is the number of syntax errors that have occurred on channel
B since communication started.

num content error ch A is the number of content errors that have occurred on
channel A since communication started.

A content error occurs if:

■ In a static segment, the payload length of a frame does not match the global
cluster property.
■ In a static segment, the Startup indicator (bit) is 1 while the Sync indicator is
0.
■ A frame ID encoded in the frame header does not match the current slot.
■ A cycle count encoded in the frame's header does not match the current
cycle count.
■ In a dynamic segment, the Sync indicator is 1.
■ In a dynamic segment, the Startup indicator is 1.
■ In a dynamic segment, the Null indicator is 0.

num content error ch B is the number of content errors that have occurred on
channel B since communication started.

© National Instruments 387

NI-XNET 20.5

num slot boundary violation ch A is the number of slot boundary violations that have
occurred on channel A since communication started.

A slot boundary violation error occurs if the interface does not consider the channel
to be idle at the boundary of a slot (either beginning or end).

num slot boundary violation ch B is the number of slot boundary violations that have
occurred on channel B since communication started.

For more information about these statistics, refer to Summary of the FlexRay
Standard.

error out is the error cluster output (refer to Error Handling).

Description

You can use this XNET Read VI instance with any XNET session mode, as long as the
session's interface is FlexRay. Because the state reflects the FlexRay interface, it can
apply to multiple sessions.

Like other XNET Read VI instances, this VI executes quickly, so it is appropriate for
real-time loops. The statistical information is updated during the Network Idle Time
(NIT) of each FlexRay cycle.

XNET Read (State LIN Comm).vi

Purpose

Reads the state of LIN communication using an XNET session.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session must use a LIN interface.

ni.com388

NI-XNET 20.5

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

LIN comm returns a LabVIEW cluster containing the communication elements. The
elements are:

communication state specifies the LIN interface state (decimal value in parentheses):

Idle (0): This is the LIN interface initial state on power-up. The interface is
essentially off, in that it is not attempting to communicate with other
nodes (ECUs).

When the start trigger occurs for the LIN interface, it transitions from
the Idle state to the Active state. When the interface stops due to a call
to XNET Stop, the LIN interface transitions from either Active or
Inactive to the Idle state.

Active (1): This state reflects normal communication. The LIN interface remains
in this state as long as bus activity is detected (frame headers
received or transmitted).

Inactive (2): This state indicates that no bus activity has been detected in the past
four seconds.

Regardless of whether the interface acts as a master or slave, it
transitions to this state after four seconds of bus inactivity. As soon as
bus activity is detected (break or frame header), the interface
transitions to the Active state.

The LIN interface does not go to sleep automatically when it
transitions to Inactive. To place the interface into sleep mode, set the
XNET Session Interface:LIN:Sleep property when you detect the
Inactive state.

sleep? indicates whether the transceiver and communication controller are in their
sleep state. False indicates normal operation (awake), and true indicates sleep.

This Boolean value changes from false to true only when you set the XNET Session
Interface:LIN:Sleep property to Remote Sleep or Local Sleep.

© National Instruments 389

NI-XNET 20.5

This Boolean value changes from true to false when one of the following occurs:

■ You set the XNET Session Interface:LIN:Sleep property to Remote Wake or
Local Wake.
■ The interface receives a remote wakeup pattern (break). In addition to this
XNET Read VI, you can wait for a remote wakeup event using the
XNET Wait (LIN Remote Wakeup) VI.

transceiver ready? indicates whether the LIN transceiver is powered from the bus.

True indicates the bus power exists, so it is safe to start communication on the LIN
interface.

If this value is false, you cannot start communication successfully. Wire power to the
LIN transceiver and run your application again.

last error specifies the status of the last attempt to receive or transmit a frame. It is
an enumeration (ring data type). For a table of all values for last error, refer to the
Description section.

last received returns the value received from the network when last error occurred.

last expected returns the value that the LIN interface expected to see (instead of
last received).

last identifier returns the frame identifier in which the last error occurred.

fault? indicates that a fault occurred, and its code is available as fault code.

fault code returns a numeric code you can use to obtain a description of the fault. If
fault? is false, the fault code is 0.

A fault is an error that occurs asynchronously to the NI-XNET VIs your application
calls. The fault cause may be related to LIN communication, but it also can be related
to XNET hardware, such as a fault in the onboard processor. Although faults are
extremely rare, the XNET Read (State LIN Comm) VI provides a detection method
distinct from the error out of NI-XNET VIs, yet easy to use alongside the common
practice of checking the communication state.

To obtain a fault description, wire the fault code into the LabVIEW
Simple Error Handler VI error code input and view the resulting message. You also

ni.com390

NI-XNET 20.5

can bundle the fault code into a LabVIEW error cluster as the code element and use
front panel features to view the error description.

For more information, refer to Fault Handling.

schedule index indicates the LIN schedule that the interface is currently running.

This index refers to a LIN schedule that you requested using the
XNET Write (State LIN Schedule Change) VI. It indexes the array of schedules that
are represented in the XNET Session Interface:LIN:Schedules property.

This index applies only when the LIN interface is running as a master. If the LIN
interface is running as a slave only, this element should be ignored.

error out is the error cluster output (refer to Error Handling).

Description

You can use the XNET Read (State LIN Comm) VI with any XNET session mode, as
long as the session interface is LIN. Because the state reflects the LIN interface, it can
apply to multiple sessions.

Your application can use the XNET Read (State LIN Comm) VI to check for problems
on the LIN network independently from other aspects of your application. For
example, you intentionally may introduce noise into the LIN cables to test how your
ECU behaves under these conditions. When you do this, you do not want the error

out of NI-XNET VIs to return errors, because this may cause your application to stop.
Your application can use the XNET Read (State LIN Comm) VI to read the LIN
network state quickly as data, so that it does not introduce errors into the flow of
your LabVIEW VIs.

The following table lists each value for last error, along with a description, and
applicable use of last received, last expected, and last identifier. In the last error
column, the decimal value is shown in parentheses after the string name.

Last Error Description Last Received Last Expected Last Identifier
None (0) No bus error has o

ccurred since the
previous communi
cation state read.

0 (N/A) 0 (N/A) 0 (N/A)

© National Instruments 391

NI-XNET 20.5

Unknown ID (1) Received a frame i
dentifier that is no
t valid (0–63).

0 (N/A) 0 (N/A) 0 (N/A)

Form (2) The form of a recei
ved frame is incorr
ect. For example, t
he database specif
ies 8 bytes of payl
oad, but you recei
ve only 4 bytes.

0 (N/A) 0 (N/A) Received frame ID

Framing (3) The byte framing i
s incorrect (for exa
mple, a missing st
op bit).

0 (N/A) 0 (N/A) Received frame ID

Readback (4) The interface trans
mitted a byte, but
the value read bac
k from the transcei
ver was different.
This often is cause
d by a cabling pro
blem, such as nois
e.

Value read back Value transmitted Received frame ID

Timeout (5) Receiving the fram
e took longer than
the LIN-specified t
imeout.

0 (N/A) 0 (N/A) Received frame ID

Checksum (6) The received chec
ksum was differen
t than the expecte
d checksum.

Received checksu
m

Calculated checks
um

Received frame ID

If the bus error is detected at time when no frame ID is received (such as wakeup),
last identifier uses the special value 64.

Alternately, to log bus errors, you can set the Interface:Bus Error Frames to Input
Stream? property to cause LIN bus errors to be logged as a special frame (refer to
Special Frames for more information) into a Frame Stream Input queue.

ni.com392

NI-XNET 20.5

XNET Read (State SAE J1939 Comm).vi

Purpose

Reads the state of J1939 communication using an XNET session.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session must use a LIN interface.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

J1939 comm returns a LabVIEW cluster containing the communication elements. The
elements are:

PGN specifies the J1939 PGN that occurred the last error. You cannot assign a PGN to
every error.

src address specifies the source address that occurred the last error. You cannot
assign a source address to every error.

dest addr specifies the destination address that occurred the last error. You cannot
assign a destination address to every error or warning.

transmit error indicates a transmit-related error occurred.

receive error indicates a receive-related error occurred.

fault? indicates that a fault occurred, and its code is available as fault code.

fault code returns a numeric code you can use to obtain a description of the fault. If
fault? is false, the fault code is 0.

A fault is an error that occurs asynchronously to the NI-XNET VIs your application

© National Instruments 393

NI-XNET 20.5

calls. The fault cause may be related to J1939 communication, but it also can be
related to XNET hardware, such as a fault in the onboard processor. Although faults
are extremely rare, the XNET Read (State SAE J1939 Comm) VI provides a detection
method distinct from the error out of NI-XNET VIs, yet easy to use alongside the
common practice of checking the communication state.

To obtain a fault description, wire the fault code into the LabVIEW
Simple Error Handler VI error code input and view the resulting message. You also can
bundle the fault code into a LabVIEW error cluster as the code element and use front
panel features to view the error description.

error out is the error cluster output (refer to Error Handling).

Description

You can use the XNET Read (State SAE J1939 Comm) VI with any XNET session
mode, as long as the session interface is CAN. Because the state reflects the CAN
interface, it can apply to multiple sessions.

Your application can use the XNET Read (State SAE J1939 Comm) VI to check for
problems on the J1939 network independently from other aspects of your
application. For example, you intentionally may introduce noise into the CAN cables
to test how your ECU behaves under these conditions. When you do this, you do not
want the error out of NI-XNET VIs to return errors, because this may cause your
application to stop. Your application can use the XNET Read (State SAE J1939

Comm) VI to read the J1939 network state quickly as data, so it does not introduce
errors into the flow of your LabVIEW VIs.

XNET Read (State Time Comm).vi

Purpose

Reads the time at which the session's interface completed its integration with the
network cluster. This represents the time at which communication began.

ni.com394

NI-XNET 20.5

Format

Inputs

session in is the session to read. This session is selected from a LabVIEW project or returned
from the XNET Create Session VI.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

local time communicating returns the communication time of the interface as a LabVIEW
absolute time, using the local timescale.
If the interface is not communicating when this read is called, local time communicating

returns an invalid time (0).

network time communicating Ethernet only. Returns the interface communicating time as a
LabVIEW absolute time, using the network timescale. The network time communicating

timestamp is captured simultaneously with the local time communicating timestamp.
The network time start output is not applicable for CAN, FlexRay, and LIN and returns an
invalid time (0).

This output is optional.

network synced Ethernet only. Contains the value of the Synced property at the time that
both timestamps are acquired, to specify whether the network time communicating

timestamp is synchronized to the network (true) or not (false).
The network synced output is not applicable for CAN, FlexRay, and LIN and returns a value
of false.

This output is optional.

error out is the error cluster output (refer to Error Handling).

© National Instruments 395

NI-XNET 20.5

Description

You can use this XNET Read VI instance with any XNET session mode. Because the
time is associated with the interface, it can apply to multiple sessions.

This XNET Read VI instance returns time as a LabVIEW absolute timestamp data
type.

After your application starts the XNET interface hardware, the communication
controller begins to integrate with ECUs in the network. The timestamp at which this
integration starts is available using the XNET Read (State Time Start) VI. Once the
XNET interface is fully integrated and communicating on the network (transmitting
and receiving frames), this VI captures and returns the time. For the CAN protocol,
the time difference between Start and Communicating is very small. For the FlexRay
protocol, the time difference can be many milliseconds due to factors such as clock
synchronization and cycle length.

XNET Read (State Time Current).vi

Purpose

Reads the current interface timestamp using an XNET session.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

ni.com396

NI-XNET 20.5

local time current returns the current interface timestamp as a LabVIEW absolute time,
using the local timescale.
For CAN, FlexRay, and LIN, if the interface is not started when the XNET Read (State Time
Current) VI is called, local time current returns an invalid time (0).

For Ethernet, you can read current time prior to starting the interface.

network time current Ethernet only. Returns the current time as a LabVIEW absolute time,
using the network timescale. The network time current timestamp is captured
simultaneously with the local time current timestamp.
The network time current output is not applicable for CAN, FlexRay, and LIN and returns an
invalid time (0).

network synced Ethernet only. Contains the value of the Synced property at the time that
both timestamps are acquired, to specify whether the network time current timestamp is
synchronized to the network (true) or not (false).
The network synced output is not applicable for CAN, FlexRay, and LIN and returns a value
of false.

error out is the error cluster output (refer to Error Handling).

Description

You can use the XNET Read (State Time Current) VI with any XNET session mode.
Because the time is associated with the interface, it can apply to multiple sessions.

The XNET Read (State Time Current) VI returns time as a LabVIEW absolute
timestamp data type. The timestamp represents absolute time that the interface
timebase source drives. You use the timebase source to timestamp frames the
interface receives. For a CAN interface, you use the timebase source to schedule
cyclic frame transmit.

The interface timebase source is not necessarily connected to the LabVIEW CPU
clock, so this timestamp can drift relative to the LabVIEW time used for internally
sourced timed loops and the LabVIEW Get Date/Time in Seconds VI.

For more information about the interface timebase source, refer to the XNET
Connect Terminals VI.

© National Instruments 397

NI-XNET 20.5

XNET Read (State Time Start).vi

Purpose

Reads the time when the session interface started its integration.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

local time start returns the interface start time as a LabVIEW absolute time, using the local
timescale.
If the interface is not started when the XNET Read (State Time Start) VI is called,
local time start returns an invalid time (0).

network time start Ethernet only. Returns the interface start time as a LabVIEW absolute
time, using the network timescale. The network time start timestamp is captured
simultaneously with the local time start timestamp.
The network time start output is not applicable for CAN, FlexRay, and LIN and returns an
invalid time (0).

This output is optional.

network synced Ethernet only. Contains the value of the Synced property at the time that
both timestamps are acquired, to specify whether the network time current timestamp is
synchronized to the network (true) or not (false).

ni.com398

NI-XNET 20.5

The network synced output is not applicable for CAN, FlexRay, and LIN and returns a value
of false.

This output is optional.

error out is the error cluster output (refer to Error Handling).

Description

You can use the XNET Read (State Time Start) VI with any XNET session mode.
Because the time is associated with the interface, it can apply to multiple sessions.

The XNET Read (State Time Start) VI returns time as a LabVIEW absolute
timestamp data type.

Your application typically starts the interface simply by calling an XNET Read VI or
XNET Write VI, because the XNET Session Auto Start? property is true by default. If
you set Auto Start? to false, you start the interface using the XNET Start VI. If you use
the XNET Connect Terminals VI to import a start trigger for the interface, all sessions
for that interface wait for the trigger to occur before starting the interface.

Once the interface starts, this VI captures and returns the time. Unless you connect a
start trigger, this time generally is known, so this VI may not be useful.

After the XNET interface starts, the communication controller begins to integrate
with ECUs in the network. After this integration is complete, the time is captured and
available using the XNET Read (State Time Comm) VI. That time often is useful for
FlexRay, because it indicates the time when true communication began.

XNET Read (State Time Trigger).vi

Purpose

Reads the captured timestamp for an imported Time Trigger.

Format

© National Instruments 399

NI-XNET 20.5

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI.

timeout is the time to wait for the rising edge of Time Trigger. The timeout is a LabVIEW
relative time, represented as 64-bit floating-point in units of seconds.
If timeout is positive, the XNET Read (State Time Trigger) VI waits for the rising edge of Time
Trigger, then returns the timestamps for that edge. If the edge does not occur prior to the
timeout, an error is returned.

If timeout is negative, the XNET Read (State Time Trigger) VI waits indefinitely for the rising
edge of Time Trigger.

If timeout is zero, the XNET Read (State Time Trigger) VI does not wait and immediately
returns the timestamps, which are zero (invalid) if the rising edge of Time Trigger has not
occurred.

This input is optional. The default value is 10 seconds.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

local time trigger returns the timestamp of first rising edge of the imported Time Trigger
since it was armed. The timestamp is a LabVIEW absolute time, using the local timescale. If
Time Trigger has not encountered a rising edge since it was armed, local time trigger returns
zero (an invalid timestamp).

network time trigger returns the timestamp of first rising edge of the imported Time Trigger
since it was armed. The timestamp is a LabVIEW absolute time, using the network
timescale. If Time Trigger has not encountered a rising edge since it was armed,
network time trigger returns zero (an invalid timestamp).

network synced contains the value of the Synced? property at the time that both
timestamps are acquired, to specify whether the network time trigger timestamp is
synchronized to the network (true) or not (false).

error out is the error cluster output (refer to Error Handling).

ni.com400

NI-XNET 20.5

Description

When you use the XNET Connect Terminals VI with destination terminal of
TimeTrigger (i.e., imported), the Time Trigger captures absolute timestamps on the
rising edge, and you read those timestamps using this XNET Read (State Time
Trigger) VI.

The imported Time Trigger is armed when you invoke the XNET Connect Terminals
VI, and Time Trigger is armed again on each subsequent invocation of the XNET
Read (State Time Trigger) VI. After the Time Trigger is armed, the first rising edge
after arming is captured for the subsequent XNET Read (State Time Trigger) VI.

XNET Read (State Session Info).vi

Purpose

Returns the current state for the session provided.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

session info state returns the state of the provided session.

Stopped (0) All frames in the session are stopped.

Started (1) All frames in the session are started.

Mix (2) Some frames in the session are started while other frames are stopped.

© National Instruments 401

NI-XNET 20.5

error out is the error cluster output (refer to Error Handling).

Description

You can use the XNET Read (State Session Info) VI with any XNET session mode.

The XNET Read (State Session Info) VI returns the state of the session's objects. A
mixed state may occur when using the XNET Start VI or XNET Stop VI with the
Session Only option. By reading this state, your application can ensure that all
frames in the session have started or stopped.

If the session is started with any option other than Session Only, the state is known,
so this VI may not be useful.

XNET Write.vi
Purpose

Writes data to the network using an XNET session.

Description

The instances of this polymorphic VI specify the type of data provided.

The XNET Read and XNET Write VIs are optimized for real-time performance. The
XNET Write VI executes quickly and avoids access to shared resources that can
induce jitter on other VI priorities.

The XNET Write VIs are asynchronous, in that data is written to a hardware buffer,
but the XNET Write VI returns before the corresponding frames are transmitted onto
the network. If you need to wait for the data provided to the XNET Write VI to
transmit onto the network, use the XNET Wait (Transmit Complete) VI.

There are two categories of XNET Write instance VIs:

■ Signal: Use when the session mode is Signal Output. The XNET Write VI
instance must match the mode exactly (for example, the instance is Signal
Waveform when the mode is Signal Output Waveform).

ni.com402

NI-XNET 20.5

■ Frame: Use when the session mode is Frame Output. The XNET Write VI
instance specifies the desired data type for frames and is not related to the
mode. For an easy-to-use data type, use the CAN, FlexRay, or LIN instance.
■ State: Use to change the session's interface state. You can use these
instances in addition to Signal or Frame instances, and they are not related to
the mode. These instances are optimized for performance. Although property
nodes may provide write access to similar runtime data, those properties are
not necessarily optimized for real-time loops.

The XNET Write instance VIs are:

■ Signal Single-Point: The session mode is Signal Output Single-Point.
■ Signal Waveform: The session mode is Signal Output Waveform.
■ Signal XY: The session mode is Signal Output XY.
■ Frame CAN: The session uses a CAN interface, and the mode is Frame
Output Stream, Frame Output Queued, or Frame Output Single-Point.
Additionally, the XNET Write (Frame CAN) VI can be called on any signal or
frame input session if it contains one or more Event Remote frames (refer to
CAN:Timing Type). In this case, it signals an event to transmit those remote
frames.
■ Frame Ethernet: Writes data to a session as an array of Ethernet frames. The
session must use an Ethernet interface and a mode of Frame Output Stream.
■ Frame FlexRay: The session uses a FlexRay interface, and the mode is Frame
Output Single-Point, Frame Output Queued, PDU Output Single-Point (similar
to Frame Output Single-Point), or PDU Output Queued (similar to Frame
Output Queued).
■ Frame LIN: The session uses a LIN interface, and the mode is Frame Output
Stream, Frame Output Single-Point, or Frame Output Queued.
■ Frame Raw: A data type for frame output that is protocol independent and
more efficient than the CAN, FlexRay, and LIN instances.
■ State LIN Diagnostic Schedule Change: Write a request for the LIN interface
to change the diagnostic schedule.

© National Instruments 403

NI-XNET 20.5

■ State LIN Schedule Change: Submit a request for the LIN interface to
change the running schedule.
■ State FlexRay Symbol: Write a request for the FlexRay interface to transmit
a symbol on the FlexRay bus.

XNET Write (Signal Single-Point).vi

Purpose

Writes data to a session of Signal Output Single-Point mode.

Format

Inputs

session in is the session to write. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session mode must be Signal Output Single-
Point.

data provides a one-dimensional array of signal values. Each signal value is scaled, 64-bit
floating point.

Each array element corresponds to a signal configured for the session. The order of signals
in the array corresponds to the order in the session list.

The data provides the value for the next transmit of each signal. If the
XNET Write (Signal Single-Point) VI is called twice before the next transmit, the transmitted
frame uses signal values from the second call to the XNET Write (Signal Single-Point) VI.

For an example of how this data applies to network traffic, refer to Signal Output Single-
Point Mode.

A trigger signal written a value of 0.0 suppresses writing of its frame's data; writing a value
not equal to 0.0 enables it. For more information about trigger signals, refer to Signal
Output Single-Point Mode.

error in is the error cluster input (refer to Error Handling).

ni.com404

NI-XNET 20.5

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

XNET Write (Signal Waveform).vi

Purpose

Writes data to a session of Signal Output Waveform mode. The data represents a
waveform of resampled values for each signal in the session.

Format

Inputs

session in is the session to write. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session mode must be Signal Output
Waveform.

data provides a one-dimensional array of LabVIEW waveforms.

The data you write is queued up for transmit on the network. Using the default queue
configuration for this mode, and assuming a 1000 Hz resample rate, you can safely write 64
elements if you have a sufficiently long timeout. To write more data, refer to the XNET
Session Number of Values Unused property to determine the actual amount of queue space
available for writing.

For an example of how this data applies to network traffic, refer to Signal Output Waveform
Mode.

Each array element corresponds to a signal configured for the session. The order of signals
in the array corresponds to the order in the session list.

The waveform elements are:

© National Instruments 405

NI-XNET 20.5

t0 is the waveform start time. This is a LabVIEW absolute timestamp.

This start time is unused (reserved) for Signal Output Waveform mode. If you change
it from its default value of 0 (invalid), the XNET Write (Signal Waveform) VI returns an
error.

dt is the waveform delta time. This is a LabVIEW relative time that specifies the time
between each sample in the Y array. LabVIEW relative time is represented as 64-bit
floating point in units of seconds.

This delta time is unused (reserved) for Signal Output Waveform mode. If you change
it from its default value of 0, the XNET Write (Signal Waveform) VI returns an error.

Y is the array of resampled signal values. Each signal value is scaled, 64-bit floating
point.

The Y array size must be the same for all waveforms, because the size determines the
total timeline for the XNET Write (Signal Waveform) VI. If the Y array sizes are not the
same, the XNET Write (Signal Waveform) VI returns an error.

timeout is the time to wait for the data to be queued for transmit. The timeout does not wait
for frames to be transmitted on the network (refer to the XNET Wait (Transmit Complete) VI).

The timeout is a LabVIEW relative time, represented as 64-bit floating-point in units of
seconds.

If timeout is positive, the XNET Write (Signal Waveform) VI waits up to that timeout for space
to become available in queues. If the space is not available prior to the timeout, a timeout
error is returned.

If timeout is negative, the XNET Write (Signal Waveform) VI waits indefinitely for space to
become available in queues.

If timeout is 0, the XNET Write (Signal Waveform) VI does not wait and immediately returns
an error if all data cannot be queued. Regardless of the timeout used, if a timeout error
occurs, none of the data is queued, so you can attempt to call the XNET Write (Signal
Waveform) VI again at a later time with the same data.

This input is optional. The default value is 10.0 (10 seconds).

error in is the error cluster input (refer to Error Handling).

ni.com406

NI-XNET 20.5

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

XNET Write (Signal XY).vi

Purpose

Writes data to a session of Signal Output XY mode. The data represents a sequence
of signal values for transmit using each frame's timing as the database specifies.

Format

Inputs

session in is the session to write. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session mode must be Signal Output XY.

data provides an array of LabVIEW clusters.

Each array element corresponds to a signal configured for the session. The order of signals
in the array corresponds to the order in the session list.

The data you write is queued up for transmit on the network. Using the default queue
configuration for this mode, you can safely write 64 elements if you have a sufficiently long
timeout. To write more data, refer to the XNET Session Number of Values Unused property
to determine the actual amount of queue space available for writing.

For an example of how this data applies to network traffic, refer to Signal Output XY Mode.

Each cluster contains two arrays, one for value, and one for timestamp. Each value is
mapped to a frame for transmit. When signals exist in different frames, the array sizes may
be different from one cluster (signal) to another.

The cluster elements are:

© National Instruments 407

NI-XNET 20.5

timestamp is the array of LabVIEW timestamps.

The timestamp array is unused (reserved) for Signal Output XY. If you change it from
its default value of empty, the XNET Write (Signal XY) VI returns an error.

value is the array of signal values, one for each frame that contains the signal. Frame
transmission is timed according to the frame properties in the database.

Each signal value is scaled, 64-bit floating point.

timeout is the time to wait for the data to be queued for transmit. The timeout does not wait
for frames to be transmitted on the network (refer to the XNET Wait (Transmit Complete) VI).

The timeout is a LabVIEW relative time, represented as 64-bit floating-point in units of
seconds.

If timeout is positive, the XNET Write (Signal XY) VI waits up to that timeout for space to
become available in queues. If the space is not available prior to the timeout, a timeout
error is returned.

If timeout is negative, the XNET Write (Signal XY) VI waits indefinitely for space to become
available in queues.

If timeout is 0, the XNET Write (Signal XY) VI does not wait and immediately returns with a
timeout error if all data cannot be queued. Regardless of the timeout used, if a timeout
error occurs, none of the data is queued, so you can attempt to call the XNET Write (Signal
XY) VI again at a later time with the same data.

This input is optional. The default value is 10.0 (10 seconds).

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

ni.com408

NI-XNET 20.5

XNET Write (Frame CAN).vi

Purpose

Writes data to a session as an array of CAN frames. The session must use a CAN
interface and a mode of Frame Output Stream, Frame Output Queued, or Frame
Output Single-Point.

Format

Inputs

session in is the session to write. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session mode must be Frame Output
Stream, Frame Output Queued, or Frame Output Single-Point.

data provides the array of LabVIEW clusters.

Each array element corresponds to a frame value to transmit.

For a Frame Output Single-Point session mode, the order of frames in the array corresponds
to the order in the session list.

The data you write is queued up for transmit on the network. Using the default queue
configuration for this mode, you can safely write 64 frames if you have a sufficiently long
timeout. To write more data, refer to the XNET Session Number of Values Unused property
to determine the actual amount of queue space available for write.

For an example of how this data applies to network traffic, refer to Frame Output Stream
Mode, Frame Output Queued Mode, or Frame Output Single-Point Mode.

Additionally, the XNET Write (Frame CAN) VI can be called on any signal or frame input
session if it contains one or more Event Remote frames (refer to CAN:Timing Type). In this
case, it signals an event to transmit those remote frames. The data parameter is ignored in
this case, and you can set it to an empty array.

The elements of each cluster are specific to the CAN protocol. For more information, refer to

© National Instruments 409

NI-XNET 20.5

Summary of the CAN Standard or the CAN protocol specification.

The cluster elements are:

identifier is the CAN frame arbitration identifier.

If extended? is false, the identifier uses standard format, so 11 bits of this identifier
are valid.

If extended? is true, the identifier uses extended format, so 29 bits of this identifier
are valid.

extended? is a Boolean value that determines whether the identifier uses extended
format (true) or standard format (false).

echo? is not used for transmit. You must set this element to false.

type is the frame type (decimal value in parentheses):

CAN Data (0) The CAN data frame contains payload data. This is the most
commonly used frame type for CAN. In ISO CAN FD interface
mode, this transmits a frame according to the interface setting
(FD or FD+BRS). ISO CAN FD mode allows transmitting CAN 2.0,
CAN FD, or CAN FD+BRS frames using the frame type (refer to the
types listed below).

CAN 2.0 Data (8) The CAN data frame contains payload data. In ISO CAN FD
interface mode, this frame is transmitted as a CAN 2.0 frame.
When the interface is not in ISO CAN FD mode, this type is
treated like CAN Data (0).

CAN FD Data (16) The CAN data frame contains payload data. In ISO CAN FD
interface mode, this frame is transmitted as a CAN FD (no BRS)
frame. When the interface is not in ISO CAN FD mode, this type is
treated like CAN Data (0).

CAN FD+BRS
Data (24)

The CAN data frame contains payload data. In ISO CAN FD+BRS
mode, this frame is transmitted as a CAN FD+BRS frame. When
the interface is not in ISO CAN FD mode, this type is treated like
CAN Data (0).

CAN Remote (1) CAN remote frame. Your application transmits a CAN remote
frame to request data for the corresponding identifier. A remote

ni.com410

NI-XNET 20.5

ECU should respond with a CAN data frame for the identifier,
which you can obtain using the XNET Read VI.

timestamp represents absolute time using the LabVIEW absolute timestamp type.
timestamp is not used for transmit. You must set this element to the default value,
invalid (0).

payload is the array of data bytes for a CAN data frame.

The array size indicates the payload length of the frame value to transmit. According
to the CAN protocol, the payload length range is 0–8. For CAN FD, the range can be 0–
8, 12, 16, 20, 24, 32, 48, or 64.

When the session mode is Frame Output Single-Point or Frame Output Queued, the
number of bytes in the payload array must be less than or equal to the Payload
Length property of the corresponding frame. You can leave all other CAN frame
cluster elements uninitialized. For more information, refer to the topic for each
mode.

For a transmitted remote frame (CAN Remote type), the payload length in the frame
value specifies the number of payload bytes requested. Your application provides
this payload length by filling payload with the requested number of bytes. This
enables your application to specify the frame payload length, but the actual values in
the payload bytes are ignored (not contained in the transmitted frame).

timeout is the time to wait for the CAN frame data to be queued up for transmit.

The timeout is a LabVIEW relative time, represented as 64-bit floating-point in units of
seconds.

If timeout is positive, the XNET Write (Frame CAN) VI waits up to that timeout for space to
become available in queues. If the space is not available prior to the timeout, a timeout
error is returned.

If timeout is negative, the XNET Write (Frame CAN) VI waits indefinitely for space to
become available in queues.

If timeout is 0, the XNET Write (Frame CAN) VI does not wait and immediately returns with
a timeout error if all data cannot be queued. Regardless of the timeout used, if a timeout
error occurs, none of the data is queued, so you can attempt to call the

© National Instruments 411

NI-XNET 20.5

XNET Write (Frame CAN) VI again at a later time with the same data.

This input is optional. The default value is 10.0 (10 seconds).

If the session mode is Frame Output Single-Point, you must set timeout to 0.0. Because this
mode writes the most recent value of each frame, timeout does not apply.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

The data represents an array of CAN frames. Each CAN frame uses a LabVIEW cluster
with CAN-specific elements.

The CAN frames are associated to the session's list of frames as follows:

■ Frame Output Stream: Array of all frame values for transmit (list ignored).
■ Frame Output Queued: Array of frame values to transmit for the single frame
specified in the list.
■ Frame Output Single-Point: Array of single frame values, one for each frame
specified in the list.
■ Any signal or frame input mode: The data parameter is ignored, and you can
set it to an empty array. The VI transmits an event remote frame.

XNET Write (Frame Ethernet).vi

Purpose

Writes data to a session as an array of Ethernet frames. The session must use an
Ethernet interface and a mode of Frame Output Stream.

ni.com412

NI-XNET 20.5

Format

Inputs

session in is the session to write. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session mode must be Frame Output
Stream.

data provides an array of LabVIEW clusters.
Each array element corresponds to a frame value to transmit. The elements of each cluster
are specific to the Ethernet protocol.

The data you write is queued up for transmit on the network. Using the default queue
configuration for this mode, you can safely write 64 frames if you have a sufficiently long
timeout. To write more data, refer to the XNET Session Number of Values Unused property
to determine the actual amount of queue space available for write.

type is the type of Ethernet frame. It is a ring (enumerated list) with the following
values:

Enumeration Value Description
Ethernet Data 0 Ethernet frame received or

transmitted.

local timestamp is a timestamp using XNET local time. The timestamp uses the
LabVIEW absolute timestamp type.
local timestamp is not used for XNET Write (Frame Ethernet). Refer to XNET Read
(Frame Ethernet).

network timestamp is a timestamp using network time (clock of the network's time
synchronization protocol, such as IEEE Std 802.1AS). The timestamp uses the
LabVIEW absolute timestamp type.
network timestamp is not used for XNET Write (Frame Ethernet). Refer to XNET Read
(Frame Ethernet).

network synced? is not used for XNET Write (Frame Ethernet). Refer to XNET Read
(Frame Ethernet).

© National Instruments 413

NI-XNET 20.5

receive? is not used for XNET Write (Frame Ethernet). Refer to XNET Read (Frame
Ethernet).

transmit? is not used for XNET Write (Frame Ethernet). Refer to XNET Read (Frame
Ethernet).

error? is not used for XNET Write (Frame Ethernet). Refer to XNET Read (Frame
Ethernet).

frame data is an array of bytes that provides the data of the Ethernet frame.
Using the terminology from IEEE Std 802.3, the frame data begins with the first byte
of the destination MAC address, and ends with the last byte of the
mac_service_data_unit (MSDU). For examples of two commonly used formats for
frame data, refer to the Raw Frame Format.

In order to obtain the payload data that is contained in the frame, your code must
decode the layered headers in frame data. For example, for an IPv4 UDP packet, you
decode the Ethernet header, including the EtherType, to determine that the
remaining data is an IPv4 packet; then you decode the IPv4 header, including the
Protocol, to determine that the remaining data is a UDP packet; and then you decode
the UDP header and its payload data.

The Source MAC Address Auto property specifies automatic handling of the source
MAC address in frame data (i.e., offset 6 through 11). If Source Address MAC Auto is
true (default), XNET automatically replaces the source MAC address bytes with its
own MAC Address. If Source Address MAC Auto is false, XNET does not alter the source
MAC address, so that you can specify this address in frame data.

The maximum length of this array is provided in the Payload Length Maximum
property.

fcs is not used for XNET Write (Frame Ethernet). Refer to XNET Read (Frame Ethernet).

timeout is the time to wait for the Ethernet frame data to be queued up for transmit.
The timeout is a LabVIEW relative time, represented as 64-bit floating-point in units of
seconds.

If timeout is positive, the XNET Write (Frame Ethernet) VI waits up to that timeout for space
to become available in queues. If the space is not available prior to the timeout, a timeout
error is returned.

If timeout is negative, the XNET Write (Frame Ethernet) VI waits indefinitely for space to
become available in queues.

ni.com414

NI-XNET 20.5

If timeout is 0, the XNET Write (Frame Ethernet) VI does not wait and immediately returns
with a timeout error if all data cannot be queued. Regardless of the timeout used, if a
timeout error occurs, none of the data is queued, so you can attempt to call the
XNET Write (Frame Ethernet) VI again at a later time with the same data.

This input is optional. The default value is 10.0 (10 seconds).

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

The data represents an array of Ethernet frames. Each Ethernet frame uses a
LabVIEW cluster with Ethernet-specific elements.

XNET Write (Frame FlexRay).vi

Purpose

Writes data to a session as an array of FlexRay frames. The session must use a
FlexRay interface and a mode of Frame Output Queued or Frame Output Single-
Point.

Format

Inputs

session in is the session to write. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session mode must be Frame Output
Queued or Frame Output Single-Point.

Frame Output Stream mode is not supported for FlexRay.

© National Instruments 415

NI-XNET 20.5

data provides the array of LabVIEW clusters.

Each array element corresponds to a frame value to transmit.

For a Frame Input Single-Point session mode, the order of frames in the array corresponds
to the order in the session list.

The data you write is queued up for transmit on the network. Using the default queue
configuration for this mode, and assuming frames with 8 bytes of payload, you can safely
write 64 frames if you have a sufficiently long timeout. To write more data, refer to the XNET
Session Number of Values Unused property to determine the actual amount of queue space
available for write.

For an example of how this data applies to network traffic, refer to Frame Output Queued
Mode or Frame Output Single-Point Mode.

The elements of each cluster are specific to the FlexRay protocol. For more information,
refer to Summary of the FlexRay Standard or the FlexRay protocol specification.

The cluster elements are:

slot specifies the slot number within the FlexRay cycle.

cycle count specifies the cycle number.

The FlexRay cycle count increments from 0 to 63, then rolls over back to 0.

startup? is a Boolean value that specifies whether the frame is a startup frame (true)
or not (false).

sync? is a Boolean value that specifies whether the frame is a sync frame (true) or not
(false).

preamble? is a Boolean value that specifies the value of the payload preamble
indicator in the frame header.

If the frame is in the static segment, preamble? being true indicates the presence of a
network management vector at the beginning of the payload. The XNET Cluster
FlexRay:Network Management Vector Length property specifies the number of bytes
at the beginning.

If the frame is in the dynamic segment, preamble? being true indicates the presence
of a message ID at the beginning of the payload. The message ID is always 2 bytes in

ni.com416

NI-XNET 20.5

length.

If preamble? is false, the payload does not contain a network management vector or a
message ID.

chA is a Boolean value that specifies whether to transmit the frame on channel A
(true) or not (false).

chB is a Boolean value that specifies whether to transmit the frame on channel B
(true) or not (false).

echo? is not used for transmit. You must set this element to false.

type is the frame type. type is not used for transmit, so you must leave this element
uninitialized. All frame values are assumed to be the FlexRay Data type. Frames of
FlexRay Data type contain payload data.

The FlexRay Null type is not transmitted based on this type. As specified in the XNET
Frame FlexRay:Timing Type property, the FlexRay null frame is transmitted when a
cyclically timed frame does not have new data.

timestamp represents absolute time using the LabVIEW absolute timestamp type.
timestamp is not used for transmit. You must set this element to the default value,
invalid (0).

The slot and cycle count specify when the frame transmits in FlexRay global time.

payload is the array of data bytes for FlexRay frames of type FlexRay Data.

The array size indicates the payload length of the frame value to transmit. According
to the FlexRay protocol, the length range is 0–254.

For PDU output session mode, the payload is the array of data bytes for the specific
PDU, not the entire frame.

When the session mode is Frame Output Single-Point, Frame Output Queued, PDU
Output Single-Point, or PDU Output Queued, the number of bytes in the payload
array must match the Payload Length property of the corresponding frame. You can
leave all other FlexRay frame cluster elements uninitialized. For more information,
refer to the topic for each mode.

timeout is the time to wait for the FlexRay frame data to be queued up for transmit.

The timeout is a LabVIEW relative time, represented as 64-bit floating-point in units of

© National Instruments 417

NI-XNET 20.5

seconds.

If timeout is positive, the XNET Write (Frame FlexRay) VI waits up to that timeout for space
to become available in queues. If the space is not available prior to the timeout, a timeout
error is returned.

If timeout is negative, the XNET Write (Frame FlexRay) VI waits indefinitely for space to
become available in queues.

If timeout is 0, the XNET Write (Frame FlexRay) VI does not wait and immediately returns
with a timeout error if all data cannot be queued. Regardless of the timeout used, if a
timeout error occurs, none of the data is queued, so you can attempt to call the
XNET Write (Frame FlexRay) VI again at a later time with the same data.

This input is optional. The default value is 10.0 (10 seconds).

If the session mode is Frame Output Single-Point, you must set timeout to 0.0. Because this
mode writes the most recent value of each frame, timeout does not apply.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

The data represents an array of FlexRay frames. Each FlexRay frame uses a LabVIEW
cluster with FlexRay-specific elements.

The FlexRay frames are associated to the session's list of frames as follows:

■ Frame Output Queued: Array of frame values to transmit for the single frame
specified in the list.
■ Frame Output Single-Point: Array of single frame values, one for each frame
specified in the list.

ni.com418

NI-XNET 20.5

■ PDU Output Queued: Array of frame (PDU payload) values to transmit for
the single PDU specified in the list. This mode is similar to Frame Output

Queued.
■ PDU Output Single-Point: Array of single frame (PDU payload) values, one
for each PDU specified in the list. This mode is similar to a Frame Output

Single-Point.

XNET Write (Frame LIN).vi

Purpose

Writes data to a session as an array of LIN frames. The session must use a LIN
interface and a mode of Frame Output Stream, Frame Output Queued, or Frame
Output Single-Point.

Format

Inputs

session in is the session to write. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session mode must be Frame Output
Stream, Frame Output Queued, or Frame Output Single-Point.

data provides the array of LabVIEW clusters.

Each array element corresponds to a frame value to transmit.

For a Frame Output Single-Point session mode, the order of frames in the array corresponds
to the order in the session list.

For Frame Output Queued session mode, the data you write is queued up for transmit on
the network. Using the default queue configuration for this mode, you can safely write 64
frames if you have a sufficiently long timeout. To write more data, refer to the XNET Session
Number of Values Unused property to determine the actual amount of queue space
available for write.

© National Instruments 419

NI-XNET 20.5

For an example of how this data applies to network traffic, refer to Frame Output Stream
Mode, Frame Output Queued Mode, or Frame Output Single-Point Mode.

The elements of each cluster are specific to the LIN protocol. For more information, refer to
Summary of the LIN Standard or the LIN protocol specification.

The cluster elements are:

identifier is not used for transmit. You must set this element to 0.

Each frame is identified based on the list of frames or signals provided for the
session. The actual identifier to transmit is taken from the database (frame and
schedule properties). Therefore, this identifier in the frame value is ignored.

event slot? is not used for transmit. You must set this element to false.

The currently running schedule is used to map the specific frame to a corresponding
schedule entry (slot). The schedule entry itself determines whether the slot is
unconditional, sporadic, or event triggered.

event ID is not used for transmit. You must set this element to 0.

echo? is not used for transmit. You must set this element to false.

type is the frame type (decimal value in parentheses):

LIN Data (64) The LIN data frame contains payload data. This is currently the only
frame type for LIN.

timestamp represents absolute time using the LabVIEW absolute timestamp type.
timestamp is not used for transmit. You must set this element to the default value,
invalid (0).

payload is the array of data bytes for a LIN data frame.

The array size indicates the payload length of the frame value to transmit. According
to the LIN protocol, the payload length range is 0–8.

The number of bytes in the payload array must match the Payload Length property of
the corresponding frame. You can leave all other LIN frame cluster elements
uninitialized. For more information, refer to the topic for each mode.

If you use the frame payload within an event-triggered schedule entry (slot), the first
byte of data on the network is the frame's payload identifier. The LIN standard

ni.com420

NI-XNET 20.5

requires this even if the frame transmits in an unconditional or sporadic slot. For this
type of LIN frame, the actual data (for example, signal values) is limited to 7 bytes.
For this type of frame, you must write the first byte (payload of 8 bytes even if only the
last 7 are used), but NI-XNET ignores the value and fills in the first byte for you, using
the known frame ID from the session's configuration.

timeout is the time to wait for the LIN frame data to be queued up for transmit.

The timeout is a LabVIEW relative time, represented as 64-bit floating-point in units of
seconds.

If timeout is positive, the XNET Write (Frame LIN) VI waits up to that timeout for space to
become available in queues. If the space is not available prior to the timeout, a timeout
error is returned.

If timeout is negative, the XNET Write (Frame LIN) VI waits indefinitely for space to become
available in queues.

If timeout is 0, the XNET Write (Frame LIN) VI does not wait and immediately returns with a
timeout error if all data cannot be queued. Regardless of the timeout used, if a timeout
error occurs, none of the data is queued, so you can attempt to call the
XNET Write (Frame LIN) VI again at a later time with the same data.

This input is optional. The default value is 10.0 (10 seconds).

If the session mode is Frame Output Single-Point, you must set timeout to 0.0. Because this
mode writes the most recent value of each frame, timeout does not apply.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

The data represents an array of LIN frames. Each LIN frame uses a LabVIEW cluster
with LIN-specific elements.

© National Instruments 421

NI-XNET 20.5

The LIN frames are associated to the session's list of frames as follows:

■ Frame Output Stream Mode: Array of all frame values for transmit (list
ignored). If the payload is an empty array, only the header part of the LIN
frame is transmitted. If the payload is not an empty array, the header and
response parts of the LIN frame are transmitted.
■ Frame Output Queued: Array of frame values to transmit for the single frame
specified in the list.
■ Frame Output Single-Point: Array of single frame values, one for each frame
specified in the list.

XNET Write (Frame Raw).vi

Purpose

Writes data to a session as an array of raw bytes.

Format

Inputs

session in is the session to write. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session mode must be Frame Output
Stream, Frame Output Queued, or Frame Output Single-Point.

data provides the array of bytes, representing frames to transmit.
The raw bytes encode one or more frames using the Raw Frame Format. This frame format
is the same for read and write of raw data and also is used for log file examples.

If needed, you can write data for a partial frame. For example, if a complete raw frame is 24
bytes, you can write 12 bytes, then write the next 12 bytes. You typically do this when you
are reading raw frame data from a log file and want to avoid iterating through the data to
detect the start and end of each frame.

ni.com422

NI-XNET 20.5

CAN, FlexRay, and LIN: For information about which elements of the raw frame are
applicable, refer to the XNET Write VI instance for the protocol in use (the XNET Write (Frame
CAN) VI, XNET Write (Frame FlexRay) VI, or XNET Write (Frame LIN) VI).

Ethernet: Ethernet specifies its own encoding in the Raw Frame Format.

The data you write is queued up for transmit on the network. Using the default queue
configuration for this mode, you can safely write 1536 frames if you have a sufficiently long
timeout. To write more data, refer to the XNET Session Number of Values Unused property
to determine the actual amount of queue space available for writing.

For an example of how this data applies to network traffic, refer to Frame Output Stream
Mode, Frame Output Queued Mode, or Frame Output Single-Point Mode.

timeout is the time to wait for the raw data to be queued up for transmit.
The timeout is a LabVIEW relative time, represented as 64-bit floating-point in units of
seconds.

If timeout is positive, the XNET Write (Frame Raw) VI waits up to that timeout for space to
become available in queues. If the space is not available prior to the timeout, a timeout
error is returned.

If timeout is negative, the XNET Write (Frame Raw) VI waits indefinitely for space to become
available in queues.

If timeout is 0, the XNET Write (Frame Raw) VI does not wait and immediately returns with a
timeout error if all data cannot be queued. Regardless of the timeout used, if a timeout
error occurs, none of the data is queued, so you can attempt to call the XNET Write (Frame
Raw) VI again at a later time with the same data.

This input is optional. The default value is 10.0 (10 seconds).

If the session mode is Frame Output Single-Point, you must set timeout to 0.0. Because this
mode writes the most recent value of each frame, timeout does not apply.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

© National Instruments 423

NI-XNET 20.5

Description

The raw bytes encode one or more frames using the Raw Frame Format. The session
must use a mode of Frame Output Stream, Frame Output Queued, or Frame Output
Single-Point. The raw frame format is protocol independent, so the session can use
either a CAN, FlexRay, LIN, or Ethernet interface.

The raw frame format matches the format of data transferred to/from the XNET
hardware. Because it is not converted to/from LabVIEW clusters for ease of use, it is
more efficient with regard to performance. This instance typically is used to read
raw frame data from a log file and write the data to the interface for transmit
(replay).

The raw frames are associated to the session's list of frames as follows:

■ Frame Output Stream: Array of all frame values for transmit (list ignored).
For LIN, if the payload element is an empty array, only the header part of the
LIN frame is transmitted. If the payload element is not an empty array, the
header and response parts of the LIN frame are transmitted.
■ Frame Output Queued: Array of frame values to transmit for the single frame
specified in the list.
■ Frame Output Single-Point: Array of single frame values, one for each frame
specified in the list.
■ PDU Output Queued: Array of frame (PDU payload) values to transmit for
the single PDU specified in the list. This mode is similar to Frame Output

Queued.
■ PDU Output Single-Point: Array of single frame (PDU payload) values, one
for each PDU specified in the list. This mode is similar to Frame Output Single-

Point.

XNET Write (State LIN Diagnostic Schedule Change).vi

Purpose

Write a request for the LIN interface to change the diagnostic schedule. You can use
this XNET Write VI with any input or output session for LIN.

ni.com424

NI-XNET 20.5

Format

Inputs

session in is the session to use for the diagnostic schedule change. This session is selected
from the LabVIEW project or returned from the XNET Create Session VI. The session must
use a LIN interface.

diagnostic schedule is a ring (enumerated list) with the following values:

String Value
Null 0

Master Request 1

Slave Response 2

This specifies which diagnostic schedule the master executes:

■ Null: The master does not execute any diagnostic schedule. No master request or
slave response headers are transmitted on the LIN.
■ Master Request: The master executes a diagnostic master request schedule
(transmits a master request header onto the LIN) if it can. First, a master request
schedule must be defined for the LIN cluster in the imported or in-memory database.
Otherwise, error nxErrDiagnosticScheduleNotDefined is returned when attempting to
set this value. Second, the master must have a frame output queued session created
for the master request frame, and there must be one or more new master request
frames pending in the queue. If no new frames are pending in the output queue, no
master request header is transmitted. This allows the timing of master request header
transmission to be controlled by the timing of master request frame writes to the
output queue.

If there are no normal schedules pending, the master is effectively in diagnostics-only
mode, and master request headers are transmitted at a rate determined by the slot
delay defined for the master request frame slot in the master request schedule or the
nxPropSession_IntfLINDiagSTmin time, whichever is greater, and the state of the
master request frame output queue as described above.

© National Instruments 425

NI-XNET 20.5

If there are normal schedules pending, the master is effectively in diagnostics-
interleaved mode, and a master request header transmission is inserted between
each complete execution of a run-once or run-continuous schedule. This happens as
long as the nxPropSession_IntfLINDiagSTmin time has been met, and there are one
or more new master request frames pending in the master request frame output
queue.
■ Slave Response: The master executes a diagnostic slave response schedule
(transmits a slave response header onto the LIN) if it can. A slave response schedule
must be defined for the LIN cluster in the imported or in-memory database.
Otherwise, error nxErrDiagnosticScheduleNotDefined is returned when attempting to
set this value.

If there are no normal schedules pending, the master is effectively in diagnostics-only
mode, and slave response headers are transmitted at the rate of the slot delay
defined for the slave response frame slot in the slave response schedule. The
addressed slave may or may not respond to each header, depending on its specified
P2min and STmin timings.

If there are normal schedules pending, the master is effectively in diagnostics-
interleaved mode, and a slave response header transmission is inserted between
each complete execution of a run-once or run-continuous schedule. Here again, the
addressed slave may or may not respond to each header, depending on its specified
P2min and STmin timings.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

You can use the XNET Write (State LIN Diagnostic Schedule Change) VI with any
XNET session mode, as long as the session interface is LIN. Because the schedule
change applies to the LIN interface, it can apply to multiple sessions.

According to the LIN protocol, only the master executes schedules, not slaves. If the
XNET Session Interface:LIN:Master? property is false (slave), this write function

ni.com426

NI-XNET 20.5

implicitly sets that property to true (master). If the interface currently is running as a
slave, this write returns an error, because it cannot change to master while running.

Use the XNET Write (State LIN Diagnostic Schedule Change) VI to transmit master
request messages and query for slave response messages after node configuration
has been performed. Node configuration should be handled using the XNET Write
(State LIN Schedule Change) VI. Wire the node configuration schedule defined for
the LIN cluster into that VI so that it is the first schedule executed for the LIN. Refer
to the description for the XNET Write (State LIN Schedule Change) VI for more
information about using it to perform node configuration.

XNET Write (State LIN Schedule Change).vi

Purpose

Writes a request for the LIN interface to change the running schedule. You can use
this XNET Write VI with any input or output session for LIN.

Format

Inputs

session in is the session to use for the schedule change. This session is selected from the
LabVIEW project or returned from the XNET Create Session VI. The session must use a LIN
interface.

data is the XNET LIN schedule. Although the data type for this input is the XNET LIN
Schedule I/O Name, you also can wire a string.

The data input supports the following options:

■ XNET LIN Schedule I/O Name: You can use the complete I/O name. This provides
features such as the ability to choose from LIN schedules in a selected database.
■ String with XNET LIN short name: If you prefer to use the XNET LIN Schedule Name
(Short) property, you can wire in the property as a string.

© National Instruments 427

NI-XNET 20.5

■ String with decimal number: This is interpreted as an index into the XNET Cluster
LIN:Schedules property used for this session. If you are editing your database file to
add/remove LIN schedules, this index may change, in which case the name is the
recommended option.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

You can use the XNET Write (State LIN Schedule Change) VI with any XNET session
mode, as long as the session interface is LIN. Because the schedule change applies
to the LIN interface, it can apply to multiple sessions.

According to the LIN protocol, only the master executes schedules, not slaves. If the
XNET Session Interface:LIN:Master? property is false (slave), this write function
implicitly sets that property to true (master). If the interface currently is running as a
slave, this write returns an error, because it cannot change to master while running.

The XNET Write (State LIN Schedule Change) VI behavior depends on the Run Mode
property of the XNET LIN schedule that you wire in as data:

■ Continuous: This mode changes the single run-continuous schedule for the
interface. The single run-continuous schedule executes all its entries (slots)
repetitively, starting over with the first entry after running the last entry.

The run-continuous schedule is handled as if it is lowest priority. If you write a
run-once schedule in the middle of a run-continuous execution, the run-
continuous schedule is interrupted after the current slot finishes. The
scheduler switches to the run-once schedule, and when all run-once
schedules are done, the scheduler returns to the slot in the run-continuous
schedule where it left off. For example, if run-continuous schedule A has 4
slots, and it is executing slot 2 when a run-once schedule B is written, slot 2 of
A finishes, then all slots of schedule B run, then the scheduler returns to slot 3

ni.com428

NI-XNET 20.5

of schedule A.

Only one run-continuous schedule exists at a time. If you change from one
run-continuous schedule to another in the middle of a run, the current
schedule completes all of its slots, then the scheduler changes to the new run-
continuous schedule.
■ Once: This mode writes a request for a run-once schedule. Multiple run-
once schedules can be pending for execution. Each run-once schedule
executes all its entries (slots), and then it is considered done.

Each run-once schedule has a priority from 1 to 254. Lower values correspond
to higher priority (1 is highest). The LIN interface's scheduler maintains a
priority queue of run-once schedule requests. This means the highest-priority
run-once schedule executes first, followed by the next run-once in priority,
and when no run-once schedules are pending, the interface returns to the run-
continuous schedule.

A run-once schedule cannot interrupt another run-once schedule. For
example, if run-once schedule X has 3 slots and is executing slot 0 when a run-
once schedule Y with higher priority is written, slots 0, 1, and 2 of X finish, then
all slots of schedule Y run.
■ Null: This mode stops scheduler execution after the current slot is finished.
The queue of run-once schedules is flushed (all elements discarded).

The null schedule is considered the highest priority schedule. It overrides the
single run-continuous schedule, thus acting as the default scheduling
behavior. For example, if you write a null schedule, then write a run-once
schedule, the run-once schedule executes all its slots, then communication
stops (returns to null schedule).

The XNET Write (State LIN Schedule Change) VI does not wait for the
requested schedule to finish execution prior to return. The VI does not wait for
the schedule to begin execution, because in the case of run-once schedules,
that may take a long time (depending on priority). Because this VI simply

© National Instruments 429

NI-XNET 20.5

writes a schedule request and returns, it is safe to use within a high-priority
loop in LabVIEW Real-Time.

Node configuration is handled using the XNET Write (State LIN Schedule Change) VI
instead of the XNET Write (State LIN Diagnostic Schedule Change) VI. Wire the node
configuration schedule defined for the LIN cluster into the XNET Write (State LIN
Schedule Change) VI so that it is the first schedule executed for the LIN, with a run
mode of once. The data for each node configuration service request entry in the
node configuration schedule is automatically transmitted by the master. After the
node configuration schedule has completed, use the XNET Write (State LIN
Diagnostic Schedule Change) VI to write master request messages and query for
slave response messages, or the XNET Write (State LIN Schedule Change) VI to run
normal schedules.

XNET Write (State FlexRay Symbol).vi

Purpose

Writes a request for the FlexRay interface to transmit a symbol on the FlexRay bus.
You can use this XNET Write VI with any input or output session for FlexRay.

Format

Inputs

session in is the session to write. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI. The session must use a FlexRay interface.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

ni.com430

NI-XNET 20.5

Description

You can use the XNET Write (State FlexRay Symbol) VI with any XNET session mode,
as long as the session interface is FlexRay. Because the symbol write applies to the
FlexRay interface, it can apply to multiple sessions.

After calling the XNET Write (State FlexRay Symbol) VI, the XNET interface transmits
the symbol during the symbol window of the FlexRay cycle following the currently
executing cycle. If you call the XNET Write (State FlexRay Symbol) VI multiple
times, only the most recent symbol is transmitted.

Database Subpalette
This subpalette includes functions for accessing databases that specify the
embedded network configuration, including frame and signal data that is
transferred. You can use these functions to retrieve information from database files,
create new database objects in LabVIEW, and edit and save new database files.

XNET Database Property Node

Format

Description

Property node used to read/write properties for an XNET Database I/O name.

Pull down this node to add properties. Right-click to change direction between read
and write. Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>)
and move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help
(select Search the LabVIEW Help... from the Help menu) and look for the Property
Nodes topic in the index.

© National Instruments 431

NI-XNET 20.5

Clusters

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Database

Short Name

Clsts

Description

Returns an array of I/O names of XNET Clusters in this database.

A cluster is assigned to a database when the cluster object is created. You cannot
change this assignment afterwards.

You can use an array element to read or write the cluster properties (for example,
cluster protocol or cluster frames). Refer to XNET Cluster I/O Name for information
about using XNET I/O names.

FIBEX and AUTOSAR files can contain any number of clusters, and each cluster uses
a unique name.

For CANdb (.dbc), LDF (.ldf), or NI-CAN (.ncd) files, the file contains only one
cluster, and no cluster name is stored in the file. For these database formats, NI-
XNET uses the name Cluster for the single cluster.

ShowInvalidFromOpen?

Data Type Direction Required? Default
Read/Write No False

Property Class

XNET Database

ni.com432

NI-XNET 20.5

Short Name

ShowInvalid?

Description

Shows frames and signals that are invalid at database open time.

After opening a database, this property always is set to false, meaning that invalid
clusters, frames, and signals are not returned in properties that return XNET I/O
Names for the database (for example, XNET Cluster Frames and XNET Frame
Signals). Invalid clusters, frames, and signals are incorrectly defined and therefore
cannot be used in the bus communication. The false setting is recommended when
you use the database to create XNET sessions.

In case the database was opened to correct invalid configuration (for example, in a
database editor), you must set the property to true prior to reading properties that
return XNET I/O Names for the database (for example, XNET Cluster Frames and
XNET Frame Signals).

For invalid objects, the XNET Cluster Configuration Status, XNET Frame
Configuration Status, and XNET Signal Configuration Status properties return an
error code that explains the problem. For valid objects, Configuration Status returns
success (no error).

Clusters, frames, and signals that became invalid after the database is opened are
still returned from the XNET Database Clusters, XNET Cluster Frames, and XNET
Frame Signals properties, even if ShowInvalidFromOpen? is false and Configuration
Status returns an error code. For example, if you open the frame with valid
properties, then you set the Start Bit beyond the payload length, the Configuration
Status returns an error, but the frame is returned from XNET Cluster Frames.

XNET Database Constant
This constant provides the constant form of the XNET Database I/O name. You drag a
constant to the block diagram of your VI, then select a database. You can change
constants only during configuration, prior to running the VI. For a complete
description, refer to XNET Database I/O Name.

© National Instruments 433

NI-XNET 20.5

XNET Cluster Property Node

Format

Description

Property node used to read/write properties for an XNET Cluster I/O name.

Pull down this node to add properties. Right-click to change direction between read
and write. Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>)
and move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help
(select Search the LabVIEW Help... from the Help menu) and look for the Property
Nodes topic in the index.

FlexRay:Action Point Offset
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.ActPtOff

Description

This property specifies the number of macroticks (MT) that the action point is offset
from the beginning of a static slot or symbol window.

ni.com434

NI-XNET 20.5

This property corresponds to the global cluster parameter gdActionPointOffset in
the FlexRay Protocol Specification.

The action point is that point within a given slot where the actual transmission of a
frame starts. This is slightly later than the start of the slot, to allow for a clock drift
between the network nodes.

The range for this property is 1–63 MT.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:CAS Rx Low Max
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.CASRxLMax

© National Instruments 435

NI-XNET 20.5

Description

This property specifies the upper limit of the collision avoidance symbol (CAS)
acceptance window. The CAS symbol is transmitted by the FlexRay interface (node)
during the symbol window within the communication cycle. A receiving FlexRay
interface considers the CAS to be valid if the pattern's low level is within 29 gdBit
(cdCASRxLowMin) and CAS Rx Low Max.

This property corresponds to the global cluster parameter gdCASRxLowMax in the
FlexRay Protocol Specification.

The values for this property are in the range 67–99 gdBit.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Channels
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

ni.com436

NI-XNET 20.5

Short Name

FlexRay.Channels

Description

This property specifies the FlexRay channels used in the cluster. Frames defined in
this cluster are expected to use the channels this property specifies. Refer to the
XNET Frame FlexRay:Channel Assignment property.

This property corresponds to the global cluster parameter gChannels in the FlexRay
Protocol Specification.

A FlexRay cluster supports two independent network wires (channels A and B). You
can choose to use both or only one in your cluster.

The values (enumeration) for this property are:

1 Channel A only
2 Channel B only
3 Channels A and B

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

© National Instruments 437

NI-XNET 20.5

FlexRay:Cluster Drift Damping
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.ClstDriftDmp

Description

This property specifies the cluster drift damping factor, based on the longest
microtick used in the cluster. Use this global FlexRay parameter to compute the
local cluster drift damping factor for each cluster node. You can access the local
cluster drift for the XNET FlexRay interface from the XNET Session
Interface:FlexRay:Cluster Drift Damping property.

This property corresponds to the global cluster parameter gdClusterDriftDamping in
the FlexRay Protocol Specification.

The values for this property are in the range 0–5 MT.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

ni.com438

NI-XNET 20.5

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Cold Start Attempts
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.ColdStAts

Description

This property specifies the maximum number of times a node in this cluster can
start the cluster by initiating schedule synchronization. This global cluster
parameter is applicable to all cluster notes that can perform a coldstart (send
startup frames).

This property corresponds to the global cluster parameter gColdStartAttempts in
the FlexRay Protocol Specification.

The values for this property are in the range 2–31.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)

© National Instruments 439

NI-XNET 20.5

rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Cycle
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.Cycle

Description

This property specifies the duration of one FlexRay communication cycle, expressed
in microseconds.

This property corresponds to the global cluster parameter gdCycle in the FlexRay
Protocol Specification.

All frame transmissions complete within a cycle. After this time, the frame
transmissions restart with the first frame in the next cycle. The communication cycle
counts increment from 0–63, after which the cycle count resets back to 0.

The range for this property is 10–16000 µs.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

ni.com440

NI-XNET 20.5

■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Dynamic Segment Start
Data Type Direction Required? Default

Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Short Name

FlexRay.DynSegStart

Description

This property specifies the start of the dynamic segment, expressed as the number
of macroticks (MT) from the start of the cycle.

The range for this property is 8–15998 MT.

This property is calculated from other cluster properties. It is based on the total
static segment size. It is set to 0 if the FlexRay:Number of Minislots property is 0 (no
dynamic segment exists).

FlexRay:Dynamic Slot Idle Phase
Data Type Direction Required? Default

Read/Write Yes Read from Database

© National Instruments 441

NI-XNET 20.5

Property Class

XNET Cluster

Short Name

FlexRay.DynSlotIdlPh

Description

This property specifies the dynamic slot idle phase duration.

This property corresponds to the global cluster parameter gdDynamicSlotIdlePhase
in the FlexRay Protocol Specification.

The values for this property are in the range 0–2 minislots.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Latest Guaranteed Dynamic Slot
Data Type Direction Required? Default

Read Only N/A Calculated from Other Cluster Properties

ni.com442

NI-XNET 20.5

Property Class

XNET Cluster

Short Name

FlexRay.LatestGuarDyn

Description

This property specifies the highest slot ID in the dynamic segment that still can
transmit a full-length (for example, Payload Length Dynamic Maximum) frame,
provided all previous slots in the dynamic segment have transmitted full-length
frames also.

A larger slot ID cannot be guaranteed to transmit a full-length frame in each cycle
(although a frame might go out depending on the dynamic segment payload).

The range for this property is 2–2047 slots.

This read-only property is calculated from other cluster properties. If the Number of
Minislots is zero, no dynamic slots exist, and this property returns 0. Otherwise, the
Number of Minislots is used along with Payload Length Dynamic Maximum to
determine the latest dynamic slot guaranteed to transmit in the next cycle. In other
words, when all preceding dynamic slots transmit with Payload Length Dynamic
Maximum, this dynamic slot also can transmit with Payload Length Dynamic
Maximum, and its frame ends prior to the end of the dynamic segment.

FlexRay:Latest Usable Dynamic Slot
Data Type Direction Required? Default

Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

© National Instruments 443

NI-XNET 20.5

Short Name

FlexRay.LatestUsableDyn

Description

This property specifies the highest slot ID in the dynamic segment that can still
transmit a full-length (that is, Payload Length Dynamic Maximum) frame, provided
no other frames have been sent in the dynamic segment.

A larger slot ID cannot transmit a full-length frame (but could probably still transmit
a shorter frame).

The range for this property is 2–2047.

This read-only property is calculated from other cluster properties. If the Number of
Minislots is zero, no dynamic slots exist, and this property returns 0. Otherwise,
Number of Minislots is used along with Payload Length Dynamic Maximum to
determine the latest dynamic slot that can be used when all preceding dynamic
slots are empty (zero payload length). In other words, this property is calculated
under the assumption that all other dynamic slots use only one minislot, and this
dynamic slot uses the number of minislots required to deliver the maximum
payload. The frame for this dynamic slot must end prior to the end of the dynamic
segment. Any frame transmitted in a preceding dynamic slot is likely to preclude this
slot's frame.

FlexRay:Listen Noise
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.LisNoise

ni.com444

NI-XNET 20.5

Description

This property specifies the upper limit for the startup and wakeup listen timeout in
the presence of noise. It is used as a multiplier for the Interface:FlexRay:Listen
Timeout property.

This property corresponds to the global cluster parameter gListenNoise in the
FlexRay Protocol Specification.

The values for this property are in the range 2–16.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Macro Per Cycle
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.MacroPerCycle

© National Instruments 445

NI-XNET 20.5

Description

This property specifies the number of macroticks in a communication cycle. For
example, if the FlexRay cycle has a duration of 5 ms (5000 µs), and the duration of a
macrotick is 1 µs, the XNET Cluster FlexRay:Macro Per Cycle property is 5000.

This property corresponds to the global cluster parameter gMacroPerCycle in the
FlexRay Protocol Specification.

The macrotick (MT) is the basic timing unit in the FlexRay cluster. Nearly all timing
dependent properties are expressed in terms of macroticks.

The range for this property is 10–16000 MT.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Macrotick
Data Type Direction Required? Default

Read Only N/A Calculated from Other Cluster Parameters

Property Class

XNET Cluster

ni.com446

NI-XNET 20.5

Short Name

FlexRay.Macrotick

Description

This property specifies the duration of the clusterwide nominal macrotick,
expressed in microseconds.

This property corresponds to the global cluster parameter gdMacrotick in the
FlexRay Protocol Specification.

The macrotick (MT) is the basic timing unit in the FlexRay cluster. Nearly all timing-
dependent properties are expressed in terms of macroticks.

The range for this property is 1–6 µs.

This property is calculated from the FlexRay:Cycle and FlexRay:Macro Per Cycle
properties and rounded to the nearest permitted value.

FlexRay:Max Without Clock Correction Fatal
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.MaxWoClkCorFat

Description

This property defines the number of consecutive even/odd cycle pairs with missing
clock correction terms that cause the controller to transition from the Protocol
Operation Control status of Normal Active or Normal Passive to the Halt state. Use
this global parameter as a threshold for testing the clock correction failure counter.

© National Instruments 447

NI-XNET 20.5

This property corresponds to the global cluster parameter
gMaxWithoutClockCorrectionFatal in the FlexRay Protocol Specification.

The values for this property are in the range 1–15 even/odd cycle pairs.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Max Without Clock Correction Passive
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.MaxWoClkCorPas

Description

This property defines the number of consecutive even/odd cycle pairs with missing
clock correction terms that cause the controller to transition from the Protocol

ni.com448

NI-XNET 20.5

Operation Control status of Normal Active to Normal Passive. Use this global
parameter as a threshold for testing the clock correction failure counter.

Note This property, Max Without Clock Correction Passive, <= Max Without Clock Correction
Fatal <= 15.

This property corresponds to the global cluster parameter
gMaxWithoutClockCorrectionPassive in the FlexRay Protocol Specification.

The values for this property are in the range 1–15 even/odd cycle pairs.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Minislot Action Point Offset
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

© National Instruments 449

NI-XNET 20.5

Short Name

MinislotActPt

Description

This property specifies the number of macroticks (MT) the minislot action point is
offset from the beginning of a minislot.

This property corresponds to the global cluster parameter
gdMinislotActionPointOffset in the FlexRay Protocol Specification.

The action point is that point within a given slot where the actual transmission of a
frame starts. This is slightly later than the start of the slot to allow for a clock drift
between the network nodes.

The range for this property is 1–31 MT.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Minislot
Data Type Direction Required? Default

Read/Write Yes Read from Database

ni.com450

NI-XNET 20.5

Property Class

XNET Cluster

Short Name

FlexRay.Minislot

Description

This property specifies the duration of a minislot, expressed in macroticks (MT).

This property corresponds to the global cluster parameter gdMinislot in the FlexRay
Protocol Specification.

In the dynamic segment of the FlexRay cycle, frames can have variable payload
length.

Minislots are the dynamic segment time increments. In a minislot, a dynamic frame
can start transmission, but it usually spans several minislots. If no frame transmits,
the slot counter (slot ID) is incremented to allow for the next frame.

The total dynamic segment length is determined by multiplying this property by the
Number Of Minislots property. The total dynamic segment length must be shorter
than the Macro Per Cycle property minus the total static segment length.

The range for this property is 2–63 MT.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

© National Instruments 451

NI-XNET 20.5

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Network Management Vector Length
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.NMVecLen

Description

This property specifies the length of the Network Management vector (NMvector) in
a cluster.

Only frames transmitted in the static segment of the communication cycle use the
NMVector. The NMVector length specifies the number of bytes in the payload
segment of the FlexRay frame transmitted in the status segment that can be used as
the NMvector.

This property corresponds to the global cluster parameter
gNetworkManagementVectorLength in the FlexRay Protocol Specification.

The range for this property is 0–12 bytes.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

ni.com452

NI-XNET 20.5

■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:NIT Start
Data Type Direction Required? Default

Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Short Name

FlexRay.NITStart

Description

This property specifies the start of the Network Idle Time (NIT), expressed as the
number of macroticks (MT) from the start of the cycle.

The NIT is a period at the end of a FlexRay communication cycle where no frames
are transmitted. The network nodes use it to re-sync their clocks to the common
network time.

The range for this property is 8–15998 MT.

This property is calculated from other cluster properties. It is the total size of the
static and dynamic segments plus the symbol window length, which is optional in a
FlexRay communication cycle.

© National Instruments 453

NI-XNET 20.5

FlexRay:NIT
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.NIT

Description

This property is the Network Idle Time (NIT) duration, expressed in macroticks (MT).

This property corresponds to the global cluster parameter gdNIT in the FlexRay
Protocol Specification.

The NIT is a period at the end of a FlexRay communication cycle where no frames
are transmitted. The network nodes use it to re-sync their clocks to the common
network time.

Configure the NIT to be the Macro Per Cycle property minus the total static and
dynamic segment lengths minus the optional symbol window duration.

The range for this property is 2–805 MT.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)

ni.com454

NI-XNET 20.5

rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Number of Minislots
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.NumMinislt

Description

This property specifies the number of minislots in the dynamic segment.

This property corresponds to the global cluster parameter gNumberOfMinislots in
the FlexRay Protocol Specification.

In the FlexRay cycle dynamic segment, frames can have variable payload lengths.

Minislots are the dynamic segment time increments. In a minislot, a dynamic frame
can start transmission, but it usually spans several minislots. If no frame transmits,
the slot counter (slot ID) is incremented to allow for the next frame.

The total dynamic segment length is determined by multiplying this property by the
Minislot property. The total dynamic segment length must be shorter than the
Macro Per Cycle property minus the total static segment length.

The range for this property is 0–7986.

© National Instruments 455

NI-XNET 20.5

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Number of Static Slots
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.NumStatSlt

Description

This property specifies the number of static slots in the static segment.

This property corresponds to the global cluster parameter gNumberOfStaticSlots in
the FlexRay Protocol Specification.

Each static slot is used to transmit one (static) frame on the bus.

ni.com456

NI-XNET 20.5

The total static segment length is determined by multiplying this property by the
Static Slot property. The total static segment length must be shorter than the Macro
Per Cycle property.

The range for this property is 2–1023.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Offset Correction Start
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.OffCorSt

© National Instruments 457

NI-XNET 20.5

Description

This property specifies the start of the offset correction phase within the Network
Idle Time (NIT), expressed as the number of macroticks (MT) from the start of the
cycle.

This property corresponds to the global cluster parameter gOffsetCorrectionStart in
the FlexRay Protocol Specification.

The NIT is a period at the end of a FlexRay communication cycle where no frames
are transmitted. The network nodes use it to re-sync their clocks to the common
network time.

The Offset Correction Start is usually configured to be NITStart + 1, but can deviate
from that value.

The range for this property is 9–15999 MT.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Payload Length Dynamic Maximum
Data Type Direction Required? Default

Read/Write N/A Read from Database

ni.com458

NI-XNET 20.5

Property Class

XNET Cluster

Short Name

FlexRay.PayldLenDynMax

Description

This property specifies the maximum of the payload lengths of all dynamic frames.

In the FlexRay cycle dynamic segment, frames can have variable payload length.

The range for this property is 0–254 bytes (even numbers only).

The value returned for this property is the maximum of the payload lengths of all
frames defined for the dynamic segment in the database.

Use this property to calculate the Latest Usable Dynamic Slot and Latest Guaranteed
Dynamic Slot properties.

You may temporarily set this to a larger value (if it is not yet the maximum), and then
this value is returned for this property. But this setting is lost once the database is
closed, and after a reopen, the maximum of the frames is returned again. The
changed value is returned from the FlexRay:Payload Length Dynamic Maximum
property until the database is closed.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

© National Instruments 459

NI-XNET 20.5

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Payload Length Maximum
Data Type Direction Required? Default

Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Short Name

FlexRay.PayldLenMax

Description

This property returns the payload length of any frame (static or dynamic) in this
cluster with the longest payload. The payload specifies that the frame transfers the
data.

The range for this property is 0–254 bytes (even numbers only).

FlexRay:Payload Length Static
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.PayldLenSt

ni.com460

NI-XNET 20.5

Description

This property specifies the payload length of a static frame. All static frames in a
cluster have the same payload length.

This property corresponds to the global cluster parameter gPayloadLengthStatic in
the FlexRay Protocol Specification.

The range for this property is 0–254 bytes (even numbers only).

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Static Slot
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.StatSlot

© National Instruments 461

NI-XNET 20.5

Description

This property specifies the duration of a slot in the static segment in macroticks
(MT).

This property corresponds to the global cluster parameter gdStaticSlot in the
FlexRay Protocol Specification.

Each static slot is used to transmit one (static) frame on the bus.

The static slot duration takes into account the Payload Length Static and Action
Point Offset properties, as well as maximum propagation delay.

In the FlexRay cycle static segment, all frames must have the same payload length;
therefore, the duration of a static frame is the same.

The total static segment length is determined by multiplying this property by the
Number Of Static Slots property. The total static segment length must be shorter
than the Macro Per Cycle property.

The range for this property is 4–661 MT.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

ni.com462

NI-XNET 20.5

FlexRay:Symbol Window Start
Data Type Direction Required? Default

Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Short Name

FlexRay.SymWinStart

Description

This property specifies the macrotick offset at which the symbol window begins
from the start of the cycle. During the symbol window, a channel sends a single
Media Test Access Symbol (MTS).

The range for this property is 8–15998 MT.

This property is calculated from other cluster properties. It is based on the total
static and dynamic segment size. It is set to zero if the Symbol Window property is 0
(no symbol window exists).

FlexRay:Symbol Window
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.SymWin

© National Instruments 463

NI-XNET 20.5

Description

This property specifies the symbol window duration, expressed in macroticks (MT).

This property corresponds to the global cluster parameter gdSymbolWindow in the
FlexRay Protocol Specification.

The symbol window is a slot after the static and dynamic segment, and is used to
transmit Collision Avoidance symbols (CAS) and/or Media Access Test symbol (MTS).
The symbol window is optional for a given cluster (the Symbol Window property can
be zero). A symbol transmission starts at the action point offset within the symbol
window.

The range for this property is 0–142 MT.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Sync Node Max
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

ni.com464

NI-XNET 20.5

Short Name

FlexRay.SyncNodeMax

Description

This property specifies the maximum number of nodes that may send frames with
the sync frame indicator bit set to one.

This property corresponds to the global cluster parameter gSyncNodeMax in the
FlexRay Protocol Specification.

Sync frames define the zero points for the clock drift measurement. Startup frames
are special sync frames transmitted first after a network startup. There must be at
least two startup nodes in a network.

The range for this property is 2–15.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:TSS Transmitter
Data Type Direction Required? Default

Read/Write Yes Read from Database

© National Instruments 465

NI-XNET 20.5

Property Class

XNET Cluster

Short Name

FlexRay.TSSTx

Description

This property specifies the number of bits in the Transmission Start Sequence (TSS).
A frame transmission may be truncated at the beginning. The amount of truncation
depends on the nodes involved and the channel topology layout. For example, the
purpose of the TSS is to "open the gates" of an active star (that is, to cause the star
to properly set up input and output connections. During this setup, an active star
truncates a number of bits at the beginning of a communication element. The TSS
prevents the frame or symbol content from being truncated. You must set this
property to be greater than the expected worst case truncation of a frame.

This property corresponds to the global cluster parameter gdTSSTransmitter in the
FlexRay Protocol Specification.

The range for this property is 3-15 bit.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

ni.com466

NI-XNET 20.5

FlexRay:Use Wakeup?
Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Cluster

Short Name

FlexRay.UseWakeup?

Description

This property indicates whether the FlexRay cluster supports wakeup. This value is
set to True if the WAKE-UP tree is present in the FIBEX file. This value is set to False if
the WAKE-UP tree is not present in the FIBEX file.

When this property is True, the FlexRay cluster uses wakeup functionality;
otherwise, the FlexRay cluster does not use wakeup functionality.

When creating a new database, the default value of this property is False. However,
if you set any wakeup parameter (for example, FlexRay:Wakeup Symbol Rx Low),
this property is set to True automatically, and the WAKE-UP tree is saved in the
FIBEX file when saved.

FlexRay:Wakeup Symbol Rx Idle
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

© National Instruments 467

NI-XNET 20.5

Short Name

FlexRay.WakeSymRxIdl

Description

This property specifies the number of bits the node uses to test the idle portion
duration of a received wakeup symbol. Collisions, clock differences, and other
effects can deform the transmitted wakeup pattern.

This property corresponds to the global cluster parameter gdWakeupSymbolRxIdle in
the FlexRay Protocol Specification.

The range for this property is 14–59 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Wakeup Symbol Rx Low
Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

ni.com468

NI-XNET 20.5

Short Name

FlexRay.WakeSymRxLow

Description

This property specifies the number of bits the node uses to test the low portion
duration of a received wakeup symbol. This lower limit of zero bits must be received
for the receiver to detect the low portion. Active starts, clock differences, and other
effects can deform the transmitted wakeup pattern.

This property corresponds to the global cluster parameter gdWakeupSymbolRxLow
in the FlexRay Protocol Specification.

The range for this property is 10–55 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Wakeup Symbol Rx Window
Data Type Direction Required? Default

Read/Write Yes Read from Database

© National Instruments 469

NI-XNET 20.5

Property Class

XNET Cluster

Short Name

FlexRay.WakeSymRxWin

Description

This property specifies the size of the window used to detect wakeups. Detection of
a wakeup requires a low and idle period from one WUS (wakeup symbol) and a low
period from another WUS, to be detected entirely within a window of this size. Clock
differences and other effects can deform the transmitted wakeup pattern.

This property corresponds to the global cluster parameter
gdWakeupSymbolRxWindow in the FlexRay Protocol Specification.

The range for this property is 76–301 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Wakeup Symbol Tx Idle
Data Type Direction Required? Default

ni.com470

NI-XNET 20.5

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.WakeSymTxIdl

Description

This property specifies the number of bits the node uses to transmit the wakeup
symbol idle portion.

This property corresponds to the global cluster parameter gdWakeupSymbolTxIdle in
the FlexRay Protocol Specification.

The range for this property is 45–180 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Wakeup Symbol Tx Low
Data Type Direction Required? Default

© National Instruments 471

NI-XNET 20.5

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.WakeSymTxLow

Description

This property specifies the number of bits the node uses to transmit the wakeup
symbol low phase.

This property corresponds to the global cluster parameter gdWakeupSymbolTxLow
in the FlexRay Protocol Specification.

The range for this property is 15–60 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

64bit Baud Rate

Data Type Direction Required? Default

ni.com472

NI-XNET 20.5

Read/Write No 0

Property Class

XNET Cluster

Short Name

BaudRate64

Description

The 64bit Baud Rate property sets the baud rate all cluster nodes use. This baud rate
represents the rate from the database, so it is read-only from the session. Use a
session interface property (for example, Interface:64bit Baud Rate) to override the
database baud rate with an application-specific baud rate.

CAN
For CAN, this rate can be 33333, 40000, 50000, 62500, 80000, 83333, 100000, 125000,
160000, 200000, 250000, 400000, 500000, 800000, or 1000000. Some transceivers
may only support a subset of these values.

If you need values other than these, use the custom settings as described in the
Interface:64bit Baud Rate property.

FlexRay
For FlexRay, this rate can be 2500000, 5000000, or 10000000.

LIN
For LIN, this rate can be 2400–20000 inclusive.

If you need values other than these, use the custom settings as described in the
Interface:64bit Baud Rate property.

Application Protocol

Data Type Direction Required? Default

© National Instruments 473

NI-XNET 20.5

Read/Write No Read from Database

Property Class

XNET Cluster

Short Name

ApplProtocol

Description

This property specifies the application protocol. It is a ring of two values:

Enumeration Value Meaning
None 0 The default application protoco

l.
J1939 1 Indicates J1939 clusters. The va

lue enables the following featur
es:

■ Sending/receiving long
frames as the SAE J1939 s
pecification specifies, usi
ng the J1939 transport pr
otocol.
■ Using a special notatio
n for J1939 identifiers.
■ Using J1939 address cl
aiming.

CAN:64bit FD Baud Rate

Data Type Direction Required? Default
Read/Write No 0

Property Class

XNET Cluster

ni.com474

NI-XNET 20.5

Short Name

CAN.FdBaudRate64

Description

The 64bit FD Baud Rate property sets the fast data baud rate for the CAN FD+BRS
CAN:I/O Mode property. This property represents the database fast data baud rate
for the CAN FD+BRS I/O Mode. Refer to the CAN:I/O Mode property for a description
of this mode. Use a session interface property (for example, Interface:CAN:64bit FD
Baud Rate) to override the database fast baud rate with an application-specific fast
baud rate.

NI-XNET CAN hardware currently accepts the following numeric baud rates: 200000,
250000, 400000, 500000, 800000, 1000000, 1250000, 1600000, 2000000, 2500000,
4000000, 5000000, and 8000000. Some transceivers may support only a subset of
these values.

If you need values other than these, use the custom settings as described in the
Interface:CAN:64bit FD Baud Rate property.

CAN:FD ISO Mode

Data Type Direction Required? Default
Read Only No ISO

Property Class

XNET Cluster

Short Name

CAN.FdIsoMode

Description

This property specifies whether the CAN FD cluster is working in ISO CAN FD mode,
Non-ISO CAN FD mode, or Legacy ISO mode. The default is ISO CAN FD mode. You

© National Instruments 475

NI-XNET 20.5

define the value in a dialog box that appears when you define an alias for the
database.

CAN:I/O Mode

Data Type Direction Required? Default
Read/Write No Read from Database

Property Class

XNET Cluster

Short Name

CAN.IoMode

Description

This property specifies the CAN I/O Mode of the cluster. It is a ring of three values:

Enumeration Value Meaning
CAN 0 This is the default CAN 2.0 A/B s

tandard I/O mode as defined in
ISO 11898-1:2003. A fixed baud
rate is used for transfer, and the
payload length is limited to 8 by
tes.

CAN FD 1 This is the CAN FD mode as spe
cified in the CAN with Flexible
Data-Rate specification, versio
n 1.0. Payload lengths up to 64
are allowed, but they are trans
mitted at a single fixed baud rat
e (defined by the XNET Cluster 6
4bit Baud Rate or XNET Session
Interface:64bit Baud Rate prope
rties).

CAN FD+BRS 2 This is the CAN FD as specified i
n the CAN with Flexible Data-R
ate specification, version 1.0, w

ni.com476

NI-XNET 20.5

ith the optional Baud Rate Swit
ching enabled. The same paylo
ad lengths as CAN FD mode are
allowed; additionally, the data
portion of the CAN frame is tran
sferred at a different (higher) ba
ud rate (defined by the CAN:64b
it FD Baud Rate or XNET Sessio
n Interface:CAN:64bit FD Baud
Rate properties).

Comment

Data Type Direction Required? Default
Read/Write No Empty String

Property Class

XNET Cluster

Short Name

Comment

Description

A comment describing the cluster object.

A comment is a string containing up to 65535 characters.

Configuration Status

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Cluster

© National Instruments 477

NI-XNET 20.5

Short Name

ConfigStatus

Description

The cluster object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to the
error code input of the Simple Error Handler VI to convert it to a text description (on
message output) of the configuration problem.

By default, incorrectly configured clusters in the database are not returned from the
XNET Database Clusters property because they cannot be used in the bus
communication. You can change this behavior by setting the XNET Database
ShowInvalidFromOpen? property to true. When the configuration status of a cluster
becomes invalid after the database has been opened, the cluster still is returned
from the XNET Database Clusters property even if ShowInvalidFromOpen? is false.

Database

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Cluster

Short Name

Database

Description

I/O name of the cluster parent database.

The parent database is defined when the cluster object is created. You cannot
change it afterwards.

ni.com478

NI-XNET 20.5

ECUs

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Cluster

Short Name

ECUs

Description

ECUs in this cluster.

Returns an array of I/O names of all ECUs defined in this cluster. An ECU is assigned
to a cluster when the ECU object is created. You cannot change this assignment
afterwards.

To add an ECU to a cluster, use the XNET Database Create (ECU) VI. To remove an
ECU from the cluster, use the XNET Database Delete (ECU) VI.

Frames

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Cluster

Short Name

Frms

Description

Frames in this cluster.

© National Instruments 479

NI-XNET 20.5

Returns an array of I/O names of all frames defined in this cluster. A frame is
assigned to a cluster when the frame object is created. You cannot change this
assignment afterwards.

To add a frame to a cluster, use the XNET Database Create (Frame) VI. To remove a
frame from a cluster, use the XNET Database Delete (Frame) VI.

LIN:Schedules

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Cluster

Short Name

LIN.Schedules

Description

Array of LIN schedules defined in this cluster. A LIN schedule is assigned to a cluster
when the LIN schedule object is created. You cannot change this assignment
afterwards. The schedules in this array are sorted alphabetically by schedule name.

While the XNET interface is running, you can use the XNET Write (State LIN Schedule
Change) VI to change the running schedule. No schedule runs by default, so you
must write a schedule request at least once in your application.

For the XNET Write (State LIN Schedule Change) VI, if you use an index to specify the
schedule, that index is the position in this array (starting at 0).

LIN:Tick

Data Type Direction Required? Default
Read/Write Yes N/A

ni.com480

NI-XNET 20.5

Property Class

XNET Cluster

Short Name

LIN.Tick

Description

Relative time between LIN ticks (f64, relative time in seconds). The XNET LIN
Schedule Entry Delay property must be a multiple of this tick.

This tick is referred to as the "timebase" in the LIN specification.

The XNET ECU LIN:Master? property defines the LIN:Tick property in this cluster. You
cannot use the LIN:Tick property when there is no LIN:Master? property defined in
this cluster.

Name (Short)

Data Type Direction Required? Default
Read/Write Yes Defined in Create Object

Property Class

XNET Cluster

Short Name

NameShort

Description

String identifying the cluster object.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the short name. The space (), period (.), and other special
characters are not supported within the name. The short name must begin with a

© National Instruments 481

NI-XNET 20.5

letter (uppercase or lowercase) or underscore, and not a number. The short name is
limited to 128 characters.

If you use a FIBEX or AUTOSAR file, the short name comes from the file. If you use a
CANdb (.dbc), LDF (.ldf), or NI-CAN (.ncd) file, no cluster name is stored in the
file, so NI-XNET uses the name Cluster. If you create the cluster yourself, it comes
from Name input of the XNET Database Create (Cluster) VI.

A cluster name must be unique for all clusters in a database.

This short name does not include qualifiers to ensure that it is unique, such as the
database name. It is for display purposes. The fully qualified name is available by
using the XNET Cluster I/O name as a string.

You can write this property to change the cluster's short name. When you do this,
then use the original XNET Cluster that contains the old name, errors can result
because the old name cannot be found. Follow these steps to avoid this problem:

1. Get the old Name (Short) property using the property node.
2. Set the new Name (Short) property for the object.

3. Close the object using the XNET Database Close VI. Wire the close all? input as
false to close the renamed object only.

4. Wire the XNET Cluster as the input string to the Search and Replace String
Function VI with the old Name as the search string and the new Name as the
replacement string. This replaces the short name in the XNET Cluster, while
retaining the other text that ensures a unique name.

The following diagram demonstrates steps 1 through 4 for an XNET Frame I/O name:

ni.com482

NI-XNET 20.5

PDUs

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Cluster

Short Name

PDUs

Description

PDUs in this cluster.

Returns an array of I/O names of all PDUs defined in this cluster. A PDU is assigned to
a cluster when the PDU object is created. You cannot change this assignment
afterwards.

To add a PDU to a cluster, use the XNET Database Create (PDU) VI. To remove a
PDU from a cluster, use the XNET Database Delete (PDU) VI.

PDUs Required?

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Cluster

Property ID

PDUsReqd?

Description

Determines whether using PDUs in the database API is required for this cluster.

© National Instruments 483

NI-XNET 20.5

If this property returns false, it is safe to use signals as child objects of a frame
without PDUs. This behavior is compatible with NI-XNET 1.1 or earlier. Clusters from .
dbc, .ncd, or FIBEX 2 files always return false for this property, so using PDUs from
those files is not required.

If this property returns true, the cluster contains PDU configuration, which requires
reading the PDUs as frame child objects and then signals as PDU child objects, as
shown in the following figure.

Internally, the database always uses PDUs, but shows the same signal objects also
as children of a frame.

The following conditions must be fulfilled for all frames in the cluster to return false
from the PDUs Required? property:

■ Only one PDU is mapped to the frame.
■ This PDU is not mapped to other frames.
■ The PDU Start Bit in the frame is 0.
■ The PDU Update Bit is not used.

If the conditions are not fulfilled for a given frame, signals from the frame are still
returned, but reading the property returns a warning.

ni.com484

NI-XNET 20.5

The NI-XNET session supports frames requiring PDUs only for FlexRay. For frames
requiring PDUs on a CAN or LIN cluster, the XNET Frame Configuration Status
property and XNET Create Session VI return an error.

Protocol

Data Type Direction Required? Default
Read/Write No CAN

Property Class

XNET Cluster

Short Name

Protocol

Description

Determines the cluster protocol.

The values (enumeration) for this property are:

0 CAN
1 FlexRay
2 LIN

Signals

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Cluster

Short Name

Sigs

© National Instruments 485

NI-XNET 20.5

Description

This property returns an array of I/O names of all XNET Signals defined in this
cluster.

A signal is assigned to a cluster when the signal object is created. You cannot change
this assignment afterwards.

To add a signal to a cluster, use the XNET Database Create (Signal) VI. To remove a
signal from a cluster use the XNET Database Delete (Signal) VI.

XNET Cluster Constant
This constant provides the constant form of the XNET Cluster I/O name. You drag a
constant to the block diagram of your VI, then select a cluster. You can change
constants only during configuration, prior to running the VI. For a complete
description, refer to XNET Cluster I/O Name.

XNET ECU Property Node

Format

Description

Property node used to read/write properties for an XNET ECU I/O name.

Pull down this node to add properties. Right-click to change direction between read
and write. Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>)
and move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help
(select Search the LabVIEW Help... from the Help menu) and look for the Property
Nodes topic in the index.

ni.com486

NI-XNET 20.5

Cluster

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET ECU

Short Name

Cluster

Description

I/O name of the parent cluster to which the ECU is connected.

The parent cluster is determined when the ECU object is created. You cannot change
it afterwards.

FlexRay:Coldstart?

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET ECU

Short Name

FlexRay.Coldstart?

Description

Indicates that the ECU is sending a startup frame.

This property is valid only for ECUs connected to a FlexRay bus. It returns true when
one of the frames this ECU transmits (refer to the XNET ECU Frames Transmitted
property) has the XNET Frame FlexRay:Startup? property set to true. You can

© National Instruments 487

NI-XNET 20.5

determine the frame transmitting the startup using the XNET ECU FlexRay:Startup
Frame property. An ECU can send only one startup frame on the FlexRay bus.

FlexRay:Connected Channels

Data Type Direction Required? Default
Read/Write No Calculated from Cluster Settings

Property Class

XNET ECU

Short Name

FlexRay.ConnectedChs

Description

This property specifies the channel(s) that the FlexRay ECU (node) is physically
connected to. The default value of this property is connected to all channels
available on the cluster.

This property corresponds to the pChannels node parameter in the FlexRay
Protocol Specification.

The values supported for this property (enumeration) are A = 1, B = 2, and A and B =
3.

FlexRay:Startup Frame

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET ECU

ni.com488

NI-XNET 20.5

Short Name

FlexRay.StartupFrm

Description

Returns the I/O name of the startup frame the ECU sends.

This property is valid only for ECUs connected to a FlexRay bus. If the ECU transmits
a frame (refer to the XNET ECU Frames Transmitted property) with the XNET Frame
FlexRay:Startup? property set to true, this property returns this frame. Otherwise, it
is empty.

FlexRay:Wakeup Channels

Data Type Direction Required? Default
Read/Write No None

Property Class

XNET ECU

Short Name

FlexRay.WakeupChs

Description

This property specifies the channel(s) on which the FlexRay ECU (node) is allowed to
generate the wake-up pattern. The default value of this property is not to be a
wakeup node.

When importing from a FIBEX file, this parameter corresponds to a WAKE-UP-
CHANNEL being set to True for each connected channel.

The values supported for this property (enumeration) are A = 1, B = 2, A and B = 3,
and None = 4.

© National Instruments 489

NI-XNET 20.5

FlexRay:Wakeup Pattern

Data Type Direction Required? Default
Read/Write No 2

Property Class

XNET ECU

Short Name

FlexRay.WakeupPtrn

Description

This property specifies the number of repetitions of the wakeup symbol that are
combined to form a wakeup pattern when the FlexRay ECU (node) enters the
POC:WAKEUP_SEND state. The POC:WAKEUP_SEND state is one of the FlexRay
controller state transitions during the wakeup process. In this state, the controller
sends the wakeup pattern on the specified Wakeup Channel and checks for
collisions on the bus.

This property is relevant only when FlexRay:Wakeup Channels is set to a value other
than None and FlexRay:Use Wakeup? is True.

This property corresponds to the pWakeupPattern node parameter in the FlexRay
Protocol Specification.

The supported values for this property are 2–63.

Comment

Data Type Direction Required? Default
Read/Write No Empty String

Property Class

XNET ECU

ni.com490

NI-XNET 20.5

Short Name

Comment

Description

Comment describing the ECU object.

A comment is a string containing up to 65535 characters.

Configuration Status

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET ECU

Short Name

ConfigStatus

Description

The ECU object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to the
Simple Error Handler VI error code input to convert the value to a text description
(on message output) of the configuration problem.

By default, incorrectly configured ECUs in the database are not returned from the
XNET Cluster ECUs property because they cannot be used in the bus
communication. You can change this behavior by setting the XNET Database
ShowInvalidFromOpen? property to true. When the configuration status of an ECU
became invalid after the database is opened, the ECU still is returned from the XNET
Cluster ECUs property even if ShowInvalidFromOpen? is false.

© National Instruments 491

NI-XNET 20.5

Frames Received

Data Type Direction Required? Default
Read/Write No Empty Array

Property Class

XNET ECU

Short Name

FrmsRx

Description

Returns an array of I/O names of frames the ECU receives.

This property defines all frames the ECU receives. All frames an ECU receives in a
given cluster must be defined in the same cluster.

Frames Transmitted

Data Type Direction Required? Default
Read/Write No Empty Array

Property Class

XNET ECU

Short Name

FrmsTx

Description

Returns an array of I/O names of frames the ECU transmits.

This property defines all frames the ECU transmits. All frames an ECU transmits in a
given cluster must be defined in the same cluster.

ni.com492

NI-XNET 20.5

LIN:Master?

Data Type Direction Required? Default
Read/Write No False

Property Class

XNET ECU

Short Name

LIN.Master?

Description

Determines whether the ECU is a LIN master (true) or slave (false).

LIN:Protocol Version

Data Type Direction Required? Default
Read/Write Yes N/A

Property Class

XNET ECU

Short Name

LIN.ProtclVer

Description

The LIN standard version this ECU uses.

This property is a ring (enumerated list) with the following values:

String Value
1.2 2
1.3 3

© National Instruments 493

NI-XNET 20.5

2.0 4
2.1 5

LIN:Initial NAD

Data Type Direction Required? Default
Read/Write N/A N/A

Property Class

XNET ECU

Short Name

InitialNAD

Description

Initial NAD of a LIN slave node. NAD is the address of a slave node and is used in
diagnostic services. Initial NAD is replaced by configured NAD with node
configuration services. This property must be defined before reading, either by
writing to the property or by importing from an LDF.

Caution This property is not saved in the FIBEX database. You can import it only from an LDF
file.

LIN:Configured NAD

Data Type Direction Required? Default
Read/Write N/A N/A

Property Class

XNET ECU

Short Name

ConfigNAD

ni.com494

NI-XNET 20.5

Description

Configured NAD of a LIN slave node. NAD is the address of a slave node and is used
in diagnostic services. Initial NAD is replaced by configured NAD with node
configuration services. This property must be defined before reading, either by
writing to the property or by importing from an LDF.

Caution This property is not saved in the FIBEX database. You can import it only from an LDF
file.

LIN:Supplier ID

Data Type Direction Required? Default
Read/Write N/A N/A

Property Class

XNET ECU

Short Name

SupplierID

Description

Supplier ID is a 16-bit value identifying the supplier of the LIN node (ECU). This
property must be defined before reading, either by writing to the property or by
importing from an LDF.

Caution This property is not saved in the FIBEX database. You can import it only from an LDF
file.

LIN:Function ID

Data Type Direction Required? Default
Read/Write N/A N/A

© National Instruments 495

NI-XNET 20.5

Property Class

XNET ECU

Short Name

FunctionID

Description

Function ID is a 16-bit value identifying the function of the LIN node (ECU). This
property must be defined before reading, either by writing to the property or by
importing from an LDF.

Caution This property is not saved in the FIBEX database. You can import it only from an LDF
file.

LIN:P2min

Data Type Direction Required? Default
Read/Write N/A N/A

Property Class

XNET ECU

Short Name

P2min

Description

The minimum time in seconds between reception of the last frame of the diagnostic
request and the response sent by the node. This property must be defined before
reading, either by writing to the property or by importing from an LDF.

Caution This property is not saved in the FIBEX database. You can import it only from an LDF
file.

ni.com496

NI-XNET 20.5

LIN:STmin

Data Type Direction Required? Default
Read/Write N/A N/A

Property Class

XNET ECU

Short Name

STmin

Description

The minimum time in seconds the node requires to prepare for the next frame of the
diagnostic service. This property must be defined before reading, either by writing
to the property or by importing from an LDF.

Caution This property is not saved in the FIBEX database. You can import it only from an LDF
file.

Name (Short)

Data Type Direction Required? Default
Read/Write Yes Defined in Create Object

Property Class

XNET ECU

Short Name

NameShort

Description

String identifying the ECU object.

© National Instruments 497

NI-XNET 20.5

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the short name. The space (), period (.), and other special
characters are not supported within the name. The short name must begin with a
letter (uppercase or lowercase) or underscore, and not a number. The short name is
limited to 128 characters.

An ECU name must be unique for all ECUs in a cluster.

This short name does not include qualifiers to ensure that it is unique, such as the
database and cluster name. It is for display purposes. The fully qualified name is
available by using the XNET ECU I/O name as a string.

You can write this property to change the ECU's short name. When you do this and
then use the original XNET ECU that contains the old name, errors can result
because the old name cannot be found. Follow these steps to avoid this problem:

1. Get the old Name (Short) property using the property node.
2. Set the new Name (Short) property for the object.

3. Close the object using the XNET Database Close VI. Wire the close all? input as
false to close the renamed object only.

4. Wire the XNET ECU as the input string to the Search and Replace String
Function VI with the old Name as the search string and the new Name as the
replacement string. This replaces the short name in the XNET ECU, while
retaining the other text that ensures a unique name.

The following diagram demonstrates steps 1 through 4 for an XNET Frame I/O name:

SAE J1939:Preferred Address

Data Type Direction Required? Default

ni.com498

NI-XNET 20.5

Read/Write No 254 (Null)

Property Class

XNET ECU

Short Name

PreferredAddress

Description

The preferred J1939 node address to be used when simulating this ECU. If you
assign this ECU to an XNET session (SAE J1939:ECU property), XNET will start
address claiming for this address using the ECU:Node Name property and use the
address for the session when the address is granted.

SAE J1939:Node Name

Data Type Direction Required? Default
Read/Write No 0

Property Class

XNET ECU

Short Name

NodeName

Description

The J1939 node name to be used when simulating this ECU. If you assign this ECU to
an XNET session (SAE J1939:ECU property), XNET will start address claiming using
this node name and the SAE J1939:Preferred Address property.

© National Instruments 499

NI-XNET 20.5

XNET ECU Constant
This constant provides the constant form of the XNET ECU I/O name. You drag a
constant to the block diagram of your VI, then select an ECU. You can change
constants only during configuration, prior to running the VI. For a complete
description, refer to XNET ECU I/O Name.

XNET Frame Property Node

Note: This node is provided for compatibility with previous versions of NI-XNET. For new VI
development, it is recommended that you use System Configuration API, as it provides more
features.

Format

Description

Property node used to read/write properties for an XNET Frame I/O name.

Pull down this node to add properties. Right-click to change direction between read
and write. Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>)
and move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help
(select Search the LabVIEW Help... from the Help menu) and look for the Property
Nodes topic in the index.

CAN:Extended Identifier?

Data Type Direction Required? Default
Read/Write No False

Property Class

XNET Frame

ni.com500

NI-XNET 20.5

Short Name

CAN.ExtID?

Description

This property determines whether the XNET Frame Identifier property in a CAN
cluster represents a standard 11-bit (false) or extended 29-bit (true) arbitration ID.

CAN:I/O Mode

Data Type Direction Required? Default
Read/Write No Cluster I/O Mode

Property Class

XNET Frame

Short Name

IOMode

Description

This property specifies the frame's I/O mode. It is a ring of three values:

■ CAN 2.0
■ CAN FD
■ CAN FD+BRS

This property is used in ISO CAN FD+BRS mode only. In this mode, you can specify
every frame to be transmitted in CAN 2.0, CAN FD, or CAN FD+BRS mode. CAN
FD+BRS frames require the interface to be in CAN FD+BRS mode; otherwise, it is
transmitted in CAN FD mode.

When the interface is in Non-ISO CAN FD or Legacy ISO CAN FD mode, this property
is disregarded. In Non-ISO CAN FD and Legacy ISO CAN FD mode, you must use the
Interface:CAN:Transmit I/O Mode property to switch the transmit mode.

© National Instruments 501

NI-XNET 20.5

When the assigned database does not define the property in ISO CAN FD mode, the
frames are transmitted with the Interface:CAN:I/O Mode property.

CAN:Timing Type

Data Type Direction Required? Default
Read/Write No Event Data (If Not in Database)

Property Class

XNET Frame

Short Name

CAN.TimingType

Description

Specifies the CAN frame timing.

Because this property specifies the behavior of the frame's transfer within the
embedded system (for example, a vehicle), it describes the transfer between ECUs in
the network. In the following description, transmitting ECU refers to the ECU that
transmits the CAN data frame (and possibly receives the associated CAN remote
frame). Receiving ECU refers to an ECU that receives the CAN data frame (and
possibly transmits the associated CAN remote frame).

When you use the frame within an NI-XNET session, an output session acts as the
transmitting ECU, and an input session acts as a receiving ECU. For a description of
how these CAN timing types apply to the NI-XNET session mode, refer to CAN Timing
Type and Session Mode.

The CAN timing types (decimal value in parentheses) are:

Cyclic Data (0) The transmitting ECU transmits the CAN data frame in a cyclic (periodic)
manner. The XNET Frame CAN:Transmit Time property defines the time
between cycles. The transmitting ECU ignores CAN remote frames received for
this frame.

Event Data (1) The transmitting ECU transmits the CAN data frame in an event-driven
manner. The XNET Frame CAN:Transmit Time property defines the minimum

ni.com502

NI-XNET 20.5

interval. For NI-XNET, the event occurs when you call the XNET Write VI. The
transmitting ECU ignores CAN remote frames that are received for this frame.

Cyclic Remote (2) The receiving ECU transmits the CAN remote frame in a cyclic (periodic)
manner. The XNET Frame CAN:Transmit Time property defines the time
between cycles. The transmitting ECU responds to each CAN remote frame by
transmitting the associated CAN data frame.

Event Remote (3) The receiving ECU transmits the CAN remote frame in an event-driven manner.
The XNET Frame CAN:Transmit Time property defines the minimum interval.
For NI-XNET, the event occurs when you call the XNET Write VI. The
transmitting ECU responds to each CAN remote frame by transmitting the
associated CAN data frame.

Cyclic/Event (4) This timing type is a combination of the cyclic and event timing. The frame is
transmitted when you call the XNET Write VI, but also periodically sending the
last recent values written. The XNET Frame CAN:Transmit Time property
defines the cycle period. There is no minimum interval time defined in this
mode, so be careful not to write too frequently to avoid creating a high
busload.

If you are using a FIBEX or AUTOSAR database, this property is a required part of the
XML schema for a frame, so the default (initial) value is obtained from the file.

If you are using a CANdb (.dbc) database, this property is an optional attribute in
the file. If NI-XNET finds an attribute named GenMsgSendType, that attribute is the
default value of this property. If the GenMsgSendType attribute begins with cyclic,
this property's default value is Cyclic Data; otherwise, it is Event Data. If the CANdb
file does not use the GenMsgSendType attribute, this property uses a default value
of Event Data, which you can change in your application.

If you are using an .ncd database or an in-memory database (XNET Create Frame),
this property uses a default value of Event Data. Within your application, change this
property to the desired timing type.

CAN:Transmit Time

Data Type Direction Required? Default
Read/Write No 0.1 (If Not in Database)

Property Class

XNET Frame

© National Instruments 503

NI-XNET 20.5

Short Name

CAN.TxTime

Description

Specifies the time between consecutive frames from the transmitting ECU.

The data type is 64-bit floating point (DBL). The units are in seconds.

Although the fractional part of the DBL data type can provide resolution of
picoseconds, the NI-XNET CAN transmit supports an accuracy of 500 µs. Therefore,
when used within an NI-XNET output session, this property is rounded to the
nearest 500 µs increment (0.0005).

For a CAN:Timing Type of Cyclic Data or Cyclic Remote, this property specifies the
time between consecutive data/remote frames. A time of 0.0 is invalid.

For a CAN:Timing Type of Event Data or Event Remote, this property specifies the
minimum time between consecutive data/remote frames when the event occurs
quickly. This is also known as the debounce time or minimum interval. The time is
measured from the end of previous frame (acknowledgment) to the start of the next
frame. A time of 0.0 specifies no minimum (back to back frames allowed).

If you are using a FIBEX or AUTOSAR database, this property is a required part of the
XML schema for a frame, so the default (initial) value is obtained from the file.

If you are using a CANdb (.dbc) database, this property is an optional attribute in
the file. If NI-XNET finds an attribute named GenMsgCycleTime, that attribute is
interpreted as a number of milliseconds and used as the default value of this
property. If the CANdb file does not use the GenMsgCycleTime attribute, this
property uses a default value of 0.1 (100 ms), which you can change in your
application.

If you are using a .ncd database or an in-memory database (XNET Create Frame),
this property uses a default value of 0.1 (100 ms). Within your application, change
this property to the desired time.

Application Protocol

Data Type Direction Required? Default

ni.com504

NI-XNET 20.5

Read/Write No Read from Database

Property Class

XNET Frame

Short Name

ApplProtocol

Description

This property specifies the frame's application protocol. It is a ring of two values:

Enumeration Value Meaning
None 0 The default application protoco

l.
J1939 1 Indicates J1939 frames. The val

ue enables the following featur
es:

■ Sending/receiving long
frames as the SAE J1939 s
pecification specifies, usi
ng the J1939 transport pr
otocol.
■ Using a special notatio
n for J1939 identifiers.

Cluster

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Frame

© National Instruments 505

NI-XNET 20.5

Short Name

Cluster

Description

This property returns the I/O name of the parent cluster in which the frame has been
created. You cannot change the parent cluster after the frame object has been
created.

Comment

Data Type Direction Required? Default
Read/Write No Empty String

Property Class

XNET Frame

Short Name

Comment

Description

Comment describing the frame object.

A comment is a string containing up to 65535 characters.

Configuration Status

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Frame

ni.com506

NI-XNET 20.5

Short Name

ConfigStatus

Description

The frame object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to the
Simple Error Handler VI error code input to convert the value to a text description
(on message output) of the configuration problem.

By default, incorrectly configured frames in the database are not returned from the
XNET Cluster Frames property because they cannot be used in the bus
communication. You can change this behavior by setting the XNET Database
ShowInvalidFromOpen? property to true. When a frame configuration status
became invalid after the database is opened, the frame still is returned from the
XNET Cluster Frames property even if ShowInvalidFromOpen? is false.

Examples of invalid frame configuration:

■ A required property of the frame or an object contained in this frame has not
been defined. For example, Frame Payload Length.
■ The number of bytes specified for this frame is incorrect. CAN frames must
use 0 to 8 bytes. FlexRay frames must use 0 to 254 bytes (even numbers only).
■ The CAN arbitration ID is invalid. The standard ID is greater than 0x7FF (11
bits) or the extended ID is greater than 0x1FFFFFFF (29 bits).
■ The FlexRay frame is specified to use channels not defined in the cluster. For
example, the XNET Cluster FlexRay:Channels property is set to Channel A only,
but the XNET Frame FlexRay:Channel Assignment property is set to Channel A
and B.
■ The XNET Frame FlexRay:Channel Assignment property in this dynamic
FlexRay frame is set to Channel A and B, but dynamic frames can be sent on
only one channel (A or B).

Default Payload

Data Type Direction Required? Default

© National Instruments 507

NI-XNET 20.5

Read/Write No Array of All 0 or 0xFF (J1939)

Property Class

XNET Frame

Short Name

DefaultPayload

Description

The frame default payload, specified as an array of bytes (U8).

The number of bytes in the array must match the XNET Frame Payload Length
property.

This property's initial value is an array of all 0, except the frame is located in a CAN
cluster with J1939 application protocol, which uses 0xFF by default. For the
database formats NI-XNET supports, this property is not provided in the database
file.

When you use this frame within an NI-XNET session, this property's use varies
depending on the session mode. The following sections describe this property's
behavior for each session mode.

Frame Output Single-Point and Frame Output Queued Modes
Use this property when a frame transmits prior to a call to the XNET Write VI. This
can occur when you set the XNET Session Auto Start? property to false and call the
XNET Start VI prior to the XNET Write VI. When Auto Start? is true (default), the first
call to the XNET Write VI also starts frame transmit, so this property is not used.

The following frame configurations potentially can transmit prior to a call to the
XNET Write VI:

■ CAN:Timing Type of Cyclic Data
■ CAN:Timing Type of Cyclic Remote (for example, a remote frame received
prior to a call to the XNET Write VI)

ni.com508

NI-XNET 20.5

■ CAN:Timing Type of Event Remote (for example, a remote frame received
prior to a call to the XNET Write VI)
■ FlexRay:Timing Type of Cyclic
■ LIN frame in a schedule entry of type unconditional

The following frame configurations cannot transmit prior to a call to the XNET Write
VI, so this property is not used:

■ CAN:Timing Type of Event Data
■ FlexRay:Timing Type of Event
■ LIN frame in a schedule entry of type sporadic or event triggered

Frame Output Stream Mode
This property is not used. Transmit is limited to frames provided to the XNET Write
VI.

Signal Output Single-Point, Signal Output Waveform, and Signal Output
XY Modes
Use this property when a frame transmits prior to a call to the XNET Write VI. Refer to
Frame Output Single-Point and Frame Output Queued Modes for a list of applicable
frame configurations.

This property is used as the initial payload, then each XNET Signal Default Value is
mapped into that payload, and the result is used for the frame transmit.

Frame Input Stream and Frame Input Queued Modes
This property is not used. These modes do not return data prior to receiving frames.

Frame Input Single-Point Mode
This property is used for frames the XNET Read VI returns prior to receiving the first
frame.

© National Instruments 509

NI-XNET 20.5

Signal Input Single-Point, Signal Input Waveform, and Signal Input XY
Modes
This property is not used. Each XNET Signal Default Value is used when the XNET
Read VI is called prior to receiving the first frame.

FlexRay:Base Cycle

Data Type Direction Required? Default
Read/Write Yes N/A

Property Class

XNET Frame

Short Name

FlexRay.BaseCycle

Description

The first communication cycle in which a frame is sent.

In FlexRay, a communication cycle contains a number of slots in which a frame can
be sent. Every node on the bus provides a 6-bit cycle counter that counts the cycles
from 0 to 63 and then restarts at 0. The cycle number is common for all nodes on the
bus.

NI-XNET has two mechanisms for changing the frame sending frequency:

■ If the frame should be sent faster than the cycle period, use In-Cycle
Repetition (refer to the XNET Frame FlexRay:In Cycle Repetitions:Identifiers
property).
■ If the frame should be sent slower than the cycle period, use this property
and the XNET Frame FlexRay:Cycle Repetition property.

The second method is called cycle multiplexing. It allows sending multiple frames in
the same slot, but on different cycle counters.

ni.com510

NI-XNET 20.5

If a frame should be sent in every cycle, set this property to 0 and the XNET Frame
FlexRay:Cycle Repetition property to 1. For cycle multiplexing, set the XNET Frame
FlexRay:Cycle Repetition property to 2, 4, 8, 16, 32, or 64.

Example:

■ FrameA and FrameB are both sent in slot 12.
■ FrameA: The XNET Frame FlexRay:Base Cycle property is set to 0 and XNET
Frame FlexRay:Cycle Repetition property is 2. This frame is sent when the
cycle counter has the value 0, 2, 4, 6,
■ FrameB: The XNET Frame FlexRay:Base Cycle property is set to 1 and XNET
Frame FlexRay:Cycle Repetition property is 2. This frame is sent when the
cycle counter has the value 1, 3, 5, 7,

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this frame, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Channel Assignment

Data Type Direction Required? Default
Read/Write Yes N/A

Property Class

XNET Frame

© National Instruments 511

NI-XNET 20.5

Short Name

FlexRay.ChAssign

Description

This property determines on which FlexRay channels the frame must be
transmitted. A frame can be transmitted only on existing FlexRay channels,
configured in the XNET Cluster FlexRay:Channels property.

Frames in the dynamic FlexRay segment cannot be sent on both channels; they
must use either channel A or B. Frames in the dynamic segment use slot IDs greater
than the number of static slots cluster parameter.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this frame, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Cycle Repetition

Data Type Direction Required? Default
Read/Write Yes N/A

Property Class

XNET Frame

ni.com512

NI-XNET 20.5

Short Name

FlexRay.CycleRep

Description

The number of cycles after which a frame is sent again.

In FlexRay, a communication cycle contains a number of slots in which a frame can
be sent. Every node on the bus provides a 6-bit cycle counter that counts the cycles
from 0 to 63 and then restarts at 0. The cycle number is common for all nodes on the
bus.

NI-XNET has two mechanisms for changing the frame sending frequency:

■ If the frame should be sent faster than the cycle period, use In-Cycle
Repetition (refer to the XNET Frame FlexRay:In Cycle Repetitions:Identifiers
property).
■ If the frame should be sent slower than the cycle period, use the XNET
Frame FlexRay:Base Cycle property and this property.

The second method is called cycle multiplexing. It allows sending multiple frames in
the same slot, but on different cycle counters.

If a frame should be sent in every cycle, set the XNET Frame FlexRay:Base Cycle
property to 0 and this property to 1. For cycle multiplexing, set this property to 2, 4,
8, 16, 32, or 64.

Examples:

■ FrameA and FrameB are both sent in slot 12.
■ FrameA: The XNET Frame FlexRay:Base Cycle property is set to 0 and XNET
Frame FlexRay:Cycle Repetition property is set to 2. This frame is sent when
the cycle counter has the value 0, 2, 4, 6,
■ FrameB: The XNET Frame FlexRay:Base Cycle property is set to 1 and XNET
Frame FlexRay:Cycle Repetition property is set to 2. This frame is sent when
the cycle counter has the value 1, 3, 5, 7,

© National Instruments 513

NI-XNET 20.5

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this frame, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Payload Preamble?

Data Type Direction Required? Default
Read/Write No False

Property Class

XNET Frame

Short Name

FlexRay.Preamble?

Description

This property determines whether payload preamble is used in a FlexRay frame:

■ For frames in the static segment, it indicates that the network management
vector is transmitted at the beginning of the payload.
■ For frames in the dynamic segment, it indicates that the message ID is
transmitted at the beginning of the payload.

ni.com514

NI-XNET 20.5

FlexRay:Startup?

Data Type Direction Required? Default
Read/Write No False

Property Class

XNET Frame

Short Name

FlexRay.Startup?

Description

This property determines whether the frame is a FlexRay startup frame. FlexRay
startup frames always are FlexRay sync frames also.

■ When this property is set to true, the XNET Frame FlexRay:Sync? property
automatically is set to true.
■ When this property is set to false, the XNET Frame FlexRay:Sync? property is
not changed.
■ When the XNET Frame FlexRay:Sync? property is set to false, this property
automatically is set to false.
■ When the XNET Frame FlexRay:Sync? property is set to true, this property is
not changed.

An ECU can send only one startup frame. The startup frame, if an ECU transmits it, is
returned from the XNET ECU FlexRay:Startup Frame property.

FlexRay:Sync?

Data Type Direction Required? Default
Read/Write No False

Property Class

XNET Frame

© National Instruments 515

NI-XNET 20.5

Short Name

FlexRay.Sync?

Description

This property determines whether the frame is a FlexRay sync frame. FlexRay
startup frames always are FlexRay sync frames also:

■ When this property is set to false, the XNET Frame FlexRay:Startup? property
is automatically set to false.
■ When this property is set to true, the XNET Frame FlexRay:Startup? property
is not changed.
■ When the XNET Frame FlexRay:Startup? property is set to true, this property
is set to true.
■ When the XNET Frame FlexRay:Startup? property is set to false, this property
is not changed.

An ECU can send only one sync frame.

FlexRay:Timing Type

Data Type Direction Required? Default
Read/Write No Cyclic in Static Segment, Event in Dynamic Segment

Property Class

XNET Frame

Short Name

FlexRay.TimingType

Description

Specifies the FlexRay frame timing (decimal value in parentheses):

Cyclic (0) Payload data transmits on every occurrence of the frame's slot.

ni.com516

NI-XNET 20.5

Event (1) Payload data transmits in an event-driven manner. Within the ECU that transmits the
frame, the event typically is associated with the availability of new data.

This property's behavior depends on the FlexRay segment where the frame is
located: static or dynamic. If the frame's Identifier (slot) is less than or equal to the
cluster's Number Of Static Slots, the frame is static.

Static

Cyclic means no null frame is transmitted. If new data is not provided for the cycle,
the previous payload data transmits again.

Event means a null frame is transmitted when no event is pending for the cycle.

This property's default value for the static segment is Cyclic.

Dynamic

Cyclic means the frame transmits in its minislot on every cycle.

Event means the frame transmits in the minislot when the event is pending for the
cycle.

This property's default value for the dynamic segment is Event.

For a description of how these FlexRay timing types apply to the NI-XNET session
mode, refer to FlexRay Timing Type and Session Mode.

FlexRay:In Cycle Repetitions:Channel Assignments

Data Type Direction Required? Default
Read/Write No Empty Array

Property Class

XNET Frame

Short Name

FlexRay.InCycRep.ChAssigns

© National Instruments 517

NI-XNET 20.5

Description

FlexRay channels for in-cycle frame repetition.

A FlexRay frame can be sent multiple times per cycle. The XNET Frame
FlexRay:Channel Assignment property defines the first channel assignment in the
cycle. This property defines subsequent channel assignments. The XNET Frame
FlexRay:In Cycle Repetitions:Identifiers property defines the corresponding slot IDs.
Both properties are arrays of maximum three values, determining the slot ID and
channel assignments for the frame. Values at the same array position are
corresponding; therefore, both arrays must have the same size.

You must set the FlexRay:Channel Assignment property before setting this property.
FlexRay Channel Assignment is a required property that is undefined when a new
frame is created. When FlexRay:Channel Assignment is undefined, setting FlexRay:In
Cycle Repetitions:Channel Assignments returns an error. For convenience, you can
set both properties in one XNET Frame property node, setting the FlexRay:Channel
Assignment first (the properties in a property node are set starting from top position
to bottom).

FlexRay:In Cycle Repetitions:Enabled?

Data Type Direction Required? Default
Read Only No False

Property Class

XNET Frame

Short Name

FlexRay.InCycRep.Enabled?

Description

FlexRay in-cycle frame repetition is enabled.

A FlexRay frame can be sent multiple times per cycle. The XNET Frame Identifier
property defines the first slot ID in the cycle. The XNET Frame FlexRay:In Cycle
Repetitions:Identifiers property can define the subsequent slot IDs, and the XNET

ni.com518

NI-XNET 20.5

Frame FlexRay:In Cycle Repetitions:Channel Assignments property defines the
corresponding FlexRay channels. Both properties are arrays of maximum three
values determining the slot ID and FlexRay channels for the frame. Values at the
same array position are corresponding; therefore, both arrays must have the same
size.

This property returns true when at least one in-cycle repetition has been defined,
which means that both the FlexRay:In Cycle Repetitions:Identifiers and FlexRay:In
Cycle Repetitions:Channel Assignments arrays are not empty.

This property returns false when at least one of the previously mentioned arrays is
empty. In this case, in-cycle-repetition is not used.

FlexRay:In Cycle Repetitions:Identifiers

Data Type Direction Required? Default
Read/Write No Empty Array

Property Class

XNET Frame

Short Name

FlexRay.InCycRep.IDs

Description

FlexRay in-cycle repetition slot IDs.

A FlexRay frame can be sent multiple times per cycle. The XNET Frame Identifier
property defines the first slot ID in the cycle. The FlexRay:In Cycle
Repetitions:Identifiers property defines subsequent slot IDs. The XNET Frame
FlexRay:In Cycle Repetitions:Channel Assignments property defines the
corresponding FlexRay channel assignments. Both properties are arrays of
maximum three values, determining the subsequent slot IDs and channel
assignments for the frame. Values at the same array position are corresponding;
therefore, both arrays must have the same size.

© National Instruments 519

NI-XNET 20.5

You must set the XNET Frame Identifier property before setting the FlexRay:In Cycle
Repetitions:Identifiers property. Identifier is a required property that is undefined
when a new frame is created. When Identifier is undefined, setting in-cycle
repetition slot IDs returns an error. For your convenience, you can set both
properties in one XNET Frame property node, setting the Identifier first (the
properties in a property node are set starting from top position to bottom).

Identifier

Data Type Direction Required? Default
Read/Write Yes N/A

Property Class

XNET Frame

Short Name

ID

Description

Determines the frame identifier.

This property is required. If the property does not contain a valid value, and you
create an XNET Session that uses this frame, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

ni.com520

NI-XNET 20.5

For more information on using database files and in-memory databases, refer to
Databases.

CAN
For CAN frames, this is the Arbitration ID.

When the XNET Frame CAN:Extended Identifier? property is set to false, this is the
standard CAN identifier with a size of 11 bits, which results in allowed range of 0–
2047. However, the CAN standard disallows identifiers in which the first 7 bits are all
recessive, so the working range of identifiers is 0–2031.

When the XNET Frame CAN:Extended Identifier? property is set to true, this is the
extended CAN identifier with a size of 29 bits, which results in allowed range of 0–
536870911.

FlexRay
For FlexRay frames, this is the Slot ID in which the frame is sent. The valid value
range for a FlexRay Slot ID is 1–2047.

You also can send a FlexRay frame in multiple slots per cycle. You can define
subsequent slot IDs for the frame in the XNET Frame FlexRay:In Cycle
Repetitions:Identifiers property. Use this concept to increase a frame's sending
frequency. To decrease a frame's sending frequency and share the same slot for
different frames depending on the cycle counter, refer to the XNET Frame
FlexRay:Base Cycle and FlexRay:Cycle Repetition properties.

The slot ID determines whether a FlexRay frame is sent in a static or dynamic
segment. If the slot ID is less than or equal to the XNET Cluster FlexRay:Number of
Static Slots property, the frame is sent in the communication cycle static segment;
otherwise, it is sent in the dynamic segment.

If the frame identifier is not in the allowed range, this is reported as an error in the
XNET Frame Configuration Status property.

© National Instruments 521

NI-XNET 20.5

LIN

For LIN frames, this is the frame's ID (unprotected). The valid range for a LIN frame
ID is 0–63 (inclusive).

LIN:Checksum

Data Type Direction Required? Default
Read Only N/A Enhanced

Property Class

XNET Frame

Short Name

LIN.Checksum

Description

Determines whether the LIN frame transmitted checksum is classic or enhanced.
The enhanced checksum considers the protected identifier when it is generated.

This property is a ring (enumerated list) with the following values:

String Value
Classic 0

Enhanced 1

The checksum is determined from the LIN version of ECUs transmitting and
receiving the frame. The lower version of both ECUs is significant. If the LIN version
of both ECUs is 2.0 or higher, the checksum type is enhanced; otherwise, the
checksum type is classic.

Diagnostic frames (with decimal identifier 60 or 61) always use classic checksum,
even on LIN 2.x.

Mux:Data Multiplexer Signal

Data Type Direction Required? Default

ni.com522

NI-XNET 20.5

Read Only N/A N/A

Property Class

XNET Frame

Short Name

DataMuxSig

Description

Data multiplexer signal in the frame.

This property returns an I/O name of the data multiplexer signal. If the data
multiplexer is not defined in the frame, the I/O control is empty. Use the XNET Frame
Mux:Is Data Multiplexed? property to determine whether the frame contains a
multiplexer signal.

You can create a data multiplexer signal by creating a signal and then setting the
XNET Signal Mux:Data Multiplexer? property to true.

A frame can contain only one data multiplexer signal.

Mux:Is Data Multiplexed?

Data Type Direction Required? Default
Read Only No False

Property Class

XNET Frame

Short Name

Mux.IsMuxed?

Description

Frame is data multiplexed.

© National Instruments 523

NI-XNET 20.5

This property returns true if the frame contains a multiplexer signal. Frames
containing a multiplexer contain subframes that allow using bits of the frame
payload for different information (signals) depending on the multiplexer value.

Mux:Static Signals

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Frame

Short Name

Mux.StatSigs

Description

Static signals in the frame.

Returns an array of I/O names of signals in the frame that do not depend on the
multiplexer value. Static signals are contained in every frame transmitted, as
opposed to dynamic signals, which are transmitted depending on the multiplexer
value.

You can create static signals by specifying the frame as the parent object. You can
create dynamic signals by specifying a subframe as the parent.

If the frame is not multiplexed, this property returns the same array as the XNET
Frame Signals property.

Mux:Subframes

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Frame

ni.com524

NI-XNET 20.5

Short Name

Mux.Subframes

Description

Returns an array of I/O names of subframes in the frame. A subframe defines a group
of signals transmitted using the same multiplexer value. Only one subframe at a
time is transmitted in the frame.

A subframe is defined by creating a subframe object as a child of a frame.

Name (Short)

Data Type Direction Required? Default
Read/Write Yes Defined in Create Object

Property Class

XNET Frame

Short Name

NameShort

Description

String identifying a frame object.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the short name. The space (), period (.), and other special
characters are not supported within the name. The short name must begin with a
letter (uppercase or lowercase) or underscore, and not a number. The short name is
limited to 128 characters.

A frame name must be unique for all frames in a cluster.

This short name does not include qualifiers to ensure that it is unique, such as the
database and cluster name. It is for display purposes. The fully qualified name is
available by using the XNET Frame I/O name as a string.

© National Instruments 525

NI-XNET 20.5

You can write this property to change the frame's short name. When you do this and
then use the original XNET Frame that contains the old name, errors can result
because the old name cannot be found. Follow these steps to avoid this problem:

1. Get the old Name (Short) property using the property node.
2. Set the new Name (Short) property for the object.

3. Close the object using the XNET Database Close VI. Wire the close all? input as
false to close the renamed object only.

4. Wire the XNET Frame as the input string to the Search and Replace String
Function VI with the old Name as the search string and the new Name as the
replacement string. This replaces the short name in the XNET Frame, while
retaining the other text that ensures a unique name.

The following diagram demonstrates steps 1 through 4 for an XNET Frame I/O name:

Payload Length

Data Type Direction Required? Default
Read/Write Yes N/A

Property Class

XNET Frame

Short Name

PayldLen

ni.com526

NI-XNET 20.5

Description

Number of bytes of data in the payload. This number can be less than the payload
length of mapped frames.

Bus Size Limit (Bytes) Description
CAN Varies The size limit for CAN varies de

pending on the I/O Mode and Pr
otocol of the cluster:

■ For clusters using CAN I
/O Mode, the maximum p
ayload is 8 bytes.
■ For clusters using CAN
FD I/O Mode, the maximu
m payload is 64 bytes.
■ For clusters using J193
9 protocol, the maximum
payload is 1785 bytes.

LIN 0–8 According to the LIN protocol, t
he payload length range is 0–8.

FlexRay 0–254 As encoded on the FlexRay bus,
all frames use an even payload
(16-bit words), and the payload
of all static slots must be the sa
me. Nevertheless, this property
specifies the number of payloa
d bytes used within the frame, s
o its value can be odd. For exa
mple, if a FlexRay cluster uses s
tatic slots of 18 bytes, it is valid
for this property to be 15, which
specifies that the last 3 bytes ar
e unused.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this frame, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

© National Instruments 527

NI-XNET 20.5

■ Use a database file (or alias) to create the session. The file formats require a
valid value in the text for this property.
■ Set a value in LabVIEW using the property node. This is required when you
create your own in-memory database (:memory:) rather than using a file. The
property does not contain a default in this case, so you must set a valid value
prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

PDU_Mapping

Data Type Direction Required? Default
Read/Write No Empty Array

Property Class

XNET Frame

Short Name

PDU_Mapping

Description

This property maps existing PDUs to a frame. A mapped PDU is transmitted inside
the frame payload when the frame is transmitted. You can map one or more PDUs to
a frame and one PDU to multiple frames.

One PDU_Mapping cluster (a LabVIEW cluster, as opposed to a database cluster
object) from the array assigns one PDU to the frame. The cluster contains the
following elements:

■ PDU: A string using the PDU I/O name syntax. If you wire an I/O name input
to a string output, LabVIEW converts the I/O name to a string.
■ Start Bit: Defines the start bit of the PDU inside the frame.

ni.com528

NI-XNET 20.5

■ Update Bit: Defines the update bit for the PDU inside the frame. If the
update bit is not used, set the value to –1. (Refer to Update Bit for more
information.)

Databases imported from FIBEX prior to version 3.0 from DBC, NCD, or LDF files have
a strong one-to-one relationship between frames and PDUs. Every frame has exactly
one PDU mapped, and every PDU is mapped to exactly one frame.

To unmap PDUs from a frame, set this property to an empty array. A frame without
mapped PDUs contains no signals.

NI-XNET supports advanced PDU configuration (multiple PDUs in one frame or one
PDU used in multiple frames) only for FlexRay. Refer to the XNET Cluster PDUs
Required? property.

For CAN and LIN, NI-XNET supports only a one-to-one relationship between frames
and PDUs. For those interfaces, advanced PDU configuration returns an error from
the XNET Frame Configuration Status property and the XNET Create Session VI. If
you do not use advanced PDU configuration, you can avoid using PDUs in the
database API and create signals and subframes directly on a frame.

Signals

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Frame

Short Name

Sigs

Description

I/O names of all signals in the frame.

This property returns an array referencing all signals in the frame, including static
and dynamic signals and the multiplexer signal.

© National Instruments 529

NI-XNET 20.5

This property is read only. You can add signals to a frame using the XNET Database
Create Object VI and remove them using the XNET Database Delete Object VI.

XNET Frame Constant
This constant provides the constant form of the XNET Frame I/O name. You drag a
constant to the block diagram of your VI, then select a frame. You can change
constants only during configuration, prior to running the VI. For a complete
description, refer to XNET Frame I/O Name.

XNET PDU Property Node

Format

Description

Property node used to read/write properties for an XNET PDU I/O name.

Pull down this node to add properties. Right-click to change direction between read
and write. Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>)
and move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help
(select Search the LabVIEW Help... from the Help menu) and look for the Property
Nodes topic in the index.

Cluster

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET PDU

ni.com530

NI-XNET 20.5

Short Name

Cluster

Description

This property returns the I/O name to the parent cluster in which the PDU has been
created. You cannot change the parent cluster after creating the PDU object.

Comment

Data Type Direction Required? Default
Read/Write No Empty String

Property Class

XNET PDU

Short Name

Comment

Description

Comment describing the PDU object.

A comment is a string containing up to 65535 characters.

Configuration Status

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET PDU

Short Name

ConfigStatus

© National Instruments 531

NI-XNET 20.5

Description

The PDU object's configuration status.

Configuration Status returns an NI-XNET error code. The value can be passed to the
Simple Error Handler VI error code input to convert it to a text description (on
message output) of the configuration problem.

By default, incorrectly configured PDUs in the database are not returned from the
XNET Cluster PDUs property because they cannot be used in the bus
communication. You can change this behavior by setting the XNET Database
ShowInvalidFromOpen? property to true. When a PDU's configuration status
became invalid after the database has been opened, the PDU still is returned from
the Cluster PDUs property even if ShowInvalidFromOpen? is false.

Examples of invalid PDU configuration:

■ You have not defined a required property of the PDU (for example, PDU
Payload Length).
■ The number of bytes specified for this PDU is incorrect. CAN PDUs must use
0 to 8 bytes. FlexRay PDUs must use 0 to 254 bytes (PDUs payload must fit into
a frame).

Frames

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET PDU

Short Name

Frms

ni.com532

NI-XNET 20.5

Description

I/O names of all frames to which the PDU is mapped. A PDU is transmitted within the
frames to which it is mapped.

To map a PDU to a frame, use the XNET Frame PDU_Mapping property. You can map
one PDU to multiple frames.

Mux:Data Multiplexer Signal

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET PDU

Short Name

DataMuxSig

Description

Data multiplexer signal in the PDU.

This property returns the data multiplexer signal I/O name. If the data multiplexer is
not defined in the PDU, the I/O control is empty. Use the XNET PDU Mux:Is Data
Multiplexed? property to determine whether the PDU contains a multiplexer signal.

You can create a data multiplexer signal by creating a signal and then setting the
XNET Signal Mux:Data Multiplexer? property to true.

A PDU can contain only one data multiplexer signal.

Mux:Is Data Multiplexed?

Data Type Direction Required? Default
Read Only No False

© National Instruments 533

NI-XNET 20.5

Property Class

XNET PDU

Short Name

Mux.IsMuxed?

Description

PDU is data multiplexed.

This property returns true if the PDU contains a multiplexer signal. PDUs containing
a multiplexer contain subframes that allow using bits of the payload for different
information (signals), depending on the multiplexer value.

Mux:Static Signals

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET PDU

Short Name

Mux.StatSigs

Description

Static signals in the PDU.

Returns an array of I/O names of signals in the PDU that do not depend on the
multiplexer value. Static signals are contained in every PDU transmitted, as opposed
to dynamic signals, which are transmitted depending on the multiplexer value.

You can create static signals by specifying the PDU as the parent object. You can
create dynamic signals by specifying a subframe as the parent.

ni.com534

NI-XNET 20.5

If the PDU is not multiplexed, this property returns the same array as the XNET PDU
Signals property.

Mux:Subframes

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET PDU

Short Name

Mux.Subframes

Description

Returns an array of I/O names of subframes in the PDU. A subframe defines a group
of signals transmitted using the same multiplexer value. Only one subframe is
transmitted in the PDU at a time.

You can define a subframe by creating a subframe object as a child of a PDU.

Name (Short)

Data Type Direction Required? Default
Read/Write Yes Defined in Create Object

Property Class

XNET PDU

Short Name

NameShort

© National Instruments 535

NI-XNET 20.5

Description

String identifying a PDU object.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the short name. The space (), period (.), and other special
characters are not supported within the name. The short name must begin with a
letter (uppercase or lowercase) or underscore, and not a number. The short name is
limited to 128 characters.

A PDU name must be unique for all PDUs in a cluster.

You can write this property to change the PDU's short name. When you do this and
then use the original XNET PDU that contains the old name, errors can result
because the old name cannot be found. Follow these steps to avoid this problem:

1. Get the old Name (Short) property using the property node.
2. Set the new Name (Short) property for the object.
3. Wire the XNET PDU as the input string to the XNET String to IO Name VI with

the old Name as the search string and the new Name as the replace string. This
replaces the short name in the XNET PDU, while retaining the other text that
ensures a unique name.

4. Wire the result from the XNET String to IO Name VI to the XNET String to IO
Name VI. This casts the string back to a valid XNET PDU.

Payload Length

Data Type Direction Required? Default
Read/Write Yes N/A

Property Class

XNET PDU

Short Name

PayldLen

ni.com536

NI-XNET 20.5

Description

Determines the size of the PDU data in bytes.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this PDU, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session. The file formats require a
valid value in the text for this property.
■ Set a value in LabVIEW using the property node. This is required when you
create your own in-memory database (:memory:) rather than using a file. The
property does not contain a default in this case, so you must set a valid value
prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

Signals

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET PDU

Short Name

Sigs

Description

I/O names of all signals in the PDU.

This property returns an array referencing to all signals in the PDU, including static
and dynamic signals and the multiplexer signal.

This property is read only. You can add signals to a PDU using the XNET Database
Create Object VI and remove them using the XNET Database Delete Object VI.

© National Instruments 537

NI-XNET 20.5

XNET PDU Constant
This constant provides the constant form of the XNET PDU I/O name. You drag a
constant to the block diagram of your VI, then select a PDU. You can change
constants only during configuration, prior to running the VI. For a complete
description, refer to XNET PDU I/O Name.

XNET Subframe Property Node

Format

Description

Property node used to read/write properties for an XNET Subframe I/O name.

Pull down this node to add properties. Right-click to change direction between read
and write. Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>)
and move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help
(select Search the LabVIEW Help... from the Help menu) and look for the Property
Nodes topic in the index.

Dynamic Signals

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Subframe

Short Name

DynSig

ni.com538

NI-XNET 20.5

Description

Dynamic signals in the subframe.

This property returns an array of I/O names of dynamic signals in the subframe.
Those signals are transmitted when the multiplexer signal in the frame has the
multiplexer value defined in the subframe.

Dynamic signals are created with the XNET Database Create Object VI by specifying
a subframe as the parent.

Frame

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Subframe

Short Name

Frame

Description

Returns the I/O name of the parent frame. The parent frame is defined when the
subframe is created, and you cannot change it afterwards.

Multiplexer Value

Data Type Direction Required? Default
Read/Write Yes N/A

Property Class

XNET Subframe

© National Instruments 539

NI-XNET 20.5

Short Name

MuxValue

Description

Multiplexer value for this subframe.

This property specifies the multiplexer signal value used when the dynamic signals
in this subframe are transmitted in the frame. Only one subframe is transmitted at a
time in the frame.

There is also a multiplexer value for a signal object as a read-only property. It
reflects the value set on the parent subframe object.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this subframe, the session returns an error. To
ensure that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

Name (Short)

Data Type Direction Required? Default
Read/Write Yes Defined in Create Object

Property Class

XNET Subframe

ni.com540

NI-XNET 20.5

Short Name

NameShort

Description

String identifying a subframe object.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the short name. The space (), period (.), and other special
characters are not supported within the name. The short name must begin with a
letter (uppercase or lowercase) or underscore, and not a number. The short name is
limited to 128 characters.

A subframe name must be unique for all subframes in a frame.

This short name does not include qualifiers to ensure that it is unique, such as the
database, cluster, and frame name. It is for display purposes. The fully qualified
name is available by using the XNET Subframe I/O name as a string.

You can write this property to change the subframe's short name. When you do this
and then use the original XNET Subframe that contains the old name, errors can
result because the old name cannot be found. Follow these steps to avoid this
problem:

1. Get the old Name (Short) property using the property node.
2. Set the new Name (Short) property for the object.

3. Close the object using the XNET Database Close VI. Wire the close all? input as
false to close the renamed object only.

4. Wire the XNET Subframe as the input string to the Search and Replace String
Function VI with the old Name as the search string and the new Name as the
replacement string. This replaces the short name in the XNET Subframe, while
retaining the other text that ensures a unique name.

The following diagram demonstrates steps 1 through 4 for an XNET Frame I/O name:

© National Instruments 541

NI-XNET 20.5

PDU

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Subframe

Short Name

PDU

Description

I/O name of the subframe's parent PDU.

This property returns the I/O name of the subframe's parent PDU. The parent PDU is
defined when the subframe object is created. You cannot change it afterwards.

XNET Signal Property Node

Format

Description

Property node used to read/write properties for an XNET Signal I/O name.

ni.com542

NI-XNET 20.5

Pull down this node to add properties. Right-click to change direction between read
and write. Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>)
and move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help
(select Search the LabVIEW Help... from the Help menu) and look for the Property
Nodes topic in the index.

Byte Order

Data Type Direction Required? Default
Read/Write Yes N/A

Property Class

XNET Signal

Short Name

ByteOrdr

Description

Signal byte order in the frame payload.

This property defines how signal bytes are ordered in the frame payload when the
frame is loaded in memory.

■ Little Endian: Higher significant signal bits are placed on higher byte
addresses. In NI-CAN, this was called Intel Byte Order.

© National Instruments 543

NI-XNET 20.5

Little Endian Signal with Start Bit 12

■ Big Endian: Higher significant signal bits are placed on lower byte addresses.
In NI-CAN, this was called Motorola Byte Order.

Big Endian Signal with Start Bit 12
This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this signal, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

Comment

Data Type Direction Required? Default
Read/Write No Empty String

ni.com544

NI-XNET 20.5

Property Class

XNET Signal

Short Name

Comment

Description

Comment describing the signal object.

A comment is a string containing up to 65535 characters.

Configuration Status

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Signal

Short Name

ConfigStatus

Description

The signal object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to the
Simple Error Handler VI error code input to convert the value to a text description
(on message output) of the configuration problem.

By default, incorrectly configured signals in the database are not returned from the
XNET Frame Signals property because they cannot be used in the bus
communication. You can change this behavior by setting the XNET Database
ShowInvalidFromOpen? property to true. When a signal configuration status
becomes invalid after the database is opened, the signal still is returned from the

© National Instruments 545

NI-XNET 20.5

XNET Frame Signals property even if the XNET Database ShowInvalidFromOpen?
property is false.

Examples of invalid signal configuration:

■ The signal is specified using bits outside the frame payload.
■ The signal overlaps another signal in the frame. For example, two
multiplexed signals with the same multiplexer value are using the same bit in
the frame payload.
■ The frame containing the signal is invalid (for example, a CAN frame is
defined with more than 8 payload bytes).

Data Type

Data Type Direction Required? Default
Read/Write Yes N/A

Property Class

XNET Signal

Short Name

DataType

Description

The signal data type.

This property determines how the bits of a signal in a frame must be interpreted to
build a value.

■ Signed: Signed integer with positive and negative values.
■ Unsigned: Unsigned integer with no negative values.
■ IEEE Float: Float value with 7 or 15 significant decimal digits (32 bit or 64
bit).
■ Byte Array: Signal >64 bit. This can be accessed only using conversion
sessions (see XNET Convert.vi).

ni.com546

NI-XNET 20.5

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this signal, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

Default Value

Data Type Direction Required? Default
Read/Write No 0.0 (If Not in Database)

Property Class

XNET Signal

Short Name

Default

Description

The signal default value, specified as scaled floating-point units.

The data type is 64-bit floating point (DBL).

The initial value of this property comes from the database. If the database does not
provide a value, this property uses a default value of 0.0.

For all three signal output sessions, this property is used when a frame transmits
prior to a call to the XNET Write VI. The XNET Frame Default Payload property is used

© National Instruments 547

NI-XNET 20.5

as the initial payload, then the default value of each signal is mapped into that
payload using this property, and the result is used for the frame transmit.

For all three signal input sessions, this property is returned for each signal when the
XNET Read VI is called prior to receiving the first frame.

For more information about when this property is used, refer to the discussion of
Read/Write for each session mode.

Mux:Dynamic?

Data Type Direction Required? Default
Read Only No False

Property Class

XNET Signal

Short Name

Mux.Dynamic?

Description

Use this property to determine if a signal is static or dynamic. Dynamic signals are
transmitted in the frame when the multiplexer signal in the frame has a given value
specified in the subframe. Use the Multiplexer Value property to determine with
which multiplexer value the dynamic signal is transmitted.

This property is read only. To create a dynamic signal, create the signal object as a
child of a subframe instead of a frame. The dynamic signal cannot be changed to a
static signal afterwards.

In NI-CAN, dynamic signals were called mode-dependent signals.

Frame

Data Type Direction Required? Default
Read Only N/A Parent Frame

ni.com548

NI-XNET 20.5

Property Class

XNET Signal

Short Name

Frame

Description

I/O name of the signal's parent frame.

This property returns the I/O name of the signal's parent frame. The parent frame is
defined when the signal object is created. You cannot change it afterwards.

Maximum Value

Data Type Direction Required? Default
Read/Write No 1000.0

Property Class

XNET Signal

Short Name

Max

Description

The scaled signal value maximum.

The XNET Read VI and XNET Write VI do not limit the signal value to a maximum
value. Use this database property to set the maximum value.

In LabVIEW, you can use this property to set the limits of front panel controls and
indicators.

Minimum Value

Data Type Direction Required? Default

© National Instruments 549

NI-XNET 20.5

Read/Write No 0.0

Property Class

XNET Signal

Short Name

Min

Description

The scaled signal value minimum.

The XNET Read VI and XNET Write VI do not limit the signal value to a minimum
value. Use this database property to set the minimum value.

In LabVIEW, you can use this property to set the limits of front panel controls and
indicators.

Mux:Multiplexer Value

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Signal

Short Name

Mux.MuxValue

Description

The multiplexer value applies to dynamic signals only (the XNET Signal
Mux:Dynamic? property returns true). This property defines which multiplexer value
is transmitted in the multiplexer signal when this dynamic signal is transmitted in
the frame.

ni.com550

NI-XNET 20.5

The multiplexer value is determined in the subframe. All dynamic signals that are
children of the same subframe object use the same multiplexer value.

Dynamic signals with the same multiplexer value may not overlap each other, the
multiplexer signal, or static signals.

Mux:Data Multiplexer?

Data Type Direction Required? Default
Read/Write No False

Property Class

XNET Signal

Short Name

Mux.Muxer?

Description

This property defines the signal that is a multiplexer signal. A frame containing a
multiplexer value is called a multiplexed frame.

A multiplexer defines an area within the frame to contain different information
(dynamic signals) depending on the multiplexer signal value. Dynamic signals with a
different multiplexer value (defined in a different subframe) can share bits in the
frame payload. The multiplexer signal value determines which dynamic signals are
transmitted in the given frame.

To define dynamic signals in the frame transmitted with a given multiplexer value,
you first must create a subframe in this frame and set the multiplexer value in the
subframe. Then you must create dynamic signals using the XNET Database Create
(Dynamic Signal) VI to create child signals of this subframe.

Multiplexer signals may not overlap other static or dynamic signals in the frame.

Dynamic signals may overlap other dynamic signals when they have a different
multiplexer value.

© National Instruments 551

NI-XNET 20.5

A frame may contain only one multiplexer signal.

The multiplexer signal is not scaled. Scaling factor and offset do not apply.

In NI-CAN, the multiplexer signal was called mode channel.

Name (Short)

Data Type Direction Required? Default
Read/Write Yes Defined in Create Object

Property Class

XNET Signal

Short Name

NameShort

Description

String identifying a signal object.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the short name. The space (), period (.), and other special
characters are not supported within the name. The short name must begin with a
letter (uppercase or lowercase) or underscore, and not a number. The short name is
limited to 128 characters.

A signal name must be unique for all signals in a frame.

This short name does not include qualifiers to ensure that it is unique, such as the
database, cluster, and frame name. It is for display purposes. The fully qualified
name is available by using the XNET Signal I/O name as a string.

You can write this property to change the signal's short name. When you do this and
then use the original XNET Signal that contains the old name, errors can result
because the old name cannot be found. Follow these steps to avoid this problem:

1. Get the old Name (Short) property using the property node.
2. Set the new Name (Short) property for the object.

ni.com552

NI-XNET 20.5

3. Close the object using the XNET Database Close VI. Wire the close all? input as
false to close the renamed object only.

4. Wire the XNET Signal as the input string to the Search and Replace String
Function VI with the old Name as the search string and the new Name as the
replacement string. This replaces the short name in the XNET Signal, while
retaining the other text that ensures a unique name.

The following diagram demonstrates steps 1 through 4 for an XNET Frame I/O name:

Number of Bits

Data Type Direction Required? Default
Read/Write Yes N/A

Property Class

XNET Signal

Short Name

NumBits

Description

The number of bits the signal uses in the frame payload.

■ IEEE Float numbers are limited to 32 bit or 64 bit.
■ Integer (signed and unsigned) numbers are limited to 1–64 bits. NI-XNET
converts all integers to doubles (64-bit IEEE Float). Integer numbers with more
than 52 bits (the size of the mantissa in a 64-bit IEEE Float) cannot be

© National Instruments 553

NI-XNET 20.5

converted exactly to double, and vice versa; therefore, NI-XNET will round
them appropriately.

If you are interested in the full precision, use a conversion session and byte
array conversion (see below).
■ Byte Arrays are signals that can extend every size, even >64 bits. The only
way to access them is through a Frame Read/Write session, and a conversion
session that will access the signal data as a byte array (see XNET Convert.vi).

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this signal, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

PDU

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET Signal

Short Name

PDU

ni.com554

NI-XNET 20.5

Description

I/O name of the signal's parent PDU.

This property returns the I/O name of the signal's parent PDU. The parent PDU is
defined when the signal object is created. You cannot change it afterwards.

Scaling Factor

Data Type Direction Required? Default
Read/Write No 1.0

Property Class

XNET Signal

Short Name

ScaleFac

Description

Factor a for linear scaling ax+b.

Linear scaling is applied to all signals with the IEEE Float data type, unsigned and
signed. For identical scaling 1.0x+0.0, NI-XNET optimized scaling routines do not
perform the multiplication and addition.

Scaling Offset

Data Type Direction Required? Default
Read/Write No 0.0

Property Class

XNET Signal

Short Name

ScaleOff

© National Instruments 555

NI-XNET 20.5

Description

Offset b for linear scaling ax+b.

Linear scaling is applied to all signals with the IEEE Float data type, unsigned and
signed. For identical scaling 1.0x+0.0, NI-XNET optimized scaling routines do not
perform the multiplication and addition.

Start Bit

Data Type Direction Required? Default
Read/Write Yes N/A

Property Class

XNET Signal

Short Name

StartBit

Description

The least significant signal bit position in the frame payload.

This property determines the signal starting point in the frame. For the integer data
type (signed and unsigned), it means the binary signal representation least
significant bit position. For IEEE Float signals, it means the mantissa least significant
bit.

The NI-XNET Database Editor shows a graphical overview of the frame. It
enumerates the frame bytes on the left and the byte bits on top. The bit number in
the frame is calculated as byte number x 8 + bit number. The maximum bit number
in a CAN or LIN frame is 63 (7 x 8 + 7); the maximum bit number in a FlexRay frame is
2031 (253 x 8 + 7).

ni.com556

NI-XNET 20.5

Frame Overview in the NI-XNET Database Editor with a Signal Starting in
Bit 12
This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this signal, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

Mux:Subframe

Data Type Direction Required? Default
Read Only N/A Parent Subframe

Property Class

XNET Signal

© National Instruments 557

NI-XNET 20.5

Short Name

Mux.Subfrm

Description

I/O name of the subframe parent.

This property is valid only for dynamic signals that have a subframe parent. For
static signals or the multiplexer signal, this I/O name is empty.

Unit

Data Type Direction Required? Default
Read/Write No Empty String

Property Class

XNET Signal

Short Name

Unit

Description

This property describes the signal value unit. NI-XNET does not use the unit
internally for calculations. You can use the string to display the signal value along
with the unit on the front panel.

XNET Signal Constant
This constant provides the constant form of the XNET Signal I/O name. You drag a
constant to the block diagram of your VI, then select a signal. You can change
constants only during configuration, prior to running the VI. For a complete
description, refer to XNET Signal I/O Name.

ni.com558

NI-XNET 20.5

XNET Database Open.vi

Purpose

Opens an object from a database file.

Description

This VI is not required for LabVIEW 2009 or newer. It is provided only for backward
compatibility of VIs written in LabVIEW version prior to 2009. Newer versions of
LabVIEW can detect the I/O name's first use as a refnum and open it automatically.

In addition to opening the refnum automatically, LabVIEW also closes it
automatically.

XNET Database Close.vi

Purpose

Closes an object from a database, or all database objects.

Description

The instances of this polymorphic VI specify which objects to close:

■ Cluster
■ Database
■ ECU
■ Frame
■ PDU
■ Signal
■ Subframe
■ LIN Schedule
■ LIN Schedule Entry

© National Instruments 559

NI-XNET 20.5

XNET Database Close (Cluster).vi

Purpose

Closes a cluster from a database, or all database objects.

Format

Inputs

cluster in is the cluster to close.

close all? indicates that all open database objects will be closed. This is the default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes a cluster object from a database (or all database objects). It is an
instance of the XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, use the close all?
parameter set to true (default); otherwise, only the single database object wired in is
closed.

Database objects are closed automatically when the top-level VI terminates, so
using this VI is optional. However, you may want to close database objects to free
their memory prior to starting a session. You can use this VI to do this.

ni.com560

NI-XNET 20.5

XNET Database Close (Database).vi

Purpose

Closes an XNET database, or all database objects.

Format

Inputs

database in is the database to close.

close all? indicates that all open database objects will be closed. This is the default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes an XNET database (or all database objects). It is an instance of the
XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, you can use the
close all? parameter set to true (default); otherwise, only the single database object
wired in is closed.

Note Even if the database has been closed (using close all? set to false), all database objects
retrieved from this database must be closed separately.

Database objects are closed automatically when the top-level VI terminates, so
using this VI is optional. However, you may want to close database objects to free
their memory prior to starting a session. You can use this VI to do this.

© National Instruments 561

NI-XNET 20.5

XNET Database Close (ECU).vi

Purpose

Closes an ECU from a database, or all database objects.

Format

Inputs

ECU in is the ECU to close.

close all? indicates that all open database objects will be closed. This is the default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes an ECU object from a database (or all database objects). It is an
instance of the XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, you can use the
close all? parameter set to true (default); otherwise, only the single database object
wired in is closed.

Database objects are closed automatically when the top-level VI terminates, so
using this VI is optional. However, you may want to close database objects to free
their memory prior to starting a session. You can use this VI to do this.

ni.com562

NI-XNET 20.5

XNET Database Close (Frame).vi

Purpose

Closes a frame from a database, or all database objects.

Format

Inputs

frame in is the frame to close.

close all? indicates that all open database objects will be closed. This is the default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes a frame object from a database (or all database objects). It is an
instance of the XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, you can use the
close all? parameter set to true (default); otherwise, only the single database object
wired in is closed.

Database objects are closed automatically when the top-level VI terminates, so
using this VI is optional. However, you may want to close database objects to free
their memory prior to starting a session. You can use this VI to do this.

© National Instruments 563

NI-XNET 20.5

XNET Database Close (PDU).vi

Purpose

Closes a PDU from a database, or all database objects.

Format

Inputs

PDU in is the PDU to close.

close all? indicates that all open database objects will be closed. This is the default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes a PDU object from a database (or all database objects). It is an
instance of the XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, you can use the
close all? parameter set to true (default); otherwise, only the single database object
wired in is closed.

Database objects are closed automatically when the top-level VI terminates, so
using this VI is optional. However, you may want to close database objects to free
their memory prior to starting a session. You can use this VI to do this.

ni.com564

NI-XNET 20.5

XNET Database Close (Signal).vi

Purpose

Closes a signal from a database, or all database objects.

Format

Inputs

signal in is the signal to close.

close all? indicates that all open database objects will be closed. This is the default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes a signal object from a database (or all database objects). It is an
instance of the XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, you can use the
close all? parameter set to true (default); otherwise, only the single database object
wired in is closed.

Database objects are closed automatically when the top-level VI terminates, so
using this VI is optional. However, you may want to close database objects to free
their memory prior to starting a session. You can use this VI to do this.

© National Instruments 565

NI-XNET 20.5

XNET Database Close (Subframe).vi

Purpose

Closes a subframe from a database, or all database objects.

Format

Inputs

subframe in is the subframe to close.

close all? indicates that all open database objects will be closed. This is the default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes a subframe object from a database (or all database objects). It is an
instance of the XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, you can use the
close all? parameter set to true (default); otherwise, only the single database object
wired in is closed.

Database objects are closed automatically when the top-level VI terminates, so
using this VI is optional. However, you may want to close database objects to free
their memory prior to starting a session. You can use this VI to do this.

ni.com566

NI-XNET 20.5

XNET Database Close (LIN Schedule).vi

Purpose

Closes a LIN schedule object from a database, or all database objects.

Format

Inputs

LIN schedule in is the schedule to close.

close all? indicates that all open database objects will be closed. This is the default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes a LIN schedule object from a database (or all database objects). It is an
instance of the XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, use the close all?
parameter set to true (default); otherwise, only the single database object wired in is
closed.

Database objects are closed automatically when the top-level VI terminates, so
using this VI is optional. However, you may want to close database objects to free
their memory prior to starting a session. You can use this VI to do this.

© National Instruments 567

NI-XNET 20.5

XNET Database Close (LIN Schedule Entry).vi

Purpose

Closes a LIN schedule entry from a database, or all database objects.

Format

Inputs

LIN schedule entry in is the schedule entry to close.

close all? indicates that all open database objects will be closed. This is the default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes a LIN schedule entry object from a database (or all database objects).
It is an instance of the XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, use the close all?
parameter set to true (default); otherwise, only the single database object wired in is
closed.

Database objects are closed automatically when the top-level VI terminates, so
using this VI is optional. However, you may want to close database objects to free
their memory prior to starting a session. You can use this VI to do this.

ni.com568

NI-XNET 20.5

XNET Database Create Object.vi

Purpose

Creates a new database object.

Description

The instances of this polymorphic VI specify which database objects to create:

■ Cluster
■ Dynamic Signal
■ ECU
■ Frame
■ PDU
■ Signal
■ Subframe
■ LIN Schedule
■ LIN Schedule Entry

XNET Database Create (Cluster).vi

Purpose

Creates a new XNET cluster.

Format

Inputs

database in is the parent database object. database in can be an existing file. You can create
a new database in memory by specifying :memory: for database in and create an entire
hierarchy of objects in memory, without using a file on the disk.

© National Instruments 569

NI-XNET 20.5

cluster name is the name of the cluster to create. The name must be unique for all clusters
in a database. Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the
underscore (_) are valid characters for the name. The space (), period (.), and other special
characters are not supported within the name. The name must begin with a letter
(uppercase or lowercase) or underscore, and not a number. The name is limited to 128
characters.

error in is the error cluster input (refer to Error Handling).

Outputs

database out is a copy of the database in parameter. You can use this output to wire the VI to
subsequent VIs.

cluster out is the I/O name of the newly created cluster object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET cluster object. It is an instance of the XNET Database Create
Object poly VI.

The cluster name input becomes the Name (Short) property of the created object.
This is distinct from the string contained within cluster out, which uses the syntax
described in XNET Cluster I/O Name.

The cluster object is created and remains in memory until the database is closed.
This VI does not change the open database file on disk. To save the newly created
object to the file, use the XNET Database Save VI.

XNET Database Create (Dynamic Signal).vi

Purpose

Creates a new XNET dynamic signal.

Format

ni.com570

NI-XNET 20.5

Inputs

subframe in is the subframe parent object.

signal name is the name of the signal to create. The name must be unique for all signals in a
frame in which the subframe parent was defined, including the static signals and the
multiplexer signal. Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the
underscore (_) are valid characters for the name. The space (), period (.), and other special
characters are not supported within the name. The name must begin with a letter
(uppercase or lowercase) or underscore, and not a number. The name is limited to 128
characters.

error in is the error cluster input (refer to Error Handling).

Outputs

subframe out is a copy of the subframe in parameter. You can use this parameter to wire the
VI to subsequent VIs.

signal out is I/O name of the newly created signal object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET dynamic signal object. It is an instance of the XNET Database
Create Object poly VI.

The signal name input becomes the Name (Short) property of the created object.
This is distinct from the string contained within signal out, which uses the syntax
described in XNET Signal I/O Name.

The signal object is created and remains in memory until the database is closed.
This VI does not change the open database file on disk. To save the newly created
object to the file, use the XNET Database Save VI.

Dynamic Signal is transmitted in the frame when the multiplexer signal contains the
multiplexer value defined in the subframe.

In NI-CAN, dynamic signals were called mode-dependent channels.

© National Instruments 571

NI-XNET 20.5

XNET Database Create (ECU).vi

Purpose

Creates a new XNET ECU.

Format

Inputs

cluster in is the cluster parent object.

ECU name is the name of the ECU to create. The name must be unique for all ECUs in a
cluster. Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the name. The space (), period (.), and other special characters are
not supported within the name. The name must begin with a letter (uppercase or
lowercase) or underscore, and not a number. The name is limited to 128 characters.

error in is the error cluster input (refer to Error Handling).

Outputs

cluster out is a copy of the cluster in parameter. You can use this output to wire the VI to
subsequent VIs.

ECU out is the I/O name of the newly created ECU object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET ECU object. It is an instance of the XNET Database Create
Object poly VI.

The ECU name input becomes the Name (Short) property of the created object. This
is distinct from the string contained within ECU out, which uses the syntax
described in XNET ECU I/O Name.

ni.com572

NI-XNET 20.5

The ECU object is created and remains in memory until the database is closed. This
VI does not change the open database file on disk. To save the newly created object
to the file, use the XNET Database Save VI.

XNET Database Create (Frame).vi

Purpose

Creates a new XNET frame.

Format

Inputs

cluster in is the cluster parent object.

frame name is the name of the frame to create. The name must be unique for all frames in a
cluster. Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the name. The space (), period (.), and other special characters are
not supported within the name. The name must begin with a letter (uppercase or
lowercase) or underscore, and not a number. The name is limited to 128 characters.

error in is the error cluster input (refer to Error Handling).

Outputs

cluster out is a copy of the cluster in parameter. You can use this output to wire the VI to
subsequent VIs.

frame out is the I/O name of the newly created frame object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET frame object. It is an instance of the XNET Database Create
Object poly VI.

© National Instruments 573

NI-XNET 20.5

The frame name input becomes the Name (Short) property of the created object.
This is distinct from the string contained within frame out, which uses the syntax
described in XNET Frame I/O Name.

The frame object is created and remains in memory until the database is closed.
This VI does not change the open database file on disk. To save the newly created
object to the file, use the XNET Database Save VI.

XNET Database Create (PDU).vi

Purpose

Creates a new XNET PDU.

Format

Inputs

cluster in is the cluster parent object.

PDU name is the name of the PDU to create. The name must be unique for all PDUs in a
cluster. Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the name. The space (), period (.), and other special characters are
not supported within the name. The name must begin with a letter (uppercase or
lowercase) or underscore, and not a number. The name is limited to 128 characters.

error in is the error cluster input (refer to Error Handling).

Outputs

cluster out is a copy of the cluster in parameter. You can use this output to wire the VI to
subsequent VIs.

PDU out is the reference to the newly created PDU object.

error out is the error cluster output (refer to Error Handling).

ni.com574

NI-XNET 20.5

Description

This VI creates an XNET PDU object. It is an instance of the XNET Database Create
Object poly VI.

The PDU name input becomes the Name (Short) property of the created object. This
is distinct from the string contained within PDU out, which uses the syntax
described in XNET PDU I/O Name.

The PDU object is created and remains in memory until the database is closed. This
VI does not change the open database file on disk. To save the new created object to
the file, use the XNET Database Save VI.

XNET Database Create (Signal).vi

Purpose

Creates a new XNET signal.

Format

Inputs

frame in is the frame parent object.

signal name is the name of the signal to create. The name must be unique for all signals in a
frame. Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_) are
valid characters for the name. The space (), period (.), and other special characters are not
supported within the name. The name must begin with a letter (uppercase or lowercase) or
underscore, and not a number. The name is limited to 128 characters.

error in is the error cluster input (refer to Error Handling).

Outputs

frame out is a copy of the frame in parameter. You can use this parameter to wire the VI to
subsequent VIs.

© National Instruments 575

NI-XNET 20.5

signal out is the I/O name of the newly created signal object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET signal object. It is an instance of the XNET Database Create
Object poly VI.

The signal name input becomes the Name (Short) property of the created object.
This is distinct from the string contained within signal out, which uses the syntax
described in XNET Signal I/O Name.

The signal object is created and remains in memory until the database is closed.
This VI does not change the open database file on disk. To save the newly created
object to the file, use the XNET Database Save VI.

XNET Database Create (Subframe).vi

Purpose

Creates a new XNET subframe.

Format

Inputs

frame in is the frame parent object.

subframe name is the name of the subframe to create. The name must be unique for all
subframes in a frame. Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the
underscore (_) are valid characters for the name. The space (), period (.), and other special
characters are not supported within the name. The name must begin with a letter
(uppercase or lowercase) or underscore, and not a number. The name is limited to 128
characters.

error in is the error cluster input (refer to Error Handling).

ni.com576

NI-XNET 20.5

Outputs

frame out is a copy of the frame in parameter. You can use this parameter to wire the VI to
subsequent VIs.

subframe out is the I/O name of the newly created subframe object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET subframe object. It is an instance of the XNET Database
Create Object poly VI.

The subframe name input becomes the Name (Short) property of the created object.

The subframe object is created and remains in memory until the database is closed.
This VI does not change the open database file on disk. To save the newly created
object to the file, use the XNET Database Save VI.

A subframe defines the multiplexer value for all dynamic signals in this subframe.
Dynamic signals within a subframe inherit the multiplexer value from the subframe
parent.

In NI-CAN, a subframe was called a mode.

XNET Database Create (LIN Schedule).vi

Purpose

Creates a new XNET LIN schedule.

Format

Inputs

cluster in is the cluster parent object.

© National Instruments 577

NI-XNET 20.5

LIN schedule name is the name of the schedule to create. The name must be unique for all
schedules in a cluster. Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the
underscore (_) are valid characters for the name. The space (), period (.), and other special
characters are not supported within the name. The name must begin with a letter
(uppercase or lowercase) or underscore, and not a number. The name is limited to 128
characters.

error in is the error cluster input (refer to Error Handling).

Outputs

cluster out is a copy of the cluster in parameter. You can use this parameter to wire the VI to
subsequent VIs.

LIN schedule out is the I/O name of the newly created LIN schedule object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET LIN schedule object. It is an instance of the XNET Database
Create Object poly VI.

The LIN schedule name input becomes the Name (Short) property of the created
object. This is distinct from the string contained within LIN schedule out, which uses
the syntax described in XNET LIN Schedule I/O Name.

The schedule object is created and remains in memory until the database is closed.
This VI does not change the open database file on disk. To save the newly created
object to the file, use the XNET Database Save VI.

XNET Database Create (LIN Schedule Entry).vi

Purpose

Creates a new XNET LIN schedule entry object.

Format

ni.com578

NI-XNET 20.5

Inputs

LIN schedule in is the schedule parent object.

LIN schedule entry name is the name of the schedule entry to create. The name must be
unique for all entries in a schedule. Lowercase letters (a–z), uppercase letters (A–Z),
numbers, and the underscore (_) are valid characters for the name. The space (), period (.),
and other special characters are not supported within the name. The name must begin with
a letter (uppercase or lowercase) or underscore, and not a number. The name is limited to
128 characters.

error in is the error cluster input (refer to Error Handling).

Outputs

LIN schedule out is a copy of the LIN schedule in parameter. You can use this parameter to
wire the VI to subsequent VIs.

LIN schedule entry out is the I/O name of the newly created LIN schedule entry object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET schedule entry object. It is an instance of the XNET Database
Create Object poly VI.

Schedule entries is an ordered array in a schedule. The schedule is being processed
in the order of this array. A newly created entry always is added to the last position
of the array.

The LIN schedule entry name input becomes the Name (Short) property of the
created object. This is distinct from the string contained in LIN schedule entry out,
which uses the syntax described in XNET LIN Schedule Entry I/O Name.

The schedule entry object is created and remains in memory until the database is
closed. This VI does not change the open database file on disk. To save the newly
created object to the file, use the XNET Database Save VI.

© National Instruments 579

NI-XNET 20.5

XNET Database Delete Object.vi

Purpose

Deletes a database object.

Description

The instances of this polymorphic VI specify which database objects to delete:

■ Cluster

■ ECU

■ Frame

■ PDU

■ Signal

■ Subframe

■ LIN Schedule

■ LIN Schedule Entry

XNET Database Delete (Cluster).vi

Purpose

Deletes an XNET cluster and all child objects in this cluster.

Format

Inputs

cluster in is the I/O name of the cluster to delete.

error in is the error cluster input (refer to Error Handling).

ni.com580

NI-XNET 20.5

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI deletes an XNET cluster object with all frames, PDUs, signals, subframes, and
ECUs in this cluster. It is an instance of the XNET Database Delete Object poly VI.

Upon deletion, the I/O names of all deleted objects are closed and no longer can be
used.

The objects are deleted from a database in memory. The change is in force until the
database is closed. This VI does not change the open database file on disk. To save
the changed database to the file, use the XNET Database Save VI.

XNET Database Delete (ECU).vi

Purpose

Deletes an XNET ECU.

Format

Inputs

ECU in is the I/O name of the ECU to delete.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

© National Instruments 581

NI-XNET 20.5

Description

This VI deletes an XNET ECU object. It is an instance of the XNET Database Delete

Object poly VI.

Upon deletion, the I/O name of the ECU is closed and no longer can be used.

The ECU object is deleted from a database in memory and is in force until the
database is closed. This VI does not change the open database file on disk. To save
the changed database to the file, use the XNET Database Save VI.

XNET Database Delete (Frame).vi

Purpose

Deletes an XNET frame and all child objects in the frame.

Format

Inputs

frame in is the I/O name of the frame to delete.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

Instance of the XNET Database Delete Object poly VI. This VI deletes an XNET frame
object and its mapped PDUs (and signals and subframes contained in those PDUs) if
they are no longer referenced by another frame in the database. To avoid deleting
PDUs with the frame, unmap the PDUs by setting the XNET Frame PDU_Mapping
property to an empty array before deleting the frame object.

ni.com582

NI-XNET 20.5

Upon deletion, the I/O names of all deleted objects are closed and no longer can be
used.

The objects are deleted from a database in memory. The change is in force until the
database is closed. This VI does not change the open database file on disk. To save
the changed database to the file, use the XNET Database Save VI.

XNET Database Delete (PDU).vi

Purpose

Delete an XNET PDU and all child objects in this PDU.

Format

Inputs

PDU in references the PDU to delete.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI deletes an XNET PDU object with all signals and subframes in this PDU. It is
an instance of the XNET Database Delete Object poly VI.

Upon deletion, the I/O names to all deleted objects are closed and no longer can be
used.

The objects are deleted from a database in memory. The change is in force until the
database is closed. This VI does not change the open database file on disk. To save
the changed database to the file, use the XNET Database Save VI.

© National Instruments 583

NI-XNET 20.5

XNET Database Delete (Signal).vi

Purpose

Deletes an XNET signal.

Format

Inputs

signal in is the I/O name of the signal to delete.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI deletes an XNET signal object. It is an instance of the XNET Database Delete

Object poly VI.

Upon deletion, the I/O name of the signal is closed and no longer can be used.

The signal object is deleted from a database in memory and is in force until the
database is closed. This VI does not change the open database file on disk. To save
the changed database to the file, use the XNET Database Save VI.

XNET Database Delete (Subframe).vi

Purpose

Deletes an XNET subframe and all dynamic signals in the subframe.

ni.com584

NI-XNET 20.5

Format

Inputs

subframe in is the I/O name of the subframe to delete.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI deletes an XNET subframe object and all dynamic signals in this subframe. It
is an instance of the XNET Database Delete Object poly VI.

Upon deletion, the I/O names of the subframe and related dynamic signals are
closed and no longer can be used.

The objects are deleted from a database in memory. The change is in force until the
database is closed. This VI does not change the open database file on disk. To save
the changed database to the file, use the XNET Database Save VI.

XNET Database Delete (LIN Schedule).vi

Purpose

Deletes an XNET LIN schedule and all LIN schedule entry objects in this schedule.

Format

© National Instruments 585

NI-XNET 20.5

Inputs

LIN schedule in is the I/O name of the LIN schedule to delete.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI deletes an XNET LIN schedule object and the entries it contains. It is an
instance of the XNET Database Delete Object poly VI.

Upon deletion, the I/O names of all deleted objects are closed, and you no longer
can use them.

The LIN schedule object is deleted from a database in memory and is in force until
the database is closed. This VI does not change the open database file on disk. To
save the changed database to the file, use the XNET Database Save VI.

XNET Database Delete (LIN Schedule Entry).vi

Purpose

Deletes an XNET schedule entry object.

Format

Inputs

LIN schedule entry in is the I/O name of the LIN schedule entry to delete.

error in is the error cluster input (refer to Error Handling).

ni.com586

NI-XNET 20.5

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI deletes an XNET LIN schedule entry object. It is an instance of the XNET
Database Delete Object poly VI.

Upon deletion, the I/O name of the deleted object is closed, and you no longer can
use it.

The objects are deleted from a database in memory. The change is in force until the
database is closed. This VI does not change the open database file on disk. To save
the changed database to the file, use the XNET Database Save VI.

XNET Database Merge.vi

Purpose

Merges database objects and related child objects from the source to the
destination cluster.

Description

The instances of this polymorphic VI specify which database objects to merge:

■ Frame

■ PDU

■ ECU

■ LIN Schedule

■ Cluster

XNET Database Merge (Frame).vi

Purpose

Merges a frame object with all child objects into the destination cluster.

© National Instruments 587

NI-XNET 20.5

Format

Inputs

wait for complete? Use this input only if the source object is a cluster (refer to the
XNET Database Merge (Cluster) VI).

target cluster in is the I/O name of the cluster where the source frame is merged.

source frame is the I/O name of the frame to be merged into the target cluster.

copy mode defines the merging behavior if the target cluster already contains a frame with
the same name.

prefix is added to the source frame name if a frame with the same name exists in the target
cluster.

error in is the error cluster input (refer to Error Handling).

Outputs

percent complete is used when wait for complete? is false. (This output does not apply to
the frame instance.)

target cluster out is a copy of target cluster in. You can use this output to wire the VI to
subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

This VI merges a frame with all dependent child objects (PDUs, subframes, and
signals) to the target cluster.

If the source frame name was not used in the target cluster, this VI copies the source
frame with the child objects to the target. If a frame with the same name exists in

ni.com588

NI-XNET 20.5

the target cluster, you can avoid name collisions by specifying the prefix to be added
to the name.

If a frame with the same name exists in the target cluster, the merge behavior
depends on the copy mode input:

■ Copy using source: The target frame with all dependent child objects is
removed from the target cluster and replaced by the source objects.
■ Copy using destination: The source frame is ignored (the target cluster frame
with child objects remains unchanged).
■ Merge using source: This adds child objects from the source frame to child
objects from the destination frame. If the target frame contains a child object
with the same name, it is replaced by the child object from the source frame.
The source frame properties (for example, payload length) replace the target
frame properties.
■ Merge using destination: This adds child objects from the source frame to
child objects from the destination frame. If the target frame contains a child
object with the same name, it remains unchanged. The target frame
properties remain unchanged (for example, payload length).

Example

Target frame F1(v1) has signals S1 and S2(v1). Source frame F1(v2) has signals S2(v2)
and S3.

(v1) and (v2) are two versions of one object with same name, but with different
properties.

■ Result of Copy using source: F1(v2), S2(v2), S3.
■ Result of Copy using destination: F1(v1), S1, S2(v1).
■ Result of Merge using source: F1(v2), S1, S2(v2), S3.
■ Result of Merge using destination: F1(v1), S1, S2(v1), S3.

© National Instruments 589

NI-XNET 20.5

XNET Database Merge (PDU).vi

Purpose

Merges a PDU object with all child objects into the destination cluster.

Format

Inputs

wait for complete? Use this input only if the source object is a cluster (refer to the
XNET Database Merge (Cluster) VI).

target cluster in is the I/O name of the cluster where the source PDU is merged.

source PDU is the I/O name of the PDU to be merged into the target cluster.

copy mode defines the merging behavior if the target cluster already contains a PDU with
the same name.

prefix is added to the source PDU name if a PDU with the same name exists in the target
cluster.

error in is the error cluster input (refer to Error Handling).

Outputs

percent complete is used when wait for complete? is false. (This output does not apply to
the PDU instance.)

target cluster out is a copy of target cluster in. You can use this output to wire the VI to
subsequent VIs.

error out is the error cluster output (refer to Error Handling).

ni.com590

NI-XNET 20.5

Description

This VI merges a PDU with all dependent child objects (subframes and signals) to
the target cluster.

If the source PDU name was not used in the target cluster, this VI copies the source
PDU with the child objects to the target. If a PDU with the same name exists in the
target cluster, you can avoid name collisions by specifying the prefix to be added to
the name.

If a PDU with the same name exists in the target cluster, the merge behavior
depends on the copy mode input:

■ Copy using source: The target PDU with all dependent child objects is
removed from the target cluster and replaced by the source objects.
■ Copy using destination: The source PDU is ignored (the target cluster PDU
with child objects remains unchanged).
■ Merge using source: This adds child objects from the source PDU to child
objects from the destination PDU. If the target PDU contains a child object
with the same name, it is replaced by the child object from the source PDU.
The source PDU properties (for example, payload length) replace the target
PDU properties.
■ Merge using destination: This adds child objects from the source PDU to
child objects from the destination PDU. If the target PDU contains a child
object with the same name, it remains unchanged. The target PDU properties
remain unchanged (for example, payload length).

Example

Target PDU Pdu1(v1) has signals S1 and S2(v1). Source PDU Pdu1(v2) has signals
S2(v2) and S3.

(v1) and (v2) are two versions of one object with same name but with different
properties.

■ Result of Copy using source: Pdu1(v2), S2(v2), S3.
■ Result of Copy using destination: Pdu1(v1), S1, S2(v1).

© National Instruments 591

NI-XNET 20.5

■ Result of Merge using source: Pdu1(v2), S1, S2(v2), S3.
■ Result of Merge using destination: Pdu1(v1), S1, S2(v1), S3.

XNET Database Merge (ECU).vi

Purpose

Merges an ECU object with Tx/Rx frames into the destination cluster.

Format

Inputs

wait for complete? Use this input only if the source object is a cluster (refer to the
XNET Database Merge (Cluster) VI).

target cluster in is the I/O name of the cluster where the source ECU is merged.

source ECU is the I/O name of the ECU to be merged into the target cluster.

copy mode defines the merging behavior if the target cluster already contains an ECU with
the same name.

prefix is added to the source ECU name if an ECU with the same name exists in the target
cluster.

error in is the error cluster input (refer to Error Handling).

Outputs

percent complete is used when wait for complete? is false. (This output does not apply to
the ECU instance.)

target cluster out is a copy of target cluster in. You can use this output to wire the VI to
subsequent VIs.

error out is the error cluster output (refer to Error Handling).

ni.com592

NI-XNET 20.5

Description

This VI merges an ECU with all Tx/Rx frames to the target cluster. It does not merge
the frames itself, but only the transmitting or receiving information. This happens
based on frame names. If the source cluster defines new frames not contained in the
destination cluster, they should be merged before merging the ECU; otherwise, the
Tx/Rx information is removed.

If the source ECU name was not used in the target cluster, this VI copies the source
ECU to the target. If an ECU with the same name exists in the target cluster, you can
avoid name collisions by specifying the prefix to be added to the name.

If an ECU with the same name exists in the target cluster, the merge behavior
depends on the copy mode input:

■ Copy using source: The target ECU with all Tx/Rx information is removed
from the target cluster and replaced by the source objects.
■ Copy using destination: The source ECU is ignored (the target cluster ECU
with child objects remains unchanged).
■ Merge using source: This adds Tx/Rx frames from the source ECU to Tx/Rx
from the destination ECU. The source ECU properties (for example, comment)
replace the target ECU properties.
■ Merge using destination: This adds Tx/Rx frames from the source ECU to
Tx/Rx from the destination ECU. The target ECU properties remain unchanged
(for example, comment).

Example

Target ECU Ecu1(v1) has Tx frames F1 and F2. Source ECU Ecu1(v2) has Tx frames F2
and F3.

(v1) and (v2) are two versions of one object with same name but with different
properties.

■ Result of Copy using source: Ecu1(v2), F2, F3.
■ Result of Copy using destination: Ecu1(v1), F1, F2.
■ Result of Merge using source: Ecu1(v2), F1, F2, F3.

© National Instruments 593

NI-XNET 20.5

■ Result of Merge using destination: Ecu1(v1), F1, F2, F3.

XNET Database Merge (LIN Schedule).vi

Purpose

Merges a LIN schedule object with all child objects into the destination cluster.

Format

Inputs

wait for complete? Use this input only if the source object is a cluster (refer to the
XNET Database Merge (Cluster) VI).

target cluster in is the I/O name of the cluster where the source LIN schedule is merged.

source LIN schedule is the I/O name of the LIN schedule to be merged into the target
cluster.

copy mode defines the merging behavior if the target cluster already contains a LIN
schedule with the same name.

prefix is added to the source LIN schedule name if a LIN schedule with the same name exists
in the target cluster.

error in is the error cluster input (refer to Error Handling).

Outputs

percent complete is used when wait for complete? is false. (This output does not apply to
the LIN schedule instance.)

target cluster out is a copy of target cluster in. You can use this output to wire the VI to
subsequent VIs.

error out is the error cluster output (refer to Error Handling).

ni.com594

NI-XNET 20.5

Description

This VI merges a LIN schedule with all schedule entries to the target cluster. Frames
referenced in the schedule entries should be merged before merging the LIN
schedule; otherwise, the reference get lost.

If the source LIN schedule name was not used in the target cluster, this VI copies the
source LIN schedule with the entries to the target. If a LIN schedule with the same
name exists in the target cluster, you can avoid name collisions by specifying the
prefix to be added to the name.

If a LIN schedule with the same name exists in the target cluster, the merge behavior
depends on the copy mode input:

■ Copy using source: The target LIN schedule with entries is removed from the
target cluster and replaced by the source objects.
■ Copy using destination: The source LIN schedule is ignored (the target
cluster schedule with entries remains unchanged).
■ Merge using source: This adds schedule entries from the source schedule at
the end of the destination schedule table. The copied entries become new
names, so all entry names in the schedule are unique. The source schedule
properties replace the target schedule properties (comment, priority, run
mode).
■ Merge using destination: This adds schedule entries from the source
schedule at the end of the destination schedule table. The copied entries
become new names, so all entry names in the schedule are unique. The target
schedule properties (comment, priority, run mode) remain unchanged.

Example

Target LIN schedule LS1(v1) has entries e1, e2. Source LIN schedule LS1(v2) has
entries e3, e4.

(v1) and (v2) are two versions of one object with same name but with different
properties.

■ Result of Copy using source: LS1(v1), e1, e2.

© National Instruments 595

NI-XNET 20.5

■ Result of Copy using destination: LS1(v2), e3, e4.
■ Result of Merge using source: LS1(v2),e1, e2, e3, e4.
■ Result of Merge using destination: LS1(v1), e1, e2, e3, e4.

XNET Database Merge (Cluster).vi

Purpose

Merges a source cluster with all child objects into the destination cluster.

Format

Inputs

wait for complete? Use this input to split the merging process into parts (for example, to
display a progress bar).

target cluster in is the I/O name of the cluster where the source cluster is merged.

source cluster is the I/O name of the cluster to be merged into the target cluster.

copy mode defines the merging behavior if the target cluster already contains elements
with the same name.

prefix is added to the source cluster name if an element with the same name exists in the
target cluster.

error in is the error cluster input (refer to Error Handling).

Outputs

percent complete is used when wait for complete? is false.

target cluster out is a copy of target cluster in. You can use this output to wire the VI to
subsequent VIs.

error out is the error cluster output (refer to Error Handling).

ni.com596

NI-XNET 20.5

Description

This VI merges all objects contained in the source cluster into the target cluster.

The following VIs merge the objects with dependent-child objects:

■ XNET Database Merge (Frame) VI
■ XNET Database Merge (PDU) VI
■ XNET Database Merge (ECU) VI
■ XNET Database Merge (LIN Schedule) VI

Copy mode and prefix are passed to the appropriate VI for the merging process.

If the copy mode is set to Copy using source or Merge using source, all cluster
properties including the name are copied from the source to the target cluster.

Depending on the number of contained objects in the source and destination
clusters, the execution can take longer. If wait for complete? is true, this VI waits
until the merging process gets completed. If the execution completes without
errors, percent complete returns 100. If wait for complete? is false, the function
returns quickly and percent complete returns values less than 100. You must call the
XNET Database Merge VI repeatedly until percent complete returns 100. You can use
the time between calls to update a progress bar.

XNET Database Save.vi

Purpose

Saves the open database to a FIBEX 3.1.1 file.

Format

Inputs

database in is the I/O name of the database.

© National Instruments 597

NI-XNET 20.5

filepath contains the pathname to the FIBEX file or is empty (saves to the original filepath).

error in is the error cluster input (refer to Error Handling).

Outputs

database out is a copy of the database in parameter. You can use this parameter to wire the
VI to subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

This VI saves the XNET database current state to a FIBEX 3.1.1 file. The file extension
must be .xml. If the target file exists, it is overwritten.

XNET saves to the FIBEX file only features that XNET sessions use to communicate
on the network. If the original file was created using non-XNET software, the target
file may be missing details from the original file. For example, NI-XNET supports only
linear scaling. If the original FIBEX file used a rational equation that cannot be
expressed as a linear scaling, XNET converts this to a linear scaling with factor 1.0
and offset 0.0.

If filepath is empty, the file is saved to the same FIBEX file specified when opened. If
opened as a file path, it uses that file path. If opened as an alias, it uses the file path
registered for that alias.

Saving a database is not supported in LabVIEW Real-Time, but you can deploy and
use a database saved on Windows in LabVIEW Real-Time (refer to the XNET

Database Deploy VI).

XNET Database Export.vi

Purpose

Exports a cluster from the open database to a file in a specific format.

ni.com598

NI-XNET 20.5

Format

Inputs

cluster in is the I/O name of the cluster.

filepath contains the pathname to the file to be created.

error in is the error cluster input (refer to Error Handling).

Outputs

cluster out is a copy of the cluster in parameter. You can use this parameter to wire the VI to
subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

This VI exports a cluster from an XNET database to a specific file format. A CAN
cluster is exported as CANdb++ database (.dbc). A LIN cluster is exported as a LIN
database file (.ldf). A FlexRay cluster cannot be exported and returns an error. If
the target file exists, it is overwritten. The filepath parameter is required; you cannot
accidentally overwrite the original file by specifying an empty filepath.

XNET saves to the file only features that XNET sessions use to communicate on the
network. If the original file was created using non-XNET software, the target file may
be missing details from the original file. For example, NI-XNET supports only linear
scaling. If the original FIBEX file used a rational equation that cannot be expressed
as a linear scaling, XNET converts this to a linear scaling with factor 1.0 and offset
0.0.

Exporting a database is not supported in LabVIEW Real-Time, but you can deploy
and use a database saved on Windows in LabVIEW Real-Time (refer to the XNET

Database Deploy VI for more information).

© National Instruments 599

NI-XNET 20.5

File Management
This subpalette includes VIs to manage database aliases and deploy or undeploy a
database file to LabVIEW Real-Time (RT).

XNET Database Add Alias VI

XNET Database Remove Alias VI

XNET Database Get List VI

XNET Database Deploy VI

XNET Database Undeploy VI

XNET Database Add Alias.vi

Purpose

Adds a new alias to a database file.

Format

Inputs

CAN FD ISO mode sets the way the API processes ISO FD frames. For a description of these
modes, refer to CAN FD, ISO Versus Non-ISO.

0 ISO
1 Non-ISO
2 ISO Legacy

default FD baud rate sets the default FD baud rate for a CAN database that does not
internally specify the FD baud rate. If this call replaces an existing alias with the same name,
the previous default FD baud rate will be retained if this value is set to zero (0).

default baud rate provides the default baud rate, used when filepath refers to a CANdb
database (.dbc) or an NI-CAN database (.ncd). These database formats are specific to
CAN and do not specify a cluster baud rate. Use this default baud rate to specify a default

ni.com600

NI-XNET 20.5

CAN baud rate to use with this alias. If filepath refers to a FIBEX database (.xml), AUTOSAR
database (.arxml), or LIN LDF file, the default baud rate parameter is ignored. The FIBEX
and LDF database formats require a valid baud rate for every cluster, and NI-XNET uses that
baud rate as the default. If this call replaces an existing alias with the same name, the
previous default baud rate will be retained if this value is set to zero (0).

ignore application protocol is applicable only to a database with a J1939 application
protocol, and sets whether the API should ignore the application protocol and process
J1939 frames as raw CAN frames (True), or process them as J1939 frames (False).

alias provides the desired alias name. Alias names are more flexible than other XNET
database objects. Alias names must match the following rules:

■ Begin with a letter (a-z, A-Z), number (0-9), hyphen (-), or underscore (_).
■ May contain spaces and the following symbols: ! # $ % & ' () + - ; = ` { } ~
■ Must not end with a space.

If the alias name already exists, this VI changes the previous filepath to the specified
filepath.

filepath provides the path to the CANdb, FIBEX, or LDF file. Commas are not allowed in the
alias name, because the XNET Database Get List VI parses the alias list as a comma-
separated list of strings.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

NI-XNET uses alias names for database files. The alias names provide a shorter
name for display, allow for changes to the file system without changing the
application, and enable efficient deployment to LabVIEW Real-Time (RT) targets.

This VI is supported on Windows only. For LabVIEW RT, you can pass the new alias to
the XNET Database Deploy VI to transfer an optimized binary image of the database
to the LabVIEW RT target. After deploying the database, you can use the alias name
in any VI for the Windows host and the LabVIEW RT target.

© National Instruments 601

NI-XNET 20.5

XNET Database Remove Alias.vi

Purpose

Removes a database alias from the system.

Format

Inputs

alias is the name of the alias to delete.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI removes the alias from NI-XNET, but does not affect the database text file. It
just removes the alias association to the database filepath.

This VI is supported on Windows only, and the alias is removed from Windows only
(not LabVIEW RT targets). Use the XNET Database Undeploy VI to remove an alias
from a LabVIEW Real-Time (RT) target.

XNET Database Get List.vi

Purpose

Gets the current list of databases on a system.

ni.com602

NI-XNET 20.5

Format

Inputs

IP address is the target IP address.

If IP address is unwired (empty), this VI retrieves aliases and file paths for the local Windows
system.

If IP address is a valid IP address, this VI retrieves aliases and file paths for the remote
LabVIEW RT target. You can find this IP address using NI MAX or VIs in the LabVIEW Real-
Time palettes.

error in is the error cluster input (refer to Error Handling).

Outputs

array of alias returns an array of strings, one for every alias registered in the system.

If no aliases are registered, the array is empty.

array of filepath returns an array of strings that contain the file paths and filenames of the
databases assigned to the aliases, one for every alias registered in the system.

If no aliases are registered, the array is empty. This parameter applies to Windows targets
only; on RT targets, this array always is empty.

error out is the error cluster output (refer to Error Handling).

Description

For a local Windows call (IP address empty), array of filepath returns an array of file
paths. The size of this array is the same as array of alias. It provides the Windows file
path for each corresponding alias.

For a remote call to LabVIEW RT, array of filepath is empty. NI-XNET handles the file
system on the LabVIEW RT target automatically, so that only the alias is needed.

© National Instruments 603

NI-XNET 20.5

If the LabVIEW RT target access is password protected, use the following syntax for
the IP address: user:password@IPaddress.

This VI is supported on Windows only. LabVIEW RT database deployments are
managed remotely from Windows.

This call checks for the existence of the database file and removes any aliases that
are no longer valid.

XNET Database Deploy.vi

Purpose

Deploys a database to a remote LabVIEW Real-Time (RT) target.

Format

Inputs

IP address is the target IP address.

alias provides the database alias name. To deploy a database text file, first add an alias
using the XNET Database Add Alias VI.

wait for complete? determines whether the VI returns directly or waits until the entire
transmission is completed.

error in is the error cluster input (refer to Error Handling).

Outputs

percent complete indicates the deployment progress.

error out is the error cluster output (refer to Error Handling).

ni.com604

NI-XNET 20.5

Description

This VI transfers an optimized binary image of the database to the LabVIEW RT
target. After deploying the database, you can use the alias name in any VI for the
Windows host and the LabVIEW RT target.

This VI is supported on Windows only. LabVIEW RT database deployments are
managed remotely from Windows.

This VI must access the remote LabVIEW RT target from Windows, so IP address
must specify a valid IP address for the LabVIEW RT target. You can find this IP
address using NI MAX or VIs in the LabVIEW Real-Time palettes.

If the LabVIEW RT target access is password protected, use the following syntax for
the IP address: user:password@IPaddress.

Remote file transfer can take a few seconds, especially when the RT target is far
away.

If wait for complete? is true, this VI waits for the entire transfer to complete, then
returns. error out reflects the deployment status, and percent complete is 100.

If wait for complete? is false, this VI transfers a portion of the database and returns
before it is complete. For an incomplete transfer, error out returns success, and
percent complete is less than 100. You can use percent complete to display transfer
progress on your front panel. You must call the XNET Database Deploy VI in a loop
until percent complete is returned as 100, at which time error out reflects the entire
deployment status.

XNET Database Undeploy.vi

Purpose

Undeploys a database from a remote LabVIEW Real-Time (RT) target.

Format

© National Instruments 605

NI-XNET 20.5

Inputs

IP address is the target IP address.

alias provides the database alias name.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI completely deletes the database file and its alias from the LabVIEW RT target.

This VI is supported on Windows only. LabVIEW RT database deployments are
managed remotely from Windows.

This VI must access the remote LabVIEW RT target from Windows, so IP address
must specify a valid IP address for the LabVIEW RT target. You can find this IP
address using NI MAX or VIs in the LabVIEW Real-Time palettes.

If the LabVIEW RT target access is password protected, you can use the following
syntax for the IP address: user:password@IPaddress.

XNET LIN Schedule Property Node

Format

Description

Property node used to read/write properties for an XNET LIN Schedule I/O name.

Pull down this node to add properties. Right-click to change direction between read
and write. Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>)
and move your cursor over the property name.

ni.com606

NI-XNET 20.5

For more information about LabVIEW property nodes, open the main LabVIEW help
(select Search the LabVIEW Help... from the Help menu) and look for the Property
Nodes topic in the index.

Cluster

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET LIN Schedule

Short Name

Cluster

Description

This property returns the I/O name to the parent cluster in which the schedule has
been created. You cannot change the parent cluster after creating the schedule
object.

Comment

Data Type Direction Required? Default
Read/Write No Empty String

Property Class

XNET LIN Schedule

Short Name

Comment

Description

Comment describing the schedule object.

© National Instruments 607

NI-XNET 20.5

A comment is a string containing up to 65535 characters.

Configuration Status

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET LIN Schedule

Short Name

ConfigStatus

Description

The LIN schedule object configuration status.

Configuration Status returns an NI-XNET error code. The value can be passed to the
Simple Error Handler VI error code input to convert it to a text description (on
message output) of the configuration problem.

By default, the XNET Cluster LIN:Schedules property does not return incorrect
configured schedules in the database because you cannot use them in the bus
communication. You can change this behavior by setting the XNET Database
ShowInvalidFromOpen? property to true. When a schedule's configuration status
becomes invalid after the database is opened, the XNET Cluster LIN:Schedules
property still returns the schedule even if ShowInvalidFromOpen? is false.

An example of an invalid schedule configuration is when a required schedule
property is not defined (for example, a schedule entry within this schedule has an
undefined delay time).

Entries

Data Type Direction Required? Default
Read Only N/A N/A

ni.com608

NI-XNET 20.5

Property Class

XNET LIN Schedule

Short Name

Entries

Description

Array of entries for this LIN schedule.

Each entry's position in this array specifies the position in the schedule. The
database file and/or the order that you create entries at runtime determine the
position.

Name (Short)

Data Type Direction Required? Default
Read/Write Yes Defined in Create Object

Property Class

XNET LIN Schedule

Short Name

NameShort

Description

String identifying the XNET LIN schedule object.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the short name. The space (), period (.), and other special
characters are not supported within the name. The short name must begin with a
letter (uppercase or lowercase) or underscore, and not a number. The short name is
limited to 128 characters.

A schedule name must be unique for all schedules in a cluster.

© National Instruments 609

NI-XNET 20.5

You can write this property to change the schedules's short name. When you do this
and then use the original XNET LIN schedule that contains the old name, errors can
result because the old name cannot be found. Follow these steps to avoid this
problem:

1. Get the old Name (Short) property using the property node.
2. Set the new Name (Short) property for the object.
3. Wire the XNET LIN schedule as the input string to the Search and Replace

String VI with the old Name as the search string and the new Name as the
replace string. This replaces the short name in the XNET LIN schedule, while
retaining the other text that ensures a unique name.

4. Wire the result from the Search and Replace String VI to the XNET String to IO
Name VI. This casts the string back to a valid XNET LIN schedule.

Priority

Data Type Direction Required? Default
Read/Write No 42

Property Class

XNET LIN Schedule

Short Name

Priority

Description

Priority of this run-once LIN schedule when multiple run-once schedules are
pending for execution.

The valid range for this property is 1–254. Lower values correspond to higher
priority.

This property applies only when the Run Mode property is Once. Run-once schedule
requests are queued for execution based on this property. When all run-once

ni.com610

NI-XNET 20.5

schedules have completed, the master returns to the previously running continuous
schedule (or null).

Run-continuous schedule requests are not queued. Only the most recent run-
continuous schedule is used, and it executes only if no run-once schedule is
pending. Therefore, a run-continuous schedule has an effective priority of 255, but
this property is not used.

Null schedule requests take effect immediately and supercede any running run-once
or run-continuous schedule. The queue of pending run-once schedule requests is
flushed (emptied without running them). Therefore, a null schedule has an effective
priority of 0, but this property is not used.

This property is not read from the database, but is handled like a database property.
After opening the database, the default value is returned, and you can change the
property. But similar to database properties, you cannot change it after a session is
created.

Run Mode

Data Type Direction Required? Default
Read/Write No See Description

Property Class

XNET LIN Schedule

Short Name

RunMode

Description

This property is a ring (enumerated list) with the following values:

String Value
Continuous 0

Once 1
Null 2

© National Instruments 611

NI-XNET 20.5

This property specifies how the master runs this schedule:

■ Continuous: The master runs the schedule continuously. When the last entry
executes, the schedule starts again with the first entry.
■ Once: The master runs the schedule once (all entries), then returns to the
previously running continuous schedule (or null). If requests are submitted for
multiple run-once schedules, each run-once executes in succession based on
its Priority, then the master returns to the continuous schedule (or null).
■ Null: All communication stops immediately. A schedule with this run mode is
called a null schedule.

This property is not read from the database, but is handled like a database property.
After opening the database, the default value is returned, and you can change the
property. But similar to database properties, you cannot change it after a session is
created.

Usually, the default value for the run mode is Continuous. If the schedule is
configured to be a collision resolving table for an event-triggered entry, the default
is Once.

XNET LIN Schedule Entry Property Node

Format

Description

Property node used to read/write properties for an XNET LIN Schedule Entry I/O
name.

Pull down this node to add properties. Right-click to change direction between read
and write. Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>)
and move your cursor over the property name.

ni.com612

NI-XNET 20.5

For more information about LabVIEW property nodes, open the main LabVIEW help
(select Search the LabVIEW Help... from the Help menu) and look for the Property
Nodes topic in the index.

Collision Resolving Schedule

Data Type Direction Required? Default
Read/Write No Empty I/O Name

Property Class

XNET LIN Schedule Entry

Short Name

CollResSched

Description

LIN schedule that resolves a collision for this event-triggered entry.

This property applies only when the entry type is event triggered. When a collision
occurs for the event-triggered entry in this schedule, the master must switch to the
collision resolving schedule to transfer the unconditional frames successfully. If the
XNET interface is acting as the master on the LIN cluster, NI-XNET automatically
writes a schedule request for this collision resolving schedule.

The collision resolving schedule run mode must be Once.

When the entry type is any value other than event triggered, this property returns an
empty entry (invalid).

Delay

Data Type Direction Required? Default
Read/Write Yes N/A

Property Class

XNET LIN Schedule Entry

© National Instruments 613

NI-XNET 20.5

Short Name

Delay

Description

Time from the start of this entry (slot) to the start of the next entry.

The property uses a double value in seconds, with the fractional part used for
milliseconds or microseconds.

Event Identifier

Data Type Direction Required? Default
Read/Write Yes N/A

Property Class

XNET LIN Schedule Entry

Short Name

EventID

Description

The event-triggered entry identifier. This identifier is unprotected (NI-XNET handles
the protection).

This property applies only when the entry type is event triggered. This identifier is
for the event-triggered entry itself, and the first payload byte is for the protected
identifier of the contained unconditional frame.

Frames

Data Type Direction Required? Default
Read/Write No Empty Array

ni.com614

NI-XNET 20.5

Property Class

XNET LIN Schedule Entry

Short Name

Frames

Description

Array of frames for this LIN schedule entry.

If the entry type is unconditional, this array contains one element, which is the
single unconditional frame for this entry.

If the entry type is sporadic, this array contains one or more frames for this entry.
When multiple frames are pending for this entry, the order in the array determines
the priority to transmit.

If the entry type is event triggered, this array contains one or more frames for this
entry. When multiple frames are pending for this entry, a collision typically occurs
on the bus. When the XNET interface is acting as master, and a collision occurs, the
master automatically writes a schedule request for the Collision Resolving
Schedule. This resolves the collision automatically so that your application can
proceed.

Name (Short)

Data Type Direction Required? Default
Read/Write Yes Defined in Create Object

Property Class

XNET LIN Schedule Entry

Short Name

NameShort

© National Instruments 615

NI-XNET 20.5

Description

String identifying the LIN schedule entry object.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the short name. The space (), period (.), and other special
characters are not supported within the name. The short name must begin with a
letter (uppercase or lowercase) or underscore, and not a number. The short name is
limited to 128 characters.

A schedule entry name must be unique for all entries in the same schedule.

You can write this property to change the schedule entry's short name. When you do
this and then use the original XNET LIN schedule entry that contains the old name,
errors can result because the old name cannot be found. Follow these steps to avoid
this problem:

1. Get the old Name (Short) property using the property node.
2. Set the new Name (Short) property for the object.
3. Wire the XNET LIN schedule entry as the input string to the Search and

Replace String VI with the old Name as the search string and the new Name as
the replace string. This replaces the short name in the XNET LIN schedule
entry, while retaining the other text that ensures a unique name.

4. Wire the result from the Search and Replace String VI to the XNET String to IO
Name VI. This casts the string back to a valid XNET LIN schedule entry.

Node Configuration:Free Format:Data Bytes

Data Type Direction Required? Default
Read/Write Yes N/A

Property Class

XNET LIN Schedule Entry

Short Name

NodeConfFFDataBytes

ni.com616

NI-XNET 20.5

Description

An array of 8 bytes containing raw data for LIN node configuration.

Node configuration defines a set of services used to configure slave nodes in the
cluster. Every service has a specific set of parameters coded in this byte array. In the
LDF file, those parameters are stored, for example, in the node (ECU) or the frame
object. NI-XNET LDF reader composes those parameters to the byte values like they
are sent on the bus. The LIN specification document describes the node
configuration services and the mapping of the parameters to the raw format bytes.

The node configuration service is executed only if the Schedule Entry Type is set to
Node Configuration.

Caution This property is not saved to the FIBEX file. If you write this property, save the
database, and reopen it, the node configuration services are not contained in the database.
Writing this property is useful only in the NI-XNET session immediately following.

Schedule

Data Type Direction Required? Default
Read Only N/A N/A

Property Class

XNET LIN Schedule Entry

Short Name

Schedule

Description

LIN schedule that uses this entry.

This LIN schedule is considered this entry's parent. You define the parent schedule
when creating the entry object. You cannot change it afterwards.

Type

Data Type Direction Required? Default

© National Instruments 617

NI-XNET 20.5

Read/Write No Unconditional

Property Class

XNET LIN Schedule Entry

Short Name

Type

Description

The LIN schedule entry type determines the mechanism used to transfer frames in
this entry (slot). The values (enumeration) for this property are:

0 Unconditional: A single frame transfers in this entry (slot).

1 Sporadic: The master transmits in this entry (slot). The master selects among multiple frames to
transmit. Only updated frames are transmitted. When more than one frame has been updated,
the master decides by priority which frame to transmit. The other updated frames remain
pending and can be sent when this schedule entry executes again. The order of frames in the
LIN Schedule Entry Frames property (the first frame has the highest priority) determines the
frame priority.

2 Event triggered: Multiple slaves can transmit a frame in this entry (slot). Each slave transmits
when the frame's data has been updated. When a collision occurs (multiple slaves try to
transmit in the same slot), this is detected and resolved using a different schedule specified in
the LIN Schedule Entry Collision Resolving Schedule property. The resolving schedule runs
once, starting in the subsequent slot after the collision, and automatically turns back to the
previous schedule at the position where the collision occurred.

3 Node configuration: The schedule entry contains a node configuration service. The node
configuration service is defined as raw data bytes in the XNET LIN Schedule Entry Node
Configuration:Free Format:Data Bytes property.

A LIN frame can exist in multiple schedules and multiple schedule entries. For
example, if a frame exists in an event-triggered entry in schedule A, it also exists in
an unconditional entry of a different schedule B, so that event-triggered collisions in
schedule A can be resolved by switching to schedule B.

For information about how LIN frame timing compares to the Timing Type property
of CAN and FlexRay frames, refer to Cyclic and Event Timing.

ni.com618

NI-XNET 20.5

XNET Database Get DBC Attribute.vi

Purpose

Reads the attribute value, attribute enumeration, defined attributes, or signal value
table from a DBC file.

Format

Inputs

mode is the mode specification of this VI. Depending on this value, the VI returns the
following data:

■ Mode 0: Get Attribute Value: For a given object (for example, a signal), the VI
returns the attribute value assigned to the object. The attribute values always are
returned as text in attribute text. The DBC specification also allows defining other
data types, such as integer or float. If necessary, you can convert the data to a number
by using, for example, the Scan From String VI in the String palette. If the attribute is
defined as an enumeration of text strings, the attribute value returned here is the
index to the enumeration list, which you can retrieve using Mode 1 of the VI.
■ Mode 1: Get Enumeration: For a given attribute name, the VI returns the
enumeration text table as a comma-separated string in attribute text. Because for a
given attribute name, the enumeration is the same for all objects of the same type,
object in can point to any object with the given class (object in specifies the class). If
no enumeration is defined for an attribute, the VI returns an empty string.
■ Mode 2: Get Attribute Name List: Returns all attribute names defined for the given
object type as a comma-separated string. object in can point to any object in the
database of the given class (object in specifies the object class). attribute name is
ignored (it should be set to empty string).
■ Mode 3: Get Signal Value Table: This is valid only when object in points to a signal.
attribute name is ignored (it should be set to empty string). If the given signal contains
a value table, the function returns a comma-separated list in the form [value,string]

© National Instruments 619

NI-XNET 20.5

{,<value>,<string>}. The list contains any number of corresponding value,string
pairs. If no value table is defined for the signal, the result is an empty string.

object in is the database object (cluster, frame, signal, or ECU).

attribute name is the attribute name.

error in is the error cluster input (refer to Error Handling).

Outputs

object out is a copy of the object in parameter. You can use this output to wire the VI to
subsequent VIs.

attribute text is the attribute value.

is default? indicates that a default value is used instead of a specific value for this object.
DBC files define a default value for an attribute with the given name, and then specific
values for particular objects. If the specific value for an object is not defined, the default
value is returned. is default? has no meaning if the mode parameter is not 0 (refer to the
mode description above).

error out is the error cluster output (refer to Error Handling).

Description

Depending on the mode parameter, this VI reads an attribute value, attribute
enumeration, list of existing attributes, or value table of a signal from a DBC file.
Refer to the mode input description above for details.

Attributes are supported for the following object types:

■ Cluster (DBC file: network attribute)
■ Frame (DBC file: message attribute)
■ Signal (DBC file: signal attribute)
■ ECU (DBC file: node attribute)

Databases other than DBC do not support attributes. Attributes are not saved to a
FIBEX file when you open and save a DBC file.

ni.com620

NI-XNET 20.5

Notify Subpalette
This subpalette includes functions for waiting on events from XNET hardware,
including creation of a LabVIEW timing source.

XNET Wait.vi

Purpose

Waits for an event to occur.

Description

The instances of this polymorphic VI specify the event to wait for:

■ Transmit Complete

■ Interface Communicating

■ CAN Remote Wakeup

■ Ethernet Synced

■ LIN Remote Wakeup

XNET Wait (Transmit Complete).vi

Purpose

Waits for previously written data to be transmitted on the cluster.

Format

Inputs

session in is the session to apply the wait.

timeout specifies the maximum amount of time in seconds to wait.

error in is the error cluster input (refer to Error Handling).

© National Instruments 621

NI-XNET 20.5

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

Waits for all data provided to the XNET Write VI before this XNET Wait VI call is
transmitted on the CAN, FlexRay, LIN, or Ethernet network. Depending on the bus or
configuration properties such as Interface:CAN:Single Shot Transmit?, the data may
or may not have been successfully transmitted; however, if this wait returns
successfully, it indicates that the session is making no more attempts to transmit
the data. This wait applies to only the current XNET session, and not other sessions
used for the same interface.

After using the XNET Write VI to provide data for this session, you can use this VI to
wait for that data to transmit to remote ECUs. You can use this VI to guarantee that
all frames have been transmitted before stopping this session.

The timeout parameter provides the maximum number of seconds to wait. The
default value is 10 (10 seconds).

XNET Wait (Interface Communicating).vi

Purpose

Waits for the interface to begin communication on the cluster.

Format

Inputs

session in is the session to apply the wait.

timeout specifies the maximum amount of time in seconds to wait.

error in is the error cluster input (refer to Error Handling).

ni.com622

NI-XNET 20.5

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

Waits for the interface to begin communication on the cluster. After the interface is
started, the controller connects to the cluster and starts communication. This wait
returns after communication with the cluster has been established. Note that the
successful completion of this VI does not necessarily indicate that the XNET session
has started. The session does not start unless one of the following occurs:

■ XNET Start is called, either with the default setting or with a scope of
Normal, Session Only, or Session Only Blocking.
■ XNET Read or XNET Write is called, and the AutoStart? property for the XNET
Session is set to true.

Note For some buses (for example, CAN), the communication may occur within a few
microseconds of starting the interface. For other buses, this could be delayed. An example of
a bus where the communication time is delayed from the start time is FlexRay, where the
interface must perform a startup routine that may take several cycles to complete. A FlexRay
interface attempts integration with the remaining nodes in the cluster when it is started. If
the FlexRay interface can coldstart, it sends out startup frames when started and
synchronizes its clock with other startup nodes in the cluster. Once the FlexRay interface has
successfully integrated, the interface is ready to start transmitting and receiving frames.
Reading the XNET FlexRay interface Protocol Operation Control (POC) state, once the
interface has successfully integrated, returns Normal-Active.

Note If a start trigger is configured for the interface, the interface start occurs after the start
trigger is received.

The timeout parameter provides the maximum number of seconds to wait. The
default value is 10 (10 seconds).

© National Instruments 623

NI-XNET 20.5

XNET Wait (CAN Remote Wakeup).vi

Purpose

Waits for the CAN interface to wake up due to activity by a remote ECU on the
network.

Format

Inputs

session in is the session to apply the wait.

timeout specifies the maximum amount of time in seconds to wait.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

This wait is used when you set the XNET Session Interface:CAN:Transceiver State
property to Sleep. When asleep, the interface and transceiver go into a low-powered
mode. If a remote CAN ECU transmits a frame, the transceiver detects this
transmission, and both the controller and transceiver wake up. This wait detects
that remote wakeup.

Note The interface neither receives nor acknowledges the transmission that caused the
wakeup. However, after the interface wakes up, the transceiver automatically is placed into
normal mode, and communication is restored.

The timeout parameter provides the maximum number of seconds to wait. This
value must be 1.0 (one second) or greater. The default value is 10 (10 seconds).

ni.com624

NI-XNET 20.5

XNET Wait (Ethernet Synced).vi

Purpose

Waits for the Ethernet interface to synchronize time on the network.

Format

Inputs

session in is the session to apply the wait.

timeout specifies the maximum amount of time in seconds to wait.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

Waits for the clock of the Ethernet interface to successfully synchronize to other
clocks in the network. This wait returns when the time synchronization protocol's
Synced property becomes true.

Note Time synchronization occurs independently from start of the interface. For example,
you can read and write Ethernet frames when time synchronization protocol is not enabled,
or when the time sync protocol is not synced.

The timeout parameter provides the maximum number of seconds to wait. The
default value is 10 seconds.

© National Instruments 625

NI-XNET 20.5

XNET Wait (LIN Remote Wakeup).vi

Purpose

Waits for the LIN interface to wake up due to activity by a remote ECU on the
network.

Format

Inputs

session in is the session to apply the wait. The wait applies to the LIN interface, so you can
use any session.

timeout specifies the maximum amount of time in seconds to wait.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

This wait is used when you set the XNET Session Interface:LIN:Sleep property to
Remote Sleep or Local Sleep. When asleep, if a remote LIN ECU transmits the
wakeup pattern (break), the XNET LIN interface detects this transmission and wakes
up. This wait detects that remote wakeup.

The timeout parameter provides the maximum number of seconds to wait. This
value must be 1.0 (one second) or greater. The default value is 10 (10 seconds).

ni.com626

NI-XNET 20.5

XNET Create Timing Source.vi

Purpose

Creates a timing source for a LabVIEW Timed Loop.

Description

The instances of this polymorphic VI specify the timing source to create:

■ FlexRay Cycle

XNET Create Timing Source (FlexRay Cycle).vi

Purpose

Creates a timing source for a LabVIEW Timed Loop.

The timing source is based on the FlexRay communication cycle. The timing source
sends a tick to the Timed Loop at a specific offset in time within the FlexRay cycle.
The offset within the cycle is specified in FlexRay macroticks.

Format

Inputs

timing source name is the timing source name, returned as timing source out if this VI
succeeds.

This input is optional. If you leave timing source name unwired (empty), timing source out

uses the session name (session in).

session in is the session to use for creating the timing source.

You must configure the session to use a FlexRay interface, because the timing source is
based on that interface's communication cycle. You can create only one FlexRay cycle
timing source for each interface.

© National Instruments 627

NI-XNET 20.5

This session is selected from the LabVIEW project or returned from the XNET Create Session
VI.

macrotick offset is the offset within each FlexRay cycle that you want the timing source to
tick.

The minimum value is zero (0), which specifies a tick at the start of every FlexRay cycle. The
value cannot be equal to or greater than the number of macroticks in the cycle, which you
can read from the XNET Cluster the session uses, from the FlexRay:Macro Per Cycle
property.

For further recommendations about selecting a value, refer to Macrotick Offset.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

timing source out is the timing source name. You wire this name to the Source Name of the
input node outside the Timed Loop.

For more information about the Timed Loop nodes, refer to Using the Timed Loop.

If this VI returns an error (status true in error out), timing source out is empty, which
indicates to the Timed Loop that no valid timing source exists.

error out is the error cluster output (refer to Error Handling).

Description

Use this VI to synchronize your LabVIEW Real-Time application to the deterministic
FlexRay cycle. Because the FlexRay cycle repeats every few milliseconds, real-time
execution is required, and therefore this VI is not supported on Windows.

You can create only one FlexRay Cycle timing source for each FlexRay interface. You
can wire a single timing source to multiple Timed Loops.

The following sections include more detailed information about using this VI:

Using the Timed Loop

Session Start and Stop

ni.com628

NI-XNET 20.5

Macrotick Offset

Using the Timed Loop

This section includes guidelines for using the LabVIEW Timed Loop with the NI-XNET
FlexRay Cycle timing source. For complete information, refer to the LabVIEW help
topics for the Timed Loop.

The Timed Loop contains the nodes described below.

1 Input Node
2 Left Data Node
3 Right Data Node
4 Output Node

Input Node

Source Name: Wire the timing source name output of this VI to this terminal on the
Timed Loop input node. This specifies the XNET timing source and overrides the
default built-in timing source (1 kHz).

Period: For most applications, you wire the constant 1 to this terminal, which
overrides the default of 1000. The Period specifies the number of timing source ticks
that must occur for the loop to iterate. A value of 1 iterates the Timed Loop on every

© National Instruments 629

NI-XNET 20.5

FlexRay cycle. Higher values skip FlexRay cycles (for example, 2 iterates the loop
every other FlexRay cycle).

Timeout: For most applications, you wire the constant 300 to this terminal, which
overrides the default of –1. The Timeout specifies the maximum number of
milliseconds to wait for a tick. For this FlexRay cycle timing source, this timeout
primarily applies to the first loop iteration. According to the FlexRay specification,
the process of fully synchronizing the distributed network clocks can take as long as
200 ms. This network clock synchronization is required for the NI-XNET interface to
detect the first FlexRay cycle and send a tick to the Timed Loop. If network
communication problems occur (for example, noise on the cable), the first tick does
not occur. Using a value of 300 for this terminal ensures that if problems occur on
the FlexRay network, the Timed Loop can recover (refer to Wake-Up Reason in Left
Data Node).

Error: Use this terminal to propagate errors through the Timed Loop. The Timed
Loop does not execute if this terminal receives an error condition. You typically wire
the error out from this XNET Create Timing Source (FlexRay Cycle) VI to this
terminal. This avoids the need for alternate error propagation techniques, such as a
shift register.

Left Data Node

Error: Propagates errors through the structure. Wire this terminal to error in of the
first VI within the subdiagram.

Wake-Up Reason: If the first Timed Loop iteration encounters a Timeout due to
problems on the FlexRay network, this terminal returns a value of 5 (Timeout). When
the timeout occurs, the Timed Loop does not return an error condition from Error.
The timeout causes the iteration to execute untimed, then try again on the next
iteration. If the FlexRay tick occurs as expected, Wake-Up Reason returns a value of 0
(Normal).

Right Data Node

Error: Propagates errors from the subdiagram out of the Timed Loop. If Error
receives an error condition, the Timed Loop finishes executing the current iteration
untimed, exits the loop, and returns the error condition on the Output Node. If you

ni.com630

NI-XNET 20.5

want the Timed Loop to exit on error, wire error out from the last VI in the
subdiagram to this terminal.

Output Node

Error: Propagates errors the Timed Loop receives and returns errors from the
subdiagram.

Session Start and Stop

When the Timed Loop input node executes, the XNET session for the timing source
is started automatically. This auto-start is equivalent to calling the XNET Start VI
(Normal). This auto-start is performed even if the session's Auto Start? property is
false. Because the Timed Loop uses an execution priority that typically is higher
than the VIs that precede it, starting FlexRay communication within the Timed Loop
ensures that you do not miss the first FlexRay cycle. Due to these factors, do not call
the XNET Start VI prior to the Timed Loop (use the Timed Loop auto-start instead).

After the initial session and interface auto-start, the Timed Loop Timeout is used to
wait for communication to begin.

When the Timed Loop exits to its output node, the XNET session remains in its
current state. The Timed Loop does not stop or clear the session, so you can
continue to use the session in VIs that follow.

Macrotick Offset

To set the macrotick offset, it helps to understand some NI-XNET implementation
aspects. When the FlexRay Communication Controller (CC) receives a frame, the NI-
XNET hardware immediately transfers that frame to LabVIEW Real-Time (RT). This
transfer is performed using DMA (Direct Memory Access) on the PXI backplane, so
that it occurs quickly and with negligible jitter to your LabVIEW RT execution.

Figure 1 shows the effects of this implementation. In this example, the macrotick

offset is set to occur at the end of slot 1. The subdiagram in the Timed Loop calls the
XNET Read VI to read the value received from slot 1.

For better visibility in Figures 1, 2, and 3, the NI-XNET blocks (Read/Write, DMA I/O,
an dCC I/O) are longer than actual performance. When using a PXI controller for

© National Instruments 631

NI-XNET 20.5

LabVIEW Real-Time, your results typically will be faster. This is especially true if your
application does not transfer data on the PXI backplane continuously (for example,
streaming analog, vision, or TCP/IP data), as this sort of transfer can adversely
impact the NI-XNET DMA latencies.

Figure 1—FlexRay Frame Timed Read
Figure 1 shows that the DMA input transfer for slot 1 (IN1) occurs at the same time as
the XNET Read VI for slot 1 (R1). Depending on which one completes first, the XNET
Read VI may return a value from the current cycle (3) or the previous cycle (2).

To prevent this uncertainty, macrotick offset must be large enough to ensure that
the frame DMA input is complete. Relative to Figure 1, setting macrotick offset to the
end of slot 2 would suffice.

When your LabVIEW RT application calls the XNET Write VI, the frame values are
transferred immediately using DMA. The frame values are transferred to the NI-XNET
hardware onboard processor memory. For efficiency reasons, this onboard
processor waits until the FlexRay cycle Network Idle Time (NIT) to transfer the frame
values from its memory to the FlexRay Communication Controller (CC). The FlexRay
Communication Controller transmits each frame value according to its slot
configuration in the cycle.

Figure 2 shows the effects of this implementation. This example expands on Figure 1
by calling the XNET Write VI with a value for slot 8. The XNET Write VI (W8) is called
well in advance of slot 8 in the cycle. The DMA output transfer for the value of slot 8

ni.com632

NI-XNET 20.5

(D8) occurs immediately after the XNET Write VI. Nevertheless, the value for slot 8 is
not placed into the FlexRay Communication Controller until the NIT time, shown as
C8. This means that although the XNET Write VI was called before slot 8's occurrence
in the current cycle 3, that value does not transmit until the subsequent cycle 4.

This implementation for output means that it is not necessarily urgent to call the
XNET Write VI before the relevant slot. You merely need to provide time for the XNET
Write VI and the related DMA output to complete prior to the NIT.

Figure 2—FlexRay Frame Timed Write

Taking these implementation considerations into account, the typical macrotick

offset goal is a value that executes the Timed Loop after the last cycle input DMA
and prior to the NIT. Ideally, the macrotick offset provides sufficient time for input
DMA, the XNET Read VI, LabVIEW code within the Timed Loop (for example, a
simulation model), the XNET Write VI, and DMA output.

To find a value for macrotick offset, you can use the XNET Cluster property node.
The FlexRay:NIT Start property provides the macrotick offset for the start of NIT,
which is your upper limit. To determine the lower limit, the FlexRay:Static Slot
property provides the number of macroticks for each static slot. Static slot numbers
begin at 1. Assuming static slot X is the last slot that you read, the lower limit for
macrotick offset is (X x FlexRay:Static Slot).

© National Instruments 633

NI-XNET 20.5

The following example demonstrates a technique for calculating macrotick offset.
The example uses a simple FlexRay cluster configured as follows:

■ Baud Rate—5000000 bps (5 Mbps)
■ Macrotick—1 (1 µs duration)
■ Macro Per Cycle—1000 (1 ms)
■ Number of Static Slots—10
■ Number of Minislots—80
■ Static Slot—58 MT (16 byte payload)
■ NIT Start—900 MT offset
■ NIT—100 MT (duration)

Within the Timed Loop, the example does the following:

■ Reads a Signal Input Single-Point session for frames in static slots 2, 3, and
4.
■ Executes a simulation model (passes in inputs and obtains outputs).
■ Writes a Signal Output Single-Point session for frames in static slots 8, 9, and
10.

Assume that you test the simulation model performance and determine that it takes
100 µs (including jitter). Using the cluster configuration and the time required for
the simulation model, select a macrotick offset that locates the simulation model at
the midpoint between the end of slot 4 (the last input frame) and the start of NIT.
This provides the maximum time possible for the XNET Read VI/XNET Write VI, DMA
input/output, and CC input/output.

EndOfSlot4 = (4 x Static_Slot)

= (4 x 58)

= 232
Midpoint = EndOfSlot4 + ((NIT_Start – EndOfSlot4) / 2)

= 232 + ((900 – 232) / 2)

ni.com634

NI-XNET 20.5

= 232 + 334

= 566

macrotick offset = (Midpoint – (SimModelTime / 2))

= (566 – (100 / 2))

= 516

Figure 3 shows the Timed Loop timing diagram. Notice that the simulation model is
synchronized deterministically with the FlexRay cycle. The Timed Loop code reads
inputs from the current cycle, calculates outputs, and then writes the output for the
next cycle.

Figure 3—Timing Source Example
Reading from the FlexRay Communication Controller (and performing the
corresponding DMA) for frames 2, 3, and 4 is shown as blocks IN2, IN3, and IN4. The
XNET Read VI for frames 2, 3, and 4 is shown as block R2,3,4. The simulation model
execution is shown as block SIM. The start of SIM is halfway between the end of slot
4 and the start of NIT. XNET Write VI for frames 8, 9, and 10 is shown as block
W8,9,10. The corresponding DMA output for these frames is shown as block D8,9,10.
The FlexRay Communication Controller update during the NIT is shown as block
C8,9,10.

© National Instruments 635

NI-XNET 20.5

As with any performance-sensitive configuration, you should measure using your
own hardware and application to calculate the best macrotick offset value. To
determine the current cycle and macrotick within the Timed Loop for measurement
purposes, use the XNET Read (State FlexRay Cycle Macrotick) VI.

Advanced Subpalette
This subpalette includes advanced functions for controlling the state of NI-XNET
sessions, connecting hardware terminals, and retrieving information about the
XNET hardware in your system.

XNET Start.vi

Purpose

Starts communication for the specified XNET session.

Format

Inputs

session in is the session to start. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI.

scope describes the impact of this operation on the underlying state models for the session
and its interface.

Normal (0) The session is started followed by starting the interface. This is
equivalent to calling the XNET Start VI with the Session Only scope
followed by calling the XNET Start VI with the Interface Only scope. For
Ethernet interfaces, this is the only value of scope that is supported.
This is the default value for scope if it is unwired.

Session Only (1) The session is placed into the Started state (refer to State Models). If the
interface is in the Stopped state before this VI runs, the interface
remains in the Stopped state, and no communication occurs with the

ni.com636

NI-XNET 20.5

bus. To have multiple sessions start at exactly the same time, start each
session with the Session Only scope. When you are ready for all sessions
to start communicating on the associated interface, call the XNET Start

VI with the Interface Only scope. Starting a previously started session is
considered a no-op. This operation sends the command to start the
session, but does not wait for the session to be started. It is ideal for a
real-time application where performance is critical.

Interface Only (2) If the underlying interface is not previously started, the interface is
placed into the Started state (refer to State Models). After the interface
starts communicating, all previously started sessions can transfer data
to and from the bus. Starting a previously started interface is considered
a no-op.

Session Only
Blocking (3)

The session is placed into the Started state (refer to State Models). If the
interface is in the Stopped state before this VI runs, the interface
remains in the Stopped state, and no communication occurs with the
bus. To have multiple sessions start at exactly the same time, start each
session with the Session Only scope. When you are ready for all sessions
to start communicating on the associated interface, call the XNET Start

VI with the Interface Only scope. Starting a previously started session is
considered a no-op. This operation waits for the session to start before
completing.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

Because the session is started automatically by default, this VI is optional. This VI is
for more advanced applications to start multiple sessions in a specific order. For
more information about the automatic start feature, refer to the Auto Start?
property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

© National Instruments 637

NI-XNET 20.5

■ Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.
■ Interface: The interface physically connects to the bus and transmits (or
receives) data for the sessions.

You can start each logical unit separately. When a session is started, all contained
frames or signals are placed in a state where they are ready to communicate. When
the interface is started, it takes data from all started sessions to communicate with
other nodes on the bus. For a specification of the state models for the session and
interface, refer to State Models.

If an output session starts before you write data, or you read an input session before
it receives a frame, default data is used. For more information, refer to the XNET
Frame Default Payload and XNET Signal Default Value properties.

XNET Stop.vi

Purpose

Stops communication for the specified XNET session.

Format

Inputs

session in is the session to stop. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI.

scope describes the impact of this operation on the underlying state models for the session
and its interface.

Normal (0) The session is stopped. If this is the last session stopped on the interface,
the interface is also stopped. If any other sessions are running on the
interface, this call is treated just like the Session Only scope, to avoid
disruption of communication on the other sessions. For Ethernet interfaces,
this is the only value of scope that is supported.

ni.com638

NI-XNET 20.5

This is the default value for scope if it is unwired.

Session Only

 (1)
The session is placed in the Stopped state (refer to State Models). If the
interface was in the Started or Running state before this VI is called, the
interface remains in that state and communication continues, but data from
this session does not transfer. This scope generally is not necessary, as the
Normal scope only stops the interface if there are no other running sessions.
This operation sends the command to stop the session, but does not wait
for the session to be stopped. It is ideal for a real-time application where
performance is critical.

Interface
Only (2)

The underlying interface is placed in the Stopped state (refer to State
Models). This prevents all communication on the bus, for all sessions. This
allows you to modify certain properties that require the interface to be
stopped (for example, CAN baud rate). All sessions remain in the Started
state. To have multiple sessions stop at exactly the same time, first stop the
interface with the Interface Only scope and then stop each session with
either the Normal or Session Only scope.

Session Only
Blocking

 (3)

The session is placed in the Stopped state (refer to State Models). If the
interface was in the Started or Running state before this VI is called, the
interface remains in that state and communication continues, but data from
this session does not transfer. This scope generally is not necessary, as the
Normal scope stops the interface only if there are no other running sessions.
This operation waits for the session to stop before completing.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

Because the session is stopped automatically when cleared (closed), this VI is
optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

■ Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

© National Instruments 639

NI-XNET 20.5

■ Interface: The interface physically connects to the bus and transmits (or
receives) data for the sessions.

You can stop each logical unit separately. When a session is stopped, all contained
frames or signals are placed in a state where they are no longer ready to
communicate. When the interface is stopped, it no longer takes data from sessions
to communicate with other nodes on the bus. For a specification of the state models
for the session and interface, refer to State Models.

XNET Clear.vi

Purpose

Clears (closes) the XNET session.

Format

Inputs

session in is the session to clear. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI stops communication for the session and releases all resources the session
uses. The XNET Clear VI internally calls the XNET Stop VI with normal scope, so if this
is the last session using the interface, communication stops.

ni.com640

NI-XNET 20.5

When your application is finished (the top-level VI is idle), LabVIEW automatically
clears all XNET sessions within that VI and its subVIs. Therefore, the XNET Clear VI is
rarely needed in your application.

You typically use the XNET Clear VI when you need to clear the existing session to
create a new session that uses the same objects. For example, if you create a session
for a frame named frameA using Frame Output Single-Point mode, then you create
a second session for frameA using Frame Output Queued mode, the second call to
the XNET Create Session VI returns an error, because frameA can be accessed using
only one output mode. If you call the XNET Clear VI before the second XNET Create
Session VI call, you can close the previous use of frameA to create the new session.

This VI disconnects terminals that you connected using the XNET Connect Terminals
VI.

XNET Flush.vi

Purpose

Flushes (empties) all XNET session queues.

Format

Inputs

session in is the session to flush. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

© National Instruments 641

NI-XNET 20.5

Description

With the exception of single-point modes, all sessions use queues to store frames.
For input modes, the queues store frame values (or corresponding signal values)
that have been received, but not obtained by calling the XNET Read VI. For output
sessions, the queues store frame values provided to the XNET Write VI, but not
transmitted successfully.

The XNET Start VI and XNET Stop VI have no effect on these queues. Use this XNET
Flush VI to discard all frame queues for this session as well as any pending signal
values, if applicable.

Note: Prior to NI-XNET 19.0, Signal Input Waveform sessions discarded only underlying
frame queues and did not discard pending signal values.

For example, if you call the XNET Write VI to write three frames, then immediately
call the XNET Stop VI, then call the XNET Start VI a few seconds later, the three
frames transmit. If you call the XNET Flush VI between the XNET Stop VI and XNET
Start VI, no frames transmit.

As another example, if you receive three frames, then call the XNET Stop VI, the
three frames remains in the queue. If you call the XNET Start VI a few seconds later,
then call the XNET Read VI, you obtain the three frames received earlier, potentially
followed by other frames received after calling the XNET Start VI. If you call the XNET
Flush VI between the XNET Stop VI and XNET Start VI, the XNET Read VI returns only
frames received after the calling the XNET Start VI.

Note: If there are multiple input stream sessions open on the same interface when an
overflow error occurs, all input stream sessions must be either stopped or flushed before
new data can be received.

The XNET Flush VI is not supported for Ethernet interfaces (refer to the Operational
Status property).

XNET Connect Terminals.vi

Purpose

Connects terminals on the XNET interface.

ni.com642

NI-XNET 20.5

Format

Inputs

session in is the session to use for the connection. This session is selected from the LabVIEW
project or returned from the XNET Create Session VI.

source terminal is the connection source.

destination terminal is the connection destination.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is a duplicate of the session in, provided for simpler wiring.

error out is the error cluster output (refer to Error Handling).

Description

This VI connects a source terminal to a destination terminal on the interface
hardware. The XNET terminal represents an external or internal hardware
connection point on a National Instruments XNET hardware product. External
terminals include PXI_Trigger lines for a PXI card, RTSI terminals for a PCI card, or
the single external terminal for a C Series module. Internal terminals include
timebases (clocks) and logical entities such as a start trigger.

The terminal inputs use the XNET Terminal I/O name, so you can select from
possible values using the drop-down list. Typically, one of the pair is an internal and
the other an external.

Valid Combinations of Source/Destination

The following table lists all valid combinations of source terminal and destination

terminal.

© National Instruments 643

NI-XNET 20.5

Source Destination
PXI_Trigx FrontPanel0

FrontPanel1
Start Trigger MasterTimeb

ase
Log Trigger TimeTrigger3

PXI_Trigx X X 4 4 4

FrontPanel0
FrontPanel1

X X 4 4 4 X

PXI_Star1 X X 4 X X X

PXI_Clk101 X X X 4 4 X

StartTrigger 4 4 X X X X

CommTrigger 4 4 X X X X

FlexRayStart
Cycle2

X X X X

FlexRayMacro
tick2

X X

1MHzTimeba
se

 4 4 X X X X

10MHzTimeb
ase

 4 X X X X X

TimeTrigger3 X X X X X

NetworkTime
PPS3

X X X X X

NetworkTime
1MHz3

X X X X X

1Valid only on PXI hardware.
2Valid only on FlexRay hardware.
3Valid only on Ethernet hardware.
4Not valid on Ethernet hardware.

Source Terminals

The following table describes the valid values for source terminals.

Source Terminal Description

ni.com644

NI-XNET 20.5

PXI_Trigx Selects a general-purpose trigger line as the con
nection source (input), where x is a number fro
m 0 to 7.
For PCI cards, these are the RTSI lines. For PXI ca
rds, these are the PXI Trigger lines. For C Series
modules in a CompactDAQ chassis, all modules
in the chassis automatically share a common ti
mebase. For information about routing the Start
Trigger for CompactDAQ, refer to the XNET Sessi
on Interface:Source Terminal:Start Trigger prop
erty.

FrontPanel0
FrontPanel1

Selects a general-purpose Front Panel Trigger li
ne as the connection source (input).

PXI_Star Selects the PXI star trigger signal.
Within a PXI chassis, some PXI products can sou
rce star trigger from Slot 2 to all higher-numbere
d slots. PXI_Star enables the PXI XNET hardware
to receive the star trigger when it is in Slot 3 or h
igher.

Note You cannot use this terminal with a
PCI device.

PXI_Clk10 Selects the PXI 10 MHz backplane clock.
The only valid destination terminal for this sourc
e is MasterTimebase. This routes the 10 MHz PXI
backplane clock for use as the XNET card timeb
ase. When you use PXI_Clk10 as the XNET card ti
mebase, you also must use PXI_Clk10 as the tim
ebase for other PXI cards to perform synchroniz
ed input/output.

For PXIe Ethernet hardware, PXI_Clk10 is always
connected to the local time that is used for time
stamping of frames.

Note You cannot use this terminal with a
PCI device.

StartTrigger Selects the start trigger, which is the event set w
hen the Start Interface transition occurs. The sta

© National Instruments 645

NI-XNET 20.5

rt trigger is the same for all sessions using a give
n interface.
You can route the start trigger of this XNET card
to the start trigger of other XNET or DAQ cards t
o ensure that sampling begins at the same time
on both cards. For example, you can synchroniz
e two XNET cards by routing StartTrigger as the
source terminal on one XNET card and then rout
ing StartTrigger as the destination terminal on th
e other XNET card, with both cards using the sa
me PXI Trigger line for the connections.

CommTrigger Selects the communicating trigger, which is the
event set when the Comm State Communicatin
g transition occurs. The communicating trigger i
s the same for all sessions using a given interfac
e.
You can route the communicating trigger of this
XNET card to the start trigger of other XNET or D
AQ cards to ensure that sampling begins at the s
ame time on both cards. The communicating tri
gger is similar to a start trigger, but is used if you
r clock source is the FlexRayMacrotick, which is
not available until the interface is properly integ
rated into the bus. Because you cannot generate
a start trigger to another interface until the sync
hronization clock is also available, you can use t
his trigger to allow for the clock under this speci
al circumstance.

FlexRayStartCycle Selects the FlexRay Start of Cycles as an advanc
ed trigger source.
This generates a repeating pulse that external h
ardware can use to synchronize a measurement
or other action with each FlexRay cycle.

Note You can use this terminal only with a
FlexRay device.

FlexRayMacrotick Selects the FlexRay Macrotick as a timing source
. The FlexRay Macrotick is the basic unit of time i
n a FlexRay network.

ni.com646

NI-XNET 20.5

You can use this source terminal to synchronize
other measurements to the actual time on the F
lexRay bus. In this scenario, you would configur
e the FlexRayMacrotick as the source terminal a
nd route it to a PXI Trigger or front panel termin
al. After the interface is communicating to the Fl
exRay network, the Macrotick signal becomes a
vailable. You also can connect the FlexRayMacro
tick to the MasterTimebase. This configures the
counter that timestamps received frames to run
synchronized to FlexRay time, and also allows y
ou to read the FlexRay cycle macrotick to do ad
ditional synchronization with the FlexRay bus in
your application.

Note You can use this terminal only with a
FlexRay device.

1MHzTimebase Selects the XNET card's local 1 MHz oscillator. T
he only valid destination terminals for this sourc
e are PXI_Trig0 to PXI_Trig7.
This source terminal routes the XNET card local
1 MHz clock so that other NI cards can use it as a
timebase. For example, you can synchronize tw
o XNET cards by connecting 1MHzTimebase to P
XI_Trigx on one XNET card and then connecting
PXI_Trigx to MasterTimebase on the other XNET
card.

10MHzTimebase Selects the XNET card's local 10 MHz oscillator.
This routes the XNET card local 10 MHz clock for
use as a timebase by other NI cards. For exampl
e, you can synchronize two XNET cards by conn
ecting 10MHzTimebase to PXI_Trigx on one XNE
T card and then connecting PXI_Trigx to Master
Timebase on the other XNET card.

TimeTrigger Selects the Time Trigger of the Ethernet interfac
e as a source.
You write an absolute timestamp for a future ti
me to the Future Time Trigger VI, and the conne
cted destination terminal will pulse at that futur

© National Instruments 647

NI-XNET 20.5

e time. The pulse rises then falls, and the rising
edge occurs at the future time.

NetworkTimePPS For an Ethernet interface, selects network time (
that is, time synchronization protocol such as IE
EE Std 802.1AS) as a source.
The connected destination terminal generates a
pulse per second (PPS). The pulse rises and the
n falls, and the rising edge occurs in phase with
midnight in International Atomic Time (TAI). Thi
s terminal pulses regardless of whether the time
synchronization protocol is synced.

NetworkTime1MHz For an Ethernet interface, selects network time (
that is, time synchronization protocol such as IE
EE Std 802.1AS) as a source.
The connected destination terminal pulses at a 1
 MHz rate. The pulse rises and then falls, and the
rising edge occurs in phase with midnight in Int
ernational Atomic Time (TAI). This terminal puls
es regardless of whether the time synchronizati
on protocol is synced.

Note If the signal from the external timebase becomes unstable or unusable, NI-XNET
hardware reverts to the default timebase. Error code 0xBFF63078 is generated when this
event occurs. Use an appropriate XNET Read (State) VI to detect the fault.

Destination Terminals

The following table describes the valid values for destination terminals.

Destination Terminal Description
PXI_Trigx Selects a general-purpose trigger line as the con

nection destination (output), where x is a numb
er from 0 to 7.
For PCI cards, these are the RTSI lines. For PXI ca
rds, these are the PXI Trigger lines. For C Series
modules in a CompactDAQ chassis, all modules
in the chassis automatically share a common ti
mebase. For information about routing the Start
Trigger for CompactDAQ, refer to the XNET Sessi

ni.com648

NI-XNET 20.5

on Interface:Source Terminal:Start Trigger prop
erty.

Caution NI-XNET does not automatically r
eserve PXI trigger lines. Driving the same li
ne from two devices may cause hardware
damage. Before configuring a PXI trigger li
ne as a destination terminal, reserve it thr
ough the PXI chassis properties in NI Meas
urement & Automation Explorer.

FrontPanel0
FrontPanel1

Selects a general-purpose Front Panel Trigger li
ne as the connection destination (output).

StartTrigger Selects the start trigger, which is the event that
allows the interface to begin communication.
The start trigger occurs on the first source termi

nal low-to-high transition. The start trigger is the
same for all sessions using a given interface. Thi
s causes the Start Interface transition to occur.

You can route the start trigger of another XNET o
r DAQ card to ensure that sampling begins at th
e same time on both cards. For example, you ca
n synchronize with an M-Series DAQ MIO card by
routing the AI start trigger of the MIO card to a R
TSI line and then routing the same PXI Trigger li
ne with StartTrigger as the destination terminal
on the XNET card.

The default (disconnected) state of this destinat
ion means the start trigger occurs when the
XNET Start VI is invoked with the scope set to eit
her Normal or Interface Only. Alternately, if Auto
Start? is enabled, reading or writing to a session
may start the interface.

MasterTimebase MasterTimebase instructs the XNET port to use t
he source terminal of the connection for its local
time. The XNET port uses this local time for inpu
t sampling (including timestamps of received m
essages) as well as periodic output sampling.
Your XNET hardware supports incoming frequen
cies of 1 MHz, 10 MHz, and 20 MHz, and automat

© National Instruments 649

NI-XNET 20.5

ically detects the frequency without any additio
nal configuration. For example, you can synchro
nize a CAN and DAQ M Series MIO card by conne
cting the 10 MHz oscillator (board clock) of the
DAQ card to a PXI_Trig line, and then connecting
the same PXI_Trig line as the source terminal.

For PXI and PXI Express form factor hardware, y
ou also can use PXI_Clk10 as the source termina

l. This receives the PXI 10 MHz backplane clock f
or use as the local time.

MasterTimebase applies separately to each port
of a multiport XNET card, meaning you could ru
n each port off of a separate incoming (or onboa
rd) timebase signal.

If you are using a PCI board, the default connect
ion to the MasterTimebase is the local oscillator.
If you are using a PXI or PXI Express board, the d
efault connection to the MasterTimebase is the
PXI_Clk10 signal, if it is available. Some chassis
allow PXI_Clk10 to be turned off. In this case, th
e hardware automatically uses the local oscillat
or as the default MasterTimebase.

Log Trigger The Log Trigger terminal generates a frame whe
n it detects a rising edge.
When connected, this frame is transferred into t
he Frame Stream Input session's queue if the se
ssion is started. For information about this fram
e, including the frame payload interpretation, re
fer to Special Frames.

TimeTrigger Selects the Time Trigger of the Ethernet interfac
e as a destination.
When a rising edge occurs on the source termin
al, the Time Trigger captures an absolute timest
amp, which you can read using the Read (State
Time Trigger) VI.

ni.com650

NI-XNET 20.5

XNET Disconnect Terminals.vi

Purpose

Disconnects terminals on the XNET interface.

Format

Inputs

session in is the session to use for the connection. This session is selected from the LabVIEW
project or returned from the XNET Create Session VI.

source terminal is the connection source.

destination terminal is the connection destination.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is a duplicate of the session in, provided for simpler wiring.

error out is the error cluster output (refer to Error Handling).

Description

This VI disconnects a specific pair of source/destination terminals previously
connected with the XNET Connect Terminals VI.

When the final session for a given interface is cleared (either by the VI going idle or
by explicit calls to the XNET Clear VI), NI-XNET automatically disconnects all
terminal connections for that interface. Therefore, the XNET Disconnect Terminals
VI is not required for most applications.

This VI typically is used to change terminal connections dynamically while an
application is running. To disconnect a terminal, you first must stop the interface

© National Instruments 651

NI-XNET 20.5

using the XNET Stop VI with the Interface Only scope. Then you can call the XNET

Disconnect Terminals VI and the XNET Connect Terminals VI to adjust terminal
connections. Finally, you can call the XNET Start VI with the Interface Only scope to
restart the interface.

You can disconnect only a terminal that has been previously connected. Attempting
to disconnect a nonconnected terminal results in an error.

XNET Terminal Constant
This constant provides the constant form of the XNET Terminal I/O name. You drag a
constant to the block diagram of your VI, then select a terminal. You can change
constants only during configuration, prior to running the VI. For a complete
description, refer to XNET Terminal I/O Name.

XNET Future Time Trigger.vi

Purpose

Provides the future timestamp for an exported Time Trigger.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW project or
returned from the XNET Create Session VI.

when provides the future timestamp at which the exported Time Trigger terminal will
transition from low to high.
The Time Trigger generates a pulse (low to high followed by high to low). The timestamp is a
LabVIEW absolute time, using the timescale specified in the timescale input. The default
value uses a special value of zero, which will pulse the Time Trigger immediately.

ni.com652

NI-XNET 20.5

timescale specifies the timescale that is used with the Time Trigger. It is a ring as described
in the following table:

Enumeration Value Description
Local Time 0 This is the local timescale of t

he XNET hardware (such as th
e PXI backplane clock).

Network Time 1 This is the network timescale
(time sync protocol such as IE
EE Std 802.1AS).

The default value is Local Time (0).

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

When you use the XNET Connect Terminals VI with source terminal of TimeTrigger
(i.e., exported), the destination terminal is set low. This XNET Future Time Trigger VI
provides a future timestamp for the exported Time Trigger to generate a pulse (low
to high followed by high to low).

If you provide a when timestamp that cannot be generated (e.g., in the past, or too
soon in the future for XNET to handle), this VI returns an error.

If you invoke the XNET Future Time Trigger VI while a previous invocation of the
XNET Future Time Trigger VI is pending, an error is returned; future timestamps are
not queued.

An invocation of XNET Future Time Trigger VI is cancelled if you disconnect the
exported Time Trigger (using the XNET Disconnect Terminals VI, Clear VI, or by
stopping execution of your top-level VI).

© National Instruments 653

NI-XNET 20.5

XNET System Property Node

Note: This node is provided for compatibility with previous versions of NI-XNET. For new VI
development, it is recommended that you use System Configuration API, as it provides more
features.

Format

Description

The XNET System property node provides information about all NI-XNET hardware
in your system, including all devices and interfaces.

Pull down this node to add properties. Right-click to change direction between read
and write. Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>)
and move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help
(select Search the LabVIEW Help... from the Help menu) and look for the Property
Nodes topic in the index.

Devices

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET System

Short Name

Devices

ni.com654

NI-XNET 20.5

Description

Returns an array of physical XNET devices in the system. Each physical XNET board
is a hardware product such as a PCI/PXI board.

The system refers to the execution target of this property node. If this property is run
on an RT target, it reports the RT system hardware.

You can wire the XNET Device I/O name to the XNET Device property node to access
properties of the device.

Interfaces (All)

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET System

Short Name

IntfAll

Description

Returns an array of all interfaces contained within the current system, including
those not equipped with a transceiver cable.

System refers to the execution target of this property node. If this property node
executes on an RT target, it reports interfaces physically on the RT target.

Interface refers to the XNET Interface I/O Name associated with each interface.

Interfaces

Data Type Direction Required? Default
Read Only No N/A

© National Instruments 655

NI-XNET 20.5

Property Class

XNET System

Short Name

Intf

Description

Returns an array of all interfaces contained within the current system.

System refers to the execution target of this property node. If this property node
executes on an RT target, it reports interfaces physically on the RT target.

Interface refers to the XNET Interface I/O Name associated with each interface.

Interfaces (CAN)

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET System

Short Name

IntfCAN

Description

Returns an array of all available interfaces on the system that support the CAN
Protocol.

The system refers to the execution target of this property node. If this property node
executes on an RT target, it reports interfaces physically on the RT target.

Interfaces (FlexRay)

Data Type Direction Required? Default

ni.com656

NI-XNET 20.5

Read Only No N/A

Property Class

XNET System

Short Name

IntfFlexRay

Description

Returns an array of all available interfaces on the system that support the FlexRay
protocol.

The system refers to the execution target of this property node. If this property node
executes on an RT target, it reports interfaces physically on the RT target.

Interfaces (LIN)

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET System

Short Name

IntfLIN

Description

Returns an array of all available interfaces on the system that support the LIN
Protocol.

The system refers to the execution target of this property node. If this property node
executes on an RT target, it reports interfaces physically on the RT target.

© National Instruments 657

NI-XNET 20.5

Interfaces (Ethernet)

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET System

Short Name

IntfEthernet

Description

Returns an array of all available interfaces on the system that support the Ethernet
Protocol.

The system refers to the execution target of this property node. If this property node
executes on an RT target, it reports interfaces physically on the RT target.

Version:Build

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET System

Short Name

Ver.Build

Description

Returns the driver version [Build] as a U32.

ni.com658

NI-XNET 20.5

Remarks

The driver version is specified in the following format: [Major].[Minor].[Update]
[Phase][Build].

For example, 1.2.3f4 returns:

■ [Major] = 1
■ [Minor] = 2
■ [Update] = 3
■ [Phase] = Final/Release
■ [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

■ Determining driver functionality or release date.
■ Determining upgrade availability.

Version:Major

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET System

Short Name

Ver.Major

Description

Returns the driver version [Major] as a U32.

© National Instruments 659

NI-XNET 20.5

Remarks

The driver version is specified in the following format: [Major].[Minor].[Update]
[Phase][Build].

For example, 1.2.3f4 returns:

■ [Major] = 1
■ [Minor] = 2
■ [Update] = 3
■ [Phase] = Final/Release
■ [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

■ Determining driver functionality or release date.
■ Determining upgrade availability.

Version:Minor

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET System

Short Name

Ver.Minor

Description

Returns the driver version [Minor] as a U32.

ni.com660

NI-XNET 20.5

Remarks

The driver version is specified in the following format: [Major].[Minor].[Update]
[Phase][Build].

For example, 1.2.3f4 returns:

■ [Major] = 1
■ [Minor] = 2
■ [Update] = 3
■ [Phase] = Final/Release
■ [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

■ Determining driver functionality or release date.
■ Determining upgrade availability.

Version:Phase

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET System

Short Name

Ver.Phase

Description

Returns the driver version [Phase] as an enumeration.

Enumeration Value
Development 0

© National Instruments 661

NI-XNET 20.5

Alpha 1
Beta 2
Release 3

Note The driver's official version always has a phase of Release.

Remarks

The driver version is specified in the following format: [Major].[Minor].[Update]
[Phase][Build].

For example, 1.2.3f4 returns:

■ [Major] = 1
■ [Minor] = 2
■ [Update] = 3
■ [Phase] = Release
■ [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

■ Determining driver functionality or release date.
■ Determining upgrade availability.

Version:Update

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET System

Short Name

Ver.Update

ni.com662

NI-XNET 20.5

Description

Returns the driver version [Update] as a U32.

Remarks

The driver version is specified in the following format: [Major].[Minor].[Update]
[Phase][Build].

For example, 1.2.3f4 returns:

■ [Major] = 1
■ [Minor] = 2
■ [Update] = 3
■ [Phase] = Final/Release
■ [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

■ Determining driver functionality or release date.
■ Determining upgrade availability.

XNET Device Property Node

Note: This node is provided for compatibility with previous versions of NI-XNET. For new VI
development, it is recommended that you use System Configuration API, as it provides more
features.

Format

Description

Property node used to read/write properties for an XNET Device I/O name.

© National Instruments 663

NI-XNET 20.5

Pull down this node to add properties. Right-click to change direction between read
and write. Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>)
and move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help
(select Search the LabVIEW Help... from the Help menu) and look for the Property
Nodes topic in the index.

Form Factor

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Device

Short Name

FormFac

Description

Returns the XNET board physical form factor.

Enumeration Value Define
PXI 0 nxDevForm_PXI
PCI 1 nxDevForm_PCI
C Series 2 nxDevForm_cSeries
PXI Express 3 nxDevForm_PXIe
USB 4 nxDevForm_USB
PCIe 5 nxDevForm_PCIe

Interfaces

Data Type Direction Required? Default
Read Only No N/A

ni.com664

NI-XNET 20.5

Property Class

XNET Device

Short Name

Intfs

Description

Returns an array of interfaces contained within this physical hardware device.

Interface refers to the XNET Interface I/O Name associated with each interface.

XNET Interface Details
The XNET Interface I/O Name represents a physical communication port on an XNET
device. An XNET device may have one or more XNET Interface I/O Names, depending
on the number of physical connectors the board has. You can pass the XNET
Interface I/O Name to the XNET Interface property node to retrieve hardware
information about the interface. This XNET interface is the same I/O name used to
create the session.

The XNET Interface I/O Name string is used by:

■ The front panel to display the interface name.
■ XNET String To IO Name VI to retrieve the I/O name of the interface.
■ Measurement & Automation Explorer (MAX) for identification.

Interfaces (All)

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Device

© National Instruments 665

NI-XNET 20.5

Short Name

IntfsAll

Description

Returns an array of interfaces contained within this physical hardware device,
including those not equipped with a transceiver cable.

Interface refers to the XNET Interface I/O Name associated with each interface.

XNET Interface Details
The XNET Interface I/O Name represents a physical communication port on an XNET
device. An XNET device may have one or more XNET Interface I/O Names, depending
on the number of physical connectors the board has. You can pass the XNET
Interface I/O Name to the XNET Interface property node to retrieve hardware
information about the interface. This XNET interface is the same I/O name used to
create the session.

The XNET Interface I/O Name string is used by:

■ The front panel to display the interface name.
■ XNET String To IO Name VI to retrieve the I/O name of the interface.
■ Measurement & Automation Explorer (MAX) for identification.

Number of Ports

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Device

Short Name

NumPorts

ni.com666

NI-XNET 20.5

Description

Returns the number of physical port connectors on the XNET board.

Remarks

For example, returns 2 for an NI PCI-8517 two-port FlexRay device.

Number of Ports (All)

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Device

Short Name

NumPortsAll

Description

Returns the number of physical port connectors on the XNET board, including those
not equipped with a Transceiver Cable.

Remarks

For example, returns 6 for a PXIe-8510 6-port device.

Product Name

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Device

© National Instruments 667

NI-XNET 20.5

Short Name

ProductName

Description

Returns the XNET device product name.

Remarks

For example, returns NI PCI-8517 (2 ports) for an NI PCI-8517 device.

Product Number

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Device

Short Name

ProductNum

Description

Returns the numeric portion of the XNET device product name.

Remarks

For example, returns 8517 for an NI PCI-8517 two-port FlexRay device.

Serial Number

Data Type Direction Required? Default
Read Only No N/A

ni.com668

NI-XNET 20.5

Property Class

XNET Device

Short Name

SerNum

Description

Returns the serial number associated with the XNET device.

Remarks

The serial number is written in HEX on a label on the physical XNET board. Convert
the return value from this property to HEX to match the label.

Slot Number

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Device

Short Name

SlotNum

Description

Physical slot where the device (module) is located.

For PXI and C Series, this is the slot number within the chassis.

© National Instruments 669

NI-XNET 20.5

XNET Interface Property Node

Note: This node is provided for compatibility with previous versions of NI-XNET. For new VI
development, it is recommended that you use System Configuration API, as it provides more
features.

Format

Description

Property node used to read/write properties for an XNET Interface I/O name.

Pull down this node to add properties. Right-click to change direction between read
and write. Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>)
and move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help
(select Search the LabVIEW Help... from the Help menu) and look for the Property
Nodes topic in the index.

Device

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Device

ni.com670

NI-XNET 20.5

Description

From the XNET Interface I/O name, this property returns the XNET device I/O name.

Remarks

The XNET device I/O name returned is the physical XNET board that contains the
XNET interface. This property determines the physical XNET device through the
XNET Device Serial Number property for a given XNET Interface I/O name.

Name

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Name

Description

Returns the string name assigned to the XNET Interface I/O name.

Remarks

This string is used for:

■ The XNET String to IO Name VI, to retrieve the XNET Interface I/O name.
■ Identification in NI MAX.

Number

Data Type Direction Required? Default
Read Only No N/A

© National Instruments 671

NI-XNET 20.5

Property Class

XNET Interface

Short Name

Number

Description

Returns unique number associated with the XNET interface.

Remarks

The XNET driver assigns each port connector in the system a unique number XNET
driver. This number, plus its protocol name, is the XNET Interface I/O name string
name. For example:

XNET Interface String Name Number
CAN1 1
FlexRay3 3

Port Number

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

PortNum

Description

Returns the physical port number printed near the connector on the XNET device.

ni.com672

NI-XNET 20.5

Remarks

The port numbers on an XNET board are physically identified with numbering. Use
this property, along with the the XNET Device Serial Number property, to associate
an XNET interface with a physical (XNET board and port) combination.

Note It is easier to find the physical location of an XNET Interface with the XNET Blink VI.

Protocol

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

Protocol

Description

Returns a protocol supported by the XNET Interface I/O name as an enumeration.

Enumeration Value
CAN 0
FlexRay 1
LIN 2
Ethernet 3

Remarks

The protocol enumeration matches the protocol part of the XNET Interface string
name.

String Name Protocol Enumeration
CAN1 0

© National Instruments 673

NI-XNET 20.5

FlexRay3 1

CAN.Transceiver Capability

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

CAN.TcvrCap

Description

Returns an enumeration indicating the CAN bus physical transceiver support.

Enumeration Value
High-Speed/Flexible Data-Rate (HS/FD) 0
Low-Speed/Fault-Tolerant (LS/FT) 1
XS (HS/FD, LS/FT, SW, or External) 3
XS (HS/FD, LS/FT) 4

Remarks

The XS value in the enumeration indicates the board has multiple physical
transceivers that you can configure in software. XS may support High-Speed and
Flexible Data-Rate (HS/FD), Low-Speed Fault-Tolerant (LS/FT), Single Wire (SW), or
can connect to an external transceiver. This value is switchable through the XNET
Session Interface:CAN:Transceiver Type property.

CAN.Termination Capability

Data Type Direction Required? Default
Read Only No N/A

ni.com674

NI-XNET 20.5

Property Class

XNET Interface

Short Name

CAN.TermCap

Description

Returns an enumeration indicating whether the XNET interface can terminate the
CAN bus.

Enumeration Value
No 0
Yes 1

Remarks

Signal reflections on the CAN bus can cause communication failure. To prevent
reflections, termination can be present as external resistance or resistance the XNET
board applies internally. This enumeration determines whether the XNET board can
add termination to the bus.

To select the CAN transceiver termination, refer to Interface:CAN:Termination.

Dongle State

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

DnglState

© National Instruments 675

NI-XNET 20.5

Description

Returns an enumeration indicating the connected Transceiver Cable's state.

Description State
No dongle, no external power 1
No dongle, has external power 2
Has dongle, no external power 3
Ready 4
Busy 5
Comm error 13
Overcurrent 14

Remarks

Some Transceiver Cable types require external power from the network connector
for operation. Refer to the hardware-specific manual for more information.

Dongle ID

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

DnglId

Description

Returns an enumeration indicating the connected Transceiver Cable's type.

Type ID
CAN High Speed (HS) 2
CAN Software-Selectable (XS) 4

ni.com676

NI-XNET 20.5

LIN 6
Dongle-Less Design 13
Unknown 14

Remarks

Dongle-Less Design indicates this interface is not a Transceiver Cable but a regular
XNET expansion card, cDAQ Module, and so on.

Dongle Revision

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

DnglRev

Description

Returns the connected Transceiver Cable's hardware revision number.

Dongle Firmware Version

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

DnglFwVers

© National Instruments 677

NI-XNET 20.5

Description

Returns the connected Transceiver Cable's firmware revision number.

Dongle Compatible Revision

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

Short Name

DnglCptRev

Description

Returns a number representing the oldest driver version compatible with the
connected Transceiver Cable's hardware revision. The number is relative to the first
driver version that supported the particular Transceiver Cable model, starting with 1
for the original revision.

Remarks

A Transceiver Cable hardware revision might require a later XNET driver than the
version that introduced support for this model for operation.

Dongle Compatible Firmware Version

Data Type Direction Required? Default
Read Only No N/A

Property Class

XNET Interface

ni.com678

NI-XNET 20.5

Short Name

DnglCptFwVers

Description

Returns a number representing the oldest driver version compatible with the
connected Transceiver Cable's firmware. The number is relative to the first driver
version that supported the Transceiver Cable, starting with 1 for the original
revision.

Remarks

A Transceiver Cable running an updated firmware version may require a later XNET
driver than the version it shipped with for operation.

XNET Interface Constant
This constant provides the constant form of the XNET Interface I/O name. You drag a
constant to the block diagram of your VI, then select an interface. You can change
constants only during configuration, prior to running the VI. For a complete
description, refer to XNET Interface I/O Name.

XNET Blink.vi

Note: This VI is provided for compatibility with previous versions of NI-XNET. For new VI
development, it is recommended that you use System Configuration API, as it provides more
features.

Purpose

Blinks LEDs for the XNET interface to identify its physical port in the system.

Format

© National Instruments 679

NI-XNET 20.5

Inputs

interface in is the XNET Interface I/O name.

modifier controls LED blinking:

Disable (0) Disable blinking for identification. This option turns off both LEDs for the port.

Enable (1) Enable blinking for identification. Both LEDs of the interface's physical port
turn on and off. The hardware blinks the LEDs automatically until you disable,
so there is no need to call the XNET Blink VI repetitively.

Both LEDs blink green (not red). The blinking rate is approximately three times per second.

error in is the error cluster input (refer to Error Handling).

Outputs

interface out is the same as interface in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

Each XNET device contains one or two physical ports. Each port is labeled on the
hardware as Port 1 or Port 2. The XNET device also provides two LEDs per port. For
a two-port board, LEDs 1 and 2 are assigned to Port 1, and LEDs 3 and 4 are assigned
to physical Port 2.

When your application uses multiple XNET devices, this VI helps to identify each
interface to associate its software behavior (LabVIEW code) to its hardware
connection (port). Prior to running your XNET sessions, you can call this VI to blink
the interface LEDs.

For example, if you have a system with three PCI CAN cards, each with two ports,
you can use this VI to blink the LEDs for interface CAN4, to identify it among the six
CAN ports.

The LEDs of each port support two states:

■ Identification: Blink LEDs to identify the physical port assigned to the
interface.
■ In Use: LED behavior that XNET sessions control.

ni.com680

NI-XNET 20.5

Identification LED State

You can use the XNET Blink VI only in the Identification state. If you call this VI while
one or more XNET sessions for the interface are open (created), it returns an error,
because the port's LEDs are in the In Use state.

In Use LED State
When you create an XNET session for the interface, the LEDs for that physical port
transition to the In Use state. If you called the XNET Blink VI previously to enable
blinking for identification, that LED behavior no longer applies. The In Use LED state
remains until all XNET sessions are cleared. This typically occurs when all LabVIEW
VIs are no longer running. The patterns that appear on the LEDs while In Use are
documented in LEDs.

XNET System Close.vi

Note: This VI is provided for compatibility with previous versions of NI-XNET. For new VI
development, it is recommended that you use System Configuration API, as it provides more
features.

Purpose

Closes the XNET system to refresh XNET hardware information.

Format

Inputs

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

© National Instruments 681

NI-XNET 20.5

Description

When your VI first uses the XNET System property node, NI-XNET obtains
information about all available devices and interfaces in the system. While using
property nodes for the devices and interfaces, the hardware information maintains
consistency. For example, if you physically add a new device (for example, a plug-in
a CompactDAQ chassis), the new device does not appear in the system properties.

Use the XNET System Close VI to close the system and associated devices and
interfaces. The next time your VI uses the XNET System property node, the hardware
information is refreshed.

If you previously used the XNET Blink VI to blink a device's LEDs for identification,
the XNET System Close VI disables blinking when it closes the associated device.

XNET Convert.vi

Purpose

Converts between NI-XNET signal data and frame data or vice versa.

Description

The instances of this polymorphic VI specify the conversion direction and type of
frame data.

There are four categories of XNET Convert instance VIs:

■ Frame to Signal: Converts frame data to signal data. A stream of frames is
read, and the signal values are filled with the values of the latest respective
frames. Frames not matching any signals are ignored. If two or more frames
with the same ID are present, the most recent (last) value is returned.
■ Frame to Byte Array: Converts frame data to byte array signal data. A
stream of frames is read, and a single byte array signal value is filled with the
value of the latest respective frames. Frames not matching the signal are
ignored. If two or more frames with the same ID are present, the most recent
(last) value is returned.

ni.com682

NI-XNET 20.5

■ Signal to Frame: Converts signal data to frame data. One frame for each ID
involved in the signal list is returned. Data not occupied by the signals from
the list is filled with the respective default values.
■ Byte Array to Frame: Converts byte array signal data to frame data. One
frame is returned. Data not occupied by the signals from the list is filled with
the respective default values.

You can use both categories with the same conversion session mode.

The XNET Convert instance VIs are:

■ XNET Convert (Frame CAN to Signal): Reads a set of CAN frames and
extracts the most recent signal values from them.
■ XNET Convert (Frame FlexRay to Signal): Reads a set of FlexRay frames and
extracts the most recent signal values from them.
■ XNET Convert (Frame LIN to Signal): Reads a set of LIN frames and extracts
the most recent signal values from them.
■ XNET Convert (Frame Raw to Signal): Reads a set of raw frames and
extracts the most recent signal values from them.
■ XNET Convert (Frame CAN to Byte Array): Reads a set of CAN frames and
extracts the most recent signal value from them.
■ XNET Convert (Frame FlexRay to Byte Array): Reads a set of FlexRay
frames and extracts the most recent signal value from them.
■ XNET Convert (Frame LIN to Byte Array): Reads a set of LIN frames and
extracts the most recent signal value from them.
■ XNET Convert (Frame Raw to Byte Array): Reads a set of raw frames and
extracts the most recent signal value from them.
■ XNET Convert (Signal to Frame CAN): Reads a set of signal values and
creates CAN frames with their representation.
■ XNET Convert (Signal to Frame FlexRay): Reads a set of signal values and
creates FlexRay frames with their representation.
■ XNET Convert (Signal to Frame LIN): Reads a set of signal values and
creates LIN frames with their representation.

© National Instruments 683

NI-XNET 20.5

■ XNET Convert (Signal to Frame Raw): Reads a set of signal values and
creates raw frames with their representation.
■ XNET Convert (Byte Array to Frame CAN): Reads a byte array signal value
and creates a CAN frame with its representation.
■ XNET Convert (Byte Array to Frame FlexRay): Reads a byte array signal
value and creates a FlexRay frame with its representation.
■ XNET Convert (Byte Array to Frame LIN): Reads a byte array signal value
and creates a LIN frame with its representation.
■ XNET Convert (Byte Array to Frame Raw): Reads a byte array signal value
and creates a raw frame with its representation.

XNET Convert (Frame CAN to Signal).vi

Purpose

Converts between NI-XNET CAN frame data and signals.

Format

Inputs

session in is the session to read. This session is returned from the XNET Create Session VI.
The session mode must be Conversion.

frame data provides the array of LabVIEW clusters.

Each array element corresponds to a frame value to convert.

The data you write is converted to signal values in the order you provide them. Only the
latest signal value is returned.

For an example of how this data applies, refer to Conversion Mode.

The elements of each cluster are specific to the CAN protocol. For more information, refer to
Summary of the CAN Standard or the CAN protocol specification.

ni.com684

NI-XNET 20.5

The cluster elements are:

identifier is the CAN frame arbitration identifier.

If extended? is false, the identifier uses standard format, so 11 bits of this identifier
are valid.

If extended? is true, the identifier uses extended format, so 29 bits of this identifier
are valid.

extended? is a Boolean value that determines whether the identifier uses extended
format (true) or standard format (false).

echo? is not used for conversion. You must set this element to false.

type is the frame type (decimal value in parentheses):

■ CAN Data (0): The CAN data frame contains payload data. This is the most

commonly used frame type for CAN.
■ CAN Remote (1): CAN remote frame. Your application transmits a CAN
remote frame to request data for the corresponding identifier. A remote ECU
should respond with a CAN data frame for the identifier, which you can obtain
using the XNET Read VI. This value is not meaningful, as a remote frame does
not contain any data to convert.

timestamp represents absolute time using the LabVIEW absolute timestamp type.
timestamp is not used for conversion. You must set this element to the default value,
invalid (0).

payload is the array of data bytes for a CAN data frame.

The array size indicates the payload length of the frame value to transmit. According
to the CAN protocol, the payload length range is 0–8. For CAN FD, the range can be 0–
8, 12, 16, 20, 24, 32, 48, or 64.

For more information, refer to the section for each mode.

For a transmitted remote frame (CAN Remote type), the payload length in the frame
value specifies the number of payload bytes requested. Your application provides
this payload length by filling payload with the requested number of bytes. This

© National Instruments 685

NI-XNET 20.5

enables your application to specify the frame payload length, but the actual values in
the payload bytes are ignored (not contained in the transmitted frame).

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

signal data returns a one-dimensional array of signal values. Each signal value is scaled, 64-
bit floating point.

Each array element corresponds to a signal configured for the session. The order of signals
in the array corresponds to the order in the session list.

The data returns the most recent converted value for each signal. If multiple frames for a
signal are input, only signal data from the most recent frame is returned. Here, most recent
is defined by the order of the frames in the frame data array, not the timestamp.

If no frame is input for the corresponding signals, the XNET Signal Default Value is returned.

For an example of how this data applies, refer to Conversion Mode.

error out is the error cluster output (refer to Error Handling).

XNET Convert (Frame FlexRay to Signal).vi

Purpose

Converts between NI-XNET FlexRay frame data and signals.

Format

Inputs

session in is the session to read. This session is returned from the XNET Create Session VI.
The session mode must be Conversion.

ni.com686

NI-XNET 20.5

frame data provides the array of LabVIEW clusters.

Each array element corresponds to a frame value to convert.

The data you write is converted to signal values in the order you provide them. Only the
latest signal value is returned.

For an example of how this data applies, refer to Conversion Mode.

The elements of each cluster are specific to the FlexRay protocol. For more information,
refer to Summary of the FlexRay Standard or the FlexRay Protocol Specification.

The cluster elements are:

slot specifies the slot number within the FlexRay cycle.

cycle count specifies the cycle number.

The FlexRay cycle count increments from 0 to 63, then rolls over back to 0.

startup? is a Boolean value that specifies whether the frame is a startup frame (true)
or not (false). This field is ignored for conversion.

sync? is a Boolean value that specifies whether the frame is a sync frame (true) or not
(false). This field is ignored for conversion.

preamble? is a Boolean value that specifies the value of the payload preamble
indicator in the frame header.

If the frame is in the static segment, preamble? being true indicates the presence of a
network management vector at the beginning of the payload. The XNET Cluster
FlexRay:Network Management Vector Length property specifies the number of bytes
at the beginning.

If the frame is in the dynamic segment, preamble? being true indicates the presence
of a message ID at the beginning of the payload. The message ID is always 2 bytes in
length.

If preamble? is false, the payload does not contain a network management vector or a
message ID.

This field is ignored for conversion.

© National Instruments 687

NI-XNET 20.5

chA is a Boolean value that specifies whether to transmit the frame on channel A
(true) or not (false).

chB is a Boolean value that specifies whether to transmit the frame on channel B
(true) or not (false).

echo? is not used for conversion. You must set this element to false.

type is the frame type. type is not used for transmit, so you must leave this element
uninitialized. All frame values are assumed to be the FlexRay Data type. Frames of
FlexRay Data type contain payload data.

The FlexRay Null type is not transmitted based on this type. As specified in the XNET
Frame FlexRay:Timing Type property, the FlexRay null frame is transmitted when a
cyclically timed frame does not have new data.

timestamp represents absolute time using the LabVIEW absolute timestamp type.
timestamp is not used for conversion. You must set this element to the default value,
invalid (0).

payload is the array of data bytes for FlexRay frames of type FlexRay Data.

The array size indicates the payload length of the frame value to transmit. According
to the FlexRay protocol, the length range is 0–254.

You can leave all other FlexRay frame cluster elements uninitialized. For more
information, refer to the section for each mode.

The XNET Convert (Frame FlexRay to Signal) VI uses the following fields to identify a
FlexRay frame:

■ slot

■ cycle count

■ chA/chB

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

ni.com688

NI-XNET 20.5

signal data returns a one-dimensional array of signal values. Each signal value is scaled, 64-
bit floating point.

Each array element corresponds to a signal configured for the session. The order of signals
in the array corresponds to the order in the session list.

The data returns the most recent converted value for each signal. If multiple frames for a
signal are input, only signal data from the most recent frame is returned. Here, most recent
is defined by the order of the frames in the frame data array, not the timestamp.

If no frame is input for the corresponding signals, the XNET Signal Default Value is returned.

For an example of how this data applies, refer to Conversion Mode.

error out is the error cluster output (refer to Error Handling).

XNET Convert (Frame LIN to Signal).vi

Purpose

Converts between NI-XNET LIN frame data and signals.

Format

Inputs

session in is the session to read. This session is returned from the XNET Create Session VI.
The session mode must be Conversion.

frame data provides the array of LabVIEW clusters.

Each array element corresponds to a frame value to convert.

The data you write is converted to signal values in the order you provide them. Only the
latest signal value is returned.

For an example of how this data applies, refer to Conversion Mode.

© National Instruments 689

NI-XNET 20.5

The elements of each cluster are specific to the LIN protocol. For more information, refer to
Summary of the LIN Standard or the LIN protocol specification.

The cluster elements are:

identifier is not used for transmit. You must set this element to 0.

Each frame is identified based on the list of frames or signals provided for the
session. The actual identifier to transmit is taken from the database (frame and
schedule properties). Therefore, this identifier in the frame value is ignored.

event slot? is not used for transmit. You must set this element to false.

The currently running schedule is used to map the specific frame to a corresponding
schedule entry (slot). The schedule entry itself determines whether the slot is
unconditional, sporadic, or event triggered.

event ID is not used for transmit. You must set this element to 0.

echo? is not used for conversion. You must set this element to false.

type is the frame type (decimal value in parentheses):

LIN Data (64) The LIN data frame contains payload data. This is currently the only
frame type for LIN.

This value is ignored for conversion.

timestamp represents absolute time using the LabVIEW absolute timestamp type.
timestamp is not used for conversion. You must set this element to the default value,
invalid (0).

payload is the array of data bytes for a LIN data frame.

The array size indicates the payload length of the frame value to transmit. According
to the LIN protocol, the payload length range is 0–8.

For more information, refer to the section for each mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

ni.com690

NI-XNET 20.5

signal data returns a one-dimensional array of signal values. Each signal value is scaled, 64-
bit floating point.

Each array element corresponds to a signal configured for the session. The order of signals
in the array corresponds to the order in the session list.

The data returns the most recent converted value for each signal. If multiple frames for a
signal are input, only signal data from the most recent frame is returned. Here, most recent
is defined by the order of the frames in the frame data array, not the timestamp.

If no frame is input for the corresponding signals, the XNET Signal Default Value is returned.

For an example of how this data applies, refer to Conversion Mode.

error out is the error cluster output (refer to Error Handling).

XNET Convert (Frame Raw to Signal).vi

Purpose

Converts between NI-XNET raw frame data and signals.

Format

Inputs

session in is the session to read. This session is returned from the XNET Create Session VI.
The session mode must be Conversion.

frame data provides the array of bytes, representing frames to transmit.

The raw bytes encode one or more frames using the Raw Frame Format.

This frame format is the same for read and write of raw data and also is used for log file
examples.

For information about which elements of the raw frame are applicable, refer to the XNET
Convert VI instance for the protocol in use (the XNET Convert (Frame CAN to Signal) VI, XNET

© National Instruments 691

NI-XNET 20.5

Convert (Frame FlexRay to Signal) VI, or XNET Convert (Frame LIN to Signal) VI).

For an example of how this data applies, refer to Conversion Mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

signal data returns a one-dimensional array of signal values. Each signal value is scaled, 64-
bit floating point.

Each array element corresponds to a signal configured for the session. The order of signals
in the array corresponds to the order in the session list.

The data returns the most recent converted value for each signal. If multiple frames for a
signal are input, only signal data from the most recent frame is returned. Here, most recent
is defined by the order of the frames in the frame data array, not the timestamp.

If no frame is input for the corresponding signals, the XNET Signal Default Value is returned.

For an example of how this data applies, refer to Conversion Mode.

error out is the error cluster output (refer to Error Handling).

XNET Convert (Frame CAN to Byte Array).vi

Purpose

Converts between NI-XNET CAN frame data and a byte array signal.

Format

Inputs

session in is the session to read. This session is returned from the XNET Create Session VI.
The session mode must be Conversion.

ni.com692

NI-XNET 20.5

frame data provides the array of LabVIEW clusters.
Each array element corresponds to a frame value to convert.

The data you write is converted to signal values in the order you provide them. Only the
latest signal value is returned.

For an example of how this data applies, refer to Conversion Mode.

The elements of each cluster are specific to the CAN protocol. For more information, refer to
Summary of the CAN Standard or the CAN protocol specification.

The cluster elements are:

identifier is the CAN frame arbitration identifier.
If extended? is false, the identifier uses standard format, so 11 bits of this identifier
are valid.

If extended? is true, the identifier uses extended format, so 29 bits of this identifier
are valid.

extended? is a Boolean value that determines whether the identifier uses extended
format (true) or standard format (false).

echo? is not used for conversion. You must set this element to false.

type is the frame type (decimal value in parentheses):

■ CAN Data (0): The CAN data frame contains payload data. This is the most

commonly used frame type for CAN.
■ CAN Remote (1): CAN remote frame. Your application transmits a CAN
remote frame to request data for the corresponding identifier. A remote ECU
should respond with a CAN data frame for the identifier, which you can obtain
using the XNET Read VI. This value is not meaningful, as a remote frame does
not contain any data to convert.

timestamp represents absolute time using the LabVIEW absolute timestamp type.
timestamp is not used for conversion. You must set this element to the default value,
invalid (0).

payload is the array of data bytes for a CAN data frame.
The array size indicates the payload length of the frame value to transmit. According
to the CAN protocol, the payload length range is 0–8. For CAN FD, the range can be 0–
8, 12, 16, 20, 24, 32, 48, or 64.

© National Instruments 693

NI-XNET 20.5

For more information, refer to the section for each mode.

For a transmitted remote frame (CAN Remote type), the payload length in the frame
value specifies the number of payload bytes requested. Your application provides
this payload length by filling payload with the requested number of bytes. This
enables your application to specify the frame payload length, but the actual values in
the payload bytes are ignored (not contained in the transmitted frame).

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

signal data returns a byte array representation of the single signal in the conversion session.
If there is more than one signal in the session, or the signal cannot be represented as a byte
array, an error will be returned.

The data returns the most recent converted value for the signal. If multiple frames for the
signal are input, only signal data from the most recent frame is returned. Here, most recent
is defined by the order of the frames in the frame data array, not the timestamp.

If no frame is input for the corresponding signals, the XNET Signal Default Value is returned.

error out is the error cluster output (refer to Error Handling).

XNET Convert (Frame FlexRay to Byte Array).vi

Purpose

Converts between NI-XNET FlexRay frame data and a byte array signal.

Format

Inputs

session in is the session to read. This session is returned from the XNET Create Session VI.
The session mode must be Conversion.

ni.com694

NI-XNET 20.5

frame data provides the array of LabVIEW clusters.
Each array element corresponds to a frame value to convert.

The data you write is converted to signal values in the order you provide them. Only the
latest signal value is returned.

For an example of how this data applies, refer to Conversion Mode.

The elements of each cluster are specific to the FlexRay protocol. For more information,
refer to Summary of the FlexRay Standard or the FlexRay Protocol Specification.

The cluster elements are:

slot specifies the slot number within the FlexRay cycle.

cycle count specifies the cycle number.
The FlexRay cycle count increments from 0 to 63, then rolls over back to 0.

startup? is a Boolean value that specifies whether the frame is a startup frame (true)
or not (false). This field is ignored for conversion.

sync? is a Boolean value that specifies whether the frame is a sync frame (true) or not
(false). This field is ignored for conversion.

preamble? is a Boolean value that specifies the value of the payload preamble
indicator in the frame header.
If the frame is in the static segment, preamble? being true indicates the presence of a
network management vector at the beginning of the payload. The XNET Cluster
FlexRay:Network Management Vector Length property specifies the number of bytes
at the beginning.

If the frame is in the dynamic segment, preamble? being true indicates the presence
of a message ID at the beginning of the payload. The message ID is always 2 bytes in
length.

If preamble? is false, the payload does not contain a network management vector or a
message ID.

This field is ignored for conversion.

chA is a Boolean value that specifies whether to transmit the frame on channel A
(true) or not (false).

chB is a Boolean value that specifies whether to transmit the frame on channel B
(true) or not (false).

© National Instruments 695

NI-XNET 20.5

echo? is not used for conversion. You must set this element to false.

type is the frame type. type is not used for transmit, so you must leave this element
uninitialized. All frame values are assumed to be the FlexRay Data type. Frames of
FlexRay Data type contain payload data.
The FlexRay Null type is not transmitted based on this type. As specified in the XNET
Frame FlexRay:Timing Type property, the FlexRay null frame is transmitted when a
cyclically timed frame does not have new data.

timestamp represents absolute time using the LabVIEW absolute timestamp type.
timestamp is not used for conversion. You must set this element to the default value,
invalid (0).

payload is the array of data bytes for FlexRay frames of type FlexRay Data.

The array size indicates the payload length of the frame value to transmit. According
to the FlexRay protocol, the length range is 0–254.

You can leave all other FlexRay frame cluster elements uninitialized. For more
information, refer to the section for each mode.
The XNET Convert (Frame FlexRay to Signal) VI uses the following fields to identify a
FlexRay frame:

■ slot

■ cycle count

■ chA/chB

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

signal data returns a byte array representation of the single signal in the conversion session.
If there is more than one signal in the session, or the signal cannot be represented as a byte
array, an error will be returned.

The data returns the most recent converted value for each signal. If multiple frames for a
signal are input, only signal data from the most recent frame is returned. Here, most recent
is defined by the order of the frames in the frame data array, not the timestamp.

ni.com696

NI-XNET 20.5

If no frame is input for the corresponding signals, the XNET Signal Default Value is returned.

error out is the error cluster output (refer to Error Handling).

XNET Convert (Frame LIN to Byte Array).vi

Purpose

Converts between NI-XNET LIN frame data and a byte array signal.

Format

Inputs

session in is the session to read. This session is returned from the XNET Create Session VI.
The session mode must be Conversion.

frame data provides the array of LabVIEW clusters.
Each array element corresponds to a frame value to convert.

The data you write is converted to signal values in the order you provide them. Only the
latest signal value is returned.

For an example of how this data applies, refer to Conversion Mode.

The elements of each cluster are specific to the LIN protocol. For more information, refer to
Summary of the LIN Standard or the LIN protocol specification.

The cluster elements are:

identifier is not used for transmit. You must set this element to 0.
Each frame is identified based on the list of frames or signals provided for the
session. The actual identifier to transmit is taken from the database (frame and
schedule properties). Therefore, this identifier in the frame value is ignored.

event slot? is not used for transmit. You must set this element to false.
The currently running schedule is used to map the specific frame to a corresponding
schedule entry (slot). The schedule entry itself determines whether the slot is
unconditional, sporadic, or event triggered.

© National Instruments 697

NI-XNET 20.5

event ID is not used for transmit. You must set this element to 0.

echo? is not used for conversion. You must set this element to false.

type is the frame type (decimal value in parentheses):
LIN Data (64): The LIN data frame contains payload data. This is currently the only
frame type for LIN.

This value is ignored for conversion.

timestamp represents absolute time using the LabVIEW absolute timestamp type.
timestamp is not used for conversion. You must set this element to the default value,
invalid (0).

payload is the array of data bytes for a LIN data frame.
The array size indicates the payload length of the frame value to transmit. According
to the LIN protocol, the payload length range is 0–8.

For more information, refer to the section for each mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

signal data returns a byte array representation of the single signal in the conversion session.
If there is more than one signal in the session, or the signal cannot be represented as a byte
array, an error will be returned.

The data returns the most recent converted value for each signal. If multiple frames for the
signal are input, only signal data from the most recent frame is returned. Here, most recent
is defined by the order of the frames in the frame data array, not the timestamp.

If no frame is input for the corresponding signals, the XNET Signal Default Value is returned.

error out is the error cluster output (refer to Error Handling).

XNET Convert (Frame Raw to Byte Array).vi

Purpose

Converts between NI-XNET raw frame data and a byte array signal.

ni.com698

NI-XNET 20.5

Format

Inputs

session in is the session to read. This session is returned from the XNET Create Session VI.
The session mode must be Conversion.

frame data provides the array of bytes, representing frames to transmit.
The raw bytes encode one or more frames using the Raw Frame Format.

This frame format is the same for read and write of raw data and also is used for log file
examples.

For information about which elements of the raw frame are applicable, refer to the XNET
Convert VI instance for the protocol in use (XNET Convert (Frame CAN to Signal) VI, XNET
Convert (Frame FlexRay to Signal) VI, or XNET Convert (Frame LIN to Signal) VI).

For an example of how this data applies, refer to Conversion Mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

signal data returns a byte array representation of the single signal in the conversion session.
If there is more than one signal in the session, or the signal cannot be represented as a byte
array, an error will be returned.

The data returns the most recent converted value for each signal. If multiple frames for a
signal are input, only signal data from the most recent frame is returned. Here, most recent
is defined by the order of the frames in the frame data array, not the timestamp.

If no frame is input for the corresponding signals, the XNET Signal Default Value is returned.

error out is the error cluster output (refer to Error Handling).

© National Instruments 699

NI-XNET 20.5

XNET Convert (Signal to Frame CAN).vi

Purpose

Converts between NI-XNET signals and CAN frame data.

Format

Inputs

session in is the session to read. This session is returned from the XNET Create Session VI.
The session mode must be Conversion.

signal data returns a one-dimensional array of signal values. Each signal value is scaled, 64-
bit floating point.

Each array element corresponds to a signal configured for the session. The order of signals
in the array corresponds to the order in the session list.

The data provides the value for the next conversion of each signal.

For an example of how this data applies, refer to Conversion Mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

frame data returns an array of LabVIEW clusters.

Each array element corresponds to a frame the session converted.

The elements of each cluster are specific to the CAN protocol. For more information, refer to
Summary of the CAN Standard or the CAN protocol specification.

The cluster elements are:

ni.com700

NI-XNET 20.5

identifier is the CAN frame arbitration identifier.

If extended? is false, the identifier uses standard format, so 11 bits of this identifier
are valid.

If extended? is true, the identifier uses extended format, so 29 bits of this identifier
are valid.

extended? is a Boolean value that determines whether the identifier uses extended
format (true) or standard format (false).

echo? is a Boolean value that determines whether the frame was an echo of a
successful transmit (true), or received from the network (false). For conversion, it is
always set to false.

type is the frame type (decimal value in parentheses):

■ CAN Data (0): The CAN data frame contains payload data. This is the most
commonly used frame type for CAN. When the session is in ISO CAN FD mode,
the CAN type is more specific according to the CAN I/O mode of the frame in
the database (one of the types listed below).
■ CAN 2.0 Data (8): The frame contains payload data and has been transmitted
in an ISO CAN FD session using the CAN 2.0 standard.
■ CAN FD Data (16): The frame contains payload data and has been
transmitted in an ISO CAN FD session using the CAN FD standard.
■ CAN FD+BRS Data (24): The frame contains payload data and has been
transmitted in an ISO CAN FD session using the CAN FD+BRS standard.

timestamp represents the absolute time when the XNET interface received the frame
(end of frame), accurate to microseconds. The timestamp returned by the conversion
is always invalid (0).

payload is the array of data bytes for the CAN data frame.

The array size indicates the received frame value payload length. According to the
CAN protocol, this payload length range is 0–8. For CAN FD, the range can be 0–8, 12,
16, 20, 24, 32, 48, or 64.

For a received remote frame (type of CAN Remote), the payload length in the frame
value specifies the number of payload bytes requested. This payload length is

© National Instruments 701

NI-XNET 20.5

provided to your application by filling payload with the requested number of bytes.
Your application can use the payload array size, but you must ignore the actual values
in the payload bytes.

error out is the error cluster output (refer to Error Handling).

XNET Convert (Signal to Frame FlexRay).vi

Purpose

Converts between NI-XNET signals and FlexRay frame data.

Format

Inputs

session in is the session to read. This session is returned from the XNET Create Session VI.
The session mode must be Conversion.

signal data returns a one-dimensional array of signal values. Each signal value is scaled, 64-
bit floating point.

Each array element corresponds to a signal configured for the session. The order of signals
in the array corresponds to the order in the session list.

The data provides the value for the next conversion of each signal.

For an example of how this data applies, refer to Conversion Mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

frame data returns an array of LabVIEW clusters.

Each array element corresponds to a frame the session converted.

ni.com702

NI-XNET 20.5

The elements of each cluster are specific to the FlexRay protocol. For more information,
refer to Summary of the FlexRay Standard or the FlexRay Protocol Specification.

The cluster elements are:

slot specifies the slot number within the FlexRay cycle.

cycle count specifies the cycle number.

The FlexRay cycle count increments from 0 to 63, then rolls over back to 0.

startup? is a Boolean value that specifies whether the frame is a startup frame (true)
or not (false).

sync? is a Boolean value that specifies whether the frame is a sync frame (true) or not
(false).

preamble? is a Boolean value that specifies the value of the payload preamble
indicator in the frame header.

If the frame is in the static segment, preamble? being true indicates the presence of a
network management vector at the beginning of the payload. The XNET Cluster
FlexRay:Network Management Vector Length property specifies the number of bytes
at the beginning.

If the frame is in the dynamic segment, preamble? being true indicates the presence
of a message ID at the beginning of the payload. The message ID is always 2 bytes in
length.

If preamble? is false, the payload does not contain a network management vector or a
message ID.

chA is a Boolean value that specifies whether the frame was received on channel A
(true) or not (false).

chB is a Boolean value that specifies whether the frame was received on channel B
(true) or not (false).

echo? is a Boolean value that determines whether the frame was an echo of a
successful transmit (true), or received from the network (false).

type is the frame type (decimal value in parentheses):

© National Instruments 703

NI-XNET 20.5

■ FlexRay Data (32): FlexRay data frame. The frame contains payload data.
This is the most commonly used frame type for FlexRay. All elements in the
frame are applicable.

timestamp represents the absolute time when the XNET interface received the frame
(end of frame), accurate to microseconds. The timestamp returned by the conversion
is always invalid (0).

payload is the array of data bytes for FlexRay frames of type FlexRay Data or
FlexRay Null.

The array size indicates the received frame value payload length.

According to the FlexRay protocol, this length range is 0–254.

The XNET Convert (Signal to Frame FlexRay) VI writes the FlexRay frame
identification to the following fields:

■ slot

■ cycle count

■ chA/chB

In addition, the following fields are set to their database definition:

■ startup?

■ sync?

■ preamble?

error out is the error cluster output (refer to Error Handling).

XNET Convert (Signal to Frame LIN).vi

Purpose

Converts between NI-XNET signals and LIN frame data.

ni.com704

NI-XNET 20.5

Format

Inputs

session in is the session to read. This session is returned from the XNET Create Session VI.
The session mode must be Conversion.

signal data returns a one-dimensional array of signal values. Each signal value is scaled, 64-
bit floating point.

Each array element corresponds to a signal configured for the session. The order of signals
in the array corresponds to the order in the session list.

The data provides the value for the next conversion of each signal.

For an example of how this data applies, refer to Conversion Mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

frame data returns an array of LabVIEW clusters.

Each array element corresponds to a frame the session converted.

The elements of each cluster are specific to the LIN protocol. For more information, refer to
Summary of the LIN Standard or the LIN protocol specification.

The cluster elements are:

identifier is the identifier received within the frame's header.

The identifier is a number from 0 to 63.

If the schedule entry (slot) is unconditional or sporadic, this identifies the payload
data (LIN frame). If the schedule entry is event triggered, this identifies the schedule

© National Instruments 705

NI-XNET 20.5

entry itself, and the protected ID contained in the first payload byte identifies the
payload.

event slot? is not used. This element is false.

event ID is not used. This element is 0.

echo? is a Boolean value that determines whether the frame was an echo of a
successful transmit (true), or received from the network (false). For conversion, it is
always set to false.

type is the frame type (decimal value in parentheses):

■ LIN Data (64): The LIN data frame contains payload data. This is currently
the only frame type for LIN.

timestamp represents the absolute time when the XNET interface received the frame
(end of frame), accurate to microseconds. The timestamp returned by the conversion
is always invalid (0).

payload is the array of data bytes for the LIN data frame.

The array size indicates the received frame's payload length.

According to the LIN protocol, this payload is 0–8 bytes in length.

error out is the error cluster output (refer to Error Handling).

XNET Convert (Signal to Frame Raw).vi

Purpose

Converts between NI-XNET signals and raw frame data.

Format

Inputs

session in is the session to read. This session is returned from the XNET Create Session VI.
The session mode must be Conversion.

ni.com706

NI-XNET 20.5

signal data returns a one-dimensional array of signal values. Each signal value is scaled, 64-
bit floating point.

Each array element corresponds to a signal configured for the session. The order of signals
in the array corresponds to the order in the session list.

The data provides the value for the next conversion of each signal.

For an example of how this data applies, refer to Conversion Mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

frame data returns an array of bytes.

The raw bytes encode one or more frames using the Raw Frame Format.

This frame format is the same for read and write of raw data, and it is also used for log file
examples.

The data always returns complete frames.

For information about which elements of the raw frame are applicable, refer to the frame
read for the protocol in use (the XNET Convert (Signal to Frame CAN) VI, XNET Convert
(Signal to Frame FlexRay) VI, or XNET Convert (Signal to Frame LIN) VI).

For an example of how this data applies, refer to Conversion Mode.

error out is the error cluster output (refer to Error Handling).

XNET Convert (Byte Array to Frame CAN).vi

Purpose

Converts between an NI-XNET byte array signal and CAN frame data.

© National Instruments 707

NI-XNET 20.5

Format

Inputs

session in is the session to read. This session is returned from the XNET Create Session VI.
The session mode must be Conversion.

signal data contains a byte array representation of the signal value. The bytes will be
transferred 1:1 to the signal in the frame.
If the session contains more than one signal, or the signal cannot be represented as a byte
array, an error is returned.

The data provides the value for the next conversion of the signal.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

frame data returns the array of LabVIEW clusters.
Each array element corresponds to a frame the session converted.

The elements of each cluster are specific to the CAN protocol. For more information, refer to
Summary of the CAN Standard or the CAN protocol specification.

The cluster elements are:

identifier is the CAN frame arbitration identifier.
If extended? is false, the identifier uses standard format, so 11 bits of this identifier
are valid.

If extended? is true, the identifier uses extended format, so 29 bits of this identifier
are valid.

extended? is a Boolean value that determines whether the identifier uses extended
format (true) or standard format (false).

ni.com708

NI-XNET 20.5

echo? is a Boolean value that determines whether the frame was an echo of a
successful transmit (true), or received from the network (false). For conversion, it is
always set to false.

type is the frame type (decimal value in parentheses):

■ CAN Data (0): The CAN data frame contains payload data. This is the most
commonly used frame type for CAN. When the session is in ISO CAN FD mode,
the CAN type is more specific according to the CAN I/O mode of the frame in
the database (one of the types listed below).
■ CAN 2.0 Data (8): The frame contains payload data and has been transmitted
in an ISO CAN FD session using the CAN 2.0 standard.
■ CAN FD Data (16): The frame contains payload data and has been
transmitted in an ISO CAN FD session using the CAN FD standard.
■ CAN FD+BRS Data (24): The frame contains payload data and has been
transmitted in an ISO CAN FD session using the CAN FD+BRS standard.

timestamp represents the absolute time when the XNET interface received the frame
(end of frame), accurate to microseconds. The timestamp returned by the conversion
is always invalid (0).

payload is the array of data bytes for the CAN data frame.
The array size indicates the received frame value payload length. According to the
CAN protocol, this payload length range is 0–8. For CAN FD, the range can be 0–8, 12,
16, 20, 24, 32, 48, or 64.

For a received remote frame (type of CAN Remote), the payload length in the frame
value specifies the number of payload bytes requested. This payload length is
provided to your application by filling payload with the requested number of bytes.
Your application can use the payload array size, but you must ignore the actual values
in the payload bytes.

error out is the error cluster output (refer to Error Handling).

XNET Convert (Byte Array to Frame FlexRay).vi

Purpose

Converts between an NI-XNET byte array signal and FlexRay frame data.

© National Instruments 709

NI-XNET 20.5

Format

Inputs

session in is the session to read. This session is returned from the XNET Create Session VI.
The session mode must be Conversion.

signal data contains a byte array representation of the signal value. The bytes will be
transferred 1:1 to the signal in the frame.
If the session contains more than one signal, or the signal cannot be represented as a byte
array, an error is returned.

The data provides the value for the next conversion of the signal.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

frame data returns an array of LabVIEW clusters.
Each array element corresponds to a frame the session converted.

The elements of each cluster are specific to the FlexRay protocol. For more information,
refer to Summary of the FlexRay Standard or the FlexRay Protocol Specification.

The cluster elements are:

slot specifies the slot number within the FlexRay cycle.

cycle count specifies the cycle number.
The FlexRay cycle count increments from 0 to 63, then rolls over back to 0.

startup? is a Boolean value that specifies whether the frame is a startup frame (true)
or not (false).

sync? is a Boolean value that specifies whether the frame is a sync frame (true) or not
(false).

preamble? is a Boolean value that specifies the value of the payload preamble
indicator in the frame header.

ni.com710

NI-XNET 20.5

If the frame is in the static segment, preamble? being true indicates the presence of a
network management vector at the beginning of the payload. The XNET Cluster
FlexRay:Network Management Vector Length property specifies the number of bytes
at the beginning.

If the frame is in the dynamic segment, preamble? being true indicates the presence
of a message ID at the beginning of the payload. The message ID is always 2 bytes in
length.

If preamble? is false, the payload does not contain a network management vector or a
message ID.

chA is a Boolean value that specifies whether the frame was received on channel A
(true) or not (false).

chB is a Boolean value that specifies whether the frame was received on channel B
(true) or not (false).

echo? is a Boolean value that determines whether the frame was an echo of a
successful transmit (true), or received from the network (false).

type is the frame type (decimal value in parentheses):

■ FlexRay Data (32): FlexRay data frame. The frame contains payload data.
This is the most commonly used frame type for FlexRay. All elements in the
frame are applicable.

timestamp represents the absolute time when the XNET interface received the frame
(end of frame), accurate to microseconds. The timestamp returned by the conversion
is always invalid (0).

payload is the array of data bytes for FlexRay frames of type FlexRay Data or
FlexRay Null.
The array size indicates the received frame value payload length.

According to the FlexRay protocol, this length range is 0–254.

The XNET Convert (Signal to Frame FlexRay) VI writes the FlexRay frame
identification to the following fields:

■ slot

■ cycle count

■ chA/chB

© National Instruments 711

NI-XNET 20.5

In addition, the following fields are set to their database definition:

■ startup?

■ sync?

■ preamble?

error out is the error cluster output (refer to Error Handling).

XNET Convert (Byte Array to Frame LIN).vi

Purpose

Converts between an NI-XNET byte array signal and LIN frame data.

Format

Inputs

session in is the session to read. This session is returned from the XNET Create Session VI.
The session mode must be Conversion.

signal data contains a byte array representation of the signal value. The bytes will be
transferred 1:1 to the signal in the frame.
If the session contains more than one signal, or the signal cannot be represented as a byte
array, an error is returned.

The data provides the value for the next conversion of the signal.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

frame data returns an array of LabVIEW clusters.
Each array element corresponds to a frame the session converted.

ni.com712

NI-XNET 20.5

The elements of each cluster are specific to the LIN protocol. For more information, refer to
Summary of the LIN Standard or the LIN protocol specification.

The cluster elements are:

identifier is the identifier received within the frame's header.
The identifier is a number from 0 to 63.

If the schedule entry (slot) is unconditional or sporadic, this identifies the payload
data (LIN frame). If the schedule entry is event triggered, this identifies the schedule
entry itself, and the protected ID contained in the first payload byte identifies the
payload.

event slot? is not used. This element is false.

event ID is not used. This element is 0.

echo? is a Boolean value that determines whether the frame was an echo of a
successful transmit (true), or received from the network (false). For conversion, it is
always set to false.

type is the frame type (decimal value in parentheses):

■ LIN Data (64): The LIN data frame contains payload data. This is currently
the only frame type for LIN.

For conversion, this is always set to false.

timestamp represents the absolute time when the XNET interface received the frame
(end of frame), accurate to microseconds. The timestamp returned by the conversion
is always invalid (0).

payload is the array of data bytes for the LIN data frame.
The array size indicates the received frame's payload length.

According to the LIN protocol, this payload is 0–8 bytes in length.

error out is the error cluster output (refer to Error Handling).

XNET Convert (Byte Array to Frame Raw).vi

Purpose

Converts between an NI-XNET byte array signal and raw frame data.

© National Instruments 713

NI-XNET 20.5

Format

Inputs

session in is the session to read. This session is returned from the XNET Create Session VI.
The session mode must be Conversion.

signal data contains a byte array representation of the signal value. The bytes will be
transferred 1:1 to the signal in the frame.
If the session contains more than one signal, or the signal cannot be represented as a byte
array, an error is returned.

The data provides the value for the next conversion of each signal.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

frame data returns an array of bytes.
The raw bytes encode one or more frames using the Raw Frame Format.

This frame format is the same for read and write of raw data, and it is also used for log file
examples.

The data always returns complete frames.

For information about which elements of the raw frame are applicable, refer to the frame
read for the protocol in use (the XNET Convert (Signal to Frame CAN) VI, XNET Convert
(Signal to Frame FlexRay) VI, or the XNET Convert (Signal to Frame LIN) VI).

For an example of how this data applies, refer to Conversion Mode.

error out is the error cluster output (refer to Error Handling).

ni.com714

NI-XNET 20.5

XNET String to IO Name.vi

Purpose

Converts a LabVIEW string to an XNET I/O Name.

Description

This VI is not required for LabVIEW 2009 or newer. It is provided only for backward
compatibility of VIs written in LabVIEW versions prior to 2009. Currently supported
versions of LabVIEW can now cast LabVIEW strings to XNET IO names automatically.

IP Stack Subpalette
This subpalette includes functions for creating and configuring a network socket for
TCP and UDP communication. An XNET IP stack is an implementation of the TCP/IP
protocol suite, which includes UDP. The XNET IP stack is independent of the
limitations of the IP stack native to your operating system (Windows or Linux).

Refer to Supported Features for information about specific features that are
supported by XNET IP Stack.

XNET IP Stack Create.vi

Purpose

Creates an XNET IP stack to use for TCP and/or UDP communication.

Format

Inputs

stack name is the name that uniquely identifies the stack. The syntax for this name allows
some special characters, such as space (). Invalid characters include forward slash (/),

© National Instruments 715

NI-XNET 20.5

backslash (\), period (.), and tab (\t). The name is not case sensitive. If you do not wire in a
value to stack name, NI-XNET generates a name to ensure that each stack is unique.

config specifies the configuration of the XNET IP Stack as a JSON string. For a list of features
supported in the configuration, refer to Supported Features.

error in is the error cluster input (refer to Error Handling).

Outputs

stack out is the created XNET IP Stack. This I/O name is used with subsequent VIs for XNET
IP Stack (for example, to obtain runtime info), XNET TCP Socket, and XNET UDP Socket.

error out is the error cluster output (refer to Error Handling).

Description

The XNET IP Stack enables you to create an implementation of the TCP/IP protocol
suite for TCP and UDP communication, independent from the limitations of the IP
stack native to the operating system.

To find examples of an XNET IP stack configuration, select Find Examples... from the
LabVIEW Help menu and open Hardware Input and Output»Automotive Ethernet»IP

Stack.

NI-XNET provides examples to create most common IP stack configurations, but
more complex configurations are possible.

If the examples are not sufficiently advanced for your application, National
Instruments installs documentation for the XNET IP Stack configuration string. The
configuration string uses JSON format, and the formal documentation is provided
as a JSON schema file. The JSON schema file is supported by a variety of online
tools, and in addition to formally describing each field, it can be used to validate
your customized JSON configuration string for correctness. To find the XNET IP
Stack JSON schema, select Start»National Instruments»NI-XNET Documentation.

The XNET IP Stack is available for use by multiple top-level LabVIEW VIs in the
current runtime. After creation, you can wire the stack name into an XNET VI that is
called in a different top-level VI. Each usage of the stack name opens a refnum
(driver reference) in LabVIEW as needed, and these refnums are closed
appropriately as top-level VIs stop execution.

ni.com716

NI-XNET 20.5

For more information on XNET IP Stacks, refer to IP Stack Subpalette.

TCP
The VIs in this subpalette use the XNET TCP Socket for TCP communication. The NI-
XNET Socket API for TCP is analogous to LabVIEW's built-in TCP palette for the OS
stack, which you can find on the Functions Palette under Data Communication »

Protocols » TCP. The alignment of these socket APIs is intended to reduce the
learning curve and to facilitate re-use of code between stacks.

NI-XNET TCP differs from LabVIEW's built-in TCP in the following ways:

■ You must pass an XNET IP Stack into the VI that creates or opens a TCP
socket.
■ You can use the XNET TCP Socket Property Node for advanced features.

XNET TCP Socket Open.vi

Purpose

Opens a TCP network connection using a specified address and port. To close the
connection once data transmission is complete, use XNET TCP Socket Close.

Format

Inputs

stack is the XNET IP Stack in which the new socket is opened.

remote address is the IP address with which you want to establish a connection.

remote port is the port on the server with which you want to establish a connection. If you
wire a value of 0 to this input, this VI returns an error.

© National Instruments 717

NI-XNET 20.5

timeout ms (60000) specifies the time, in milliseconds, that the VI waits to complete before
reporting a timeout error. The default value is 60,000 ms (1 minute). Wire a –1 to this input
to wait indefinitely.

error in is the error cluster input (refer to Error Handling).

local port is the local connection port. Some servers only allow connections to clients that
use port numbers within a specific range that is dependent on the server. If the value is 0,
the XNET IP stack selects an unused port. The default is 0.

local interface identifies a specific virtual interface in the IP Stack on which to bind the
socket. The virtual interface is identified using one of the following (as returned from XNET
IP Stack Get Info.vi):

■ virtual interface name (recommended)

■ string that represents the decimal value of ifIndex

■ IP address (see Supported Features)

This input is optional. If local interface is empty (default), the socket is bound to any virtual
interface in the IP stack.

Outputs

socket is a network connection refnum that uniquely identifies the connection. Use this
value to refer to this connection in subsequent VI calls.

error out is the error cluster output (refer to Error Handling).

XNET TCP Socket Write.vi

Purpose

Writes data to a TCP network connection.

Description

XNET TCP Socket Write » Binary writes binary data to a TCP network connection.

XNET TCP Socket Write » Text writes string data to a TCP network connection.

ni.com718

NI-XNET 20.5

XNET TCP Socket Write (Binary).vi
Purpose

Writes binary data to a TCP network connection.

Format

Inputs

socket in is a network connection refnum that uniquely identifies the TCP socket. Use XNET
TCP Socket Open or XNET TCP Socket Wait on Listener to generate a refnum to wire to this
input.

data is the data to write to the connection.

timeout ms (25000) is the time, in milliseconds, that the VI waits to complete before
reporting a timeout error. The default is 25,000 ms. Wire a -1 to this input to wait
indefinitely.

error in is the error cluster input (refer to Error Handling).

Outputs

socket out is the same value as socket in.

bytes written is the number of bytes the VI writes to the connection.
If the number of bytes written is fewer than the number of bytes in data in, an error has
occurred. For example, this VI may have timed out before all the data was transmitted. Use
this output to determine what data has been successfully written and possibly retry writing
any remaining data.

error out is the error cluster output (refer to Error Handling).

© National Instruments 719

NI-XNET 20.5

XNET TCP Socket Write (Text).vi
Purpose

Writes string data to a TCP network connection.

Format

Inputs

socket in is a network connection refnum that uniquely identifies the TCP socket. Use XNET
TCP Socket Open or XNET TCP Socket Wait on Listener to generate a refnum to wire to this
input.

data is the data to write to the connection.

timeout ms (25000) is the time, in milliseconds, that the VI waits to complete before
reporting a timeout error. The default is 25,000 ms. Wire a -1 to this input to wait
indefinitely.

error in is the error cluster input (refer to Error Handling).

Outputs

socket out is the same value as socket in.

bytes written is the number of bytes the VI writes to the connection.
If the number of bytes written is fewer than the number of bytes in data in, an error has
occurred. For example, this VI may have timed out before all the data was transmitted. Use
this output to determine what data has been successfully written and possibly retry writing
any remaining data.

error out is the error cluster output (refer to Error Handling).

ni.com720

NI-XNET 20.5

XNET TCP Socket Read.vi

Purpose

Reads a number of bytes from a TCP network connection.

Description

XNET TCP Socket Read » Binary reads a number of bytes from a TCP network
connection and returns the results as binary data.

XNET TCP Socket Read » Text reads a number of bytes from a TCP network
connection and returns the results as string data.

XNET TCP Socket Read (Binary).vi
Purpose

Reads a number of bytes from a TCP network connection and returns the results as
binary data.

Format

Inputs

mode (standard) specifies the behavior of the read operation. The default value is standard.

Name Description
standard Waits until all bytes to read arrive or until thi

s VI times out before returning data. This VI r
eturns the number of bytes read so far. If few
er bytes than the number you requested arri
ve, this VI returns the partial number of byte
s and reports a timeout error.

© National Instruments 721

NI-XNET 20.5

buffered Waits until all bytes to read arrive or until thi
s VI times out before this VI returns data. If fe
wer bytes than the number you requested ar
rive, this VI returns no bytes and reports a ti
meout error.

immediate Returns data as soon as this VI receives any b
ytes to read. This VI waits the full timeout on
ly if it receives no bytes to read. This VI retur
ns the number of bytes received so far and re
ports a timeout error only if this VI receives n
o bytes.

socket in is a network connection refnum that uniquely identifies the TCP socket. Use XNET
TCP Socket Open or XNET TCP Socket Wait on Listener to generate a refnum to wire to this
input.

bytes to read is the number of bytes this VI reads. The default value is 0. Wire a value
greater than 0 to this input to read data.

timeout ms (25000) specifies the time, in milliseconds, that the VI waits to complete before
returning a timeout error. The default value is 25,000 ms. Wire a -1 to this input to wait
indefinitely.

error in is the error cluster input (refer to Error Handling).

Outputs

socket out is the same value as socket in.

data is the data read from the TCP connection.

error out is the error cluster output (refer to Error Handling).

XNET TCP Socket Read (Text).vi
Purpose

Reads a number of bytes from a TCP network connection and returns the results as
string data.

ni.com722

NI-XNET 20.5

Format

Inputs

mode (standard) specifies the behavior of the read operation. The default value is standard.

Name Description
standard Waits until all bytes to read arrive or until thi

s VI times out before returning data. This VI r
eturns the number of bytes read so far. If few
er bytes than the number you requested arri
ve, this VI returns the partial number of byte
s and reports a timeout error.

buffered Waits until all bytes to read arrive or until thi
s VI times out before this VI returns data. If fe
wer bytes than the number you requested ar
rive, this VI returns no bytes and reports a ti
meout error.

immediate Returns data as soon as this VI receives any b
ytes to read. This VI waits the full timeout on
ly if it receives no bytes to read. This VI retur
ns the number of bytes received so far and re
ports a timeout error only if this VI receives n
o bytes.

socket in is a network connection refnum that uniquely identifies the TCP socket. Use XNET
TCP Socket Open or XNET TCP Socket Wait on Listener to generate a refnum to wire to this
input.

bytes to read is the number of bytes this VI reads. The default value is 0. Wire a value
greater than 0 to this input to read data.

timeout ms (25000) specifies the time, in milliseconds, that the VI waits to complete before
returning a timeout error. The default value is 25,000 ms. Wire a -1 to this input to wait
indefinitely.

© National Instruments 723

NI-XNET 20.5

error in is the error cluster input (refer to Error Handling).

Outputs

socket out is the same value as socket in.

data is the data read from the TCP connection.

error out is the error cluster output (refer to Error Handling).

XNET TCP Socket Close.vi

Purpose

Closes a TCP network connection.

Format

Inputs

socket is a network connection refnum that uniquely identifies the connection.

abort (F) specifies whether to abort the TCP session immediately or stay open until any
remaining data is sent. When abort is false (default), after returning from XNET TCP Socket
Close.vi, the TCP connection stays open in the background while any remaining data is sent,
and then closes after handshake. When abort is true, the TCP connection is immediately
aborted (reset) and closed (regardless of unsent data), and XNET TCP Socket Close.vi
returns.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

ni.com724

NI-XNET 20.5

Description

When XNET IP Stack Clear.vi is called to close the stack, all TCP connections must be
aborted in order to free stack resources. Therefore, setting abort to false for XNET
TCP Socket Close.vi is applicable only when you intend to leave the stack running.

XNET TCP Socket Create Listener.vi

Purpose

Use this VI with XNET TCP Socket Wait on Listener to create and listen for
connections on the server.

Format

Inputs

stack is the XNET IP Stack in which the new socket is opened.

local port is the port number where you want to listen for a connection. By default (0), this
VI dynamically chooses an available TCP port to listen for connections on.
The following table lists valid port numbers as defined by the Internet Assigned Numbers
Authority (IANA).

Type Range
System/Well-Known Ports 1 through 1023

User/Registered Ports 1024 through 49151

Dynamic/Private Ports 49152 through 65535

timeout ms (25000) specifies the time, in milliseconds, that the VI waits to complete before
reporting a timeout error. The default value is 25,000 ms. Wire a –1 to this input to wait
indefinitely.

error in is the error cluster input (refer to Error Handling).

© National Instruments 725

NI-XNET 20.5

local interface identifies a specific virtual interface in the IP Stack on which to bind the
socket. The virtual interface is identified using one of the following (as returned from XNET
IP Stack Get Info.vi):

■ virtual interface name (recommended)

■ string that represents the decimal value of ifIndex

■ IP address (see Supported Features)

This input is optional. If local interface is empty (default), the socket is bound to any virtual
interface in the IP stack.

Outputs

listener socket is a network connection refnum that uniquely identifies the listener.

actual local port is the port number the VI used.
If you wire 0 to the local port input, this VI dynamically chooses an available TCP port that
the XNET IP stack determines is valid for use. If you wire a value other than 0 to the
local port input, actual local port returns the input port number.

error out is the error cluster output (refer to Error Handling).

XNET TCP Socket Wait on Listener.vi

Purpose

Waits for an accepted TCP network connection.

Format

Inputs

listener socket in is a network connection refnum that uniquely identifies the listener. Use
XNET TCP Socket Create Listener to generate a refnum to wire to this input.

ni.com726

NI-XNET 20.5

timeout ms (forever: -1) specifies the time, in milliseconds, that the VI waits for a
connection before reporting a timeout error. By default (-1), this VI waits indefinitely for a
connection.

error in is the error cluster input (refer to Error Handling).

Outputs

listener socket out is the same network connection refnum as listener socket in. Use this
value to refer to the listener in subsequent calls to this VI.

remote address is the IP address of the client that establishes a connection with this server.

remote port is the port on the client that establishes a connection with the server.

error out is the error cluster output (refer to Error Handling).

connection socket is a network connection refnum that uniquely identifies the connection.
Use this value to refer to this connection in subsequent VI calls.

Property Node (TCP)

Format

Description

Properties in the XNET TCP Socket property node can be used with the XNET TCP
Socket VIs. The most common usage is after opening or creating a socket (e.g., XNET
TCP Socket Open.vi), and prior to reading/writing data with the socket. All
properties are optional.

No Delay?
Data Type Direction Required? Default

Read/Write No False

© National Instruments 727

NI-XNET 20.5

Property Class

XNET TCP Socket

Short Name

NoDelay

Description

When false (default), the Nagle algorithm is enabled, such that data is buffered until
there is a sufficient amount to send out, thereby avoiding the frequent sending of
small packets, which results in poor utilization of the network.

When true, the Nagle algorithm is disabled, which means that TCP segments are
always sent as soon as possible, even if there is only a small amount of data.

In Berkeley sockets APIs, this property corresponds to TCP_NODELAY.

Receive Buffer Size
Data Type Direction Required? Default

Read Only No Refer to Description

Property Class

XNET TCP Socket

Short Name

RxBuf

Description

Maximum size of the socket's receive buffer, expressed as bytes. The default value is
determined by the NI-XNET driver, toward the goal of meeting most use cases. In
Berkeley sockets APIs, this property corresponds to SO_RCVBUF.

ni.com728

NI-XNET 20.5

Receive Data Available
Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET TCP Socket

Short Name

RxData

Description

Number of bytes available for Read, expressed as bytes. In Berkeley sockets APIs,
this property corresponds to SO_RXDATA.

UDP
The VIs in this subpalette use the XNET UDP Socket for UDP communication. The NI-
XNET Socket API for UDP is analogous to LabVIEW's built-in UDP palette for the OS
stack, which you can find on the Functions Palette under Data Communication »

Protocols » UDP. The alignment of these socket APIs is intended to reduce the
learning curve and to facilitate re-use of code between stacks.

NI-XNET UDP differs from LabVIEW's built-in UDP in the following ways:

■ You must pass an XNET IP Stack into the VI that creates or opens a UDP
socket.
■ You can use the XNET UDP Socket Property Node and the XNET UDP Socket
Invoke Node for advanced features.

© National Instruments 729

NI-XNET 20.5

XNET UDP Socket Open.vi

Purpose

Opens a UDP socket on the port you specify to send or receive datagrams. If you
want to send a single datagram to multiple receivers in parallel, which may reduce
overhead both in code and on the network over sending a datagram to multiple
receivers serially, use the XNET UDP Socket Multicast Open VI instead of this one.

Format

Inputs

stack is the XNET IP Stack in which the new socket is opened.

local port is the port number where you want to listen for a connection. By default (0), this
VI dynamically chooses an available UDP port to listen for connections on.
The following table lists valid port numbers as defined by the Internet Assigned Numbers
Authority (IANA).

Type Range
System/Well-Known Ports 1 through 1023

User/Registered Ports 1024 through 49151

Dynamic/Private Ports 49152 through 65535

error in is the error cluster input (refer to Error Handling).

local interface identifies a specific virtual interface in the IP Stack on which to bind the
socket. The virtual interface is identified using one of the following (as returned from XNET
IP Stack Get Info.vi):

■ virtual interface name (recommended)

■ string that represents the decimal value of ifIndex

■ IP address (see Supported Features)

ni.com730

NI-XNET 20.5

This input is optional. If local interface is empty (default), the socket is bound to any virtual
interface in the IP stack.

Outputs

socket is a network connection refnum that uniquely identifies the connection. Use this
value to refer to this connection in subsequent VI calls.

actual local port is the port number the VI used.
If you wire 0 to the local port input, this VI dynamically chooses an available UDP port that
the XNET IP stack determines is valid for use. If you wire a value other than 0 to the
local port input, actual local port returns the input port number.

error out is the error cluster output (refer to Error Handling).

XNET UDP Socket Write.vi

Purpose

Writes a datagram to a remote UDP port. To send multicast datagrams, specify the
multicast group address in the remote address input.

Description

The instances of this polymorphic VI specify the type of data provided.

XNET UDP Socket Write » Binary writes a binary datagram to a remote UDP port. To
send multicast datagrams, specify the multicast group address in the remote

address input.

XNET UDP Socket Write » Text writes a string datagram to a remote UDP port. To
send multicast datagrams, specify the multicast group address in the remote

address input.

XNET UDP Socket Write (Binary).vi
Purpose

Writes binary data to a UDP network connection.

© National Instruments 731

NI-XNET 20.5

Format

Inputs

remote port is the port on the server to which you want to write.

remote address is the IP address of the computer where you want to send a datagram. To
send multicast datagrams, specify the multicast group address in this input.

socket in is a network connection refnum that uniquely identifies the UDP socket. Use XNET
UDP Socket Open or XNET UDP Socket Multicast Open to generate a refnum to wire to this
input.

data is the data to write to another UDP socket.
In an Ethernet environment, restrict the datagram to a reasonable size, such as 1,000 bytes.
UDP datagrams must be sent as a single IP packet with no retransmission. If the packet is
too large to fit in a single transmission unit of the underlying bus, the receiver might
fragment and reassemble it, which increases overhead and the chance that the data could
be lost in transit. Specific thresholds vary depending on your network.

timeout ms (25000) specifies the time, in milliseconds, that the VI waits to complete before
returning a timeout error. The default value is 25,000 ms. Wire a –1 to this input to wait
indefinitely.

error in is the error cluster input (refer to Error Handling).

Outputs

socket out is the same value as socket in.

error out is the error cluster output (refer to Error Handling).

ni.com732

NI-XNET 20.5

XNET UDP Socket Write (Text).vi
Purpose

Writes string data to a UDP network connection.

Format

Inputs

remote port is the port on the server to which you want to write.

remote address is the IP address of the computer where you want to send a datagram. To
send multicast datagrams, specify the multicast group address in this input.

socket in is a network connection refnum that uniquely identifies the UDP socket. Use XNET
UDP Socket Open or XNET UDP Socket Multicast Open to generate a refnum to wire to this
input.

data is the data to write to another UDP socket.
In an Ethernet environment, restrict the datagram to a reasonable size, such as 1,000 bytes.
UDP datagrams must be sent as a single IP packet with no retransmission. If the packet is
too large to fit in a single transmission unit of the underlying bus, the receiver might
fragment and reassemble it, which increases overhead and the chance that the data could
be lost in transit. Specific thresholds vary depending on your network.

timeout ms (25000) specifies the time, in milliseconds, that the VI waits to complete before
returning a timeout error. The default value is 25,000 ms. Wire a –1 to this input to wait
indefinitely.

error in is the error cluster input (refer to Error Handling).

Outputs

socket out is the same value as socket in.

© National Instruments 733

NI-XNET 20.5

error out is the error cluster output (refer to Error Handling).

XNET UDP Socket Read.vi

Purpose

Reads a datagram from a UDP socket.

Description

XNET UDP Socket Read » Binary reads a binary datagram from a UDP socket.

XNET UDP Socket Read » Text reads a datagram string from a UDP socket.

XNET UDP Socket Read (Binary).vi
Purpose

Reads a binary datagram from a UDP socket. This VI returns data when it receives
any bytes. When the VI receives no bytes, it waits up to the timeout period you
specify.

Format

Inputs

socket in is a network connection refnum that uniquely identifies the UDP socket. Use XNET
UDP Socket Open or XNET UDP Socket Multicast Open to generate a refnum to wire to this
input.

max size (548) is the maximum number of bytes to read. You should wire the largest value
your application expects. This number must be greater than or equal to the size of the
actual datagram. The default is 548 bytes.

ni.com734

NI-XNET 20.5

timeout ms (25000) specifies the time, in milliseconds, that the VI waits to complete before
reporting a timeout error. The default value is 25,000. Wire a –1 to this input to wait
indefinitely.

error in is the error cluster input (refer to Error Handling).

Outputs

socket out is the same value as socket in.

data is data read from the UDP datagram.

error out is the error cluster output (refer to Error Handling).

remote port is the port of the UDP socket that sent the datagram.

remote address is the IP address of the computer where a datagram originates.

XNET UDP Socket Read (Text).vi
Purpose

Reads a string datagram from a UDP socket. This VI returns data when it receives any
bytes. When the VI receives no bytes, it waits up to the timeout period you specify.

Format

Inputs

socket in is a network connection refnum that uniquely identifies the UDP socket. Use XNET
UDP Socket Open or XNET UDP Socket Multicast Open to generate a refnum to wire to this
input.

max size (548) is the maximum number of bytes to read. You should wire the largest value
your application expects. This number must be greater than or equal to the size of the
actual datagram. The default is 548 bytes.

© National Instruments 735

NI-XNET 20.5

timeout ms (25000) specifies the time, in milliseconds, that the VI waits to complete before
reporting a timeout error. The default value is 25,000. Wire a –1 to this input to wait
indefinitely.

error in is the error cluster input (refer to Error Handling).

Outputs

socket out is the same value as socket in.

data is data read from the UDP datagram.

error out is the error cluster output (refer to Error Handling).

remote port is the port of the UDP socket that sent the datagram.

remote address is the IP address of the computer where a datagram originates.

XNET UDP Socket Close.vi

Purpose

Closes a UDP socket and frees system resources.

Format

Inputs

socket is a network connection refnum that uniquely identifies the connection.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

ni.com736

NI-XNET 20.5

XNET UDP Socket Multicast Open.vi

Purpose

Opens a UDP multicast socket to send a single datagram to multiple receivers in
parallel on the port you specify. UDP multicasting may have less overhead in code
and on the network than unicasting because multicasting does not require the
sender to maintain a list of clients or send multiple copies of the data to each client.

Description

XNET UDP Socket Multicast Open » Read Only subscribes to a UDP multicast group
with read-only access on the port you specify.

XNET UDP Socket Multicast Open » Read Write subscribes to a UDP multicast group
with read and write access on the port you specify.

XNET UDP Socket Multicast Open » Write Only opens a UDP multicast socket with
write-only access on the port you specify.

XNET UDP Socket Multicast Open (Read Only).vi
Purpose

Subscribes to a UDP multicast group with read-only access on the port you specify.

Format

Inputs

stack is the XNET IP Stack in which the new socket is opened.

local port is the local port you want to use to receive UDP datagrams. By default (0), this VI
dynamically chooses an available UDP port for communication.

© National Instruments 737

NI-XNET 20.5

multicast address is the IP address of the multicast group you want to join. This terminal is
required and returns an error if you do not specify an address. Multicast group addresses
are in the 224.0.0.0 to 239.255.255.255 range.

error in is the error cluster input (refer to Error Handling).

local interface identifies a specific virtual interface in the IP Stack on which to bind the
socket. The virtual interface is identified using one of the following (as returned from XNET
IP Stack Get Info.vi):

■ virtual interface name (recommended)

■ string that represents the decimal value of ifIndex

■ IP address (see Supported Features)

This input is optional. If local interface is empty (default), the socket is bound to any virtual
interface in the IP stack.

Outputs

socket is a network connection refnum that uniquely identifies the connection. Use this
value to refer to this connection in subsequent VI calls.

actual local port is the port number the VI used.
If you wire 0 to the local port input, this VI dynamically chooses an available UDP port that
the XNET IP stack determines is valid for use. If you wire a value other than 0 to the
local port input, actual local port returns the input port number.

error out is the error cluster output (refer to Error Handling).

XNET UDP Socket Multicast Open (Read Write).vi
Purpose

Subscribes to a UDP multicast group with read and write access on the port you
specify.

ni.com738

NI-XNET 20.5

Format

Inputs

stack is the XNET IP Stack in which the new socket is opened.

local port is the local port you want to use to send and receive UDP datagrams. By default
(0), this VI dynamically chooses an available UDP port for communication.

multicast address is the IP address of the multicast group you want to join. This terminal is
required and returns an error if you do not specify an address. Multicast group addresses
are in the 224.0.0.0 to 239.255.255.255 range.

time-to-live Number of routers, minus 1, to forward a datagram. The time-to-live (TTL)
value applies to all datagrams sent using this socket. Setting a larger TTL value than your
application requires can cause high network utilization. the default value is 1.
The following table lists the action that occurs to a multicast datagram when you specify a
value for the time-to-live input.

0 The datagram remains on the host computer
.

1 Hubs/repeaters and bridges/switches forwar
d the datagram to every client on the same l
ocal subnet that subscribes to that IP addres
s. Routers do not forward the datagram.

>1 Sends the datagram, and routers forward it t
hrough the number of layers that time-to-liv
e is set to, minus 1. Because most routers are
not configured by default to forward multica
st packets, you may need to configure your r
outer to forward multicast packets.

error in is the error cluster input (refer to Error Handling).

local interface identifies a specific virtual interface in the IP Stack on which to bind the
socket. The virtual interface is identified using one of the following (as returned from XNET
IP Stack Get Info.vi):

© National Instruments 739

NI-XNET 20.5

■ virtual interface name (recommended)

■ string that represents the decimal value of ifIndex

■ IP address (see Supported Features)

This input is optional. If local interface is empty (default), the socket is bound to any virtual
interface in the IP stack.

Outputs

socket is a network connection refnum that uniquely identifies the connection. Use this
value to refer to this connection in subsequent VI calls.

actual local port is the port number the VI used.
If you wire 0 to the local port input, this VI dynamically chooses an available UDP port that
the XNET IP stack determines is valid for use. If you wire a value other than 0 to the
local port input, actual local port returns the input port number.

error out is the error cluster output (refer to Error Handling).

XNET UDP Socket Multicast Open (Write Only).vi
Purpose

Opens a UDP multicast socket with write-only access on the port you specify.

Format

Inputs

stack is the XNET IP Stack in which the new socket is opened.

local port is the local port you want to use to send UDP datagrams. By default (0), this VI
dynamically chooses an available UDP port for communication.

ni.com740

NI-XNET 20.5

time-to-live Number of routers, minus 1, to forward a datagram. The time-to-live (TTL)
value applies to all datagrams sent using this socket. Setting a larger TTL value than your
application requires can cause high network utilization. the default value is 1.
The following table lists the action that occurs to a multicast datagram when you specify a
value for the time-to-live input.

0 The datagram remains on the host computer
.

1 Hubs/repeaters and bridges/switches forwar
d the datagram to every client on the same l
ocal subnet that subscribes to that IP addres
s. Routers do not forward the datagram.

>1 Sends the datagram, and routers forward it t
hrough the number of layers that time-to-liv
e is set to, minus 1. Because most routers are
not configured by default to forward multica
st packets, you may need to configure your r
outer to forward multicast packets.

error in is the error cluster input (refer to Error Handling).

local interface identifies a specific virtual interface in the IP Stack on which to bind the
socket. The virtual interface is identified using one of the following (as returned from XNET
IP Stack Get Info.vi):

■ virtual interface name (recommended)

■ string that represents the decimal value of ifIndex

■ IP address (see Supported Features)

This input is optional. If local interface is empty (default), the socket is bound to any virtual
interface in the IP stack.

Outputs

socket is a network connection refnum that uniquely identifies the connection. Use this
value to refer to this connection in subsequent VI calls.

actual local port is the port number the VI used.

© National Instruments 741

NI-XNET 20.5

If you wire 0 to the local port input, this VI dynamically chooses an available UDP port that
the XNET IP stack determines is valid for use. If you wire a value other than 0 to the
local port input, actual local port returns the input port number.

error out is the error cluster output (refer to Error Handling).

Property Node (UDP)

Format

Description

Properties in the XNET UDP Socket property node can be used with the XNET UDP
Socket VIs. The most common usage is after opening or creating a socket (e.g., XNET
UDP Socket Open.vi), and prior to reading/writing data with the socket. All
properties are optional.

Receive Buffer Size
Data Type Direction Required? Default

Read/Write No Refer to Description

Property Class

XNET UDP Socket

Short Name

RxBuf

Description

Maximum size of the socket's receive buffer, expressed as bytes. The default value is
determined by the NI-XNET driver, toward the goal of meeting most use cases. In
Berkeley sockets APIs, this property corresponds to SO_RCVBUF.

ni.com742

NI-XNET 20.5

Receive Data Available
Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET UDP Socket

Short Name

RxData

Description

Number of bytes available for Read, expressed as bytes. In Berkeley sockets APIs,
this property corresponds to SO_RXDATA.

Invoke Node

Format

Description

Methods in this node can be used with the XNET UDP Socket VIs. The most common
usage is after opening or creating a socket (e.g., XNET UDP Socket Open.vi), and
prior to reading/writing data with the socket. All methods are optional.

Each method node has terminals for XNET UDP Socket input/output and error in/
out.

Available invoke methods are listed below.

Method Description
Add Group Member Add a member to join a multicast group.
Remove Group Member Remove a member from a multicast group.

© National Instruments 743

NI-XNET 20.5

Add Group Member
Purpose

Add a group member to a multicast group.

Inputs

multicast address specifies the multicast address. See Supported Features.

local interface identifies a specific virtual interface in the IP Stack on which to add multicast
group membership. The virtual interface is identified using one of the following (as
returned from XNET IP Stack Get Info.vi):

■ virtual interface name (recommended)

■ string that represents the decimal value of ifIndex

■ IP address (see Supported Features)

Description

The XNET UDP Socket Multicast Open.vi adds membership to a single multicast
group. Use the Add Group Membership method to add membership to additional
multicast groups on a single socket.

In Berkeley sockets APIs, this property corresponds to IP_ADD_MEMBERSHIP.

Remove Group Member
Purpose

Remove (drop) member from a multicast group.

Inputs

multicast address specifies the multicast address. See Supported Features.

local interface identifies a specific virtual interface in the IP Stack on which to remove
multicast group membership. The virtual interface is identified using one of the following
(as returned from XNET IP Stack Get Info.vi):

ni.com744

NI-XNET 20.5

■ virtual interface name (recommended)

■ string that represents the decimal value of ifIndex

■ IP address (see Supported Features)

Description

Use this method to remove memberships that were added using the Add Group
Membership method.

In Berkeley sockets APIs, this property corresponds to IP_DROP_MEMBERSHIP.

XNET IP Stack Clear.vi

Purpose

Clears (closes) the XNET IP Stack.

Format

Inputs

stack is the XNET IP Stack to clear.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

XNET IP Stack Wait.vi

Purpose

Waits for interface(s) in the XNET IP Stack to be ready for communication.

© National Instruments 745

NI-XNET 20.5

Format

Inputs

stack in is the XNET IP Stack.

local interface identifies a specific virtual interface in the IP Stack on which to wait for
configuration. If local interface is empty (default), this VI waits for all virtual interfaces in the
IP Stack to successfully configure. If local interface is not empty, this VI waits for a specific
virtual interface. The virtual interface is identified using one of the following (as returned
from XNET IP Stack Get Info.vi):

■ virtual interface name (recommended)
■ string that represents the decimal value of ifIndex
■ unicast IP address from the IP address list

timeout ms (60000) is the time, in milliseconds, that the VI waits to complete before
returning a timeout error. The default is 60,000 ms. Wire a -1 to this input to wait
indefinitely.

error in is the error cluster input (refer to Error Handling).

Outputs

stack out is the same value as stack in.

error out is the error cluster output (refer to Error Handling).

Description

If an interface in the IP Stack acquires its unicast IP address dynamically (for
example, using link-local addressing), it can take time for this acquisition to
complete after creation of the IP Stack. This VI enables the application to wait for an
interface to be completely configured before creating sockets.

ni.com746

NI-XNET 20.5

XNET IP Stack Get Info.vi

Purpose

Get runtime information for an XNET IP Stack.

Format

Inputs

stack in is the XNET IP Stack.

error in is the error cluster input (refer to Error Handling).

Outputs

stack out is the same value as stack in.

stack info returns an array of LabVIEW clusters.

Each array element corresponds to a virtual interface in the IP stack.

A virtual interface represents a distinct combination of XNET Interface, MAC address, and
VLAN identifier. Each virtual interface has one or more IP addresses.

The cluster elements are:

virtual interface name is the name of the virtual interface from IP stack configuration.

XNET interface is NI-XNET's name for the physical Automotive Ethernet port.

operational status indicates whether the XNET interface's communication status is
Up (ready) or Down.

MAC address is the individual (unicast) EUI-48 MAC address assigned to the virtual
interface as specified in IP stack configuration. The MAC address is a string of six
octets. Each octet consists of two hexadecimal (0-9, A-F) digits and is separated by
colon. For example, 00:80:2F:AB:CD:EF.

© National Instruments 747

NI-XNET 20.5

MTU is the Maximum Transmission Unit for the virtual interface, which is the
maximum number of bytes in the Ethernet frame payload.

ifIndex is an index number that uniquely identifies the virtual interface in the IP stack.
Use ifIndex in older communication protocols that cannot identify an interface using
a string.

IP address list returns an array of unicast IP addresses assigned to the virtual
interface.

The cluster elements are:

address family indicates whether the IP address is IPv4 or IPv6. Refer to
Supported Features for a list of supported address families.

address returns the IP unicast address using the standard string syntax for an
IP address.

subnet mask returns the subnet mask using the standard string syntax for an
IP address.

prefix length is the prefix length as specified by IP address standards.

gateway address list returns an array of gateway addresses assigned to the virtual
interface.

The cluster elements are:

address family indicates whether the IP address is IPv4 or IPv6. Refer to
Supported Features for a list of supported address families.

address returns the gateway address using the standard string syntax for an IP
address.

error out is the error cluster output (refer to Error Handling).

Description

The organization of this information is similar to the configuration passed into XNET
IP Stack Create.vi, but this VI provides runtime information that does not exist in
that configuration. For example, if the configuration specifies using the link-local
addressing protocol to acquire an IP address, this VI's runtime information returns
the actual IP address that was acquired using link-local addressing.

ni.com748

NI-XNET 20.5

Controls
This palette provides front panel controls for NI-XNET. You drag a control to the front
panel of your VI.

Typically, you use I/O name controls to select a name during configuration, and the
name is used at run time. For example, prior to running a VI, you can use XNET
Signal I/O name controls to select signals to read. When the user runs the VI, the
selected signals are passed to the XNET Create Session VI, followed by calls to the
XNET Read VI to read and display data for the selected signals.

As an alternative, you also can use I/O name controls to select a name at run time.
This applies when the VI always is running for the end user, and the VI uses distinct
stages for configuration and I/O. Using the previous example, the user clicks XNET
Signal I/O name controls to select signals during the configuration stage. Next, the
user clicks a Go button to proceed to the I/O stage, in which the XNET Create Session
VI and XNET Read VI are called.

XNET Session Control
This control provides the control form of the XNET Session I/O name. You drag a
control to the front panel of your VI, so that the user of the VI can select a name. For
a complete description, refer to XNET Session I/O Name.

XNET Database Control

This control provides the control form of the XNET Database I/O name. You drag a
control to the front panel of your VI, so that the user of the VI can select a name. For
a complete description, refer to XNET Database I/O Name.

XNET Cluster Control

This control provides the control form of the XNET Cluster I/O name. You drag a
control to the front panel of your VI, so that the user of the VI can select a name. For
a complete description, refer to XNET Cluster I/O Name.

© National Instruments 749

NI-XNET 20.5

XNET ECU Control

This control provides the control form of the XNET ECU I/O name. You drag a control
to the front panel of your VI, so that the user of the VI can select a name. For a
complete description, refer to XNET ECU I/O Name.

XNET Frame Control

This control provides the control form of the XNET Frame I/O name. You drag a
control to the front panel of your VI, so that the user of the VI can select a name. For
a complete description, refer to XNET Frame I/O Name.

XNET Signal Control

This control provides the control form of the XNET Signal I/O name. You drag a
control to the front panel of your VI, so that the user of the VI can select a name. For
a complete description, refer to XNET Signal I/O Name.

XNET LIN Schedule Control

This control provides the control form of the XNET LIN Schedule I/O name. You drag
a control to the front panel of your VI, so that the user of the VI can select a name.
For a complete description, refer to XNET LIN Schedule I/O Name.

XNET LIN Schedule Entry Control

This control provides the control form of the XNET LIN Schedule Entry I/O name. You
drag a control to the front panel of your VI, so that the user of the VI can select a
name. For a complete description, refer to XNET LIN Schedule Entry I/O Name.

XNET Interface Control

This control provides the control form of the XNET Interface I/O name. You drag a
control to the front panel of your VI, so that the user of the VI can select a name. For
a complete description, refer to XNET Interface I/O Name.

ni.com750

NI-XNET 20.5

XNET Terminal Control

This control provides the control form of the XNET Terminal I/O name. You drag a
control to the front panel of your VI, so that the user of the VI can select a name. For
a complete description, refer to XNET Terminal I/O Name.

Appendix
This section includes additional information on topics such as built applications,
error and fault handling, specific vehicle communication protocols, I/O names, and
so on.

Additional Information

Creating a Built Application

Cyclic and Event Timing

Error Handling

Fault Handling

Multiplexed Signals

Raw Frame Format

Required Properties

Special Frames

State Models

TDMS

Timescales

CAN: Additional Topics

NI-CAN

CAN Timing Type and Session Mode

CAN Transceiver State Machine

FlexRay: Additional Topics

© National Instruments 751

NI-XNET 20.5

FlexRay Timing Type and Session Mode

Protocol Data Units (PDUs) in NI-XNET

FlexRay Startup/Wakeup

LIN: Additional Topics

LIN Frame Timing and Session Mode

XNET I/O Names

Additional Information
This section includes additional information that applies to all vehicle
communication protocols.

Creating a Built Application
NI-XNET supports creation of a built application using a LabVIEW project.

For a LabVIEW Real-Time (RT) target, the built application typically is used as a
startup application. For information about creating a built application for LabVIEW
RT, refer to Using LabVIEW Real-Time.

For a Windows target (My Computer), the built application is an executable (.exe).
You typically distribute the executable to multiple end users, which means you copy
to multiple computers (targets).

This topic describes creating a built application for Windows that uses NI-XNET.

Create the executable by right-clicking Build Specifications under My Computer,
then select New»Application (EXE).

Sessions

If you created NI-XNET sessions under My Computer, the configuration for those
sessions is generated to the following text file:

nixnetSession.txt
This text file is in the same folder as the executable (.exe).

ni.com752

NI-XNET 20.5

You must include this text file as part of your distribution. Copy this text file along
with the .exe, always to the same folder.

If you create sessions at run time using the XNET Create Session VI, those sessions
are standalone (no text file required).

Databases

If your application uses the in-memory database (:memory:), that database is
standalone (no file or alias required). For more information about the in-memory
database, refer to the Create In Memory section of Database Programming.

If your application accesses a database file using a filepath (not alias), you must
ensure that the file exists at the same filepath on every computer. Because LabVIEW
uses absolute filepaths (for example, c:\MyDatabases\Database5.dbc), this
implies that every computer that runs the executable must use the same file system
layout.

If your application accesses a database file using an alias, you must add the alias
using the XNET Database Add Alias VI. You can use this VI as part of an installation
process or call it within the executable itself. Using an alias provides more flexibility
than a filepath. For example, your application can check for the required file at a
likely filepath and add the alias if found, or otherwise pop up a dialog for the end
user to browse to the correct filepath (then add an alias).

Cyclic and Event Timing
For all embedded network protocols (for example, CAN, FlexRay, and LIN), the
transmit of a specific frame is classified as one of the following:

■ Cyclic: The frame transmits at a cyclic (periodic) rate, regardless of whether
the application has updated its payload data. The advantage of cyclic
behavior is that the application does not need to worry about when to
transmit, yet data changes arrive at other ECUs within a well-defined
deadline.
■ Event: The frame transmits when a specific event occurs. This event often is
simply that the application updated the payload data, but other events are

© National Instruments 753

NI-XNET 20.5

possible. The advantage is that the frame transmits on the network only as
needed.

The following sections describe how the cyclic and event concept apply to each
protocol.

Within NI-XNET, a Cyclic frame begins transmit as soon as the session starts,
regardless of whether you called the XNET Write VI. The call to the XNET Write VI is
the event that drives an Event frame transmit.

CAN

For each frame, the XNET Frame CAN:Timing Type property determines whether the
network transfer is cyclic or event:

■ Cyclic Data: This is typical Cyclic frame behavior.
■ Event Data: This is typical Event frame behavior.
■ Cyclic Remote: Because one ECU in the network transmits the CAN remote
frame at a cyclic (periodic) rate, the resulting CAN data frame also is cyclic.
■ Event Remote: One ECU in the network transmits the CAN remote frame
based on an event. Another ECU responds with the corresponding CAN data
frame. In NI-XNET, the XNET Write VI generates the event to transmit the CAN
remote frame.

FlexRay

For each frame, the XNET Frame FlexRay:Timing Type property determines whether
the network transfer is cyclic or event:

■ Cyclic (in static segment): No null frame transmits, so this is typical Cyclic
frame behavior.
■ Event (in static segment): The null frame indicates no event.
■ Cyclic (in dynamic segment): The frame transmits each FlexRay cycle. This
configuration is not common for the dynamic segment, which typically is for
Event frames only.
■ Event (in dynamic segment): This is typical Event frame behavior.

ni.com754

NI-XNET 20.5

LIN

As described in the Using LIN topic, the currently running schedule entries
determine each LIN frame's timing. In each schedule entry, the master transmits a
single frame header, and the payload of one (or more) frames can follow.

For each schedule entry, the XNET LIN Schedule Entry Type property determines
how the associated frames transmit. The schedule Run Mode also contributes to the
cyclic or event behavior. Similar to database properties, you cannot change Run
Mode after a session is created.

■ Cyclic: Unconditional type, Continuous run mode: This is typical Cyclic frame
behavior.
■ Event: Unconditional type, Once run mode: Although the frame transmits
unconditionally, the schedule runs once based on an event, so this is Event
frame behavior. In NI-XNET, the XNET Write (State LIN Schedule Change) VI
changes the mode to the run-once schedule. This effectively generates the
event to transmit the LIN frame.
■ Event: Sporadic type: In this schedule entry, the master can transmit one of
multiple Event-driven frames. In NI-XNET, the XNET Write VI writes signal or
frame values to generate the event to transmit. Because the entry itself is
Event, this behavior applies regardless of the schedule's run mode.
■ Event: Event-triggered type: In this schedule entry, multiple slave ECUs can
transmit in the entry, each using an Event-driven frame. In NI-XNET, the XNET
Write VI writes signal or frame values to generate the event to transmit.
Because the entry itself is Event, this behavior applies regardless of the
schedule's run mode.

Error Handling
In NI-XNET, the term error refers to a problem that occurs within the execution of a
node in the block diagram (VI or property node). The term fault refers to a problem
that occurs asynchronously to execution of an NI-XNET node. For example, an
invalid parameter to an XNET Read VI is an error, but a communication problem on
the network is a fault. For more information about faults, refer to Fault Handling.

LabVIEW uses error clusters to pass error information through each VI.

© National Instruments 755

NI-XNET 20.5

NI-XNET uses the error in and error out clusters in each VI and property node. The
elements of these clusters are:

status is true if error occurred or false if success or warning occurred.

code is a number that identifies the error or warning. A value of 0 means success. A negative
value means error: The VI did not perform the intended operation. A positive value means
warning: The VI performed the intended operation, but something occurred that may
require your attention. For a description of the code, right-click the error cluster and select
Explain Error or Explain Warning. You also can wire the error cluster to the LabVIEW Simple
Error Handler VI to obtain the description at runtime.

source identifies the VI where the error or warning occurred.

For most NI-XNET VIs, if error in indicates an error, the VI passes the error
information to error out and does not perform the intended operation. In other
words, NI-XNET VIs do not execute under error conditions. The exceptions to this
behavior are the XNET Clear VI and XNET Database Close VI. These VIs always
perform the intended operation of closing or otherwise cleaning up, even when
error in indicates an error.

If error in indicates success or warning, the NI-XNET VI executes and returns the
result of its operation to error out.

The error in cluster is an optional input to a VI, with a default value of no error
(status false and code 0).

Fault Handling
In NI-XNET, the term error refers to a problem that occurs within the execution of a
node in the block diagram (VI or property node). The term fault refers to a problem
that occurs asynchronously to execution of an NI-XNET node. For example, passing
an invalid session to a VI is an error, but a communication problem on the network is
a fault. For more information about errors, refer to Error Handling.

Examples of faults include:

■ The CAN, FlexRay, and LIN protocol standards each specify mechanisms to
detect communication problems on the network. These problems are
reflected in the communication state and other information.

ni.com756

NI-XNET 20.5

■ If you pass invalid data to the XNET Write VI, in some cases the problem
cannot be detected until the data is about to be transmitted. Because the
transmission occurs after the XNET Write VI returns, this is reported as a fault.

NI-XNET reports faults from a special XNET Read VI instance for the communication
state. For CAN, this is the XNET Read (State CAN Comm) VI, for FlexRay this is the
XNET Read (State FlexRay Comm) VI, and for LIN this is the XNET Read (State LIN
Comm) VI.

The information returned from these VIs is not limited to faults. Each VI provides
information about the current state of communication on the network. Because the
XNET Read VI executes quickly, it often is useful within the primary loop of your
application to ascertain the current network state.

Each XNET Read VI returns a cluster with various indicators. Most of the indicators
provide state information that the protocol specifies, including faults
(communication stopped). Faults specific to NI-XNET are reported in fault? and fault

code. fault? is similar to the status of a LabVIEW error cluster, and fault code is
similar to the code of a LabVIEW error cluster.

To detect a fault without stopping the execution of your VIs, you read and interpret
the communication state separately from the LabVIEW error cluster flow. For
example, you may want to intentionally introduce noise into CAN cables to test how
your ECU behaves when the CAN bus off state occurs. The following figure shows an
example block diagram for this method.

Restart on CAN Bus Off State
The block diagram detects the CAN bus off state, which means that communication
stopped due to numerous problems on the bus. When CAN bus off state is detected,
the block diagram increments a count and restarts the NI-XNET interface. It then

© National Instruments 757

NI-XNET 20.5

waits for the interface to be reintegrated with the bus before continuing. This
process of reintegrating into a CAN bus after going bus off is known as bus off
recovery. Because the CAN bus off fault was not propagated as an error, the test
continues to execute.

To detect a fault and propagate it to an error to break the LabVIEW flow, use a
diagram similar to the following example.

Propagating CAN Faults to an Error
The block diagram in the figure above first checks for CAN bus off state, which
indicates that communication stopped due to a serious problem in the CAN protocol
state machine (data link layer). Next, the block diagram checks for a fault in the CAN
transceiver (physical layer). Finally, the block diagram checks for a fault in NI-XNET.
If any of these three faults are detected, it overwrites the previous error in the
standard LabVIEW error cluster. If a fault or error occurs, execution of subsequent VIs
ceases, effectively stopping the LabVIEW application execution.

Multiplexed Signals
Multiplexed signals do not appear in every instance of a frame; they appear only if
the frame indicates this.

For this reason, a frame can contain a multiplexer signal and several subframes. The
multiplexer signal is at most 16 bits long and contains an unsigned integer number

ni.com758

NI-XNET 20.5

that identifies the subframe instance in the instance of a frame. The subframes
contain the multiplexed signals.

This means the frame signal content is not fixed (static), but can change depending
on the multiplexer signal (dynamic) value.

A frame can contain both a static and a dynamic part.

Creating Multiplexed Signals

In the API
Creating multiplexed signals in the API is a two-step process:

1. Create the multiplexer signal and subframes as children of the frame object.
The subframes are assigned the mode value; that is, the value of the
multiplexer signal for which this subframe becomes active.

2. Create the multiplexed signals as children of their respective subframes. This
automatically assigns the signals as dynamic signals to the subframe's parent
frame.

In the NI-XNET Database Editor
You create multiplexed signals simply by changing their Signal Type to Multiplexed
and assigning them mode values. The Database Editor handles subframe
manipulation completely behind the scenes.

Reading Multiplexed Signals

You can read multiplexed signals like static signals without any additional effort.
Because the frame read also contains the multiplexer signal, the NI-XNET driver can
decide which signals are present in the frame and return new values for only those
signals.

Writing Multiplexed Signals

Writing multiplexed signals needs additional consideration. As writing signals
results in a frame being created and sent over the network, writing multiplexed
signals requires the multiplexer signal be part of the writing session. This is needed

© National Instruments 759

NI-XNET 20.5

for the NI-XNET driver to decide which set of dynamic signals a certain frame
contains. Only the subframe dynamic signals selected with the multiplexer signal
value are written to the frame; the values for the other dynamic signals of that frame
are ignored.

Support for Multiplexed Signals

Multiplexed signals are currently supported for CAN only. FlexRay does not support
them.

Raw Frame Format
This topic describes the raw data format for frames. The TDMS file format, XNET
Read (Frame Raw) VI, and XNET Write (Frame Raw) VI use this format. The raw frame
format is ideal for log files, because you can transfer the data between NI-XNET and
the file with very little conversion. The raw frame format consists of one or more
frames encoded in a sequence of bytes. The encoding can be different for each
protocol supported by NI-XNET.

CAN, FlexRay, and LIN

This format is used for CAN, FlexRay, and LIN interfaces. This includes frames for SAE
J1939 and CAN FD. Refer to the NI-XNET log file examples for VIs that convert raw
frame data to/from LabVIEW clusters for CAN, FlexRay, or LIN frames. Each frame is
encoded as one Base Unit, followed by zero or more Payload Units.

Base Unit
In the following table, Byte Offset refers to the offset from the frame start. For
example, if the first frame is in raw data bytes 0–23, and the second frame is in bytes
24–47, the second frame Identifier starts at byte 32 (24 + Byte Offset 8).

Element Byte Offset Description
Timestamp 0 to 7 64-bit timestamp in 100 ns increments.

The timestamp format is absolute. The 64-bit element contains the
number of 100 ns intervals that have elapsed since 1 January 1601 0

ni.com760

NI-XNET 20.5

0:00:00 Coordinated Universal Time (UTC). In previous releases, this
timestamp was called nxTimestamp_t.

This element contains a 64-bit unsigned integer (U64) in native byte
order. For little-endian computing platforms (for example, Windows)
, Byte Offset 0 is the least significant byte. For big-endian computing
platforms (for example, CompactRIO with a PowerPC), Byte Offset 0
is the most significant byte.

The LabVIEW absolute timestamp data type is different than this U6
4 timestamp. NI-XNET includes a pair of VIs to convert between this
U64 timestamp format and the LabVIEW timestamp format. The NI-X
NET VIs handle all time format and byte order aspects. For more info
rmation, refer to the NI-XNET examples for log file access.

Identifier 8 to 11 The frame identifier.
This element contains a 32-bit unsigned integer (U32) in native byte
order.

When Type specifies a CAN frame, bit 29 (hex 20000000) indicates th
e CAN identifier format: set for extended, clear for standard. If bit 29
is clear, the lower 11 bits (0–10) contain the CAN frame identifier. If b
it 29 is set, the lower 29 bits (0–28) contain the CAN frame identifier.

When Type specifies a FlexRay frame, the lower 16 bits contain the sl
ot number.

When Type specifies a LIN frame, this element contains a number in
the range 0–63 (inclusive). This number is the LIN frame's ID (unprot
ected).

For SAE J1939 frames, the PGN and address fields are mapped to th
e Extended CAN identifier and written in the same way as for CAN.

All unused bits are 0.

Type 12 The frame type.
This element specifies the fundamental frame type. The Identifier, Fl
ag, and Info element interpretation is different for each type.

The upper 3 bits of this element specify the protocol. The valid value
s in decimal are:

0 CAN
1 FlexRay
2 LIN

© National Instruments 761

NI-XNET 20.5

6 J1939
7 Special

The lower 5 bits of this element contain the specific type.

For information about the specific CAN Type values, refer to the
XNET Read (Frame CAN) VI.

For information about the specific FlexRay Type values, refer to the
XNET Read (Frame FlexRay) VI.

For information about the specific LIN Type values, refer to the XNET
Read (Frame LIN) VI.

Special values specify features that are not related to the protocol or
bus traffic. For more information about special frames, refer to
Special Frames.

Flags 13 Eight Boolean flags that qualify the frame type.
Bit 7 (hex 80) is protocol independent (supported in CAN, FlexRay, a
nd LIN frames). If set, the frame is echoed (returned from the XNET
Read VI after NI-XNET transmitted on the network). If clear, the fram
e was received from the network (from a remote ECU).

For FlexRay frames:

■ Bit 0 is set if the frame is a Startup frame
■ Bit 1 is set if the frame is a Sync frame
■ Bit 2 specifies the frame Preamble bit
■ Bit 4 specifies if the frame transfers on Channel A
■ Bit 5 specifies if the frame transfers on Channel B

For LIN frames:

■ Bit 0 is set if the frame occurred in an event-triggered entry (
slot). When bit 0 is set, the Info element contains the event-tri
ggered frame ID, and the Identifier element contains the Unco
nditional ID from the first payload byte.

All unused bits are zero.

Info 14 Information that qualifies the frame Type.
This element is not used for CAN.

ni.com762

NI-XNET 20.5

For FlexRay frames, this element provides the frame cycle count (0–
63).

For LIN frames read for a non-stream input session, if bit 0 of the Fla
gs element is clear, the Info element is unused (0). If bit 0 of the Flag
s element is set (event-triggered entry), the Info element contains th
e event-triggered frame ID, and the Identifier element contains the U
nconditional ID from the first payload byte.

For LIN frames read for a stream input session, if
Interface:LIN:Checksum to Input Stream? is false (default), the Info e
lement contains 0 for each frame. If true, the Info element contains t
he received checksum for each frame.

For SAE J1939 frames, the three lowest bits of this element contain t
he three highest bits of the PayloadLength.

PayloadLengt
h

15 The PayloadLength indicates the number of valid data bytes in Paylo
ad.
For standard CAN and LIN frames, PayloadLength cannot exceed 8. B
ecause this base unit always contains 8 bytes of payload data, the e
ntire frame is contained in the base unit, and no additional payload
units exist.

For CAN FD frames, PayloadLength can be 0–8, 12, 16, 20, 24, 32, 48,
or 64.

For FlexRay frames, PayloadLength is 0–254 bytes.

For SAE J1939 frames, PayloadLength is 0–1785 bytes; the low 8 bits
are in this element, and the high three bits are found in the low bits
of the Info field.

If PayloadLength is 0–8, only the base unit exists. If PayloadLength is
9 or greater, one or more payload units follow the base unit. Additio
nal payload units are provided in increments of 8 bytes, to optimize
efficiency for DMA transfers. For example, if PayloadLength is 12, byt
es 0–7 are in the base unit Payload, bytes 8–11 are in the first half of
the next payload unit, and the last 4 bytes of the next payload unit ar
e ignored.

In other words, each raw data frame can vary in length. You can calc
ulate each frame size (in bytes) using the following pseudocode:

 U16 FrameSize; // maximum 272 for largest FlexRay fra
me

© National Instruments 763

NI-XNET 20.5

 FrameSize = 24; // 24 byte base unit
 if (PayloadLength > 8)

FrameSize = FrameSize +
 (U16)(PayloadLength - 1) AND 0xFFF8;

The last pseudocode line subtracts 1 and truncates to the nearest m
ultiple of 8 (using bitwise AND). This adds bytes for additional paylo
ad units. For example, PayloadLength of 9 through 16 requires one a
dditional payload unit of 8 bytes.

The NI-XNET example code helps you handle the variable-length fra
me encoding details.

Payload 16 to 23 This element always uses 8 bytes in the log file, but PayloadLength d
etermines the number of valid bytes.

Payload Unit
The base unit PayloadLength element determines the number of additional payload
units (0–31).

Element Byte Offset Description
Payload 0 to 7 This element always uses 8 byt

es in the log file, but PayloadLe
ngth determines the number of
valid bytes.

Ethernet

This format is used for Ethernet interfaces. All fields use big-endian byte order (most
significant byte first), also known as network order.

In the following table, Byte Offset refers to the offset from the beginning of the
frame. For example, if the first frame is in raw data bytes 0 127, and the second
frame is in bytes 128 255, the second frame's Source MAC Address starts at offset
156 (128 + Byte Offset 28).

The following table specifies the overall frame format, including header fields that
are specific to XNET (e.g., timestamps).

Field Byte Offset Description

ni.com764

NI-XNET 20.5

Length 0 to 1 This unsigned 16-bit integer pro
vides the length of the entire fra
me, including two bytes for the
Length field itself.
The length of Frame Data (IEEE
Std 802.3 frame data) can be co
mputed by subtracting 28 from
this Length, to account for the fi
elds that are specific to Nationa
l Instruments (and the FCS).

Type 2 to 3 This unsigned 16-bit integer pro
vides the type of the Ethernet fr
ame.
The type is an enumerated valu
e:

Frame Data (value 0): Ethernet f
rame received or transmitted.

Local Timestamp 4 to 11 This timestamp uses XNET local
time.
This is an absolute timestamp i
n 1 nanosecond increments. Th
is 64-bit type contains the num
ber of 1 ns intervals that have el
apsed since 1 January 1970 00:
00:00 International Atomic Tim
e (TAI). The time represented by
zero corresponds to the PTP ep
och as specified in time synchro
nization protocols (e.g., IEEE St
d 802.1AS). The timestamp poin
t in the Ethernet frame occurs a
t the beginning of the first symb
ol following the start of frame d
elimiter.

Note As of 00:00:00, 1 Jan
uary 2018 UTC, UTC was b
ehind TAI by 37 seconds.

© National Instruments 765

NI-XNET 20.5

The location of the timestamp
point depends on the Port Mod
e of the session's interface. Whe
n Port Mode is Direct, the times
tamp point's location correspo
nds to time synchronization pro
tocols, using the reference plan
e marking the boundary betwe
en the port's connector (copper
wire) and PHY. When Port Mode
is Tap, the timestamp point's lo
cation is the midpoint between
the connector/PHY reference pl
ane of this session's interface a
nd the connector/PHY reference
plane of the Tap partner.

This field is ignored by XNET Wr
ite.

Network Timestamp 12 to 19 This timestamp uses network ti
me (clock of the network's time
synchronization protocol, such
as IEEE Std 802.1AS).
This is an absolute timestamp i
n 1 nanosecond increments. Th
is 64-bit type contains the num
ber of 1 ns intervals that have el
apsed since 1 January 1970 00:
00:00 International Atomic Tim
e (TAI). The time represented by
zero corresponds to the PTP ep
och as specified in time synchro
nization protocols (e.g., IEEE St
d 802.1AS). The timestamp poin
t in the Ethernet frame occurs a
t the beginning of the first symb
ol following the start of frame d
elimiter.

ni.com766

NI-XNET 20.5

Note As of 00:00:00, 1 Jan
uary 2018 UTC, UTC was b
ehind TAI by 37 seconds.

The location of the timestamp
point depends on the Port
Mode of the session's interface.
When Port Mode is Direct, the ti
mestamp point's location corre
sponds to time synchronization
protocols, using the reference p
lane marking the boundary bet
ween the port's connector (cop
per wire) and PHY. When Port M
ode is Tap, the timestamp point
's location is the midpoint betw
een the connector/PHY referenc
e plane of this session's interfac
e and the connector/PHY refere
nce plane of the Tap partner.

This field is ignored by XNET Wr
ite.

Flags 20 to 23 This 32-bit field provides Boole
an flags that qualify the frame.
Bit 0 corresponds to the lowest
bit (i.e., hex 00000001).

■ Transmit (bit 31): Boole
an value that indicates w
hether the frame occurre
d due to transmit (true) o
r not (false).

For XNET Read on the mo
nitor path:

■ When Port Mode of t
his session's interface i
s Direct, the monitor pa
th echoes each transmi
t that was submitted to

© National Instruments 767

NI-XNET 20.5

XNET Write on the end
point path.
■ When Port Mode of t
his session's interface i
s Tap, the value true in
dicates that the frame
was received by the Ta
p partner, and transmit
ted on this interface.

For XNET Read on the en
dpoint path, this flag is al
ways false.
■ Receive (bit 30): Boolea
n value that indicates wh
ether the frame occurred
due to receive (true) or no
t (false).

For XNET Read on the mo
nitor path:

■ When Port Mode of t
his session's interface i
s Direct, this flag is true
when a frame is receive
d on the interface.
■ When Port Mode of t
his session's interface i
s Tap, the value true in
dicates that the frame
was received by this int
erface, and will be tran
smitted on the Tap part
ner.

For XNET Read on the en
dpoint path, this flag is al
ways true.

ni.com768

NI-XNET 20.5

■ Network Synced (bit 23
): Contains the value of th
e Synced property at the t
ime that both timestamp
s are acquired, to specify
whether the Network Tim
estamp is synchronized t
o the network (true) or no
t (false).
■ Error (bit 16): Indicates
that an error occurred du
ring reception/transmissi
on of the frame (false = go
od frame, true = bad fram
e).

All unused bits are 0.

This field is ignored by XNET Wr
ite.

Frame Data 24 (Length-5) Data of the IEEE Std 802.3 fram
e. The Frame Data begins with t
he destination MAC address, an
d ends with the frame's last byt
e of MSDU.
The maximum length of this arr
ay is provided in the Payload Le
ngth Maximum property.

FCS (Length-4) to (Length-1) IEEE Std 802.3 Frame Check Seq
uence (FCS) that was received
with the Frame Data.
This field is ignored by XNET Wr
ite.

The following tables provide examples of the two most commonly used formats for
Frame Data on Ethernet, as specified in IEEE Std 802.3 and IEEE Std 802.1Q.

The following table shows Frame Data for an untagged frame. An untagged frame
uses the default Priority 0, default Drop Eligible false, and the default VLAN Identifier
(VID) 1.

© National Instruments 769

NI-XNET 20.5

Field Byte Offset Description
Destination MAC Address 24 to 29 This is the destination MAC add

ress as specified in IEEE Std 802
and IEEE Std 802.3. The MAC ad
dress consists of 6 bytes.

Source MAC Address 30 to 35 This is the source MAC address
as specified in IEEE Std 802 and
IEEE Std 802.3. The MAC addres
s consists of 6 bytes. For Write,
XNET can automatically popula
te this field (see Source MAC Ad
dress Auto).

EtherType 36 to 37 This 16-bit unsigned integer sp
ecifies the protocol that is used
to encode/decode bytes in the
MSDU. In other words, the Ether
Type determines what the fram
e contains. EtherType values ar
e assigned by the IEEE Registrat
ion Authority (IEEE-RA). Exampl
es include hex 0800 for Internet
Protocol version 4 (IPv4), hex 08
DD for Internet Protocol version
6 (IPv6), and hex 22F0 for IEEE S
td 1722.

MSDU 38 to (Length-5) The remaining bytes of the Fra
me Data contain the frame's pa
yload, which IEEE 802 standard
s refer to as the mac_service_d
ata_unit (MSDU). IEEE Std 802.3
specifies that the minimum len
gth of the MSDU is 46 bytes (pa
dded as necessary), and the ma
ximum length of the MSDU is 15
00 bytes. Another term used for
the maximum length of the MS
DU is the Maximum Transmissio
n Unit (MTU).

The following table shows Frame Data for a frame with a VLAN tag.

ni.com770

NI-XNET 20.5

Field Byte Offset Description
Destination MAC Address 24 to 29 This is the destination MAC add

ress as specified in IEEE Std 802
and IEEE Std 802.3. The MAC ad
dress consists of 6 bytes.

Source MAC Address 30 to 35 This is the source MAC address
as specified in IEEE Std 802 and
IEEE Std 802.3. The MAC addres
s consists of 6 bytes. For Write,
XNET can automatically popula
te this field (see Source MAC Ad
dress Auto).

Tag Protocol ID 36 to 37 IEEE Std 802.1Q specifies a tag t
hat adds information to the fra
me without changing its conten
t (i.e., EtherType or MSDU). Use
of the tag is optional. If a frame
contains a tag, this Tag Protocol
Identification (TPID) field specif
ies the encoding of the tag's inf
ormation (Tag Control Info).
TPID of hex 8100 is the Custome
r VLAN Tag (C-TAG), which is the
general-purpose tag format co
mmonly known as a VLAN tag.

Tag Control Info 38 to 39 IEEE Std 802.1Q specifies the 16
-bit Tag Control Info for a C-TAG
as follows:

■ Bits 13-15 (upper 3 bits
): Priority Code Point (PC
P). This field is commonly
known as the Priority of t
he frame. The Priority is
mapped to a traffic class,
and that traffic class dete
rmines the timing and im
portance of the frame as i
t egresses from a queue a
t each port in the switche
d Ethernet network. In ot

© National Instruments 771

NI-XNET 20.5

her words, the Priority de
termines how the frame t
ravels through queues.
■ Bit 12: Drop Eligibility I
ndicator (DEI): This field i
s commonly known as th
e Drop Eligible indicator. I
f Drop Eligible is true, the
frame can be discarded b
y metering algorithms in
preference to frames in w
hich Drop Eligible is false.
■ Bits 0-11 (lower 12 bits)
: VLAN Identifier (VID): Thi
s VLAN Identifier specifies
where the frame travels t
hrough the network (i.e.,
on which ports of a switc
h it egresses). Within a fra
me, VID value 0 indicates
a null VID, meaning that t
he tag contains only prior
ity information (commonl
y known as priority-tag).
The default VID value for
all ports is 1, and therefor
e untagged and priority-t
agged frames use the def
ault VID of 1.

EtherType 40 to 41 This 16-bit unsigned integer sp
ecifies the protocol that is used
to encode/decode bytes in the
MSDU. In other words, the Ether
Type determines what the fram
e contains. EtherType values ar
e assigned by the IEEE Registrat
ion Authority (IEEE-RA). Exampl
es include hex 0800 for Internet
Protocol version 4 (IPv4), hex 08
DD for Internet Protocol version

ni.com772

NI-XNET 20.5

6 (IPv6), and hex 22F0 for IEEE S
td 1722.

MSDU 42 to (Length-5) The remaining bytes of the Fra
me Data contain the frame's pa
yload, which IEEE 802 standard
s refer to as the mac_service_d
ata_unit (MSDU). IEEE Std 802.3
specifies that the minimum len
gth of the MSDU is 46 bytes (pa
dded as necessary), and the ma
ximum length of the MSDU is 15
00 bytes. Another term used for
the maximum length of the MS
DU is the Maximum Transmissio
n Unit (MTU).

Required Properties
When you create a new object, the properties may be:

■ Optional: The property has a default value after creation, and the
application does not need to set the property when the default value is
desired for the session.
■ Required: The property has no default value after creation. An undefined
required property returns an error from the XNET Create Session VI. A required
property means you must provide a value for the property after you create the
object.

The following NI-XNET object classes have no required properties:

■ Session
■ System
■ Device
■ Interface
■ Database
■ ECU
■ LIN Schedule

© National Instruments 773

NI-XNET 20.5

This topic lists all required database properties. Properties with a protocol prefix (for
example, FlexRay:) in the property name apply only a session that uses the
specified protocol.

The Cluster object class requires the following properties:

■ 64bit Baud Rate*
■ FlexRay:Action Point Offset
■ FlexRay:CAS Rx Low Max
■ FlexRay:Channels
■ FlexRay:Cluster Drift Damping
■ FlexRay:Cold Start Attempts
■ FlexRay:Cycle
■ FlexRay:Dynamic Slot Idle Phase
■ FlexRay:Listen Noise
■ FlexRay:Macro Per Cycle
■ FlexRay:Max Without Clock Correction Fatal
■ FlexRay:Max Without Clock Correction Passive
■ FlexRay:Minislot Action Point Offset
■ FlexRay:Minislot
■ FlexRay:Network Management Vector Length
■ FlexRay:NIT
■ FlexRay:Number of Minislots
■ FlexRay:Number of Static Slots
■ FlexRay:Offset Correction Start
■ FlexRay:Payload Length Static
■ FlexRay:Static Slot
■ FlexRay:Symbol Window
■ FlexRay:Sync Node Max
■ FlexRay:TSS Transmitter
■ FlexRay:Wakeup Symbol Rx Idle

ni.com774

NI-XNET 20.5

■ FlexRay:Wakeup Symbol Rx Low
■ FlexRay:Wakeup Symbol Rx Window
■ FlexRay:Wakeup Symbol Tx Idle
■ FlexRay:Wakeup Symbol Tx Low
■ LIN:Tick

The Frame object class requires the following properties:

■ FlexRay:Base Cycle
■ FlexRay:Channel Assignment
■ FlexRay:Cycle Repetition
■ Identifier
■ Payload Length

The Subframe object class requires the following properties:

■ Multiplexer Value

The Signal object class requires the following properties:

■ Byte Order
■ Data Type
■ Number of Bits
■ Start Bit

The LIN Schedule Entry object class requires the following properties:

■ Delay
■ Event Identifier
■ Frames

* For FlexRay, Baud Rate always is required. For CAN and LIN, when you use a Frame
I/O Stream session, you can specify Baud Rate using either the XNET Cluster 64bit
Baud Rate property or XNET Session Interface:64bit Baud Rate property. For CAN
and LIN with other session modes, the XNET Cluster Baud Rate property is required.

© National Instruments 775

NI-XNET 20.5

Special Frames
The NI-XNET driver offers a few special frames not directly used in bus
communication.

Delay Frame

A Delay frame is used during replay. When a frame with a Delay frame type is in the
stream output queue while the Interface:Output Stream Timing property is set to a
replay mode, the hardware delays for the requested time. The Delay frame fields are
as follows:

Element Description
Identifier 0 (Ignored)
Extended False (Ignored)
Echo False (Ignored)
Type Delay
Timestamp Amount of time to delay. Note that this is not an

absolute time and is not related to any other ti
me in the replay frames. A time of 0.25 (that is, L
abVIEW absolute time of 6:00:00.250PM 12/31/1
903) will delay 250 ms.

Payload Length 0
Payload Ignored

Log Trigger Frame

A Log Trigger frame is a special frame that a Frame Stream Input session can receive.
This frame is generated when a rising edge is detected on an external connection
(PXI_Trig or FrontPanel trigger). To enable the hardware to log this frame, you must
use the XNET Connect Terminals VI to connect the external connection to the
internal LogTrigger terminal. A LogTrigger frame is applicable to CAN, FlexRay, and
LIN. The Log Trigger Frame fields are as follows:

CAN Frame

Element Description

ni.com776

NI-XNET 20.5

identifier 0
extended? False
echo? False
type Log Trigger
timestamp Time when the trigger occurred
payload length 0 (may increase in the future)
payload N/A

FlexRay Frame

Element Description
slot 0
cycle count 0
startup? False
sync? False
preamble? False
ch A False
ch B False
echo? False
Type Log Trigger
Timestamp Time when the trigger occurred
Payload Length 0 (may increase in the future)
Payload N/A

LIN Frame

Element Description
identifier 0
event slot? False
event ID 0
echo? False
type Log Trigger
timestamp Time when the trigger occurred
payload length 0 (may increase in the future)

© National Instruments 777

NI-XNET 20.5

payload N/A

Start Trigger Frame

A Start Trigger frame is a special frame that a Frame Stream Input session can
receive. This frame is generated when the interface is started. (Refer to Start
Interface for more information.) To enable the hardware to log this frame, you must
enable the Interface:Start Trigger Frames to Input Stream? property. A Start Trigger
frame is applicable to CAN, FlexRay, and LIN. The fields of the Start Trigger frame are
as follows:

CAN Frame

Element Description
identifier 0
extended? False
echo? False
type Start Trigger
timestamp Time when the interface started
payload length 0 (may increase in the future)
payload N/A

LIN Frame

Element Description
identifier 0
event slot? False
event ID 0
echo? False
type Start Trigger
timestamp Time when the interface started
payload length 0 (may increase in the future)
payload N/A

ni.com778

NI-XNET 20.5

FlexRay Frame

Element Description
slot 0
cycle count 0
startup? False
sync? False
preamble? False
ch A False
ch B False
echo? False
Type Start Trigger
Timestamp Time when the interface started
Payload Length 0 (may increase in the future)
Payload N/A

Bus Error Frame

A Bus Error frame is a special frame that a Frame Stream Input session can receive.
This frame is generated when a bus error is detected on the hardware bus. To enable
the hardware to log this frame, you must enable the Interface:Bus Error Frames to
Input Stream? property. A Bus Error frame is applicable to CAN and LIN. The fields of
the Bus Error frame are as follows:

CAN Frame

Element Description
identifier 0
extended? False
echo? False
type CAN Bus Error
timestamp Time when the bus error was detected
payload length 5 (may increase in future)
payload Byte 0: CAN Comm State

0 = Error Active

© National Instruments 779

NI-XNET 20.5

1 = Error Passive
2 = Bus Off

Byte 1: TX Error Counter

Byte 2: RX Error Counter

Byte 3: Detected Bus Error

0 = None (never returned)
1 = Stuff
2 = Form
3 = Ack
4 = Bit 1
5 = Bit 0
6 = CRC

Byte 4: Transceiver Error?

0 = no error
1 = error

LIN Frame

Element Description
identifier 0
event slot? False
event ID 0
echo? False
type LIN Bus Error
timestamp Time when the bus error was detected
payload length 5 (May increase in the future)
payload Byte 0: LIN Comm State

0 = Idle
1 = Active
2 = Inactive

Byte 1: Detected Bus Error

ni.com780

NI-XNET 20.5

0 = None (never returned)
1 = UnknownId
2 = Form
3 = Framing
4 = Readback
5 = Timeout
6 = CRC

Byte 2: Identifier on bus

Byte 3: Received byte on bus

Byte 4: Expected byte on bus

LIN No Response Frame

A LIN No Response frame is a special frame that a Frame Stream Input session can
receive. This frame is generated when a header with no response is detected on the
LIN bus. To enable the hardware to log this frame, you must enable the
Interface:LIN:No Response Frames to Input Stream? property. The No Response
frame fields are as follows:

Element Description
identifier Unprotected version of header ID
event slot? False
event ID 0
echo? False
type LIN No Response
timestamp Time when the end of header (ID) was detected
payload length 0
payload N/A

State Models
The following figures show the state model for the NI-XNET session and the
associated NI-XNET interface.

© National Instruments 781

NI-XNET 20.5

The session controls the transfer of frame values between the interface (network)
and the data structures that Read or Write access. In other words, the session
controls the receipt or transmission of specific frames for the session.

The interface controls communication on the physical network cluster. Multiple
sessions can share the interface. For example, you can use one session for input on
interface CAN1 and a second session for output on interface CAN1.

Although most state transitions occur automatically when you call the XNET Read or
XNET Write VI, you can perform a more specific transition using the XNET Start and
XNET Stop VIs. If you invoke a transition that has already occurred, the transition is
not repeated, and no error is returned.

Session State Model

For a description of each state, refer to Session States. For a description of each
transition, refer to Session Transitions.

Note Starting a Signal Input Waveform session discards any previous samples and frames
(the same result as running the XNET Flush VI). Note that when calling the XNET Read (Signal
Waveform) VI for the first time on the session, the session will be started if it was not already.
Stopping the session after the first start requires the session to be explicitly started in the
future.

Interface State Model

For a description of each state, refer to Interface States. For a description of each
transition, refer to Interface Transitions.

ni.com782

NI-XNET 20.5

For more information about state models, refer to the following topics:

Session States

Session Transitions

Interface States

Interface Transitions

Session States

Stopped

The session initially is created in the Stopped state. In the Stopped state, the session
does not transfer frame values to or from the interface.

While the session is Stopped, you can change properties specific to this session. You
can set any property in the XNET Session Node except those in the Interface
category (refer to Stopped in Interface States).

While the session is Started, you cannot change properties of objects in the
database, such as frames or signals. The properties of these objects are committed
when the session is created.

Started

In the Started state, the session is started, but is waiting for the associated interface
to be started also. The interface must be communicating for the session to exchange
data on the network.

For most applications, the Started state is transitory in nature. When you call the
XNET Read, XNET Write, or XNET Start VI using defaults, the interface is started along

© National Instruments 783

NI-XNET 20.5

with the session. Once the interface is Communicating, the session automatically
transitions to Communicating without interaction by your application.

If you call the XNET Start VI with the scope of Session Only, the interface is not
started. You can use this advanced feature to prepare multiple sessions for the
interface, then start communication for all sessions together by starting the
interface (the XNET Start VI with scope of Interface Only).

Communicating

In the Communicating state, the session is communicating on the network with
remote ECUs. Frame or signal values are received for an input session. Frame or
signal values are transmitted for an output session. Your application accesses these
values using the XNET Read or XNET Write VI.

Session Transitions

Create

When the session is created, the database, cluster, and frame properties are
committed to the interface. For this configuration to succeed, the interface must be
in the Stopped state. There is one exception: You can create a Frame Stream Input
session while the interface is communicating.

There are two ways to create a session:

■ Create Session VI method: When your application calls the XNET Create
Session VI, the session is created. To ensure that all sessions for the interface
are created prior to start, you typically wire all Create Session VIs in sequence
prior to the first use of the XNET Read or XNET Write VI (for example, prior to
the main loop).
■ LabVIEW project method: Although you specify the session properties in the
LabVIEW project user interface, the session is not created at that time. When
you run a VI that uses the session with an XNET node (property node or VI),
the session is created. In addition, all other sessions in the LabVIEW project
that use the same interface and cluster (database) are created at that time.
This ensures that all project-based sessions your application uses are created

ni.com784

NI-XNET 20.5

before the interface starts (for example, the first call to the XNET Read or XNET
Write VI).

Clear

When the session is cleared, it is stopped (no longer communicates), and then all its
resources are removed.

There are two ways to clear a session:

■ Application stop method: The typical way to clear a session is to do nothing
explicit in your application. When the application stops execution, NI-XNET
automatically clears all sessions that application uses. When using the
LabVIEW development environment, the application stops when the top-level
VI goes idle, including when you select the LabVIEW abort button in that VI's
toolbar. When using an application built using a LabVIEW project, the
application stops when the executable exits.
■ XNET Clear VI method: This clears the session explicitly. To change the
properties of database objects that a session uses, you may need to call the
XNET Clear VI to change those properties, then recreate the session.

Set Session Property

While the session is Stopped, you can change properties specific to this session. You
can set any property in the XNET Session Node except those in the Interface
category (refer to Stopped in Interface States).

You cannot set properties of a session in the Started or Communicating state. If
there is an exception for a specific property, the property help states this.

Start Session

For an input session, you can start the session simply by calling the XNET Read VI. To
read received frames, the XNET Read VI performs an automatic Start of scope
Normal, which starts the session and interface.

For an output session, if you leave the Auto Start? property at its default value of
true, you can start the session simply by calling the XNET Write VI. The auto-start

© National Instruments 785

NI-XNET 20.5

feature of Write performs a Start of scope Normal, which starts the session and
interface.

To start the session prior to calling the XNET Read VI or XNET Write VI, you can call
the XNET Start VI. The XNET Start VI default scope is Normal, which starts the
session and interface. You also can use the XNET Start VI with scope of Session Only
(this Start Session transition) or Interface Only (the interface Start Interface
transition).

Stop Session

You can stop the session by calling the XNET Clear or XNET Stop VI. The XNET Stop VI
provides the same scope as the XNET Start VI, allowing you to stop the session,
interface, or both (normal scope).

When the session stops, the underlying queues are not flushed. For example, if an
input session receives frames, and then you call the XNET Stop VI, you still can call
the XNET Read VI to read the frame values from the queues. To discard session
frame queues, call the XNET Flush VI (or XNET Clear VI).

Interface Communicating

This transition occurs when the session interface enters the Communicating state.

Interface Not Communicating

This transition occurs when the session interface exits the Communicating state.

The session also exits its Communicating state when the session stops due to the
XNET Clear or XNET Stop VI.

Interface States

Stopped

The interface always exists, because it represents the communication controller of
the NI-XNET hardware product port. This physical port is wired to a cable that
connects to one or more remote ECUs.

ni.com786

NI-XNET 20.5

The NI-XNET interface initially powers on in the Stopped state. In the Stopped state,
the interface does not communicate on its port.

While the interface is Stopped, you can change properties specific to the interface.
These properties are contained within the Session Node Interface category. When
more than one session exists for a given interface, the Interface category properties
provide shared access to the interface configuration. For example, if you set an
interface property using one session, then get that same property using a second
session, the returned value reflects the change.

Properties that you change in the interface are not saved from one execution of your
application to another. When the last session for an interface is cleared, the interface
properties are restored to defaults.

Started

In the Started state, the interface is started, but it is waiting for the associated
communication controller to complete its integration with the network.

This state is transitory in nature, in that your application does not control transition
out of the Started state. For CAN and LIN, integration with the network occurs in a
few bit times, so the transition is effectively from Stopped to Communicating. For
FlexRay, integration with the network entails synchronization with global FlexRay
time, which can take as long as hundreds of milliseconds.

Communicating

In the Communicating state, the interface is communicating on the network. One or
more communicating sessions can use the interface to receive and/or transmit
frame values.

The interface remains in the Communicating state as long as communication is
feasible. For information about how the interface transitions in and out of this state,
refer to Comm State Communicating and Comm State Not Communicating.

The Communicating state behaves differently for Ethernet as compared to other
XNET protocols (e.g., CAN). For more information, refer to the Ethernet Operational
Status property.

© National Instruments 787

NI-XNET 20.5

Interface Transitions

Set Interface Property

While the interface is Stopped, you can change interface-specific properties. These
properties are in the Session Node Interface category. When more than one session
exists for a given interface, the Interface category properties provide shared access
to the interface configuration. For example, if you set an interface property using
one session, then get that same property using a second session, the returned value
reflects the change.

You cannot set properties of the interface while it is in the Started or
Communicating state. If there is an exception for a specific property, the property
help states this.

Start Interface

You can request the interface start in two ways:

■ XNET Read VI or XNET Write VI method: The automatic start described for
the Start Session transition uses a scope of Normal, which requests the
interface and session start.
■ XNET Start VI method: If you call this VI with scope of Normal or Interface
Only, you request the interface start.

After you request the interface start, the actual transition depends on whether you
have connected the interface start trigger. You connect the start trigger by calling
the XNET Connect Terminals VI with a destination of Interface Start Trigger or by
writing the XNET Session Interface:Source Terminal:Start Trigger property.

The Start Interface transition occurs as follows, based on the start trigger
connection:

■ Disconnected (default): Start Interface occurs as soon as it is requested
(Read, Write, or Start).
■ Connected: Start Interface occurs when the connected source terminal
transitions low-to-high (for example, pulses). Every Start Interface transition
requires a new low-to-high transition, so if your application stops the interface

ni.com788

NI-XNET 20.5

(for example, the XNET Stop VI), then restarts the interface, the connected
source terminal must transition low-to-high again.

Stop Interface

Under normal conditions, the interface is stopped when the last session is stopped
(or cleared). In other words, the interface communicates as long as at least one
session is in use.

If a significant number of errors occur on the network, the communication
controller may stop the interface on its own. For more information, refer to Comm
State Not Communicating.

If your application calls the XNET Stop VI with scope of Interface Only, that
immediately transitions the interface to the Stopped state. Use this feature with
care, because it affects all sessions that use the interface and is not limited to the
session passed to the XNET Stop VI. In other words, using the XNET Stop VI with a
scope of Interface Only stops communication by all sessions simultaneously.

Comm State Communicating

This transition occurs when the interface is integrated with the network.

For CAN, this occurs when communication enters Error Active or Error Passive state.
For information about the specific CAN interface communication states, refer to the
XNET Read (State CAN Comm) VI.

For FlexRay, this occurs when communication enters one Normal Active or Normal
Passive state. For information about the specific FlexRay interface communication
states, refer to the XNET Read (State FlexRay Comm) VI.

For LIN, this occurs when communication enters the Active state. The interface
remains communicating while in the Active or Inactive state (not affected by bus
activity). For more information about the specific LIN interface communication
states, refer to the XNET Read (State LIN Comm) VI.

Comm State Not Communicating

This transition occurs when the interface no longer is integrated with the network.

© National Instruments 789

NI-XNET 20.5

For CAN, this occurs when communication enters Bus Off or Idle state. For
information about the specific CAN interface communication states , refer to the
XNET Read (State CAN Comm) VI.

For FlexRay, this occurs when communication enters the Halt, Config, Default
Config, or Ready state. For information about the specific FlexRay interface
communication states, refer to the XNET Read (State FlexRay Comm) VI.

For LIN, this occurs when communication enters the Idle state. For more
information about the specific LIN interface communication states, refer to the
XNET Read (State LIN Comm) VI.

TDMS
This topic describes how NI-XNET frame data is stored within National Instruments
Technical Data Management Streaming (.TDMS) files. The National Instruments
TDMS file format provides efficient and flexible storage on NI platforms. The TDMS
file format enables storage of a wide variety of measurement types in a single binary
file, including CAN, FlexRay, LIN, analog, digital, and so on.

This topic specifies the method used to store NI-XNET raw frame data within TDMS.
Although you also can store NI-XNET signal waveforms within TDMS, raw frame data
is the most efficient and complete way to store NI-XNET data. Raw frame data can be
easily converted to/from protocol-specific frames or signal waveforms for display
and analysis.

TDMS is recommended for new applications that access NI-XNET data within files.
For examples that demonstrate use of TDMS with NI-XNET, refer to the NI-XNET

Logging and Replay category in the NI Example Finder (for example, Hardware Input

and Output : CAN : NI-XNET : Logging and Replay).

Previous versions of NI-XNET and NI-CAN used a file format called NCL to store raw
frame data. If you have an existing application that uses NCL, you can continue to
use that file format. Examples for NCL continue to be installed with NI-XNET (examp
les\nixnet folder in your LabVIEW directory), but they no longer appear in the NI
Example Finder. If you need to store multiple sources of data in a single file (for
example, multiple CAN interfaces, or CAN with analog input), you should consider

ni.com790

NI-XNET 20.5

transitioning your application from NCL to TDMS. Because both file formats use the
same raw frame data, the changes required for this transition are relatively small.

Within the TDMS file, a sequence of raw frames is stored in a distinct TDMS channel
for each NI-XNET interface (for example, CAN port). From the TDMS perspective, the
frame data is an array of U8 values. The U8 array represents one or more raw frames.

The version of TDMS used with this specification must be 2.0 or higher.

Channel Name and Group Name

The name of the TDMS channel can use any conventions that you desire, but it
should be sufficient to identify the network that is stored. For example, if you log
data from two CAN interfaces, you might name the first TDMS channel Powertrai
n network and the second TDMS channel Body network. If you have an NI-
XNET database that contains distinct clusters for each network, the Name (Short)
property often provides a useful description of the network, and can be used
directly as the TDMS channel name.

The name of the TDMS group can use any conventions that you desire. The group
name is required for NI-XNET frame data, but if you do not use multiple groups in
the TDMS file, you can select a simple group name (for example, My Group).

Channel Data

The data you read and write to the TDMS channel must be an array of U8 values. No
other TDMS data types are supported.

The channel data contains one or more frames encoded using the Raw Frame
Format. The raw frame format encodes all information received on the network,
along with precise timestamps. The protocols supported include CAN, FlexRay, and
LIN.

The TDMS Channel Properties specify additional requirements for encoding of the
raw frame data. The property NI_network_frame_byte_order is particularly
important, as this specifies the byte order used for the Timestamp and Identifier
elements within each raw frame.

© National Instruments 791

NI-XNET 20.5

Channel Properties

Special properties are used on each TDMS channel to distinguish the data from a
plain array of U8 samples. Properties are also provided to assist in interpreting the
data, such as conversion to signals (physical units).

All properties for NI-XNET frame data use the prefix NI_network_. This prefix
ensures that the properties do not conflict with names used by your application.
The following table lists the channel properties.

Channel Properties

Name Data Type Permissions Description
NI_network_proto
col

Required Specifies the network p
rotocol used for all fra
mes in this channel.

The property value is a
n enumeration:

0 CAN
1 FlexRay
2 LIN

If this property does no
t exist, the data shall no
t be interpreted as raw
frames, but as plain U8
samples.

NI_network_frame
_version

Required Specifies the raw frame
encoding version. The e
ncoding of this number
is specific to each proto
col listed in NI_netwo
rk_protocol.

For CAN, FlexRay, and L
IN, the version encodin
g is the Upgrade Versio
n in lowest order byte,

ni.com792

NI-XNET 20.5

and Major Version in ne
xt order byte. The two u
pper order bytes are 0.

The Major Version indic
ates a change that brea
ks compatibility with th
e previous version. The
value for this specificati
on is 2.

The Upgrade Version in
dicates a change that r
etains compatibility wit
h Upgrade Version 0. Th
e value for this specific
ation is 0.

If this property does no
t exist, the data is not in
terpreted as raw frames
, but as plain U8 sampl
es.

NI_network_frame
_byte_order

Required Specifies the byte order
for multibyte elements
within each frame's dat
a. For example, the fra
me's Identifier is a 32-b
it value, and Timestam
p is a 64-bit value. Refer
to the Raw Frame Form
at for details.

This property does not
specify byte order for T
DMS properties or othe
r TDMS channels. This
property does not speci
fy byte order for signals
within the frame's Payl
oad (that is, covered by
specifications such as C

© National Instruments 793

NI-XNET 20.5

ANdb, LDF, AUTOSAR, a
nd FIBEX).

The property value is a
n enumeration:

0 Little-endian (that is
, least significant byt
e in lowest offset, Int
el byte order)

1 Big-endian (that is,
most significant byt
e in lowest offset, M
otorola byte order)

If this property does no
t exist, the data is not in
terpreted as raw frames
, but as plain U8 sampl
es.

NI_network_conte
nt

Optional Provides information t
hat describes the conte
nt of the payload of fra
mes on this network. T
his typically is informat
ion to map and scale p
hysical-unit values fro
m each frame's payloa
d. The encoding of this
string is specific to eac
h protocol listed in NI_
network_protocol.

For CAN, FlexRay, and L
IN, the string encoding i
s:
<alias>.<cluster>

The <alias> specifies a
n alias to a network dat
abase file (content spec
ification). This alias pro

ni.com794

NI-XNET 20.5

vides a short name, use
d to refer to a database
file across multiple syst
ems. When you register
an alias with tools, you
typically use the datab
ase filename on the loc
al system, without the
preceding path or file e
xtension. For example,
the path c:\MyDatab
ases\CANdb\Power
train.dbc would us
e an alias of Powertr
ain.

The <cluster> refers to
a specific cluster (netw
ork) within the databas
e. A database file can s
pecify multiple networ
ks within a vehicle. This
portion of the string is
optional (you can use <
alias> without "." or <cl
uster>). If the cluster d
oes not exist, it is assu
med that only one net
work is specified within
the database.

When you use NI-XNET,
this string uses the sam
e syntax as the XNET Cl
uster I/O Name. The reg
istered alias refers to a f
ile on Windows (DBC, L
DF, AUTOSAR, or FIBEX
text file), or on LabVIEW
Real-Time (compressed
binary file).

© National Instruments 795

NI-XNET 20.5

When you use tools tha
t do not explicitly conta
in NI-XNET (for example
, NI DIAdem), support f
or this property may ha
ve limitations. For exa
mple, DBC files may be
supported, but not LDF
or FIBEX.

This property is option
al. For applications tha
t read the log file, if this
property does not exist,
the effect will depend o
n the goal:

■ Display of fram
e values: no effec
t—the network co
ntent is not need
ed.
■ Display of sign
al values: applica
tion opens a dial
og to ask the cust
omer to browse t
o the file.

Timescales
NI-XNET uses time for a variety of features, including timestamping of received
frames, timestamping of trigger signals, waveform sampling, and timestamped
transmission. Timescale refers to the concept of a clock that measures the
progression of time. NI-XNET uses three distinct timescales:

■ Local time is the clock on the XNET hardware product, which in some cases
is used to synchronize with other National Instruments products.

ni.com796

NI-XNET 20.5

■ Network time is, for XNET Ethernet products, the time on the network of
your ECUs, such as when IEEE Std 802.1AS is used to synchronize time among
ECUs.
■ Host time is the clock of the operating system where LabVIEW is running
(e.g., Windows or Linux).

Local Time

An XNET PXI product, by default, uses the PXI backplane clock (PXI_Clk10,
PXI_Clk100), for synchronization with other products in the PXI chassis. If the PXI
backplane clock is not available (e.g., turned off), the product uses its local
oscillator.

An XNET PCI or USB product, by default, uses its local oscillator, and trigger signals
can be used to achieve synchronization.

An XNET C Series module, by default, uses the time provided by the C Series chassis.
If time is not available from the C Series chassis, the XNET C Series module uses its
local oscillator.

For some XNET products, the default source of local time can be changed with XNET
Connect Terminals and/or terminal properties. With XNET Connect Terminals, use
the destination terminal of the MasterTimebase to change the local clock.

Most clocks that are used for local time provide frequency (with an oscillator), but
not date/time information. When a session is created, XNET initializes the date/time
information for the local clock using host time.

In DAQmx terminology, XNET local time is analogous to DAQmx I/O device time.

Network Time

Many in-vehicle Ethernet networks use a protocol such as IEEE Std 802.1AS to
synchronize time among ECUs. XNET Ethernet products participate in the time
synchronization protocol in the ECU network. This network time is used to
timestamp received Ethernet frames (in addition to the timestamp from the local
time).

© National Instruments 797

NI-XNET 20.5

When an XNET Ethernet port acts as the grandmaster in the ECU network (i.e., Port
State is Master), local time is used for the grandmaster clock, and date/time
information in the ECU network is initialized from host time.

When an XNET Ethernet port acts as a slave in the ECU network, local time and
network time will eventually drift relative to one another. The date/time information
for network time is obtained from the ECU that acts as the grandmaster.

Host Time

Most computers and controllers maintain date/time information for the timescale
provided by the operating system. This host time can obtain the date/time using a
Real Time Clock (RTC), or a Network Time Protocol (NTP) server. Many
implementations of host time are traceable to a global timescale, such as
Coordinated Universal Time (UTC) and International Atomic Time (TAI).

Although host time provides accurate date/time information, the accuracy and
resolution of its clock can often be in tens of milliseconds. In contrast, the XNET
hardware for local time and network time provides resolution in nanoseconds.
Although local time and network time use host time to initialize their date/time
information, local and network times do not use the same physical clock as host
time. Therefore, both local time and network time will eventually drift relative to
host time.

Many National Instruments products initialize their date/time information from host
time as described above. This initialization occurs at the moment that the hardware
is initialized. Because each hardware product initializes at a different moment, the
date/time information for each local clock might not be identical for a given point in
time. For example, if you connect a shared start trigger to two DAQmx PXI cards and
two XNET PXI cards, each of the four cards might report a slightly different
timestamp for the pulse of that start trigger (e.g., t0 in a waveform). The cards are
tightly synchronized in reality, but the differing timestamps give the appearance of
inaccuracy. This issue can be corrected using techniques such as the LabVIEW Align
Waveform Timestamps VI and NI-XNET Adjust Local Time property.

CAN Additional Topics
This section includes additional CAN-related information.

ni.com798

NI-XNET 20.5

NI-CAN
NI-CAN is the legacy application programming interface (API) for National
Instruments CAN and LIN hardware. Generally speaking, NI-CAN is associated with
the legacy CAN and LIN hardware, and NI-XNET is associated with the new NI-XNET
hardware.

If you are starting a new application, you typically use NI-XNET (not NI-CAN).

Compatibility

If you have an existing application that uses NI-CAN, a compatibility library is
provided so that you can reuse that code with a new NI-XNET CAN or LIN product.
Because the features of the compatibility library apply to the NI-CAN API and not NI-
XNET, it is described in the NI-CAN documentation. For more information, refer to
the NI-CAN Hardware and Software Manual.

NI-XNET CAN Products in MAX

When the compatibility library is installed, NI-XNET CAN and LIN products also are
visible in the NI-CAN branch under Devices and Interfaces. Here you can configure
the devices for use with the NI-CAN API. This configuration is independent from the
configuration of the same device for NI-XNET under the root of Devices and

Interfaces.

© National Instruments 799

NI-XNET 20.5

The following table shows how the NI-XNET devices are displayed as NI-CAN devices
when the compatibility library is installed. It also shows which operating systems
support the NI-XNET devices when used with the compatibility library.

Displayed NI-CAN Device NI-XNET Device Operating System(s) Comment
NI-PCI-8511 (1 port) NI PCI-8511 Windows
NI-PCI-8511 (2 ports) NI PCI-8511 Windows
NI-PCI-8512 (1 port) NI PCI-8512 Windows
NI-PCI-8512 (2 ports) NI PCI-8512 Windows
NI-PCI-8513 (1 port) NI PCI-8513 Windows
NI-PCI-8513 (2 ports) NI PCI-8513 Windows
NI-PXI-8511 (1 port) NI PXI-8511 Windows, PharLap
NI-PXI-8511 (2 ports) NI PXI-8511 Windows, PharLap
NI-PXI-8512 (1 port) NI PXI-8512 Windows, PharLap
NI-PXI-8512 (2 ports) NI PXI-8512 Windows, PharLap
NI-PXI-8513 (1 port) NI PXI-8513 Windows, PharLap
NI-PXI-8513 (2 ports) NI PXI-8513 Windows, PharLap

ni.com800

NI-XNET 20.5

USB-8502 USB-8502 Windows One and two-port devic
es are available, indicat
ed by the number of int
erfaces displayed. Only
the two-port device has
a sync port.

USB-8506 USB-8506 Windows One and two-port devic
es are available, indicat
ed by the number of int
erfaces displayed. Only
the two-port device has
a sync port.

PCI-8511 (1 port) NI 9861 Windows Since NI-CAN did not su
pport cSeries devices, t
he compatibility library
presents them as PCI d
evices.

PCI-8512 (1 port) NI 9862 Windows Since NI-CAN did not su
pport cSeries devices, t
he compatibility library
presents them as PCI d
evices.

Transition

If you have an existing application that uses NI-CAN and intend to use only new NI-
XNET hardware from now on, you may want to transition your code to NI-XNET.

NI-XNET unifies many concepts of the earlier NI-CAN API, but the key features are
similar.

The following table lists NI-CAN terms and analogous NI-XNET terms.

NI-CAN Term NI-XNET Term Comment
CANdb file Database NI-XNET supports more databa

se file formats than the NI-CAN
Channel API, including the FIBE
X, AUTOSAR, and LDF formats.

Message Frame The term Frame is the industry
convention for the bits that tran

© National Instruments 801

NI-XNET 20.5

sfer on the bus. This term is use
d in standards such as CAN.

Channel Signal The term Signal is the industry
convention. This term is used in
standards such as FIBEX and AU
TOSAR.

Channel API Task Session (Signal I/O) Unlike NI-CAN, NI-XNET support
s simultaneous use of channel (
signal) I/O and frame I/O.

Frame API CAN Object (Queue L
ength Zero)

Session (Frame I/O Single-Point
)

The NI-CAN CAN Object provide
d both input (read) and output (
write) in one object. NI-XNET pr
ovides a different object for eac
h direction, for better control. If
the NI-CAN queue length for a d
irection is zero, that is analogou
s to NI-XNET Frame I/O Single-P
oint.

Frame API CAN Object (Queue L
ength Nonzero)

Session (Frame I/O Queued) If the NI-CAN queue length for a
direction is nonzero, that is ana
logous to NI-XNET Frame I/O Qu
eued.

Frame API Network Interface O
bject

Session (Frame I/O Stream) The NI-CAN Network Interface
Object provided both input (rea
d) and output (write) in one obj
ect. NI-XNET provides a differen
t object for each direction, for b
etter control.

Interface Interface NI-CAN started interface names
at CAN0, but NI-XNET starts at C
AN1 (or FlexRay1).

CAN Timing Type and Session Mode
For each XNET Frame CAN:Timing Type property value, this topic describes how the
frame behaves for each XNET session mode.

An input session receives the CAN data frame from the network, and an output
session transmits the CAN data frame. The CAN data frame data (payload) is
mapped to/from signal values.

ni.com802

NI-XNET 20.5

You use CAN remote frames to request the associated CAN data frame from a remote
ECU. When Timing Type is Cyclic Remote or Event Remote, an input session
transmits the CAN remote frame, and an output session receives the CAN remote
frame.

Cyclic Data

The data frame transmits in a cyclic (periodic) manner. The XNET Frame
CAN:Transmit Time property defines the time between cycles.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY,
Frame Input Single-Point, and Frame Input Queued Modes
You specify the CAN frame (or its signals) when you create the session. When the
CAN data frame is received, a subsequent call to the XNET Read VI returns its data.
For information about how the data is represented for each mode, refer to Session
Modes.

If the CAN remote frame is received, it is ignored (with no effect on the XNET Read
VI).

Frame Input Stream Mode
You specify the CAN cluster when you create the session, but not the specific CAN
frame. When the CAN data frame is received, a subsequent call to XNET Read VI
returns its data.

If the CAN remote frame is received, a subsequent call to the XNET Read VI for the
stream returns it.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY,
Frame Output Single-Point, and Frame Output Queued Modes
You specify the CAN frame (or its signals) when you create the session. When you
write data using the XNET Write VI, the CAN data frame is transmitted onto the
network. For information about how the data is represented for each mode, refer to
Session Modes.

© National Instruments 803

NI-XNET 20.5

When the session and its associated interface are started, the first cycle occurs, and
the CAN data frame transmits. After that first transmit, the CAN data frame transmits
once every cycle, regardless of whether the XNET Write VI is called. If no new data is
available for transmit, the next cycle transmits using the previous CAN data frame
(repeats the payload).

If you pass the CAN remote frame to the XNET Write VI, it is ignored.

Frame Output Stream Mode
You specify the CAN cluster when you create the session, but not the specific CAN
frame. When you write the CAN data frame using the XNET Write VI, it is transmitted
onto the network.

The stream I/O modes do not use the database-specified timing for frames.
Therefore, CAN data and CAN remote frames transmit only when you pass them to
the XNET Write VI, and do not transmit cyclically afterward.

When using a stream output timing of immediate mode, data is transmitted onto
the network as soon as possible.

When using a stream output timing of either Replay Exclusive or Replay Inclusive,
data is transmitted onto the network based on the timestamps in the frame.

Event Data

The data frame transmits in an event-driven manner. For output sessions, the event
is the XNET Write VI. The XNET Frame CAN:Transmit Time property defines the
minimum interval.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY,
Frame Input Single-Point, and Frame Input Queued Modes
The behavior is the same as Cyclic Data.

ni.com804

NI-XNET 20.5

Frame Input Stream Mode
The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the
database-specified timing for all frames, you can read either CAN data or CAN
remote frames.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY,
Frame Output Single-Point, and Frame Output Queued Modes
The behavior is the same as Cyclic Data, except that the CAN data frame does not
continue to transmit cyclically after the data from the XNET Write VI has transmitted.
Because the database-specified timing for the frame is event based, after the CAN
data frames for the XNET Write VI have transmitted, the CAN data frame does not
transmit again until a subsequent call to the XNET Write VI.

Frame Output Stream Mode
The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the
database-specified timing for all frames, you can write either CAN data or CAN
remote frames.

Cyclic Remote

The CAN remote frame transmits in a cyclic (periodic) manner, followed by the
associated CAN data frame as a response.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY,
Frame Input Single-Point, and Frame Input Queued Modes
You specify the CAN frame (or its signals) when you create the session. When the
CAN data frame is received, a subsequent call to the XNET Read VI returns its data.
For information about how the data is represented for each mode, refer to Session
Modes.

When the session and its associated interface are started, the first cycle occurs, and
the CAN remote frame transmits. This CAN remote frame requests data from the
remote ECU, which soon responds with the associated CAN data frame (same

© National Instruments 805

NI-XNET 20.5

identifier). After that first transmit, the CAN remote frame transmits once every
cycle. You do not call the XNET Write VI for the session.

The CAN remote frame cyclic transmit is independent of the corresponding CAN
data frame reception. When NI-XNET transmits a CAN remote frame, it transmits a
CAN remote frame again CAN:Transmit Time later, even if no CAN data frame is
received.

Frame Input Stream Mode
The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the
database-specified timing for all frames, you can read either CAN data or CAN
remote frames.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY,
Frame Output Single-Point, and Frame Output Queued Modes
You specify the CAN frame (or its signals) when you create the session. When you
write data using the XNET Write VI, the CAN data frame is transmitted onto the
network when the associated CAN remote frame is received (same identifier). For
information about how the data is represented for each mode, refer to Session
Modes.

Although the session receives the CAN remote frame, you do not call the XNET Read
VI to read that frame. NI-XNET detects the received CAN remote frame, and
immediately transmits the next CAN data frame. Your application uses the XNET
Write VI to provide the CAN data frames used for transmit. When you call the XNET
Write VI, the CAN data frame does not transmit immediately, but instead waits for
the associated CAN remote frame to be received.

Frame Output Stream Modes
The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the
database-specified timing for all frames, you can write either CAN data or CAN
remote frames.

ni.com806

NI-XNET 20.5

Event Remote

The CAN remote frame transmits in an event-driven manner, followed by the
associated CAN data frame as a response. For input sessions, the event is the XNET
Write VI.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY,
Frame Input Single-Point, and Frame Input Queued Modes
You specify the CAN frame (or its signals) when you create the session. When the
CAN data frame is received, its data is returned from a subsequent call to the XNET
Read VI. For information about how the data is represented for each mode, refer to
Session Modes.

This CAN Timing Type and mode combination is somewhat advanced, in that you
must call both the XNET Read VI and the XNET Write VI. You must call the XNET Write
VI to provide the event that triggers the CAN remote frame transmit. When you call
the XNET Write VI, the data is ignored, and one CAN remote frame transmits as soon
as possible. Each call to the XNET Write VI transmits only one CAN remote frame,
even if you provide multiple signal or frame values. When the remote ECU receives
the CAN remote frame, it responds with a CAN data frame, which is received and
read using the XNET Read VI.

Frame Input Stream Modes
The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the
database-specified timing for all frames, you can read either CAN data or CAN
remote frames.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY,
Frame Output Single-Point, and Frame Output Queued Modes
The behavior is the same as Cyclic Remote. When you write data using the XNET
Write VI, the CAN data frame transmits onto the network when the associated CAN
remote frame is received (same identifier). Unlike Cyclic Data, the remote ECU sends
the associated CAN remote frame in an event-driven manner, but the behavior is the
same regarding the XNET Write VI and the CAN data frame transmit.

© National Instruments 807

NI-XNET 20.5

Frame Output Stream Mode
The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the
database-specified timing for all frames, you can write either CAN data or CAN
remote frames.

CAN Transceiver State Machine
The CAN hardware internally runs a state machine for controlling the transceiver
state. The transceiver can either be an internal transceiver or an external transceiver.
On hardware that contains software selectable transceivers, you can configure the
selected transceriver by setting the Interface:CAN:Transceiver Type property. If you
choose an external transceiver, you can configure its behaviors by setting the
Interface:CAN:External Transceiver Config property. Both bus conditions as well as
the Interface:CAN:Transceiver State property can affect the current transceiver state.
The following state machine shows the different states of the transceiver state
machine and how the various states transition.

ni.com808

NI-XNET 20.5

T# Condition From To
1 Power-on/close last ses

sion
Any Power-on

2 Interface is started Power-on Normal
3 Interface:CAN:Transcei

ver State with value No
rmal

Power-on Normal

4 Interface:CAN:Transcei
ver State with value No
rmal

Sleep Normal

5 Interface:CAN:Transcei
ver State with value No
rmal

SW Wakeup Normal

6 Interface:CAN:Transcei
ver State with value No
rmal

SW High Speed Normal

© National Instruments 809

NI-XNET 20.5

7 Interface:CAN:Transcei
ver State with value Sle
ep

Normal Sleep

8 Interface:CAN:Transcei
ver State with value Sle
ep

SW Wakeup Sleep

9 Wakeup Pattern receive
d on the bus

Sleep Normal

10 Interface:CAN:Transcei
ver State with value SW
Wakeup

Power-on SW Wakeup

11 Interface:CAN:Transcei
ver State with value SW
Wakeup

Normal SW Wakeup

12 Interface:CAN:Transcei
ver State with value SW
Wakeup

Sleep SW Wakeup

13 Interface:CAN:Transcei
ver State with value SW
HighSpeed

Power-on SW High Speed

14 Interface:CAN:Transcei
ver State with value SW
HighSpeed

Normal SW High Speed

15 Interface:CAN:Transcei
ver State with value SW
HighSpeed

Sleep SW High Speed

16 Interface:CAN:Transcei
ver State with value SW
HighSpeed

SW Wakeup SW High Speed

FlexRay Additional Topics
This section includes additional FlexRay-related information.

FlexRay Startup/Wakeup
Use the FlexRay Startup mechanism to take an idle interface and properly integrate
into a FlexRay cluster.

ni.com810

NI-XNET 20.5

If your cluster does not support the wakeup mechanism, this process is
straightforward. After creating your FlexRay session, call the XNET Start VI, which
causes the interface to transition from Default Config to Ready, where it attempts to
integrate with the FlexRay cluster. If your node is a coldstart node, it initiates
integration; otherwise, it attempts to integrate with a running FlexRay cluster. Once
integration has occurred, the interface transitions to Normal Active, where it
typically remains while it is communicating with other FlexRay nodes. When you call
the XNET Stop VI, the interface transitions back to Default Config (via Halt) to be
ready to start the process again.

If your cluster supports the wakeup mechanism, the process becomes a bit more
complex. The route the XNET hardware takes depends on whether the interface is
currently awake or asleep. By default, XNET hardware starts in the awake state, and
the startup process is exactly the same as if your cluster does not support wakeup.
However, to use the wakeup mechanism your cluster is configured for, before calling
the XNET Start VI, you need to put the interface to sleep. You can do this in one of
two ways. First, you can set the Interface:FlexRay:Sleep property to Local Sleep. This
performs the one-time action of putting the interface to sleep. Alternately, you can
set the Interface:FlexRay:Auto Asleep When Stopped? property to true. This puts the
interface to sleep immediately. It also puts the interface to sleep automatically every
time the interface is stopped, so the startup process is the same between your first
start and subsequent starts.

If your interface is asleep when the XNET Start VI API call is invoked, the interface
progresses to Ready, where it waits for all connected channels to be awake before
attempting to integrate with the cluster. After all connected channels are awake, the
integration process occurs exactly like a cluster that does not support wakeup.

If you want your interface to wake up a sleeping network, you must configure your
FlexRay interface to wake up the bus. You can do this in two ways. The first way is to
set the Interface:FlexRay:Sleep property to Remote Wake after you put your FlexRay
interface to sleep. When you invoke the XNET Start VI API call, the interface
progresses though the Ready state and into the Wakeup state. In Wakeup, the
interface generates the wakeup pattern on the FlexRay channel configured by the
Interface:FlexRay:Wakeup Channel property and transitions back to Ready. If you
have a multichannel bus, a separate node on the bus wakes up the other channel.

© National Instruments 811

NI-XNET 20.5

After all connected channels are awake, the integration process occurs exactly like a
cluster that does not support wakeup. The second way is to invoke the XNET Start VI
API call to start the interface. The interface progresses to Ready, where it waits for all
connected channels to be awake before attempting to integrate with the cluster.
During this time, if you set the Interface:FlexRay:Sleep property to Remote Wake, the
interface transitions into Wakeup, where it generates the wakeup pattern on the
FlexRay channel configured by the Interface:FlexRay:Wakeup Channel property and
transitions back to Ready. If you have a multichannel bus, a separate node on the
bus wakes up the other channel. After all connected channels are awake, the
integration process occurs exactly like a cluster that does not support wakeup.

ni.com812

NI-XNET 20.5

T# Condition From To
1 Start trigger received1 Default Config Config2

2 Startup process initiate
d

Config Ready

3 Remote Wakeup initiat
ed (Interface:FlexRay:Sl
eep property set to Re
mote Wake)

Ready Wakeup

4 Wakeup channel awake Wakeup Ready

© National Instruments 813

NI-XNET 20.5

5 All connected channels
are awake and integrati
on is successful3

Ready Normal Active

6 Clock Correction Failed
counter reached Maxim
um Without Clock Corr
ection Passive Value

Normal Active Normal Passive

7 Number of valid correct
ion terms reached the
passive to active limit

Normal Passive Normal Active

8 1. Clock Correction Fail
ed counter reached Ma
ximum Without Clock C
orrection Fatal Value

2. Interface stopped (th
e XNET Stop VI)

9 Interface stopped (the
XNET Stop VI)

Halt Default Config

1If you are not using synchronization, the XNET Start VI API call internally generates the Start Trig
ger.

2In NI-XNET, this is a transitory state under normal situations. The Config state is nontransitory on
ly if the startup procedure fails to continue.

3Any of the following conditions can satisfy all channels awake: the wakeup pattern was transmit
ted or received on all connected channels, a local wakeup is requested, or the interface is not asle
ep.

FlexRay Timing Type and Session Mode
For each XNET frame FlexRay:Timing Type property value, this topic describes how
the frame behaves for each XNET session mode.

An input session receives the FlexRay data frame from the network, and an output
session transmits the FlexRay data frame. The FlexRay data frame data (payload) is
mapped to/from signal values.

ni.com814

NI-XNET 20.5

You use FlexRay null frames in the static segment to indicate that no new payload
exists for the frame. In the dynamic segment, if no new payload exists for the frame,
it simply does not transmit (no frame).

For NI-XNET input sessions, the Timing Type does not directly impact the
representation of data from the XNET Read VI.

For NI-XNET output sessions, the Timing Type determines whether to transmit a
data frame when no new payload data is available.

Cyclic Data

The data frame transmits in a cyclic (periodic) manner.

If the frame is in the static segment, the rate can be once per cycle (FlexRay:Cycle
Repetition 1), once every N cycles (FlexRay:Cycle Repetition N), or multiple times
per cycle (FlexRay:In Cycle Repetitions:Enabled?).

If the frame is in the dynamic segment, the rate is once per cycle.

If no new payload data is available when it is time to transmit, the payload data
from the previous transmit is repeated.

Signal Input Single-Point, Signal Input Waveform, and Signal Input XY
Modes
You specify the FlexRay signals when you create the session, and a specific FlexRay
data frame contains each signal. When the FlexRay data frame is received, a
subsequent call to the XNET Read VI returns its data. For information about how the
data is represented for each mode, refer to Session Modes.

If a FlexRay null frame is received, it is ignored (no effect on the XNET Read VI).
FlexRay null frames are not used to map signal values.

Frame Input Queued and Frame Input Single-Point Modes
You specify the FlexRay frame(s) when you create the session. When the FlexRay
data frame is received, a subsequent call to the XNET Read VI returns its data. For
information about how the data is represented for each mode, refer to Session
Modes.

© National Instruments 815

NI-XNET 20.5

If a FlexRay null frame is received, it is ignored (not returned).

Frame Input Stream Mode
You specify the FlexRay cluster when you create the session, but not the specific
FlexRay frames. When any FlexRay data frame is received, a subsequent call to the
XNET Read VI returns it.

If the XNET Session Interface:FlexRay:Null Frames To Input Stream? property is true,
and FlexRay null frames are received, a subsequent call to the XNET Read VI for the
stream returns them. If Null Frames To Input Stream? is false (default), FlexRay null
frames are ignored (not returned). You can determine whether each frame value is
data or null by evaluating the type element (refer to the XNET Read (Frame FlexRay)
VI).

Signal Output Single-Point, Signal Output Waveform, Signal Output XY,
Frame Output Single-Point, and Frame Output Queued Modes
You specify the FlexRay frame (or its signals) when you create the session. When you
write data using the XNET Write VI, the FlexRay data frame is transmitted onto the
network. For information about how the data is represented for each mode, refer to
Session Modes.

When the session and its associated interface are started, the FlexRay data frame
transmits according to its rate. After that first transmit, the FlexRay data frame
transmits according to its rate, regardless of whether the XNET Write VI is called. If
no new data is available for transmit, the next cycle transmits using the previous
FlexRay data frame (repeats the payload).

If the frame is contained in the static segment, a FlexRay data frame transmits at all
times. The FlexRay null frame is not transmitted. If you pass the FlexRay null frame
to the XNET Write VI, it is ignored.

If the frame is contained in the dynamic segment, a FlexRay data frame transmits
every cycle. The dynamic frame minislot is always used.

Frame Output Stream Mode
This session mode is not supported for FlexRay.

ni.com816

NI-XNET 20.5

Event Data

The data frame transmits in an event-driven manner. The event is the XNET Write VI.

Because FlexRay is a time-driven protocol, the minimum interval between events is
specified based on the FlexRay cycle. This minimum interval is configured in the
same manner as a Cyclic frame.

If the frame is in the static segment, the interval can be once per cycle
(FlexRay:Cycle Repetition 1), once every N cycles (FlexRay:Cycle Repetition N), or
multiple times per cycle (FlexRay:In Cycle Repetitions:Enabled?).

If the frame is in the dynamic segment, the interval is once per cycle.

If no new event (payload data) is available when it is time to transmit, no frame
transmits. In the static segment, this lack of new data is represented as a null frame.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY,
Frame Input Single-Point, Frame Input Queued, and Frame Input
Stream Modes
The behavior is the same as Cyclic Data.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY,
Frame Output Single-Point, and Frame Output Queued Modes
The behavior is similar to Cyclic Data, except that the FlexRay data frame does not
continue to transmit cyclically after the data from the XNET Write VI has transmitted.
Because the database-specified timing for the frame is event based, after the
FlexRay data frames for the XNET Write VI have transmitted, the FlexRay data frame
does not transmit again until a subsequent call to the XNET Write VI.

If the frame is contained in the static segment, a FlexRay null frame transmits when
no new data is available (no new call to the XNET Write VI). If you pass the FlexRay
null frame to the XNET Write VI, it is ignored.

If the frame is contained in the dynamic segment, the frame does not transmit when
no new data is available. The dynamic frame minislot is used only when new data is
provided to the XNET Write VI.

© National Instruments 817

NI-XNET 20.5

Frame Output Stream Mode
This session mode is not supported for FlexRay.

Protocol Data Units (PDUs) in NI-XNET

Introduction to Protocol Data Units

Protocol Data Units (PDUs) are encapsulated network data that are a way to
communicate information between independent protocols, such as in a CAN-
FlexRay gateway. You can think of them as containers of signals. The container
(PDU) can be in multiple frames. A single frame can contain multiple PDUs.

Relationship Between Frames, Signals, and PDUs

Frames and PDUs

The frame element contains an arbitrary number of nonoverlapping PDUs. A frame
can have multiple PDUs, and the same PDU can exist in different frames. The
following figure shows the one-to-n (one PDU in n number of frames) and n-to-one
(n number of PDUs in one frame) relationships.

Signals and PDUs

A PDU acts like a container for a logical group of signals.

ni.com818

NI-XNET 20.5

The following figure represents the relationship between frames, PDUs, and signals.

Protocol Data Unit Properties

Start Bit
The start bit of the PDU within the frame indicates where in the frame the particular
PDU data starts.

Length
The PDU length defines the PDU size in bytes.

Update Bit
The receiver uses the update bit to determine whether the frame sender has
updated data in a particular PDU. Update bits allow for the decoupling of a signal
update from a frame occurrence. Update bits is an optional PDU property.

PDU Timing and Frame Timing

Because the same PDU can exist in multiple Frames, PDUs can have flexible
transmission schedules. For example, if PDU A is present in Frame 1 (Timing 1) as
well as in Frame 2 (Timing 2), the receiving node receives it as per the different
timings of the containing frames. (Refer to the following figure.)

© National Instruments 819

NI-XNET 20.5

Programming PDUs with NI-XNET

You can use PDUs in two ways to create a session for read/write:

■ Create a signal I/O session using signals within the PDU. To do this, use the
signal name as you would with signals contained within a frame.
■ Create an I/O session to read/write the raw PDU data. To do this, wire the
PDU(s) to the special Create Session modes for PDU. These modes operate like
the equivalent frame modes.

Important points to consider while programming with PDUs:

■ PDUs currently are supported only on FlexRay interfaces.
■ On the receive side, if the PDU has an update bit associated with it, the NI-
XNET driver sets the update bit when new data is received for the particular
PDU from the bus. Otherwise, if no new data is received for this PDU, the PDU
is discarded. On the transmit side, the NI-XNET driver sets the update bit when
it detects that new data is available for the particular PDU in the PDUs queue
or table. The NI-XNET driver clears the bit if no new data is detected in the
PDU queue or table. If the frame containing the PDUs has cyclic timing, even if
no new data is available for any of the PDUs in the frame, the frame is
transmitted across the bus with the update bits all cleared. However, if the
PDU containing the frame has event timing, it is transmitted across the bus
only if at least one PDU that it contains has new data (with update bit set).
■ The read-only XNET Cluster PDUs Required? property is useful when
programming traversal through the database, as it indicates whether to
consider PDUs in the traversal.

LIN Additional Topics
This section includes additional LIN-related information.

ni.com820

NI-XNET 20.5

LIN Frame Timing and Session Mode
This section describes the LIN behavior for each XNET session mode. As context for
describing LIN frame transfer on the network, this section uses the timing concepts
described in the LIN section of Cyclic and Event Timing.

An input session receives the LIN data frame (payload) from the network, and an
output session transmits the LIN data frame. The LIN data frame payload is mapped
to/from signal values.

For NI-XNET input sessions, the timing of each LIN schedule entry does not directly
impact the representation of data from the XNET Read VI.

For NI-XNET output sessions, the timing of each LIN schedule entry determines
whether to transmit a data frame when no new payload data is available.

You can configure the NI-XNET LIN interface to run as the LIN master by requesting a
schedule (XNET Write (State LIN Schedule Change) VI). If the NI-XNET LIN interface
runs as a LIN slave (default), a remote ECU on the network must execute schedules
as LIN master for these modes to operate.

Cyclic

The LIN data frame transmits in a cyclic (periodic) manner.

This implies that the LIN master is running a continuous schedule, and the LIN data
frame is contained within an unconditional schedule entry.

If no new payload data is available when it is time to transmit, the payload data
from the previous transmit is repeated.

Signal Input Single-Point, Signal Input Waveform, and Signal Input XY
Modes
You specify the signals when you create the session, and a specific LIN data frame
contains each signal. When the LIN data frame is received, a subsequent call to the
XNET Read VI returns its signal data. For information about how the data is
represented for each mode, refer to Session Modes.

© National Instruments 821

NI-XNET 20.5

Frame Input Queued and Frame Input Single-Point Modes
You specify the LIN frame(s) when you create the session. When the LIN data frame
is received, a subsequent call to the XNET Read VI returns its data. For information
about how the data is represented for each mode, refer to Session Modes.

Frame Input Stream Mode
You specify the LIN cluster when you create the session, but not the specific LIN
frames. When any LIN data frame is received, a subsequent call to the XNET Read VI
returns it.

Signal Output Single-Point, Signal Output XY, Frame Output Single-
Point, and Frame Output Queued Modes
You specify the LIN frame (or its signals) when you create the session. When you
write data using the XNET Write VI, the LIN data frame is transmitted onto the
network. For information about how the data is represented for each mode, refer to
Session Modes.

When the session and its associated interface are started, the LIN data frame
transmits according to its schedule entry. Assuming that the LIN frame is contained
in only one entry of the continuous schedule, the time between frame transmissions
is the same as the time to execute the entire schedule (all entries). After that first
transmit, the LIN data frame transmits according to its schedule entry, regardless of
whether the XNET Write VI is called. If no new data is available for transmit, the next
cycle transmits using the previous LIN data frame (repeats the payload).

Signal Output Waveform Mode
If the NI-XNET interface runs as a LIN master, NI-XNET executes schedules, and
therefore controls the timing of LIN frames. When running as a LIN master, this
session mode is supported, and NI-XNET resamples the waveform data such that it
transmits at the scheduled frame rates.

If the NI-XNET interface runs as a LIN slave (default), this session mode is not
supported. When running as a LIN slave, NI-XNET does not know which schedule the
LIN master is executing. Because the LIN schedule is not known, the frame transfer

ni.com822

NI-XNET 20.5

rates also are not known, which makes it impossible to resample the waveform
data.

Frame Output Stream Mode
This mode is available only when the LIN interface is master. You specify the LIN
cluster when you create the session, but not the specific LIN frame.

The stream I/O modes do not use the database-specified timing for frames.
Therefore, LIN data frames transmit only when you pass them to the XNET Write VI
and do not transmit cyclically afterward.

When using a stream output timing of immediate mode, data is transmitted onto
the network as soon as possible. Specifically, if the data array is empty, only the
header part of the frame is transmitted (with the expectation that a slave transmits
the response). If the data array is not empty, the header + response parts of the
frame (the full frame) is transmitted. You can use this mode in conjunction with the
scheduler, in which case each frame written to stream output is handled as a run-
once schedule with lowest priority and having a single one-frame entry. A run-
continuous schedule is interrupted to transmit the frame. A run-once schedule is not
interrupted, and the frame is transmitted only when there are no pending run-once
schedules with higher-than-lowest priority.

When using a stream output timing of either Replay Exclusive or Replay Inclusive,
data is transmitted onto the network based on the timestamps in the frame.

Refer to the Interface:Output Stream Timing property for more details about using
this mode with LIN.

Event

The LIN data frame transmits in an event-driven manner. The event is the XNET
Write VI.

If no new event (payload data) is available when it is time to transmit, no frame
transmits. This means that the LIN master transmits the frame header, but no
payload data follows this header.

© National Instruments 823

NI-XNET 20.5

Signal Input Single-Point, Signal Input Waveform, Signal Input XY,
Frame Input Single-Point, Frame Input Queued, and Frame Input
Stream Modes
The behavior is the same as Cyclic.

Signal Output Single-Point, Signal Output XY, Frame Output Single-
Point, and Frame Output Queued Modes
The behavior is similar to Cyclic, except that the LIN data frame does not continue to
transmit after the data from the XNET Write VI has transmitted.

If the frame is contained in a sporadic schedule entry, and there are values for
multiple frames pending for that entry, NI-XNET selects a single frame to transmit in
each entry. NI-XNET selects the frame using the order in the XNET LIN Schedule
Entry Frames property. For example, if the Frames property contains three frames,
and you write data for the first and third, NI-XNET transmits the first frame (index 0)
in the next occurrence of the sporadic entry, and then transmits the third frame
(index 2) when that sporadic entry executes again.

If the frame is contained in an event-triggered schedule entry, a collision may occur
if another ECU transmits in the same schedule entry. If the NI-XNET LIN interface
runs as a LIN master, it automatically uses the XNET LIN Schedule Entry Collision
Resolving Schedule property to resolve this collision.

Signal Output Waveform Mode
The behavior is the same as Cyclic.

If the NI-XNET interface runs as a LIN master, NI-XNET executes schedules, and
therefore controls the timing of LIN frames. An event-driven LIN frame can transmit
at most once per execution of its schedule entry.

If the NI-XNET interface runs as a LIN slave (default), this session mode is not
supported.

ni.com824

NI-XNET 20.5

Frame Output Stream Mode
When using a stream output timing of immediate mode, if the frame for transmit is
defined as an event-triggered frame in the database, and a collision occurs during
transmit, the interface automatically executes the collision resolving schedule
defined for the frame, exactly as if the frame were transmitted in a scheduled event-
triggered slot.

When using a stream output timing of either Replay Exclusive or Replay Inclusive, if
the frame for transmit is determined to be defined as an event-triggered frame in
the database, the frame is transmitted with a header ID equal to the unconditional
frame ID contained in data byte 0. The data is transmitted without modification. In
other words, the frame is transmitted as an unconditional frame associated with the
event-triggered frame.

Refer to the Interface:Output Stream Timing property for more details about using
this mode with LIN.

XNET I/O Names
LabVIEW I/O names (also known as refnum tags) are provided for various object
classes within NI-XNET.

I/O names provide user interface features for easy configuration. You can use an I/O
name as a:

■ Control (or indicator): Use an I/O name control to select a specific instance
on the front panel. NI-XNET I/O name controls are in the front panel
Modern»I/O»XNET controls palette.

Typically, you use I/O name controls to select an instance during
configuration, and the instance is used at run time. For example, prior to
running a VI, you can use XNET Signal I/O name controls to select signals to
read. When the user runs the VI, the selected signals are passed to the XNET
Create Session VI, followed by calls to the XNET Read VI to read and display
data for the selected signals.

As an alternative, you also can use I/O name controls to select an instance at

© National Instruments 825

NI-XNET 20.5

run time. This applies when the VI always is running for the end user, and the
VI uses distinct stages for configuration and I/O. Using the previous example,
the user clicks XNET Signal I/O name controls to select signals during the
configuration stage. Next, the user clicks a Go button to proceed to the I/O
stage, in which the XNET Create Session VI and the XNET Read VI are called.

You can build a standalone application (executable) that contains NI-XNET I/O
name controls on its front panel. While running in an executable, the I/O name
drop-down menu is supported, but the right-click menu is not operational.
■ Constant: Use an I/O name constant to select a specific instance on the
block diagram. NI-XNET I/O name constants are in the block diagram
Measurement I/O»XNET functions palette. You can access I/O name
constants only during configuration, prior to running the VI.

If you are using LabVIEW Real-Time (RT), you can right-click the RT target within a
LabVIEW Project and select the Connect menu item. This connects to the RT target
over TCP/IP, which in turn enables the user interface of NI-XNET I/O names to
operate remotely. You can select names from the databases on the RT target and
menu items to manage database deployments.

At run time, the VIs use I/O names to access features for the selected instance. The
I/O name has two simultaneous LabVIEW types:

■ String: When you wire the I/O name to a LabVIEW string, the string contains
the selected instance name. Use this string to store the I/O name is a portable
form, such as a text file.

You can wire a LabVIEW string directly to an I/O name.
■ Refnum: At run time, the I/O name contains a numeric reference to the
instance for use with NI-XNET property nodes and VIs. The property node for
the I/O name provides access to its configuration. The VIs provide methods for
the instance, such as to change state (start/stop), or access data (read/write).

I/O Name Classes

NI-XNET includes the following I/O name classes:

ni.com826

NI-XNET 20.5

Session
Each session represents a connection between your National Instruments hardware
and hardware products on the external network. Your application uses XNET
sessions to read and write I/O data.

The session I/O name is primarily for sessions created during configuration using a
LabVIEW project. When you create a session at run time with the XNET Create
Session VI, the I/O name serves only as a refnum (its string is irrelevant).

Database Classes
To communicate with hardware products on the external network, NI-XNET
applications must understand how that hardware communicates in the actual
embedded system, such as the vehicle. This embedded communication is described
within a standardized file, such as CANdb (.dbc), FIBEX (.xml), AUTOSAR (.arxm
l), or LIN Description File (.ldf). Within NI-XNET, this file is referred to as a
database. The database contains many object classes, each of which describes a
distinct entity in the embedded system:

■ Database: Each database is represented as a distinct instance in NI-XNET.
Although the I/O name string can be the complete file path, it typically uses a
shortened alias.
■ Cluster: Each database contains one or more clusters, where the cluster
represents a collection of hardware products all connected over a shared
cabling harness. In other words, each cluster represents a single network. For
example, the database may describe a single vehicle, where the vehicle
contains one Body CAN cluster, another Powertrain CAN cluster, and one
Chassis FlexRay cluster.
■ ECU: Each Electronic Control Unit (ECU) represents a single hardware
product in the embedded system. The cluster contains one or more ECUs, all
connected over a network cable. Multiple clusters can contain a single ECU, in
which case it behaves as a gateway between the clusters.
■ Frame: Each frame represents a unique unit of data transfer over the cluster
cable. The frame bits contain payload data and an identifier that specifies the

© National Instruments 827

NI-XNET 20.5

data (signal) content. Only one ECU in the cluster transmits each frame, and
one or more ECUs receive each frame.
■ Signal: Each frame contains zero or more values, each of which is called a
signal. For example, the first two bytes of a frame payload may represent a
temperature, and the third payload byte may represent a pressure. Within the
database, each signal specifies its name, position, and length of the raw bits in
the frame, and a scaling formula to convert raw bits to/from a physical unit.
The physical unit uses a LabVIEW double-precision floating-point numeric
type. The signal is the highest level of abstraction for embedded networks.
When you use an XNET Session to read/write signal values as physical units,
your application does not need to be concerned with protocol (CAN/FlexRay/
LIN) and frame encoding details.
■ LIN Schedule: The LIN protocol is different than CAN or FlexRay, in that it
supports multiple schedules that determine when frames transmit. You can
change the current schedule at runtime.
■ LIN Schedule Entry: Each LIN Schedule contains one or more entries, or
slots. Each entry in turn contains one or more frames that can transmit during
the entry's time slot. A single frame can be located in multiple LIN schedules
and within multiple LIN schedule entries.

Additional database classes include PDU and Subframe.

System Classes
These classes describe hardware in your National Instruments system, such as PXI
or a desktop PC containing PCI cards.

■ Device: This represents the National Instruments device for CAN/FlexRay/
LIN, such as a PXI or PCI card. Each NI-XNET device contains one or more
interfaces.
■ Interface: This represents a single CAN, FlexRay, or LIN connector (port) on
the device. Within NI-XNET, the interface is the object used to communicate
with external hardware described in the database. When you create an NI-
XNET session, you specify a physical and logical connection between the NI
interface and a cluster. Because the cluster represents a single physical cable

ni.com828

NI-XNET 20.5

harness, it does not make sense to connect the NI interface to multiple
clusters simultaneously.
■ Terminal: Each interface contains various terminals. The terminals are for NI-
XNET synchronization features, to connect triggers and timebases (clocks) to/
from the interface hardware. The terminal I/O name is for selecting a string
input to the XNET Connect Terminals or XNET Disconnect Terminals VI, both of
which operate on the session. Unlike the other I/O name classes, the terminal
does not provide refnum features such as property nodes.

XNET Cluster I/O Name
Each database contains one or more clusters, where the cluster represents a
collection of hardware products all connected over a shared cabling harness. In
other words, each cluster represents a single CAN network or FlexRay network. For
example, the database may describe a single vehicle, where the vehicle contains a
Body CAN cluster, a Powertrain CAN cluster, and a Chassis FlexRay cluster.

Use the XNET Cluster I/O name to select a cluster, access properties, and invoke
methods. For general information about I/O names, such as when to use them, refer
to NI-XNET I/O Names.

User Interface

When you select the drop-down arrow on the right side of the I/O name, you see a
list of all clusters known to NI-XNET, followed by a separator (line), then a list of
menu items.

Each cluster in the drop-down list uses the syntax specified in String Use. The list of
clusters spans all database aliases known to NI-XNET. If you have not added an alias,
the list of clusters is empty.

You can select a cluster from the drop-down list or by typing the name. As you type a
name, LabVIEW selects the closest match from the list.

Right-clicking the I/O name displays a menu of LabVIEW items and items specific to
NI-XNET.

The XNET Cluster I/O name includes the following menu items (in right-click or drop-
down menus):

© National Instruments 829

NI-XNET 20.5

■ Browse For Database File: If you have an existing CANdb (.dbc), FIBEX (.x
ml), AUTOSAR (.arxml), LIN Description File (.ldf), or NI-CAN (.ncd)
database file, select this item to add an alias to NI-XNET. Use the file dialog to
browse to the database file on your system. When you select OK, NI-XNET
adds an alias to the file. The alias uses the filename, such as MyDatabase for a
file path of C:\Embedded\Vehicle5\MyDatabase.dbc. If the alias is
not unique, NI-XNET appends a number per LabVIEW conventions (for
example, MyDatabase 2). After adding the alias, you can select the objects in
that database from any NI-XNET I/O name.
■ New XNET Database: If you do not have an existing database file, select this
item to launch the NI-XNET Database Editor. You can use the NI-XNET
Database Editor to create objects for the database and then save to a file.
When you save the file, the NI-XNET Database Editor also adds an alias.
Therefore, after you save from the editor, the clusters in the database become
available in the XNET Cluster I/O name drop-down list.
■ Edit XNET Database: If you selected a cluster using the I/O name, select this
item to launch the NI-XNET Database Editor with that cluster's database file.
You can use the editor to make changes to the database file, including the
cluster.
■ Manage Database Aliases: Select this menu item to open a dialog for
managing aliases. You can review your list of aliases and associated file paths,
remove an alias (without deleting the file), and add new aliases.

If you are using LabVIEW Real-Time (RT), you can right-click the RT target within
LabVIEW Project and select the Connect menu item. This connects to the RT target
over TCP/IP, which in turn enables the user interface of NI-XNET I/O names to
operate remotely. If you open the Manage dialog while connected to an RT target,
the dialog provides features for reviewing the list of databases on the RT target,
deploying a new database from Windows to the RT target, and undeploying a
database (removing an alias and file from RT target).

String Use

Use one of two syntax conventions for the string in the XNET Cluster I/O name:

■ <alias>.<cluster>

ni.com830

NI-XNET 20.5

■ <alias>

The first syntax convention is the most complete, in that it contains the name of a
database alias, followed by a dot separator, followed by the name of the cluster
within that database. Use this syntax with FIBEX files, which contain multiple named
clusters.

The second syntax convention uses the database alias only. This is supported for
CANdb (.dbc), LDF (.ldf), and NI-CAN (.ncd) files, which always contain a single
unnamed cluster.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, underscore (_), and space
() are valid characters for <alias>. Period (.) and other special characters are not
supported within the <alias> name. Because the <alias> is used as the filename
portion of an internal filepath (that is, absolute path and file extension removed), it
must use the minimum file conventions for all operating systems. The alias name is
not case sensitive.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for <cluster>. The space (), period (.), and other special
characters are not supported within the cluster name. The cluster name must begin
with a letter (uppercase or lowercase) or underscore, and not a number. The cluster
name is limited to 128 characters. The cluster name is case sensitive.

For FIBEX (.xml) and AUTOSAR (.arxml) files, the <cluster> name is stored in the
database file. For CANdb (.dbc), LDF (.ldf), or NI-CAN (.ncd) files, no <cluster>
name is stored in the file, so NI-XNET uses the name Cluster when a name is
required.

You can use the XNET Cluster I/O name string as follows:

■ XNET Create Session (Frame In Stream, Frame Out Stream, Generic) VI:
The stream I/O sessions transfer an arbitrary sequence of frames on the
cluster, so only the XNET Cluster is required for configuration (not specific
frames). The Generic instance provides advanced features to pass in database
object names as strings, including the cluster. Within Create Session, NI-XNET
opens the database file, reads information for the cluster, and then closes the
database.

© National Instruments 831

NI-XNET 20.5

■ Open Refnum: LabVIEW can open the XNET Cluster I/O name automatically.
Wire the I/O name to a property node or VI, and the refnum is opened prior to
the first use.

Refnum Use

You can use the XNET Cluster I/O name refnum as follows:

■ XNET Cluster Property Node: The XNET Cluster property node provides
information about its contents, such as the list of all XNET Frames. This
property node is the most common use case for the XNET Cluster I/O name,
because it provides the features needed to query and/or edit the cluster
contents in the database file.
■ Create (ECU, Frame): If you are creating a new database, call this VI to
create a new XNET ECU or Frame within the cluster.

XNET Database I/O Name
To communicate with hardware products on the external CAN/FlexRay/LIN network,
NI-XNET applications must understand how that hardware communicates in the
actual embedded system, such as the vehicle. This embedded communication is
described within a standardized file, such as CANdb (.dbc) or NI-CAN (.ncd) for
CAN, FIBEX (.xml), or AUTOSAR (.arxml). Within NI-XNET, this file is referred to as
a database. The database contains many object classes, each of which describes a
distinct entity in the embedded system.

Use the XNET Database I/O name to select a database, access properties, and invoke
methods (for example, save). For general information about I/O names, such as
when to use them, refer to NI-XNET I/O names.

When using a database file with NI-XNET, you can specify the file path or specify an
alias to the file. The alias provides a shorter, easier-to-read name for use within your
application. For example, for the file path C:\Documents and Settings\All
Users\Documents\Vehicle5\MyDatabase.dbc, you can add an alias
named MyDatabase. In addition to improving readability, the alias concept isolates
your LabVIEW application from the specific filepath. For example, if your application
uses the alias MyDatabase, and you change its file path to C:\Embedded\Vehic
le5\MyDatabase.dbc, your LabVIEW application continues to run without

ni.com832

NI-XNET 20.5

change. The alias concept is used in most NI-XNET features, including deployment
of database files to LabVIEW Real-Time targets. For more information about aliases,
refer to What Is an Alias?.

User Interface

When you select the drop-down arrow on the right side of the I/O name, you see a
list of all database aliases known to NI-XNET, followed by a separator (line), then a
list of menu items. If you have not added an alias, the first list is empty.

You can select an alias from the drop-down list or by typing the name. As you type a
name, LabVIEW selects the closest match from the list.

Right-clicking the I/O name displays a menu of LabVIEW items and items specific to
NI-XNET.

The XNET Database I/O name provides the following menu items in right-click and
drop-down menus:

■ Browse For Database File: If you have an existing CANdb (.dbc), FIBEX (.x
ml), AUTOSAR (.arxml), LIN Description File (.ldf), or NI-CAN (.ncd)
database file, select this item to add an alias to NI-XNET. Use the file dialog to
browse to the database file on your system. When you select OK, NI-XNET
adds an alias to the file. The alias uses the filename, such as MyDatabase for a
file path of C:\Embedded\Vehicle5\MyDatabase.dbc. If the alias is
not unique, NI-XNET appends a number per LabVIEW conventions (for
example, MyDatabase 2). After adding the alias, you can select the objects in
that database from any NI-XNET I/O name.
■ New XNET Database: If you do not have an existing database file, select this
item to launch the NI-XNET Database Editor. You can use the NI-XNET
Database Editor to create objects for the database and then save to a file.
When you save the file, the NI-XNET Database Editor also adds an alias.
Therefore, after you save from the editor, the database becomes available in
the XNET Database I/O name drop-down list.
■ Edit XNET Database: If you have selected a database using the I/O name,
select this item to launch the NI-XNET Database Editor with that database file.
You can use the editor to make changes to the database file.

© National Instruments 833

NI-XNET 20.5

■ Manage Database Aliases: Select this menu item to open a dialog to manage
aliases. You can review your list of aliases and associated file paths, remove an
alias (without deleting the file), and add new aliases.

If you are using LabVIEW Real-Time (RT), you can right-click the RT target
within a LabVIEW Project and select the Connect menu item. This connects to
the RT target over TCP/IP, which in turn enables the user interface of NI-XNET
I/O names to operate remotely. If you open the Manage dialog while
connected to an RT target, the dialog provides features to review the list of
databases on the RT target, deploy a new database from Windows to the RT
target, and undeploy a database (remove the alias and file from the RT target).

String Use

Use one of two syntax conventions for the XNET Database I/O name string:

■ <alias>
■ <filepath>

The <alias> is the database file short name, used as an alias to the complete
filepath. This syntax is the only option available when you select a database from
the drop-down list or use the menu items.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, underscore (_), and space
() are valid characters for <alias>. Period (.) and other special characters are not
supported within the <alias> name. Because the <alias> is used as the filename
portion of an internal filepath (that is, absolute path and file extension removed), it
must use the minimum file conventions for all operating systems. The alias name is
not case sensitive.

The <filepath> is the absolute path to the text database file, using the operating
system file conventions (such as C:\Embedded\Vehicle5\MyDatabase.db
c). You can use the <filepath> syntax to open the database directly, without adding
an alias to NI-XNET.

Valid characters for <filepath> include any characters your operating system
supports for an absolute file path. Relative file paths are not supported. Because
special characters typically are required in an absolute filepath (such as \ or :), NI-

ni.com834

NI-XNET 20.5

XNET uses these characters to distinguish the <alias> syntax from <filepath>
syntax.

You can use the XNET Database I/O name string as follows:

■ XNET Create Session (Generic) VI: The commonly used XNET Create
Session VI instances use signal or frame I/O names and not the database
directly. The Generic instance provides advanced features to pass in database
object names as strings, including the database itself. Within Create Session,
NI-XNET opens the database file, reads information, and closes the database.
■ Open Refnum: LabVIEW can open the XNET Database I/O name
automatically. Wire the I/O name to a property node or VI, and the refnum is
opened prior to the first use.
■ Remove Alias, Deploy, Undeploy: These VIs enable you to manage an
existing alias at run time, much like the Manage Database Aliases dialog. The
XNET Database is passed in as a string, and is not opened as a refnum. These
VIs require the <alias> syntax for the XNET Database (not filepath).

Refnum Use

You can use the XNET Database I/O name refnum as follows:

■ XNET Database Property Node: The XNET Database property node provides
information on its contents, such as the list of all XNET Clusters. This property
node is the most common use case for the XNET Database I/O name, because
it provides the features needed to query and/or edit all database contents
from the top-level down to all other objects.
■ XNET Database Create (Cluster) VI: If you are creating a new database, call
this VI to create a new XNET Cluster within the database.
■ XNET Database Save VI: After you set properties for the database or any of
its objects, call this VI to save those changes to the file. The file is saved in the
FIBEX format.

© National Instruments 835

NI-XNET 20.5

XNET Device I/O Name
Within NI-XNET, the term device refers to your National Instruments CAN/
FlexRay/LIN hardware product, such as a PXI or PCI card.

Each device contains one or more interfaces to communicate on a CAN/FlexRay/LIN
network.

User Interface

The XNET Device I/O name is not intended for use on VI front panels or as a diagram
constant. This I/O name class is returned as the value of the following properties:

■ XNET System Devices
■ XNET Interface Device

The value these properties return is used as a refnum only.

String Use

NI-XNET determines the XNET Device I/O name string syntax internally. This syntax
may change in future versions, so string display or formation is not recommended.

Refnum Use

You can use the XNET Device I/O name refnum as a device node. The XNET Device
property node provides information such as the serial number and list of interfaces
contained within the device.

LabVIEW closes the XNET device automatically. This occurs when the last top-level
VI using the device goes idle (aborted or stops executing).

XNET ECU I/O Name
Each Electronic Control Unit (ECU) represents a single hardware product in the
embedded system. The cluster contains one or more ECUs, all connected by a CAN,
FlexRay, or LIN cable.

ni.com836

NI-XNET 20.5

Use the XNET ECU I/O name to select an ECU, access properties, and invoke
methods. For general information about I/O names, such as when to use them, refer
to XNET I/O Names.

User Interface

Before using the ECU I/O name, you must use Select Database to select a cluster
within a known database. Because the NI-XNET hardware interface physically
connects to a single cluster in your embedded system, it makes sense to limit the list
to ECUs contained in a single cluster.

When you select the drop-down arrow on the right side of the I/O name, you see a
list of all ECUs within the selected cluster, followed by a separator (line), then a list
of menu items.

Each ECU in the drop-down list uses the syntax specified in String Use.

You can select an ECU from the drop-down list or by typing the name. As you type a
name, LabVIEW selects the closest match from the list.

Right-clicking the I/O name displays a menu of LabVIEW items and items specific to
NI-XNET.

The XNET ECU I/O name provides the following menu items in right-click and drop-
down menus:

■ Select Database: In the drop-down list, this menu item opens a dialog to
select a cluster. In the right-click menu, this item provides a pull-right menu to
select the cluster.

You must select a cluster to specify the frame selection scope. The list of
clusters uses the same list as the XNET Cluster I/O name. Each cluster name
typically is just the database <alias> only, but when a FIBEX file is used, each
<alias>.<cluster> name is listed.
■ Browse For Database File: If you have an existing CANdb (.dbc), FIBEX (.x
ml), AUTOSAR (.arxml), LIN Description File (.ldf), or NI-CAN (.ncd)
database file, select this item to add an alias to NI-XNET. Use the file dialog to
browse to the database file on your system. When you select OK, NI-XNET
adds an alias to the file. The alias uses the filename, such as MyDatabase for a

© National Instruments 837

NI-XNET 20.5

file path of C:\Embedded\Vehicle5\MyDatabase.dbc. If the alias is
not unique, NI-XNET appends a number per LabVIEW conventions (for
example, MyDatabase 2). After adding the alias, you can select the objects in
that database from any NI-XNET I/O name.

After adding the alias, it appears in the Select Database list, and the first
cluster in the database is selected automatically.
■ New XNET Database: If you do not have an existing database file, select this
item to launch the NI-XNET Database Editor. You can use the NI-XNET
Database Editor to create objects for the database and then save to a file.
When you save the file, the NI-XNET Database Editor also adds an alias.
Therefore, after you save from the editor, the clusters in the database become
available in the Select Database list. You must select the desired cluster when
you finish using the NI-XNET Database Editor.
■ Edit XNET Database: If you have selected a cluster using Select Database,
select this item to launch the NI-XNET Database Editor with that cluster's
database file. You can use the editor to make changes to the database file,
including the ECUs.
■ Manage Database Aliases: Select this menu item to open a dialog to manage
aliases. You can review your list of aliases and associated file paths, remove an
alias (without deleting the file), and add new aliases.

If you are using LabVIEW Real-Time (RT), you can right-click the RT target
within a LabVIEW Project and select the Connect menu item. This connects to
the RT target over TCP/IP, which in turn enables the user interface of NI-XNET
I/O names to operate remotely. If you open the Manage dialog while
connected to an RT target, the dialog provides features to review the list of
databases on the RT target, deploy a new database from Windows to the RT
target, and undeploy a database (remove the alias and file from an RT target).

String Use

Use the following syntax convention for the XNET ECU I/O name string:

<ecu>\n<dbSelection>

ni.com838

NI-XNET 20.5

The string contains the ECU name, followed by a new line (\n) as a separator,
followed by the selected cluster name.

When you drop the I/O name onto your front panel, the control displays only one
line by default. This enables the VI end user to focus on selecting the <ecu>, rather
than the more complex syntax that includes <dbSelection>.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for <ecu>. The space (), period (.), and other special characters
are not supported within the ECU name. The <ecu> name must begin with a letter
(uppercase or lowercase) or underscore, and not a number. The <ecu> name is
limited to 128 characters. The ECU name is case sensitive.

For FIBEX (.xml), AUTOSAR (.arxml), LIN Description File (.ldf), and CANdb (.d
bc) files, the database file stores the <ecu> name. ECU specifications are not
provided within NI-CAN (.ncd) files.

The <dbSelection> is appended to the ECU name to ensure that the XNET ECU I/O
name is unique. LabVIEW requires each I/O name to use a unique name, because
each instance is located using its name. By appending the cluster name, NI-XNET
ensures that the entire name is unique in large applications that use multiple NI-
XNET interfaces (multiple clusters). The characters for <dbSelection> are the same
as the name you selected using Select Database, which uses the same syntax
convention as the XNET Cluster I/O name. To view the <dbSelection> when the I/O
name is displayed, resize its constant/control to show multiple lines.

You can use the XNET ECU I/O name string as follows:

■ Open Refnum: LabVIEW can open the XNET ECU I/O name automatically.
Wire the I/O name to a property node or VI, and the refnum is opened prior to
the first use.

Refnum Use

You can use the XNET ECU I/O name refnum as follows:

■ XNET ECU Property Node: The XNET ECU property node provides the list of
all frames the ECU transmits and receives. When you are creating an
application to test a single ECU product, these frame lists help you create

© National Instruments 839

NI-XNET 20.5

sessions for input/output of all frames (or signals) to fully test the ECU
behavior.

XNET Frame I/O Name
Each frame represents a unique unit of data transfer over the cluster cable. The
frame bits contain payload data and an identifier that specifies the data (signal)
content. Only one ECU in the cluster transmits each frame, and one or more ECUs
receive each frame.

For CAN, each frame is identified by its arbitration ID. The XNET Frame Identifier and
CAN:Extended Identifier? properties specify this arbitration ID.

For FlexRay, each frame is identified by its location within the FlexRay cycle and
channels. The XNET Frame Identifier, FlexRay:Base Cycle, FlexRay:Cycle Repetition,
FlexRay:Channel Assignment, and FlexRay:In Cycle Repetitions:Enabled? properties
specify this location.

Use the XNET Frame I/O name to select a frame, access properties, and invoke
methods. For general information about I/O names, such as when to use them, refer
to NI-XNET I/O names.

User Interface

Before using the frame I/O name, you must use Select Database to select a cluster
within a known database. Because the NI-XNET hardware interface physically
connects to a single cluster in your embedded system, it makes sense to limit the list
to frames contained in a single cluster.

When you select the drop-down arrow on the right side of the I/O name, you see a
list of all frames within the selected cluster, followed by a separator (line), then a list
of menu items.

Each frame in the drop-down list uses the syntax specified in String Use.

You can select a frame from the drop-down list or by typing the name. As you type a
name, LabVIEW selects the closest match from the list.

Right-clicking the I/O name displays a menu of LabVIEW items and items specific to
NI-XNET.

ni.com840

NI-XNET 20.5

The XNET Frame I/O name includes the following menu items in right-click and
drop-down menus:

■ Select Database: In the drop-down list, this menu item opens a dialog to
select a cluster. In the right-click menu, this item includes a pull-right menu to
select the cluster.

You must select a cluster to specify the frame selection scope. The list of
clusters uses the same list as the XNET Cluster I/O name. Each cluster name
typically is just the database <alias> only, but when a FIBEX file is used, each
<alias>.<cluster> name is listed.
■ Browse For Database File: If you have an existing CANdb (.dbc), FIBEX (.x
ml), AUTOSAR (.arxml), LIN Description File (.ldf), or NI-CAN (.ncd)
database file, select this item to add an alias to NI-XNET. Use the file dialog to
browse to the database file on your system. When you select OK, NI-XNET
adds an alias to the file. The alias uses the filename, such as MyDatabase for a
file path of C:\Embedded\Vehicle5\MyDatabase.dbc. If the alias is
not unique, NI-XNET appends a number per LabVIEW conventions (for
example, MyDatabase 2). After adding the alias, you can select the objects in
that database from any NI-XNET I/O name.

After adding the alias, it appears in the Select Database list, and the first
cluster in the database is selected automatically.
■ New XNET Database: If you do not have an existing database file, select this
item to launch the NI-XNET Database Editor. You can use the NI-XNET
Database Editor to create objects for the database and then save to a file.
When you save the file, the NI-XNET Database Editor also adds an alias.
Therefore, after you save from the editor, the clusters in the database become
available in the Select Database list. You must select the desired cluster when
you finish using the NI-XNET Database Editor.
■ Edit XNET Database: If you have selected a cluster using Select Database,
select this item to launch the NI-XNET Database Editor with that cluster's
database file. You can use the editor to make changes to the database file,
including the frames.

© National Instruments 841

NI-XNET 20.5

■ Manage Database Aliases: Select this menu item to open a dialog to manage
aliases. You can review your list of aliases and associated file paths, remove an
alias (without deleting the file), and add new aliases.

If you are using LabVIEW Real-Time (RT), you can right-click the RT target
within a LabVIEW Project and select the Connect menu item. This connects to
the RT target over TCP/IP, which in turn enables the user interface of NI-XNET
I/O names to operate remotely. If you open the Manage dialog while
connected to an RT target, the dialog provides features to review the list of
databases on the RT target, deploy a new database from Windows to the RT
target, and undeploy a database (remove the alias and file from the RT target).

String Use

Use the following syntax convention for the XNET Frame I/O name string:

<frame>\n<dbSelection>

The string contains the frame name, followed by a new line (\n) as a separator,
followed by the selected cluster name.

When you drop the I/O name onto your front panel, the control displays only one
line by default. This enables the VI end user to focus on selecting the <frame>,
rather than the more complex syntax that includes <dbSelection>.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for <frame>. The space (), period (.), and other special
characters are not supported within the <frame> name. The <frame> name must
begin with a letter (uppercase or lowercase) or underscore, and not a number. The
<frame> name is limited to 128 characters. The frame name is case sensitive.

For all supported database formats, the database file stores the <frame> name.

The <dbSelection> is appended to the frame name to ensure that the XNET Frame
I/O name is unique. LabVIEW requires each I/O name to use a unique name, because
each instance is located using its name. By appending the cluster name, NI-XNET
ensures that the entire name is unique in large applications that use multiple NI-
XNET interfaces (multiple clusters). The characters for <dbSelection> are the same
as the name you selected using Select Database, which uses the same syntax

ni.com842

NI-XNET 20.5

convention as the XNET Cluster I/O name. To view the <dbSelection> when the I/O
name is displayed, resize its constant/control to show multiple lines.

You can use the XNET Frame I/O name string as follows:

■ XNET Create Session (Frame In Queued, Frame In Single-Point, Frame Out
Queued, Frame Out Single-Point, Generic) VI: The queued I/O sessions
transfer a sequence of values for a single frame in the cluster. The single-point
I/O sessions transfer the recent value for a list of frames. The Generic instance
provides advanced features to pass in database object names as strings,
including one or more frames. For all of these instances, the XNET Frame I/O
name is passed in as input, but is used as a string. Within Create Session, NI-
XNET opens the database file, reads information for the frames, and closes the
database.
■ Open Refnum: LabVIEW can open the XNET Frame I/O name automatically.
Wire the I/O name to a property node or VI, and the refnum is opened prior to
the first use.

Refnum Use

You can use the XNET Frame I/O name refnum as follows:

■ XNET Frame Property Node: The XNET Frame property node provides the
information such as the network identification, number of payload bytes, and
the list of signals within the frame.
■ XNET Database Create (Signal, Subframe) VI: If you are creating a new
database, call this VI to create a new XNET Signal or Subframe within the
frame.

XNET Interface I/O Name
The XNET interface represents a single CAN, FlexRay, LIN, or Ethernet connector
(port) on the device. Within NI-XNET, the interface is the object used to
communicate with external hardware described in the database. When you create
an NI-XNET session, you specify a physical and logical connection between the NI
interface and a cluster. Because the cluster represents a single physical cable

© National Instruments 843

NI-XNET 20.5

harness, it does not make sense to have the NI interface connected to multiple
clusters simultaneously.

The XNET interface I/O name is used to select an interface to pass to the XNET Create
Session VI, and to read hardware information properties. For general information
about I/O names, such as when you can use them, refer to NI-XNET I/O Names.

User Interface

Select the drop-down arrow on the right side of the I/O name to display a list of all
interfaces available in your system. You can select an interface from the drop-down
list or by typing the name. As you type a name, LabVIEW selects the closest match
from the list.

You can type the name of an interface that does not exist in your system. For
example, you can type CAN4 even if only CAN1 and CAN2 exist in your system. The
check for an actual CAN4 interface does not occur until it is used at runtime (for
example, within a session).

If you are using LabVIEW Real-Time (RT), you can right-click the RT target within
LabVIEW project and select Connect. This connects to the RT target over TCP/IP,
which in turn enables the user interface of NI-XNET I/O names to operate remotely.
The XNET interface drop-down list shows (target disconnected) until you connect
the RT target. When the RT target is connected, the drop-down list shows all
interfaces on that RT target (for example, a PXI chassis).

When you right-click the I/O name, the menu contains LabVIEW items including I/O

Name Filtering. Use this menu item to filter the interface names shown in the I/O
name. You can show all interfaces, CAN only, FlexRay only, LIN only, or Ethernet
only. The selected filtering is saved along with the VI that uses the I/O name.

I/O Name Filtering is available at edit-time only, before you run your VI. This is done
under the assumption that if you filter for a specific protocol, the code in the VI
block diagram works with that protocol only. Therefore, you do not want to allow
the VI end users to select a different protocol at runtime.

String Use

Use one of two syntax conventions for the string in the XNET Interface I/O name:

ni.com844

NI-XNET 20.5

<protocol><n>

The protocol is CAN for a CAN interface, FlexRay for a FlexRay interface, or ENET for
an Ethernet interface. The protocol name is not case sensitive.

The number <n> identifies the specific interface within the scope of the protocol.
The numbering starts at 1. For example, if you have a two-port CAN device and a
two-port FlexRay device in your system, the interface names will be CAN1, CAN2,
FlexRay1, and FlexRay2.

Although you can change the interface number <n> within MAX, the typical practice
is to allow NI-XNET to select the number automatically. NI-XNET always starts at 1
and increments for each new interface found. If you do not change the number in
MAX, and your system always uses a single two-port CAN device, you can write all of
your applications to assume CAN1 and CAN2. For as long as that CAN card exists in
your system, NI-XNET uses the same interface numbers for that device, even if new
CAN cards are added.

You can use the XNET Interface I/O name string as follows:

■ XNET Create Session VI: All XNET Create Session VI instances use the
interface I/O name to specify the interface for the session's I/O. Within the
XNET Create Session VI, NI-XNET opens the interface and configures the
hardware for the session's I/O communication.

Refnum Use

The XNET interface refnum always is opened and closed automatically. When you
wire the I/O name to one of the following nodes, LabVIEW opens a refnum for the
interface. The refnum is closed automatically when it is no longer used. The XNET
interface refnum features are for hardware information and identification, prior to
using the interface within a session. You can use the XNET Frame I/O name refnum
as follows:

■ XNET Interface Property Node: The XNET Interface property node provides
information for the hardware, such as the port number next to the connector.

© National Instruments 845

NI-XNET 20.5

■ Blink: If no session is in use for the interface, you can use this VI to identify a
specific interface within a large system (for example, chassis with multiple
CAN devices).

XNET Session I/O Name
The XNET Session represents a connection between your National Instruments CAN/
FlexRay/LIN hardware and hardware products on the external CAN/FlexRay/LIN
network. Your application uses sessions to read and write I/O data.

Use the session class I/O name primarily for sessions created at edit time using a
LabVIEW project. When you create a session at run time with the XNET Create
Session VI, the I/O name serves only as a refnum (its string is irrelevant).

Use the XNET Session I/O name to select a session defined in a LabVIEW project, for
use with methods such as the XNET Read or XNET Write VIs. For general information
about I/O names, such as when to use them, refer to NI-XNET I/O Names.

User Interface

When you select the drop-down arrow on the right side of the I/O name, you see a
list of all available sessions.

If you are using a VI within a LabVIEW project, the available sessions are listed under
the VI target (RT or My Computer). If you are using a VI within a built application (.e
xe), the available sessions are in the NI-XNET configuration file (nixnetSession.
txt) the LabVIEW build generates.

You can select a session from the drop-down list or by typing the name. As you type
a name, LabVIEW selects the closest match from the list.

If you are using LabVIEW Real-Time (RT), you can right-click the RT target within a
LabVIEW project and select the Connect menu item. This connects to the RT target
over TCP/IP, which in turn enables the user interface of NI-XNET I/O names to
operate remotely. The XNET session drop-down list shows (target disconnected)
until you connect the RT target. When the RT target is connected, the drop-down list
shows all sessions on that RT target (for example, PXI chassis).

ni.com846

NI-XNET 20.5

When you right-click the I/O name, the menu contains LabVIEW items and the
following items:

■ Edit XNET Session: This item opens the Properties dialog for the selected
session. You can change the session properties and select OK to save those
changes in the project. This menu item is available at edit time only, before
you run your VI.
■ New XNET Session: This launches the wizard to create a new XNET Session.
The new session is created under the same target as the current VI. This menu
item is available at edit time only, before you run your VI.

String Use

Use a session name from the drop-down list.

LabVIEW conventions for names in a project allow any character, including special
characters such as space () and slash (/).

The session name is case sensitive.

The XNET Session I/O name string is not used directly, in that it always is opened
automatically for use as a refnum.

Refnum Use

The XNET Session refnum always is opened and closed automatically. When you
wire the I/O name to a node, LabVIEW opens a refnum for the session. The refnum is
closed automatically when your top-level VIs are no longer executing (idle). You also
can close the refnum by calling the XNET Clear VI.

The XNET Session refnum features represent the core NI-XNET functionality, in that
you use the session to read and write data on the embedded network using the
following property node and VIs:

■ XNET Session Node: Use the XNET Session property node to change the
session configuration.
■ XNET Read VI: Read data for an input session and read state information for
the session interface.

© National Instruments 847

NI-XNET 20.5

■ XNET Write VI: Write data for an output session.
■ XNET Start, XNET Stop, and XNET Flush VIs: Control the session and
buffer states.
■ XNET Wait and XNET Create Timing Source VIs: Handle notification of
events that occur in the session.
■ XNET Connect Terminals and XNET Disconnect Terminals VIs: Connect/
disconnect synchronization terminals.
■ XNET Clear VI: Close the session refnum , including stopping all I/O. If this
VI is not called, LabVIEW closes the refnum automatically when your top-level
VIs are no longer executing (idle).

XNET Signal I/O Name
Each frame contains zero or more values, each of which is called a signal. For
example, the first two bytes of a frame payload may represent a temperature, and
the third payload byte may represent a pressure. Within the database, each signal
specifies its name, position, and length of the raw bits in the frame, and a scaling
formula to convert raw bits to/from a physical unit. The physical unit uses a
LabVIEW double-precision floating-point numeric type. The signal is the highest
level of abstraction for embedded networks. When you use an XNET Session to read/
write signal values as physical units, your application does not need to be
concerned with protocol (CAN/FlexRay/LIN) details and frame encoding.

Use the XNET Signal I/O name to select a signal, access properties, and invoke
methods. For general information about I/O names, such as when to use them, refer
to NI-XNET I/O Names.

User Interface

Before using the signal I/O name, you must use Select Database to select a cluster
within a known database. Because the NI-XNET hardware interface physically
connects to a single cluster in your embedded system, it makes sense to limit the list
to signals contained in a single cluster.

ni.com848

NI-XNET 20.5

When you select the drop-down arrow on the right side of the I/O name, you see a
list of all signals within the selected cluster, followed by a separator (line), then a list
of menu items.

Each signal in the drop-down list uses the syntax specified in String Use.

You can select a signal from the drop-down list or by typing the name. As you type a
name, LabVIEW selects the closest match from the list.

Right-clicking the I/O name displays a menu of LabVIEW items and items specific to
NI-XNET.

The XNET Signal I/O name provides the following menu items in right-click and
drop-down menus:

■ Select Database: In the drop-down list, this menu item opens a dialog to
select a cluster. In the right-click menu, this item provides a pull-right menu to
select the cluster.

You must select a cluster to specify the signal selection scope. The list of
clusters uses the same list as the XNET Cluster I/O name. Each cluster name
typically is just the database <alias> only, but when a FIBEX file is used, each
<alias>.<cluster> name is listed.
■ Browse For Database File: If you have an existing CANdb (.dbc), FIBEX (.x
ml), AUTOSAR (.arxml), LIN Description File (.ldf), or NI-CAN (.ncd)
database file, select this item to add an alias to NI-XNET. Use the file dialog to
browse to the database file on your system. When you select OK, NI-XNET
adds an alias to the file. The alias uses the filename, such as MyDatabase for a
file path of C:\Embedded\Vehicle5\MyDatabase.dbc. If the alias is
not unique, NI-XNET appends a number per LabVIEW conventions (for
example, MyDatabase 2). After adding the alias, you can select the objects in
that database from any NI-XNET I/O name.

After adding the alias, it appears in the Select Database list, and the first
cluster in the database is selected automatically.
■ New XNET Database: If you do not have an existing database file, select this
item to launch the NI-XNET Database Editor. You can use the NI-XNET

© National Instruments 849

NI-XNET 20.5

Database Editor to create objects for the database and then save to a file.
When you save the file, the NI-XNET Database Editor also adds an alias.
Therefore, after you save from the editor, the clusters in the database become
available in the Select Database list. You must select the desired cluster when
you finish using the NI-XNET Database Editor.
■ Edit XNET Database: If you have selected a cluster using Select Database,
select this item to launch the NI-XNET Database Editor with that cluster's
database file. You can use the editor to make changes to the database file,
including the signals.
■ Manage Database Aliases: Select this menu item to open a dialog to manage
aliases. You can review your list of aliases and associated file paths, remove an
alias (without deleting the file), and add new aliases.

If you are using LabVIEW Real-Time (RT), you can right-click the RT target
within a LabVIEW Project and select the Connect menu item. This connects to
the RT target over TCP/IP, which in turn enables the user interface of NI-XNET
I/O names to operate remotely. If you open the Manage dialog while
connected to an RT target, the dialog provides features to review the list of
databases on the RT target, deploy a new database from Windows to the RT
target, and undeploy a database (remove the alias and file from the RT target).

String Use

Use one of two syntax conventions for the XNET Signal I/O name string:

■ <signal>\n<dbSelection>
■ <frame>.<signal>\n<dbSelection>

Use the first syntax convention when the signal name is unique within the cluster
(not used in multiple frames). This is the recommended design for signal names,
because it provides a clear and simple syntax. The string contains the name of the
signal, followed by a new line (\n) as a separator, followed by the selected cluster
name.

Use the second syntax convention when the signal name is used in multiple frames.
The string contains the name of frame, followed by a dot separator, followed by the
text of the first syntax convention (signal name and selected cluster).

ni.com850

NI-XNET 20.5

When you drop the I/O name onto your front panel, the control displays only one
line by default. This enables the VI end user to focus on selecting the <signal>,
rather than the more complex syntax that includes <dbSelection>.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for <signal>. The space (), period (.), and other special
characters are not supported within the signal name. The <signal> name must
begin with a letter (uppercase or lowercase) or underscore, and not a number. The
<signal> name is limited to 128 characters. The signal name is case sensitive.

For all supported database formats, the <signal> name is stored in the database file.

The <dbSelection> is appended to the signal name to ensure that the XNET Signal
I/O name is unique. LabVIEW requires each I/O name to use a unique name, because
each instance is located using its name. By appending the cluster name, NI-XNET
ensures that the entire name is unique in large applications that use multiple NI-
XNET interfaces (multiple clusters). The characters for <dbSelection> are the same
as the name you selected using Select Database, which uses the same syntax
convention as the XNET Cluster I/O name. To view the <dbSelection> when the I/O
name is displayed, resize its constant/control to show multiple lines.

You can use the XNET Signal I/O name string as follows:

■ XNET Create Session (Signal In Single-Point, Signal In Waveform, Signal In
XY, Signal Out Single-Point, Signal Out Waveform, Signal Out XY, Generic)
VI: The single-point I/O sessions transfer the recent value for a list of signals.
The waveform I/O sessions transfer signal data as LabVIEW waveforms. The XY
I/O sessions transfer a sequence of values for each signal in a list. The Generic
instance provides advanced features to pass in database object names as
strings, including one or more signals. For all these instances, the XNET Signal
I/O name is passed in as an input, but is used as a string. Within the XNET
Create Session VI, NI-XNET opens the database file, reads information for the
signals, and closes the database.
■ Open Refnum: LabVIEW can open the XNET Signal I/O name automatically.
Wire the I/O name to a property node or VI, and the refnum is opened prior to
the first use.

© National Instruments 851

NI-XNET 20.5

Refnum Use

You can use the XNET Signal I/O name refnum as follows:

■ XNET Signal Property Node: The XNET Signal property node provides
information such as the signal position and size in the payload, scaling
formula to physical units, and so on.

XNET Subframe I/O Name
Within your embedded network, some frames may use a feature called data
multiplexing (also known as mode-dependent messages). The frame specifies a
single signal called the data multiplexer. A specific range of bits within the
multiplexed frame is designated to contain subframes. Each subframe contains a
distinct set of signals, referred to as dynamic signals. When a frame is transmitted
on the network, the data multiplexer signal value selects the subframe. For
example, if the data multiplexer is 0, a subframe with dynamic signals A and B may
exist in the last bytes; if the data multiplexer is 1, a subframe with dynamic signals C
and D may exist in the same last bytes.

Use the XNET Subframe I/O name to access properties for a specific subframe.

User Interface

The XNET Subframe I/O name is not intended for use on VI front panels or as a
diagram constant. This I/O name class is returned as the value of the following
properties:

■ XNET Frame Mux:Subframes
■ XNET Signal Mux:Subframe

String Use

NI-XNET determines the XNET Subframe I/O name string syntax internally. This
syntax may change in future versions, so string display or formation is not
recommended.

You can use the XNET Frame I/O name string as follows:

ni.com852

NI-XNET 20.5

■ Open Refnum: LabVIEW can open the XNET Subframe I/O name
automatically. Wire the I/O name to a property node or VI, and the refnum is
opened prior to the first use.

Refnum Use

You can use the XNET Frame I/O name refnum as follows:

■ XNET Subframe Property Node: The XNET Subframe property node
provides the information such as the data multiplexer value for the subframe
and the list of dynamic signals within the subframe.
■ XNET Database Create (Dynamic Signal) VI: If you are creating a new
database, call this VI to create a new XNET Signal within the frame. This
instance creates a dynamic signal contained within the subframe. To create a
static signal that exists in all frame values, call the XNET Database Create
(Signal) VI using the parent XNET Frame (not the subframe).

XNET Terminal I/O Name
Each interface contains various terminals. The terminals are for NI-XNET
synchronization features, to connect triggers and timebases (clocks) to/from the
interface hardware.

Use the XNET Terminal I/O name to select a string input to the XNET Connect
Terminals or XNET Disconnect Terminals VIs, both of which operate on the session.
For general information about I/O names, such as when to use them, refer to NI-
XNET I/O Names.

User Interface

When you select the drop-down arrow on the right side of the I/O name, you see a
list of all terminals any NI-XNET interface uses.

You can select a terminal from the drop-down list or by typing the name. As you type
a name, LabVIEW selects the closest match from the list.

The list of terminals is not specific to a particular interface. For example, if you have
only a CAN device in your system, the drop-down list still contains terminals for
FlexRay interfaces.

© National Instruments 853

NI-XNET 20.5

String Use

Use a terminal name from the drop-down list.

For a description of each name, refer to the XNET Connect Terminals VI.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the name. The space (), period (.), and other special
characters are not supported within the name. The terminal name is not case
sensitive.

The terminal name scope always is local to the XNET interface used within the
session that you pass to the XNET Connect Terminals VI. One of the terminals
(source or destination) is on the trigger bus (PXI backplane or PCI RTSI cable), and
the other is within the XNET interface.

You can use the XNET Interface I/O name term as follows:

■ XNET Connect Terminals VI: Connect a source terminal to a destination
terminal on the interface.
■ XNET Disconnect Terminals VI: Disconnect a pair of terminals on the
interface.

Refnum Use

The XNET Terminal does not provide refnum features such as property nodes.

XNET LIN Schedule I/O Name
The LIN protocol is different than CAN or FlexRay, in that it supports multiple
schedules that determine when frames transmit. You can change the current
schedule at runtime. Within a database file, a cluster for LIN contains one or more
LIN schedules. Each LIN schedule contains one or more LIN schedule entries.

Use the XNET LIN Schedule I/O name to select a schedule, access properties, and
invoke methods. For general information about I/O names, such as when to use
them, refer to XNET I/O Names.

ni.com854

NI-XNET 20.5

User Interface

Before using the LIN Schedule I/O name, you must use Select Database to select a
cluster within a known database. Because the NI-XNET hardware interface
physically connects to a single cluster in your embedded system, it makes sense to
limit the list to schedules contained in a single cluster.

When you select the drop-down arrow on the right side of the I/O name, you see a
list of all LIN schedules within the selected cluster, followed by a separator (line),
then a list of menu items.

Each schedule in the drop-down list uses the syntax specified in String Use.

You can select a schedule from the drop-down list or by typing the name. As you
type a name, LabVIEW selects the closest match from the list.

Right-clicking the I/O name displays a menu of LabVIEW items and items specific to
NI-XNET.

The XNET LIN Schedule I/O name provides the following menu items in right-click
and drop-down menus:

■ Select Database: In the drop-down list, this menu item opens a dialog to
select a cluster. In the right-click menu, this item provides a pull-right menu to
select the cluster.

You must select a cluster to specify the LIN schedule selection scope. The list
of clusters uses the same list as the XNET Cluster I/O Name. Each cluster name
typically is just the database <alias> only, but when a FIBEX file is used, each
<alias>.<cluster> name is listed.
■ Browse For Database File: If you have an existing CANdb (.dbc), FIBEX (.x
ml), AUTOSAR (.arxml), LIN Description File (.ldf), or NI-CAN (.ncd)
database file, select this item to add an alias to NI-XNET. Use the file dialog to
browse to the database file on your system. When you select OK, NI-XNET
adds an alias to the file. The alias uses the filename, such as MyDatabase for a
file path of C:\Embedded\Vehicle5\MyDatabase.dbc. If the alias is
not unique, NI-XNET appends a number per LabVIEW conventions (for
example, MyDatabase 2). After adding the alias, you can select the objects in
that database from any NI-XNET I/O name.

© National Instruments 855

NI-XNET 20.5

After adding the alias, it appears in the Select Database list, and the first
cluster in the database is selected automatically.
■ Manage Database Aliases: Select this menu item to open a dialog to manage
aliases. You can review your list of aliases and associated file paths, remove an
alias (without deleting the file), and add new aliases.

If you are using LabVIEW Real-Time (RT), you can right-click the RT target
within a LabVIEW Project and select the Connect menu item. This connects to
the RT target over TCP/IP, which in turn enables the user interface of NI-XNET
I/O names to operate remotely. If you open the Manage dialog while
connected to an RT target, the dialog provides features to review the list of
databases on the RT target, deploy a new database from Windows to the RT
target, and undeploy a database (remove the alias and file from the RT target).

String Use

Use the following syntax convention for the XNET LIN Schedule I/O name string:

<schedule>\n<dbSelection>

The string contains the LIN schedule name, followed by a new line (\n) as a
separator, followed by the selected cluster name.

When you drop the I/O name onto your front panel, the control displays only one
line by default. This enables the VI end user to focus on selecting the <schedule>,
rather than the more complex syntax that includes <dbSelection>.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for <schedule>. The space (), period (.), and other special
characters are not supported within the schedule name. The <schedule> name
must begin with a letter (uppercase or lowercase) or underscore, and not a number.
The <schedule> name is limited to 128 characters. The schedule name is case
sensitive.

For LIN Description Files (.ldf), the database file stores the <schedule> name. The
NI-CAN (.ncd) and CANdb (.dbc) file formats do not support LIN. The current
version of NI-XNET does not support LIN with FIBEX (.xml) and AUTOSAR (.arxm
l).

ni.com856

NI-XNET 20.5

The <dbSelection> is appended to the schedule name to ensure that the XNET LIN
Schedule I/O name is unique. LabVIEW requires each I/O name to use a unique
name, because each instance is located using its name. By appending the cluster
name, NI-XNET ensures that the entire name is unique in large applications that use
multiple NI-XNET interfaces (multiple clusters). The characters for <dbSelection>
are the same as the name you selected using Select Database, which uses the same
syntax convention as the XNET Cluster I/O Name. To view the <dbSelection> when
the I/O name is displayed, resize its constant/control to show multiple lines.

You can use the XNET LIN Schedule I/O name string as follows:

■ Open Refnum: LabVIEW can open the XNET LIN Schedule I/O name
automatically. Wire the I/O name to a property node or VI, and the refnum is
opened prior to the first use.
■ Write (LIN Schedule Change): While running your session, you can change
the currently running LIN schedule. You wire the XNET LIN Schedule I/O name
to the XNET Write (State LIN Schedule Change) VI as a string to specify the
schedule to execute.

Refnum Use

You can use the XNET LIN Schedule I/O name refnum as follows:

■ XNET LIN Schedule Property Node: The LIN schedule property node
provides the list of all schedule entries, plus other aspects of the schedule
such as run mode.

XNET LIN Schedule Entry I/O Name
Each LIN Schedule contains one or more entries, or slots. Each entry in turn contains
one or more frames that can transmit during the entry's time slot. A single frame can
be located in multiple LIN schedules and within multiple LIN schedule entries.

Use the XNET LIN Schedule Entry I/O name to access properties for a specific
schedule entry.

© National Instruments 857

NI-XNET 20.5

User Interface

The XNET LIN Schedule Entry I/O name is not intended for use on VI front panels or
as a diagram constant. This I/O name class is returned as the value of the XNET LIN
Schedule Entries property.

String Use

NI-XNET determines the XNET LIN Schedule Entry I/O name string syntax internally.
This syntax may change in future versions, so string display or formation is not
recommended.

You can use the XNET LIN Schedule Entry I/O name string as follows:

■ Open Refnum: LabVIEW can open the XNET LIN Schedule Entry I/O name
automatically. Wire the I/O name to a property node or VI, and the refnum is
opened prior to the first use.

Refnum Use

You can use the XNET LIN Schedule Entry I/O name refnum as follows:

■ XNET LIN Schedule Entry Property Node: The XNET LIN Schedule Entry
property node provides the information such as the entry type, list of frames
transmitted, and so on.
■ XNET Database Create (LIN Schedule Entry) VI: If you are creating a new
database, call this VI to create a new XNET LIN Schedule Entry within the LIN
schedule.

XNET PDU I/O Name
Many FlexRay networks use the concept of a Protocol Data Unit (PDU) to implement
configurations similar to CAN. The PDU is a container of signals. You can use a single
PDU within multiple frames for faster timing. A single frame can contain multiple
PDUs, each updated independently. For more information, refer to Protocol Data
Units (PDUs) in NI-XNET.

ni.com858

NI-XNET 20.5

Use the XNET PDU I/O name to select a PDU, access properties, and invoke methods.
For general information about I/O names, such as when to use them, refer to XNET
I/O Names.

User Interface

Before using the PDU I/O name, you must use Select Database to select a cluster
within a known database. Because the NI-XNET hardware interface physically
connects to a single cluster in your embedded system, it makes sense to limit the list
to PDUs contained in a single cluster.

When you select the drop-down arrow on the right side of the I/O name, you see a
list of all PDUs within the selected cluster, followed by a separator (line), then a list
of menu items.

Each PDU in the drop-down list uses the syntax specified in String Use.

You can select a PDU from the drop-down list or by typing the name. As you type a
name, LabVIEW selects the closest match from the list.

Right-clicking the I/O name displays a menu of LabVIEW items and items specific to
NI-XNET.

The XNET PDU I/O name includes the following menu items in right-click and drop-
down menus:

■ Select Database: In the drop-down list, this menu item opens a dialog to
select a cluster. In the right-click menu, this item provides a pull-right menu to
select the cluster.

You must select a cluster to specify the PDU selection scope. The list of
clusters uses the same list as the XNET Cluster I/O name. Each cluster name
typically is just the database <alias> only, but when a FIBEX file is used, each
<alias>.<cluster> name is listed.
■ Browse For Database File: If you have an existing CANdb (.dbc), FIBEX (.x
ml), AUTOSAR (.arxml), LIN Description File (.ldf), or NI-CAN (.ncd)
database file, select this item to add an alias to NI-XNET. Use the file dialog to
browse to the database file on your system. When you select OK, NI-XNET
adds an alias to the file. The alias uses the filename, such as MyDatabase for a

© National Instruments 859

NI-XNET 20.5

file path of C:\Embedded\Vehicle5\MyDatabase.dbc. If the alias is
not unique, NI-XNET appends a number per LabVIEW conventions (for
example, MyDatabase 2). After adding the alias, you can select the objects in
that database from any NI-XNET I/O name.

After adding the alias, it appears in the Select Database list, and the first
cluster in the database is selected automatically.
■ New XNET Database: If you do not have an existing database file, select this
item to launch the NI-XNET Database Editor. You can use the NI-XNET
Database Editor to create objects for the database and then save to a file.
When you save the file, the NI-XNET Database Editor also adds an alias.
Therefore, after you save from the editor, the clusters in the database become
available in the Select Database list. You must select the desired cluster when
you finish using the NI-XNET Database Editor.
■ Edit XNET Database: If you have selected a cluster using Select Database,
select this item to launch the NI-XNET Database Editor with that cluster's
database file. You can use the editor to make changes to the database file,
including the signals.
■ Manage Database Aliases: Select this menu item to open a dialog to manage
aliases. You can review your list of aliases and associated file paths, remove an
alias (without deleting the file), and add new aliases.

If you are using LabVIEW Real-Time (RT), you can right-click the RT target
within a LabVIEW Project and select the Connect menu item. This connects to
the RT target over TCP/IP, which in turn enables the user interface of NI-XNET
I/O names to operate remotely. If you open the Manage dialog while
connected to an RT target, the dialog provides features to review the list of
databases on the RT target, deploy a new database from Windows to the RT
target, and undeploy a database (remove the alias and file from the RT target).

String Use

Use the following syntax convention for the XNET PDU I/O name string:

<pdu>\n<dbSelection>

ni.com860

NI-XNET 20.5

The string contains the PDU name, followed by a new line (\n) as a separator,
followed by the selected cluster name.

When you drop the I/O name onto your front panel, the control displays only one
line by default. This enables the VI end user to focus on selecting the <pdu>, rather
than the more complex syntax that includes <dbSelection>.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for <pdu>. The space (), period (.), and other special characters
are not supported within the <pdu> name. The <pdu> name must begin with a
letter (uppercase or lowercase) or underscore, and not a number. The <pdu> name
is limited to 128 characters. The PDU name is case sensitive.

For all supported database formats, the database file stores the <pdu> name.

The <dbSelection> is appended to the PDU name to ensure that the XNET PDU I/O
name is unique. LabVIEW requires each I/O name to use a unique name, because
each instance is located using its name. By appending the cluster name, NI-XNET
ensures that the entire name is unique in large applications that use multiple NI-
XNET interfaces (multiple clusters). The characters for <dbSelection> are the same
as the name you selected using Select Database, which uses the same syntax
convention as the XNET Cluster I/O name. To view the <dbSelection> when the I/O
name is displayed, resize its constant/control to show multiple lines.

You can use the XNET PDU I/O name string as follows:

■ XNET Create Session (Frame In PDU Queued, Frame In PDU Single-Point,
Frame Out PDU Queued, Frame Out PDU Single-Point, Generic) VI: These
modes operate on PDUs in a manner equivalent to frames. The queued I/O
sessions transfer a sequence of values for a single PDU in the cluster. The
single-point I/O sessions transfer the recent value for a list of PDUs. The
Generic instance provides advanced features to pass in database object
names as strings, including one or more PDUs. For all instances, the XNET PDU
I/O name is passed in as input, but is used as a string. Within Create Session,
NI-XNET opens the database file, reads information for the PDUs, and closes
the database.

© National Instruments 861

NI-XNET 20.5

■ Open Refnum: LabVIEW can open the XNET PDU I/O name automatically.
Wire the I/O name to a property node or VI, and the refnum is opened prior to
the first use.

Refnum Use

You can use the XNET PDU I/O name refnum as follows:

■ XNET PDU Property Node: The PDU property node provides information
such as the PDU position and size in the frame, contained signals, and so on.

ni.com862

NI-XNET 20.5

NI-XNET API for C
This section explains how to use the NI-XNET API for C and describes the NI-XNET C
functions and properties.

Getting Started
This topic helps you get started using NI-XNET for C. It includes information about
using NI-XNET within LabWindows/CVI and Microsoft Visual C, and C examples.

LabWindows/CVI

To view the NI-XNET function panels, select Library»NI-XNET. This opens a dialog
containing the NI-XNET classes. You also can use the Library Tree to access all the
function panels quickly. To use the NI-XNET Library Tree, go to View and make sure
that Library Tree is selected. In the Library Tree, expand Libraries and scroll down to
NI-XNET.

You can access the help for each class or function panel by right-clicking the
function panel and selecting Class Help... or Function Help....

Examples
NI-XNET includes LabWindows/CVI examples that demonstrate a wide variety of use
cases. The examples build on the basic concepts to demonstrate more in-depth use
cases.

To view the NI-XNET examples, select Find Examples... from the LabWindows/CVI
Help menu. When you browse examples by task, NI-XNET examples are under
Hardware Input and Output. The examples are grouped by protocol in CAN, FlexRay,
and LIN folders. Although you can write NI-XNET applications for either protocol,
and each folder contains shared examples, this organization helps you find
examples for your specific hardware product.

© National Instruments 863

NI-XNET 20.5

Open an example project by double-clicking its name. To run the example, select
values using the front panel controls, then read the instructions on the front panel
to run the examples. A few examples are suggested to get started with NI-XNET:

CAN (Hardware Input and Output»CAN»NI-XNET»Basic):

■ CAN Signal Input Single Point with CAN Signal Output Single Point

■ CAN Signal Input Waveform with CAN Signal Output Waveform

■ CAN Frame Input Stream with any output example

FlexRay (Hardware Input and Output»FlexRay»Basic):

■ FlexRay Signal Input Single Point with FlexRay Signal Output Single Point.
■ FlexRay Signal Input Waveform with FlexRay Signal Output Waveform.
■ FlexRay Frame Input Stream with any output example.

LIN (Hardware Input and Output»LIN»NI-XNET»Basic):

■ LIN Signal Input Single Point with LIN Signal Output Single Point

■ LIN Signal Input Waveform with LIN Signal Output Waveform

■ LIN Frame Input Stream with any output example

Visual C++

The NI-XNET software supports Microsoft Visual Studio 2003 or later.

The NIEXTCCOMPILERSUPP environment variable is provided as an alias to the C
language header file and library location. You can use this variable when compiling
and linking an application.

For compiling applications that use the NI-XNET API, you must include the nixnet
.h header file in the code.

For C applications (files with a .c extension), include the header file by adding a #i
nclude to the beginning of the code, such as:

#include "nixnet.h"

ni.com864

NI-XNET 20.5

In your project options for compiling, you must include this statement to add a
search directory to find the header file:

/I "$(NIEXTCCOMPILERSUPP)include"
For linking applications, you must add the nixnet.lib file and the following
statement to your linker project options to search for the library:

/libpath:"$(NIEXTCCOMPILERSUPP)\lib32\msvc"
The reference for each NI-XNET API function is in NI-XNET API for C Reference.

Examples
NI-XNET includes C examples that demonstrate a wide variety of use cases.

You can find examples for the C language in the MS Visual C subfolder of the \U
sers\Public\Public Documents\National Instruments\NI-XNET\
Examples directory on Windows 7 or Windows Vista and the \Documents and
Settings\All Users\Shared Documents\National Instruments\N
I-XNET\Examples directory on Windows XP. Each example is in a separate folder.
A description of each example is in comments at the top of the .c file.

Interfaces
What is an Interface?

How Do I View Available Interfaces?

What is an Interface?
The interface represents a single CAN, FlexRay, LIN, or Ethernet connector on an NI
hardware device. Within NI-XNET, the interface is the object used to communicate
with external hardware described in the database.

Each interface name uses the following syntax:

<protocol><n>

The <protocol> is one of the following:

© National Instruments 865

NI-XNET 20.5

■ CAN for a CAN interface
■ FlexRay for a FlexRay interface
■ LIN for a LIN interface
■ ENET for an Ethernet interface

The number <n> identifies the specific interface within the <protocol> scope. The
numbering starts at 1. For example, if you have a two-port CAN device, a two-port
FlexRay device, a two-port LIN device, and a two-port Ethernet device in your
system, the interface names are CAN1, CAN2, FlexRay1, FlexRay2, LIN1, LIN2,
ENET1, and ENET2, respectively. Devices that use a transceiver cable receive an
interface name only when the transceiver cable is connected and identified.

Although you can change the interface number <n> within Measurement &
Automation Explorer (MAX), the typical practice is to allow NI-XNET to select the
number automatically. NI-XNET always starts at 1 and increments for each new
interface found. If you do not change the number in MAX, and your system always
uses a single two-port CAN device, you can write all your applications to assume
CAN1 and CAN2. For as long as that CAN card exists in your system, NI-XNET uses the
same interface numbers for that device, even if you add new CAN cards.

NI-XNET also uses the term port to refer to the connector on an NI hardware device.
This physical connector includes the transceiver cable if applicable. The difference
between the terms is that port refers to the hardware object (physical), and
interface refers to the software object (logical). The benefit of this separation is that
you can use the interface name as an alias to any port, so that your application does
not need to change when your hardware configuration changes. For example, if you
have a PXI chassis with a single CAN PXI device in slot 3, the CAN port labeled Port 1
is assigned as interface CAN1. Later on, if you remove the CAN PXI card and connect
a USB device for CAN, the CAN port on the USB device is assigned as interface CAN1.
Although the physical port is in a different place, programs written to use CAN1
work with either hardware configuration without change.

For Ethernet interfaces, a special suffix "/monitor" appended to the interface name
indicates the use of a monitor path. For example, "ENET1" specifies use of the
endpoint path, and "ENET1/monitor" specifies use of the monitor path. The monitor
path is used to read Ethernet frames that are received or transmitted on each port.
When Tap is enabled, data received via the monitor path by a Tap pair will be

ni.com866

NI-XNET 20.5

identical on each port in the pair. Additional information on the monitor and
endpoint paths is provided in Using Ethernet.

How Do I View Available Interfaces?
Measurement and Automation Explorer (MAX)

Use NI MAX to view your available NI-XNET hardware, including all devices and
interfaces.

To view hardware in your local Windows system, select Devices and Interfaces

under My System. Each NI-XNET device is listed by hardware model name followed
by port name, for example, NI PCI-8517 "FlexRay1, FlexRay2".

Select each NI-XNET device to view its physical ports. Each port is listed with the
current interface name assignment, such as FlexRay1.

In the selected port's window on the right, you can change one property: the
interface name. Therefore, you can assign a different interface name than the
default. For example, you can change the interface for physical port 2 of a PCI-8517
to FlexRay1 instead of FlexRay2. The blinking LED test panel assists in identifying a
specific port when your system contains multiple instances of the same hardware
product (for example, a chassis with five CAN devices).

To view hardware in a remote LabVIEW Real-Time system, find the desired system
under Remote Systems and select Devices and Interfaces under that system. The
features of NI-XNET devices and interfaces are the same as the local system.

Databases
What Is a Database?

What Is an Alias?

Database Programming

© National Instruments 867

NI-XNET 20.5

What is a Database?
For the NI-XNET interface to communicate with hardware products on the external
network, NI-XNET must understand the communication in the actual embedded
system, such as the vehicle. This embedded communication is described within a
standardized file, such as CANdb (.dbc), FIBEX (.xml), AUTOSAR (.arxml), or LIN
Description File (.ldf). Within NI-XNET, this file is referred to as a database. The
database contains many object classes, each of which describes a distinct entity in
the embedded system.

■ Database: Each database is represented as a distinct instance in NI-XNET.
Although the database typically is a file, you also can create the database at
run time (in memory).
■ Cluster: Each database contains one or more clusters, where the cluster
represents a collection of hardware products connected over a shared cabling
harness. In other words, each cluster represents a single CAN, FlexRay, or LIN
network. For example, the database may describe a single vehicle, where the
vehicle contains one CAN cluster Body, another CAN cluster Powertrain, one
FlexRay cluster Chassis, and a LIN cluster PowerSeat.
■ ECU: Each Electronic Control Unit (ECU) represents a single hardware
product in the embedded system. The cluster contains one or more ECUs
connected over a CAN, FlexRay, or LIN cable. It is possible for a single ECU to
be contained in multiple clusters, in which case it behaves as a gateway
between the clusters.)
■ Frame: Each frame represents a unique unit of data transfer over the cluster
cable. The frame bits contain payload data and an identifier that specifies the
data (signal) content. Only one ECU in the cluster transmits (sends) each
frame, and one or more ECUs receive each frame.
■ Signal: Each frame contains zero or more values, each of which is called a
signal. Within the database, each signal specifies its name, position, length of
the raw bits in the frame, and a scaling formula to convert raw bits to/from a
physical unit. The physical unit uses a double-precision floating-point
numeric type.

Other object classes include the Subframe, LIN Schedule, and LIN Schedule Entry.

ni.com868

NI-XNET 20.5

Note that Ethernet interfaces currently do not support databases.

What is an Alias?
When using a database file with NI-XNET, you can specify the file path or an alias to
the file. The alias provides a shorter, easier-to-read name for use within your
application.

For example, for the file path

C:\Documents and Settings\All Users\Documents\Vehicle5\MyD
atabase.dbc
you can add an alias named MyDatabase. In addition to improving readability, the
alias concept isolates your application from the specific file path. For example, if
your application uses the alias MyDatabase and you change its file path to

C:\Embedded\Vehicle5\MyDatabase.dbc
your application continues to run without change.

After you create an alias, it exists until you explicitly delete it. If you uninstall NI-
XNET, the aliases are deleted; however, if you reinstall (upgrade) NI-XNET, the aliases
from the previous installation remain. Deleting an alias does not delete the
database file itself, but merely the association within NI-XNET.

Database Programming
The NI-XNET software provides various methods for creating your application
database configuration. The following figure shows a process for deciding the
database source. A description of each step in the process follows the flowchart.

© National Instruments 869

NI-XNET 20.5

Decision Process for Choosing Database Source

Already Have File?

If you are testing an ECU used within a vehicle, the vehicle maker (or the maker's
supplier) already may have provided a database file. This file likely would be in
CANdb, FIBEX, AUTOSAR, or LDF format. When you have this file, using NI-XNET is
relatively straightforward.

Can I Use File As Is?

Is the file up to date with respect to your ECU(s)?

If you do not know the answer to this question, the best choice is to assume Yes and
begin using NI-XNET with the file. If you encounter problems, you can use the
techniques discussed in Edit and Select to update your application without
significant redesign.

Select From File
You can simply pass the names of objects from the database to the List parameter
and the database name (alias or filepath) itself to the DatabaseName parameter of n
xCreateSession. This uses the selected objects from the database in the session
created.

ni.com870

NI-XNET 20.5

Edit and Select
There are two options for editing the database objects to use for NI-XNET sessions:
edit in memory and edit the file.

Edit in Memory

Use nxdbFindObject and nxdbSetProperty to change properties of selected
objects. This changes the representation in memory, but does not save the change
to the file. When you pass the object into nxCreateSession, the changes in
memory (not the original file) are used.

Edit the File

The NI-XNET Database Editor is a tool for editing database files for use with NI-XNET.
Using this tool, you open an existing file, edit the objects, and save those changes.
You can save the changes to the existing file or a new file.

When you have a file with the changes you need, you select objects in your
application as described in Select From File.

Want to Use a File?

If you do not have a usable database file, you can choose to create a file or avoid
files altogether for a self-contained application.

Create New File Using Editor
You can use the NI-XNET Database Editor to create a new database file. Once you
have a file, you select objects in your application as described in Select From File.

As a general rule, for FlexRay applications, using a FIBEX file is recommended.
FlexRay communication configuration requires a large number of complex
properties, and storage in a file makes this easier to manage. The NI-XNET Database
Editor has features that facilitate this configuration.

© National Instruments 871

NI-XNET 20.5

Create in Memory
You can use nxdbCreateObject to create new database objects in memory.
Using this technique, you can avoid files entirely and make your application self
contained.

You configure each object you create using the property node. Each class of
database object contains required properties that you must set (refer to Required
Properties).

The database name is :memory:. This special database name specifies a database
that does not originate from a file.

After you create and configure objects in memory, you can use nxdbSaveDatabas
e to save the objects to a file. This enables you to implement a database editor
within your application.

Multiple Databases Simultaneously

NI-XNET allows up to 63 database sessions to be open at the same time. You can
open any database from a database file or in memory. To open multiple in-memory
databases, use the name :memory[<digit>]:; for
example, :memory:, :memory1:, :memory2:.

Sessions
What Is a Session?

Session Modes

What is a Session?
The NI-XNET session represents a connection between your National Instruments
CAN, FlexRay, LIN, or Ethernet hardware and hardware products on the external
network.

Each session configuration includes:

■ Interface: This specifies the National Instruments hardware to use.

ni.com872

NI-XNET 20.5

■ Database objects: These describe how external hardware communicates.
■ Mode: This specifies the direction and representation of I/O data.

The links above link to detailed information about each configuration topic. The
mode topic has additional links to topics that explain how to read or write I/O data
for each mode. The I/O data consists of values for frames or signals.

In addition to read/write of I/O data, you can use the session to interact with the
network in other ways. For example, nxReadState includes selections to read the
state of communication, such as whether communication has stopped due to error
detection defined by the protocol standard.

You can use sessions for multiple hardware interfaces. For each interface, you can
use multiple input sessions and multiple output sessions simultaneously. The
sessions can use different modes. For example, you can use a Signal Input Single-
Point session at the same time you use a Frame Input Stream session.

The limitations on sessions relate primarily to a specific frame or its signals. For
example, if you create a Frame Output Queued session for frameA, then create a
Signal Output Single-Point session for frameA.signalB (a signal in frameA), NI-XNET
returns an error. This combination of sessions is not allowed, because writing data
for the same frame with two sessions would result in inconsistent sequences of data
on the network.

Session Modes
The session mode specifies the data type (signals or frames), direction (input or
output), and how data is transferred between your application and the network.

The mode is an enumeration of the following:

■ Signal Input Single-Point: Reads the most recent value received for each
signal. This mode typically is used for control or simulation applications, such
as Hardware In the Loop (HIL).
■ Signal Input Waveform: Using the time when the signal frame is received,
resamples the signal data to a waveform with a fixed sample rate. This mode
typically is used for synchronizing XNET data with DAQmx analog/digital input
channels.

© National Instruments 873

NI-XNET 20.5

■ Signal Input XY: For each frame received, provides its signals as a value/
timestamp pair. This is the recommended mode for reading a sequence of all
signal values.
■ Signal Output Single-Point: Writes signal values for the next frame transmit.
This mode typically is used for control or simulation applications, such as
Hardware In the Loop (HIL).
■ Signal Output Waveform: Using the time when the signal frame is
transmitted according to the database, resamples the signal data from a
waveform with a fixed sample rate. This mode typically is used for
synchronizing XNET data with DAQmx analog/digital output channels.
■ Signal Output XY: Provides a sequence of signal values for transmit using
each frame's timing as the database specifies. This is the recommended mode
for writing a sequence of all signal values.
■ Frame Input Stream: Reads all frames received from the network using a
single stream. This mode typically is used for analyzing and/or logging all
frame traffic in the network.
■ Frame Input Queued: Reads data from a dedicated queue per frame. This
mode enables your application to read a sequence of data specific to a frame
(for example, CAN identifier).
■ Frame Input Single-Point: Reads the most recent value received for each
frame. This mode typically is used for control or simulation applications that
require lower level access to frames (not signals).
■ Frame Output Stream: Transmits an arbitrary sequence of frame values
using a single stream. The values are not limited to a single frame in the
database, but can transmit any frame.
■ Frame Output Queued: Provides a sequence of values for a single frame, for
transmit using that frame's timing as the database specifies.
■ Frame Output Single-Point: Writes frame values for the next transmit. This
mode typically is used for control or simulation applications that require
lower level access to frames (not signals).
■ Conversion: This mode does not use any hardware. It is used to convert data
between the signal representation and frame representation.

ni.com874

NI-XNET 20.5

Note that Ethernet is supported by only two modes, Frame Input Stream and Frame
Output Stream.

Frame Input Queued Mode
This mode reads data from a dedicated queue per frame. It enables your application
to read a sequence of data specific to a frame (for example, a CAN identifier).

You specify only one frame for the session, and nxReadFrame returns values for
that frame only. If you need sequential data for multiple frames, create multiple
sessions, one per frame.

The input data is returned as an array of frame values. These values represent all
values received for the frame since the previous call to nxReadFrame.

Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2 ms. Frame E is an event-driven frame. For information about cyclic and
event-driven frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

This example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network, followed by two calls to nxReadFrame (one for C and one for E).

The following figure shows the data returned from the two calls to nxReadFrame
(two different sessions).

© National Instruments 875

NI-XNET 20.5

The first call to nxReadFrame returned an array of values for frame C, and the
second call to nxReadFrame returns an array for frame E. Each frame is displayed
with CAN-specific elements. For information about the data returned from the read
function, refer to Raw Frame Format. The example uses hexadecimal C and E as the
identifier of each frame. The first two payload bytes contain the signal data. The
timestamp represents the absolute time when the XNET interface received the
frame (end of frame), accurate to microseconds.

Compared to the example for the Frame Input Stream mode, this mode effectively
sorts received frames so you can process them on an individual basis.

ni.com876

NI-XNET 20.5

Frame Input Single-Point Mode
This mode reads the most recent value received for each frame. It typically is used
for control or simulation applications that require lower level access to frames (not
signals).

This mode does not use queues to store each received frame. If the interface
receives two frames prior to calling nxReadFrame, that read returns signals for the
second frame.

The input data is returned as an array of frames, one for each frame specified for the
session.

Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2 ms. Frame E is an event-driven frame. For information about cyclic and
event-driven frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network, followed by a single call to nxReadFrame. Each frame contains
its name (C or E), followed by the value of its two signals.

The following figure shows the data returned from each of the three calls to nxRea
dFrame. Each frame is displayed with CAN-specific elements. For information
about the data returned from the read function, refer to Raw Frame Format. The
session contains frame data for two frames: C and E.

© National Instruments 877

NI-XNET 20.5

In the data returned from the first call to nxReadFrame, frame C contains values 3
and 4 in its payload. The first reception of frame C values (1 and 2) were lost,
because this mode returns the most recent values.

In the frame timeline, Time of 0 ms indicates the time at which the session started to
receive frames. For frame E, no frame is received prior to the first call to nxReadFr
ame, so the timestamp is invalid, and the payload is the Default Payload. For this
example we assume that the Default Payload is all 0.

In the data returned from the second call to nxReadFrame, payload values 3 and 4
are returned again for frame C, because no new frame has been received since the
previous call to nxReadFrame. The timestamp for frame C is the same as the first
call to nxReadFrame.

In the data returned from the third call to nxReadFrame, both frame C and frame E
are received, so both elements return new values.

Frame Input Stream Mode
This mode reads all frames received from the network using a single stream. It
typically is used for analyzing and/or logging all frame traffic in the network.

The input data is returned as an array of frames. Because all frames are returned,
your application must evaluate identification in each frame (such as a CAN identifier
or FlexRay slot/cycle/channel) to interpret the frame payload data.

Previously, you could use only one Frame Input Stream session for a given interface.
Now, multiple Frame Input Stream sessions can be open at the same time on CAN
and LIN interfaces.

While using one or more Frame Input Stream sessions, you can use other sessions
with different input modes. Received frames are copied to Frame Input Stream

ni.com878

NI-XNET 20.5

sessions in addition to any other applicable input session. For example, if you create
a Frame Input Single-Point session for FrameA, then create a Frame Input Stream
session, when FrameA is received, its data is returned from the call to nxReadFram
e of both sessions. This duplication of incoming frames enables you to analyze
overall traffic while running a higher level application that uses specific frame or
signal data.

When used with a FlexRay interface, frames from both channels are returned. For
example, if a frame is received in a static slot on both channel A and channel B, two
frames are returned from nxReadFrame.

Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2 ms. Frame E is an event-driven frame. For information about cyclic and
event-driven frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network, followed by a single call to nxReadFrame. Each frame contains
its name (C or E), followed by the value of its two signals.

The following figure shows the data returned from nxReadFrame.

© National Instruments 879

NI-XNET 20.5

ni.com880

NI-XNET 20.5

Frame C and frame E are returned in a single array of frames. Each frame is
displayed with CAN-specific elements. For information about the data returned
from the read function, refer to Raw Frame Format. This example uses hexadecimal
C and E as the identifier of each frame. The signal data is contained in the first two
payload bytes. The timestamp represents the absolute time when the XNET
interface received the frame (end of frame), accurate to microseconds.

Frame Output Queued Mode
This mode provides a sequence of values for a single frame, for transmit using that
frame's timing as specified in the database.

The output data is provided as an array of frame values, to be transmitted
sequentially for the frame specified in the session.

This mode allows you to specify only one frame for the session. To transmit
sequential values for multiple frames, use a different Frame Output Queued session
for each frame or use the Frame Output Stream mode.

The frame values for this mode are stored in a queue, such that every value
provided is transmitted.

For this mode, NI-XNET transmits each frame according to its properties in the
database. Therefore, when you call nxWriteFrame, the number of payload bytes
in each frame value must match that frame's Payload Length property. The other
frame value elements are ignored, so you can leave them uninitialized. For CAN
interfaces, if the number of payload bytes you write is smaller than the Payload
Length configured in the database, the requested number of bytes transmits. If the
number of payload bytes is larger than the Payload Length configured in the
database, the queue is flushed and no frames transmit. For other interfaces,
transmitting a number of payload bytes different than the frame's payload may
cause unexpected results on the bus.

Examples

In this example network, frame C is a cyclic frame that transmits on the network
once every 2.0 ms. Frame E is an event-driven frame that uses a transmit time

© National Instruments 881

NI-XNET 20.5

(minimum interval) of 2.5 ms. For information about cyclic and event-driven frames,
refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network. Each frame contains its name (C or E), followed by the value of its
two signals. The timeline begins with two calls to nxWriteFrame, one for frame C,
followed immediately by another call for frame E.

The following figure shows the data provided to each call to nxWriteFrame. Each
frame is displayed with CAN-specific elements. For information about the data
returned from the write function, refer to Raw Frame Format. The first array shows
data for the session with frame C. The second array shows data for the session with
frame E.

ni.com882

NI-XNET 20.5

Assuming the Auto Start? property uses the default of true, each session starts
within the call to nxWriteFrame. Frame C transmits followed by frame E, both
using the frame values from the first element (index 0 of each array).

According to the database, frame C transmits once every 2.0 ms, and frame E is
limited to an event-driven transmit once every 2.5 ms.

At 2.0 ms in the timeline, the frame value with bytes 3, 4 is taken from index 1 of the
frame C array and used for transmit of frame C.

© National Instruments 883

NI-XNET 20.5

When 2.5 ms have elapsed after acknowledgment of the previous transmit of frame
E, the frame value with bytes 5, 8, 0, 0 is taken from index 1 of frame E array and
used for transmit of frame E.

At 4.0 ms in the timeline, the frame value with bytes 5, 6 is taken from index 2 of the
frame C array and used for transmit of frame C.

Because there are no more frame values for frame E, this frame no longer transmits.
Frame E is event-driven, so new frame values are required for each transmit.

Because frame C is a cyclic frame, it transmits repeatedly. Although there are no
more frame values for frame C, the previous frame value is used again at 6.0 ms in
the timeline, and every 2.0 ms thereafter. If nxWriteFrame is called again, the
new frame value is used.

Frame Output Single-Point Mode
This mode writes frame values for the next transmit. It typically is used for control or
simulation applications that require lower level access to frames (not signals).

This mode does not use queues to store frame values. If nxWriteFrame is called
twice before the next transmit, the transmitted frame uses the value from the
second call to nxWriteFrame.

The output data is provided as an array of frames, one for each frame specified for
the session.

For this mode, NI-XNET transmits each frame according to its properties in the
database. Therefore, when you call nxWriteFrame, the number of payload bytes
in each frame value must match that frame's Payload Length property. The other
frame value elements are ignored, so you can leave them uninitialized. For CAN
interfaces, if the number of payload bytes you write is smaller than the Payload
Length configured in the database, the requested number of bytes transmit. If the
number of payload bytes is larger than the Payload Length configured in the
database, the queue is flushed and no frames transmit. For other interfaces,
transmitting a number of payload bytes different than the frame payload may cause
unexpected results on the bus.

ni.com884

NI-XNET 20.5

Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2.0 ms. Frame E is an event-driven frame that uses a transmit time
(minimum interval) of 2.5 ms. For information about cyclic and event-driven frames,
refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network. Each frame contains its name (C or E), followed by the value of its
two signals. The timeline shows three calls to nxWriteFrame.

The following figure shows the data provided to each of the three calls to nxWrite
Frame. Each frame is displayed with CAN-specific elements. For information about
the data returned from the write function, refer to Raw Frame Format. The session
contains frame values for two frames: C and E.

© National Instruments 885

NI-XNET 20.5

ni.com886

NI-XNET 20.5

Assuming the Auto Start? property uses the default of true, the session starts within
the first call to nxWriteFrame. Frame C transmits followed by frame E, both using
frame values from nxWriteFrame.

After the second call to nxWriteFrame, frame C transmits using its value (bytes 3,
4), but frame E does not transmit, because its minimal interval of 2.5 ms has not
elapsed since acknowledgment of the previous transmit.

Because the third call to nxWriteFrame occurs before the minimum interval
elapses for frame E, its next transmit uses its value (bytes 3, 4, 0, 0). The value for
frame E in the second call to nxWriteFrame is not used.

Frame C transmits the third time using the value from the third call to nxWriteFra
me (bytes 5, 6). Because frame C is cyclic, it transmits again using the same value
(bytes 5, 6).

Frame Output Stream Mode
This mode transmits an arbitrary sequence of frame values using a single stream.
The values are not limited to a single frame in the database, but can transmit any
frame.

The data passed to nxWriteFrame is an array of frame values, each of which
transmits as soon as possible. Frames transmit sequentially (one after another).

This mode is not supported for FlexRay.

Like Frame Input Stream sessions, you can create more than one Frame Output
Stream session for a given interface.

For CAN, frame values transmit on the network based entirely on the time when you
call nxWriteFrame. The timing of each frame as specified in the database is
ignored. For example, if you provide four frame values to the nxWriteFrame, the
first frame value transmits immediately, followed by the next three values
transmitted back to back. For this mode, the CAN frame payload length in the
database is ignored, and nxWriteFrame is always used.

Similarly for LIN, frame values transmit on the network based entirely on the time
when you call nxWriteFrame. The timing of each frame as specified in the
database is ignored. The LIN frame payload length in the database is ignored, and n

© National Instruments 887

NI-XNET 20.5

xWriteFrame is always used. For LIN, this mode is allowed only on the interface
as master. If the payload for a frame is empty, only the header part of the frame is
transmitted. For a nonempty payload, the header + response for the frame is
transmitted. If a frame for transmit is defined in the database (in-memory or
otherwise), it is transmitted using its database checksum type. If the frame for
transmit is not defined in the database, it is transmitted using enhanced checksum.

The frame values for this mode are stored in a queue, such that every value
provided is transmitted.

Example

In this example CAN database, frame C is a cyclic frame that transmits on the
network once every 2.0 ms. Frame E is an event-driven frame that uses a transmit
time (minimum interval) of 2.5 ms. For information about cyclic and event-driven
CAN frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The following figure shows a timeline of a frame transfer on the CAN network. Each
frame contains its name (C or E), followed by the value of its two signals. The
timeline begins with a single call to nxWriteFrame.

The following figure shows the data provided to the single call to nxWriteFrame.
Each frame is displayed with CAN-specific elements. For information about the data
returned from the write function, refer to Raw Frame Format. The array provides
values for frames C and E.

ni.com888

NI-XNET 20.5

Assuming the Auto Start? property uses the default of true, each session starts
within the call to nxWriteFrame. All frame values transmit immediately, using the
same sequence as the array.

Although frame C and E specify a slower timing in the database, the Frame Output
Stream mode disregards this timing and transmits the frame values in quick
succession.

Within each frame values, this example uses an invalid timestamp value (0). This is
acceptable, because each frame value timestamp is ignored for this mode.

© National Instruments 889

NI-XNET 20.5

Although frame C is specified in the database as a cyclic frame, this mode does not
repeat its transmit. Unlike the Frame Output Queued mode, the Frame Output
Stream mode does not use CAN frame properties from the database.

Signal Input Single-Point Mode
This mode reads the most recent value received for each signal. It typically is used
for control or simulation applications, such as Hardware In the Loop (HIL).

This mode does not use queues to store each received frame. If the interface
receives two frames prior to calling nxReadSignalSinglePoint, that call to nx
ReadSignalSinglePoint returns signals for the second frame.

Use nxReadSignalSinglePoint for this mode.

You also can specify a trigger signal for a frame. This signal name is :trigger:.<f
rame name>, and once it is specified in the nxCreateSession signal list, it
returns a value of 0.0 if the frame did not arrive since the last Read (or Start), and 1.0
if at least one frame of this ID arrived. You can specify multiple trigger signals for
different frames in the same session. For multiplexed signals, a signal may or may
not be contained in a received frame. To define a trigger signal for a multiplexed
signal, use the signal name :trigger:.<frame name>.<signal name>. This signal
returns 1.0 only if a frame with appropriate set multiplexer bit has been received
since the last Read or Start.

Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2 ms. Frame E is an event-driven frame. For information about cyclic and
event-driven frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network. Each frame contains its name (C or E), followed by the value of its
two signals. The timelines shows three calls to nxReadSignalSinglePoint.

ni.com890

NI-XNET 20.5

The following figure shows the data returned from each of the three calls to nxRea
dSignalSinglePoint. The session contains all four signals.

In the data returned from the first call to nxReadSignalSinglePoint, values 3
and 4 are returned for the signals of frame C. The values of the first reception of
frame C (1 and 2) were lost, because this mode returns the most recent values.

In the frame timeline, Time of 0 ms indicates the time at which the session started to
receive frames. For frame E, no frame is received prior to the first call to nxReadSi
gnalSinglePoint, so the last two values return the signal Default Values. For
this example, assume that the Default Value is 0.0.

In the data returned from the second call to nxReadSignalSinglePoint,
values 3 and 4 are returned again for the signals of frame C, because no new frame
has been received since the previous call to nxReadSignalSinglePoint. New
values are returned for frame E (5 and 6).

In the data returned from the third call to nxReadSignalSinglePoint, both
frame C and frame E are received, so all signals return new values.

© National Instruments 891

NI-XNET 20.5

Signal Input Waveform Mode
Using the time when the signal frame is received, this mode resamples the signal
data to a waveform with a fixed sample rate. This mode typically is used for
synchronizing XNET data with DAQmx analog/digital input channels.

Use nxReadSignalWaveform for this mode.

You specify the resample rate using the XNET Session Resample Rate property.

Starting a Signal Input Waveform session discards any previous samples and frames
(the same result as running nxFlush). Note that when calling
nxReadSignalWaveform for the first time on the session, the session will be started if
it was not already. Stopping the session after the first start requires the session to be
explicitly started in the future.

Signal Input Waveform Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2 ms. Frame E is an event-driven frame. For information about cyclic and
event-driven frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network, followed by a single call to nxReadSignalWaveform. Each
frame contains its name (C or E), followed by the value of its two signals.

ni.com892

NI-XNET 20.5

The following figure shows the data returned from nxReadSignalWaveform.
The session contains all four signals and uses the default resample rate of 1000.0.

In the data returned from nxReadSignalWaveform, t0 provides an absolute
timestamp for the first sample. Assuming this is the first call to nxReadSignalWa
veform after starting the session, this t0 reflects that start of the session, which
corresponds to Time 0 ms in the frame timeline. At time 0 ms, no frame has been
received. Therefore, the first sample of each waveform uses the signal default value.
For this example, assume the default value is 0.0.

In the frame timeline, frame C is received twice with signal values 3 and 4. In the
waveform diagram, you cannot distinguish this from receiving the frame only once,
because the time of each frame reception is resampled into the waveform timing.

In the frame timeline, frame E is received twice in fast succession, once with signal
values 7 and 8, then again with signals 5 and 6. These two frames are received within
one sample of the waveform (within 1 ms). The effect on the data from nxReadSig
nalWaveform is that values for the first frame (7 and 8) are lost.

You can avoid the loss of signal data by setting the session resample rate to a high
rate. NI-XNET timestamps receive frames to an accuracy of 100 ns. Therefore, if you
use a resample rate of 1000000 (1 MHz), each frame's signal values are represented
in the waveforms without loss of data. Nevertheless, using a high resample rate can
result in a large amount of duplicated (redundant) values. For example, if the
resample rate is 1000000, a frame that occurs once per second results in one million
duplicated signal values. This tradeoff between accuracy and efficiency is a
disadvantage of the Signal Input Waveform mode.

© National Instruments 893

NI-XNET 20.5

The Signal Input XY mode does not have the disadvantages mentioned previously.
The signal value timing is a direct reflection of received frames, and no resampling
occurs. Signal Input XY mode provides the most efficient and accurate
representation of a sequence of received signal values.

One of the disadvantages of Signal Input XY mode is that the samples are not
equidistant in time.

In summary, when reading a sequence of received signal values, use Signal Input
Waveform mode when you need to synchronize CAN/FlexRay/LIN data with DAQmx
analog/digital input waveforms or display CAN/FlexRay/LIN data. Use Signal Input
XY mode when you need to analyze CAN/FlexRay/LIN data, for validation purposes.

Signal Input XY Mode
For each frame received, this mode provides the frame signals as a timestamp/value
pair. This is the recommended mode for reading a sequence of all signal values.

The timestamp represents the absolute time when the XNET interface received the
frame (end of frame), accurate to microseconds.

Use nxReadSignalXY for this mode.

The data consists of two two-dimensional arrays, one for timestamp and one for
value.

Each timestamp/value pair represents a value from a received frame. When signals
exist in different frames, the array size may be different from one signal to another.

The received frames for this mode are stored in queues to avoid signal data loss.

Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2 ms. Frame E is an event-driven frame. For information about cyclic and
event-driven frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

ni.com894

NI-XNET 20.5

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network, followed by a single call to nxReadSignalXY. Each frame
contains its name (C or E), followed by the value of its two signals.

The following figure shows the data returned from nxReadSignalXY. The session
contains all four signals.

Frame C was received four times, resulting in four valid values for the first two
signals. Frame E was received three times, resulting in three valid values for the
second two signals. The timestamp and value arrays are the same size for each
signal. The timestamp represents the end of frame, to microsecond accuracy.

The XY Graph displays the data from nxReadSignalXY. This display is an accurate
representation of signal changes on the network.

© National Instruments 895

NI-XNET 20.5

Signal Output Single-Point Mode
This mode writes signal values for the next frame transmit. It typically is used for
control or simulation applications, such as Hardware In the Loop (HIL).

This mode does not use queues to store signal values. If nxWriteSignalSingle
Point is called twice before the next transmit, the transmitted frame uses signal
values from the second call to nxWriteSignalSinglePoint.

Use nxWriteSignalSinglePoint for this mode.

You also can specify a trigger signal for a frame. This signal name is :trigger:.<f
rame name>, and once it is specified in the nxCreateSession signal list, you can
write a value of 0.0 to suppress writing of that frame, or any value not equal to 0.0 to
write the frame. You can specify multiple trigger signals for different frames in the
same session.

Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2.0 ms. Frame E is an event-driven frame that uses a transmit time
(minimum interval) of 2.5 ms. For information about cyclic and event-driven frames,
refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network. Each frame contains its name (C or E), followed by the value of its
two signals. The timeline shows three calls to nxWriteSignalSinglePoint.

ni.com896

NI-XNET 20.5

The following figure shows the data provided to each of the three calls to nxWrite
SignalSinglePoint. The session contains all four signals.

Assuming the Auto Start? property uses the default of true, the session starts within
the first call to nxWriteSignalSinglePoint. Frame C transmits followed by
frame E, both using signal values from the first call to nxWriteSignalSinglePo
int.

If a transmitted frame contains a signal not included in the output session, that
signal transmits its default value. If a transmitted frame contains bits no signal uses,
those bits transmit the default payload.

After the second call to nxWriteSignalSinglePoint, frame C transmits using
its values (3 and 4), but frame E does not transmit, because its minimal interval of
2.5 ms has not elapsed since acknowledgment of the previous transmit.

Because the third call to nxWriteSignalSinglePoint occurs before the
minimum interval elapses for frame E, its next transmit uses its values (3 and 4). The
values for frame E in the second call to nxWriteSignalSinglePoint are not
used.

Frame C transmits the third time using values from the third call to the nxWriteSi
gnalSinglePoint (5 and 6). Because frame C is cyclic, it transmits again using
the same values (5 and 6).

Signal Output Waveform Mode
Using the time when the signal frame is transmitted according to the database, this
mode resamples the signal data from a waveform with a fixed sample rate. This
mode typically is used for synchronizing XNET data with DAQmx analog/digital
output channels.

© National Instruments 897

NI-XNET 20.5

The resampling translates from the waveform timing to each frame's transmit
timing. When the time for the frame to transmit occurs, it uses the most recent
signal values in the waveform that correspond to that time.

Use nxWriteSignalWaveform for this mode.

You specify the resample rate using the Resample Rate property.

The frames for this mode are stored in queues.

This mode is not supported for a LIN interface operating as slave. For more
information, refer to LIN Frame Timing and Session Mode.

Example

In this example network, frame C is a cyclic frame that transmits on the network
once every 2.0 ms. Frame E is an event-driven frame that uses a transmit time
(minimum interval) of 2.5 ms. For information about cyclic and event-driven frames,
refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network. Each frame contains its name (C or E), followed by the value of its
two signals. The timeline begins with a single call to nxWriteSignalWaveform.

The following figure shows the data provided to the call to nxWriteSignalWave
form. The session contains all four signals and uses the default resample rate of
1000.0 samples per second.

ni.com898

NI-XNET 20.5

Assuming the Auto Start? property uses the default of true, the session starts within
the call to nxWriteSignalWaveform. Frame C transmits followed by frame E,
both using signal values from the first sample (index 0 of all four Y arrays).

The waveform elements t0 (timestamp of first sample) and dt (time between
samples in seconds) are ignored for the call to nxWriteSignalWaveform.
Transmit of frames starts as soon as the XNET session starts. The frame properties in
the database determine the each frame's transmit time. The session resample rate
property determines the time between waveform samples.

In the waveforms, the sample at index 1 occurs at 1.0 ms in the frame timeline.
According to the database, frame C transmits once every 2.0 ms, and frame E is
limited to an event-driven transmit with interval 2.5 ms. Therefore, the sample at
index 1 cannot be resampled to a transmitted frame and is discarded.

Index 2 in the waveforms occurs at 2.0 ms in the frame timeline. Frame C is ready for
its next transmit at that time, so signal values 5 and 6 are taken from the first two Y
arrays and used for transmit of frame C. Frame E still has not reached its transmit
time of 2.5 ms from the previous acknowledgment, so signal values 1 and 2 are
discarded.

At index 3, frame E is allowed to transmit again, so signal values 5 and 6 are taken
from the last two Y arrays and used for transmit of frame E. Frame C is not ready for
its next transmit, so signal values 7 and 8 are discarded.

© National Instruments 899

NI-XNET 20.5

This behavior continues for Y array indices 4 through 7. For the cyclic frame C, every
second sample is used to transmit. For the event-driven frame E, every sample is
interpreted as an event, such that every third sample is used to transmit.

Although not shown in the frame timeline, frame C transmits again at 8.0 ms and
every 2.0 ms thereafter. Frame C repeats signal values 5 and 6 until the next call to n
xWriteSignalWaveform. Because frame E is event driven, it does not transmit
after the timeline shown, because no new event has occurred.

Because the waveform timing is fixed, you cannot use it to represent events in the
data. When used for event driven frames, the frame transmits as if each sample was
an event. This mismatch between frame timing and waveform timing is a
disadvantage of the Signal Output Waveform mode.

When you use the Signal Output XY mode, the signal values provided to nxWriteS
ignalXY are mapped directly to transmitted frames, and no resampling occurs.
Unless your application requires correlation of output data with DAQmx waveforms,
Signal Output XY is the recommended mode for writing a sequence of signal values.

Signal Output XY Mode
This mode provides a sequence of signal values for transmit using each frame's
timing as specified in the database. This is the recommended mode for writing a
sequence of all signal values.

Use nxWriteSignalXY for this mode. The timestamp array is unused (reserved).

Each signal value is mapped to a frame for transmit. Therefore, the array of signal
values is mapped to an array of frames to transmit. When signals exist in the same
frame, signals at the same index in the arrays are mapped to the same frame. When
signals exist in different frames, the array size may be different from one cluster
(signal) to another.

The frames for this mode are stored in queues, such that every signal provided is
transmitted in a frame.

Examples

In this example network, frame C is a cyclic frame that transmits on the network
once every 2.0 ms. Frame E is an event-driven frame that uses a transmit time

ni.com900

NI-XNET 20.5

(minimum interval) of 2.5 ms. For information about cyclic and event-driven frames,
refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second
byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on
the CAN network. Each frame contains its name (C or E), followed by the value of its
two signals. The timeline begins with a single call to nxWriteSignalXY.

The following figure shows the data provided to nxWriteSignalXY. The session
contains all four signals.

© National Instruments 901

NI-XNET 20.5

Assuming the Auto Start? property uses the default of true, the session starts within
a call to nxWriteSignalXY. This occurs at 0 ms in the timeline. Frame C
transmits followed by frame E, both using signal values from the first sample (index
0 of all four Y arrays).

According to the database, frame C transmits once every 2.0 ms, and frame E is
limited to an event-driven interval of 2.5 ms.

At 2.0 ms in the timeline, signal values 3 and 4 are taken from index 1 of the first two
Y arrays and used for transmit of frame C.

At 3.5 ms in the timeline, signal value 5 is taken from index 1 of the third Y array.
Because this is a new value for frame E, it represents a new event, so the frame

ni.com902

NI-XNET 20.5

transmits again. Because no new signal value was provided at index 1 in the fourth
array, the second signal of frame E uses the value 8 from the previous transmit.

At 4.0 ms in the timeline, signal values 5 and 6 are taken from index 2 of the first two
Y arrays and used for transmit of frame C.

Because there are no more signal values for frame E, this frame no longer transmits.
Frame E is event driven, so new signal values are required for each transmit.

Because frame C is a cyclic frame, it transmits repeatedly. Although there are no
more signal values for frame C, the values of the previous frame are used again at
6.0 ms in the timeline and every 2.0 ms thereafter. If nxWriteSignalXY is called
again, the new signal values are used.

The next example network demonstrates a potential problem that can occur with
Signal Output XY mode.

In this example network, frame C is a cyclic frame that transmits on the network
once every 2.0 ms. Frame X is a cyclic frame that transmits on the network once
every 1.0 ms. Each frame contains two signals, one in the first byte and another in
the second byte. The timeline begins with a single call to nxWriteSignalXY.

The following figure shows the data provided to nxWriteSignalXY. The session
contains all four signals.

© National Instruments 903

NI-XNET 20.5

The number of signal values in all four Y arrays is the same. The four elements of the
arrays are mapped to four frames. The problem is that because frame X transmits
twice as fast as frame C, the frames for the last two arrays transmit twice as fast as
the frames for the first two arrays.

The result is that the last pair of signals for frame X (1 and 2) transmit over and over,
until the timeline has completed for frame C. This sort of behavior usually is
unintended. The Signal Output XY mode goal is to provide a complete sequence of
signal values for each frame.

The best way to resolve this issue is to provide a different number of values for each
signal, such that the number of elements corresponds to the timeline for the
corresponding frame. If the previous call to nxWriteSignalXY provided eight

ni.com904

NI-XNET 20.5

elements for frame X (last two Y arrays) instead of just four elements, this would
have created a complete 8.0 ms timeline for both frames.

Although you need to resolve this sort of timeline for cyclic frames, this is not
necessarily true for event-driven frames. For an event-driven frame, you may decide
simply to pass either zero or one set of signal values to nxWriteSignalXY. When
you do this, each call to nxWriteSignalXY can generate a single event, and the
overall timeline is not a major consideration.

Conversion Mode
This mode is intended to convert NI-XNET signal data to frame data or vice versa. It
does not use any NI-XNET hardware, and you do not specify an interface when
creating this mode.

Conversion occurs with the nxConvertFramesToSignalsSinglePoint or nx
ConvertSignalsToFramesSinglePoint functions. None of the Read or
Write functions work with this mode; they return an error because hardware I/O is
not permitted.

Conversion works similar to Single-Point mode. You specify a set of signals that can
span multiple frames. Signal to frame conversion reads a set of values for the signals
specified and writes them to the respective frame(s). Frame to signal conversion
parses a set of frames and returns the latest signal value read from a corresponding
frame.

In addition, the nxConvertFramesToByteArraySinglePoint and nxConv
ertByteArrayToFramesSinglePoint functions allow for raw byte
extraction/insertion of the signal bytes from/to a frame. For this mode, the
conversion session must only span one signal, and this signal must be byte aligned
(both start bit and number of bits). If these conditions are not met, the functions will
return an error. Byte ordering is ignored in this case; the bytes are transferred in
ascending order from/to the frame. This mode will work for signals >64 bits as well;
it is the only way of accessing such signals.

© National Instruments 905

NI-XNET 20.5

Example 1: Conversion of CAN Frames to Signals

Suppose you have a database with a CAN frame with ID 0x123 and two unsigned
byte signals assigned to it (byte 1 and byte 2).

Creating an appropriate conversion session and calling nxConvertFramesToSi
gnalsSinglePoint with the following input

results in the following signal values being returned:

Explanation: The data are taken from frame 4. Frames 1 and 3 are ignored because
they have a wrong (unmatched) ID. Frame 2 is ignored because its data are

ni.com906

NI-XNET 20.5

overwritten later with the values from frame 4, because frames are processed in the
order of input.

Example 2: Conversion of Signals to FlexRay Frames

Suppose you have two FlexRay frames with slot ID 3 and 6, and each one has
assigned a two-byte, Big Endian signal at byte 2 and 3 (zero based). Suppose also
that all relevant default values of other signals in the frame are 0.

Creating an appropriate conversion session and calling nxConvertSignalsToF
ramesSinglePoint with the following input

causes the following frames to be generated:

Explanation: The first signal is converted to the byte sequence 0x01, 0x02 (1 x 256 +
2), and the byte sequence is placed at byte 2 of the frame with slot ID 3. The second

© National Instruments 907

NI-XNET 20.5

signal is converted to byte sequence 0x03, 0x04 (3 x 256 + 4) and placed at byte 2 of
the frame with slot ID 6. All other data are filled with the default values (0).

Automotive Ethernet Socket API for C
The Automotive Ethernet Stack functions provide tools to create everything
required for TCP and UDP communication, independent from the limitations of the
IP stack native to your operating system (OS). A test application typically uses a
single IP Stack for each XNET Interface (physical port), but more complex
configurations are possible.

For example, suppose that you are testing eight identical instances of an ECU, each
instance connected to a distinct XNET Interface (e.g., two 4-port Automotive
Ethernet Interface Modules). For each of the eight repeated test setups, you could
use the same static IP address for each XNET Interface, and communicate with the
same static IP address in the ECU. This configuration is difficult to achieve using the
native Windows or Linux IP stack, because the operating system assumes that each
interface uses a different unicast IP address.

As another example, to fully test a physical ECU, suppose you need to simulate six
real ECUs that are part of a single in-vehicle network. (This is sometimes called
"restbus simulation.") The IP stack enables you to configure six distinct virtual
interfaces in the IP stack to represent multiple simulated ECUs. These virtual
interfaces can all run on the IP stack associated with a single XNET Interface
(physical port) that is connected to your real ECU under test.

For a given XNET Interface, TCP and UDP traffic switch from the OS stack to IP Stack
when you call nxIpStackCreate the first time for that XNET Interface.
Communication changes back to OS stack when you call nxIpStackClear the last
time for that XNET Interface. When you are viewing traffic on the XNET Interface
(e.g., Wireshark on ENET2), you might notice that some protocols run in the OS stack
(e.g., Windows running DHCPv6), but those protocols cease after you call
nxIpStackCreate.

IP Stack functions are specific to NI-XNET.

ni.com908

NI-XNET 20.5

Getting Started
This topic helps you get started using the Automotive Ethernet Socket API for C. It
includes information about using NI-XNET within Microsoft Visual C++.

Visual C++

Refer to the Microsoft Visual Studio Support section in the NI-XNET readme file for
the versions of Microsoft Visual C/C++ that your NI-XNET software supports.

The NIEXTCCOMPILERSUPP environment variable is provided as an alias to the C
language header file and library location. You can use this variable when compiling
and linking an application.

For compiling applications that use the Automotive Ethernet Socket API for C, you
must include the nxsocket.h header file in the code. To include the header file,
add #include to the beginning of the code. For example:

#include "nxsocket.h"

In your project options for compiling, you must include the following statement to
add a search directory to find the header file:

/I "$(NIEXTCCOMPILERSUPP)include"

For linking applications, you must add the nixntipstack.lib file and the following
statement to your linker project options to search for the library (for a 32-bit OS,
replace lib64 with lib32):

/libpath:"$(NIEXTCCOMPILERSUPP)\lib64\msvc"

The reference for each NI-XNET IP Stack API function is in IP Stack Functions. The
reference for each NI-XNET Socket API function is in Socket Functions, and each
socket option is referenced in Socket Options.

IP Stack
Use the IP Stack functions to configure IP stacks as needed, and then use the Socket
API functions for TCP and/or UDP communication. The header file for IP Stack and

© National Instruments 909

NI-XNET 20.5

Socket functions is named nxsocket.h (for more information, refer to Getting
Started).

Find details for the following stack functions in the Automotive Ethernet Socket API
for C Reference.

■ nxIpStackCreate
■ nxIpStackOpen
■ nxIpStackClear
■ nxIpStackGetInfo
■ nxIpStackFreeInfo
■ nxIpStackWaitForInterface

Sockets
After you configure the IP stacks as needed for your test, use the Socket API
functions for TCP and/or UDP communication. The Socket API functions are
designed to match the well-known Berkeley Sockets API (also known as BSD
Sockets). The C APIs for Ethernet communication on Windows and Linux align with
the Berkeley Sockets API. The alignment of these socket APIs is intended to reduce
the learning curve and to facilitate re-use of code between stacks.

The header file for IP Stack and Sockets functions is named nxsocket.h (for more
information, refer to Getting Started).

Within nxsocket.h, the Berkeley Sockets functions, constants, and types use an
nx prefix in order to avoid naming collisions with analogous Windows and Linux
APIs. Other than this prefix, the Socket API uses the same naming as other Berkeley
Sockets APIs. Consistent naming makes it easy to find the wealth of documentation
and code on the Internet. For example, if you remove the prefix from the function nx
listen, and search the Internet for "socket listen", you can find descriptions and
hints for using the listen function.

Find details for the following socket functions in the Automotive Ethernet Socket API
for C Reference.

■ nxaccept

ni.com910

NI-XNET 20.5

■ nxbind
■ nxclose
■ nxconnect
■ nxfreeaddrinfo
■ nxgetaddrinfo
■ nxgetlasterrornum
■ nxgetlasterrorstr
■ nxgetnameinfo
■ nxgetpeername
■ nxgetsockname
■ nxgetsockopt
■ nxinet_addr
■ nxinet_aton
■ nxinet_ntoa
■ nxinet_ntop
■ nxinet_pton
■ nxlisten
■ nxrecv
■ nxrecvfrom
■ nxselect
■ nxsend
■ nxsendto
■ nxsetsockopt
■ nxshutdown
■ nxsocket
■ nxstrerr_r

Automotive Ethernet Socket API for C Reference
The topics in this section describe the IP Stack and Socket C functions.

© National Instruments 911

NI-XNET 20.5

IP Stack
Use the IP Stack functions to configure IP stacks as needed, and then use the Socket
API functions for TCP and/or UDP communication. The header file for IP Stack and
Socket functions is named nxsocket.h (for more information, refer to Getting
Started).

Find details for the following stack functions in the Automotive Ethernet Socket API
for C Reference.

■ nxIpStackCreate
■ nxIpStackOpen
■ nxIpStackClear
■ nxIpStackGetInfo
■ nxIpStackFreeInfo
■ nxIpStackWaitForInterface

nxIpStackClear

Purpose

Clears (closes) the IP Stack.

Format

nxStatus_t nxIpStackClear (
 nxIpStackRef_t stackRef);

Inputs

nxIpStackRef_t stackRef
The reference to the IP Stack to clear. This session reference is returned from nxIpS
tackCreate.

ni.com912

NI-XNET 20.5

Outputs

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

nxIpStackCreate

Purpose

Creates an IP stack to use for TCP and/or UDP communication.

Format

nxStatus_t nxIpStackCreate (
 const char * stackName,
 const char * config,
 nxIpStackRef_t * stackRef);

Inputs

const char * stackName
The name that uniquely identifies the stack. The syntax for this name allows some
special characters, such as space (). Invalid characters include forward slash (/),
backslash (\), period (.), and tab (\t). The name is not case sensitive. If you do not
enter a value for StackName, NI-XNET generates a name to ensure that each stack
is unique.

const char * config
The configuration of the IP Stack as a JSON string. For a list of features supported in
the configuration, refer to Supported Features.

© National Instruments 913

NI-XNET 20.5

Outputs

nxIpStackRef_t stackRef
The reference to the created IP Stack. This session reference is used with
subsequent functions for the IP Stack (for example, to obtain runtime info), TCP
Socket, and UDP Socket.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error. If an error is returned, nxgetlasterrorstr can be used to obtain detailed
information about potential problems with the IP Stack configuration.

Description

The IP Stack enables you to create an implementation of the TCP/IP protocol suite
for TCP and UDP communication, independent from the limitations of the IP stack
native to the operating system.

National Instruments installs documentation for the XNET IP Stack configuration
string. The configuration string uses JSON format, and the formal documentation is
provided as a JSON schema file. The JSON schema file is supported by a variety of
online tools, and in addition to formally describing each field, it can be used to
validate your customized JSON configuration string for correctness. To find the
XNET IP Stack JSON schema, select Start»National Instruments»NI-XNET

Documentation.

nxIpStackFreeInfo

Purpose

Frees the memory returned from nxIpStackGetInfo. Always call this function
when you are finished with the stack information to avoid memory leaks.

ni.com914

NI-XNET 20.5

Format

nxStatus_t nxIpStackFreeInfo (
 nxVirtualInterface_t* firstVirtualInterface);

Inputs

nxVirtualInterface_t* firstVirtualInterface
The pointer to the virtual interface returned from nxIpStackGetInfo.

Outputs

Return Values
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

nxIpStackGetInfo

Purpose

Gets runtime information for an XNET IP Stack.

Format

nxStatus_t nxIpStackGetInfo (
 nxIpStackRef_t StackRef,
 u32 infoID
 nxVirtualInterface_t** firstVirtualInterface);

Inputs

nxStackRef_t StackRef
The reference to the XNET IP Stack.

© National Instruments 915

NI-XNET 20.5

infoID
Always pass nxIPSTACK_INFO_ID to this parameter. This identifies the struct
typedefs to return.

Outputs

Return Values
nxVirtualInterface_t** firstVirtualInterface
A struct with a pointer to the virtual interface. Use next pointers to go from one
virtual interface to the next.

nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

The organization of this information is similar to the configuration passed into nxIp
StackCreate, but this function provides runtime information that does not exist
in that configuration. For example, if the configuration specifies using the link-local
addressing protocol to acquire an IP address, this function's runtime information
returns the actual IP address that was acquired using link-local addressing.

nxIpStackOpen

Purpose

Opens a reference to an IP Stack that has already been created. This may include
stacks opened in a different process.

Format

nxStatus_t nxIpStackOpen (
 const char * stackName,
 nxIpStackRef_t * stackRef);

ni.com916

NI-XNET 20.5

Inputs

const char * stackName
The same stackName used with nxIpStackCreate.

Outputs

nxIpStackRef_t * stackRef
Returns the reference to the opened IP Stack. Pass this value to other functions that
use an IP Stack reference.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

After an IP Stack is created using nxIpStackCreate, the IP Stack is available for
use by multiple processes. The IP Stack maintains a count of the number of times it
is created and/or opened, so that it only closes after you call nxIpStackClear
that number of times or all owning processes exit.

nxIpStackWaitForInterface

Purpose

Waits for interface(s) in the IP Stack to be ready for communication.

Format

nxStatus_t nxIpStackWaitForInterface (
 nxIpStackRef_t stackRef,
 const char * localInterface,
 i32 timeoutMs);

© National Instruments 917

NI-XNET 20.5

Inputs

nxIpStackRef_t stackRef
The reference to the IP Stack.

const char * localInterface
The specific virtual interface in the IP Stack on which to wait for configuration. If lo
calInterface is empty (default), this function waits for all virtual interfaces in
the IP Stack to successfully configure. If localInterface is not empty, this
function waits for a specific virtual interface. The virtual interface is identified using
one of the following (as returned from nxIpStackGetInfo):

■ virtual interface name (recommended)
■ string that represents the decimal value of ifIndex
■ unicast IP address from the IP address list

i32 timeoutMs
The time, in milliseconds, that the function waits to complete before returning a
timeout error. The default is 60,000 ms. Pass a value of -1 to wait indefinitely.

Outputs

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

If an interface in the IP Stack acquires its unicast IP address dynamically (for
example, using link-local addressing), it can take time for this acquisition to
complete after creation of the IP Stack. This function enables the application to wait
for an interface to be completely configured before creating sockets.

ni.com918

NI-XNET 20.5

Sockets
After you configure the IP stacks as needed for your test, use the Socket API
functions for TCP and/or UDP communication. The Socket API functions are
designed to match the well-known Berkeley Sockets API (also known as BSD
Sockets). The C APIs for Ethernet communication on Windows and Linux align with
the Berkeley Sockets API. The alignment of these socket APIs is intended to reduce
the learning curve and to facilitate re-use of code between stacks.

The header file for IP Stack and Sockets functions is named nxsocket.h (for more
information, refer to Getting Started).

Within nxsocket.h, the Berkeley Sockets functions, constants, and types use an
nx prefix in order to avoid naming collisions with analogous Windows and Linux
APIs. Other than this prefix, the Socket API uses the same naming as other Berkeley
Sockets APIs. Consistent naming makes it easy to find the wealth of documentation
and code on the Internet. For example, if you remove the prefix from the function nx
listen, and search the Internet for "socket listen", you can find descriptions and
hints for using the listen function.

Find details for the following socket functions in the Automotive Ethernet Socket API
for C Reference.

■ nxaccept
■ nxbind
■ nxclose
■ nxconnect
■ nxfreeaddrinfo
■ nxgetaddrinfo
■ nxgetlasterrornum
■ nxgetlasterrorstr
■ nxgetnameinfo
■ nxgetpeername
■ nxgetsockname
■ nxgetsockopt

© National Instruments 919

NI-XNET 20.5

■ nxinet_addr
■ nxinet_aton
■ nxinet_ntoa
■ nxinet_ntop
■ nxinet_pton
■ nxlisten
■ nxrecv
■ nxrecvfrom
■ nxselect
■ nxsend
■ nxsendto
■ nxsetsockopt
■ nxshutdown
■ nxsocket
■ nxstrerr_r

nxaccept

Purpose

Accepts a connection on a socket.

Format

nxSOCKET NI_CDECL nxaccept(
 nxSOCKET socket,
 struct nxsockaddr *addr,
 nxsocklen_t *addrlen);

Inputs

nxSOCKET socket
Specifies the file descriptor for the socket.

ni.com920

NI-XNET 20.5

struct nxsockaddr *addr
Specifies the address to the socket. Typically, an nxsockaddr_storage structure
or protocol-specific structure (nxsockaddr_in for IPv4 addresses) is passed for
this parameter and cast into an nxsockaddr pointer.

nxsocklen_t *addrlen
Specifies the size, in bytes, of the address structure pointed to by nxsockaddr .

Outputs

Return Value
On success, a file descriptor for the new socket is returned. On error, -1 is returned,
and nxgetlasterrornum or nxgetlasterrorstr can retrieve the error code.

nxbind

Purpose

Binds a name to a socket.

Format

int32_t NI_CDECL nxbind(
 nxSOCKET socket,
 const struct nxsockaddr *name,
 nxsocklen_t namelen);

Inputs

nxSOCKET socket
Specifies the file descriptor for the socket.

const struct nxsockaddr *name
Specifies the address to the socket. Typically, an nxsockaddr_storage structure
or protocol-specific structure (nxsockaddr_in for IPv4 addresses) is passed for
this parameter and typecast to an nxsockaddr pointer.

© National Instruments 921

NI-XNET 20.5

nxsocklen_t namelen
Specifies the size, in bytes, of the address structure pointed to by nxsockaddr .

Outputs

Return Value
On success, a file descriptor for the new socket is returned. On error, -1 is returned,
and nxgetlasterrornum or nxgetlasterrorstr can retrieve the error code.

nxclose

Purpose

Closes a socket.

Format

int32_t NI_CDECL nxclose(
 nxSOCKET socket);

Inputs

nxSOCKET socket
Specifies the file descriptor for the socket.

Outputs

Return Value
On success, zero is returned. On error, -1 is returned, and nxgetlasterrornum or
nxgetlasterrorstr can retrieve the error code.

nxconnect

Purpose

Initiates a connection on a socket.

ni.com922

NI-XNET 20.5

Format

int32_t NI_CDECL nxconnect(
 nxSOCKET socket,
 const struct nxsockaddr *name,
 nxsocklen_t namelen);

Inputs

nxSOCKET socket
Specifies the file descriptor for the socket.

const struct nxsockaddr *name
Specifies the address to the socket. Typically, an nxsockaddr_storage structure
or protocol-specific structure (nxsockaddr_in for IPv4 addresses) is passed for
this parameter and typecast to an nxsockaddr pointer.

nxsocklen_t namelen
Specifies the size, in bytes, of the address structure pointed to by nxsockaddr .

Outputs

Return Value
On success, zero is returned. On error, -1 is returned, and nxgetlasterrornum or
nxgetlasterrorstr can retrieve the error code.

nxFD_CLR

Purpose

Removes the file descriptor fd from the set.

Format

int32_t NI_CDECL nxfd_isset(
 nxSOCKET socket,
 nxfd_set *set);

© National Instruments 923

NI-XNET 20.5

Inputs

nxSOCKET socket

Specifies the file descriptor for the socket.

nxfd_set *set
Adds a file descriptor to set to specify an array of nxSOCKETs.

Outputs

Return Value
If the specified nxfd_set contains the socket socket, then 1 is returned.
Otherwise, 0 is returned.

nxFD_SET

Purpose

Adds the files descriptor fd to the set.

Format

int32_t NI_CDECL nxfd_isset(
 nxSOCKET socket,
 nxfd_set *set);

Inputs

nxSOCKET socket

Specifies the file descriptor for the socket.

nxfd_set *set
Adds a file descriptor to set to specify an array of nxSOCKETs.

ni.com924

NI-XNET 20.5

Outputs

Return Value
If the specified nxfd_set contains the socket socket, then 1 is returned.
Otherwise, 0 is returned.

nxFD_ZERO

Purpose

Removes all sockets from the set. Use this macro as a first step to initialize a file
descriptor set.

Format

void nxFD_ZERO(
nxfd_set *set

Inputs

nxSOCKET socket

Specifies the file descriptor for the socket.

nxfd_set *set
Adds a file descriptor to set to specify an array of nxSOCKETs.

Outputs

Return Value
If the specified nxfd_set contains the socket socket, then 1 is returned.
Otherwise, 0 is returned.

© National Instruments 925

NI-XNET 20.5

nxinet_addr

Purpose

Converts the Internet host address from IPv4 notation into binary data in network
byte order.

Format

uint32_t NI_CDECL nxinet_addr(
 nxIpStackRef_t stackRef,
 const char *cp);

Inputs

nxIpStackRef_t stack_ref
The stackRef parameter references the IP Stack to use for the creation of this
socket. This reference is returned from nxIpStackCreate or nxIpStackOpen.

const char *cp
Specifies a pointer to the string representing the IPv4 notation to be converted.

Outputs

Return Value
On success, nxinet_addr returns the IP address. On error, -1 is returned, and
nxgetlasterrornum or nxgetlasterrorstr can retrieve the error code.

nxinet_aton

Purpose

Converts the Internet host address from IPv4 notation into binary form (in byte
order).

ni.com926

NI-XNET 20.5

Format

int NI_CDECL nxinet_aton(
 nxIpStackRef_t stackRef,
 const char *cp,
 struct nxin_addr *addr);

Inputs

nxIpStackRef_t stack_ref
The stackRef parameter references the IP Stack to use for the creation of this
socket. This reference is returned from nxIpStackCreate or nxIpStackOpen.

const char *cp
Specifies a pointer to the string representing the IPv4 notation to be converted.

struct nxin_addr *addr
Internet host IPv4 address converted to binary form.

Outputs

Return Value
On success, nxinet_aton returns a nonzero if the address is valid. On error, -1 is
returned, and nxgetlasterrornum or nxgetlasterrorstr can retrieve the error code.

nxinet_ntoa

Purpose

Converts the Internet host address input to a string in IPv4 notation. The string is
returned in a statically allocated buffer, which subsequent calls will overwrite.

Format

char* NI_CDECL nxinet_ntoa(
 nxIpStackRef_t stackRef,
 struct nxin_addr in);

© National Instruments 927

NI-XNET 20.5

Inputs

nxIpStackRef_t stack_ref
The stackRef parameter references the IP Stack to use for the creation of this
socket. This reference is returned from nxIpStackCreate or nxIpStackOpen.

struct nxin_addr in
Internet host address to be converted to a string.

Outputs

Return Value
On success, the nxinet_ntoa function returns a pointer to the network address in
Internet standard dot notation. On error, -1 is returned, and nxgetlasterrornum or
nxgetlasterrorstr can retrieve the error code.

nxinet_ntop

Purpose

Converts IP addresses from binary to text form.

Format

const char * NI_CDECL nxinet_ntop(
 nxIpStackRef_t stackRef,
 int32_t af,
 const void *src,
 char *dst,
 nxsocklen_t size);

Inputs

nxIpStackRef_t stack_ref
The stackRef parameter references the IP Stack to use for the creation of this
socket. This reference is returned from nxIpStackCreate or nxIpStackOpen.

ni.com928

NI-XNET 20.5

int32_t af
Address family to which the text is to be converted.

const void *src
Pointer to the buffer where the address is stored.

char *dst
Pointer to the IP address string.

nxsocklen_t size
Specifies the size, in bytes, of the address.

Outputs

Return Value
On success, nxinet_ntop returns a non-null pointer to dst. On error, a null pointer
is returned, and nxgetlasterrornum or nxgetlasterrorstr can retrieve the error code.

nxinet_pton

Purpose

Converts IP addresses from text to binary form.

Format

int NI_CDECL nxinet_pton(
 nxIpStackRef_t stackRef,
 int32_t af,
 const char *src,
 void *dst);

Inputs

nxIpStackRef_t stack_ref

© National Instruments 929

NI-XNET 20.5

The stackRef parameter references the IP Stack to use for the creation of this
socket. This reference is returned from nxIpStackCreate or nxIpStackOpen.

int32_t af
Address family to which the text is to be converted.

const char *src
Pointer to the IP address in Internet standard dot notation.

void *dst
Pointer to the buffer where the resulting string is stored.

Outputs

Return Value
On success, inet_pton returns 1 (network address was successfully converted).
On error, 0 is returned if src does not contain a character string representing a valid
network address in the specified address family; -1 is returned if af does not contain
a valid address family; and nxgetlasterrornum or nxgetlasterrorstr can retrieve the
error code.

nxlisten

Purpose

Listens for connections on a socket.

Format

int32_t NI_CDECL nxlisten(
 nxSOCKET socket,
 int32_t backlog);

Inputs

nxSOCKET socket

ni.com930

NI-XNET 20.5

Specifies the file descriptor for the socket.

int32_t backlog
Defines the maximum length to which the queue of pending connections for the
socket can grow. If a connection request arrives when the queue is full, the client
might receive an error with an indication of nxECONNREFUSED or, if the underlying
protocol supports retransmission, the request might be ignored so that a later
reattempt at connection succeeds.

Outputs

Return Value
On success, zero is returned. On error, -1 is returned, and nxgetlasterrornum or
nxgetlasterrorstr can retrieve the error code.

nxfreeaddrinfo

Purpose

Frees the memory that was allocated for the dynamically allocated linked list res by
nxgetaddrinfo.

Format

void NI_CDECL nxfreeaddrinfo(
 struct nxaddrinfo *res
);

Inputs

struct nxaddrinfo *res
Specifies the pointer to the head of the linked list res allocated by
nxgetaddrinfo . This memory will be freed and the pointer becomes invalid after

calling this function.

© National Instruments 931

NI-XNET 20.5

nxgetaddrinfo

Purpose

Returns one or more addrinfo structures, each of which contains an Internet address
that can be specified in a call to nxbind or nxconnect.

Format

int32_t NI_CDECL nxgetaddrinfo(
 nxIpStackRef_t stackRef,
 const char *node,
 const char *service,
 const struct nxaddrinfo *hints,
 struct nxaddrinfo **res
);

Inputs

nxIpStackRef_t stack_ref

The stackRef parameter references the IP Stack to use for the creation of this
socket. This reference is returned from nxIpStackCreate or nxIpStackOpen.

const char *node
Identifies the string notation of the remote address. Currently DNS lookups are not
supported, so node must be a valid IP address string.

const char *service
Identifies the remote port number

const struct nxaddrinfo *hints
The hints argument points to an nxaddrinfo structure that specifies criteria for
selecting the socket address structures returned in the list pointed to by res . The
nxaddrinfo structure contains the following fields:

Field Description
 int32_t ai_flags; Options for nxgetaddrinfo.

ni.com932

NI-XNET 20.5

int32_t ai_family; Address family
int32_t ai_socktype; Socket type
int32_t ai_protocol; Protocol type
socklen_t ai_addrien; Length of ai_addr in bytes.
struct nxsockaddr ai_addr Host address
char ai_canonname; Cannonical name of the host
struct nxaddrinfo ai_next; Pointer to next item in the linked list (or null).

struct nxaddrinfo **res
Creates a pointer to a new nxaddrinfo structure with the information requested
after successful completion of the function.

Outputs

Return Value
On success, one or more nxaddrinfo structures are returned, each of which
contains an IP address that can be specified in a call to nxbind or nxconnect. On
error, nxgetaddrinfo returns the error number, and nxgetlasterrornum or
nxgetlasterrorstr can retrieve the error code.

nxgetlasterrornum

Purpose

Retrieves the value of the calling thread's last-error code.

Format

int32_t NI_CDECL nxgetlasterrornum(void);

Inputs

N/A

© National Instruments 933

NI-XNET 20.5

Outputs

Return Value
Calling thread's last-error code value.

Description

The nxgetlasterrornum function retrieves the calling thread's last-error code
value. The last-error code is maintained on a per-thread basis. Multiple threads do
not overwrite each other's last-error code.

nxgetlasterrorstr

Purpose

Retrieves the last error produced by the calling thread.

Format

char* NI_CDECL nxgetlasterrorstr(
 char* buf,
 size_t buflen);

Inputs

char* buf
Creates a buffer to display the error code string.

size_t buflen
Specifies in bytes the length of the buffer.

Outputs

Return Value
The most recent error produced by the calling thread is returned.

ni.com934

NI-XNET 20.5

Description

Returns the most recent error as a string. If buf is nullptr, or if buflen ≤1, then
buf is not modified. If the error string is longer than buflen , then the error string

is returned truncated (buflen - 1).

nxgetnameinfo

Purpose

Converts a socket address to a corresponding host in a protocol-independent
manner.

Format

int32_t NI_CDECL nxgetnameinfo(
 nxIpStackRef_t stackRef,
 const struct nxsockaddr *addr,
 nxsocklen_t addrlen,
 char *host,
 nxsocklen_t hostlen,
 char *serv,
 nxsocklen_t servlen,
 int32_t flags
);

Inputs

nxIpStackRef_t stack_ref

The stackRef parameter references the IP Stack to use for the creation of this
socket. This reference is returned from nxIpStackCreate or nxIpStackOpen.

const struct nxsockaddr *addr
Specifies the remote IP address.

nxsocklen_t addrlen
Specifies the size, in bytes, of the address structure pointed to by nxsockaddr .

© National Instruments 935

NI-XNET 20.5

char *host
Pointer to the buffer in which the hostname will be stored. You can specify that no
hostname is required by providing a NULL host argument. However, at least one
hostname or service name must be requested. DNS lookup is not supported;
therefore, the hostname will be the address.

nxsocklen_t hostlen
The size, in bytes, of the buffer in which the hostname will be stored. You can specify
that no hostname is required by providing a 0 hostlen argument. However, at
least one hostname or service name must be requested.

char *serv
Pointer to the buffer in which the service name will be stored. You can specify that
no service name is required by providing a NULL serv argument. However, at least
one hostname or service name must be requested.

nxsocklen_t servlen
The size, in bytes, of the buffer in which the service name will be stored. You can
specify that no service name is required by providing a 0 servlen argument.
However, at least one hostname or service name must be requested.

int32_t flags
Specifies the type of message reception. The flags argument can be zero or
multiple flags (bitwise OR). Valid flags are dependent upon the socket protocol (TCP
or UDP).

Outputs

Return Value
On success, 0 is returned, and node and service names, if requested, are filled with
null-terminated strings, possibly truncated to fit the specified buffer lengths. On
error, -1 is returned, and nxgetlasterrornum or nxgetlasterrorstr can retrieve the
error code.

ni.com936

NI-XNET 20.5

nxgetpeername

Purpose

Returns the name of the connected peer socket.

Format

int32_t NI_CDECL nxgetpeername(
 nxSOCKET socket,
 struct nxsockaddr *addr,
 nxsocklen_t *addrlen);

Inputs

nxSOCKET socket
Specifies the file descriptor for the socket.

struct nxsockaddr *addr
Specifies the socket address of the connected socket.

nxsocklen_t *addrlen
Specifies the size, in bytes, of the address structure pointed to by nxsockaddr.

Outputs

Return Value
On success, zero is returned. On error, -1 is returned, and nxgetlasterrornum or
nxgetlasterrorstr can retrieve the error code.

nxgetsockname

Purpose

Returns the current address to which the socket is bound.

© National Instruments 937

NI-XNET 20.5

Format

int32_t NI_CDECL nxgetsockname(
 nxSOCKET socket,
 struct nxsockaddr *addr,
 nxsocklen_t *addrlen);

Inputs

nxSOCKET socket
Specifies the file descriptor for the socket.

struct nxsockaddr *addr
Specifies the socket address.

nxsocklen_t *addrlen
Specifies the size, in bytes, of the address structure pointed to by nxsockaddr.

Outputs

Return Value
On success, zero is returned. On error, -1 is returned, and nxgetlasterrornum or
nxgetlasterrorstr can retrieve the error code.

nxgetsockopt

Purpose

Use to get options for the socket referenced by the file descriptor nxsocket.

Format

int32_t NI_CDECL nxgetsockopt(
 nxSOCKET socket,
 int32_t level,
 int32_t optname,
 void *optval,

ni.com938

NI-XNET 20.5

 nxsocklen_t *optlen
);

Inputs

nxSOCKET socket
Specifies the file descriptor for the socket.

int32_t level
Specifies the level at which the option you are calling resides. To use an option at
the socket API level, the value is nxSOL_SOCKET . To use options at any other level,
you must supply the protocol number for the protocol that controls the option. For
example, to indicate that an option is to be interpreted by the TCP protocol, set level
to be the protocol number of TCP.

int32_t optname
Specifies the name of the option to be used to be used with the socket.

void *optval
Identifies the buffer in which the value for the requested option(s) is to be returned.

nxsocklen_t *optlen
Indicates the size of the buffer identified by optval .

Outputs

Return Value
On success, zero is returned for the standard options. On error, -1 is returned, and
nxgetlasterrornum or nxgetlasterrorstr can retrieve the error code.

Options

IP protocol supports some protocol-specific socket options that can be set with
nxsetsockopt and read with nxgetsockopt.

Refer to Socket Options for a list of available options.

© National Instruments 939

NI-XNET 20.5

nxrecv

Purpose

Used to receive a message from a socket.

Format

int32_t NI_CDECL nxrecv(
 nxSOCKET socket,
 void *mem,
 int32_t len,
 int32_t flags);

Inputs

nxSOCKET socket
Specifies the file descriptor for the socket.

void *mem
Pointer to a buffer to place received data.

int32_t len
Returns the length in bytes of the message.

int32_t flags
Specifies the type of message reception. The flags argument can be zero or
multiple flags (bitwise OR). Valid flags are dependent upon the socket protocol (TCP
or UDP).

Outputs

Return Value
On success, these calls return the number of bytes received. On error, -1 is returned,
and nxgetlasterrornum or nxgetlasterrorstr can retrieve the error code.

ni.com940

NI-XNET 20.5

nxrecvfrom

Purpose

Used to receive a message from a socket.

Format

int32_t NI_CDECL nxrecvfrom(
 nxSOCKET socket,
 void *mem,
 int32_t len,
 int32_t flags,
 struct nxsockaddr *from,
 nxsocklen_t *fromlen);

Inputs

nxSOCKET socket
Specifies the file descriptor for the socket.

void *mem
Pointer to a buffer to place received data.

int32_t len
Returns the length in bytes of the message.

int32_t flags
Specifies the type of message reception. The flags argument can be zero or
multiple flags (bitwise OR). Valid flags are dependent upon the socket protocol (TCP
or UDP).

struct nxsockaddr *from
Returns the IP address of the source.

nxsocklen_t *fromlen
Specifies the length of the address.

© National Instruments 941

NI-XNET 20.5

Outputs

Return Value
On success, these calls return the number of bytes received. On error, -1 is returned,
and nxgetlasterrornum or nxgetlasterrorstr can retrieve the error code.

nxselect

Purpose

Enables a program to monitor multiple sockets.

Format

int32_t NI_CDECL nxselect(
 int32_t nfds,
 nxfd_set *readfds,
 nxfd_set *writefds,
 nxfd_set *exceptfds,
 nxtimeval *timeout);

Inputs

int32_t nfds
Ignored. This parameter is included for compatibility with BSD-style sockets.

nxfd_set *readfds
Collects a set of sockets to monitor until they become ready for reading. A socket is
ready for reading if a read operation will not block; in particular, a socket is also
ready on end-of-file.

After nxselect has returned, readfds will be cleared of all sockets except for
those that are ready for reading.

nxfd_set *writefds

ni.com942

NI-XNET 20.5

Collects a set of sockets to monitor until they become ready for writing. A file
descriptor is ready for writing if a write operation will not block. However, even if a
file descriptor indicates as writable, a large write could still block.

After nxselect has returned, writefds will be cleared of all sockets except for
those that are ready for writing.

nxfd_set *exceptfds
Collects a set of sockets to monitor for exceptional conditions (e.g., out-of-band
data on a TCP socket).

After nxselect() has returned, exceptfds will be cleared of all sockets except
for those for which an exceptional condition has occurred.

nxtimeval *timeout
Specifies the interval that nxselect should block waiting for a socket. The call will
block until one of the following conditions are met:

■ A socket becomes ready.
■ The socket or owning IP stack is destroyed.
■ The timeout expires.

The timeout interval is rounded up to the system clock granularity; kernel
scheduling delays mean that the blocking interval may overrun by a small amount.

If both fields of the nxtimeval structure are zero, then nxselect returns
immediately. (This is useful for polling.)

If timeout is specified as NULL, nxselect blocks indefinitely waiting for a file
descriptor to become ready.

Outputs

Return Value
On success, nxselect returns the number of sockets contained in the returned
descriptor sets readfds, writefds, and exceptfds. The return value may be zero if
the timeout expired before any sockets became ready. On error, -1 is returned, and
nxgetlasterrornum or nxgetlasterrorstr can retrieve the error code.

© National Instruments 943

NI-XNET 20.5

Description

The following macros are provided for modifying sets of sockets:

nxFD_ZERO initialilzes a file descriptor set nxfd_set after removing all sockets from
the set.

nxFD_SET adds a file descriptor fd to a descriptor set.

nxFD_CLR removes a particular file descriptor fd from a descriptor set.

nxFD_ISSET returns nonzero if the file descriptor fd is present in the set, otherwise
a zero is returned.

nxsend

Purpose

Transmits a message to another socket.

Format

int32_t NI_CDECL nxsend(
 nxSOCKET socket,
 const void *dataptr,
 int32_t size,
 int32_t flags);

Inputs

nxSOCKET socket
Specifies the file descriptor for the socket.

const void *dataptr
Pointer to the TCP data in the buffer.

int32_t size
Specifies the size of the message in bytes.

int32_t flags

ni.com944

NI-XNET 20.5

Specifies flags for data transmission. The flags argument can be zero or multiple
flags (bitwise OR). Valid flags are dependent upon the socket protocol (TCP or UDP).

Outputs

Return Value
On success, the number of bytes sent is returned.On error, -1 is returned, and
nxgetlasterrornum or nxgetlasterrorstr can retrieve the error code.

nxsendto

Purpose

Transmits a message to another socket.

Format

int32_t NI_CDECL nxsendto(
 nxSOCKET socket,
 const void *dataptr,
 int32_t size,
 int32_t flags,
 const struct nxsockaddr *to,
 nxsocklen_t tolen);

Inputs

nxSOCKET socket
Specifies the file descriptor for the socket.

const void *dataptr
Pointer to the data to send.

int32_t size
Specifies the size of the data to send.

int32_t flags

© National Instruments 945

NI-XNET 20.5

Specifies flags for data transmission. The flags argument can be zero or multiple
flags (bitwise OR). Valid flags are dependent upon the socket protocol (TCP or UDP).

const struct nxsockaddr *to
Specifies the destination address.

nxsocklen_t tolen
Specifies the length of the address.

Outputs

Return Value
On success, the number of bytes sent is returned. On error, -1 is returned, and
nxgetlasterrornum or nxgetlasterrorstr can retrieve the error code.

nxsetsockopt

Purpose

Use nxsetsockopt to set options for the socket referenced by the file descriptor
nxsocket.

Format

int32_t NI_CDECL nxsetsockopt(
 nxSOCKET socket,
 int32_t level,
 int32_t optname,
 const void *optval,
 nxsocklen_t optlen
);

Inputs

nxSOCKET socket
Specifies the file descriptor for the socket.

int32_t level

ni.com946

NI-XNET 20.5

Specifies the level at which the option you are calling resides. To use an option at
the socket API level, the value is nxSOL_SOCKET . To use options at any other level,
you must supply the protocol number for the protocol that controls the option. For
example, to indicate that an option is to be interpreted by the TCP protocol, set level
to be the protocol number of TCP.

int32_t optname
Specifies the name of the option to be used to be used with the socket.

const void *optval
Identifies the buffer in which the value for the requested option(s) is to be returned.

nxsocklen_t optlen
Indicates the size of the buffer identified by optval .

Outputs

Return Value
On success, zero is returned for the standard options. On error, -1 is returned, and
nxgetlasterrornum or nxgetlasterrorstr can retrieve the error code.

Options

IP protocol supports some protocol-specific socket options that can be set with
nxsetsockopt and read with nxgetsockopt.

Refer to Socket Options for a list of available options.

nxshutdown

Purpose

Shuts down part of a full-duplex connection.

© National Instruments 947

NI-XNET 20.5

Format

int32_t NI_CDECL nxshutdown(
 nxSOCKET socket,
 int32_t how);

Inputs

nxSOCKET socket
Specifies the file descriptor for the socket.

int32_t how
Specifies the activity to be shut down on the connection; how is enumerated list of
values, as represented in the following table:

Enumeration Value Description
nxSHUT_RD 0 Further receptions will be disall

owed.
nxSHUT_WR 1 Further transmissions will be di

sallowed.
nxSHUT_RDWR 2 Further receptions and transmi

ssions will be disallowed.

Outputs

Return Value
On success, zero is returned. On error, -1 is returned, and nxgetlasterrornum or
nxgetlasterrorstr can retrieve the error code.

nxsocket

Purpose

Creates an endpoint for communication.

ni.com948

NI-XNET 20.5

Format

nxSOCKET NI_CDECL nxsocket(
 nxIpStackRef_t stack_ref,
 int32_t domain,
 int32_t type,
 int32_t protocol);

Inputs

nxIpStackRef_t stack_ref
The stackRef parameter references the IP Stack to use for the creation of this
socket. This reference is returned from nxIpStackCreate or nxIpStackOpen.

int32_t domain
Specifies a communication domain; this selects the protocol family that will be used
for communication. These families are defined in nxsocket.h . NI-XNET currently
supports nxAF_INET .

int32_t type
Specifies the communication semantics. NI-XNET currently supports the following
socket types:

Type Description
nxSOCK_STREAM Provides sequenced, reliable, two-way, connecti

on-based byte streams. (TCP)
nxSOCK_DGRAM Provides connectionless, unreliable messages o

f fixed maximum length. (UDP)

int32_t protocol
Specifies a particular protocol to be used with the socket. Typically, only a single
protocol supports a particular socket type within a given protocol family, in which
case protocol can be specified as 0. However, it is possible that many protocols
support the socket type, in which case a particular protocol must be specified in this
manner. The protocol number to use is specific to the "communication domain" in
which communication is to take place. Valid values are:

© National Instruments 949

NI-XNET 20.5

Protocol Protocol Number
nxIPPROTO_IP 0
nxIPPROTO_TCP 6
nxIPPROTO_UDP 8
nxIPPROTO_IPV6 12

Outputs

Return Value
On success, a file descriptor for the new socket is returned. On error, -1 is returned,
and nxgetlasterrornum or nxgetlasterrorstr can retrieve the error code.

nxstrerr_r

Purpose

Returns a string that describes the error code.

Format

char* NI_CDECL nxstrerr_r(
 int errnum,
 char* buf,
 size_t buflen);

Inputs

int errnum
Specifies the error code or number.

char* buf
Allocates a buffer that is filled by the function.

size_t buflen
Specifies in bytes the length of the buffer.

ni.com950

NI-XNET 20.5

Outputs

Return Value
The nxstrerr_r function returns the appropriate error description string, or an
"Unknown error" message if the error number is unknown. If the error string is
longer than buflen , then the error string is returned truncated (buflen - 1).

Socket Options
IP protocol supports some protocol-specific socket options that can be set with the
nxgetsockopt and nxsetsockopt functions. The socket option level for IP protocol is
nxIPPROTO_IP. A boolean integer flag is zero when it is false, otherwise true.

You can access the following options using the nxgetsockopt() and
nxsetsockopt() functions.

■ nxIP_ADD_MEMBERSHIP
■ nxIP_DROP_MEMBERSHIP
■ nxIP_MULTICAST_IF
■ nxIP_MULTICAST_TTL
■ nxIPv6_ADD_MEMBERSHIP
■ nxIPv6_DROP_MEMBERSHIP
■ nxIPV6_JOIN_GROUP
■ nxIPV6_LEAVE_GROUP
■ nxIPV6_MULTICAST_HOPS
■ nxIPv6_MULTICAST_IF
■ nxSO_BINDTODEVICE
■ nxSO_ERROR
■ nxSO_LINGER
■ nxSO_NONBLOCK
■ nxSO_RCVBUF
■ nxSO_RXDATA
■ nxSO_SNDBUF

© National Instruments 951

NI-XNET 20.5

■ nxTCP_NODELAY

nxSO_RXDATA

Purpose

Returns the number of characters currently available for reading from the socket.

Description

The nxSO_RXDATA option returns the number of characters queued in the socket's
receive buffer.

nxSO_RCVBUF

Purpose

Returns the buffer size allocated for input buffers.

Description

The nxSO_RCVBUF option sets or gets the maximum socket receive buffer in bytes.

nxSO_SNDBUF

Purpose

Indicates and controls the buffer size allocated for output buffers.

Description

The nxSO_SNDBUF option sets or gets the maximum socket send buffer in bytes.
The socket send buffer is an output buffer used by the networking implementation;
it may need to be increased for high-volume connections.

nxSO_NONBLOCK

Purpose

Indicates and controls whether the socket is set to be nonblocking.

ni.com952

NI-XNET 20.5

Description

The nxSO_NONBLOCK option sets or gets whether the socket is operating in
blocking (0) or nonblocking (1) mode. A value of 1 is returned if the socket is
currently set to nonblocking mode.

nxSO_BINDTODEVICE

Purpose

Binds the socket to a virtual interface.

Description

The nxSO_BINDTODEVICE option binds the socket to a specific virtual interface,
specified by virtual interface name. If the name is an empty string or the option
length is zero, the socket binding is removed. If a socket is bound to a virtual
interface, the socket processes only packets received from that particular virtual
interface.

This option is supported for both nxgetsockopt and nxsetsockopt.

nxSO_ERROR

Purpose

Reports information about the error status and clears it.

Description

The nxSO_ERROR option gets and clears the pending socket error. This option is
read-only. nxSO_ERROR stores an integer value.

nxSO_LINGER

Purpose

Indicates or controls the linger option of a TCP socket.

© National Instruments 953

NI-XNET 20.5

Description

The nxSO_LINGER option stores the linger structure, which is used to set or get the
nxSO_LINGER option:

struct nxlinger {
 int l_onoff; /* linger active */
 int l_linger; /* how many seconds to linger for */
 };

If nxSO_LINGER is enabled, the system blocks during nxclose or nxshutdown until
the socket can transmit the data or until the end of the interval indicated by the
l_linger member, whichever comes first. If nxSO_LINGER is not specified, and
nxclose or nxshutdown is issued, the IP stack will handle closing the socket in the
background.

nxIP_ADD_MEMBERSHIP

Purpose

Add a group member to a multicast group.

Description

The nxIP_ADD_MEMBERSHIP option adds membership to a single multicast group.
Each membership is associated with a single interface. nxIP_ADD_MEMBERSHIP is
valid only for nxsetsockopt.

A parameter of type struct nxip_mreq is used to set this value. This structure is
defined in nxsocket.h as follows:

struct nxip_mreq {
 struct nxin_addr imr_multiaddr; /* IPv4 multicast address of group */
 struct nxin_addr imr_interface; /* local IP address of interface */
};

Use imr_multiaddr to specify the multicast group to join or leave.

Use imr_interface to specify the local IP address that is associated with the
interface to which this request applies.

ni.com954

NI-XNET 20.5

nxIP_DROP_MEMBERSHIP

Purpose

Remove a group member from a multicast group.

Description

The nxIP_DROP_MEMBERSHIP option removes membership from a single multicast
group. Each membership is associated with a single interface.
nxIP_DROP_MEMBERSHIP is valid only for nxsetsockopt.

A parameter of type struct nxip_mreq is used to set this value. This structure is
defined in nxsocket.h as follows:

struct nxip_mreq {
 struct nxin_addr imr_multiaddr; /* IPv4 multicast address of group */
 struct nxin_addr imr_interface; /* local IP address of interface */
};

Use imr_multiaddr to specify the multicast group to join or leave.

Use imr_interface to specify the local IP address that is associated with the
interface to which this request applies.

nxIP_MULTICAST_IF

Purpose

Sets or gets the IP interface over which outgoing multicast datagrams should be
sent.

Description

In order to send to a multicasting group it is not necessary to join the groups. But to
receive transmissions sent to a multicasting group, membership is required. For
multicast sending, use an IP_MULTICAST_IF flag with nxsetsockopt. This specifies
the interface to be used.

© National Instruments 955

NI-XNET 20.5

nxIP_MULTICAST_TTL

Purpose

Sets or reads the time-to-live (TTL) value of outgoing multicast packets for this
socket.

Description

The nxIP_MULTICAST_TTL option enables the socket to limit the TTL value for
outgoing multicast packets. The argument is an integer. It is important for multicast
packets to set the smallest TTL possible. The default is 1, which means that
multicast packets do not leave the local network unless the user program explicitly
requests it.

nxIPV6_ADD_MEMBERSHIP

Purpose

Add a group member to a multicast group.

Description

The nxIPV6_ADD_MEMBERSHIP option adds membership to a single multicast
group. Each membership is associated with a single interface.
nxIPV6_ADD_MEMBERSHIP is valid only for nxsetsockopt.

A parameter of type struct nxipv6_mreq is used to set this value. This structure
is defined in nxsocket.h as follows:

struct nxipv6_mreq {
 struct nxin6_addr ipv6mr_multiaddr; /* IPv6 multicast address */
 int32_t ipv6mr_interface; /* interface index, or 0 to use first
available */
};

Use ipv6mr_multiaddr to specify the multicast group to join or leave.

ni.com956

NI-XNET 20.5

Use ipv6mr_interface to specify the local IP address that is associated
with the interface to which this request applies.

nxIPV6_DROP_MEMBERSHIP

Purpose

Remove a group member from a multicast group.

Description

The nxIPV6_DROP_MEMBERSHIP option removes membership from a single
multicast group. Each membership is associated with a single interface.
nxIPV6_DROP_MEMBERSHIP is valid only for nxsetsockopt.

A parameter of type struct nxipv6_mreq is used to set this value. This structure
is defined in nxsocket.h as follows:

struct nxipv6_mreq {
 struct nxin6_addr ipv6mr_multiaddr; /* IPv6 multicast address */
 int32_t ipv6mr_interface; /* interface index, or 0 to use first
available */
};

Use ipv6mr_multiaddr to specify the multicast group to join or leave.
Use ipv6mr_interface to specify the local IP address that is associated
with the interface to which this request applies.

nxIPV6_JOIN_GROUP

Purpose

Add a group member to a multicast group.

Description

nxIPV6_JOIN_GROUP is an alias for nxIPV6_ADD_MEMBERSHIP.

© National Instruments 957

NI-XNET 20.5

nxIPV6_LEAVE_GROUP

Purpose

Remove a group member from a multicast group.

Description

nxIPV6_LEAVE_GROUP is an alias for nxIPV6_DROP_MEMBERSHIP.

nxIPV6_MULTICAST_HOPS

Purpose

Sets the multicast hop limit for the socket.

Description

The nxIPV6_MULTICAST_HOPS option limits the time-to-live (TTL) value associated
with multicast traffic on the socket. The argument is a pointer to an integer. A value
of -1 indicates to use the route default; otherwise, the integer must be between 0
and 255.

nxIPV6_MULTICAST_IF

Purpose

Sets or gets the IP interface over which outgoing multicast datagrams should be
sent.

Description

In order to send to a multicasting group it is not necessary to join the groups. But to
receive transmissions sent to a multicasting group, membership is required. For
multicast sending, use an IP_MULTICAST_IF flag with nxsetsockopt. This specifies
the interface to be used.

ni.com958

NI-XNET 20.5

nxTCP_NODELAY

Purpose

Specifies whether to disable (1) or enable (0) the Nagle algorithm.

Description

The Nagle algorithm is disabled when this property is 1. The Nagle algorithm
improves network performance by buffering written data until a full-size packet can
be sent. This property is 0 by default.

J1939 Sessions
If you use a DBC file defining a J1939 database or create a stream session with the
cluster name :can_j1939:, you will create a J1939 XNET session. If the session is
running in J1939 mode, the session property application protocol returns
nxAppProtocol_J1939 instead of nxAppProtocol_None. This property is read only,
as you cannot change the application protocol while the session is running.

FIBEX databases do not define support for J1939 in the standard. If you save a J1939
database to FIBEX in the NI-XNET Database Editor or with the nxdbSaveDatabas
e API function, the J1939 properties are saved in a FIBEX extension defined by
National Instruments in the FIBEX XML file.

Compatibility Issue
If you have used a J1939 database with a version of NI-XNET that does not support
J1939, the session now opens in J1939 mode, which defines a different behavior
than a non-J1939 session. This may break the compatibility of your application. To
avoid issues, you can ignore the application protocol for the database alias in
question.

Complete the following steps to set whether the database application protocol is
used or ignored when the alias is added:

1. Launch the NI-XNET Database Editor.

© National Instruments 959

NI-XNET 20.5

2. From the main menu, select File»Manage Aliases, which opens the Manage

NI-XNET Databases dialog.

3. In the Manage NI-XNET Databases dialog, click the Add Alias button, which
opens the Add Alias to NI-XNET Database... dialog.

4. Browse to the database file to add, then click OK to continue. If the protocol
for the selected database is CAN and the application protocol is J1939, an
Ignore Application Protocol checkbox is displayed, as shown in the following
figure. (The Baud Rate control may or may not be displayed, depending on
whether the database specifies it.)

5. To have NI-XNET interpret the alias as an alias for a J1939 database, leave
Ignore Application Protocol unchecked. To have NI-XNET interpret the alias as
an alias for a plain CAN database, check Ignore Application Protocol.

6. Click OK to complete the alias addition.

J1939 Basics
A J1939 network consists of ECUs connected by a CAN bus running at 250 k baud
rate. Some newer networks might use a 500 k baud rate. A physical ECU can contain
one or more logical ECUs called nodes or Controller Applications. This description
refers to it as a node or ECU.

ni.com960

NI-XNET 20.5

J1939 application protocol uses a 29-bit extended frame identifier. The ID is divided
into several parts:

■ Source Address (8 bits): Determines the address of the node transmitting
the frame. By examining the Source Address part of the ID, the receiving
session can recognize which node has sent the frame.
■ PGN (18 bits): Identifies the frame and defines which signals it contains.
■ Priority (3 bits): Priority is used when multiple CAN frames are sent on the
bus at exactly the same time. In this case, the CAN frame with the higher
priority (lower number) is transmitted before the lower priority frame. The
CAN standard defines the CAN frames priority (lower IDs have higher priority).
Therefore, the J1939 priority bits are the most significant bits in the ID. This
ensures that the ID value with a higher priority is always lower, independent
of the PGN and Source Address, as shown in the following figure.

You can send a frame to a global address (all nodes) or a specific address (node with
this address). This information is coded inside the PGN, as shown in the following
figure.

The PF value in the identifier defines whether the message has a global or specific
destination:

■ 0–239 (0x00–0xEF): specific destination
■ 240–255 (0xF0–0xFF): global destination

In the CAN identifier, this looks like the following (X = don't care):

■ 0xXXF0XXXX to 0xXXFFXXXX are messages with global destination
(broadcast)
■ 0xXX00XXXX to 0xXXEFXXXX are messages with specific destination

© National Instruments 961

NI-XNET 20.5

For global messages, the PS byte of the ID defines group extension. This extends the
number of possible global PGNs to 4096 (0xF000 to 0xFFFF).

For destination-specific messages, PS defines the destination address, so PF defines
only 240 destination-specific PGNs (0–239).

DP and EDP bits increase the number of possible PGNs by defining data pages. EDP,
however, always is set to 0 in J1939, so only DP can be set to 0 or 1, which doubles
the number of PGNs described above. The maximum number of possible PGNs (and
so, different messages) in J1939 is 2*(4096 + 240) = 8672.

For node addresses (source address and destination address), the ID reserves 8 bit,
which allows values from 0 to 255. Two values have a special meaning:

■ 254 is the null address. This means there is no valid address assigned to a
node yet.
■ 255 is the global address. This allows sending even PGNs with PF 0 to 239 to
a global destination.

Node Addresses in NI-XNET
A newly created XNET session has no node address. If you read the J1939 Node
Address property after creating a session, it returns the value 254 (null address).

A receiving XNET session without address can read all frames from the bus. A
receiving XNET session with an assigned address can read only frames with a global
destination address (255) and frames sent to this address, but not frames sent to
other nodes. A read session with a null (254) or global (255) address observes all
messages on the bus, without participating in any J1939 handshakes.

A transmitting XNET session requires a node address. A write session with a null
(254) or global (255) address transmits messages only if a valid source address is set
in the frame identifier. A write session with a valid claimed address always
substitutes the source address portion of the frame identifier with the node's
claimed address.

All nodes in the network must have different node addresses; otherwise, two nodes
could send a frame with the same CAN identifier, which is not allowed by the CAN
standard. To ensure that each node has a different address, J1939 defines a

ni.com962

NI-XNET 20.5

procedure called address claiming to obtain an address on the network. There are
two properties required for address claiming:

■ Node name (64 bit value)
■ Node address

The node name identifies a node (ECU) and usually is saved in the database. Each
ECU in the network has a unique node name. For the address claiming procedure,
there are two important features of the node name value:

■ Priority: The lower name value has the higher priority.
■ Arbitrary address capability (bit 63 = 1): This node can use a different
address than specified in case of conflict.

The arbitrary address capability is defined in the highest significant bit of the value
(bit 63). All arbitrary-capable names have a lower priority than nonarbitrary-capable
names.

Transmitting Frames

When transmitting frames, the granted address of the node automatically replaces
the source address portion of the frame identifier.

In your application, you may want a session to transmit frames using the source
address provided in the identifier in the database or the frame data. If you do not
assign a valid address to a session (or set the address to 254 explicitly), NI-XNET
does not change the address in your frame identifier before transmitting. An error is
returned when a transmitting session without an address tries to send a frame
without a valid address in the identifier.

Address Claiming Procedure
To obtain an address on the network, set the J1939/Node Name and J1939/Node
Address properties or set the J1939/ECU property (which is equivalent to setting the
other properties using the values in the ECU object in the database). After setting
the Node Address (to a value less than 254), XNET sends an address claimed
message and waits 300 ms for the response from the network. If no other node is
using this address, there is no response to the message; after the timeout, the

© National Instruments 963

NI-XNET 20.5

address is granted to the session and the session can transmit frames on the
network.

Setting the Node Address causes NI-XNET to start the interface; you must set any
properties that are to be set before the interface starts before setting Node Address.
Setting the Node Address does not start the session. J1939 traffic is not retained by
an input session until Start or Read are explicitly called.

During the claiming procedure, the node address property returns the null address
(254), so you can poll this address until it gets a valid value.

If the address cannot be granted to the session (for example, when the name is not
arbitrary and another node with higher priority uses the node address), the address
is not granted. After timeout, the J1939 CommState indicates the reason for failed
address claiming. If the node name is arbitrary address capable, NI-XNET tries to
find another address and claim it. This procedure can take some time depending on
how fast the other nodes respond to the address claimed message.

NI-XNET examples contain the address claiming procedure, which you can use in
your applications.

The frames transmitted during address claiming are not passed to the J1939 input
session. To see those frames, open a non-J1939 CAN session, which can be running
parallel with a J1939 session on the same interface.

Mixing J1939 and CAN Messages
J1939 frames in the database and CAN frames data in XNET include the Application
Protocol property. This means you can mix J1939 and standard CAN messages in
one session. Standard CAN messages cannot exceed 8 bytes and do not use the
node address.

In standard CAN frames, the complete identifier is considered as the CAN message
identifier; in J1939, only the PGN determines the message. Frames with the same
PGN but different priority or source address are considered the same message.

Received frames with extended identifier always are considered J1939 frames. If you
use extended CAN frames as non-J1939 frames, you must process the received data
to update the Application Protocol property.

ni.com964

NI-XNET 20.5

Transport Protocol (TP)
When you use frames with more than 8 bytes, NI-XNET automatically uses the J1939
transport protocol to transmit and receive the frames. You do not receive any
transport protocol management messages in the sessions. When this is required,
you must open a non-J1939 CAN session, which can be running parallel to a J1939
session on the same interface.

Transport protocol defines many properties used to change the behavior (for
example, timing).

If errors occur in the transport protocol, they are not reported directly from the read
function. You can monitor errors in the TP by reading the J1939 CommState
function.

Note that the transport protocol is not using the priority in the identifier, and the
priority value is not transmitted with the TP. Received TP messages have the priority
always set to 0.

NI-XNET Sessions
You can use all NI-XNET session modes with J1939 protocol, whether or not the
frames use transport protocol. This includes frame and signal sessions in queued,
single point, or stream mode.

Not Supported in the Current NI-XNET Version
Signal Ranges

For coded signal values in frames, J1939 reserves special values to transmit specific
indicators (for example, the error indicator). The current NI-XNET version does not
support this; those values are converted to signal values. This behavior may change
in a future NI-XNET version.

CAN FD, ISO Versus Non-ISO
Bosch published several versions of the CAN specification, such as CAN 2.0,
published in 1991. This specification has two parts; part A is for the standard format

© National Instruments 965

NI-XNET 20.5

with an 11-bit identifier, and part B is for the extended format with a 29-bit
identifier. CAN 2.0 supports frames with payload up to 8 bytes and transmission
speed up to 1 Mbaud.

To allow faster transmission rates, in 2012 Bosch released CAN FD 1.0 (CAN with
Flexible Data-Rate), supporting a payload length up to 64 bytes and faster baud
rates. ISO later standardized CAN FD. ISO CAN FD 11898-1:2015 introduced some
changes to the original CAN FD 1.0 protocol from Bosch, which made the CAN FD 1.0
(non-ISO CAN FD) and ISO CAN FD protocols incompatible. These changes are now
available under ISO 11898-1:2015. The standards cannot communicate with each
other.

NI-XNET supports both ISO CAN FD and non-ISO CAN FD. The default is ISO CAN FD.
The NI-XNET API behavior supporting ISO CAN FD mode has been changed slightly
to allow new features compared to the Non-ISO FD mode. In Non-ISO CAN FD mode,
you must use the Interface:CAN:Transmit I/O Mode session property to switch the
CAN I/O mode of transmitted frames. In ISO CAN FD mode, the transmission mode is
specified in the database (CAN:I/O Mode property) or, when the database is not
used, in the frame type field of the frame header.

Received data frames in Non-ISO CAN FD mode always have the type CAN Data,
while in ISO CAN FD mode the type is more specific, indicating the protocol in which
the frame has been transmitted (CAN 2.0, CAN FD, or CAN FD+BRS).

Because an existing CAN FD application developed with NI-XNET 15.0 (which
supported non-ISO CAN FD only) might not work with the API changes for ISO CAN
FD, NI-XNET 15.5 has introduced a Legacy ISO mode. In this mode, the API behavior
is the same as in Non-ISO CAN FD mode, but it communicates on the bus using ISO
CAN FD mode.

You define the ISO CAN FD mode when you add an alias for a database supporting
CAN FD. In a dialog box (or nxdbAddAlias64), you define whether the mode
default is ISO CAN FD, Non-ISO CAN FD, or Legacy ISO mode. In the session, you still
can change the ISO mode with an Interface:CAN:FD ISO Mode property.

NI-XNET API for C Reference
The topics in this section describe the NI-XNET C functions and properties.

ni.com966

NI-XNET 20.5

nxBlink

Purpose

Blinks LEDs for the XNET interface to identify its physical port in the system.

Format

nxStatus_t _NXFUNC nxBlink (
 nxSessionRef_t InterfaceRef,
 u32 Modifier);

Inputs

nxSessionRef_t InterfaceRef
The XNET Interface I/O name.

u32 Modifier
Controls LED blinking:

Disable (0)
Disable blinking for identification. This option turns off both LEDs for the port.

Enable (1)
Enable blinking for identification. Both LEDs of the interface's physical port turn on
and off. The hardware blinks the LEDs automatically until you disable, so there is no
need to call the nxBlink function repetitively.

Both LEDs blink green (not red). The blinking rate is approximately three times per
second.

Outputs

Return Value
nxStatus_t

© National Instruments 967

NI-XNET 20.5

The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

Each XNET device contains one or two physical ports. Each port is labeled on the
hardware as Port 1 or Port 2. The XNET device also provides two LEDs per port. For
a two-port board, LEDs 1 and 2 are assigned to Port 1, and LEDs 3 and 4 are assigned
to physical Port 2.

When your application uses multiple XNET devices, this function helps to identify
each interface to associate its software behavior to its hardware connection (port).
Prior to running your XNET sessions, you can call this function to blink the interface
LEDs.

For example, if you have a system with three PCI CAN cards, each with two ports,
you can use this function to blink the LEDs for interface CAN4, to identify it among
the six CAN ports.

The LEDs of each port support two states:

■ Identification: Blink LEDs to identify the physical port assigned to the
interface.
■ In Use: LED behavior that XNET sessions control.

Identification LED State
You can use the nxBlink function only in the Identification state. If you call this
function while one or more XNET sessions for the interface are open (created), it
returns an error, because the port's LEDs are in the In Use state.

In Use LED State
When you create an XNET session for the interface, the LEDs for that physical port
transition to the In Use state. If you called the nxBlink function previously to
enable blinking for identification, that LED behavior no longer applies. The In Use
LED state remains until all XNET sessions are cleared. This typically occurs when the

ni.com968

NI-XNET 20.5

application terminates. The patterns that appear on the LEDs while In Use are
documented in LEDs.

nxClear

Purpose

Clears (closes) the XNET session.

Format

nxStatus_t nxClear (
 nxSessionRef_t SessionRef);

Inputs

nxSessionRef_t SessionRef
The reference to the session to clear. This session reference is returned from nxCre
ateSession.

Outputs

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

This function stops communication for the session and releases all resources the
session uses. nxClear internally calls nxStop with normal scope, so if this is the
last session using the interface, communication stops.

You typically use nxClear when you need to clear the existing session to create a
new session that uses the same objects. For example, if you create a session for a
frame named frameA using Frame Output Single-Point mode, then you create a

© National Instruments 969

NI-XNET 20.5

second session for frameA using Frame Output Queued mode, the second call to nx
CreateSession returns an error, because frameA can be accessed using only one
output mode. If you call nxClear before the second nxCreateSession call, you
can close the previous use of frameA to create the new session.

nxConnectTerminals

Purpose

Connects terminals on the XNET interface.

Format

nxStatus_t _NXFUNC nxConnectTerminals (
 nxSessionRef_t SessionRef,
 const char * source,
 const char * destination);

Inputs

nxSessionRef_t SessionRef
The reference to the session to use for the connection.

const char * source terminal
The connection source name.

const char * destination terminal
The connection destination name.

Outputs

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

ni.com970

NI-XNET 20.5

Description

This function connects a source terminal to a destination terminal on
the interface hardware. The XNET terminal represents an external or internal
hardware connection point on a National Instruments XNET hardware product.
External terminals include PXI Trigger lines for a PXI card, RTSI terminals for a PCI
card, or the single external terminal for a C Series module. Internal terminals include
timebases (clocks) and logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the pair is an
internal and the other an external.

Valid Combinations of Source/Destination
The following table lists all valid combinations of source terminal and desti
nation terminal.

Source Destination
PXI_Trigx FrontPanel0

FrontPanel1
Start Trigger MasterTimeb

ase
Log Trigger TimeTrigger3

PXI_Trigx X X 4 4 4

FrontPanel0
FrontPanel1

X X 4 4 4 X

PXI_Star1 X X 4 X X X

PXI_Clk101 X X X 4 4 X

StartTrigger 4 4 X X X X

CommTrigger 4 4 X X X X

FlexRayStart
Cycle2

X X X X

FlexRayMacro
tick2

X X

1MHzTimeba
se

 4 4 X X X X

10MHzTimeb
ase

 4 X X X X X

TimeTrigger3 X X X X X

© National Instruments 971

NI-XNET 20.5

NetworkTime
PPS3

X X X X X

NetworkTime
1MHz3

X X X X X

1Valid only on PXI hardware.
2Valid only on FlexRay hardware.
3Valid only on Ethernet hardware.
4Not valid on Ethernet hardware.

Source Terminals
The following table describes the valid source terminals.

Source Terminal Description
PXI_Trigx Selects a general-purpose trigger line as the con

nection source (input), where x is a number fro
m 0 to 7. For PCI cards, these are the RTSI lines.
For PXI cards, these are the PXI Trigger lines. For
C Series modules in a CompactDAQ chassis, all
modules in the chassis automatically share a co
mmon timebase. For information about routing
the StartTrigger for CompactDAQ, refer to the X
NET Session Interface:Source Terminal:Start Tri
gger property.

FrontPanel0
FrontPanel1

Selects a general-purpose Front Panel Trigger li
ne as the connection source (input).

PXI_Star Selects the PXI star trigger signal.
Within a PXI chassis, some PXI products can sou
rce star trigger from Slot 2 to all higher-numbere
d slots. PXI_Star enables the PXI XNET hardware
to receive the star trigger when it is in Slot 3 or h
igher.

Note You cannot use this terminal with a
PCI device.

PXI_Clk10 Selects the PXI 10 MHz backplane clock.
The only valid destination terminal for t
his source is MasterTimebase. This routes the 10
MHz PXI backplane clock for use as the XNET car

ni.com972

NI-XNET 20.5

d timebase. When you use PXI_Clk10 as the XNE
T card timebase, you also must use PXI_Clk10 as
the timebase for other PXI cards to perform sync
hronized input/output.

Note You cannot use this terminal with a
PCI device.

StartTrigger Selects the start trigger, which is the event set w
hen the when the Start Interface transition occu
rs. The start trigger is the same for all sessions u
sing a given interface.
You can route the start trigger of this XNET card
to the start trigger of other XNET or DAQ cards t
o ensure that sampling begins at the same time
on both cards. For example, you can synchroniz
e two XNET cards by routing StartTrigger as the
source terminal on one XNET card and the
n routing StartTrigger as the destination t
erminal on the other XNET card, with both car
ds using the same PXI Trigger line for the connec
tions.

CommTrigger Selects the communicating trigger, which is the
event set when the Comm State Communicatin
g transition occurs. The communicating trigger i
s the same for all sessions using a given interfac
e.
You can route the communicating trigger of this
XNET card to the start trigger of other XNET or D
AQ cards to ensure that sampling begins at the s
ame time on both cards.

The communicating trigger is similar to a start tr
igger, but is used if your clock source is the Flex
RayMacrotick, which is not available until the in
terface is properly integrated into the bus. Beca
use you cannot generate a start trigger to anoth
er interface until the synchronization clock is als
o available, you can use this trigger to allow for t
he clock under this special circumstance.

© National Instruments 973

NI-XNET 20.5

FlexRayStartCycle Selects the FlexRay Start of Cycles as an advanc
ed trigger source.
This generates a repeating pulse that external h
ardware can use to synchronize a measurement
or other action with each FlexRay cycle.

Note You can use this terminal only with a
FlexRay device.

FlexRayMacrotick Selects the FlexRay Macrotick as a timing source
. The FlexRay Macrotick is the basic unit of time i
n a FlexRay network.
You can use this source terminal to synchr
onize other measurements to the actual time on
the FlexRay bus. In this scenario, you would con
figure the FlexRayMacrotick as the source te
rminal and route it to a PXI Trigger or front pa
nel terminal. After the interface is communicatin
g to the FlexRay network, the Macrotick signal b
ecomes available.

You also can connect the FlexRayMacrotick to th
e MasterTimebase. This configures the counter t
hat timestamps received frames to run synchro
nized to FlexRay time, and also allows you to re
ad the FlexRay cycle macrotick to do additional
synchronization with the FlexRay bus in your ap
plication.

Note You can use this terminal only with a
FlexRay device.

1MHzTimebase Selects the XNET card's local 1 MHz oscillator. T
he only valid destination terminals for t
his source are PXI_Trig0–PXI_Trig7.
This source terminal routes the XNET card
local 1 MHz clock so that other NI cards can use i
t as a timebase. For example, you can synchroni
ze two XNET cards by connecting 1MHzTimebas
e to PXI_Trigx on one XNET card and then conne
cting PXI_Trigx to MasterTimebase on the other
XNET card.

ni.com974

NI-XNET 20.5

10MHzTimebase Selects the XNET card's local 10 MHz oscillator.
This routes the XNET card local 10 MHz clock for
use as a timebase by other NI cards. For exampl
e, you can synchronize two XNET cards by conn
ecting 10MHzTimebase to PXI_Trigx on one XNE
T card and then connecting PXI_Trigx to Master
Timebase on the other XNET card.

TimeTrigger Selects the Time Trigger of the Ethernet interfac
e as a source.
You write an absolute timestamp for a future ti
me to nxFutureTimeTrigger, and the connected
destination terminal will pulse at that f
uture time. The pulse rises then falls, and the ris
ing edge occurs at the future time.

NetworkTimePPS For an Ethernet interface, selects network time (
that is, time synchronization protocol such as IE
EE Std 802.1AS) as a source.
The connected destination terminal ge
nerates a pulse per second (PPS). The pulse rise
s and then falls, and the rising edge occurs in ph
ase with midnight in International Atomic Time
(TAI). This terminal pulses regardless of whether
the time synchronization protocol is synced.

NetworkTime1MHz For an Ethernet interface, selects network time (
that is, time synchronization protocol such as IE
EE Std 802.1AS) as a source.
The connected destination terminal pul
ses at a 1 MHz rate. The pulse rises and then fall
s, and the rising edge occurs in phase with midn
ight in TAI. This terminal pulses regardless of wh
ether the time synchronization protocol is
synced.

Note If the signal from the external timebase becomes unstable or unusable, NI-XNET
hardware reverts to the default timebase. Error code 0xBFF63078 is generated when this
event occurs. Use nxReadState to detect the fault.

© National Instruments 975

NI-XNET 20.5

Destination Terminals
The following table describes the valid destination terminals.

Destination Terminal Description
PXI_Trigx Selects a general-purpose trigger line as the con

nection destination (output), where x is a numb
er from 0 to 7. For PCI cards, these are the RTSI li
nes. For PXI cards, these are the PXI Trigger lines
. For C Series modules in a CompactDAQ chassis
, all modules in the chassis automatically share
a common timebase. For information about rou
ting the StartTrigger for CompactDAQ, refer to th
e XNET Session Interface:Source Terminal:Start
Trigger property.

Caution NI-XNET does not automatically r
eserve PXI trigger lines. Driving the same li
ne from two devices may cause hardware
damage. Before configuring a PXI trigger li
ne as a destination terminal, reserve it thr
ough the PXI chassis properties in NI Meas
urement & Automation Explorer.

FrontPanel0
FrontPanel1

Selects a general-purpose Front Panel Trigger li
ne as the connection destination (output).

StartTrigger Selects the start trigger, which is the event that
allows the interface to begin communication. T
he start trigger occurs on the first source ter
minal low-to-high transition. The start trigger i
s the same for all sessions using a given interfac
e. This causes the Start Interface transition to oc
cur.
You can route the start trigger of another XNET o
r DAQ card to ensure that sampling begins at th
e same time on both cards. For example, you ca
n synchronize with an M-Series DAQ MIO card by
routing the AI start trigger of the MIO card to a R
TSI line and then routing the same PXI Trigger li
ne with StartTrigger as the destination te
rminal on the XNET card.

ni.com976

NI-XNET 20.5

The default (disconnected) state of this destinat
ion means the start trigger occurs when nxSta
rt is invoked with the scope set to either Norm
al or Interface Only. Alternately, if Auto Start? is
enabled, reading or writing to a session may sta
rt the interface.

MasterTimebase MasterTimebase instructs the XNET card to use t
he connection source terminal as the mas
ter timebase. The XNET card uses this master ti
mebase for input sampling (including timestam
ps of received messages) as well as periodic out
put sampling.
Your XNET hardware supports incoming frequen
cies of 1 MHz, 10 MHz, and 20 MHz, and automat
ically detects the frequency without any additio
nal configuration.

For example, you can synchronize a CAN and DA
Q M Series MIO card by connecting the 10 MHz o
scillator (board clock) of the DAQ card to a PXI_T
rig line, and then connecting the same PXI_Trig l
ine as the source terminal.

For PXI and PXI Express form factor hardware, y
ou also can use PXI_Clk10 as the source ter
minal. This receives the PXI 10 MHz backplane
clock for use as the master timebase.

MasterTimebase applies separately to each port
of a multiport XNET card, meaning you could ru
n each port off of a separate incoming (or onboa
rd) timebase signal.

If you are using a PCI board, the default connect
ion to the MasterTimebase is the local oscillator.
If you are using a PXI or PXI Express board, the d
efault connection to the MasterTimebase is the
PXI_Clk10 signal, if it is available. Some chassis
allow PXI_Clk10 to be turned off. In this case, th
e hardware automatically uses the local oscillat
or as the default MasterTimebase.

© National Instruments 977

NI-XNET 20.5

Log Trigger The Log Trigger terminal generates a frame whe
n it detects a rising edge. When connected, this f
rame is transferred into the queue of the Frame
Stream Input session if the session is started. Fo
r information about this frame, including the int
erpretation of the frame payload, refer to Specia
l Frames.

TimeTrigger Selects the Time Trigger of the Ethernet interfac
e as a destination.
When a rising edge occurs on the source termin
al, the Time Trigger captures an absolute timest
amp, which you can read using
nxReadStateTimeTrigger.

nxConvertByteArrayToFramesSinglePoint

Purpose

Converts between an NI-XNET byte array signal and a frame using a session of
Conversion Mode.

Format

nxStatus_t nxConvertByteArrayToFramesSinglePoint (
 nxSessionRef_t SessionRef,
 u8 * ValueBuffer,
 u32 SizeOfValueBuffer
 void * Buffer,
 u32 SizeOfBuffer,
 u32 * NumberOfBytesReturned);

Inputs

nxSessionRef_t SessionRef
The session to convert. This session is returned from nxCreateSession. The
session mode must be Conversion.

u8 * ValueBuffer

ni.com978

NI-XNET 20.5

Provides a byte array representation of the signal value. The value is transferred 1:1
to the signal in the frame.

If the session contains more than one signal, or the signal cannot be represented as
a byte array, an error is returned.

u32 SizeOfValueBuffer
You should set this to the size (in bytes) of the array passed to ValueBuffer. If this
is too small to fit one element for each signal in the session, an error is returned.

u32 SizeOfBuffer
You should set this to the size (in bytes) of the array passed to Buffer.

This number does not represent the number of frames to convert. As encoded in raw
data, each frame can vary in length. Therefore, the number represents the
maximum raw bytes to be converted, not the number of frames.

For each frame used in the session, you must provide buffer space in the array
passed to Buffer.

CAN and LIN frames are always 24 bytes in length. To convert a specific number of
frames, multiply that number by 24.

FlexRay frames vary in length. For example, if you pass SizeOfBuffer of 91, the
buffer may return 80 bytes, within which the first 24 bytes encode the first frame,
and the next 56 bytes encode the second frame.

If SizeOfBuffer is positive, the data array size is no greater than this number.
The minimum size for a single frame is 24 bytes, so you must use at least that
number.

Outputs

void * Buffer
Returns an array of bytes.

The raw bytes encode one or more frames using the Raw Frame Format. This frame
format is the same for read and write of raw data, and it is also used for log file
examples.

© National Instruments 979

NI-XNET 20.5

The data always returns complete frames.

For each frame that appears in the session, exactly one frame is returned. If the
buffer is not large enough to hold all the data, an error is returned.

u32 * NumberOfBytesReturned
Returns the number of valid bytes in the Buffer array.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

The signal value written to the ValueBuffer array is written to a raw frame buffer
array. For the frame included in the session, a frame is generated in the array that
contains the signal value. Signals not present in the session are written as their
respective default values; empty space in the frames that signals do not occupy is
written with the frame's default payload.

The frame header values are filled with appropriate values so that this function's
output can be directly written to a Frame Output session.

nxConvertFramesToByteArraySinglePoint

Purpose

Converts between NI-XNET frames and a byte array signal using a session of
Conversion Mode.

Format

nxStatus_t nxConvertFramesToByteArraySinglePoint (
 nxSessionRef_t SessionRef,
 void * FrameBuffer,

ni.com980

NI-XNET 20.5

 u32 NumberOfBytesForFrames,
 u8 * ValueBuffer,
 u32 SizeOfValueBuffer);

Inputs

nxSessionRef_t SessionRef
The session to convert. This session is returned from nxCreateSession. The
session mode must be Conversion.

void * FrameBuffer
Provides the array of bytes, representing frames to convert.

The raw bytes encode one or more frames using the Raw Frame Format. This frame
format is the same for read and write of raw data and also is used for log file
examples.

For information about which elements of the raw frame are applicable, refer to Raw
Frame Format.

The data you write is queued for transmit on the network. Using the default queue
configuration for this mode, you can safely write 1536 frames if you have a
sufficiently long timeout. To write more data, refer to the XNET Session Number of
Values Unused property to determine the actual amount of queue space available
for writing.

u32 NumberOfBytesForFrames
The size (in bytes) of the buffer passed to FrameBuffer. This is used to calculate
the number of frames to convert.

u32 SizeOfValueBuffer
You should set this to the size (in bytes) of the array passed to ValueBuffer. If this
is too small to fit one element for each signal in the session, an error is returned.

Outputs

u8* ValueBuffer
Returns a byte array representation of the signal value.

© National Instruments 981

NI-XNET 20.5

If the session contains more than one signal, or the signal cannot be represented as
a byte array, an error is returned.

The data returns the most recent value received for the signal. If multiple frames for
the signal are received since the previous call to nxReadSignalSinglePoint (or
session start), only signal data from the most recent frame is returned.

If no frame is received for the corresponding signals since you started the session,
the XNET Signal Default Value is returned.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

The frames passed into the FrameBuffer array are read one by one, and the
signal values found are written to internal buffers for each signal. Frames are
identified by their identifier (FlexRay: slot/cycle count/chA/B) field. Frames
unknown to the session are silently ignored. After all frames in the FrameBuffer
array are processed, the internal signal buffers' status is returned in the ValueBuf
fer array. The signal internal buffers' status is being preserved over multiple calls
to this function.

This way, for example, data returned from multiple calls of nxFrameRead for a
Frame Input Stream Mode session (or any other Frame Input session) can be passed
to this function directly.

nxConvertFramesToSignalsSinglePoint

Purpose

Converts between NI-XNET frames and signals using a session of Conversion Mode.

ni.com982

NI-XNET 20.5

Format

nxStatus_t nxConvertFramesToSignalsSinglePoint (
 nxSessionRef_t SessionRef,
 void * FrameBuffer,
 u32 NumberOfBytesForFrames,
 f64 * ValueBuffer,
 u32 SizeOfValueBuffer,
 nxTimestamp100ns_t * TimestampBuffer,
 u32 SizeOfTimestampBuffer);

Inputs

nxSessionRef_t SessionRef
The session to convert. This session is returned from nxCreateSession. The
session mode must be Conversion.

void * FrameBuffer
Provides the array of bytes, representing frames to convert.

The raw bytes encode one or more frames using the Raw Frame Format. This frame
format is the same for read and write of raw data and also is used for log file
examples.

For information about which elements of the raw frame are applicable, refer to Raw
Frame Format.

The data you write is queued for transmit on the network. Using the default queue
configuration for this mode, you can safely write 1536 frames if you have a
sufficiently long timeout. To write more data, refer to the XNET Session Number of
Values Unused property to determine the actual amount of queue space available
for writing.

u32 NumberOfBytesForFrames
The size (in bytes) of the buffer passed to FrameBuffer. This is used to calculate
the number of frames to convert.

u32 SizeOfValueBuffer

© National Instruments 983

NI-XNET 20.5

You should set this to the size (in bytes) of the array passed to ValueBuffer. If this
is too small to fit one element for each signal in the session, an error is returned.

u32 SizeOfTimestampBuffer
You should set this to the size (in bytes) of the array passed to TimestampBuffer.
If TimestampBuffer is not NULL, and this is too small to fit one element for each
signal in the session, an error is returned.

Outputs

f64* ValueBuffer
Returns a one-dimensional array of signal values. Each signal value is scaled, 64-bit
floating point.

Each array element corresponds to a signal configured for the session. The order of
signals in the array corresponds to the order in the session list.

The data returns the most recent value received for each signal. If multiple frames
for a signal are received since the previous call to nxReadSignalSinglePoint
(or session start), only signal data from the most recent frame is returned.

If no frame is received for the corresponding signals since you started the session,
the XNET Signal Default Value is returned.

nxTimestamp100ns_t* TimestampBuffer
Optionally returns a one-dimensional array of timestamp values of the times when
the corresponding signal values arrived. nxTimestamp100ns_t is an absolute
timestamp in 100 nanosecond increments. This 64-bit type contains the number of
100 ns intervals that have elapsed since 1 January 1601 00:00:00 Coordinated
Universal Time (UTC). In previous releases, this timestamp was called
nxTimestamp_t.

You can pass TimestampBuffer as NULL; in this case, no timestamps are
returned. You also should pass 0 to SizeOfTimeStampBuffer in this case.

Return Value
nxStatus_t

ni.com984

NI-XNET 20.5

The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

The frames passed into the FrameBuffer array are read one by one, and the
signal values found are written to internal buffers for each signal. Frames are
identified by their identifier (FlexRay: slot/cycle count/chA/B) field. Frames
unknown to the session are silently ignored. After all frames in the FrameBuffer
array are processed, the internal signal buffers' status is returned in the ValueBuf
fer array, and optionally, the corresponding timestamps from the frames where a
signal value was found are returned in the TimestampBuffer array. The signal
internal buffers' status is being preserved over multiple calls to this function.

This way, for example, data returned from multiple calls of nxFrameRead for a
Frame Input Stream Mode session (or any other Frame Input session) can be passed
to this function directly.

nxConvertSignalsToFramesSinglePoint

Purpose

Converts between NI-XNET signals and frames using a session of Conversion Mode.

Format

nxStatus_t nxConvertSignalsToFramesSinglePoint (
 nxSessionRef_t SessionRef,
 f64 * ValueBuffer,
 u32 SizeOfValueBuffer
 void * Buffer,
 u32 SizeOfBuffer,
 u32 * NumberOfBytesReturned);

Inputs

nxSessionRef_t SessionRef

© National Instruments 985

NI-XNET 20.5

The session to convert. This session is returned from nxCreateSession. The
session mode must be Conversion.

f64 * ValueBuffer
Provides a one-dimensional array of signal values. Each signal value is scaled, 64-bit
floating point.

Each array element corresponds to a signal configured for the session. The order of
signals in the array corresponds to the order in the session list.

The data provides the value for the conversion of each signal.

u32 SizeOfValueBuffer
You should set this to the size (in bytes) of the array passed to ValueBuffer. If this
is too small to fit one element for each signal in the session, an error is returned.

u32 SizeOfBuffer
You should set this to the size (in bytes) of the array passed to Buffer.

This number does not represent the number of frames to convert. As encoded in raw
data, each frame can vary in length. Therefore, the number represents the
maximum raw bytes to be converted, not the number of frames.

For each frame used in the session, you must provide buffer space in the array
passed to Buffer.

CAN and LIN frames are always 24 bytes in length. To convert a specific number of
frames, multiply that number by 24.

FlexRay frames vary in length. For example, if you pass SizeOfBuffer of 91, the
buffer may return 80 bytes, within which the first 24 bytes encode the first frame,
and the next 56 bytes encode the second frame.

If SizeOfBuffer is positive, the data array size is no greater than this number.
The minimum size for a single frame is 24 bytes, so you must use at least that
number.

Outputs

void * Buffer

ni.com986

NI-XNET 20.5

Returns an array of bytes.

The raw bytes encode one or more frames using the Raw Frame Format. This frame
format is the same for read and write of raw data, and it is also used for log file
examples.

The data always returns complete frames.

For each frame that appears in the session, exactly one frame is returned. If the
buffer is not large enough to hold all the data, an error is returned.

u32 * NumberOfBytesReturned
Returns the number of valid bytes in the Buffer array.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

The signal values written to the ValueBuffer array are written to a raw frame
buffer array. For each frame included in the session, one frame is generated in the
array that contains the signal values. Signals not present in the session are written
as their respective default values; empty space in the frames that signals do not
occupy is written with the frame's default payload.

The frame header values are filled with appropriate values so that this function's
output can be directly written to a Frame Output session.

nxConvertTimestamp100nsTo1ns

Purpose

This function converts an nxTimestamp100ns_t value to an nxTimestamp1ns_t
value.

© National Instruments 987

NI-XNET 20.5

Format

nxStatus_t _NXFUNC nxConvertTimestamp100nsTo1ns (
 nxTimestamp100ns_t From,
 nxTimestamp1ns_t * To);

Inputs

nxTimestamp100ns_t From
The nxTimestamp100ns_t value to convert from.

Outputs

nxTimestamp1ns_t * To
Pointer to a buffer that returns the nxTimestamp1ns_t value that was converted
from nxTimestamp100ns_t.

Description

This function converts the value of an nxTimestamp100ns_t timestamp to a
timestamp of type nxTimestamp100ns_t.

nxTimestamp100ns_t is an absolute timestamp in 100 nanosecond increments.
This 64-bit type contains the number of 100 ns intervals that have elapsed since
1 January 1601 00:00:00 Coordinated Universal Time (UTC). In previous releases,
this timestamp was called nxTimestamp_t.

nxTimestamp1ns_t is an absolute timestamp in 1 nanosecond increments. This 64-
bit type contains the number of 1 ns intervals that have elapsed since
1 January 1970 00:00:00 International Atomic Time (TAI).

nxConvertTimestamp1nsTo100ns

Purpose

This function converts an nxTimestamp1ns_t value to an nxTimestamp100ns_t
value.

ni.com988

NI-XNET 20.5

Format

nxStatus_t _NXFUNC nxConvertTimestamp1nsTo100ns (
 nxTimestamp1ns_t From,
 nxTimestamp100ns_t * To);

Inputs

nxTimestamp1ns_t From
The nxTimestamp1ns_t value to convert from.

Outputs

nxTimestamp100ns_t * To
Pointer to a buffer that returns the nxTimestamp100ns_t value that was converted
from nxTimestamp1ns_t.

Description

This function converts the value of an nxTimestamp1ns_t timestamp to a timestamp
of type nxTimestamp100ns_t.

nxTimestamp1ns_t is an absolute timestamp in 1 nanosecond increments. This 64-
bit type contains the number of 1 ns intervals that have elapsed since
1 January 1970 00:00:00 International Atomic Time (TAI).

nxTimestamp100ns_t is an absolute timestamp in 100 nanosecond increments.
This 64-bit type contains the number of 100 ns intervals that have elapsed since
1 January 1601 00:00:00 Coordinated Universal Time (UTC). In previous releases,
this timestamp was called nxTimestamp_t.

nxCreateSession

Purpose

Creates an XNET session at run time using strings.

© National Instruments 989

NI-XNET 20.5

Format

nxStatus_t nxCreateSession (
 const char * DatabaseName,
 const char * ClusterName,
 const char * List,
 const char * Interface,
 u32 Mode,
 nxSessionRef_t * SessionRef);

Inputs

const char * DatabaseName
The XNET database to use for interface configuration. The database name must use
the <alias> or <filepath> syntax (refer to Databases).

Three special values for this parameter exist:

■ :memory:—This is the default in-memory database. You can create and
manipulate it using the nxdb... functions. As long as you do not save its
content to a real database file using nxdbSaveDatabase, its content is
available to nxCreateSession with this special parameter. After you create
the session, you must set the XNET Session Interface:64bit Baud Rate property
prior to starting the session.
■ :can_fd: or :can_fd_brs:—These databases are similar to the default in-
memory database, but configure the cluster in either CAN FD or CAN FD+BRS
mode, respectively. After you create the session, you must set the XNET
Session Interface:64bit Baud Rate and Interface:CAN:64bit FD Baud Rate
properties prior to starting the session.
■ :can_j1939:—This database is similar to the empty in-memory database
(:memory:), but configures the cluster in CAN SAE J1939 application protocol
mode. After you create the session, you must set the XNET Session
Interface:64bit Baud Rate property using a Session node. You must set this
baud rate prior to starting the session.
■ :subordinate:—This "database" is available only for a mode of nxMode_Fra
meInStream. A subordinate session uses the cluster and interface

ni.com990

NI-XNET 20.5

configuration from other sessions. For example, you may have a test
application with which the end user specifies the database file, cluster, and
signals to read/write. You also have a second application with which you want
to log all received frames (input stream), but that application does not specify
a database. You run this second application using a subordinate session,
meaning it does not configure or start the interface, but depends on the
primary test application. For a subordinate session, start and stop of the
interface (using the nxStart/nxStop functions) is ignored. The subordinate
session reads frames only when another nonsubordinate session starts the
interface.

const char * ClusterName
The XNET cluster to use for interface configuration. The name must specify a cluster
from the database given in the DatabaseName parameter. If it is left blank, the
cluster is extracted from the List parameter; this is not allowed for modes of nxMo
de_FrameInStream or nxMode_FrameOutStream.

const char * List
Provides the list of signals or frames for the session.

The List syntax depends on the mode:

Mode List Syntax
nxMode_SignalInSinglePoint, nxMode
_SignalOutSinglePoint

List contains one or more XNET Signal names.
If more than one name is provided, a comma m
ust separate each name. Each name must be on
e of the following options, whichever uniquely i
dentifies a signal within the database given in th
e DatabaseName parameter:

■ <Signal>
■ <Frame>.<Signal>
■ <Cluster>.<Frame>.<Signal>
■ <PDU>.<Signal>
■ <Cluster>.<PDU>.<Signal>

© National Instruments 991

NI-XNET 20.5

List may also contain one or more trigger sign
als. For information about trigger signals, refer t
o Signal Output Single-Point Mode or Signal Inp
ut Single-Point Mode.

nxMode_SignalInWaveform, nxMode_Si
gnalOutWaveform

List contains one or more XNET Signal names.
If more than one name is provided, a comma m
ust separate each name. Each name must be on
e of the following options, whichever uniquely i
dentifies a signal within the database given in th
e DatabaseName parameter:

■ <Signal>
■ <Frame>.<Signal>
■ <Cluster>.<Frame>.<Signal>
■ <PDU>.<Signal>
■ <Cluster>.<PDU>.<Signal>

nxMode_SignalInXY,
nxMode_SignalOutXY

List contains one or more XNET Signal names.
If more than one name is provided, a comma m
ust separate each name. Each name must be on
e of the following options, whichever uniquely i
dentifies a signal within the database given in th
e DatabaseName parameter:

■ <Signal>
■ <Frame>.<Signal>
■ <Cluster>.<Frame>.<Signal>
■ <PDU>.<Signal>
■ <Cluster>.<PDU>.<Signal>

nxMode_FrameInStream, nxMode_Frame
OutStream

List is empty (" ").

nxMode_FrameInQueued, nxMode_Frame
OutQueued

List contains only one XNET Frame or PDU na
me. Only one name is supported. Each name m
ust be one of the following options, whichever u
niquely identifies a frame within the database gi
ven in the DatabaseName parameter:

■ <Frame>
■ <Cluster>.<Frame>

ni.com992

NI-XNET 20.5

■ <PDU>
■ <Cluster>.<PDU>

nxMode_FrameInSinglePoint, nxMode_
FrameOutSinglePoint

List contains one or more XNET Frame or PDU
names. If more than one name is provided, a co
mma must separate each name. Each name mu
st be one of the following options, whichever un
iquely identifies a frame within the database giv
en in the DatabaseName parameter:

■ <Frame>
■ <Cluster>.<Frame>
■ <PDU>
■ <Cluster>.<PDU>

nxMode_SignalConversionSinglePoin
t

List contains one or more XNET Signal names.
If more than one name is provided, a comma m
ust separate each name. Each name must be on
e of the following options, whichever uniquely i
dentifies a signal within the database given in th
e DatabaseName parameter:

■ <Signal>
■ <Frame>.<Signal>
■ <Cluster>.<Frame>.<Signal>
■ <PDU>.<Signal>
■ <Cluster>.<PDU>.<Signal>

const char * Interface
The XNET Interface to use for this session. If Mode is nxMode_SignalConversio
nSinglePoint, this input is ignored. You can set it to an empty string.

u32 Mode
The session mode. It can be one of the following constants defined in nixnet.h:

nxMode_SignalInSinglePoint 0
nxMode_SignalInWaveform 1
nxMode_SignalInXY 2

© National Instruments 993

NI-XNET 20.5

nxMode_SignalOutSinglePoint 3
nxMode_SignalOutWaveform 4
nxMode_SignalOutXY 5
nxMode_FrameInStream 6
nxMode_FrameInQueued 7
nxMode_FrameInSinglePoint 8
nxMode_FrameOutStream 9
nxMode_FrameOutQueued 10
nxMode_FrameOutSinglePoint 11
nxMode_SignalConversionSinglePoint 12

Outputs

nxSessionRef_t* SessionRef
Returns the handle to the session created. Pass this value to any other NI-XNET API
functions.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

This function creates a session using the named database objects specified in List
from the database named in DatabaseName.

nxCreateSessionByRef

Purpose

Creates an XNET session at run time using database references.

ni.com994

NI-XNET 20.5

Format

nxStatus_t nxCreateSessionByRef (
 u32 NumberOfDatabaseRef,
 nxDatabaseRef_t * ArrayOfDatabaseRef,
 const char * Interface,
 u32 Mode,
 nxSessionRef_t * SessionRef);

Inputs

u32 NumberOfDatabaseRef
The number of references passed in ArrayOfDatabaseRef.

nxDatabaseRef_t *ArrayOfDatabaseRef
The array of database objects to be used in the session. This can be an array of
signal references, an array of frame references, or a single cluster reference,
depending on the mode:

Mode ArrayOfDatabaseRef Syntax
nxMode_SignalInSinglePoint, nxMode
_SignalOutSinglePoint

ArrayOfDatabaseRef contains one or more
XNET Signal refs.

nxMode_SignalInWaveform, nxMode_Si
gnalOutWaveform

ArrayOfDatabaseRef contains one or more
XNET Signal refs.

nxMode_SignalInXY, nxMode_SignalOu
tXY

ArrayOfDatabaseRef contains one or more
XNET Signal refs.

nxMode_FrameInStream, nxMode_Frame
OutStream

ArrayOfDatabaseRef contains only one XN
ET Cluster ref.

nxMode_FrameInQueued, nxMode_Frame
OutQueued

ArrayOfDatabaseRef contains only one XN
ET Frame or PDU ref.

nxMode_FrameInSinglePoint, nxMode_
FrameOutSinglePoint

ArrayOfDatabaseRef contains one or more
XNET Frame or PDU refs.

const char * Interface
The XNET Interface to use for this session.

© National Instruments 995

NI-XNET 20.5

u32 Mode
The session mode. It can be one of the following constants defined in nixnet.h:

nxMode_SignalInSinglePoint 0
nxMode_SignalInWaveform 1
nxMode_SignalInXY 2
nxMode_SignalOutSinglePoint 3
nxMode_SignalOutWaveform 4
nxMode_SignalOutXY 5
nxMode_FrameInStream 6
nxMode_FrameInQueued 7
nxMode_FrameInSinglePoint 8
nxMode_FrameOutStream 9
nxMode_FrameOutQueued 10
nxMode_FrameOutSinglePoint 11

Note You can use the nxMode_FrameInQueued, nxMode_FrameInSinglePoint, nx
Mode_FrameOutQueued, and nxMode_FrameOutSinglePoint modes for PDUs also.

Outputs

nxSessionRef_t* SessionRef
Returns the handle to the session created. Pass this value to any other NI-XNET API
functions.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

ni.com996

NI-XNET 20.5

Description

This function creates a session using the referenced database objects from an open
database specified in ArrayOfDatabaseRef.

nxdbAddAlias

Purpose

Adds a new alias to a database file.

Note You no longer should use this function. nxdbAddAlias64 (which supports baud rate
sizes up to 64 bits) has superseded it.

Format

nxStatus_t _NXFUNC nxdbAddAlias (
 const char * DatabaseAlias,
 const char * DatabaseFilepath,
 u32 DefaultBaudRate);

Description

Refer to nxdbAddAlias64 for a description of this function.

nxdbAddAlias64

Purpose

Adds a new alias with baud rate size of up to 64 bits to a database file.

Format

nxStatus_t _NXFUNC nxdbAddAlias64 (
 const char * DatabaseAlias,
 const char * DatabaseFilepath,
 u64 DefaultBaudRate);

© National Instruments 997

NI-XNET 20.5

Inputs

const char * DatabaseAlias
Provides the desired alias name. Alias names are more flexible than other XNET
database objects. Alias names must match the following rules:

■ Begin with a letter (a-z, A-Z), number (0-9), hyphen (-), or underscore (_).
■ May contain spaces and the following symbols: ! # $ % & ' () + - ; = ` { } ~
■ Must not end with a space.

If the alias name already exists, this function changes the previous filepath to the
specified filepath.

const char * DatabaseFilepath
Provides the path to the CANdb, FIBEX, AUTOSAR, or LDF file. Commas are not
allowed in the alias name, because nxdbGetDatabaseList returns the alias list
as a comma-separated list of strings.

u64 DefaultBaudRate
Provides the default baud rate, used when filepath refers to a CANdb database (.
dbc) or an NI-CAN database (.ncd). These database formats are specific to CAN
and do not specify a cluster baud rate. Use this default baud rate to specify a default
CAN baud rate to use with this alias. If Filepath refers to a FIBEX database (.xm
l), AUTOSAR database (.arxml), or LIN LDF file, the DefaultBaudRate
parameter is ignored. The FIBEX, AUTOSAR, and LDF database formats require a
valid baud rate for every cluster, and NI-XNET uses that baud rate as the default.

If this call replaces an existing alias with the same name, the previous default baud
rate will be retained if this value is set to zero (0).

Outputs

Return Value
nxStatus_t

ni.com998

NI-XNET 20.5

The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

NI-XNET uses alias names for database files. The alias names provide a shorter
name for display, allow for changes to the file system without changing the
application, and enable efficient deployment to LabVIEW Real-Time (RT) targets.

This function is supported on Windows only. For RT targets, you can pass the new
alias to nxdbDeploy to transfer an optimized binary image of the database to the
RT target. After deploying the database, you can use the alias name in any
application for the Windows host and RT target.

When replacing an existing alias with the same name, special rules apply. The alias
may have additional properties associated with it, which are added when the alias is
created through the XNET Database Editor or the LabVIEW API. These properties are
not configurable when adding an alias using this function. These include the CAN FD
ISO Mode, default FD baud rate, and ignore application protocol properties.
These properties will be retained from the existing alias, and will be used with the
new alias if applicable.

If you wish to discard all properties from the previous alias, the alias should first be
removed with a call to nxdbRemoveAlias.

nxdbCloseDatabase

Purpose

Closes the database.

Format

nxStatus_t _NXFUNC nxdbCloseDatabase (
 nxDatabaseRef_t DatabaseRef,
 u32 CloseAllRefs);

© National Instruments 999

NI-XNET 20.5

Inputs

nxDatabaseRef_t DatabaseRef
The reference to the database to close.

u32 CloseAllRefs
Indicates that a database open multiple times (refer to nxdbOpenDatabase)
should be closed completely (CloseAllRefs = 1), or just the reference counter
should be decremented (CloseAllRefs = 0), and the database remains open.
When the database is closed completely, all references to objects in this database
become invalid.

Outputs

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

This function closes a database. For the case that different threads of an application
are using the same database, nxdbOpenDatabase and nxdbCloseDatabase
maintain a reference counter indicating how many times the database is open.
Every thread can open the database, work with it, and close the database
independently using CloseAllRefs = 0. Only the last call to nxdbCloseDataba
se actually closes access to the database.

Another option is that only one thread executes nxdbCloseDatabase once,
using CloseAllRefs = 1, which closes access for all other threads. This may be
convenient when, for example, the main program needs to stop all running threads
and be sure the database is closed properly, even if some threads could not execute n
xdbCloseDatabase.

ni.com1000

NI-XNET 20.5

nxdbCreateObject

Purpose

Creates a new XNET cluster.

Format

nxStatus_t _NXFUNC nxdbCreateObject (
 nxDatabaseRef_t ParentObjectRef,
 u32 ObjectClass,
 const char * ObjectName,
 nxDatabaseRef_t * DbObjectRef);

Inputs

nxDatabaseRef_t ParentObjectRef
The reference to the parent database object. You first must open a database file
using nxdbOpenDatabase.

u32 ObjectClass
The class of object to be created.

const char * ObjectName
The name of the database object to create. The name must be unique for all
database objects of the same class in a database. Lowercase letters (a–z), uppercase
letters (A–Z), numbers, and the underscore (_) are valid characters for the name. The
space (), period (.), and other special characters are not supported within the name.
The name must begin with a letter (uppercase or lowercase) or underscore, and not
a number. The name is limited to 128 characters.

Outputs

nxDatabaseRef_t * DbObjectRef
The reference to the newly created database object.

© National Instruments 1001

NI-XNET 20.5

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

This function creates an XNET database object. You can create the following objects
using this function:

■ nxClass_Cluster; parent is nxClass_Database object
■ nxClass_Frame; parent is nxClass_Cluster object
■ nxClass_PDU; parent is nxClass_Cluster
■ nxClass_Subframe; parent is nxClass_PDU or nxClass_Frame1

■ nxClass_Signal; parent is nxClass_PDU or nxClass_Frame1

■ nxClass_ECU; parent is nxClass_Cluster
■ nxClass_LINSched; parent is nxClass_Cluster
■ nxClass_LINSchedEntry; parent is nxClass_LINSched

The ObjectName input becomes the nxProp..._Name property of the created
object.

The database object is created and remains in memory until the database is closed.
This function does not change the open database file on disk. To save the newly
created object to the file, use nxdbSaveDatabase.

1You can create a subframe or signal on a frame object only if there is a one-to-one
relationship between frames and PDUs, or PDUs are not used (for example, in DBC
files).

ni.com1002

NI-XNET 20.5

nxdbDeleteObject

Purpose

Deletes an XNET database object and all its child objects.

Format

nxStatus_t _NXFUNC nxdbDeleteObject (
 nxDatabaseRef_t DbObjectRef);

Inputs

nxDatabaseRef_t DbObjectRef
References the database object to delete.

Outputs

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

This function deletes an XNET database object with all its child objects. When
deleting a frame, it also deletes mapped PDUs (and signals and subframes
contained in those PDUs) if they are no longer referenced by another frame in the
database. To avoid deleting PDUs with a frame, unmap the PDUs by setting the
XNET Frame PDU References property to an empty array before deleting the frame
object.

Upon deletion, the references to all deleted objects are closed and no longer can be
used.

© National Instruments 1003

NI-XNET 20.5

The objects are deleted from a database in memory. The change is in force until the
database is closed. This function does not change the open database file on disk. To
save the changed database to the file, use nxdbSaveDatabase.

nxdbDeploy

Purpose

Deploys a database to a remote Real-Time (RT) target.

Format

nxStatus_t _NXFUNC nxdbDeploy (
 const char * IPAddress,
 const char * DatabaseAlias,
 u32 WaitForComplete,
 u32 * PercentComplete);

Inputs

const char * IPAddress
The target IP address.

const char * DatabaseAlias
Provides the database alias name. To deploy a database text file, first add an alias
using nxdbAddAlias64.

u32 WaitForComplete
Determines whether the function returns directly or waits until the entire
transmission is completed.

Outputs

u32 * PercentComplete
Indicates the deployment progress.

ni.com1004

NI-XNET 20.5

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

This function transfers an optimized binary image of the database to the RT target.
After deploying the database, you can use the alias name in any application for the
Windows host and the LabVIEW RT target.

This function is supported on Windows only. RT database deployments are
managed remotely from Windows.

This function must access the remote RT target from Windows, so IPAddress must
specify a valid IP address for the RT target. You can find this IP address using NI MAX.

If the RT target access is password protected, use the following syntax for the IP
address: user:password@IPaddress.

Remote file transfer can take a few seconds, especially when the RT target is far
away.

If WaitForComplete is true, this function waits for the entire transfer to
complete, then returns. The return value reflects the deployment status, and Perce
ntComplete is 100.

If WaitForComplete is false, this function transfers a portion of the database and
returns before it is complete. For an incomplete transfer, the return value returns
success, and PercentComplete is less than 100. You can use PercentComplet
e to display transfer progress on your front panel. You must call nxdbDeploy in a
loop until PercentComplete is returned as 100, at which time the return value
reflects the entire deployment status.

© National Instruments 1005

NI-XNET 20.5

nxdbFindObject

Purpose

Finds an object in the database.

Format

nxStatus_t _NXFUNC nxdbFindObject (
 nxDatabaseRef_t ParentObjectRef,
 u32 ObjectClass,
 const char * ObjectName,
 nxDatabaseRef_t * DbObjectRef);

Inputs

nxDatabaseRef_t ParentObjectRef
The reference to the parent object.

u32 ObjectClass
The class of the object to find.

const char * ObjectName
The name of the object to find.

Outputs

nxDatabaseRef_t * DbObjectRef
A reference to the found object that you can use in subsequent function calls to
reference the object.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

ni.com1006

NI-XNET 20.5

Description

This function finds an object relative to a parent object.

Unlike nxdbCreateObject, this function allows ParentObjectRef to be a
grandparent or great-grandparent.

If ParentObjectRef is a direct parent (for example, frame for signal), the Objec
tName to search for can be short, and the search proceeds quickly.

If ParentObjectRef is not a direct parent (for example, database for signal), the O
bjectName to search for must be qualified such that it is unique within the scope
of ParentObjectRef.

For example, if the class of ParentObjectRef is nxClass_Cluster, and ObjectCl
ass is nxClass_Signal, you can specify ObjectName of mySignal, assuming that
signal name is unique to the cluster. If not, you must include the frame name as a
prefix, such as myFrameA.mySignal.

You must call this function to get a reference to a database object before you can
access it.

NI-XNET supports the following database classes:

■ nxClass_Cluster
■ nxClass_Frame
■ nxClass_PDU
■ nxClass_Signal
■ nxClass_Subframe
■ nxClass_ECU
■ nxClass_LINSched
■ nxClass_LINSchedEntry

nxdbGetDatabaseList

Purpose

Gets the current list of databases on a system.

© National Instruments 1007

NI-XNET 20.5

Format

nxStatus_t _NXFUNC nxdbGetDatabaseList (
 const char * IPAddress,
 u32 SizeofAliasBuffer,
 char * AliasBuffer,
 u32 SizeofFilepathBuffer,
 char * FilepathBuffer,
 u32 * NumberOfDatabases);

Inputs

const char * IPAddress
The target IP address.

If IPAddress is an empty string, this function retrieves aliases and file paths for
the local Windows system.

If IPAddress is a valid IP address, this function retrieves aliases and file paths for
the remote RT target. You can find this IP address using NI MAX.

u32 SizeofAliasBuffer
The size of the buffer provided to take the list of alias names.

u32 SizeofFilepathBuffer
The size of the buffer provided to take the list of filepaths of the database files.

Outputs

char * AliasBuffer
Returns a comma-separated list of strings, one for every alias registered in the
system. If no aliases are registered, the list is empty.

char * FilepathBuffer
Returns a comma-separated list of strings that contain the file paths and filenames
of the databases assigned to the aliases, one for every alias registered in the system.

ni.com1008

NI-XNET 20.5

If no aliases are registered, the list is empty. This parameter applies to Windows
targets only; on RT targets, this list always is empty.

u32 * NumberOfDatabases
Returns the number of databases registered on the system.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

For a local Windows call (IP address empty), FilepathBuffer returns a comma-
separated list of file paths. The number of elements in this list is the same as in Ali
asBuffer. It provides the Windows file path for each corresponding alias.

For a remote call to RT, FilepathBuffer is empty. NI-XNET handles the file
system on the RT target automatically, so that only the alias is needed.

If the LabVIEW RT target access is password protected, use the following syntax for
the IP address: user:password@IPaddress.

This function is supported on Windows only. RT database deployments are
managed remotely from Windows.

This call checks for the existence of the database file and removes any aliases that
are no longer valid.

nxdbGetDatabaseListSizes

Purpose

Gets the buffer sizes required to read the current list of databases on a system.

© National Instruments 1009

NI-XNET 20.5

Format

nxStatus_t _NXFUNC nxdbGetDatabaseListSizes (
 const char * IPAddress,
 u32 * SizeofAliasBuffer,
 u32 * SizeofFilepathBuffer);

Inputs

const char * IPAddress
The target IP address.

If IPAddress is an empty string, this function retrieves aliases and file paths for
the local Windows system.

If IPAddress is a valid IP address, this function retrieves aliases and file paths for
the remote RT target. You can find this IP address using NI MAX.

u32 SizeofAliasBuffer
Size of the buffer provided to take the list of alias names.

u32 SizeofFilepathBuffer
Size of the buffer provided to take the list of file paths of the database files.

Outputs

u32 SizeofAliasBuffer
Size of the buffer needed to take the list of alias names.

u32 SizeofFilepathBuffer
Size of the buffer needed to take the list of file paths of the database files.

Return Value
nxStatus_t

ni.com1010

NI-XNET 20.5

The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

For a local Windows call (IP address empty), SizeofFilepathBuffer returns
the size of a buffer needed to query the list of file paths.

For a remote call to RT, SizeofFilepathBuffer is empty. NI-XNET handles the
file system on the RT target automatically, so that only the alias is needed.

If the LabVIEW RT target access is password protected, use the following syntax for
the IP address: user:password@IPaddress.

This function is supported on Windows only. RT database deployments are
managed remotely from Windows.

nxdbGetDBCAttribute

Purpose

Reads an attribute value, attribute enumeration, defined attributes, or signal value
table from a DBC file.

Format

nxStatus_t nxdbGetDBCAttribute (
 nxDatabaseRef_t DbObjectRef,
 const u32 Mode,
 const char* AttributeName,
 const u32 AttributeTextSize,
 char* AttributeText,
 u32* IsDefault);

Inputs

nxDatabaseRef_t DbObjectRef
The reference to the database object for which to get the attribute.

© National Instruments 1011

NI-XNET 20.5

const u32 Mode
The mode specification of this function. Depending on this value, the function
returns the following data:

■ Mode 0: Get Attribute Value: For a given object (for example, a signal), the
function returns the attribute value assigned to the object. The attribute
values always are returned as text in AttributeText. The DBC
specification also allows defining other data types, such as integer or float. If
necessary, you can convert the value to a number by using, for example, the a
toi() function. If the attribute is defined as an enumeration of text strings,
the attribute value returned here is the index to the enumeration list, which
you can retrieve using Mode 1 of this function.
■ Mode 1: Get Enumeration: For a given attribute name, the function returns
the enumeration text table as a comma-separated string in AttributeTex
t. Because the enumeration for a given attribute name is the same for all
objects of the same type, ObjectRef can point to any object with the given
class (ObjectRef specifies the class). If no enumeration is defined for an
attribute, the function returns an empty string.
■ Mode 2: Get Attribute Name List: Returns all attribute names defined for
the given object type as a comma-separated string. ObjectRef can point to
any object in the database of the given class (ObjectRef specifies the object
class). AttributeName is ignored (it should be set to empty string or NULL).
■ Mode 3: Get Signal Value Table: This is valid only when ObjectRef points
to a signal. AttributeName is ignored (it should be set to empty string or
NULL). If the given signal contains a value table, the function returns a
comma-separated list in the form {[value,string],<value>,<string>}. The list
contains any number of corresponding value,string pairs. If no value table is
defined for the signal, the result is an empty string.

const char* AttributeName
The attribute name as defined in the DBC file.

u32 AttributeTextSize

ni.com1012

NI-XNET 20.5

The size in bytes for the AttributeText buffer passed to this function, including \
0 for the end of string mark.

char* AttributeText
The buffer in which the attribute value is returned. You can use the nxdbGetDBCAt
tributeSize function to determine the minimum buffer size for the given
attribute.

u32* IsDefault
Indicates that a default value is used instead of a specific value for this object. DBC
files define a default value for an attribute with the given name, and then specific
values for particular objects. If the specific value for an object is not defined, the
default value is returned. If the value returned in IsDefault is 0 (false), the
attribute value is specific for this object; otherwise, it is a default. IsDefault has
no meaning if the Mode parameter is not 0 (refer to the Mode description above).

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

Depending on the Mode parameter, this function reads an attribute value, attribute
enumeration, list of existing attributes, or value table of a signal from a DBC file.
Refer to the Mode parameter description above for details.

Attributes are supported for the following object types:

■ Cluster (DBC file: Network attribute)
■ Frame (DBC file: Message attribute)
■ Signal (DBC file: Signal attribute)
■ ECU (DBC file: Node attribute)

© National Instruments 1013

NI-XNET 20.5

Databases other than DBC do not support attributes. Attributes are not saved to a
FIBEX file when you open and save a DBC file.

nxdbGetDBCAttributeSize

Purpose

Retrieves the minimum size of the buffer required by the nxdbGetDBCAttribute
function.

Format

nxStatus_t nxdbGetDBCAttributeSize (
 nxDatabaseRef_t DbObjectRef,
 const int Mode,
 const char* AttributeName,
 u32* AttributeTextSize);

Inputs

nxDatabaseRef_t DbObjectRef
The reference to the database object for which to get the attribute size.

const u32 Mode
The mode specification of this function. Refer to nxdbGetDBCAttribute for
details.

const char* AttributeName
The attribute name as defined in the DBC file.

u32* AttributeTextSize
Returns the required buffer size in bytes for the attribute value, including \0 for the
end of string mark.

Return Value
nxStatus_t

ni.com1014

NI-XNET 20.5

The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

You can use nxdbGetDBCAttributeSize prior to calling the nxdbGetDBCAtt
ribute function to retrieve the required buffer size. Using this size, you can
allocate memory for a buffer large enough to hold the attribute value.

nxdbGetProperty

Purpose

Reads properties for an XNET Database object.

Format

nxStatus_t _NXFUNC nxdbGetProperty (
 nxDatabaseRef_t DbObjectRef,
 u32 PropertyID,
 u32 PropertySize,
 void * PropertyValue);

Inputs

nxDatabaseRef_t DbObjectRef
The reference to the database object for which to get the property value.

u32 PropertyID
Specifies the ID of the property to get.

u32 PropertySize
The size of the property to get.

Outputs

void * PropertyValue

© National Instruments 1015

NI-XNET 20.5

A void pointer to a buffer that receives the property value.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

This function is used to read properties for an XNET Database object.

Refer to the following topics for information about properties you can use with this
function:

XNET Cluster Properties

XNET Database Properties

XNET ECU Properties

XNET Frame Properties

XNET Signal Properties

XNET Subframe Properties

nxdbGetPropertySize

Purpose

Gets a property value size in bytes.

Format

nxStatus_t _NXFUNC nxdbGetPropertySize (
 nxDatabaseRef_t DbObjectRef,
 u32 PropertyID,
 u32 * PropertySize);

ni.com1016

NI-XNET 20.5

Inputs

nxDatabaseRef_t DbObjectRef
The reference to the database object for which to get the property value size.

u32 PropertyID
Specifies the ID of the property for which to get the size.

u32 PropertySize
The size of the property to get.

Outputs

u32 PropertySize
The size of the property value in bytes.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

Use this function to get a property value size in bytes.

Refer to the following topics for information about properties you can use with this
function:

XNET Cluster Properties

XNET Database Properties

XNET ECU Properties

XNET Frame Properties

XNET Signal Properties

© National Instruments 1017

NI-XNET 20.5

XNET Subframe Properties

nxdbMerge

Purpose

Merges database objects and related subobjects from the source to the destination
cluster.

Format

nxStatus_t _NXFUNC nxdbMerge (
 nxDatabaseRef_t TargetClusterRef,
 nxDatabaseRef_t SourceObjRef,
 u32 CopyMode,
 const char * Prefix,
 u32 WaitForComplete,
 u32 *PercentComplete);

Inputs

nxDatabaseRef_t TargetClusterRef
References the cluster object where the source object is merged.

nxDatabaseRef_t SourceObjRef
References the object to be merged into the target cluster.

u32 CopyMode
Defines the merging behavior if the target cluster already contains an object with
the same name.

Ccnst char * Prefix
The prefix to be added to the source object name if an abject with the same name
and type exists in the target cluster.

U32 WaitForComplete

ni.com1018

NI-XNET 20.5

Determines whether the function returns directly or waits until the entire
transmission is completed.

Outputs

u32 * PercentComplete
Indicates the merging progress.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

This function merges a database object with all dependent child objects into the
target cluster. This function works with the following objects: Frame, PDU, ECU, LIN
Schedule, or a cluster. All listed objects must have unique names in the cluster. They
are referenced here as objects, as opposed to child objects (for example, a signal is a
child of a frame).

If the source object name is not used in the target cluster, this function copies the
source objects with the child objects to the target. If an object with the same name
exists in the target cluster, you can avoid name collisions by specifying the prefix to
be added to the name.

If an object with the same name exists in the target cluster, the merge behavior
depends on the CopyMode input:

■ nxdbMerge_CopyUseSource: The target object with all dependent child
objects is removed from the target cluster and replaced by the source objects.
■ nxdbMerge_CopyUseTarget: The source object is ignored (the target cluster
object with child objects remains unchanged).
■ nxdbMerge_MergeUseSource: This adds child objects from the source object
to child objects from the destination object. If target object contains a child

© National Instruments 1019

NI-XNET 20.5

object with the same name, the child object from the source frame replaces it.
The source object properties (for example, payload length of the frame)
replace the target properties.
■ nxdbMerge_MergeUseTarget: This adds child objects from the source object
to child objects from the destination object. If the target object contains a
child object with the same name, it remains unchanged. The target object
properties remain unchanged (for example, payload length).

Example

Target frame F1(v1) has signals S1 and S2(v1). Source frame F1(v2) has signals S2(v2)
and S3.

(v1) and (v2) are two versions of one object with same name, but with different
properties.

■ Result of nxdbMerge_CopyUseSource: F1(v2), S2(v2), S3.
■ Result of nxdbMerge_CopyUseTarget: F1(v1), S1, S2(v1).
■ Result of nxdbMerge_MergeUseSource: F1(v2), S1, S2(v2), S3.
■ Result of nxdbMerge_MergeUseTarget: F1(v1), S1, S2(v1), S3.

If the source object is a cluster, this function copies all contained PDUs, ECUs, and
LIN schedules with their child objects to the destination cluster.

Depending on the number of contained objects in the source and destination
clusters, the execution can take a longer time. If WaitForComplete is true, this
function waits until the merging process gets completed. If the execution completes
without errors, PercentComplete returns 100. If WaitForComplete is false,
the function returns quickly, and PercentComplete returns values less than 100.
You must call nxdbMerge repeatedly until PercentComplete returns 100. You
can use the time between calls to update a progress bar.

nxdbOpenDatabase

Purpose

Opens a database file.

ni.com1020

NI-XNET 20.5

Format

nxStatus_t _NXFUNC nxdbOpenDatabase (
 const char * DatabaseName,
 nxDatabaseRef_t * DatabaseRef);

Inputs

const char * DatabaseName
The database alias or file pathname to open.

Outputs

nxDatabaseRef_t * DatabaseRef
A reference to the database that you can use in subsequent function calls to
reference the database.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

This function opens a database. When an already open database is opened, this
function grants access to the same database and increases an internal reference
counter. A multiple referenced (open) database must be closed as many times as it
has been opened. Until it is completely closed, the access to this database remains
granted, and the database uses computer resources (memory and handles). For
more information, refer to nxdbCloseDatabase.

© National Instruments 1021

NI-XNET 20.5

nxdbRemoveAlias

Purpose

Removes a database alias from the system.

Format

nxStatus_t _NXFUNC nxdbRemoveAlias (
 const char * DatabaseAlias);

Inputs

const char * DatabaseAlias
The name of the alias to delete.

Outputs

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

This function removes the alias from NI-XNET, but does not affect the database text
file. It just removes the alias association to the database file path.

This function is supported on Windows only, and the alias is removed from Windows
only (not RT targets). Use nxdbUndeploy to remove an alias from a Real-Time (RT)
target.

ni.com1022

NI-XNET 20.5

nxdbSaveDatabase

Purpose

Saves the open database to a FIBEX 3.1.0 file file or exports a cluster from a
database to a specific file format.

Format

nxStatus_t _NXFUNC nxdbSaveDatabase (
 nxDatabaseRef_t DatabaseRef,
 const char * DbFilepath);

Inputs

nxDatabaseRef_t DatabaseRef
References the database to be saved or the database cluster to be exported.

const char * DbFilepath
Contains the pathname to the database file or is empty (saves to the original
filepath).

Outputs

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

If the DatabaseRef parameter is a database reference, this function saves the
XNET database current state to a FIBEX 3.1.0 file. The file extension must be .xml. If
the target file exists, it is overwritten.

© National Instruments 1023

NI-XNET 20.5

If the DatabaseRef parameter is a cluster reference, this function exports the
cluster in a specific file format. A CAN cluster is exported as a CANdb++ database file
(.dbc). A LIN cluster is exported as a LIN database file (.ldf). A FlexRay cluster
cannot be exported, and the function returns an appropriate error. If the target file
exists, it is overwritten.

XNET saves to the FIBEX file only features that XNET sessions use to communicate
on the network. If the original file was created using non-XNET software, the target
file may be missing details from the original file. For example, NI-XNET supports only
linear scaling. If the original FIBEX file used a rational equation that cannot be
expressed as a linear scaling, XNET converts this to a linear scaling with factor 1.0
and offset 0.0.

If DbFilepath is empty, the file is saved to the same FIBEX file specified when
opened. If opened as a file path, it uses that file path. If opened as an alias, it uses
the file path registered for that alias. In the case of a cluster export, the filepath must
not be empty.

Saving a database is not supported under Real-Time (RT), but you can deploy and
use a database saved on Windows on a Real-Time (RT) target (refer to nxdbDeplo
y).

nxdbSetProperty

Purpose

Writes properties for an XNET Database object.

Format

nxStatus_t _NXFUNC nxdbSetProperty (
 nxDatabaseRef_t DbObjectRef,
 u32 PropertyID,
 u32 PropertySize,
 void * PropertyValue);

Inputs

nxDatabaseRef_t DbObjectRef

ni.com1024

NI-XNET 20.5

The reference to the database object for which to get the property value.

u32 PropertyID
Specifies the ID of the property to set.

u32 PropertySize
The size of the property to set.

Outputs

void * PropertyValue
A void pointer to a buffer that contains the property value to set.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

Use this function to write properties for an XNET Database object.

Refer to the following topics for information about properties you can use with this
function:

XNET Cluster Properties

XNET Database Properties

XNET ECU Properties

XNET Frame Properties

XNET Signal Properties

XNET Subframe Properties

© National Instruments 1025

NI-XNET 20.5

nxdbUndeploy

Purpose

Undeploys a database from a remote LabVIEW Real-Time (RT) target.

Format

nxStatus_t _NXFUNC nxdbUndeploy (
 const char * IPAddress,
 const char * DatabaseAlias);

Inputs

const char * IPAddress
The target IP address.

const char * DatabaseAlias
Provides the database alias name.

Outputs

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

This function completely deletes the database file and its alias from the RT target.

This function is supported on Windows only. RT database deployments are
managed remotely from Windows.

This function must access the remote RT target from Windows, so IPAddress must
specify a valid IP address for the RT target. You can find this IP address using NI MAX.

ni.com1026

NI-XNET 20.5

If the RT target access is password protected, you can use the following syntax for
the IP address: user:password@IPaddress.

nxDisconnectTerminals

Purpose

Disconnects terminals on the XNET interface.

Format

nxStatus_t _NXFUNC nxDisconnectTerminals (
 nxSessionRef_t SessionRef,
 const char * source,
 const char * destination);

Inputs

nxSessionRef_t SessionRef
The reference to the session to use for the connection.

const char * source terminal
The connection source name.

const char * destination terminal
The connection destination name.

Outputs

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

© National Instruments 1027

NI-XNET 20.5

Description

This function disconnects a specific pair of source/destination terminals previously
connected with nxConnectTerminals.

When the final session for a given interface is cleared, NI-XNET automatically
disconnects all terminal connections for that interface. Therefore, nxDisconnect
Terminals is not required for most applications.

This function typically is used to change terminal connections dynamically while an
application is running. To disconnect a terminal, you first must stop the interface
using nxStop with the Interface Only scope. Then you can call nxDisconnectTe
rminals and nxConnectTerminals to adjust terminal connections. Finally,
you can call nxStart with the Interface Only scope to restart the interface.

You can disconnect only a terminal that has been previously connected. Attempting
to disconnect a nonconnected terminal results in an error.

nxFlush

Purpose

Flushes (empties) all XNET session queues.

Format

nxStatus_t _NXFUNC nxFlush (
 nxSessionRef_t SessionRef);

Inputs

nxSessionRef_t SessionRef
The reference to the session to flush. This session is from nxCreateSession.

Outputs

Return Value
nxStatus_t

ni.com1028

NI-XNET 20.5

The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

With the exception of single-point modes, all sessions use queues to store frames.
For input modes, the queues store frame values (or corresponding signal values)
that have been received, but not obtained by calling nxRead. For output sessions,
the queues store frame values provided to nxWrite, but not transmitted
successfully.

nxStart and nxStop have no effect on these queues. Use nxFlush to discard all
frame queues for this session as well as any pending signal values, if applicable.

Note: Prior to NI-XNET 19.0, Signal Input Waveform sessions discarded only underlying
frame queues and did not discard pending signal values.

For example, if you call nxWrite to write three frames, then immediately call nxSt
op, then call nxStart a few seconds later, the three frames transmit. If you call nx
Flush between nxStop and nxStart, no frames transmit.

As another example, if you receive three frames, then call nxStop, the three frames
remains in the queue. If you call nxStart a few seconds later, then call nxRead,
you obtain the three frames received earlier, potentially followed by other frames
received after calling nxStart. If you call nxFlush between nxStop and nxSta
rt, nxRead returns only frames received after the calling nxStart.

Note: If there are multiple input stream sessions open on the same interface when an
overflow error occurs, all input stream sessions must be either stopped or flushed before
new data can be received.

nxFutureTimeTrigger

Purpose

Provides the future timestamp for an exported Time Trigger.

© National Instruments 1029

NI-XNET 20.5

Format

nxStatus_t _NXFUNC nxFutureTimeTrigger (
 nxSessionRef_t SessionRef,
 nxTimestamp1ns_t When,
 u32 Timescale);

Inputs

nxSessionRef_t SessionRef
The session on which to generate the future time trigger. This session is returned
from nxCreateSession.

nxTimestamp1ns_t When
Provides the future timestamp at which the exported Time Trigger terminal will
transition from low to high. The Time Trigger generates a pulse (low to high followed
by high to low). The timestamp is an nxTimestamp1ns_t absolute time, using the
timescale specified in the Timescale input. If you set When to zero, the Time Trigger
will pulse immediately.

u32 Timescale
Specifies the timescale that is used with the Time Trigger. Possible values are:

■ nxTimescale_LocalTime: This is the local timescale of the XNET
hardware (such as the PXI backplane clock).
■ nxTimescale_NetworkTime: This is the network timescale (time sync
protocol such as IEEE Std 802.1AS).

Outputs

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

ni.com1030

NI-XNET 20.5

Description

When you use nxConnectTerminals with source terminal of TimeTrigger (i.e.,
exported), the destination terminal is set low. nxFutureTimeTrigger provides a
future timestamp for the exported Time Trigger to generate a pulse (low to high
followed by high to low).

If you provide a when timestamp that cannot be generated (e.g., in the past, or too
soon in the future for XNET to handle), this VI returns an error.

If you invoke nxFutureTimeTrigger while a previous invocation of
nxFutureTimeTrigger is pending, an error is returned; future timestamps are not
queued.

An invocation of nxFutureTimeTrigger is cancelled if you disconnect the exported
Time Trigger (using the nxDisconnectTerminals, nxClear, or by stopping execution of
your top-level VI).

nxGetProperty

Purpose

Retrieves an XNET session property.

Format

nxStatus_t nxGetProperty (
 nxSessionRef_t SessionRef,
 u32 PropertyID,
 u32 PropertySize,
 void * PropertyValue);

Inputs

nxSessionRef_t SessionRef
The session to get the property from. This session is returned from nxCreateSess
ion.

u32 PropertyID

© National Instruments 1031

NI-XNET 20.5

The ID of the property desired. The appropriate constants are listed in the Properties
section and defined in nixnet.h.

u32 PropertySize
The number of bytes provided for the buffer passed to PropertyValue. This can
be a fixed-size (for example, 4 bytes for a u32 property) or variable-sized buffer. If
the property has variable size (for example, a string property whose size is
determined at runtime), call nxGetPropertySize to retrieve the necessary size
of the buffer beforehand.

Outputs

void * PropertyValue
Returns the value of the desired property.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

Refer to the following topics for information about properties you can use with this
function:

XNET Device Properties

XNET Interface Properties

XNET Session Properties

XNET System Properties

ni.com1032

NI-XNET 20.5

nxGetPropertySize

Purpose

Retrieves the data size of an XNET session property.

Format

nxStatus_t nxGetPropertySize (
 nxSessionRef_t SessionRef,
 u32 PropertyID,
 u32 * PropertySize);

Inputs

nxSessionRef_t SessionRef
The session to get the property from. This session is returned from nxCreateSess
ion.

u32 PropertyID
The ID of the property desired. The appropriate constants are listed in the Properties
section and defined in nixnet.h.

Outputs

u32 * PropertySize
Returns the number of bytes to be provided for the buffer to retrieve the property.
Pass a buffer of that size to nxGetProperty.

Note For string properties, the property size returned includes the space for the terminating
NULL byte.

Return Value
nxStatus_t

© National Instruments 1033

NI-XNET 20.5

The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

Refer to the following topics for information about properties you can use with this
function:

XNET Device Properties

XNET Interface Properties

XNET Session Properties

XNET System Properties

nxGetSubProperty

Purpose

Retrieves a property of a frame or signal within an XNET session.

Format

nxStatus_t nxGetSubProperty (
 nxSessionRef_t SessionRef,
 u32 ActiveIndex,
 u32 PropertyID,
 u32 PropertySize,
 void * PropertyValue);

Inputs

nxSessionRef_t SessionRef
The session to get the property from. This session is returned from nxCreateSess
ion.

u32 ActiveIndex

ni.com1034

NI-XNET 20.5

Identifies the frame or signal within the session. It is the index to the list given in nx
CreateSession.

u32 PropertyID
The ID of the property desired. The properties to use with this function are listed in
the Frame Properties topic for the session. Within your code, applicable Property
ID values begin with the prefix nxProp_SessionSub.

u32 PropertySize
The number of bytes provided for the buffer passed to PropertyValue. This can
be a fixed-size (for example, 4 bytes for a u32 property) or variable-sized buffer. If
the property has variable size (for example, a string property whose size is
determined at runtime), call nxGetSubPropertySize to retrieve the necessary
size of the buffer beforehand.

Outputs

void * PropertyValue
Returns the value of the desired property.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

nxGetSubPropertySize

Purpose

Retrieves the data size of a property of a frame or signal within an XNET session.

Format

nxStatus_t nxGetSubPropertySize (
 nxSessionRef_t SessionRef,

© National Instruments 1035

NI-XNET 20.5

 u32 ActiveIndex,
 u32 PropertyID,
 u32 * PropertySize);

Inputs

nxSessionRef_t SessionRef
The session to get the property from. This session is returned from nxCreateSess
ion.

u32 ActiveIndex
Identifies the frame or signal within the session. It is the index to the list given in nx
CreateSession.

u32 PropertyID
The ID of the property desired. The properties to use with this function are listed in
the Frame Properties topic for the session. Within your code, applicable Property
ID values begin with the prefix nxProp_SessionSub.

Outputs

u32 * PropertySize
Returns the number of bytes to be provided for the buffer to retrieve the property.
Pass a buffer of that size to nxGetSubProperty.

Note For string properties, the property size returned includes the space for the terminating
NULL byte.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

ni.com1036

NI-XNET 20.5

nxReadFrame

Purpose

Reads data from a session as an array of raw bytes.

Format

nxStatus_t nxReadFrame (
 nxSessionRef_t SessionRef,
 void * Buffer,
 u32 SizeOfBuffer,
 f64 Timeout,
 u32 * NumberOfBytesReturned);

Inputs

nxSessionRef_t SessionRef
The session to read. This session is returned from nxCreateSession. The session
mode must be Frame Input Stream Mode, Frame Input Queued Mode, or Frame
Input Single-Point Mode.

u32 SizeOfBuffer
SizeOfBuffer is the size of the provided memory buffer (passed by the Buffer
argument). This is the limit of the number of bytes nxReadFrame delivers.

As encoded in raw data, each frame can vary in length. Therefore, the number
represents the maximum raw bytes to read, not the number of frames.

Standard CAN and LIN frames are always 24 bytes in length. To read a specific
number of standard CAN and/or LIN frames, multiply that number by 24.

CAN FD and FlexRay frames vary in length. For example, if you pass SizeOfBuffe
r of 91, the buffer might return 80 bytes, within which the first 24 bytes encode the
first frame, and the next 56 bytes encode the second frame.

The minimum useful size for a single frame is 24 bytes. You should allow at least that
number of bytes.

f64 Timeout

© National Instruments 1037

NI-XNET 20.5

The time to wait for number to read frame bytes to become available; the timeout is
represented as 64-bit floating-point in units of seconds.

To avoid returning a partial frame, even when SizeOfBuffer bytes are available
from the hardware, this read may return fewer bytes in Buffer. For example,
assume you pass SizeOfBuffer of 70 bytes and Timeout of 10 seconds. During
the read, two frames are received, the first 24 bytes in size, and the second 56 bytes
in size, for a total of 80 bytes. The read returns after the two frames are received, but
only the first frame is copied to data. If the read copied 46 bytes of the second frame
(up to the limit of 70), that frame would be incomplete and therefore difficult to
interpret. To avoid this problem, the read always returns complete frames in Buffe
r.

If Timeout is positive, nxReadFrame waits for SizeOfBuffer frame bytes to be
received, then returns complete frames up to that number. If the bytes do not arrive
prior to the timeout, an error is returned.

If Timeout is negative, nxReadFrame waits indefinitely for SizeOfBuffer
frame bytes.

If Timeout is zero, nxReadFrame does not wait and immediately returns all
available frame bytes up to the limit SizeOfBuffer specifies.

If the session mode is Frame Input Single-Point, you must set Timeout to 0.0.
Because this mode reads the most recent value of each frame, Timeout does not
apply.

Outputs

void * Buffer
Returns an array of bytes.

The raw bytes encode one or more frames using the Raw Frame Format. This frame
format is the same for read and write of raw data, and it is also used for log file
examples.

The data always returns complete frames.

Note For PDU sessions, only the payload for the specified PDU is returned in the array of
bytes.

ni.com1038

NI-XNET 20.5

For an example of how this data applies to network traffic, refer to Frame Input
Stream Mode, Frame Input Queued Mode, or Frame Input Single-Point Mode.

u32 * NumberOfBytesReturned
Returns the number of valid bytes in the Buffer array.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

The raw bytes encode one or more frames using the Raw Frame Format. The session
must use Frame Input Stream Mode, Frame Input Queued Mode, or Frame Input
Single-Point Mode. The raw frame format is protocol independent, so the session
can use either a CAN, FlexRay, or LIN interface.

The raw frames are associated to the session's list of frames as follows:

■ Frame Input Stream Mode: Array of all frame values received (list ignored).
■ Frame Input Queued Mode: Array of frame values received for the single
frame specified in the list.
■ Frame Input Single-Point Mode: Array of single frame values, one for each
frame specified in the list.

Note: If an overflow error occurs while multiple input stream sessions are open on the same
interface, all input stream sessions must be either stopped or flushed before new data can
be received. For more information, refer to nxFlush.

nxReadSignalSinglePoint

Purpose

Reads data from a session of Signal Input Single-Point Mode.

© National Instruments 1039

NI-XNET 20.5

Format

nxStatus_t nxReadSignalSinglePoint (
 nxSessionRef_t SessionRef,
 f64 * ValueBuffer,
 u32 SizeOfValueBuffer,
 nxTimestamp100ns_t * TimestampBuffer,
 u32 SizeOfTimestampBuffer);

Inputs

nxSessionRef_t SessionRef
The session to read. This session is returned from nxCreateSession. The session
mode must be a Signal Input Single-Point Mode.

u32 SizeOfValueBuffer
Should be set to the size (in bytes) of the array passed to ValueBuffer. If this is
too small to fit one element for each signal in the session, an error is returned.

u32 SizeOfTimestampBuffer
Should be set to the size (in bytes) of the array passed to TimestampBuffer. If Ti
mestampBuffer is not NULL and this is too small to fit one element for each
signal in the session, an error is returned.

Outputs

f64* ValueBuffer
Returns a one-dimensional array of signal values. Each signal value is scaled, 64-bit
floating point.

Each array element corresponds to a signal configured for the session. The order of
signals in the array corresponds to the order in the session list.

The data returns the most recent value received for each signal. If multiple frames
for a signal are received since the previous call to nxReadSignalSinglePoint
(or session start), only signal data from the most recent frame is returned.

ni.com1040

NI-XNET 20.5

If no frame is received for the corresponding signals since you started the session,
the XNET Signal Default Value is returned.

For an example of how this data applies to network traffic, refer to Signal Input
Single-Point Mode.

A trigger signal returns a value of 1.0 or 0.0, depending on whether its frame arrived
since the last Read (or Start) or not. For more information about trigger signals, refer
to Signal Input Single-Point Mode.

nxTimestamp100ns_t* TimestampBuffer
Optionally returns a one-dimensional array of timestamp values of the times when
the corresponding signal values arrived. Each timestamp value is an absolute
timestamp in 100 nanosecond increments. This 64-bit type contains the number of
100 ns intervals that have elapsed since 1 January 1601 00:00:00 Coordinated
Universal Time (UTC). In previous releases, this timestamp was called
nxTimestamp_t.

TimestampBuffer
Can be passed as NULL; then no timestamps are returned. SizeOfTimeStampBu
ffer also should be passed 0 in this case.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

nxReadSignalWaveform

Purpose

Reads data from a session of Signal Input Waveform Mode.

The data represents a waveform of resampled values for each signal in the session.

© National Instruments 1041

NI-XNET 20.5

Format

nxStatus_t nxReadSignalWaveform (
 cnxSessionRef_t SessionRef,
 f64 Timeout,
 nxTimestamp100ns_t * StartTime,
 f64 * DeltaTime,
 f64 * ValueBuffer,
 u32 SizeOfValueBuffer,
 u32 * NumberOfValuesReturned);

Inputs

Note In the following, N means the maximum number of samples to read. It is calculated
from SizeOfValueBuffer.

nxSessionRef_t SessionRef
The session to read. This session is returned from nxCreateSession. The session
mode must be Signal Input Waveform.

f64 Timeout
The time to wait for N samples to become available.

The timeout is represented as 64-bit floating-point in units of seconds.

If Timeout is positive, nxReadSignalWaveform waits for N samples, then
returns that number. If the samples do not arrive prior to the timeout, an error is
returned.

If Timeout is negative, nxReadSignalWaveform waits indefinitely for N
samples.

If Timeout is zero, nxReadSignalWaveform does not wait and immediately
returns all available samples up to the limit N specifies.

Because time determines sample availability, typical values for this timeout are 0
(return available) or a large positive value such as 100.0 (wait for a specific N).

u32 SizeOfValueBuffer
The size (in bytes) of the array passed to ValueBuffer. It is used to calculate N =
trunc (SizeOfValueBuffer / (sizeof (f64) * (number of signals in the session))).

ni.com1042

NI-XNET 20.5

There always is a maximum of N samples per waveform returned, even if SizeOfV
alueBuffer is not a multiple of (sizeof (f64) * (number of signals in the session)).

Outputs

nxTimestamp100ns_t* StartTime
Optionally returns the start time of the waveform returned in ValueBuffer. It is
the absolute time of the first sample, given as the number of 100 ns intervals that
have elapsed since 1 January 1601 00:00:00 Coordinated Universal Time (UTC). In
previous releases, this timestamp was called nxTimestamp_t.

StartTime can be passed as NULL; in this case, no value is returned.

f64* DeltaTime
Optionally returns the time increment between successive values of the waveform
returned in ValueBuffer. The value returned is 1.0/Resample Rate.

DeltaTime can be passed as NULL; in this case, no value is returned.

f64* ValueBuffer
Returns a two-dimensional array of f64 samples. First, N samples are reserved for
the first signal in the session, then N samples for the second, and so on. N * (number
of signals in the session) * sizeof (f64) should be passed in SizeOfValueBuffer
to recalculate N.

For an example of how this data applies to network traffic, refer to Signal Input
Waveform Mode.

u32* NumberOfValuesReturned
The number of waveform samples per signal that have been returned in ValueBuf
fer. This is always less than or equal to N.

NumberOfValuesReturned can be passed as NULL; in this case, no value is
returned.

Return Value
nxStatus_t

© National Instruments 1043

NI-XNET 20.5

The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

The data represents a waveform for each signal in the session.

nxReadSignalXY

Purpose

Reads data from a session of Signal Input XY Mode.

Format

nxStatus_t nxReadSignalXY (
 nxSessionRef_t SessionRef,
 nxTimestamp100ns_t * TimeLimit,
 f64 * ValueBuffer,
 u32 SizeOfValueBuffer,
 nxTimestamp100ns_t * TimestampBuffer,
 u32 SizeOfTimestampBuffer,
 u32 * NumPairsBuffer,
 u32 SizeOfNumPairsBuffer);

Inputs

Note In the following, N means the maximum number of samples to read per signal. It is
calculated from SizeOfValueBuffer and SizeOfTimestampBuffer.

nxSessionRef_t SessionRef
The session to read. This session is returned from nxCreateSession. The session
mode must be Signal Input XY.

nxTimestamp100ns_t* TimeLimit
The timestamp to wait for before returning signal values. nxTimestamp100ns_t is an
absolute timestamp in 100 nanosecond increments. This 64-bit type contains the
number of 100 ns intervals that have elapsed since 1 January 1601 00:00:00

ni.com1044

NI-XNET 20.5

Coordinated Universal Time (UTC). In previous releases, this timestamp was called
nxTimestamp_t.

If TimeLimit is valid, nxReadSignalXY waits for the timestamp to occur, then
returns available values (up to number to read). If you increment TimeLimit by a
fixed number of seconds for each call to nxReadSignalXY, you effectively obtain
a moving window of signal values.

The Timeout of other nxRead functions specifies the maximum amount time to
wait for a specific (number to read) values. The TimeLimit of nxReadSignalXY
does not specify a worst-case timeout value, but rather a specific absolute
timestamp to wait for.

u32 SizeOfValueBuffer
The size (in bytes) of the array passed to ValueBuffer. N is calculated from this
as: N = trunc (SizeOfValueBuffer / (sizeof (f64) * (number of signals in the
session))). If both SizeOfValueBuffer and SizeOfTimestampBuffer
deliver a valid N value (N > 0), the smaller of the two values is used to avoid buffer
overflows.

u32 SizeOfTimestampBuffer
The size (in bytes) of the array passed to TimestampBuffer. N is calculated from
this as: N = trunc (SizeOfTimestampBuffer / (sizeof (f64) * (number of signals
in the session))). If both SizeOfValueBuffer and SizeOfTimestampBuffer
deliver a valid N value (N > 0), the smaller of the two values is used to avoid buffer
overflows.

u32 SizeOfNumPairsBuffer
The size (in bytes) of the array passed to NumPairsBuffer. For each signal in the
session, an array element should be provided. If the buffer is too small, an error is
returned.

Outputs

f64* ValueBuffer
Returns a two-dimensional array of f64 samples. First, N samples are reserved for
the first signal in the session, then N samples for the second, and so on. N * (number

© National Instruments 1045

NI-XNET 20.5

of signals in the session) * sizeof (f64) should be passed in SizeOfValueBuffer
to recalculate N.

For an example of how this data applies to network traffic, refer to Signal Input XY
Mode.

nxTimestamp100ns_t* TimestampBuffer
Returns a two-dimensional array of timestamps. First, N timestamps are reserved
for the first signal in the session, then N timestamps for the second, and so on. N *
(number of signals in the session) * sizeof (f64) should be passed in SizeOfTimes
tampBuffer to recalculate N.

nxTimestamp100ns_t is an absolute timestamp in 100 nanosecond increments. This
64-bit type contains the number of 100 ns intervals that have elapsed since
1 January 1601 00:00:00 UTC.

u32* NumPairsBuffer
Returns a one-dimensional array of signal/timestamp pair counts, one for each
signal in the session. Upon output, the samples and timestamps for signal #(i) in the
preceding arrays are valid up to, but not including, index NumPairsBuffer[i]
(zero based).

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

The data represents an XY plot of timestamp/value pairs for each signal in the
session.

ni.com1046

NI-XNET 20.5

nxReadState

Purpose

Reads communication states of an XNET session.

Format

nxStatus_t nxReadState (
 nxSessionRef_t SessionRef,
 u32 StateID,
 u32 StateSize,
 void * StateValue,
 nxStatus_t * Fault);

Inputs

nxSessionRef_t SessionRef
The session to read. This session is returned from nxCreateSession.

u32 StateID
Indicates the state to be read. Possible values are:

nxState_TimeCurrent Current interface time
nxState_TimeCommunicating Time interface started communicating
nxState_TimeStart Time interface was started
nxState_CANComm CAN communication state
nxState_FlexRayComm FlexRay communication state
nxState_FlexRayStats FlexRay statistics
nxState_LINComm LIN communication state
nxState_SessionInfo Session running state
nxState_J1939Comm J1939 communication state

The value determines the format output as StateValue.

u32 StateSize

© National Instruments 1047

NI-XNET 20.5

Indicates the size of the buffer provided for StateValue.

Outputs

void * StateValue
Returns the trigger timestamp value. StateValue must point to a
nxTimeLocalNetwork_t buffer. This struct contains both the local and network
timestamps of the first rising edge of the imported Time Trigger since it was armed.
The two timestamps are captured atomically.

StateID = nxState_TimeCommunicating:

StateValue must point to an nxTimestamp100ns_t buffer. It is filled with the
time the interface started communicating in 100 ns increments since
1 Jan 1601 00:00:00 UTC. This time is usually later than the interface start time (Sta
teID = nxState_TimeStart), because the interface must undergo a
communication startup procedure.

If the interface is not communicating when this read is called, an invalid time is
returned (0).

StateID = nxState_TimeStart:

StateValue must point to an nxTimestamp100ns_t buffer. It is filled with the
time the interface was started in 100 ns increments since 1 Jan 1601 00:00:00 UTC.

If the interface is not started when this read is called, an invalid time is returned (0).

StateID = nxState_CANComm:

StateValue must point to a u32 buffer. It is filled with a communication state
DWORD, which is comprised of several bit fields. You can use macros in nixnet.h
to access these bit fields.

Bit Meaning
0–3 Communication State

Error Active (0) This state reflects normal communication, with few errors detected. The
CAN interface remains in this state as long as receive error counter and tra
nsmit error counter are both below 128.

ni.com1048

NI-XNET 20.5

Error Passive (
1)

If either the receive error counter or transmit error counter increment abo
ve 127, the CAN interface transitions into this state. Although communicat
ion proceeds, the CAN device generally is assumed to have problems with
receiving frames.
When a CAN interface is in error passive state, acknowledgement errors d
o not increment the transmit error counter. Therefore, if the CAN interface
transmits a frame with no other device (ECU) connected, it eventually ent
ers error passive state due to retransmissions, but does not enter bus off s
tate.

Bus Off (2) If the transmit error counter increments above 255, the CAN interface tran
sitions into this state. Communication immediately stops under the assu
mption that the CAN interface must be isolated from other devices.
When a CAN interface transitions to the bus off state, communication stop
s for the interface. All NI-XNET sessions for the interface no longer receive
or transmit frame values. To restart the CAN interface and all its sessions,
call nxStart.

Init (3) This is the CAN interface initial state on power-up. The interface is essenti
ally off, in that it is not attempting to communicate with other nodes (EC
Us).
When the start trigger occurs for the CAN interface, it transitions from the
Init state to the Error Active state. When the interface stops due to a call to
nxStop, the CAN interface transitions from either Error Active or Error Pa
ssive to the Init state. When the interface stops due to the Bus Off state, it
remains in that state until you restart.

4 Transceiver Error
Transceiver error indicates whether an error condition exists on the physical transceiver. T
his is typically referred to as the transceiver chip NERR pin. False indicates normal operatio
n (no error), and true indicates an error.

5 Sleep
Sleep indicates whether the transceiver and communication controller are in their sleep st
ate. False indicates normal operation (awake), and true indicates sleep.

8–11 Last Error
Last error specifies the status of the last attempt to receive or transmit a frame (decimal va
lue in parentheses):

None (0) The last receive or transmit was successful.

© National Instruments 1049

NI-XNET 20.5

Stuff (1) More than 5 equal bits have occurred in sequence, which the CAN specification
does not allow.

Form (2) A fixed format part of the received frame used the wrong format.
Ack (3) Another node (ECU) did not acknowledge the frame transmit.

If you call the appropriate nxWrite function and do not have a cable connecte
d, or the cable is connected to a node that is not communicating, you see this er
ror repeatedly. The CAN communication state eventually transitions to Error Pa
ssive, and the frame transmit retries indefinitely.

Bit 1 (4) During a frame transmit (with the exception of the arbitration ID field), the inter
face wanted to send a recessive bit (logical 1), but the monitored bus value was
dominant (logical 0).

Bit 0 (5) During a frame transmit (with the exception of the arbitration ID field), the inter
face wanted to send a dominant bit (logical 0), but the monitored bus value was
recessive (logical 1).

CRC (6) The CRC contained within a received frame does not match the CRC calculated f
or the incoming bits.

16–23 Transmit Error Counter
The transmit error counter begins at 0 when communication starts on the CAN interface. T
he counter increments when an error is detected for a transmitted frame and decrements
when a frame transmits successfully. The counter increases more for an error than it is dec
reased for success. This ensures that the counter generally increases when a certain ratio o
f frames (roughly 1/8) encounter errors.

When communication state transitions to Bus Off, the transmit error counter no longer is v
alid.

24–31 Receive Error Counter
The receive error counter begins at 0 when communication starts on the CAN interface. Th
e counter increments when an error is detected for a received frame and decrements when
a frame is received successfully. The counter increases more for an error than it is decrease
d for success. This ensures that the counter generally increases when a certain ratio of fra
mes (roughly 1/8) encounter errors.

StateID = nxState_FlexRayComm:

StateValue must point to a u32 buffer. It is filled with a communication state
DWORD, which is comprised of several bit fields. You can use macros in nixnet.h

ni.com1050

NI-XNET 20.5

to access these bit fields.

Bit Meaning
0–3 POC State

POC state specifies the FlexRay interface state (decimal value in parentheses):

Default Config (0) This is the FlexRay interface initial state on power-up. The interface is
essentially off, in that it is not configured and is not attempting to com
municate with other nodes (ECUs).

Ready (1) When the interface starts, it first enters Config state to validate the Fle
xRay cluster and interface properties. Assuming the properties are vali
d, the interface transitions to this Ready state.
In the Ready state, the FlexRay interface attempts to integrate (synchr
onize) with other nodes in the network cluster. This integration proces
s can take several FlexRay cycles, up to 200 ms. If the integration succ
eeds, the interface transitions to Normal Active.

You can use nxReadState to read the time when the FlexRay interfa
ce entered Ready. If integration succeeds, you can use nxReadState
to read the time when the FlexRay entered Normal Active.

Normal Active (2) This is the normal operation state. The NI-XNET interface is adequatel
y synchronized to the cluster to allow continued frame transmission w
ithout disrupting the transmissions of other nodes (ECUs). If synchron
ization problems occur, the interface can transition from this state to
Normal Passive.

Normal Passive (3) Frame reception is allowed, but frame transmission is disabled due to
degraded synchronization with the cluster remainder. If synchronizati
on improves, the interface can transition to Normal Active. If synchron
ization continues to degrade, the interface transitions to Halt.

Halt (4) Communication halted due to synchronization problems.
When the FlexRay interface is in Halt state, all NI-XNET sessions for the
interface stop, and no frame values are received or transmitted. To res
tart the FlexRay interface, you must restart the NI-XNET sessions.

If you clear (close) all NI-XNET sessions for the interface, it transitions f
rom Halt to Default Config state.

Config (15) This state is transitional when configuration is valid. If you detect this
state after starting the interface, it typically indicates a problem with t

© National Instruments 1051

NI-XNET 20.5

he configuration. Check the fault? output for a fault. If no fault is re
turned, check your FlexRay cluster and interface properties. You can c
heck the validity of these properties using the NI-XNET Database Edito
r, which displays invalid configuration properties.
In the FlexRay specification, this value is referred to as the Protocol Op
eration Control (POC) state. For more information about the FlexRay P
OC state, refer to Summary of the FlexRay Standard.

4–7 Clock Correction Failed
Clock correction failed returns the number of consecutive even/odd cycle pairs that have o
ccurred without successful clock synchronization.

If this count reaches the value in the XNET Cluster FlexRay:Max Without Clock Correction
Passive property, the FlexRay interface POC state transitions from Normal Active to Norma
l Passive state. If this count reaches the value in the XNET Cluster FlexRay:Max Without
Clock Correction Fatal property, the FlexRay interface POC state transitions from Normal P
assive to Halt state.

In the FlexRay specification, this value is referred to as vClockCorrectionFailed.

8–12 Passive to Active Count
Passive to active count returns the number of consecutive even/odd cycle pairs that have
occurred with successful clock synchronization.

This count increments while the FlexRay interface is in POC state Error Passive. If the count
reaches the value in the XNET Session Interface:FlexRay:Allow Passive to Active property, t
he interface POC state transitions to Normal Active.

In the FlexRay specification, this value is referred to as vAllowPassiveToActive.

13 Channel A Sleep?
Indicates whether channel A currently is asleep.

14 Channel B Sleep?
Indicates whether channel B currently is asleep.

StateID = nxState_FlexRayStats:

StateValue must point to an nxFlexRayStats_t buffer (defined in nixnet.
h). It is filled with communication statistics values. The values are:

u32 NumSyntaxErrorChA

ni.com1052

NI-XNET 20.5

The number of syntax errors that have occurred on channel A since communication
started.

A syntax error occurs if:

■ A node starts transmitting while the channel is not in the idle state.
■ There is a decoding error.
■ A frame is decoded in the symbol window or in the network idle time.
■ A symbol is decoded in the static segment, dynamic segment, or network idle time.
■ A frame is received within the slot after reception of a semantically correct frame (two
frames in one slot).
■ Two or more symbols are received within the symbol window.

u32 NumSyntaxErrorChB
The number of syntax errors that have occurred on channel B since communication
started.

u32 NumContentErrorChA
The number of content errors that have occurred on channel A since
communication started.

A content error occurs if:

■ In a static segment, a frame payload length does not match the global cluster property.
■ In a static segment, the Startup indicator (bit) is 1 while the Sync indicator is 0.
■ The frame ID encoded in the frame header does not match the current slot.
■ The cycle count encoded in the frame header does not match the current cycle count.
■ In a dynamic segment, the Sync indicator is 1.
■ In a dynamic segment, the Startup indicator is 1.
■ In a dynamic segment, the Null indicator is 0.

u32 NumContentErrorChB
The number of content errors that have occurred on channel B since
communication started.

© National Instruments 1053

NI-XNET 20.5

u32 NumSlotBoundaryViolationChA
The number of slot boundary violations that have occurred on channel A since
communication started.

A slot boundary violation error occurs if the interface does not consider the channel
to be idle at the boundary of a slot (either beginning or end).

u32 NumSlotBoundaryViolationChB
The number of slot boundary violations that have occurred on channel B since
communication started.

For more information about these statistics, refer to Summary of the FlexRay
Standard.

StateID = nxState_LINComm:

StateValue must point to a u32 array buffer. It is filled with a communication
state DWORD, which is comprised of several bit fields, and a schedule DWORD,
which is comprised of a single bit field. You can use macros in nixnet.h to access
these bit fields.

Communication State DWORD

Bit Meaning
0 Reserved
1 Sleep

Indicates whether the transceiver and communication controller are in their sleep state. Fa
lse (0) indicates normal operation (awake), and true (1) indicates sleep.

This value changes from 0 to 1 only when you set the XNET Session Interface:LIN:Sleep pro
perty to nxLINSleep_RemoteSleep or nxLINSleep_LocalSleep.

This value changes from 1 to 0 when one of the following occurs:

■ You set the XNET Session Interface:LIN:Sleep property to nxLINSleep_Remote
Wake or nxLINSleep_LocalWake.
■ The interface receives a remote wakeup pattern (break). In addition to this nxRea
dState function, you can wait for a remote wakeup event using the nxWait functi
on with the nxCondition_IntfCommunicating condition.

ni.com1054

NI-XNET 20.5

2–3 Communication State

Idle (0) This is the LIN interface initial state on power-up. The interface is essentially of
f, in that it is not attempting to communicate with other nodes (ECUs).
When the start trigger occurs for the LIN interface, it transitions from the Idle
state to the Active state. When the interface stops due to a call to XNET Stop, t
he LIN interface transitions from either Active or Inactive to the Idle state.

Active (1) This state reflects normal communication. The LIN interface remains in this st
ate as long as bus activity is detected (frame headers received or transmitted)
.

Inactive (2) This state indicates that no bus activity has been detected in the past four sec
onds.
Regardless of whether the interface acts as a master or slave, it transitions to
this state after four seconds of bus inactivity. As soon as bus activity is detecte
d (break or frame header), the interface transitions to the Active state.

The LIN interface does not go to sleep automatically when it transitions to Ina
ctive. To place the interface into sleep mode, set the XNET Session
Interface:LIN:Sleep property when you detect the Inactive state.

4–7 Last Error
Specifies the status of the last attempt to receive or transmit a frame. It is an enumeration.
For a table of all values for last error, refer to the Last Error Table.

8–15 Last Error Received
Returns the value received from the network when last error occurred. For a table that des
cribes how this field is populated based on the last error, refer to the Last Error Table.

16–23 Last Error Expected
Returns the value that the LIN interface expected to see (instead of last received). For a tab
le that describes how this field is populated based on the last error, refer to the Last Error
Table.

24–29 Last Error ID
Returns the frame identifier in which the last error occurred. For a table that describes ho
w this field is populated based on the last error, refer to the Last Error Table.

30 Reserved
31 Transceiver Ready

Indicates whether the LIN transceiver is powered from the bus.

© National Instruments 1055

NI-XNET 20.5

True (1) indicates the bus power exists, so it is safe to start communication on the LIN inter
face.

If this value is false (0), you cannot start communication successfully. Wire power to the LI
N transceiver and run your application again.

Schedule DWORD

Bit Meaning
0–7 Schedule Index

Indicates the LIN schedule that the interface currently is running.

This index refers to a LIN schedule that you requested using the nxWriteState function
. It indexes the array of schedules represented in the XNET Schedule
Interface:LIN:Schedule Names property.

This index applies only when the LIN interface is running as a master. If the LIN interface is
running as a slave only, this element should be ignored.

8–31 Reserved

Last Error Table

The following table lists each value for last error, along with a description, and
applicable use of last received, last expected, and last identifier. In the last error
column, the decimal value is shown in parentheses after the string name.

Last Error Description Last Received Last Expected Last Identifier
None (0) No bus error has o

ccurred since the
previous communi
cation state read.

0 (N/A) 0 (N/A) 0 (N/A)

Unknown ID (1) Received a frame i
dentifier that is no
t valid (0–63).

0 (N/A) 0 (N/A) 0 (N/A)

Form (2) The form of a recei
ved frame is incorr
ect. For example, t
he database specif
ies 8 bytes of payl

0 (N/A) 0 (N/A) Received frame ID

ni.com1056

NI-XNET 20.5

oad, but you recei
ve only 4 bytes.

Framing (3) The byte framing i
s incorrect (for exa
mple, a missing st
op bit).

0 (N/A) 0 (N/A) Received frame ID

Readback (4) The interface trans
mitted a byte, but
the value read bac
k from the transcei
ver was different.
This often is cause
d by a cabling pro
blem, such as nois
e.

Value read back Value transmitted Received frame ID

Timeout (5) Receiving the fram
e took longer than
the LIN-specified t
imeout.

0 (N/A) 0 (N/A) Received frame ID

Checksum (6) The received chec
ksum was differen
t than the expecte
d checksum.

Received checksu
m

Calculated checks
um

Received frame ID

StateID = nxState_SessionInfo:

StateValue must point to a u32. It contains the current session running state. The
running states are:

nxSessionInfoState_Stopped (0)
All frames in the session are stopped.

nxSessionInfoState_Started (1)
All frames in the session are started.

nxSessionInfoState_Mix (2)
Some frames in the session are started while other frames are stopped. This state
may occur when using nxStart or nxStop with the Session Only option.

© National Instruments 1057

NI-XNET 20.5

StateID = nxState_J1939comm:
StateValue must point to an nxJ1939CommState_t buffer (defined in nixne
t.h). It is filled with communication statistics values. The values are:

u32 PGN
Specifies the J1939 PGN that occurred the last error. You cannot assign a PGN to
every error.

u32 SourceAddress
Specifies the source address that occurred the last error. You cannot assign a source
address to every error.

u32 DestinationAddress
Specifies the destination address that occurred the last error. You cannot assign a
destination address to every error.

u32 TransmitError
Indicates a transmit-related error occurred.

u32 ReceiveError
Indicates a receive-related error occurred.

u32 Reserved1
u32 Reserved2
StateID = nxStateTimeCurrent2:

StateValue must point to an nxTimeLocalNetwork_t buffer. It is filled with the
current interface time. Both local and network timestamps are captured atomically.
Each timestamp is expressed in 1 ns increments since 1 January 1970 00:00:00
International Atomic Time (TAI). Use this StateID with Ethernet devices.

StateID = nxStateTimeCommunicating2:

StateValue must point to an nxTimeLocalNetwork_t buffer. It is filled with the
time the interface started communicating, measured in 1 ns increments since
1 January 1970 00:00:00 TAI. Use this StateID with Ethernet devices.

ni.com1058

NI-XNET 20.5

StateID = nxStateTimeStart2:

StateValue must point to an nxTimeLocalNetwork_t buffer. It is filled with the
time the interface was started in 1 ns increments since 1 January 1970 00:00:00 TAI.
If the interface is not started when this read is called, an invalid time is returned (0).
Use this StateID with Ethernet devices.

nxStatus_t* Fault
Returns a numeric code you can use to obtain a description of the fault. If no fault
occurred, the fault code is 0.

A fault is an error that occurs asynchronously to the NI-XNET application calls. The
fault cause may be related to network communication, but it also can be related to
XNET hardware, such as a fault in the onboard processor. Although faults are
extremely rare, nxReadState provides a detection method distinct from the
status of NI-XNET function calls, yet easy to use alongside the common practice of
checking the communication state.

To obtain a fault description, pass the fault code to nxStatusToString.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

You can use nxReadState with any XNET session mode.

Your application can use nxReadState to check for problems on the network
independently from other aspects of your application. For example, you
intentionally may introduce noise into the CAN cables to test how your ECU behaves
under these conditions. When you do this, you do not want the status of NI-XNET
functions to return errors, because this may cause your application to stop. Your
application can use nxReadState to read the network state quickly as data, so
that it does not introduce errors into the flow of your code.

© National Instruments 1059

NI-XNET 20.5

Alternately, to log bus errors, you can set the Interface:Bus Error Frames to Input
Stream? property to cause CAN and LIN bus errors to be logged as a special frame
(refer to Special Frames for more information) into a Frame Stream Input queue.

nxReadStateTimeTrigger

Purpose

Reads the captured timestamp for an imported Time Trigger.

Format

nxStatus_t _NXFUNC nxReadStateTimeTrigger (
 nxSessionRef_t SessionRef,
 f64 Timeout,
 u32 StateSize,
 void * StateValue);

Inputs

nxSessionRef_t SessionRef
The session to read. This session is returned from nxCreateSession.

f64 Timeout
The time to wait for the rising edge of Time Trigger. The timeout is a relative time,
represented as 64-bit floating-point in units of seconds.

■ If timeout is positive, nxReadStateTimeTrigger waits for the rising edge of
Time Trigger, then returns the timestamps for that edge. If the edge does not
occur prior to the timeout, an error is returned.
■ If timeout is negative, nxReadFrame waits indefinitely for the rising edge
of Time Trigger.
■ If timeout is zero, nxReadFrame does not wait and immediately returns
the timestamps, which are zero (invalid) if the rising edge of Time Trigger has
not occurred.

This input is optional. The default value is 10 seconds.

ni.com1060

NI-XNET 20.5

u32 StateSize
Indicates the size of the buffer provided for StateValue, in bytes. StateSize must
be equal to sizeof(nxTimeLocalNetwork_t).

Outputs

void * StateValue
Returns the trigger timestamp value. StateValue must point to an
nxTimeLocalNetwork_t buffer. This struct contains both the local and network
timestamps of the first rising edge of the imported Time Trigger since it was armed.
The two timestamps are captured atomically.

nxTimescale_LocalTime
Returns the timestamp of first rising edge of the imported Time Trigger since it was
armed. The timestamp is an absolute time, using the local timescale. If Time Trigger
has not encountered a rising edge since it was armed, local time trigger returns zero
(an invalid timestamp).

nxTimescale_NetworkTime
Returns the timestamp of first rising edge of the imported Time Trigger since it was
armed. The timestamp is an absolute time, using the network timescale. If Time
Trigger has not encountered a rising edge since it was armed, network time trigger
returns zero (an invalid timestamp).

IntfEnetTimePortSynced
Contains the value of the nxPropSession_IntfEnetTimePortSynced property at the
time that both timestamps are acquired, to specify whether the network time trigger
timestamp is synchronized to the network (true) or not (false).

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

© National Instruments 1061

NI-XNET 20.5

Description

When you use the nxConnectTerminals with destination terminal of TimeTrigger
(i.e., imported), the Time Trigger captures absolute timestamps on the rising edge,
and you read those timestamps using nxReadStateTimeTrigger.

The imported Time Trigger is armed when you invoke nxConnectTerminals, and
Time Trigger is armed again on each subsequent invocation of
nxReadStateTimeTrigger. After the Time Trigger is armed, the first rising edge after
arming is captured for the subsequent nxReadStateTimeTrigger.

nxSetProperty

Purpose

Sets an XNET session property.

Format

nxStatus_t nxSetProperty (
 nxSessionRef_t SessionRef,
 u32 PropertyID,
 u32 PropertySize,
 void * PropertyValue);

Inputs

nxSessionRef_t SessionRef
The session to set the property for. This session is returned from nxCreateSessi
on.

u32 PropertyID
The ID of the property to set. The appropriate constants are listed in the Properties
section and defined in nixnet.h.

u32 PropertySize

ni.com1062

NI-XNET 20.5

The number of bytes provided for the buffer passed to PropertyValue. This can
be a fixed-size (for example, 4 bytes for a u32 property) or variable-sized buffer (for
example, for a string property).

void * PropertyValue
Contains the value to set for the desired property.

Outputs

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

Refer to the following topics for information about properties you can use with this
function:

XNET Device Properties

XNET Interface Properties

XNET Session Properties

XNET System Properties

nxSetSubProperty

Purpose

Sets a property of a frame or signal within an XNET session.

Format

nxStatus_t nxSetSubProperty (
 nxSessionRef_t SessionRef,
 u32 ActiveIndex,

© National Instruments 1063

NI-XNET 20.5

 u32 PropertyID,
 u32 PropertySize,
 void * PropertyValue);

Inputs

nxSessionRef_t SessionRef
The session to set the property for. This session is returned from nxCreateSessi
on.

u32 ActiveIndex
Identifies the frame or signal within the session. It is the index to the list given in nx
CreateSession.

u32 PropertyID
The ID of the property to set. The properties to use with this function are listed in
the Frame Properties topic for the session. Within your code, applicable Property
ID values begin with the prefix nxProp_SessionSub.

u32 PropertySize
The number of bytes provided for the buffer passed to PropertyValue. This can
be a fixed-size (for example, 4 bytes for a u32 property) or variable-sized buffer (for
example, for a string property).

void * PropertyValue
Contains the value to set for the desired property.

Outputs

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

ni.com1064

NI-XNET 20.5

nxStart

Purpose

Starts communication for the specified XNET session.

Format

nxStatus_t nxStart (
 nxSessionRef_t SessionRef,
 u32 Scope);

Inputs

nxSessionRef_t SessionRef
The session to start. This session is returned from nxCreateSession.

u32 Scope
Describes the impact of this operation on the underlying state models for the
session and its interface.

Normal (0) The session is started followed by starting the interface. This is equivalent to calling
nxStart with the Session Only Scope followed by calling nxStart with the
Interface Only Scope.

Session
Only (1)

The session is placed into the Started state (refer to State Models). If the interface is
in the Stopped state before this function runs, the interface remains in the Stopped
state, and no communication occurs with the bus. To have multiple sessions start at
exactly the same time, start each session with the Session Only Scope. When you
are ready for all sessions to start communicating on the associated interface, call nx
Start with the Interface Only scope. Starting a previously started session is
considered a no-op. This operation sends the command to start the session, but
does not wait for the session to be started. It is ideal for a real-time application where
performance is critical.

Interface
Only (2)

If the underlying interface is not previously started, the interface is placed into the
Started state (refer to State Models). After the interface starts communicating, all
previously started sessions can transfer data to and from the bus. Starting a
previously started interface is considered a no-op.

© National Instruments 1065

NI-XNET 20.5

Session
Only
Blocking
(3)

The session is placed in the Started state (refer to State Models). If the interface is in
the Stopped state before this function runs, the interface remains in the Stopped
state, and no communication occurs with the bus. To have multiple sessions start at
exactly the same time, start each session with the Session Only Scope. When you
are ready for all sessions to start communicating on the associated interface, call nx
Start with the Interface Only Scope. Starting a previously started session is
considered a no-op. This operation waits for the session to start before completing.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

Because the session is started automatically by default, this function is optional.
This function is for more advanced applications to start multiple sessions in a
specific order. For more information about the automatic start feature, refer to the
Auto Start? property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

■ Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.
■ Interface: The interface physically connects to the bus and transmits (or
receives) data for the sessions.

You can start each logical unit separately. When a session is started, all contained
frames or signals are placed in a state where they are ready to communicate. When
the interface is started, it takes data from all started sessions to communicate with
other nodes on the bus. For a specification of the state models for the session and
interface, refer to State Models.

If an output session starts before you write data, or you read an input session before
it receives a frame, default data is used. For more information, refer to the XNET
Frame Default Payload and XNET Signal Default Value properties.

ni.com1066

NI-XNET 20.5

nxStatusToString

Purpose

Converts a status code returned from a function into a descriptive string.

Format

void _NXFUNC nxStatusToString (
 nxStatus_t Status,
 u32 SizeofString,
 char * StatusDescription);

Inputs

nxStatus_t Status
The status code to be explained.

u32 SizeofString
The size of the string provided to store the explanation of the status code.

Outputs

char * StatusDescription
The string in which the explanation of the status code will be stored.

Description

This function converts a status code returned from a function into a descriptive
string.

SizeofString is the size allocated for the string. The description is truncated to
size SizeofString if needed, but a size of 2048 characters is large enough to hold
any description. The text returned in StatusDescription is null-terminated, so
it can be used with ANSI C functions such as printf.

© National Instruments 1067

NI-XNET 20.5

nxStop

Purpose

Stops communication for the specified XNET session.

Format

nxStatus_t nxStop (
 nxSessionRef_t SessionRef,
 u32 Scope);

Inputs

nxSessionRef_t SessionRef
The session to stop. This session is returned from nxCreateSession.

u32 Scope
Describes the impact of this operation on the underlying state models for the
session and its interface.

Normal (0) The session is stopped. If this is the last session stopped on the interface, the
interface is also stopped. If any other sessions are running on the interface, this call
is treated just like the Session Only Scope, to avoid disruption of communication on
the other sessions.

Session
Only (1)

The session is placed in the Stopped state (refer to State Models). If the interface was
in the Started or Running state before this function is called, the interface remains in
that state and communication continues, but data from this session does not
transfer. This Scope generally is not necessary, as the Normal Scope only stops the
interface if there are no other running sessions. This operation sends the command
to stop the session, but does not wait for the session to be stopped. It is ideal for a
real-time application where performance is critical.

Interface
Only (2)

The underlying interface is placed in the Stopped state (refer to State Models). This
prevents all communication on the bus, for all sessions. This allows you modify
certain properties that require the interface to be stopped (for example, CAN baud
rate). All sessions remain in the Started state. To have multiple sessions stop at
exactly the same time, first stop the interface with the Interface Only Scope and
then stop each session with either the Normal or Session Only Scope.

ni.com1068

NI-XNET 20.5

Session
Only
Blocking
(3)

The session is placed in the Stopped state (refer to State Models). If the interface was
in the Started or Running state before this function is called, the interface remains in
that state and communication continues, but data from this session does not
transfer. This Scope generally is not necessary, as the Normal Scope stops the
interface only if there are no other running sessions. This operation waits for the
session to stop before completing.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

Because the session is stopped automatically when cleared (closed), this function is
optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

■ Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.
■ Interface: The interface physically connects to the bus and transmits (or
receives) data for the sessions.

You can stop each logical unit separately. When a session is stopped, all contained
frames or signals are placed in a state where they are no longer ready to
communicate. When the interface is stopped, it no longer takes data from sessions
to communicate with other nodes on the bus. For a specification of the state models
for the session and interface, refer to State Models.

nxSystemClose

Purpose

Closes a system session.

© National Instruments 1069

NI-XNET 20.5

Format

nxStatus_t _NXFUNC nxSystemClose (
 nxSessionRef_t SystemRef);

Inputs

nxSessionRef_t SystemRef
The reference to the system session to close.

Outputs

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

This function is used to close a system session.

nxSystemOpen

Purpose

Opens a special system session.

Format

nxStatus_t _NXFUNC nxSystemOpen (
 nxSessionRef_t * SystemRef);

ni.com1070

NI-XNET 20.5

Inputs

Outputs

nxSessionRef_t * SystemRef
The reference to the opened system session.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

This function opens a special system session.

The system session is not used to read/write on the network (as with sessions
created using nxCreateSession). Use the system session to interact with the NI
driver and interface hardware.

For example, you can traverse through properties to find all NI-XNET interfaces in
your system.

The following functions are supported for the system session:

■ nxGetProperty: Get a property with prefix nxPropSys_, nxPropDev
, or nxPropIntf.
■ nxGetPropertySize: Get a string property size.
■ nxBlink: Blink LED(s) on the interface.

nxWait

Purpose

Waits for a certain condition to occur.

© National Instruments 1071

NI-XNET 20.5

Format

nxStatus_t _NXFUNC nxWait (
 nxSessionRef_t SessionRef,
 u32 Condition,
 u32 ParamIn,
 f64 Timeout,
 u32 * ParamOut);

Inputs

nxSessionRef_t SessionRef
The session to which the wait is applied.

u32 Condition
Specifies the condition to wait for.

u32 ParamIn
An optional parameter that provides simple data to qualify the condition.

f64 Timeout
Specifies the maximum amount of time in seconds to wait.

Outputs

u32 * ParamOut
An optional parameter that provides simple data to qualify the condition that
occurred.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

ni.com1072

NI-XNET 20.5

Description

This function waits for a condition to occur for the session.

The Condition parameter specifies to wait for one of the following conditions.

nxCondition_TransmitComplete
All frames written for the session have been transmitted on the bus. This condition
applies to CAN, FlexRay, LIN, and Ethernet. This condition is state based, and the
state is Boolean (true/false). The ParamIn and ParamOut parameters are ignored
for this condition because nxWait simply waits for the state to become true.

nxCondition_IntfCommunicating
Wait for the interface to begin communication on the network. If a start trigger is
configured for the interface, this first waits for the trigger. Once the interface is
started, this waits for the protocol's communication state to transition to a value
that indicates communication with remote nodes.

After this wait succeeds, calls to nxReadState will return:

■ nxState_CANComm: nxCANCommState_ErrorActive
■ nxState_CANComm: nxCANCommState_ErrorPassive
■ nxState_TimeCommunicating: Valid time for communication (invalid
time of 0 prior)

This condition is state based. The ParamIn and ParamOut parameters are ignored
for this condition because nxWait simply waits for a communicating state.

nxCondition_IntfRemoteWakeup
Wait for the interface to wakeup due to activity by a remote node on the network.
This wait is used for CAN, when you set the nxPropSession_IntfCANTrState
property to nxCANTrState_Sleep. Although the interface itself is ready to
communicate, this places the transceiver into a sleep state. When a remote CAN
node transmits a frame, the transceiver wakes up, and communication is restored.
This wait detects that remote wakeup.

© National Instruments 1073

NI-XNET 20.5

This wait is used for LIN when you set the nxPropSession_IntfLINSleep
property to nxLINSleep_RemoteSleep or nxLINSleep_LocalSleep. When
asleep, if a remote LIN ECU transmits the wakeup pattern (break), the XNET LIN
interface detects this transmission and wakes up. This wait detects that remote
wakeup.

This condition is state based. The ParamIn and ParamOut parameters are ignored
for this condition, because nxWait simply waits for the remote wakeup to occur.

nxCondition_EthernetSynced
Waits for the clock of the Ethernet interface to successfully synchronize to other
clocks in the network. This wait returns when the time synchronization protocol's
Synced property becomes true.

Note Time synchronization occurs independently from start of the interface. For example,
you can read and write Ethernet frames when time synchronization protocol is not enabled,
or when the time sync protocol is not synced.

nxWriteFrame

Purpose

Writes data to a session as an array of raw bytes.

Format

nxStatus_t nxWriteFrame (
 nxSessionRef_t SessionRef,
 void * Buffer,
 u32 NumberOfBytesForFrames,
 f64 Timeout);

Inputs

nxSessionRef_t SessionRef

ni.com1074

NI-XNET 20.5

The session to write. This session is returned from nxCreateSession. The
session mode must be Frame Output Stream Mode, Frame Output Queued Mode, or
Frame Output Single-Point Mode.

void * Buffer
Provides the array of bytes, representing frames to transmit.

The raw bytes encode one or more frames using the Raw Frame Format. This frame
format is the same for read and write of raw data and also is used for log file
examples.

If needed, you can write data for a partial frame. For example, if a complete raw
frame is 24 bytes, you can write 12 bytes, then write the next 12 bytes. You typically
do this when you are reading raw frame data from a logfile and want to avoid
iterating through the data to detect the start and end of each frame.

Note For PDU sessions, the array of bytes represents the payload of the specified PDU only,
not that of the entire frame.

For information about which elements of the raw frame are applicable, refer to Raw
Frame Format.

The data you write is queued up for transmit on the network. Using the default
queue configuration for this mode, you can safely write 1536 frames if you have a
sufficiently long timeout. To write more data, refer to the XNET Session Number of
Values Unused property to determine the actual amount of queue space available
for writing.

For an example of how this data applies to network traffic, refer to Frame Output
Stream Mode, Frame Output Queued Mode, or Frame Output Single-Point Mode.

Additionally, you can use nxWriteFrame on any signal or frame input session if it
contains CAN Event Remote frames (refer to CAN:TimingType). In this case, it signals
an event to transmit those remote frames. The Buffer parameter is ignored, and
you can set it to NULL in that case.

u32 NumberOfBytesForFrames
The size (in bytes) of the buffer passed to Buffer. This is used to calculate the
number of frames to transmit.

© National Instruments 1075

NI-XNET 20.5

f64 Timeout
The time to wait for the raw data to be queued up for transmit.

The timeout is represented as 64-bit floating-point in units of seconds.

If Timeout is positive, nxWriteFrame waits up to that timeout for space to
become available in queues. If the space is not available prior to the timeout, a
timeout error is returned.

If Timeout is negative, nxWriteFrame waits indefinitely for space to become
available in queues.

If Timeout is 0, nxWriteFrame does not wait and immediately returns with a
timeout error if all data cannot be queued. Regardless of the timeout used, if a
timeout error occurs, none of the data is queued, so you can attempt to call nxWri
teFrame again at a later time with the same data.

If the session mode is Frame Output Single-Point, you must set Timeout to 0.0.
Because this mode writes the most recent value of each frame, Timeout does not
apply.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

The raw bytes encode one or more frames using the Raw Frame Format. The session
must use a mode of Frame Output Stream, Frame Output Queued, or Frame Output
Single-Point. The raw frame format is protocol independent.

The raw frames are associated to the session's list of frames as follows:

■ Frame Output Stream Mode: Array of all frame values for transmit (list
ignored). For LIN, if the payload length is 0, only the header part of the LIN

ni.com1076

NI-XNET 20.5

frame is transmitted. If the payload length is nonzero, the header and
response parts of the LIN frame are transmitted.
■ Frame Output Queued Mode: Array of frame values to transmit for the single
frame specified in the list.
■ Frame Output Single-Point Mode: Array of single frame values, one for each
frame specified in the list.
■ Any signal or frame input mode: The Buffer parameter is ignored, and you
can set it to NULL. The function transmits an event remote frame.

nxWriteSignalSinglePoint

Purpose

Writes data to a session of Signal Output Single-Point Mode.

Format

nxStatus_t nxWriteSignalSinglePoint (
 nxSessionRef_t SessionRef,
 f64 * ValueBuffer,
 u32 SizeOfValueBuffer);

Inputs

nxSessionRef_t SessionRef
The session to write. This session is returned from nxCreateSession. The
session mode must be Signal Output Single-Point.

f64 * ValueBuffer
Provides a one-dimensional array of signal values. Each signal value is scaled, 64-bit
floating point.

Each array element corresponds to a signal configured for the session. The order of
signals in the array corresponds to the order in the session list.

© National Instruments 1077

NI-XNET 20.5

The data provides the value for the next transmit of each signal. If nxWriteSigna
lSinglePoint is called twice before the next transmit, the transmitted frame
uses signal values from the second call to nxWriteSignalSinglePoint.

For an example of how this data applies to network traffic, refer to Signal Output
Single-Point Mode.

A trigger signal written a value of 0.0 suppresses writing of its frame's data; writing a
value not equal to 0.0 enables it. For more information about trigger signals, refer to
Signal Output Single-Point Mode.

u32 SizeOfValueBuffer
Should be set to the size (in bytes) of the array passed to ValueBuffer. If this is
too small to fit one element for each signal in the session, an error is returned.

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

nxWriteSignalWaveform

Purpose

Writes data to a session of Signal Output Waveform Mode. The data represents a
waveform of resampled values for each signal in the session.

Format

nxStatus_t nxWriteSignalWaveform (
 nxSessionRef_t SessionRef,
 f64 Timeout,
 f64 * ValueBuffer,
 u32 SizeOfValueBuffer);

ni.com1078

NI-XNET 20.5

Inputs

nxSessionRef_t SessionRef
The session to write. This session is returned from nxCreateSession. The
session mode must be Signal Output Waveform.

f64 Timeout
The time to wait for the data to be queued for transmit. The timeout does not wait
for frames to be transmitted on the network (refer to nxWait).

The timeout is represented as 64-bit floating-point in units of seconds.

If Timeout is positive, nxWriteSignalWaveform waits up to that timeout for
space to become available in queues. If the space is not available prior to the
timeout, a timeout error is returned.

If Timeout is negative, nxWriteSignalWaveform waits indefinitely for space
to become available in queues.

If Timeout is 0, nxWriteSignalWaveform does not wait and immediately
returns an error if all data cannot be queued. Regardless of the timeout used, if a
timeout error occurs, none of the data is queued, so you can attempt to call nxWri
teSignalWaveform again at a later time with the same data.

f64* ValueBuffer
Provides a two-dimensional array of f64 samples. First, N samples are reserved for
the first signal in the session, then N samples for the second, and so on. N * (number
of signals in the session) * sizeof (f64) should be passed in SizeOfValueBuffer
to recalculate N.

The data you write is queued for transmit on the network. Using the default queue
configuration for this mode, and assuming a 1000 Hz resample rate, you can safely
write 64 elements if you have a sufficiently long timeout. To write more data, refer to
the XNET Session Number of Values Unused property to determine the actual
amount of queue space available for writing.

For an example of how this data applies to network traffic, refer to Signal Output
Waveform Mode.

© National Instruments 1079

NI-XNET 20.5

Each array element corresponds to a signal configured for the session. The order of
signals in the array corresponds to the order in the session list.

u32 SizeOfValueBuffer
Should be set to the size (in bytes) of the array passed to ValueBuffer. The
number of samples to be written (N) per signal is calculated from this size. Set this
to (N) * (number of signals in the session) * sizeof (f64).

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

The data represents a waveform for each signal in the session.

nxWriteSignalXY

Purpose

Writes data to a session of Signal Output XY Mode. The data represents a sequence
of signal values for transmit using each frame's timing as the database specifies.

Format

nxStatus_t nxWriteSignalXY (
 nxSessionRef_t SessionRef,
 f64 Timeout,
 f64 * ValueBuffer,
 u32 SizeOfValueBuffer,
 nxTimestamp100ns_t * TimestampBuffer,
 u32 SizeOfTimestampBuffer,
 u32 * NumPairsBuffer,
 u32 SizeOfNumPairsBuffer);

ni.com1080

NI-XNET 20.5

Inputs

nxSessionRef_t SessionRef
The session to write. This session is returned from nxCreateSession. The
session mode must be Signal Output XY.

f64 Timeout
The time to wait for the data to be queued for transmit. The timeout does not wait
for frames to be transmitted on the network (refer to nxWait).

The timeout is represented as 64-bit floating-point in units of seconds.

If Timeout is positive, nxWriteSignalXY waits up to that timeout for space to
become available in queues. If the space is not available prior to the timeout, a
timeout error is returned.

If Timeout is negative, nxWriteSignalXY waits indefinitely for space to become
available in queues.

If Timeout is 0, nxWriteSignalXY does not wait and immediately returns with
a timeout error if all data cannot be queued. Regardless of the timeout used, if a
timeout error occurs, none of the data is queued, so you can attempt to call nxWri
teSignalXY again at a later time with the same data.

f64* ValueBuffer
Provides a two-dimensional array of f64 samples. First, N samples are reserved for
the first signal in the session, then N samples for the second, and so on. N * (number
of signals in the session) * sizeof (f64) should be passed in SizeOfValueBuffer
to recalculate N.

The data you write is queued for transmit on the network. Using the default queue
configuration for this mode, you can safely write 64 elements if you have a
sufficiently long timeout. To write more data, refer to the XNET Session Number of
Values Unused property to determine the actual amount of queue space available
for writing.

For an example of how this data applies to network traffic, refer to Signal Output XY
Mode.

© National Instruments 1081

NI-XNET 20.5

u32 SizeOfValueBuffer
The size (in bytes) of the array passed to ValueBuffer.

nxTimestamp100ns_t* TimestampBuffer
Provides a two-dimensional array of timestamps. First, N timestamps are reserved
for the first signal in the session, then N timestamps for the second and so on. N *
(number of signals in the session) * sizeof (f64) should be passed in SizeOfTimes
tampBuffer to recalculate N.

nxTimestamp100ns_t is an absolute timestamp in 100 nanosecond increments. This
64-bit type contains the number of 100 ns intervals that have elapsed since
1 January 1601 00:00:00 Coordinated Universal Time (UTC). In previous releases,
this timestamp was called nxTimestamp_t.

This array is for future expansion; it is not used in the current implementation of NI-
XNET. Pass NULL on input.

u32 SizeOfTimestampBuffer
The size (in bytes) of the array passed to TimestampBuffer.

This value is for future expansion; it is not used in the current implementation of NI-
XNET. Pass 0 on input.

u32* NumPairsBuffer
Provides an one-dimensional array of signal/timestamp pair counts, one for each
signal in the session. Upon input, the samples and timestamps for signal #(i) in the
preceding arrays are valid up to, but not including, index NumPairsBuffer[i]
(zero based) and are written up to that point.

u32 SizeOfNumPairsBuffer
The size (in bytes) of the array passed to NumPairsBuffer. For each signal in the
session, an array element should be provided. If the buffer is too small, an error is
returned.

Return Value
nxStatus_t

ni.com1082

NI-XNET 20.5

The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

Description

The data represents an XY plot of timestamp/value pairs for each signal in the
session.

nxWriteState

Purpose

Writes communication states of an XNET session.

Format

nxStatus_t nxWriteState (
 nxSessionRef_t SessionRef,
 u32 StateID,
 u32 StateSize,
 void * StateValue);

Inputs

nxSessionRef_t SessionRef
The session to write. This session is returned from nxCreateSession. The
session protocol must be LIN.

u32 StateID
Indicates the state to be written. Possible values are:

nxState_LINScheduleChange
Changes the LIN schedule.

nxState_FlexRaySymbol
Transmits a FlexRay symbol.

© National Instruments 1083

NI-XNET 20.5

nxState_LINDiagnosticScheduleChange
Changes the LIN diagnostic schedule.

The value determines the format to be written to StateValue.

u32 StateSize
Indicates the size of the buffer provided for StateValue.

void * StateValue
Writes the desired state. Formats and values are:

StateID = nxState_LINScheduleChange
StateValue must point to a u32 buffer that contains the index to the schedule
table that the LIN master executes. The schedule tables are sorted the way they are
returned from the database with the XNET Cluster Schedules property.

According to the LIN protocol, only the master executes schedules, not slaves. If the
XNET Session Interface:LIN:Master? property is false (slave), this write function
implicitly sets that property to true (master). If the interface currently is running as a
slave, this write returns an error, because it cannot change to master while running.

StateID = nxState_FlexRaySymbol
StateValue must point to a u32 buffer that contains the value 0.

StateID = nxState_LINDiagnosticScheduleChange

StateValue must point to a u32 buffer that contains the diagnostic schedule that the LIN
master executes. Possible values are:

■ nxLINDiagnosticSchedule_NULL: The master does not execute any diagnostic
schedule. No master request or slave response headers are transmitted on the LIN.
■ nxLINDiagnosticSchedule_MasterReq: The master executes a diagnostic
master request schedule (transmits a master request header onto the LIN) if it can. First, a
master request schedule must be defined for the LIN cluster in the imported or in-memory
database. Otherwise, error nxErrDiagnosticScheduleNotDefined is returned when
attempting to set this value. Second, the master must have a frame output queued session
created for the master request frame, and there must be one or more new master request
frames pending in the queue. If no new frames are pending in the output queue, no master
request header is transmitted. This allows the timing of master request header

ni.com1084

NI-XNET 20.5

transmission to be controlled by the timing of master request frame writes to the output
queue.

If there are no normal schedules pending, the master is effectively in diagnostics-only
mode, and master request headers are transmitted at a rate determined by the slot delay
defined for the master request frame slot in the master request schedule or the nxPropSe
ssion_IntfLINDiagSTmin time, whichever is greater, and the state of the master
request frame output queue as described above.

If there are normal schedules pending, the master is effectively in diagnostics-interleaved
mode, and a master request header transmission is inserted between each complete
execution of a run-once or run-continuous schedule, as long as the nxPropSession_In
tfLINDiagSTmin time has been met, and there are one or more new master request
frames pending in the master request frame output queue.
■ nxLINDiagnosticSchedule_SlaveResp: The master executes a diagnostic slave
response schedule (transmits a slave response header onto the LIN) if it is able to. A slave
response schedule must be defined for the LIN cluster in the imported or in-memory
database. Otherwise, error nxErrDiagnosticScheduleNotDefined is returned when
attempting to set this value.

If there are no normal schedules pending, the master is effectively in diagnostics-only
mode, and slave response headers are transmitted at the rate of the slot delay defined for
the slave response frame slot in the slave response schedule. The addressed slave may or
may not respond to each header, depending on its specified P2min and STmin timings.

If there are normal schedules pending, the master is effectively in diagnostics-interleaved
mode, and a slave response header transmission is inserted between each complete
execution of a run-once or run-continuous schedule. Here again, the addressed slave may
or may not respond to each header, depending on its specified P2min and STmin timings.

Outputs

Return Value
nxStatus_t
The error code the function returns in the event of an error or warning. A value of 0
indicates success. A positive value indicates a warning. A negative value indicates an
error.

© National Instruments 1085

NI-XNET 20.5

Description

You can use nxWriteState with an XNET LIN master session to set the schedule
that the LIN master executes.

You also can use nxWriteState with an XNET FlexRay session to transmit a
symbol on the FlexRay bus.

Executing this function on any other type of session causes an error.

You can use nxWriteState with an XNET LIN master session to set the diagnostic
schedule that the LIN master executes. Use this state to transmit master request
messages and query for slave response messages after node configuration has been
performed. Node configuration should be handled using nxState_LINSchedul
eChange. Write the node configuration schedule defined for the LIN cluster using n
xState_LINScheduleChange, so that it is the first schedule executed for the
LIN, with a run mode of once. The data for each node configuration service request
entry in the node configuration schedule is automatically transmitted by the master.
After the node configuration schedule has completed, use nxState_LINDiagnos
ticScheduleChange to run diagnostic schedules, or nxState_LINSchedule
Change to run normal schedules.

XNET Cluster Properties
This section includes the XNET Cluster properties.

64bit Baud Rate

Data Type Direction Required? Default
u64 Read/Write No 0

Property Class

XNET Cluster

Property ID

nxPropClst_BaudRate64

ni.com1086

NI-XNET 20.5

Description

The Baud Rate property sets the baud rate all cluster nodes use. This baud rate
represents the rate from the database, so it is read-only from the session. Use a
session interface property (for example, XNET Session Interface:64bit Baud Rate) to
override the database baud rate with an application-specific baud rate.

CAN
For CAN, this rate can be 33333, 40000, 50000, 62500, 80000, 83333, 100000, 125000,
160000, 200000, 250000, 400000, 500000, 800000, or 1000000. Some transceivers
may support only a subset of these values.

If you need values other than these, use the custom settings as described in the
XNET Session Interface:64bit Baud Rate property.

FlexRay
For FlexRay, this rate can be 2500000, 5000000, or 10000000.

LIN
For LIN, this rate can be 2400–20000 inclusive.

If you need values other than these, use the custom settings as described in the
XNET Session Interface:64bit Baud Rate property.

Application Protocol

Data Type Direction Required? Default
u32 Read/Write No Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_ApplicationProtocol

© National Instruments 1087

NI-XNET 20.5

Description

This property specifies the application protocol. It is an enumerated list of two
values:

Enumeration Value Description
None 0 The default application protoco

l.
J1939 1 Indicates J1939 clusters. The va

lue enables the following featur
es:

■ Sending/receiving long
frames as the SAE J1939 s
pecification specifies, usi
ng the J1939 transport pr
otocol.
■ Using a special notatio
n for J1939 identifiers.
■ Using J1939 address cl
aiming.

CAN:64bit FD Baud Rate

Data Type Direction Required? Default
u64 Read/Write No 0

Property Class

XNET Cluster

Property ID

nxPropClst_CanFdBaudRate64

Description

The 64bit FD Baud Rate property sets the fast data baud rate for the CAN FD+BRS
CAN:I/O Mode property. This property represents the database fast data baud rate
for the CAN FD+BRS I/O Mode. Refer to the CAN:I/O Mode property for a description

ni.com1088

NI-XNET 20.5

of this mode. Use a session interface property (for example, Interface:CAN:64bit FD
Baud Rate) to override the database fast baud rate with an application-specific fast
baud rate.

NI-XNET CAN hardware currently accepts the following numeric baud rates: 200000,
250000, 400000, 500000, 800000, 1000000, 1250000, 1600000, 2000000, 2500000,
4000000, 5000000, and 8000000. Some transceivers may support only a subset of
these values.

If you need values other than these, use the custom settings as described in the
Interface:CAN:64bit FD Baud Rate property.

CAN:FD ISO Mode

Data Type Direction Required? Default
u32 Read Only No ISO

Property Class

XNET Cluster

Property ID

nxPropClst_CanFdIsoMode

Description

This property specifies whether the CAN FD cluster is working in ISO CAN FD mode,
Non-ISO CAN FD mode, or Legacy ISO mode. The default is ISO CAN FD mode. You
define the value in a dialog box that appears when you define an alias for the
database.

CAN:I/O Mode

Data Type Direction Required? Default
u32 Read/Write No 0

© National Instruments 1089

NI-XNET 20.5

Property Class

XNET Cluster

Property ID

nxPropClst_CanIoMode

Description

This property specifies the CAN I/O Mode of the cluster. It is an enumerated list of
three values:

Enumeration Value Description
nxCANioMode_CAN 0 This is the default CAN 2.0 A/B s

tandard I/O mode as defined in
ISO 11898-1:2003. A fixed baud
rate is used for transfer, and the
payload length is limited to 8 by
tes.

nxCANioMode_CAN_FD 1 This is the CAN FD mode as spe
cified in the CAN with Flexible
Data-Rate specification, versio
n 1.0. Payload lengths up to 64
are allowed, but they are trans
mitted at a single fixed baud rat
e (defined by the XNET Cluster 6
4bit Baud Rate or XNET Session
Interface:64bit Baud Rate prope
rties).

nxCANioMode_CAN_FD_BRS 2 This is the CAN FD as specified i
n the CAN with Flexible Data-R
ate specification, version 1.0, w
ith the optional Baud Rate Swit
ching enabled. The same paylo
ad lengths as CAN FD mode are
allowed; additionally, the data
portion of the CAN frame is tran
sferred at a different (higher) ba
ud rate (defined by the CAN:64b

ni.com1090

NI-XNET 20.5

it FD Baud Rate or XNET Sessio
n Interface:CAN:64bit FD Baud
Rate properties).

Comment

Data Type Direction Required? Default
char * Read/Write No Empty String

Property Class

XNET Cluster

Property ID

nxPropClst_Comment

Description

A comment describing the cluster object.

A comment is a string containing up to 65535 characters.

Configuration Status

Data Type Direction Required? Default
i32 Read Only N/A N/A

Property Class

XNET Cluster

Property ID

nxPropClst_ConfigStatus

Description

The cluster object configuration status.

© National Instruments 1091

NI-XNET 20.5

Configuration Status returns an NI-XNET error code. You can pass the value to the
error code input of nxStatusToSting to convert it to a text description of the
configuration problem.

By default, incorrectly configured clusters in the database are not returned from the
XNET Database Clusters property because they cannot be used in the bus
communication. You can change this behavior by setting the XNET Database
ShowInvalidFromOpen? property to true. When the configuration status of a cluster
becomes invalid after the database has been opened, the cluster still is returned
from the Clusters property even if ShowInvalidFromOpen? is false.

Database

Data Type Direction Required? Default
nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET Cluster

Property ID

nxPropClst_DatabaseRef

Description

Refnum to the cluster parent database.

The parent database is defined when the cluster object is created. You cannot
change it afterwards.

ECUs

Data Type Direction Required? Default
nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET Cluster

ni.com1092

NI-XNET 20.5

Property ID

nxPropClst_ECURefs

Description

ECUs in this cluster.

Returns an array of references to all ECUs defined in this cluster. An ECU is assigned
to a cluster when the ECU object is created. You cannot change this assignment
afterwards.

To add an ECU to a cluster, use nxdbCreateObject. To remove an ECU from the
cluster, use nxdbDeleteObject.

FlexRay:Action Point Offset

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayActPtOff

Description

This property specifies the number of macroticks (MT) that the action point is offset
from the beginning of a static slot or symbol window.

This property corresponds to the global cluster parameter gdActionPointOffs
et in the FlexRay Protocol Specification.

The action point is that point within a given slot where the actual transmission of a
frame starts. This is slightly later than the start of the slot, to allow for a clock drift
between the network nodes.

The range for this property is 1–63 MT.

© National Instruments 1093

NI-XNET 20.5

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:CAS Rx Low Max

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayCASRxLMax

Description

This property specifies the upper limit of the collision avoidance symbol (CAS)
acceptance window. The CAS symbol is transmitted by the FlexRay interface (node)
during the symbol window within the communication cycle. A receiving FlexRay
interface considers the CAS to be valid if the pattern's low level is within 29 gdBit (cd
CASRxLowMin) and CAS Rx Low Max.

ni.com1094

NI-XNET 20.5

This property corresponds to the global cluster parameter gdCASRxLowMax in the
FlexRay Protocol Specification.

The values for this property are in the range 67–99 gdBit.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Channels

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayChannels

Description

This property specifies the FlexRay channels used in the cluster. Frames defined in
this cluster are expected to use the channels this property specifies. Refer to the
XNET Frame FlexRay:Channel Assignment property.

© National Instruments 1095

NI-XNET 20.5

This property corresponds to the global cluster parameter gChannels in the
FlexRay Protocol Specification.

A FlexRay cluster supports two independent network wires (channels A and B). You
can choose to use both or only one in your cluster.

The values (enumeration) for this property are:

1 Channel A only
2 Channel B only
3 Channels A and B

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Cluster Drift Damping

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

ni.com1096

NI-XNET 20.5

Property ID

nxPropClst_FlexRayClstDriftDmp

Description

This property specifies the cluster drift damping factor, based on the longest
microtick used in the cluster. Use this global FlexRay parameter to compute the
local cluster drift damping factor for each cluster node. You can access the local
cluster drift for the XNET FlexRay interface from the XNET Session
Interface:FlexRay:Cluster Drift Damping property.

This property corresponds to the global cluster parameter gdClusterDriftDam
ping in the FlexRay Protocol Specification.

The values for this property are in the range 0–5 MT.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Cold Start Attempts

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

© National Instruments 1097

NI-XNET 20.5

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayColdStAts

Description

This property specifies the maximum number of times a node in this cluster can
start the cluster by initiating schedule synchronization. This global cluster
parameter is applicable to all cluster notes that can perform a coldstart (send
startup frames).

This property corresponds to the global cluster parameter gColdStartAttempt
s in the FlexRay Protocol Specification.

The values for this property are in the range 2–31.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Cycle

Data Type Direction Required? Default

ni.com1098

NI-XNET 20.5

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayCycle

Description

This property specifies the duration of one FlexRay communication cycle, expressed
in microseconds.

This property corresponds to the global cluster parameter gdCycle in the FlexRay
Protocol Specification.

All frame transmissions complete within a cycle. After this time, the frame
transmissions restart with the first frame in the next cycle. The communication cycle
counts increment from 0–63, after which the cycle count resets back to 0.

The range for this property is 10–16000 µs.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

© National Instruments 1099

NI-XNET 20.5

FlexRay:Dynamic Segment Start

Data Type Direction Required? Default
u32 Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayDynSegStart

Description

This property specifies the start of the dynamic segment, expressed as the number
of macroticks (MT) from the start of the cycle.

The range for this property is 8–15998 MT.

This property is calculated from other cluster properties. It is based on the total
static segment size. It is set to 0 if the FlexRay:Number of Minislots property is 0 (no
dynamic segment exists).

FlexRay:Dynamic Slot Idle Phase

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayDynSlotIdlPh

Description

This property specifies the dynamic slot idle phase duration.

ni.com1100

NI-XNET 20.5

This property corresponds to the global cluster parameter gdDynamicSlotIdle
Phase in the FlexRay Protocol Specification.

The values for this property are in the range 0–2 minislots.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Latest Guaranteed Dynamic Slot

Data Type Direction Required? Default
u32 Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayLatestGuarDyn

Description

This property specifies the highest slot ID in the dynamic segment that still can
transmit a full-length (for example, Payload Length Dynamic Maximum) frame,

© National Instruments 1101

NI-XNET 20.5

provided all previous slots in the dynamic segment have transmitted full-length
frames also.

A larger slot ID cannot be guaranteed to transmit a full-length frame in each cycle
(although a frame might go out depending on the dynamic segment load).

The range for this property is 2–2047 slots.

This read-only property is calculated from other cluster properties. If the Number of
Minislots is zero, no dynamic slots exist, and this property returns 0. Otherwise, the
Number of Minislots is used along with Payload Length Dynamic Maximum to
determine the latest dynamic slot guaranteed to transmit in the next cycle. In other
words, when all preceding dynamic slots transmit with Payload Length Dynamic
Maximum, this dynamic slot also can transmit with Payload Length Dynamic
Maximum, and its frame ends prior to the end of the dynamic segment.

FlexRay:Latest Usable Dynamic Slot

Data Type Direction Required? Default
u32 Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayLatestUsableDyn

Description

This property specifies the highest slot ID in the dynamic segment that can still
transmit a full-length (that is, Payload Length Dynamic Maximum) frame, provided
no other frames have been sent in the dynamic segment.

A larger slot ID cannot transmit a full-length frame (but could probably still transmit
a shorter frame).

The range for this property is 2–2047.

ni.com1102

NI-XNET 20.5

This read-only property is calculated from other cluster properties. If the Number of
Minislots is zero, no dynamic slots exist, and this property returns 0. Otherwise,
Number of Minislots is used along with Payload Length Dynamic Maximum to
determine the latest dynamic slot that can be used when all preceding dynamic
slots are empty (zero payload length). In other words, this property is calculated
under the assumption that all other dynamic slots use only one minislot, and this
dynamic slot uses the number of minislots required to deliver the maximum
payload. The frame for this dynamic slot must end prior to the end of the dynamic
segment. Any frame transmitted in a preceding dynamic slot is likely to preclude this
slot's frame.

FlexRay:Listen Noise

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayLisNoise

Description

This property specifies the upper limit for the startup and wakeup listen timeout in
the presence of noise. It is used as a multiplier for the Interface:FlexRay:Listen
Timeout property.

This property corresponds to the global cluster parameter gListenNoise in the
FlexRay Protocol Specification.

The values for this property are in the range 2–16.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

© National Instruments 1103

NI-XNET 20.5

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Macro Per Cycle

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayMacroPerCycle

Description

This property specifies the number of macroticks in a communication cycle. For
example, if the FlexRay cycle has a duration of 5 ms (5000 µs), and the duration of a
macrotick is 1 µs, the XNET Cluster FlexRay:Macro Per Cycle property is 5000.

This property corresponds to the global cluster parameter gMacroPerCycle in
the FlexRay Protocol Specification.

The macrotick (MT) is the basic timing unit in the FlexRay cluster. Nearly all timing-
dependent properties are expressed in terms of macroticks.

The range for this property is 10–16000 MT.

ni.com1104

NI-XNET 20.5

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Macrotick

Data Type Direction Required? Default
f64 Read Only N/A Calculated from Other Cluster Parameters

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayMacrotick

Description

This property specifies the duration of the clusterwide nominal macrotick,
expressed in microseconds.

This property corresponds to the global cluster parameter gdMacrotick in the
FlexRay Protocol Specification.

The macrotick (MT) is the basic timing unit in the FlexRay cluster. Nearly all timing-
dependent properties are expressed in terms of macroticks.

© National Instruments 1105

NI-XNET 20.5

The range for this property is 1–6 µs.

This property is calculated from the XNET Cluster FlexRay:Cycle and FlexRay:Macro
Per Cycle properties and rounded to the nearest permitted value.

FlexRay:Max Without Clock Correction Fatal

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayMaxWoClkCorFat

Description

This property defines the number of consecutive even/odd cycle pairs with missing
clock correction terms that cause the controller to transition from the Protocol
Operation Control status of Normal Active or Normal Passive to the Halt state. Use
this global parameter as a threshold for testing the clock correction failure counter.

This property corresponds to the global cluster parameter gMaxWithoutClockC
orrectionFatal in the FlexRay Protocol Specification.

The values for this property are in the range 1–15 even/odd cycle pairs.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)

ni.com1106

NI-XNET 20.5

rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Max Without Clock Correction Passive

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayMaxWoClkCorPas

Description

This property defines the number of consecutive even/odd cycle pairs with missing
clock correction terms that cause the controller to transition from the Protocol
Operation Control status of Normal Active to Normal Passive. Use this global
parameter as a threshold for testing the clock correction failure counter.

Note This property, Max Without Clock Correction Passive, <= Max Without Clock Correction
Fatal <= 15.

This property corresponds to the global cluster parameter gMaxWithoutClockC
orrectionPassive in the FlexRay Protocol Specification.

The values for this property are in the range 1–15 even/odd cycle pairs.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

© National Instruments 1107

NI-XNET 20.5

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Minislot

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayMinislot

Description

This property specifies the duration of a minislot, expressed in macroticks (MT).

This property corresponds to the global cluster parameter gdMinislot in the
FlexRay Protocol Specification.

In the dynamic segment of the FlexRay cycle, frames can have variable payload
length.

Minislots are the dynamic segment time increments. In a minislot, a dynamic frame
can start transmission, but it usually spans several minislots. If no frame transmits,
the slot counter (slot ID) is incremented to allow for the next frame.

ni.com1108

NI-XNET 20.5

The total dynamic segment length is determined by multiplying this property by the
Number Of Minislots property. The total dynamic segment length must be shorter
than the Macro Per Cycle property minus the total static segment length.

The range for this property is 2–63 MT.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Minislot Action Point Offset

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayMinislotActPt

Description

This property specifies the number of macroticks (MT) the minislot action point is
offset from the beginning of a minislot.

© National Instruments 1109

NI-XNET 20.5

This property corresponds to the global cluster parameter gdMinislotActionP
ointOffset in the FlexRay Protocol Specification.

The action point is that point within a given slot where the actual transmission of a
frame starts. This is slightly later than the start of the slot to allow for a clock drift
between the network nodes.

The range for this property is 1–31 MT.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Network Management Vector Length

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayNMVecLen

ni.com1110

NI-XNET 20.5

Description

This property specifies the length of the Network Management vector (NMVector) in
a cluster.

Only frames transmitted in the static segment of the communication cycle use the
NMVector. The NMVector length specifies the number of bytes in the payload
segment of the FlexRay frame transmitted in the status segment that can be used as
the NMVector.

This property corresponds to the global cluster parameter gNetworkManagemen
tVectorLength in the FlexRay Protocol Specification.

The range for this property is 0–12 bytes.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:NIT

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

© National Instruments 1111

NI-XNET 20.5

Property ID

nxPropClst_FlexRayNIT

Description

This property is the Network Idle Time (NIT) duration, expressed in macroticks (MT).

This property corresponds to the global cluster parameter gdNIT in the FlexRay
Protocol Specification.

The NIT is a period at the end of a FlexRay communication cycle where no frames
are transmitted. The network nodes use it to re-sync their clocks to the common
network time.

Configure the NIT to be the Macro Per Cycle property minus the total static and
dynamic segment lengths minus the optional symbol window duration.

The range for this property is 2–805 MT.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:NIT Start

Data Type Direction Required? Default
u32 Read Only N/A Calculated from Other Cluster Properties

ni.com1112

NI-XNET 20.5

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayNITStart

Description

This property specifies the start of the Network Idle Time (NIT), expressed as the
number of macroticks (MT) from the start of the cycle.

The NIT is a period at the end of a FlexRay communication cycle where no frames
are transmitted. The network nodes use it to re-sync their clocks to the common
network time.

The range for this property is 8–15998 MT.

This property is calculated from other cluster properties. It is the total size of the
static and dynamic segments plus the symbol window length, which is optional in a
FlexRay communication cycle.

FlexRay:Number of Minislots

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayNumMinislt

Description

This property specifies the number of minislots in the dynamic segment.

© National Instruments 1113

NI-XNET 20.5

This property corresponds to the global cluster parameter gNumberOfMinislot
s in the FlexRay Protocol Specification.

In the FlexRay cycle dynamic segment, frames can have variable payload lengths.

Minislots are the dynamic segment time increments. In a minislot, a dynamic frame
can start transmission, but it usually spans several minislots. If no frame transmits,
the slot counter (slot ID) is incremented to allow for the next frame.

The total dynamic segment length is determined by multiplying this property by the
Minislot property. The total dynamic segment length must be shorter than the
Macro Per Cycle property minus the total static segment length.

The range for this property is 0–7986.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Number of Static Slots

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

ni.com1114

NI-XNET 20.5

Property ID

nxPropClst_FlexRayNumStatSlt

Description

This property specifies the number of static slots in the static segment.

This property corresponds to the global cluster parameter gNumberOfStaticSl
ots in the FlexRay Protocol Specification.

Each static slot is used to transmit one (static) frame on the bus.

The total static segment length is determined by multiplying this property by the
Static Slot property. The total static segment length must be shorter than the Macro
Per Cycle property.

The range for this property is 2–1023.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Offset Correction Start

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

© National Instruments 1115

NI-XNET 20.5

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayOffCorSt

Description

This property specifies the start of the offset correction phase within the Network
Idle Time (NIT), expressed as the number of macroticks (MT) from the start of the
cycle.

This property corresponds to the global cluster parameter gOffsetCorrection
Start in the FlexRay Protocol Specification.

The NIT is a period at the end of a FlexRay communication cycle where no frames
are transmitted. The network nodes use it to re-sync their clocks to the common
network time.

The Offset Correction Start is usually configured to be NITStart + 1, but can deviate
from that value. The range for this property is 9–15999 MT.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

ni.com1116

NI-XNET 20.5

FlexRay:Payload Length Dynamic Maximum

Data Type Direction Required? Default
u32 Read/Write N/A Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayPayldLenDynMax

Description

This property specifies the maximum of the payload lengths of all dynamic frames.

In the FlexRay cycle dynamic segment, frames can have variable payload length.

The range for this property is 0–254 bytes (even numbers only).

The value returned for this property is the maximum of the payload lengths of all
frames defined for the dynamic segment in the database.

Use this property to calculate the XNET Cluster FlexRay:Latest Usable Dynamic Slot
and FlexRay:Latest Guaranteed Dynamic Slot properties.

You may temporarily set this to a larger value (if it is not yet the maximum), and then
this value is returned for this property. But this setting is lost once the database is
closed, and after a reopen, the maximum of the frames is returned again. The
changed value is returned from the FlexRay:Payload Length Dynamic Maximum
property until the database is closed.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

© National Instruments 1117

NI-XNET 20.5

■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Payload Length Maximum

Data Type Direction Required? Default
u32 Read Only N/A Calculated from Other Cluster Properties

Property ID

nxPropClst_FlexRayPayldLenMax

Property Class

XNET Cluster

Description

This property returns the payload length of any frame (static or dynamic) in this
cluster with the longest payload.

The range for this property is 0–254 bytes (even numbers only). The payload
specifies that the frame transfers the data.

FlexRay:Payload Length Static

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

ni.com1118

NI-XNET 20.5

Property ID

nxPropClst_FlexRayPayldLenSt

Description

This property specifies the payload length of a static frame. All static frames in a
cluster have the same payload length.

This property corresponds to the global cluster parameter gPayloadLengthSta
tic in the FlexRay Protocol Specification.

The range for this property is 0–254 bytes (even numbers only).

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Static Slot

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

© National Instruments 1119

NI-XNET 20.5

Property ID

nxPropClst_FlexRayStatSlot

Description

This property specifies the duration of a slot in the static segment in macroticks
(MT).

This property corresponds to the global cluster parameter gdStaticSlot in the
FlexRay Protocol Specification.

Each static slot is used to transmit one (static) frame on the bus.

The static slot duration takes into account the XNET Cluster FlexRay:Payload Length
Static and FlexRay:Action Point Offset properties, as well as maximum propagation
delay.

In the FlexRay cycle static segment, all frames must have the same payload length;
therefore, the duration of a static frame is the same.

The total static segment length is determined by multiplying this property by the
FlexRay:Number Of Static Slots property. The total static segment length must be
shorter than the FlexRay:Macro Per Cycle property.

The range for this property is 4–661 MT.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

ni.com1120

NI-XNET 20.5

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Symbol Window

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRaySymWin

Description

This property specifies the symbol window duration, expressed in macroticks (MT).

This property corresponds to the global cluster parameter gdSymbolWindow in
the FlexRay Protocol Specification.

The symbol window is a slot after the static and dynamic segment, and is used to
transmit Collision Avoidance symbols (CAS) and/or Media Access Test symbols
(MTS). The symbol window is optional for a given cluster (the Symbol Window
property can be zero). A symbol transmission starts at the action point offset within
the symbol window.

The range for this property is 0–142 MT.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

© National Instruments 1121

NI-XNET 20.5

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Symbol Window Start

Data Type Direction Required? Default
u32 Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRaySymWinStart

Description

This property specifies the macrotick offset at which the symbol window begins
from the start of the cycle. During the symbol window, a channel sends a single
Media Test Access Symbol (MTS).

The range for this property is 8–15998 MT.

This property is calculated from other cluster properties. It is based on the total
static and dynamic segment size. It is set to zero if the Symbol Window property is 0
(no symbol window exists).

FlexRay:Sync Node Max

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

ni.com1122

NI-XNET 20.5

Property ID

nxPropClst_FlexRaySyncNodeMax

Description

This property specifies the maximum number of nodes that may send frames with
the sync frame indicator bit set to one.

This property corresponds to the global cluster parameter gSyncNodeMax in the
FlexRay Protocol Specification.

Sync frames define the zero points for the clock drift measurement. Startup frames
are special sync frames transmitted first after a network startup. There must be at
least two startup nodes in a network.

The range for this property is 2–15.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:TSS Transmitter

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

© National Instruments 1123

NI-XNET 20.5

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayTSSTx

Description

This property specifies the number of bits in the Transmission Start Sequence (TSS).
A frame transmission may be truncated at the beginning. The amount of truncation
depends on the nodes involved and the channel topology layout. For example, the
purpose of the TSS is to "open the gates" of an active star (that is, to cause the star
to properly set up input and output connections). During this setup, an active star
truncates a number of bits at the beginning of a communication element. The TSS
prevents the frame or symbol content from being truncated. You must set this
property to be greater than the expected worst case truncation of a frame.

This property corresponds to the global cluster parameter gdTSSTransmitter in
the FlexRay Protocol Specification.

The range for this property is 3–15 bit.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

ni.com1124

NI-XNET 20.5

FlexRay:Use Wakeup?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Cluster

Short Name

nxPropClst_FlexRayUseWakeup

Description

This property indicates whether the FlexRay cluster supports wakeup. This value is
set to True if the WAKE-UP tree is present in the FIBEX file. This values is set to False
if the WAKE-UP tree is not present in the FIBEX file.

When this property is True, the FlexRay cluster uses wakeup functionality;
otherwise, the FlexRay cluster does not use wakeup functionality.

When creating a new database, the default value of this property is false. However, if
you set any wakeup parameter (for example, FlexRay:Wakeup Symbol Rx Idle), this
property automatically is set to True, and the WAKE-UP tree is saved in the FIBEX file
when saved.

FlexRay:Wakeup Symbol Rx Idle

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayWakeSymRxIdl

© National Instruments 1125

NI-XNET 20.5

Description

This property specifies the number of bits the node uses to test the idle portion
duration of a received wakeup symbol. Collisions, clock differences, and other
effects can deform the transmitted wakeup pattern.

This property corresponds to the global cluster parameter gdWakeupSymbolRxI
dle in the FlexRay Protocol Specification.

The range for this property is 14–59 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Wakeup Symbol Rx Low

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayWakeSymRxLow

ni.com1126

NI-XNET 20.5

Description

This property specifies the number of bits the node uses to test the low portion
duration of a received wakeup symbol. This lower limit of zero bits must be received
for the receiver to detect the low portion. Active starts, clock differences, and other
effects can deform the transmitted wakeup pattern.

This property corresponds to the global cluster parameter gdWakeupSymbolRxL
ow in the FlexRay Protocol Specification.

The range for this property is 10–55 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Wakeup Symbol Rx Window

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

© National Instruments 1127

NI-XNET 20.5

Property ID

nxPropClst_FlexRayWakeSymRxWin

Description

This property specifies the size of the window used to detect wakeups. Detection of
a wakeup requires a low and idle period from one WUS (wakeup symbol) and a low
period from another WUS, to be detected entirely within a window of this size. Clock
differences and other effects can deform the transmitted wakeup pattern.

This property corresponds to the global cluster parameter gdWakeupSymbolRxW
indow in the FlexRay Protocol Specification.

The range for this property is 76–301 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Wakeup Symbol Tx Idle

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

ni.com1128

NI-XNET 20.5

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayWakeSymTxIdl

Description

This property specifies the number of bits the node uses to transmit the wakeup
symbol idle portion.

This property corresponds to the global cluster parameter gdWakeupSymbolTxI
dle in the FlexRay Protocol Specification.

The range for this property is 45–180 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Wakeup Symbol Tx Low

Data Type Direction Required? Default
u32 Read/Write Yes Read from Database

© National Instruments 1129

NI-XNET 20.5

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayWakeSymTxLow

Description

This property specifies the number of bits the node uses to transmit the wakeup
symbol low phase.

This property corresponds to the global cluster parameter gdWakeupSymbolTxL
ow in the FlexRay Protocol Specification.

The range for this property is 15–60 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this cluster, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

Frames

Data Type Direction Required? Default
nxDatabaseRef_t * Read Only N/A N/A

ni.com1130

NI-XNET 20.5

Property Class

XNET Cluster

Property ID

nxPropClst_FrmRefs

Description

Frames in this cluster.

Returns an array of refnums to all frames defined in this cluster. A frame is assigned
to a cluster when the frame object is created. You cannot change this assignment
afterwards.

To add a frame to a cluster, use nxdbCreateObject. To remove a frame from a
cluster, use nxdbDeleteObject.

Name (Short)

Data Type Direction Required? Default
char * Read/Write Yes Defined in nxdbCreateObject

Property Class

XNET Cluster

Property ID

nxPropClst_Name

Description

String identifying the cluster object.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the short name. The space (), period (.), and other special
characters are not supported within the name. The short name must begin with a

© National Instruments 1131

NI-XNET 20.5

letter (uppercase or lowercase) or underscore, and not a number. The short name is
limited to 128 characters.

If you use a FIBEX file, the short name comes from the file. If you use a CANdb (.db
c), LDF (.ldf), or NI-CAN (.ncd) file, no cluster name is stored in the file, so NI-
XNET uses the name Cluster. If you create the cluster yourself, it comes from the Na
me input of nxdbCreateObject.

A cluster name must be unique for all clusters in a database.

This short name does not include qualifiers to ensure that it is unique, such as the
database name. It is for display purposes.

You can write this property to change the cluster's short name.

PDUs

Data Type Direction Required? Default
nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET Cluster

Property ID

nxPropClst_PDURefs

Description

PDUs in this cluster.

Returns an array of database references (nxDatabaseRef_t) of all PDUs defined
in this cluster. A PDU is assigned to a cluster when the PDU object is created. You
cannot change this assignment afterwards.

To add a PDU to a cluster, use nxdbCreateObject. To remove a PDU from a
cluster, use nxdbDeleteObject.

ni.com1132

NI-XNET 20.5

PDUs Required?

Data Type Direction Required? Default
bool Read Only N/A N/A

Property Class

XNET Cluster

Short Name

nxPropClst_PDUsReqd

Description

Determines whether using PDUs in the database API is required for this cluster.

If this property returns false, it is safe to use signals as child objects of a frame
without PDUs. This behavior is compatible with NI-XNET 1.1 or earlier. Clusters from .
dbc, .ncd, or FIBEX 2 files always return false for this property, so using PDUs from
those files is not required.

If this property returns true, the cluster contains PDU configuration, which requires
reading the PDUs as frame child objects and then signals as PDU child objects, as
shown in the following figure.

Internally, the database always uses PDUs, but shows the same signal objects also
as children of a frame.

© National Instruments 1133

NI-XNET 20.5

The following conditions must be fulfilled for all frames in the cluster to return false
from the PDUs Required? property:

■ Only one PDU is mapped to the frame.
■ This PDU is not mapped to other frames.
■ The PDU Start Bit in the frame is 0.
■ The PDU Update Bit is not used.

If the conditions are not fulfilled for a given frame, signals from the frame are still
returned, but reading the property returns a warning.

The NI-XNET session supports frames requiring PDUs only for FlexRay. For frames
requiring PDUs on a CAN or LIN cluster, the XNET Frame Configuration Status
property and nxCreateSession return an error.

Protocol

Data Type Direction Required? Default
u32 Read/Write No CAN

Property Class

XNET Cluster

ni.com1134

NI-XNET 20.5

Property ID

nxPropClst_Protocol

Description

Determines the cluster protocol.

The values (enumeration) for this property are:

0 CAN
1 FlexRay
2 LIN

Schedules

Data Type Direction Required? Default
nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET Cluster

Property ID

nxPropClst_LINSchedules

Description

An array of LIN schedules defined in this cluster. You assign a LIN schedule to a
cluster when you create the LIN schedule object. You cannot change this assignment
afterwards. The schedules in this array are sorted alphabetically by schedule name.

Signals

Data Type Direction Required? Default
nxDatabaseRef_t * Read Only N/A N/A

© National Instruments 1135

NI-XNET 20.5

Property Class

XNET Cluster

Property ID

nxPropClst_SigRefs

Description

This property returns refnums to all XNET Signals defined in this cluster.

A signal is assigned to a cluster when the signal object is created. You cannot change
this assignment afterwards.

To add a signal to a cluster, use nxdbCreateObject. To remove a signal from a
cluster, use nxdbDeleteObject.

Tick

Data Type Direction Required? Default
f64 Read Only N/A N/A

Property Class

XNET Cluster

Property ID

nxPropClst_LINTick

Description

Relative time between LIN ticks (relative f64 in seconds). The LIN Schedule Entry
Delay property must be a multiple of this tick.

This tick is referred to as the "timebase" in the LIN specification.

ni.com1136

NI-XNET 20.5

The XNET ECU LIN Master property defines the Tick property in this cluster. You
cannot use the Tick property when there is no LIN Master property defined in this
cluster.

XNET Database Properties
This section includes the XNET Database properties.

Clusters

Data Type Direction Required? Default
nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET Database

Property ID

nxPropDatabase_ClstRefs

Description

Returns an array of refnums to XNET Clusters in this database.

A cluster is assigned to a database when the cluster object is created. You cannot
change this assignment afterwards.

FIBEX and AUTOSAR files can contain any number of clusters, and each cluster uses
a unique name.

For CANdb (.dbc), LDF (.ldf), or NI-CAN (.ncd) files, the file contains only one
cluster, and no cluster name is stored in the file. For these database formats, NI-
XNET uses the name Cluster for the single cluster.

nxPropDatabase_Name

Data Type Direction Required? Default
char* Read Only N/A N/A

© National Instruments 1137

NI-XNET 20.5

Property Class

XNET Database

Property ID

nxPropDatabase_Name

Description

Returns the name of the database alias or in-memory database. If the database was
opened using a file path that does not correlate to an assigned alias, a unique
identifier based on file name and content is returned.

ShowInvalidFromOpen?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Database

Property ID

nxPropDatabase_ShowInvalidFromOpen

Description

Shows frames and signals that are invalid at database open time.

After opening a database, this property always is set to false, meaning that invalid
clusters, frames, and signals are not returned in properties that return XNET I/O
Names for the database (for example, XNET Cluster Frames and XNET Frame
Signals). Invalid clusters, frames, and signals are incorrectly defined and therefore
cannot be used in the bus communication. The false setting is recommended when
you use the database to create XNET sessions.

In case the database was opened to correct invalid configuration (for example, in a
database editor), you must set the property to true prior to reading properties that

ni.com1138

NI-XNET 20.5

return XNET I/O Names for the database (for example, XNET Cluster Frames and
XNET Frame Signals.

For invalid objects, the XNET Cluster Configuration Status, XNET Frame
Configuration Status, and XNET Signal Configuration Status properties return an
error code that explains the problem. For valid objects, Configuration Status returns
success (no error).

Clusters, frames, and signals that became invalid after the database is opened are
still returned from the XNET Database Clusters, XNET Cluster Frames, and XNET
Frame Signals properties, even if ShowInvalidFromOpen? is false and Configuration
Status returns an error code. For example, if you open the frame with valid
properties, then you set the Start Bit beyond the payload length, the Configuration
Status returns an error, but the frame is returned from XNET Cluster Frames.

XNET Device Properties
The XNET Device properties provide information about a specific NI-XNET hardware
device. Within NI-XNET, the term device refers to your National Instruments CAN/
FlexRay/LIN hardware product, such as a PXI or PCI card.

You obtain the handle to a specific device using the XNET System properties.

Form Factor

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Device

Property ID

nxPropDev_FormFac

Description

Returns the XNET board physical form factor.

© National Instruments 1139

NI-XNET 20.5

Enumeration Value Define
PXI 0 nxDevForm_PXI
PCI 1 nxDevForm_PCI
C Series 2 nxDevForm_cSeries
PXI Express 3 nxDevForm_PXIe
USB 4 nxDevForm_USB
PCIe 5 nxDevForm_PCIe

Interfaces

Data Type Direction Required? Default
u32[] Read Only No N/A

Property Class

XNET Device

Property ID

nxPropDev_IntfRefs

Description

Returns an array of handles to all interfaces contained within this physical hardware
device.

Interfaces (All)

Data Type Direction Required? Default
u32[] Read Only No N/A

Property Class

XNET Device

Property ID

nxPropDev_IntfRefsAll

ni.com1140

NI-XNET 20.5

Description

Returns an array of handles to all interfaces contained within this physical hardware
device, including those not equipped with a transceiver cable.

Number of Ports

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Device

Property ID

nxPropDev_NumPorts

Description

Returns the number of physical port connectors on the XNET board.

Remarks

For example, returns 2 for an NI PCI-8517 two-port FlexRay device.

Number of Ports (All)

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Device

Property ID

nxPropDev_NumPortsAll

© National Instruments 1141

NI-XNET 20.5

Description

Returns the number of physical port connectors on the XNET board, including those
not equipped with a Transceiver Cable.

Remarks

For example, returns 6 for a PXIe-8510 6-port device.

Product Name

Data Type Direction Required? Default
string Read Only No N/A

Property Class

XNET Device

Property ID

nxPropDev_Name

Description

Returns the XNET device product name.

Remarks

For example, returns NI PCI-8517 (2 ports) for an NI PCI-8517 device.

Product Number

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Device

ni.com1142

NI-XNET 20.5

Property ID

nxPropDev_ProductNum

Description

Returns the numeric portion of the XNET device product name.

Remarks

For example, returns 8517 for an NI PCI-8517 two-port FlexRay device.

Serial Number

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Device

Property ID

nxPropDev_SerNum

Description

Returns the serial number associated with the XNET device.

Remarks

The serial number is written in hex on a label on the physical XNET board. Convert
the return value from this property to hex to match the label.

Slot Number

Data Type Direction Required? Default
u32 Read Only No N/A

© National Instruments 1143

NI-XNET 20.5

Property Class

XNET Device

Property ID

nxPropDev_SlotNum

Description

Physical slot where the device (module) is located.

For PXI and C Series, this is the slot number within the chassis.

XNET ECU Properties
This section includes the XNET ECU properties.

Cluster

Data Type Direction Required? Default
nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_ClstRef

Description

Refnum to the parent cluster to which the ECU is connected.

The parent cluster is determined when the ECU object is created. You cannot change
it afterwards.

ni.com1144

NI-XNET 20.5

Comment

Data Type Direction Required? Default
char * Read/Write No Empty String

Property Class

XNET ECU

Property ID

nxPropECU_Comment

Description

Comment describing the ECU object.

A comment is a string containing up to 65535 characters.

Configuration Status

Data Type Direction Required? Default
i32 Read Only N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_ConfigStatus

Description

The ECU object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to the n
xStatusToString error code input to convert the value to a text description of
the configuration problem.

© National Instruments 1145

NI-XNET 20.5

By default, incorrectly configured ECUs in the database are not returned from the
XNET Cluster ECUs property because they cannot be used in the bus
communication. You can change this behavior by setting the XNET Database
ShowInvalidFromOpen? property to true. When the configuration status of an ECU
became invalid after the database is opened, the ECU still is returned from the ECUs
property even if ShowInvalidFromOpen? is false.

FlexRay:Coldstart?

Data Type Direction Required? Default
bool Read Only N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_FlexRayIsColdstart

Description

Indicates that the ECU is sending a startup frame.

This property is valid only for ECUs connected to a FlexRay bus. It returns true when
one of the frames this ECU transmits (refer to the XNET ECU Frames Transmitted
property) has the XNET Frame FlexRay:Startup? property set to true. You can
determine the frame transmitting the startup using the XNET ECU FlexRay:Startup
Frame property. An ECU can send only one startup frame on the FlexRay bus.

FlexRay:Connected Channels

Data Type Direction Required? Default
u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET ECU

ni.com1146

NI-XNET 20.5

Short Name

nxPropECU_FlexRayConnectedChs

Description

This property specifies the channel(s) that the FlexRay ECU (node) is physically
connected to. The default value of this property is connected to all channels
available on the cluster.

This property corresponds to the pChannels node parameter in the FlexRay
Protocol Specification.

The values supported for this property (enumeration) are A = 1, B = 2, and A and B =
3.

FlexRay:Startup Frame

Data Type Direction Required? Default
nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_FlexRayStartupFrameRef

Description

Returns the refnum to the startup frame the ECU sends.

This property is valid only for ECUs connected to a FlexRay bus. If the ECU transmits
a frame (refer to the XNET ECU Frames Transmitted property) with the XNET Frame
FlexRay:Startup? property set to true, this property returns this frame. Otherwise, it
is empty.

© National Instruments 1147

NI-XNET 20.5

FlexRay:Wakeup Channels

Data Type Direction Required? Default
u32 Read/Write No None

Property Class

XNET ECU

Short Name

nxPropECU_FlexRayWakeupChs

Description

This property specifies the channel(s) on which the FlexRay ECU (node) is allowed to
generate the wakeup pattern. The default value of this property is not to be a
wakeup node.

When importing from a FIBEX file, this parameter corresponds to a WAKE-UP-
CHANNEL being set to True for each connected channel.

The values supported for this property (enumeration) are A = 1, B = 2, A and B = 3,
and None = 4.

FlexRay:Wakeup Pattern

Data Type Direction Required? Default
u32 Read/Write No 2

Property Class

XNET ECU

Short Name

nxPropECU_FlexRayWakeupPtrn

ni.com1148

NI-XNET 20.5

Description

This property specifies the number of repetitions of the wakeup symbol that are
combined to form a wakeup pattern when the FlexRay ECU (node) enters the
POC:WAKEUP_SEND state. The POC:WAKEUP_SEND state is one of the FlexRay
controller state transitions during the wakeup process. In this state, the controller
sends the wakeup pattern on the specified Wakeup Channel and checks for
collisions on the bus.

This property is used when FlexRay:Wakeup Channels is set to a value other than
None and FlexRay:Use Wakeup? is True.

This property corresponds to the pWakeupPattern node parameter in the
FlexRay Protocol Specification.

The supported values for this property are 2–63.

Frames Received

Data Type Direction Required? Default
nxDatabaseRef_t * Read/Write No Empty Array

Property Class

XNET ECU

Property ID

nxPropECU_RxFrmRefs

Description

Returns an array of refnums to frames the ECU receives.

This property defines all frames the ECU receives. All frames an ECU receives in a
given cluster must be defined in the same cluster.

Frames Transmitted

Data Type Direction Required? Default

© National Instruments 1149

NI-XNET 20.5

nxDatabaseRef_t * Read/Write No Empty Array

Property Class

XNET ECU

Property ID

nxPropECU_FrmsTx

Description

Returns an array of refnums to frames the ECU transmits.

This property defines all frames the ECU transmits. All frames an ECU transmits in a
given cluster must be defined in the same cluster.

LIN Master

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET ECU

Property ID

nxPropECU_LINMaster

Description

Determines whether the ECU is a LIN master (true) or LIN slave (false).

LIN Version

Data Type Direction Required? Default
u32 Read/Write Yes N/A

ni.com1150

NI-XNET 20.5

Property Class

XNET ECU

Property ID

nxPropECU_LINProtocolVer

Description

Version of the LIN standard this ECU uses. The values (enumeration) for this
property are:

■ nxLINProtocolVer_1_2
■ nxLINProtocolVer_1_3
■ nxLINProtocolVer_2_0
■ nxLINProtocolVer_2_1

LIN:Initial NAD

Data Type Direction Required? Default
u32 Read/Write N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_LINInitialNAD

Description

Initial NAD of a LIN slave node. NAD is the address of a slave node and is used in
diagnostic services. Initial NAD is replaced by configured NAD with node
configuration services. This property must be defined before reading, either by
writing to the property or by importing from an LDF.

© National Instruments 1151

NI-XNET 20.5

Caution This property is not saved in the FIBEX database. You can import it only from an LDF
file.

LIN:Configured NAD

Data Type Direction Required? Default
u32 Read/Write N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_LINConfigNAD

Description

Configured NAD of a LIN slave node. NAD is the address of a slave node and is used
in diagnostic services. Initial NAD is replaced by configured NAD with node
configuration services. This property must be defined before reading, either by
writing to the property or by importing from an LDF.

Caution This property is not saved in the FIBEX database. You can import it only from an LDF
file.

LIN:Supplier ID

Data Type Direction Required? Default
u32 Read/Write N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_LINSupplierID

ni.com1152

NI-XNET 20.5

Description

Supplier ID is a 16-bit value identifying the supplier of the LIN node (ECU). This
property must be defined before reading, either by writing to the property or by
importing from an LDF.

Caution This property is not saved in the FIBEX database. You can import it only from an LDF
file.

LIN:Function ID

Data Type Direction Required? Default
u32 Read/Write N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_LINFunctionID

Description

Function ID is a 16-bit value identifying the function of the LIN node (ECU). This
property must be defined before reading, either by writing to the property or by
importing from an LDF.

Caution This property is not saved in the FIBEX database. You can import it only from an LDF
file.

LIN:P2min

Data Type Direction Required? Default
Double Read/Write N/A N/A

Property Class

XNET ECU

© National Instruments 1153

NI-XNET 20.5

Property ID

nxPropECU_LINP2min

Description

The minimum time in seconds between reception of the last frame of the diagnostic
request and the response sent by the node. This property must be defined before
reading, either by writing to the property or by importing from an LDF.

Caution This property is not saved in the FIBEX database. You can import it only from an LDF
file.

LIN:STmin

Data Type Direction Required? Default
Double Read/Write N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_LINSTmin

Description

The minimum time in seconds the node requires to prepare for the next frame of the
diagnostic service. This property must be defined before reading, either by writing
to the property or by importing from an LDF.

Caution This property is not saved in the FIBEX database. You can import it only from an LDF
file.

Name (Short)

Data Type Direction Required? Default
char * Read/Write Yes Defined in nxdbCreateObject

ni.com1154

NI-XNET 20.5

Property Class

XNET ECU

Property ID

nxPropECU_Name

Description

String identifying the ECU object.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the short name. The space (), period (.), and other special
characters are not supported within the name. The short name must begin with a
letter (uppercase or lowercase) or underscore, and not a number. The short name is
limited to 128 characters.

An ECU name must be unique for all ECUs in a cluster.

This short name does not include qualifiers to ensure that it is unique, such as the
database and cluster name. It is for display purposes.

You can write this property to change the ECU's short name.

SAE J1939:Preferred Address

Data Type Direction Required? Default
u32 Read/Write No 254 (Null)

Property Class

XNET ECU

Property ID

nxPropECU_J1939PreferredAddress

© National Instruments 1155

NI-XNET 20.5

Description

The preferred J1939 node address to be used when simulating this ECU. If you
assign this ECU to an XNET session (nxPropSession_J1939ECU property), XNET will
start address claiming for this address using the nxPropECU_J1939NodeName
property and use the address for the session when the address is granted.

SAE J1939:Node Name

Data Type Direction Required? Default
u64 Read/Write No 0

Property Class

XNET ECU

Property ID

nxPropECU_J1939NodeName

Description

The preferred J1939 node address to be used when simulating this ECU. If you
assign this ECU to an XNET session (nxPropSession_J1939ECU property), XNET will
start address claiming for this address using this node name and the
nxPropSession_J1939PreferredAddress property.

XNET Frame Properties
This section includes the XNET Frame properties.

Application Protocol

Data Type Direction Required? Default
u32 Read/Write No Read from Database

Property Class

XNET Frame

ni.com1156

NI-XNET 20.5

Property ID

nxPropFrm_ApplicationProtocol

Description

This property specifies the frame's application protocol. It is an enumerated list of
two values:

Enumeration Value Description
None 0 The default application protoco

l.
J1939 1 Indicates J1939 frames. The val

ue enables the following featur
es:

■ Sending/receiving long
frames as the SAE J1939 s
pecification specifies, usi
ng the J1939 transport pr
otocol.
■ Using a special notatio
n for J1939 identifiers.

CAN:Extended Identifier?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Frame

Property ID

nxPropFrm_CANExtID

© National Instruments 1157

NI-XNET 20.5

Description

This property determines whether the XNET Frame Identifier property in a CAN
cluster represents a standard 11-bit (false) or extended 29-bit (true) arbitration ID.

CAN:I/O Mode

Data Type Direction Required? Default
u32 Read/Write No Cluster I/O Mode

Property Class

XNET Frame

Property ID

nxPropFrm_CANioMode

Description

This property specifies the frame's I/O mode.

■ nxCANioMode_CAN (0)
■ nxCANioMode_CAN_FD (1)
■ nxCANioMode_CAN_FD_BRS (2)

This property is used in ISO CAN FD+BRS mode only. In this mode, you can specify
every frame to be transmitted in CAN 2.0, CAN FD, or CAN FD+BRS mode. CAN
FD+BRS frames require the interface to be in CAN FD+BRS mode; otherwise, it is
transmitted in CAN FD mode.

When the interface is in Non-ISO CAN FD or Legacy ISO CAN FD mode, this property
is disregarded. In Non-ISO CAN FD and Legacy ISO CAN FD mode, you must use the
Interface:CAN:Transmit I/O Mode property to switch the transmit mode.

When the assigned database does not define the property in ISO CAN FD mode, the
frames are transmitted with the Interface:CAN:I/O Mode property.

ni.com1158

NI-XNET 20.5

CAN:Timing Type

Data Type Direction Required? Default
u32 Read/Write No Event Data (If Not in Database)

Property Class

XNET Frame

Property ID

nxPropFrm_CANTimingType

Description

Specifies the CAN frame timing.

Because this property specifies the behavior of the frame's transfer within the
embedded system (for example, a vehicle), it describes the transfer between ECUs in
the network. In the following description, transmitting ECU refers to the ECU that
transmits the CAN data frame (and possibly receives the associated CAN remote
frame). Receiving ECU refers to an ECU that receives the CAN data frame (and
possibly transmits the associated CAN remote frame).

When you use the frame within an NI-XNET session, an output session acts as the
transmitting ECU, and an input session acts as a receiving ECU. For a description of
how these CAN timing types apply to the NI-XNET session mode, refer to CAN Timing
Type and Session Mode.

The CAN timing types (decimal value in parentheses) are:

nxFrmCANTiming_CyclicData (0)
The transmitting ECU transmits the CAN data frame in a cyclic (periodic) manner.
The XNET Frame CAN:Transmit Time property defines the time between cycles. The
transmitting ECU ignores CAN remote frames received for this frame.

nxFrmCANTiming_EventData (1)
The transmitting ECU transmits the CAN data frame in an event-driven manner. The
XNET Frame CAN:Transmit Time property defines the minimum interval. For NI-

© National Instruments 1159

NI-XNET 20.5

XNET, the event occurs when you call nxWrite. The transmitting ECU ignores CAN
remote frames received for this frame.

nxFrmCANTiming_CyclicRemote (2)
The receiving ECU transmits the CAN remote frame in a cyclic (periodic) manner. The
XNET Frame CAN:Transmit Time property defines the time between cycles. The
transmitting ECU responds to each CAN remote frame by transmitting the
associated CAN data frame.

nxFrmCANTiming_EventRemote (3)
The receiving ECU transmits the CAN remote frame in an event-driven manner. The
XNET Frame CAN:Transmit Time property defines the minimum interval. For NI-
XNET, the event occurs when you call nxWriteFrame. The transmitting ECU
responds to each CAN remote frame by transmitting the associated CAN data frame.

nxFrmCANTiming_CyclicEvent (4)
This timing type is a combination of the cyclic and event timing. The frame is
transmitted when you call the nxWriteFrame, but also periodically sending the
last recent values written. The XNET Frame CAN:Transmit Time property defines the
cycle period. There is no minimum interval time defined in this mode, so be careful
not to write too frequently to avoid creating a high busload.

If you are using a FIBEX or AUTOSAR database, this property is a required part of the
XML schema for a frame, so the default (initial) value is obtained from the file.

If you are using a CANdb (.dbc) database, this property is an optional attribute in
the file. If NI-XNET finds an attribute named GenMsgSendType, that attribute is
the default value of this property. If the GenMsgSendType attribute begins with
cyclic, this property's default value is Cyclic Data; otherwise, it is Event Data. If the
CANdb file does not use the GenMsgSendType attribute, this property uses a
default value of Event Data, which you can change in your application.

If you are using an .ncd database or an in-memory database (XNET Create Frame),
this property uses a default value of Event Data. Within your application, change this
property to the desired timing type.

ni.com1160

NI-XNET 20.5

CAN:Transmit Time

Data Type Direction Required? Default
Double Read/Write No 0.1 (If Not in Database)

Property Class

XNET Frame

Property ID

nxPropFrm_CANTxTime

Description

Specifies the time between consecutive frames from the transmitting ECU.

The data type is 64-bit floating point (DBL). The units are in seconds.

Although the fractional part of the DBL data type can provide resolution of
picoseconds, the NI-XNET CAN transmit supports an accuracy of 500 µs. Therefore,
when used within an NI-XNET output session, this property is rounded to the
nearest 500 µs increment (0.0005).

For an XNET Frame CAN:Timing Type of Cyclic Data or Cyclic Remote, this property
specifies the time between consecutive data/remote frames. A time of 0.0 is invalid.

For an XNET Frame CAN:Timing Type of Event Data or Event Remote, this property
specifies the minimum time between consecutive data/remote frames when the
event occurs quickly. This is also known as the debounce time or minimum interval.
The time is measured from the end of previous frame (acknowledgment) to the start
of the next frame. A time of 0.0 specifies no minimum (back to back frames allowed).

If you are using a FIBEX or AUTOSAR database, this property is a required part of the
XML schema for a frame, so the default (initial) value is obtained from the file.

If you are using a CANdb (.dbc) database, this property is an optional attribute in
the file. If NI-XNET finds an attribute named GenMsgCycleTime, that attribute is
interpreted as a number of milliseconds and used as the default value of this
property. If the CANdb file does not use the GenMsgCycleTime attribute, this

© National Instruments 1161

NI-XNET 20.5

property uses a default value of 0.1 (100 ms), which you can change in your
application.

If you are using a .ncd database or an in-memory database (XNET Create Frame),
this property uses a default value of 0.1 (100 ms). Within your application, change
this property to the desired time.

Cluster

Data Type Direction Required? Default
nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET Frame

Property ID

nxPropFrm_ClusterRef

Description

This property returns the refnum to the parent cluster in which the frame has been
created. You cannot change the parent cluster after the frame object has been
created.

Comment

Data Type Direction Required? Default
char * Read/Write No Empty String

Property Class

XNET Frame

Property ID

nxPropFrm_Comment

ni.com1162

NI-XNET 20.5

Description

Comment describing the frame object.

A comment is a string containing up to 65535 characters.

Configuration Status

Data Type Direction Required? Default
i32 Read Only N/A N/A

Property Class

XNET Frame

Property ID

nxPropFrm_ConfigStatus

Description

The frame object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to the n
xStatusToString error code input to convert the value to a text description of
the configuration problem.

By default, incorrectly configured frames in the database are not returned from the
XNET Cluster Frames property because they cannot be used in the bus
communication. You can change this behavior by setting the XNET Database
ShowInvalidFromOpen? property to true. When a frame configuration status
became invalid after the database is opened, the frame still is returned from the
XNET Cluster Frames property even if ShowInvalidFromOpen? is false.

Examples of invalid frame configuration:

■ A required property of the frame or an object contained in this frame has not
been defined. For example, Frame Payload Length.
■ The number of bytes specified for this frame is incorrect. CAN frames must
use 0 to 8 bytes. FlexRay frames must use 0 to 254 bytes (even numbers only).

© National Instruments 1163

NI-XNET 20.5

■ The CAN arbitration ID is invalid. The standard ID is greater than 0x7FF (11
bits) or the extended ID is greater than 0x1FFFFFFF (29 bits).
■ The FlexRay frame is specified to use channels not defined in the cluster. For
example, the XNET Cluster FlexRay:Channels property is set to Channel A only,
but the XNET Frame FlexRay:Channel Assignment property is set to Channel A
and B.
■ The XNET Frame FlexRay:Channel Assignment property in this dynamic
FlexRay frame is set to Channel A and B, but dynamic frames can be sent on
only one channel (A or B).

Default Payload

Data Type Direction Required? Default
u8 * Read/Write No Array of All 0 or 0xFF (J1939)

Property Class

XNET Frame

Property ID

nxPropFrm_DefaultPayload

Description

The frame default payload, specified as an array of bytes (U8).

The number of bytes in the array must match the XNET Frame Payload Length
property.

This property's initial value is an array of all 0, except the frame is located in a CAN
cluster with J1939 application protocol, which uses 0xFF by default. For the
database formats NI-XNET supports, this property is not provided in the database
file.

When you use this frame within an NI-XNET session, this property's use varies
depending on the session mode. The following sections describe this property's
behavior for each session mode.

ni.com1164

NI-XNET 20.5

Frame Output Single-Point and Frame Output Queued Modes
Use this property when a frame transmits prior to a call to nxWrite. This can occur
when you set the XNET Session AutoStart? property to false and call nxStart prior
to nxWrite. When AutoStart? is true (default), the first call to nxWrite also starts
frame transmit, so this property is not used.

The following frame configurations potentially can transmit prior to a call to nxWri
te:

■ XNET Frame CAN:Timing Type of Cyclic Data.
■ XNET Frame CAN:Timing Type of Cyclic Remote (for example, a remote
frame received prior to a call to nxWrite).
■ XNET Frame CAN:Timing Type of Event Remote (for example, a remote
frame received prior to a call to nxWrite).
■ XNET Frame CAN:Timing Type of Cyclic.
■ LIN frame in a schedule entry of type unconditional.

The following frame configurations cannot transmit prior to a call to nxWrite, so
this property is not used:

■ XNET Frame CAN:Timing Type of Event Data.
■ XNET Frame FlexRay:Timing Type of Event.
■ LIN frame in a schedule entry of type sporadic or event triggered.

Frame Output Stream Mode
This property is not used. Transmit is limited to frames provided to nxWrite.

Signal Output Single-Point, Signal Output Waveform, and Signal Output
XY Modes
Use this property when a frame transmits prior to a call to nxWrite. Refer to Frame
Output Single-Point and Frame Output Queued Modes for a list of applicable frame
configurations.

© National Instruments 1165

NI-XNET 20.5

This property is used as the initial payload, then each XNET Signal Default Value is
mapped into that payload, and the result is used for the frame transmit.

Frame Input Stream and Frame Input Queued Modes
This property is not used. These modes do not return data prior to receiving frames.

Frame Input Single-Point Mode
This property is used for frames nxRead returns prior to receiving the first frame.

Signal Input Single-Point, Signal Input Waveform, and Signal Input XY
Modes
This property is not used. Each XNET Signal Default Value is used when nxRead is
called prior to receiving the first frame.

FlexRay:Base Cycle

Data Type Direction Required? Default
u32 Read/Write Yes N/A

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayBaseCycle

Description

The first communication cycle in which a frame is sent.

In FlexRay, a communication cycle contains a number of slots in which a frame can
be sent. Every node on the bus provides a 6-bit cycle counter that counts the cycles
from 0 to 63 and then restarts at 0. The cycle number is common for all nodes on the
bus.

ni.com1166

NI-XNET 20.5

NI-XNET has two mechanisms for changing the frame sending frequency:

■ If the frame should be sent faster than the cycle period, use In-Cycle
Repetition (refer to the XNET Frame FlexRay:In Cycle Repetitions:Identifiers
property).
■ If the frame should be sent slower than the cycle period, use this property
and the XNET Frame FlexRay:Cycle Repetition property.

The second method is called cycle multiplexing. It allows sending multiple frames in
the same slot, but on different cycle counters.

If a frame should be sent in every cycle, set this property to 0 and the XNET Frame
FlexRay:Cycle Repetition property to 1. For cycle multiplexing, set the FlexRay:Cycle
Repetition property to 2, 4, 8, 16, 32, or 64.

Example:

■ FrameA and FrameB are both sent in slot 12.
■ FrameA: The FlexRay:Base Cycle property is 0 and XNET Frame
FlexRay:Cycle Repetition property is 2. This frame is sent when the cycle
counter has the value 0, 2, 4, 6,
■ FrameB: The FlexRay:Base Cycle property is 1 and XNET Frame
FlexRay:Cycle Repetition property is 2. This frame is sent when the cycle
counter has the value 1, 3, 5, 7,

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this frame, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

© National Instruments 1167

NI-XNET 20.5

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Channel Assignment

Data Type Direction Required? Default
u32 Read/Write Yes N/A

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayChAssign

Description

This property determines on which FlexRay channels the frame must be
transmitted. A frame can be transmitted only on existing FlexRay channels,
configured in the XNET Cluster FlexRay:Channels property.

Frames in the dynamic FlexRay segment cannot be sent on both channels; they
must use either channel A or B. Frames in the dynamic segment use slot IDs greater
than the number of static slots cluster parameter.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this frame, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

ni.com1168

NI-XNET 20.5

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:Cycle Repetition

Data Type Direction Required? Default
u32 Read/Write Yes N/A

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayCycleRep

Description

The number of cycles after which a frame is sent again.

In FlexRay, a communication cycle contains a number of slots in which a frame can
be sent. Every node on the bus provides a 6-bit cycle counter that counts the cycles
from 0 to 63 and then restarts at 0. The cycle number is common for all nodes on the
bus.

NI-XNET has two mechanisms for changing the frame sending frequency:

■ If the frame should be sent faster than the cycle period, use In-Cycle
Repetition (refer to the XNET Frame FlexRay:In Cycle Repetitions:Identifiers
property).
■ If the frame should be sent slower than the cycle period, use the XNET
Frame FlexRay:Base Cycle property and this property.

The second method is called cycle multiplexing. It allows sending multiple frames in
the same slot, but on different cycle counters.

If a frame should be sent in every cycle, set the XNET Frame FlexRay:Base Cycle
property property to 0 and this property to 1. For cycle multiplexing, set this
property to 2, 4, 8, 16, 32, or 64.

© National Instruments 1169

NI-XNET 20.5

Examples:

■ FrameA and FrameB are both sent in slot 12.
■ FrameA: The XNET Frame FlexRay:Base Cycle property is set to 0 and
FlexRay:Cycle Repetition property is set to 2. This frame is sent when the cycle
counter has the value 0, 2, 4, 6,
■ FrameB: The XNET Frame FlexRay:Base Cycle property is set to 1 and
FlexRay:Cycle Repetition property is set to 2. This frame is sent when the cycle
counter has the value 1, 3, 5, 7,

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this frame, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

FlexRay:In Cycle Repetitions:Channel Assignments

Data Type Direction Required? Default
u32 * Read/Write No Empty Array

Property Class

XNET Frame

ni.com1170

NI-XNET 20.5

Property ID

nxPropFrm_FlexRayInCycRepChAssigns

Description

FlexRay channels for in-cycle frame repetition.

A FlexRay frame can be sent multiple times per cycle. The XNET Frame
FlexRay:Channel Assignment property defines the first channel assignment in the
cycle. This property defines subsequent channel assignments. The XNET Frame
FlexRay:In Cycle Repetitions:Identifiers property defines the corresponding slot IDs.
Both properties are arrays of maximum three values, determining the slot ID and
channel assignments for the frame. Values at the same array position are
corresponding; therefore, both arrays must have the same size.

You must set the XNET Frame FlexRay:Channel Assignment property before setting
this property. The FlexRay:Channel Assignment is a required property that is
undefined when a new frame is created. When FlexRay:Channel Assignment is
undefined, setting FlexRay:In Cycle Repetitions:Channel Assignments returns an
error.

FlexRay:In Cycle Repetitions:Enabled?

Data Type Direction Required? Default
bool Read Only No False

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayInCycRepEnabled

Description

FlexRay in-cycle frame repetition is enabled.

© National Instruments 1171

NI-XNET 20.5

A FlexRay frame can be sent multiple times per cycle. The XNET Frame Identifier
property defines the first slot ID in the cycle. The XNET Frame FlexRay:In Cycle
Repetitions:Identifiers property can define the subsequent slot IDs, and the
FlexRay:In Cycle Repetitions:Identifiers property defines the corresponding FlexRay
channels. Both properties are arrays of maximum three values determining the slot
ID and FlexRay channels for the frame. Values at the same array position are
corresponding; therefore, both arrays must have the same size.

This property returns true when at least one in-cycle repetition has been defined,
which means that both the FlexRay:In Cycle Repetitions:Identifiers and XNET Frame
FlexRay:In Cycle Repetitions:Channel Assignments arrays are not empty.

This property returns false when at least one of the previously mentioned arrays is
empty. In this case, in-cycle-repetition is not used.

FlexRay:In Cycle Repetitions:Identifiers

Data Type Direction Required? Default
u32 * Read/Write No Empty Array

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayInCycRepIDs

Description

FlexRay in-cycle repetition slot IDs.

A FlexRay frame can be sent multiple times per cycle. The XNET Frame Identifier
property defines the first slot ID in the cycle. The FlexRay:In Cycle
Repetitions:Identifiers property defines subsequent slot IDs. The XNET Frame
FlexRay:In Cycle Repetitions:Channel Assignments property defines the
corresponding FlexRay channel assignments. Both properties are arrays of
maximum three values, determining the subsequent slot IDs and channel

ni.com1172

NI-XNET 20.5

assignments for the frame. Values at the same array position are corresponding;
therefore, both arrays must have the same size.

You must set the XNET Frame Identifier property before setting the FlexRay:In Cycle
Repetitions:Identifiers property. Identifier is a required property that is undefined
when a new frame is created. When Identifier is undefined, setting in-cycle
repetition slot IDs returns an error.

FlexRay:Payload Preamble?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayPreamble

Description

This property determines whether payload preamble is used in a FlexRay frame:

■ For frames in the static segment, it indicates that the network management
vector is transmitted at the beginning of the payload.
■ For frames in the dynamic segment, it indicates that the message ID is
transmitted at the beginning of the payload.

FlexRay:Startup?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Frame

© National Instruments 1173

NI-XNET 20.5

Property ID

nxPropFrm_FlexRayStartup

Description

This property determines whether the frame is a FlexRay startup frame. FlexRay
startup frames always are FlexRay sync frames also.

■ When this property is set to true, the XNET Frame FlexRay:Sync? property
automatically is set to true.
■ When this property is set to false, the XNET Frame FlexRay:Sync? property is
not changed.
■ When the XNET Frame FlexRay:Sync? property is set to false, this property
automatically is set to false.
■ When the XNET Frame FlexRay:Sync? property is set to true, this property is
not changed.

An ECU can send only one startup frame. The startup frame, if an ECU transmits it, is
returned from the XNET ECU FlexRay:Startup Frame property.

FlexRay:Sync?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayStartup

Description

This property determines whether the frame is a FlexRay sync frame. FlexRay
startup frames always are FlexRay sync frames also:

ni.com1174

NI-XNET 20.5

■ When this property is set to false, the XNET Frame FlexRay:Startup? property
is automatically set to false.
■ When this property is set to true, the XNET Frame FlexRay:Startup? property
is not changed.
■ When the XNET Frame FlexRay:Startup? property is set to true, this property
is set to true.
■ When the XNET Frame FlexRay:Startup? property is set to false, this property
is not changed.

An ECU can send only one sync frame.

FlexRay:Timing Type

Data Type Direction Required? Default
u32 Read/Write No Cyclic in Static Segment,

Event in Dynamic Segment

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayTimingType

Description

Specifies the FlexRay frame timing (decimal value in parentheses):

nxFrmFlexRayTiming_Cyclic (0)
Payload data transmits on every occurrence of the frame's slot.

nxFrmFlexRayTiming_Event (1)
Payload data transmits in an event-driven manner. Within the ECU that transmits
the frame, the event typically is associated with the availability of new data.

© National Instruments 1175

NI-XNET 20.5

This property's behavior depends on the FlexRay segment where the frame is
located: static or dynamic. If the frame's Identifier (slot) is less than or equal to the
cluster's Number Of Static Slots, the frame is static.

Static
Cyclic means no null frame is transmitted. If new data is not provided for the cycle,
the previous payload data transmits again.

Event means a null frame is transmitted when no event is pending for the cycle.

This property's default value for the static segment is Cyclic.

Dynamic
Cyclic means the frame transmits in its minislot on every cycle.

Event means the frame transmits in the minislot when the event is pending for the
cycle.

This property's default value for the dynamic segment is Event.

For a description of how these FlexRay timing types apply to the NI-XNET session
mode, refer to FlexRay Timing Type and Session Mode.

Identifier

Data Type Direction Required? Default
u32 Read/Write Yes N/A

Property Class

XNET Frame

Property ID

nxPropFrm_ID

Description

Determines the frame identifier.

ni.com1176

NI-XNET 20.5

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this frame, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

CAN
For CAN frames, this is the Arbitration ID.

When the XNET Frame CAN:Extended Identifier? property is set to false, this is the
standard CAN identifier with a size of 11 bits, which results in allowed range of
0-2047. However, the CAN standard disallows identifiers in which the first 7 bits are
all recessive, so the working range of identifiers is 0–2031.

When the XNET Frame CAN:Extended Identifier? property is set to true, this is the
extended CAN identifier with a size of 29 bits, which results in allowed range of 0–
536870911.

FlexRay
For FlexRay frames, this is the Slot ID in which the frame is sent. The valid value
range for a FlexRay Slot ID is 1–2047.

You also can send a FlexRay frame in multiple slots per cycle. You can define
subsequent slot IDs for the frame in the XNET Frame FlexRay:In Cycle
Repetitions:Identifiers property. Use this concept to increase a frame's sending
frequency. To decrease a frame's sending frequency and share the same slot for

© National Instruments 1177

NI-XNET 20.5

different frames depending on the cycle counter, refer to the XNET Frame
FlexRay:Base Cycle and XNET Frame FlexRay:Cycle Repetition properties.

The slot ID determines whether a FlexRay frame is sent in a static or dynamic
segment. If the slot ID is less than or equal to the XNET Cluster FlexRay:Number of
Static Slots property, the frame is sent in the communication cycle static segment;
otherwise, it is sent in the dynamic segment.

If the frame identifier is not in the allowed range, this is reported as an error in the
XNET Cluster Configuration Status property.

LIN

For LIN frames, this is the frame's ID (unprotected). The valid range for a LIN frame
ID is 0–63 (inclusive).

LIN:Checksum

Data Type Direction Required? Default
u32 Read Only N/A nxFrmLINChecksum_Enhanced

Property Class

XNET Frame

Property ID

nxPropFrm_LINChecksum

Description

Determines whether the LIN frame transmitted checksum is classic or enhanced.
The enhanced checksum considers the protected identifier when it is generated.

The values (enumeration) for this property are:

nxFrmLINChecksum_Classic 0
nxFrmLINChecksum_Enhanced 1

ni.com1178

NI-XNET 20.5

The checksum is determined from the LIN version of ECUs transmitting and
receiving the frame. The lower version of both ECUs is significant. If the LIN version
of both ECUs is 2.0 or higher, the checksum type is enhanced; otherwise, the
checksum type is classic.

Diagnostic frames (with decimal identifier 60 or 61) always use classic checksum,
even on LIN 2.x.

Mux:Data Multiplexer Signal

Data Type Direction Required? Default
nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET Frame

Property ID

nxPropFrm_MuxDataMuxSigRef

Description

Data multiplexer signal in the frame.

This property returns a refnum to the data multiplexer signal. If the data multiplexer
is not defined in the frame, the property returns 0. Use the XNET Frame Mux:Is Data
Multiplexed? property to determine whether the frame contains a multiplexer
signal.

You can create a data multiplexer signal by creating a signal and then setting the
XNET Signal Mux:Data Multiplexer? property to true.

A frame can contain only one data multiplexer signal.

Mux:Is Data Multiplexed?

Data Type Direction Required? Default
bool Read Only No False

© National Instruments 1179

NI-XNET 20.5

Property Class

XNET Frame

Property ID

nxPropFrm_MuxIsMuxed

Description

Frame is data multiplexed.

This property returns true if the frame contains a multiplexer signal. Frames
containing a multiplexer contain subframes that allow using bits of the frame
payload for different information (signals) depending on the multiplexer value.

Mux:Static Signals

Data Type Direction Required? Default
nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET Frame

Property ID

nxPropFrm_MuxStaticSigRefs

Description

Static signals in the frame.

Returns an array of refnums to signals in the frame that do not depend on the
multiplexer value. Static signals are contained in every frame transmitted, as
opposed to dynamic signals, which are transmitted depending on the multiplexer
value.

You can create static signals by specifying the frame as the parent object. You can
create dynamic signals by specifying a subframe as the parent.

ni.com1180

NI-XNET 20.5

If the frame is not multiplexed, this property returns the same array as the XNET
Frame Signals property.

Mux:Subframes

Data Type Direction Required? Default
nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET Frame

Property ID

nxPropFrm_MuxSubframeRefs

Description

Returns an array of references to subframes in the frame. A subframe defines a
group of signals transmitted using the same multiplexer value. Only one subframe
at a time is transmitted in the frame.

A subframe is defined by creating a subframe object as a child of a frame.

Name (Short)

Data Type Direction Required? Default
char * Read/Write Yes Defined in nxdbCreateObject

Property Class

XNET Frame

Property ID

nxPropFrm_Name

© National Instruments 1181

NI-XNET 20.5

Description

String identifying a frame object.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the short name. The space (), period (.), and other special
characters are not supported within the name. The short name must begin with a
letter (uppercase or lowercase) or underscore, and not a number. The short name is
limited to 128 characters.

A frame name must be unique for all frames in a cluster.

This short name does not include qualifiers to ensure that it is unique, such as the
database and cluster name. It is for display purposes.

You can write this property to change the frame's short name.

Payload Length

Data Type Direction Required? Default
u32 Read/Write Yes N/A

Property Class

XNET Frame

Property ID

nxPropFrm_PayloadLen

Description

Number of bytes of data in the payload. This number can be less than the payload
length of mapped frames.

Bus Size Limit (Bytes) Description
CAN Varies The size limit for CAN varies de

pending on the I/O Mode and Pr
otocol of the cluster:

ni.com1182

NI-XNET 20.5

■ For clusters using CAN I
/O Mode, the maximum p
ayload is 8 bytes.
■ For clusters using CAN
FD I/O Mode, the maximu
m payload is 64 bytes.
■ For clusters using J193
9 protocol, the maximum
payload is 1785 bytes.

LIN 0–8 According to the LIN protocol, t
he payload length range is 0–8.

FlexRay 0–254 As encoded on the FlexRay bus,
all frames use an even payload
(16-bit words), and the payload
of all static slots must be the sa
me. Nevertheless, this property
specifies the number of payloa
d bytes used within the frame, s
o its value can be odd. For exa
mple, if a FlexRay cluster uses s
tatic slots of 18 bytes, it is valid
for this property to be 15, which
specifies that the last 3 bytes ar
e unused.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this frame, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session. The file formats require a
valid value in the text for this property.
■ Set a value using the nxdbSetProperty function. This is required when
you create your own in-memory database (:memory:) rather than using a file.
The property does not contain a default in this case, so you must set a valid
value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

© National Instruments 1183

NI-XNET 20.5

PDU References

Data Type Direction Required? Default
nxDatabaseRef_t * Read/Write No Empty Array

Property Class

XNET Frame

Property ID

nxPropFrm_PDURefs

Description

This property maps existing PDUs to a frame. A mapped PDU is transmitted inside
the frame payload when the frame is transmitted. You can map one or more PDUs to
a frame and one PDU to multiple frames.

Mapping PDUs to a frame requires setting three frame properties. All three
properties are arrays of values:

■ PDU References: Set this property first to define the sequence of values for
the other two properties.
■ PDU Start Bits: Defines the start bit of the PDU inside the frame.
■ PDU Update Bits: Defines the update bit for the PDU inside the frame. If the
update bit is not used, set the value to –1. (Refer to Update Bit for more
information.)

Values on the same array position are corresponding. For example, PDUs[0],
StartBits[0], and UpdateBits[0] define the mapping for the first PDU in the frame.

Databases imported from FIBEX prior to version 3.0, from DBC, NCD, or LDF files
have a strong one-to-one relationship between frames and PDUs. Every frame has
exactly one PDU mapped, and every PDU is mapped to exactly one frame.

To unmap PDUs from a frame, set this property to an empty array. A frame without
mapped PDUs contains no signals.

ni.com1184

NI-XNET 20.5

NI-XNET supports advanced PDU configuration (multiple PDUs in one frame or one
PDU used in multiple frames) only for FlexRay. Refer to the XNET Cluster PDUs
Required? property.

For CAN and LIN, NI-XNET supports only a one-to-one relationship between frames
and PDUs. For those interfaces, advanced PDU configuration returns an error from
the XNET Frame Configuration Status property and nxCreateSession. If you do
not use advanced PDU configuration, you can avoid using PDUs in the database API
and create signals and subframes directly on a frame.

PDU Start Bits

Data Type Direction Required? Default
u32 * Read/Write No Empty Array

Property Class

XNET Frame

Property ID

nxPropFrm_PDUStartBits

Description

This property defines the start bits of PDUs mapped to a frame. A mapped PDU is
transmitted inside the frame payload when the frame is transmitted. You can map
one or more PDUs to a frame and one PDU to multiple frames.

Mapping PDUs to a frame requires setting of three frame properties. All three
properties are arrays of values:

■ PDU References: Set this property first to define the sequence of values for
the other two properties.
■ PDU Start Bits: This property defines the start bit of the PDU inside the
frame.

© National Instruments 1185

NI-XNET 20.5

■ PDU Update Bits: Defines the update bit for the PDU inside the frame. If the
update bit is not used, set the value to –1. (Refer to Update Bit for more
information.)

Values on the same array position are corresponding. For example, PDUs[0],
StartBits[0], and UpdateBits[0] define the mapping for the first PDU in the frame.

PDU Update Bits

Data Type Direction Required? Default
u32 * Read/Write No Empty Array

Property Class

XNET Frame

Property ID

nxPropFrm_PDUUpdateBits

Description

This property defines update bits of PDUs mapped to a frame. If the update bit is not
used for the PDU, set the value to –1. (Refer to Update Bit for more information.)

Mapping PDUs to a frame requires setting three frame properties. All three
properties are arrays of values:

■ PDU References: Set this property first to define the sequence of values for
the other two properties.
■ PDU Start Bits: Defines the start bit of the PDU inside the frame.
■ PDU Update Bits: This property defines the update bit for the PDU inside
the frame. If the update bit is not used, set the value to –1.

Values on the same array position are corresponding. For example, PDUs[0],
StartBits[0], and UpdateBits[0] define the mapping for the first PDU in the frame.

ni.com1186

NI-XNET 20.5

Signals

Data Type Direction Required? Default
nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET Frame

Property ID

nxPropFrm_SigRefs

Description

Refnums to all signals in the frame.

This property returns an array with references to all signals in the frame, including
static and dynamic signals and the multiplexer signal.

This property is read only. You can add signals to a frame using nxdbCreateObje
ct and remove them using nxdbDeleteObject.

XNET Interface Properties
The XNET Interface properties provide information about a specific NI-XNET
interface. The NI-XNET interface represents a single CAN, FlexRay, or LIN connector
(port) on the device.

You obtain the handle to a specific interface using the XNET System properties.

CAN.Termination Capability

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Interface

© National Instruments 1187

NI-XNET 20.5

Property ID

nxPropIntf_CANTermCap

Description

Returns an enumeration indicating whether the XNET interface can terminate the
CAN bus.

Enumeration Value
No 0
Yes 1

Remarks

Signal reflections on the CAN bus can cause communication failure. To prevent
reflections, termination can be present as external resistance or resistance the XNET
board applies internally. This enumeration determines whether the XNET board can
add termination to the bus.

To select the CAN transceiver termination, refer to XNET Session
Interface:CAN:Termination.

CAN.Transceiver Capability

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Interface

Property ID

nxPropIntf_CANTcvrCap

Description

Returns an enumeration indicating the CAN bus physical transceiver support.

ni.com1188

NI-XNET 20.5

Enumeration Value
High-Speed/Flexible Data-Rate (HS/FD) 0
Low-Speed/Fault-Tolerant (LS/FT) 1
XS (HS/FD, LS/FT, SW, or External) 3
XS (HS/FD, LS/FT) 4

Remarks

The XS value in the enumeration indicates the board has multiple physical
transceivers that you can configure in software. XS may support High-Speed and
Flexible Data-Rate (HS/FD), Low-Speed Fault-Tolerant (LS/FT), Single Wire (SW), or
can connect to an external transceiver. This value is switchable through the XNET
Session Interface:CAN:Transceiver Type property.

Device

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Interface

Property ID

nxPropIntf_DevRef

Description

From the XNET Interface handle, this property returns the XNET device handle.

Remarks

The XNET device handle returned is the physical XNET board that contains the XNET
interface. This property determines the physical XNET device through the XNET
Device Serial Number property for a given XNET Interface handle.

© National Instruments 1189

NI-XNET 20.5

Dongle Compatible Firmware Version

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Interface

Property ID

nxPropIntf_DongleCompatibleFirmwareVersion

Description

Returns a number representing the oldest driver version compatible with the
connected Transceiver Cable's firmware. The number is relative to the first driver
version that supported the Transceiver Cable, starting with 1 for the original
revision.

Remarks

A Transceiver Cable running an updated firmware version may require a later XNET
driver than the version it shipped with for operation.

Dongle Compatible Revision

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Interface

Property ID

nxPropIntf_DongleCompatibleRevision

ni.com1190

NI-XNET 20.5

Description

Returns a number representing the oldest driver version compatible with the
connected Transceiver Cable's hardware revision. The number is relative to the first
driver version that supported the particular Transceiver Cable model, starting with 1
for the original revision.

Remarks

A Transceiver Cable hardware revision might require a later XNET driver than the
version that introduced support for this model for operation.

Dongle Firmware Version

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Interface

Property ID

nxPropIntf_DongleFirmwareVersion

Description

Returns the connected Transceiver Cable's firmware revision number.

Dongle ID

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Interface

© National Instruments 1191

NI-XNET 20.5

Property ID

nxPropIntf_DongleID

Description

Returns an enumeration indicating the connected Transceiver Cable's type.

Type ID
CAN High Speed (HS) 2
CAN Software-Selectable (XS) 4
LIN 6
Dongle-Less Design 13
Unknown 14

Remarks

Dongle-Less Design indicates this interface is not a Transceiver Cable but a regular
XNET expansion card, cDAQ Module, and so on.

Dongle Revision

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Interface

Property ID

nxPropIntf_DongleRevision

Description

Returns the connected Transceiver Cable's hardware revision number.

ni.com1192

NI-XNET 20.5

Dongle State

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Interface

Property ID

nxPropIntf_DongleState

Description

Returns an enumeration indicating the connected Transceiver Cable's state.

Description State Value
No dongle, no external power nxDongleState_NoDongle_NoExtPower 1
No dongle, has external power nxDongleState_NoDongle_ExtPower 2
Has dongle, no external power nxDongleState_Dongle_NoExtPower 3
Ready nxDongleState_Ready 4
Busy nxDongleState_Busy 5
Comm error nxDongleState_CommError 13
Overcurrent nxDongleState_OverCurrent 14

Remarks

Some Transceiver Cable types require external power from the network connector
for operation. Refer to the hardware-specific manual for more information.

Name

Data Type Direction Required? Default
string Read Only No N/A

© National Instruments 1193

NI-XNET 20.5

Property Class

XNET Interface

Property ID

nxPropIntf_Name

Description

Returns the string name assigned to the XNET interface handle.

Remarks

This string is used for Identification in NI MAX.

Number

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Interface

Property ID

nxPropIntf_Num

Description

Returns unique number associated with the XNET interface.

Remarks

The XNET driver assigns each port connector in the system a unique number XNET
driver. This number, plus its protocol name, is the interface name string. For
example:

XNET Interface String Name Number

ni.com1194

NI-XNET 20.5

CAN1 1
FlexRay3 3

Port Number

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Interface

Property ID

nxPropIntf_PortNum

Description

Returns the physical port number printed near the connector on the XNET device.

Remarks

The port numbers on an XNET board are physically identified with numbering. Use
this property, along with the XNET Device Serial Number property, to associate an
XNET interface with a physical (XNET board and port) combination.

Note It is easier to find the physical location of an XNET interface with nxBlink.

Protocol

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Interface

© National Instruments 1195

NI-XNET 20.5

Property ID

nxPropIntf_Protocol

Description

Returns the protocol supported by the interface as an enumeration.

Enumeration Value
CAN 0
FlexRay 1
LIN 2

Remarks

The protocol enumeration matches the protocol portion of the XNET interface string
name:

XNET Interface String Name Protocol
CAN1 0
FlexRay3 1

XNET LIN Schedule Properties
This section includes the XNET LIN Schedule properties.

Cluster

Data Type Direction Required? Default
nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET LIN Schedule

Property ID

nxPropLINSched_ClstRef

ni.com1196

NI-XNET 20.5

Description

This property returns the reference to the parent cluster in which the you created
the schedule. You cannot change the parent cluster after creating the schedule
object.

Comment

Data Type Direction Required? Default
string Read/Write No Empty String

Property Class

XNET LIN Schedule

Property ID

nxPropLINSched_Comment

Description

A comment describing the schedule object. A comment is a string containing up to
65535 characters.

Configuration Status

Data Type Direction Required? Default
nxStatus_t Read Only N/A N/A

Property Class

XNET LIN Schedule

Property ID

nxPropLINSched_ConfigStatus

© National Instruments 1197

NI-XNET 20.5

Description

The LIN schedule object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to the S
tatus parameter of the nxStatusToString function to convert the value to a
text description of the configuration problem.

By default, incorrect configured schedules in the database are not returned from the
Cluster Schedules property because they cannot be used in the bus communication.
You can change this behavior by setting the Database ShowInvalidFromOpen?
property to true. When the configuration status of a schedule becomes invalid after
opening the database, the schedule still is returned from the Cluster Schedules
property even if ShowInvalidFromOpen? is false.

An example of invalid schedule configuration is when a required schedule property
has not been defined. For example, a schedule entry within this schedule has an
undefined delay time.

Entries

Data Type Direction Required? Default
nxDatabaseRef_t[] Read Only N/A N/A

Property Class

XNET LIN Schedule

Property ID

nxPropLINSched_Entries

Description

The array of entries for this LIN schedule.

The position of each entry in this array specifies the position in the schedule. The
database file and/or the order that you create entries at runtime determine the
position.

ni.com1198

NI-XNET 20.5

Name

Data Type Direction Required? Default
string Read/Write Yes Defined in nxdbCreateObject

Property Class

XNET LIN Schedule

Property ID

nxPropLINSched_Name

Description

String identifying the LIN schedule object.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the short name. The space (), period (.), and other special
characters are not supported within the name. The short name must begin with a
letter (uppercase or lowercase) or underscore, and not a number. The short name is
limited to 128 characters.

A schedule name must be unique for all schedules in a cluster.

Priority

Data Type Direction Required? Default
u32 Read/Write No 42

Property Class

XNET LIN Schedule

Property ID

nxPropLINSched_Priority

© National Instruments 1199

NI-XNET 20.5

Description

Priority of this run-once LIN schedule when multiple run-once schedules are
pending for execution.

The valid range for this property is 1–254. Lower values correspond to higher
priority.

This property applies only when the Run Mode property is Once. Run-once schedule
requests are queued for execution based on this property. When all run-once
schedules have completed, the master returns to the previously running continuous
schedule (or null).

Run-continuous schedule requests are not queued. Only the most recent run-
continuous schedule is used, and it executes only if no run-once schedule is
pending. Therefore, a run-continuous schedule has an effective priority of 255, but
this property is not used.

Null schedule requests take effect immediately and supercede any running run-once
or run-continuous schedule. The queue of pending run-once schedule requests is
flushed (emptied without running them). Therefore, a null schedule has an effective
priority of 0, but this property is not used.

This property is not read from the database, but is handled like a database property.
After opening the database, the default value is returned, and you can change the
property. But similar to database properties, you cannot change it after a session is
created.

Run Mode

Data Type Direction Required? Default
u32 Read/Write No See Description

Property Class

XNET LIN Schedule

Property ID

nxPropLINSched_RunMode

ni.com1200

NI-XNET 20.5

Description

This property is an enumerated list with the following values:

Enumeration Value
Continuous 0

Once 1
Null 2

This property specifies how the master runs this schedule:

■ Continuous: The master runs the schedule continuously. When the last entry
executes, the schedule starts again with the first entry.
■ Once: The master runs the schedule once (all entries), then returns to the
previously running continuous schedule (or null). If requests are submitted for
multiple run-once schedules, each run-once executes in succession based on
its Priority, then the master returns to the continuous schedule (or null).
■ Null: All communication stops immediately. A schedule with this run mode is
called a null schedule.

This property is not read from the database, but is handled like a database property.
After opening the database, the default value is returned, and you can change the
property. But similar to database properties, you cannot change it after a session is
created.

Usually, the default value for the run mode is Continuous. If the schedule is
configured to be a collision resolving table for an event-triggered entry, the default
is Once.

XNET LIN Schedule Entry Properties
This section includes the XNET LIN Schedule Entry properties.

Collision Resolving Schedule

Data Type Direction Required? Default
nxDatabaseRef_t Read/Write No Null

© National Instruments 1201

NI-XNET 20.5

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_CollisionResSched

Description

A LIN schedule that resolves a collision for this event-triggered entry.

This property applies only when the entry type is event triggered. When a collision
occurs for the event-triggered entry in this schedule, the master must switch to the
collision resolving schedule to transfer the unconditional frames successfully.

When the entry type is any value other than event triggered, this property returns
Null (invalid).

Delay

Data Type Direction Required? Default
f64 Read/Write Yes N/A

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_Delay

Description

The time from the start of this entry (slot) to the start of the next entry. (The
property uses a double value in seconds, with the fractional part used for
milliseconds or microseconds.)

ni.com1202

NI-XNET 20.5

Event Identifier

Data Type Direction Required? Default
u32 Read/Write Yes N/A

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_EventID

Description

The event-triggered entry identifier. This identifier is unprotected (NI-XNET handles
the protection).

This property applies only when the entry type is event triggered. This identifier is
for the event triggered entry itself, and the first payload byte is for the protected
identifier of the contained unconditional frame.

Frames

Data Type Direction Required? Default
nxDatabaseRef_t[] Read/Write No Empty Array

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_Frames

Description

The array of frames for this LIN schedule entry.

© National Instruments 1203

NI-XNET 20.5

If the entry type is unconditional, this array contains one element, which is the
single unconditional frame for this entry.

If the entry type is sporadic, this array contains one or more unconditional frames
for this entry. When multiple frames are pending for this entry, the order in the array
determines the priority to transmit.

If the entry type is event triggered, this array contains one or more unconditional
frames for this entry. When multiple frames for this entry are pending to be sent by
distinct slaves, this property uses the collision resolving schedule to process the
frames.

Name

Data Type Direction Required? Default
string Read/Write Yes Defined in nxdbCreateObject

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_Name

Description

String identifying the LIN schedule entry object.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the short name. The space (), period (.), and other special
characters are not supported within the name. The short name must begin with a
letter (uppercase or lowercase) or underscore, and not a number. The short name is
limited to 128 characters.

A schedule entry name must be unique for all entries in the same schedule.

Name Unique to Cluster

Data Type Direction Required? Default

ni.com1204

NI-XNET 20.5

string Read Only N/A N/A

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_NameUniqueToCluster

Description

This property returns a LIN schedule entry name unique to the cluster that contains
the object. If the single name is not unique within the cluster, the name is
<schedule-name>.<schedule-entry-name>.

You can pass the name to the nxdbFindObject function to retrieve the reference
to the object, while the single name is not guaranteed success in nxdbFindObjec
t because it may be not unique in the cluster.

Node Configuration:Free Format:Data Bytes

Data Type Direction Required? Default
u8* Read/Write Yes N/A

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_NC_FF_DataBytes

Description

An array of 8 bytes containing raw data for LIN node configuration.

Node configuration defines a set of services used to configure slave nodes in the
cluster. Every service has a specific set of parameters coded in this byte array. In the
LDF, file those parameters are stored, for example, in the node (ECU) or the frame

© National Instruments 1205

NI-XNET 20.5

object. NI-XNET LDF reader composes those parameters to the byte values like they
are sent on the bus. The LIN specification document describes the node
configuration services and the mapping of the parameters to the free format bytes.

The node configuration service is executed only if the Schedule Entry Type property
is set to Node Configuration.

Caution This property is not saved to the FIBEX file. If you write this property, save the
database, and reopen it, the node configuration services are not contained in the database.
Writing this property is useful only in the NI-XNET session immediately following.

Schedule

Data Type Direction Required? Default
nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_Sched

Description

The LIN schedule that uses this entry.

This LIN schedule is considered this entry's parent. You define the parent schedule
when you create the entry object. You cannot change it afterwards.

Type

Data Type Direction Required? Default
u32 Read/Write No Unconditional

Property Class

XNET LIN Schedule Entry

ni.com1206

NI-XNET 20.5

Property ID

nxPropLINSchedEntry_Type

Description

All frames that contain a payload are unconditional. The LIN schedule entry type
determines the mechanism for transferring frames in this entry (slot). The values
(enumeration) for this property are:

0 Unconditional: A single frame transfers in this slot.

1 Sporadic: The master transmits in this slot. The master can select from multiple frames to
transmit. Only updated frames are transmitted. When more than one frame is updated, the
master decides by priority which frame to send. The other updated frame remains pending and
can be sent when this schedule entry is processed the following time. The order of
unconditional frames in the LIN Schedule Entry Frames property (the first frame has the highest
priority) determines the frame priority.

2 Event triggered: Multiple slaves can transmit an unconditional frame in this slot. The slave
transmits the frame only if at least one frame signal has been updated. When a collision occurs
(multiple slaves try to transmit in the same slot), this is detected and resolved using a different
schedule specified in the XNET LIN Schedule Entry Collision Resolving Schedule property. The
resolving schedule runs once, starting in the subsequent slot after the collision, and
automatically returns to the previous schedule at the subsequent position where the collision
occurred.

3 Node configuration: The schedule entry contains a node configuration service. The node
configuration service is defined as raw data bytes in the XNET LIN Schedule Entry Node
Configuration:Free Format:Data Bytes property.

XNET PDU Properties
This section includes the XNET PDU properties.

Cluster

Data Type Direction Required? Default
nxDatabaseRef_t Read Only N/A N/A

© National Instruments 1207

NI-XNET 20.5

Property Class

XNET PDU

Property ID

nxPropPDU_ClusterRef

Description

This property returns the reference (nxDatabaseRef_t) to the parent cluster in
which the PDU has been created. You cannot change the parent cluster after
creating the PDU object.

Comment

Data Type Direction Required? Default
char * Read/Write No Empty String

Property Class

XNET PDU

Property ID

nxPropPDU_Comment

Description

Comment describing the PDU object.

A comment is a string containing up to 65535 characters.

Configuration Status

Data Type Direction Required? Default
i32 Read Only N/A N/A

ni.com1208

NI-XNET 20.5

Property Class

XNET PDU

Property ID

nxPropPDU_ConfigStatus

Description

The PDU object's configuration status.

Configuration Status returns an NI-XNET error code. The value can be passed to the
error code input of nxStatusToString to convert it to a text description of the
configuration problem.

By default, incorrectly configured PDUs in the database are not returned from the
XNET Cluster PDUs property because they cannot be used in the bus
communication. You can change this behavior by setting the XNET Database
ShowInvalidFromOpen? property to true. When a PDU's configuration status
became invalid after the database has been opened, the PDU still is returned from
the XNET Cluster PDUs property even if ShowInvalidFromOpen? is false.

Examples of invalid PDU configuration:

■ You have not defined a required property of the PDU (for example, PDU
Payload Length).
■ The number of bytes specified for this PDU is incorrect. CAN PDUs must use
0 to 8 bytes. FlexRay PDUs must use 0 to 254 bytes (PDUs payload must fit into
a frame).

Frames

Data Type Direction Required? Default
nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET PDU

© National Instruments 1209

NI-XNET 20.5

Property ID

nxPropPDU_FrmRefs

Description

References of all frames to which the PDU is mapped. A PDU is transmitted within
the frames to which it is mapped.

To map a PDU to a frame, use the XNET Frame PDU References, XNET Frame PDU
Start Bits, and XNET Frame PDU Update Bits properties. You can map one PDU to
multiple frames.

Mux:Data Multiplexer Signal

Data Type Direction Required? Default
nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET PDU

Property ID

nxPropPDU_MuxDataMuxSigRef

Description

Data multiplexer signal in the PDU.

This property returns the reference to the data multiplexer signal. If data multiplexer
is not defined in the PDU, the property returns 0. Use the XNET PDU Mux:Is Data
Multiplexed? property to determine whether the PDU contains a multiplexer signal.

You can create a data multiplexer signal by creating a signal and then setting the
XNET Signal Mux:Data Multiplexer? property to true.

A PDU can contain only one data multiplexer signal.

ni.com1210

NI-XNET 20.5

Mux:Is Data Multiplexed?

Data Type Direction Required? Default
bool Read Only No False

Property Class

XNET PDU

Property ID

nxPropPDU_MuxIsMuxed

Description

PDU is data multiplexed.

This property returns true if the PDU contains a multiplexer signal. PDUs containing
a multiplexer contain subframes that allow using bits of the payload for different
information (signals), depending on the multiplexer value.

Mux:Static Signals

Data Type Direction Required? Default
nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET PDU

Property ID

nxPropPDU_MuxStaticSigRefs

Description

Static signals in the PDU.

© National Instruments 1211

NI-XNET 20.5

Returns an array of references to signals in the PDU that do not depend on the
multiplexer value. Static signals are contained in every PDU transmitted, as opposed
to dynamic signals, which are transmitted depending on the multiplexer value.

You can create static signals by specifying the PDU as the parent object. You can
create dynamic signals by specifying a subframe as the parent.

If the PDU is not multiplexed, this property returns the same array as the XNET PDU
Signals property.

Mux:Subframes

Data Type Direction Required? Default
nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET PDU

Property ID

nxPropPDU_MuxSubframeRefs

Description

Returns an array of references to subframes in the PDU. A subframe defines a group
of signals transmitted using the same multiplexer value. Only one subframe is
transmitted in the PDU at a time.

You can define a subframe by creating a subframe object as a child of a PDU.

Name (Short)

Data Type Direction Required? Default
char * Read/Write Yes Defined in nxdbCreateObject

Property Class

XNET PDU

ni.com1212

NI-XNET 20.5

Short Name

nxPropPDU_Name

Description

String identifying a PDU object.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the short name. The space (), period (.), and other special
characters are not supported within the name. The short name must begin with a
letter (uppercase or lowercase) or underscore, and not a number. The short name is
limited to 128 characters.

A PDU name must be unique for all PDUs in a cluster.

You can write this property to change the PDU's short name.

Payload Length

Data Type Direction Required? Default
u32 Read/Write Yes N/A

Property Class

XNET PDU

Property ID

nxPropPDU_PayloadLen

Description

Determines the size of the PDU data in bytes.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this PDU, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session. The file formats require a
valid value in the text for this property.

© National Instruments 1213

NI-XNET 20.5

■ Set a value using the nxdbSetProperty function. This is required when
you create your own in-memory database (:memory:) rather than using a file.
The property does not contain a default in this case, so you must set a valid
value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

Signals

Data Type Direction Required? Default
nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET PDU

Property ID

nxPropPDU_SigRefs

Description

References to all signals in the PDU.

This property returns an array referencing to all signals in the PDU, including static
and dynamic signals and the multiplexer signal.

This property is read only. You can add signals to a PDU using nxdbCreateObjec
t and remove them using nxdbDeleteObject.

XNET Session Properties
This section includes the XNET Session properties.

Session:Application Protocol

Data Type Direction Required? Default
u32 Read Only N/A None

ni.com1214

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_ApplicationProtocol

Description

This property returns the application protocol that the session uses.

The database used with nxCreateSession determines the application protocol.

The values (enumeration) for this property are:

0 nxAppProtocol_None
1 nxAppProtocol_J1939

Auto Start?

Data Type Direction Required? Default
bool Read/Write No True

Property Class

XNET Session

Property ID

nxPropSession_AutoStart

Description

Automatically starts the output session on the first call to the appropriate nxWrite
function.

For output sessions, as long as the first call to the appropriate nxWrite function
contains valid data, you can leave this property at its default value of true. If you
need to call the appropriate nxWrite function multiple times prior to starting the
session, or if you are starting multiple sessions simultaneously, you can set this

© National Instruments 1215

NI-XNET 20.5

property to false. After calling the appropriate nxWrite function as desired, you
can call nxStart to start the session(s).

When automatic start is performed, it is equivalent to nxStart with scope set to
Normal. This starts the session itself, and if the interface is not already started, it
starts the interface also.

For input sessions, Auto Start? is implicitly set to True and cannot be set to False.
Start always is performed within the first call to the appropriate nxRead function (if
not already started using nxStart).

For Signal Input Waveform sessions, when calling nxReadSignalWaveform for the
first time on the session, the session will be started if it was not already. Stopping
the session after the first start requires the session to be explicitly started in the
future. This permits reading of the pending signal values without an implicit state
transition, which would result in more signal values. This behavior is shared with
frame input stream sessions when used with Ethernet interfaces. Other input
session types, when used with CAN, FlexRay, or LIN interfaces, will implicitly start
upon any call to nxRead, not just the first; this behavior could be altered in a future
release to match Signal Input Waveforms.

ClusterName

Data Type Direction Required? Default
string Read Only N/A N/A

Property Class

XNET Session

Property ID

nxPropSession_ClusterName

Description

This property returns the cluster (network) used with nxCreateSession.

ni.com1216

NI-XNET 20.5

DatabaseName

Data Type Direction Required? Default
string Read Only N/A N/A

Property Class

XNET Session

Property ID

nxPropSession_DatabaseName

Description

This property returns the database used with nxCreateSession.

List

Data Type Direction Required? Default
1Dstring Read Only N/A N/A

Property Class

XNET Session

Property ID

nxPropSession_List

Description

This property returns a comma separated list of frames or signals in the session.

For a Frame Input or Frame Output session, this property returns a list of frames. For
a Signal Input/Output session, it returns the list of signals.

Mode

Data Type Direction Required? Default

© National Instruments 1217

NI-XNET 20.5

u32 Read Only N/A N/A

Property Class

XNET Session

Property ID

nxPropSession_Mode

Description

This property returns the session mode. You provided this mode when you created
the session. For more information, refer to Session Modes.

Number in List

Data Type Direction Required? Default
u32 Read Only N/A N/A

Property Class

XNET Session

Property ID

nxPropSession_NumInList

Description

This property returns the number of frames or signals in the session's list. This is a
quick way to get the size of the List property.

Number of Values Pending

Data Type Direction Required? Default
u32 Read Only N/A N/A

ni.com1218

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_NumPend

Description

This property returns the number of values (frames or signals) pending for the
session.

For input sessions, this is the number of frame/signal values available to the
appropriate nxRead function. If you call the appropriate nxRead function with nu
mber to read of this number and timeout of 0.0, the appropriate nxRead
function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided to the
appropriate nxWrite function but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of
frames. In these cases, this property assumes the largest possible frame size. If you
use smaller frames, the real number of pending values might be higher.

The largest possible frames sizes are:

■ CAN FD: 64 byte payload.
■ FlexRay: The higher value of the frame size in the static segment and the
maximum frame size in the dynamic segment. The XNET Cluster
FlexRay:Payload Length Maximum property provides this value.

Number of Values Unused

Data Type Direction Required? Default
u32 Read Only N/A N/A

Property Class

XNET Session

© National Instruments 1219

NI-XNET 20.5

Property ID

nxPropSession_NumUnused

Description

This property returns the number of values (frames or signals) unused for the
session. If you get this property prior to starting the session, it provides the size of
the underlying queue(s). Contrary to the Queue Size property, this value is in
number of frames for Frame I/O, not number of bytes; for Signal I/O, it is the number
of signal values in both cases. After start, this property returns the queue size minus
the Number of Values Pending property.

For input sessions, this is the number of frame/signal values unused in the
underlying queue(s).

For output sessions, this is the number of frame/signal values you can provide to a
subsequent call to the appropriate nxWrite function. If you call the appropriate n
xWrite function with this number of values and timeout of 0.0, it should return
success.

Stream frame sessions using the FlexRay, CAN FD, or Ethernet protocol may use
frames that vary in size. In these cases, this property assumes the largest possible
frame size. If you use smaller frames, the real number of pending values might be
higher.

The largest possible frames sizes are:

■ CAN FD: 64 byte payload.
■ FlexRay: The higher value of the frame size in the static segment and the
maximum frame size in the dynamic segment. The XNET Cluster
FlexRay:Payload Length Maximum property provides this value.
■ Ethernet: The PayldLenMax property provides this value.

Payload Length Maximum

Data Type Direction Required? Default
u32 Read Only N/A N/A

ni.com1220

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_PayldLenMax

Description

This property returns the maximum payload length of all frames in this session,
expressed as bytes.

This property does not apply to Signal sessions (only Frame sessions).

For CAN Stream (Input and Output), this property depends on the XNET Cluster
CAN:I/O Mode property. If the I/O mode is CAN, this property is 8 bytes. If the I/O
mode is CAN FD or CAN FD+BRS, this property is 64 bytes.

For LIN Stream (Input and Output), this property always is 8 bytes. For FlexRay
Stream (Input and Output), this property is the same as the XNET Cluster
FlexRay:Payload Length Maximum property value. For Queued and Single-Point
(Input and Output), this is the maximum payload of all frames specified in the List
property.

For Ethernet Stream (Input and Output), this property is the maximum length of the
frame data in each frame, which includes the Ethernet header in addition to the
Ethernet payload (MSDU).

Protocol

Data Type Direction Required? Default
u32 Read Only N/A N/A

Property Class

XNET Session

© National Instruments 1221

NI-XNET 20.5

Property ID

nxPropSession_Protocol

Description

This property returns the protocol that the interface in the session uses.

The values (enumeration) for this property are:

0 CAN
1 FlexRay
2 LIN
3 Ethernet

Queue Size

Data Type Direction Required? Default
u32 Read/Write No Refer to Description

Property Class

XNET Session

Property ID

nxPropSession_QueueSize

Description

For output sessions, queues store data passed to the appropriate nxWrite
function and not yet transmitted onto the network. For input sessions, queues store
data received from the network and not yet obtained using the appropriate nxRead
function.

For most applications, the default queue sizes are sufficient. You can write to this
property to override the default. When you write (set) this property, you must do so
prior to the first session start. You cannot set this property again after calling nxSto
p.

ni.com1222

NI-XNET 20.5

For signal I/O sessions, this property is the number of signal values stored. This is
analogous to the number of values you use with the appropriate nxRead or nxWri
te function.

For frame I/O sessions, this property is the number of bytes of frame data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24 bytes. You
can use this number to convert the Queue Size (in bytes) to/from the number of
frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can vary
depending on the payload length. For more information, refer to Raw Frame
Format.

For Signal I/O XY sessions, you can use signals from more than one frame. Within the
implementation, each frame uses a dedicated queue. According to the formulas
below, the default queue sizes can be different for each frame. If you read the
default Queue Size property for a Signal Input XY session, the largest queue size is
returned, so that a call to the appropriate nxRead function of that size can empty
all queues. If you read the default Queue Size property for a Signal Output XY
session, the smallest queue size is returned, so that a call to the appropriate nxWri
te function of that size can succeed when all queues are empty. If you write the
Queue Size property for a Signal I/O XY session, that size is used for all frames, so
you must ensure that it is sufficient for the frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one frame.
Within the implementation, each frame uses a dedicated queue. The Queue Size
property does not represent the memory in these queues, but rather the amount of
time stored. The default queue allocations store Application Time worth of
resampled signal values. If you read the default Queue Size property for a Signal I/O
Waveform session, it returns Application Time multiplied by the time Resample
Rate. If you write the Queue Size property for a Signal I/O Waveform session, that
value is translated from a number of samples to a time, and that time is used to
allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored. Single-Point
sessions always use a value of 1 as the effective queue size.

© National Instruments 1223

NI-XNET 20.5

Default Value

You calculate the default queue size based on the following assumptions:

■ Application Time: The time between calls to the appropriate nxRead/nxWr
ite function in your application.
■ Frame Time: The time between frames on the network for this session.

The following pseudo code describes the default queue size formula:

 if (session is Signal I/O Waveform)
 Queue_Size = (Application_Time * Resample_Rate);
 else
 Queue_Size = (Application_Time / Frame_Time);
 if (Queue_Size < 64)
 Queue_Size = 64;
 if (session mode is Frame I/O)
 Queue_Size = Queue_Size * Frame_Size;

For Signal I/O Waveform sessions, the initial formula calculates the number of
resampled values that occur within the Application Time. This is done by
multiplying Application Time by the XNET Session Resample Rate property.

For all other session modes, the initial formula divides Application Time by Frame
Time.

The minimum for this formula is 64. This minimum ensures that you can read or
write at least 64 elements. If you need to read or write more elements for a slow
frame, you can set the Queue Size property to a larger number than the default. If
you set a large Queue Size, this may limit the maximum number of frames you can
use in all sessions.

For Frame I/O sessions, this formula result is multiplied by each frame value size to
obtain a queue size in bytes.

For Signal I/O sessions, this formula result is used directly for the queue size
property to provide the number of signal values for the appropriate nxRead or nxW
rite function. Within the Signal I/O session, the memory allocated for the queue
incorporates frame sizes, because the signal values are mapped to/from frame
values internally.

ni.com1224

NI-XNET 20.5

Application Time
The target in which your application runs determines the Application Time:

■ Windows: 400 ms (0.4 s)
■ Real-Time (RT): 100 ms (0.1 s)

This works under the assumption that for Windows, more memory is available for
input queues, and you have limited control over the application timing. RT targets
typically have less available memory, but your application has better control over
application timing.

Frame Time
Frame Time is calculated differently for Frame I/O Stream sessions compared to
other modes. For Frame I/O Stream, you access all frames in the network (cluster),
so the Frame Time is related to the average bus load on your network. For other
modes, you access specific frames only, so the Frame Time is obtained from
database properties for those frames.

The Frame Time used for the default varies by session mode and protocol, as
described below.

CAN, Frame I/O Stream

Frame Time is 100 µs (0.0001 s).

This time assumes a baud rate of 1 Mbps, with frames back to back (100 percent
busload).

For CAN sessions created for a standard CAN bus, the Frame Size is 24 bytes. For CAN
sessions created for a CAN FD Bus (the cluster I/O mode is CAN FD or CAN FD+BRS),
the frame size can vary up to 64 bytes. However, the default queue size is based on
the 24-byte frame time. When connecting to a CAN FD bus, you may need to adjust
this size as necessary.

When you create an application to stress test NI-XNET performance, it is possible to
generate CAN frames faster than 100 µs. For this application, you must set the queue
size to larger than the default.

© National Instruments 1225

NI-XNET 20.5

FlexRay, Frame I/O Stream

Frame Time is 20 µs (0.00002 s).

This time assumes a baud rate of 10 Mbps, with a cycle containing static slots only
(no minislots or NIT), and frames on channel A only.

Small frames at a fast rate require a larger queue size than large frames at a slow
rate. Therefore, this default assumes static slots with 4 bytes, for a Frame Size of 24
bytes.

When you create an application to stress test NI-XNET performance, it is possible to
generate FlexRay frames faster than 20 µs. For this application, you must set the
queue size to larger than the default.

LIN, Frame I/O Stream

Frame Time is 2 ms (0.002 s).

This time assumes a baud rate of 20 kbps, with 1 byte frames back to back (100
percent busload).

For all LIN sessions, Frame Size is 24 bytes.

CAN, Other Modes

For Frame I/O Queued, Signal I/O XY, and Signal I/O Waveform, the Frame Time is
different for each frame in the session (or frame within which signals are contained).

For CAN frames, Frame Time is the frame property CAN Transmit Time, which
specifies the time between successive frames (in floating-point seconds).

If the frame's CAN Transmit Time is 0, this implies the possibility of back-to-back
frames on the network. Nevertheless, this back-to-back traffic typically occurs in
bursts, and the average rate over a long period of time is relatively slow. To keep the
default queue size to a reasonable value, when CAN Transmit Time is 0, the formula
uses a Frame Time of 50 ms (0.05 s).

For CAN sessions using a standard CAN cluster, the frame size is 24 bytes. For CAN
sessions using a CAN FD cluster, the frame size may differ for each frame in the
session. Each frame size is obtained from its XNET Frame Payload Length property in
the database.

ni.com1226

NI-XNET 20.5

FlexRay, Other Modes

For Frame I/O Queued, Signal I/O XY, and Signal I/O Waveform, the Frame Time is
different for each frame in the session (or frame within which signals are contained).

For FlexRay frames, Frame Time is the time between successive frames (in floating-
point seconds), calculated from cluster and frame properties. For example, if a
cluster Cycle (cycle duration) is 10000 µs, and the frame Base Cycle is 0 and Cycle
Repetition is 1, the frame's Transmit Time is 0.01 (10 ms).

For these session modes, the Frame Size is different for each frame in the session.
Each Frame Size is obtained from its XNET Frame Payload Length property in the
database.

LIN, Other Modes

For LIN frames, Frame Time is a property of the schedule running in the LIN master
node. It is assumed that the Frame Time for a single frame always is larger than 8
ms, so that the default queue size is set to 64 frames throughout.

For all LIN sessions, Frame Size is 24 bytes.

Examples
The following table lists example session configurations and the resulting default
queue sizes.

Session Configuration Default Queue Size Formula
Frame Input Stream, CAN, Wind
ows

96000 (0.4 / 0.0001) = 4000;
4000 x 24 bytes

Frame Output Stream, CAN, Wi
ndows

96000 (0.4 / 0.0001) = 4000;
4000 x 24 bytes;
output is always same as input

Frame Input Stream, FlexRay, W
indows

480000 (0.4 / 0.00002) = 20000;
20000 x 24 bytes

Frame Input Stream, CAN, RT 24000 (0.1 / 0.0001) = 1000;
1000 x 24 bytes

Frame Input Stream, FlexRay, R
T

120000 (0.1 / 0.00002) = 5000;
5000 x 24 bytes

© National Instruments 1227

NI-XNET 20.5

Frame Input Queued, CAN, Tran
smit Time 0.0, Windows

1536* (0.4 / 0.05) = 8;
Transmit Time 0 uses Frame Ti
me 50 ms;
use minimum of 64 frames (64 x
24)

Frame Input Queued, CAN, Tran
smit Time 0.0005, Windows

19200* (0.4 / 0.0005) = 800;
800 x 24 bytes

Frame Input Queued, CAN, Tran
smit Time 1.0 (1 s), Windows

1536* (0.4 / 1.0) = 0.4;
use minimum of 64 frames (64 x
24)

Frame Input Queued, FlexRay, e
very 2 ms cycle,
payload length 4, Windows

4800 (0.4 / 0.002) = 200;
200 x 24 bytes

Frame Input Queued, FlexRay,
every 2 ms cycle, payload lengt
h 16, RT

2048 (0.1 / 0.002) = 50, use minimum
of 64;
payload length 16 requires 32 b
ytes;
64 x 32 bytes

Signal Input XY, two CAN frames
,
Transmit Time 0.0 and 0.0005,
Windows

64* and 800*
(read as 800)

(0.4 / 0.05) = 8, use minimum of
64;
(0.4 / 0.0005) = 800;
expressed as signal values

Signal Output XY, two CAN fram
es,
Transmit Time 0.0 and 0.0005,
Windows

64* and 800*
(read as 64)

(0.4 / 0.05) = 8, use minimum of
64;
(0.4 / 0.0005) = 800;
expressed as signal values

Signal Output Waveform, two C
AN frames, 1 ms and 400 ms,
resample rate 1000 Hz, Window
s

400* Memory allocation is 400 and 6
4 frames
to provide 0.4 sec of storage,
queue size represents number
of samples,
or (0.4 x 1000.0)

* For a CAN FD cluster, the default queue size is based on the frame's database payload length,
which may be larger than 24 bytes (up to 64 bytes).

Resample Rate

Data Type Direction Required? Default
f64 Read/Write No 1000.0 (Sample Every Millisecond)

ni.com1228

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_ResampRate

Description

Rate used to resample frame data to/from signal data in waveforms.

This property applies only when the session mode is Signal Input Waveform or
Signal Output Waveform. This property is ignored for all other modes.

The data type is 64-bit floating point (DBL). The units are in Hertz (samples per
second).

Ethernet Properties

This category includes the Ethernet-specific XNET Session properties.

Ethernet Logging Properties
This category contains properties for logging Ethernet frame data.

Logging for Ethernet interfaces in XNET uses the PCAP Next Generation file format.
Log files use the extension .pcapng, and are supported by popular network protocol
analyzers such as WireShark.

To log Ethernet data using the session, set the Mode, Filepath, and other properties,
and then use nxStart to start the interface and session. XNET will log Ethernet
frames to the file as long as the session is running. If you use nxStop to stop the
session, you can change logging properties (such as specifying a new filepath) and
start logging again.

Each input session retains a distinct value for logging properties. The logging
properties are ignored for output sessions.

© National Instruments 1229

NI-XNET 20.5

Ethernet:Logging:Error?

Data Type Direction Required? Default
bool Read No False

Property Class

XNET Session

Property ID

nxPropSession_EnetLogError

Description

Indicates whether an error has occurred in the logging thread.

To view the error information, use nxStop to stop the session; the error from the
logging thread will be merged with the error of the nxStop function.
Ethernet:Logging:Filepath

Data Type Direction Required? Default
string Read/Write Yes N/A

Property Class

XNET Session

Property ID

nxPropSession_EnetLogFile

Description

This property specifies the path to the file in which you want to log data. The file
must use the .pcap extension.

ni.com1230

NI-XNET 20.5

No default file path is provided; you must write this property with a valid file path
when you use the Mode property to enable logging. The operation used to create
the file is determined by the Operation property.

Ethernet:Logging:Mode

Data Type Direction Required? Default
u32 Read/Write Yes Off

Property Class

XNET Session

Property ID

nxPropSession_EnetLogMode

Description

This property enables or disables logging. The value is Off by default; to enable
logging, you must write this property to the log. This property uses an enumerated
list with the following values:

Enumeration Value Description
nxEnetLogMode_Off 0 Disable logging for the session.
nxEnetLogMode_Log 1 Enable logging for the session.

You cannot read data using nxR
ead when using this mode. If yo
u require access to the data, rea
d from the log file.

When logging is enabled, you must use the Filepath property to specify a valid path
for the log file.
Ethernet:Logging:Operation

Data Type Direction Required? Default
u32 Read/Write No Create or Replace

© National Instruments 1231

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_EnetLogOperation

Description

This property specifies the operation used to create the log file. This property uses
an enumerated list with the following values:

Enumeration Value Description
nxEnetLogOperation_CreateOr
Replace

0 Create a new log file, or replace
an existing log file.

nxEnetLogOperation_Create 1 Create a new log file. If the file a
lready exists, XNET returns an e
rror.

Ethernet:Filtering:Frame Filter
Data Type Direction Required? Default
string Read/Write No N/A

Property Class

XNET Session

Property ID

nxPropSession_EnetFrameFilter

Description

Specifies a string to be applied as a filter for incoming frames. Only frames that
match the filter will be received on this stream. The filter uses the pcap-filter syntax,

ni.com1232

NI-XNET 20.5

which is the industry standard used by network analysis tools such as tcpdump and
Wireshark.

Ethernet:Number of Frames Received
Data Type Direction Required? Default
u64 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_EnetNumFramesReceived

Description

This is a cumulative count of frames received by the session while started. When
logging is off, these frames can be obtained from nxRead. When logging is on, these
frames are stored in the log file. When an input session is used for the Ethernet
endpoint, the Interface:Ethernet:Endpoint:Receive Filter property determines which
frames are received by the session.

This count resets to zero when the session starts. The count is unchanged when the
session stops.

Ethernet:Source MAC Address Auto?
Data Type Direction Required? Default
bool Read/Write No True

Property Class

XNET Session

© National Instruments 1233

NI-XNET 20.5

Property ID

nxPropSession_EnetSourceMacAddressAuto

Description

Configures whether the output session automatically uses the MAC Address
property as the source MAC address in transmitted frames.

When this property is true (default), the endpoint ignores the source MAC address in
frame data provided to nxWriteFrame. The endpoint automatically replaces the
source MAC address in frame data with the MAC Address property for the endpoint,
and uses that for the transmitted frame. This convenience allows you to leave the
source MAC address uninitialized (e.g. all zero) in frame data.

When this property is false, the endpoint uses the source MAC address in frame data
for each transmitted frame. You must provide a valid source MAC address in frame
data provided to XNET Write. This can be useful if you are simulating a specific ECU
in the network. Each output session retains a distinct value for this property. This
property is ignored for input sessions.

Frame Properties

This section includes the frame-specific XNET Session properties.

Frame:Output Queue Update Frequency
Data Type Direction Required? Default
u32 Write Only No 0

Property Class

XNET Session

Property ID

nxPropSessionSub_OutputQueueUpdateFreq

ni.com1234

NI-XNET 20.5

Description

Note This property should usually not be changed and is provided for advanced users.

The value is given in 6-byte packets. The maximum value is 0xFFFF bytes, which
results in 10922 6-byte packets. Setting the property to 0 will use the internally
defined update frequency.

The property determines how often the NI-XNET firmware notifies the NI-XNET
driver of frames being consumed from the output queue. The default value is
related to the queue size. Very large queues can cause updates to be delayed. This
property can be used to make the updates more frequently.

Note This property affects the active frame object in the session. Review the nxSetSubPro
perty function to learn more about setting a property on an active frame.

Frame:Skip N Cyclic Frames
Data Type Direction Required? Default
u32 Write Only No 0

Property Class

XNET Session

Property ID

nxPropSessionSub_SkipNCyclicFrames

Description

Note Only CAN interfaces currently support this property.

When set to a nonzero value, this property causes the next N cyclic frames to be
skipped. When the frame's transmission time arrives and the skip count is nonzero,
a frame value is dequeued (if this is not a single-point session), and the skip count is
decremented, but the frame actually is not transmitted across the bus. When the
skip count decrements to zero, subsequent cyclic transmissions resume. This

© National Instruments 1235

NI-XNET 20.5

property is valid only for output sessions and frames with cyclic timing (that is, not
event-based frames).

This property is useful for testing of ECU behavior when a cyclic frame is expected,
but is missing for N cycles.

Note This property affects the active frame object in the session. Review the nxSetSubPro
perty function to learn more about setting a property on an active frame.

CAN Frame Properties
This category includes CAN-specific frame properties.
Frame:CAN:Start Time Offset

Data Type Direction Required? Default
double Write Only No –1

Property Class

XNET Session

Property ID

nxPropSessionSub_CANStartTimeOff

Description

Use this property to configure the amount of time that must elapse between the
session being started and the time that the first frame is transmitted across the bus.
This is different than the cyclic rate, which determines the time between
subsequent frame transmissions.

Use this property to have more control over the schedule of frames on the bus, to
offer more determinism by configuring cyclic frames to be spaced evenly.

If you do not set this property or you set it to a negative number, NI-XNET chooses
this start time offset based on the arbitration identifier and periodic transmit time.

ni.com1236

NI-XNET 20.5

This property takes effect whenever a session is started. If you stop a session and
restart it, the start time offset is re-evaluated.

Note This property affects the active frame object in the session. Review the nxSetSubPro
perty function to learn more about setting a property on an active frame.

Frame:CAN:Transmit Time

Data Type Direction Required? Default
double Write Only No From Database

Property Class

XNET Session

Property ID

nxPropSessionSub_CANTxTime

Description

Use this property to change the frame's transmit time while the session is running.
The transmit time is the amount of time that must elapse between subsequent
transmissions of a cyclic frame. The default value of this property comes from the
database (the XNET Frame CAN:Transmit Time property).

If you set this property while a frame object is currently started, the frame object is
stopped, the cyclic rate updated, and then the frame object is restarted. Because of
the stopping and starting, the frame's start time offset is re-evaluated.

Note This property affects the active frame object in the session. Review the nxSetSubPro
perty function to learn more about setting a property on an active frame.

Note The first time a queued frame object is started, the XNET frame's transmit time
determines the object's default queue size. Changing this rate has no impact on the queue
size. Depending on how you change the rate, the queue may not be sufficient to store data
for an extended period of time. You can mitigate this by setting the session Queue Size
property to provide sufficient storage for all rates you use. If you are using a single-point
session, this is not relevant.

© National Instruments 1237

NI-XNET 20.5

LIN Frame Properties
This category includes LIN-specific frame properties.
Frame:LIN:Transmit N Corrupted Checksums

Data Type Direction Required? Default
u32 Write Only No 0

Property Class

XNET Session

Property ID

nxPropSessionSub_LINTxNCorruptedChksums

Description

When set to a nonzero value, this property causes the next N number of checksums
to be corrupted. The checksum is corrupted by negating the value calculated per the
database; (EnhancedValue * -1) or (ClassicValue * -1). This property is
valid only for output sessions. If the frame is transmitted in an unconditional or
sporadic schedule slot, N is always decremented for each frame transmission. If the
frame is transmitted in an event-triggered slot and a collision occurs, N is not
decremented. In that case, N is decremented only when the collision resolving
schedule is executed and the frame is successfully transmitted. If the frame is the
only one to transmit in the event-triggered slot (no collision), N is decremented at
event-triggered slot time.

This property is useful for testing ECU behavior when a corrupted checksum is
transmitted.

Note This property affects the active frame object in the session. Review the nxSetSubPro
perty function to learn more about setting a property on an active frame.

ni.com1238

NI-XNET 20.5

SAE J1939 Frame Properties
This category includes SAE J1939-specific frame properties.
Frame:SAE J1939:Address Filter

Data Type Direction Required? Default
string Write Only No ""

Property Class

XNET Session

Property ID

nxPropSessionSub_J1939_AddrFilter

Description

You can use this property in input sessions only. It defines a filter for the source
address of the PGN transmitting node. You can use it when multiple nodes with
different addresses are transmitting the same PGN.

If the filter is active, the session accepts only frames transmitted by a node with the
defined address. All other frames with the same PGN but transmitted by other nodes
are ignored.

The value is a string representing the decimal value of the address. If your address is
given as an integer value, you must convert it to a string value (for example, with sp
rintf (s, "%d", value)).

To reset the filter, set the value to empty string (default).

Note This property affects the active frame object in the session. Review the nxSetSubPro
perty function to learn more about setting a property on an active frame.

Interface Properties

This section includes interface-specific properties.

© National Instruments 1239

NI-XNET 20.5

Interface properties apply to the interface and not the session. If more than one
session exists for the interface, changing an interface property affects all the
sessions.

Interface:64bit Baud Rate
Data Type Direction Required? Default
u64 Read/Write Yes (If Not in Database) 0 (If Not in Database)

Property Class

XNET Session

Property ID

nxPropSession_IntfBaudRate64

Description

Note You can modify this property only when the interface is stopped.

Note This property replaces the former 32-bit property. You still can use the baud rate values
used with the 32-bit property. The custom 64-bit baud rate setting requires using values
greater than 32 bit.

The Interface:64bit Baud Rate property sets the CAN, FlexRay, or LIN interface baud
rate. The default value for this interface property is the same as the cluster's baud
rate in the database. Your application can set this interface baud rate to override the
value in the database, or when no database is used.

CAN

When the upper nibble (0xF0000000) is clear, this is a numeric baud rate (for
example, 500000).

NI-XNET CAN hardware currently accepts the following numeric baud rates: 33333,
40000, 50000, 62500, 80000, 83333, 100000, 125000, 160000, 200000, 250000,
400000, 500000, 800000, and 1000000.

ni.com1240

NI-XNET 20.5

Note The 33333 baud rate is supported with single-wire transceivers only.

Note Baud rates greater than 125000 are supported with high-speed transceivers only.

When the upper nibble of the lower 32 bit is set to 0xA (that is, 0xA0000000), the
remaining bits provide fields for more custom CAN communication baud rate
programming. The fields are shown in the following table:

 63..32 31..28 27..0
Normal Res b0000 Baud Rate (33.3 k–1 M)

 63..46 45..32 31..28 27..23 22..16 15..8 7 6..0
Custom 6
4 Bit

Res Tq b1010 Res NSJW NTSEG1 Res NTSEG2

■ Time quantum (Tq), which is used to program the baud rate prescaler.

■ Valid values are 25–12800, in increments of 0x19 (25 decimal).
■ This is the time quantum from ISO 11898-1, 12.4.1 Bit Encoding/
Decoding.

■ (Re-)Synchronization Jump Width (NSJW)

■ Valid values are 0–127.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ Time Segment 1 (NTSEG1), which is the time segment before the sample
point.

■ Valid values are 1–0xFF (1–255 decimal).
■ This is the NTSEG1 value from the Bosch M_CAN Controller Area
Network User's Manual, version 3.2.1.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ Time Segment 2 (NTSEG2), which is the time segment after the sample
point.

■ Valid values are 0–0x7F (0–127 decimal).

© National Instruments 1241

NI-XNET 20.5

■ This is the NTSEG2 value from the Bosch M_CAN Controller Are a
Network User's Manual, version 3.2.1.
■ The actual hardware interpretation of this value is one more than the
programmed value.

For the former 32-bit baud rate property, the following table is valid.

When the upper nibble is set to 0x8 (that is, 0x80000000), the remaining bits provide
fields for more custom CAN communication baud rate programming. Additionally, if
the upper nibble is set to 0xC (that is, 0xC0000000), the remaining bits provide fields
for higher-precision custom CAN communication baud rate programming. The
higher-precision bit timings facilitate connectivity to a CAN FD cluster.

 31..28 27..26 25..24 23 22..20 19..16 15..14 13..12 11..8 7..4 3..0
Custo
m

b1000 Res SJW
(0–3)

TSEG2 (0–7) TSEG1
(1–15)

Res Tq (125–0x3200)

High P
recisio
n

b1100 SJW (0–15) TSEG2 (0–15) TSEG1 (1–63) Tq (25–0x3200)

■ (Re-)Synchronization Jump Width (SJW)

■ Valid programmed values are 0–3 in normal custom mode and 0–15 in
high-precision custom mode.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ Time Segment 2 (TSEG2), which is the time segment after the sample point.

■ Valid programmed values are 0–7 in normal custom mode and 0–15 in
high-precision custom mode.
■ This is the Phase_Seg2 time from ISO 11898–1, 12.4.1 Bit Encoding/
Decoding.
■ The actual hardware interpretation of this value is one more than the
programmed value.

ni.com1242

NI-XNET 20.5

■ Time Segment 1 (TSEG1), which is the time segment before the sample
point.

■ Valid programmed values are 1–0xF (1–15 decimal) in normal custom
mode and 1–0x3F (1–63 decimal) in high-precision custom mode.
■ This is the combination of the Prop_Seg and Phase_Seg1 time from ISO
11898–1, 12.4.1 Bit Encoding/Decoding.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ Time quantum (Tq), which is used to program the baud rate prescaler

■ Valid programmed values are 125–12800, in increments of 0x7D (125
decimal) ns for normal custom mode and 25–12800, in increments of 0x19
(25 decimal) ns for high-precision custom mode.
■ This is the time quantum from ISO 11898–1, 12.4.1 Bit Encoding/
Decoding.

An advanced baud rate example is 0x8014007D. This example breaks down into the
following values:

■ SJW = 0x0 (0x01 in hardware, due to the + 1)
■ TSEG2 = 0x1 (0x02 in hardware, due to the + 1)
■ TSEG 1 = 0x4 (0x05 in hardware, due to the + 1)
■ Tq = 0x7D (125 ns in hardware)

Each time quanta is 125 ns. From IS0 11898–1, 12.4.1.2 Programming of Bit Time,
the nominal time segments length is Sync_Seg (Fixed at 1) + (Prop_Seg +
Phase_Seg1)(B) + Phase_Seg2(C) = 1 + 2 + 5 = 8. So, the total time for a bit in this
example is 8 * 125 ns = 1000 ns = 1 µs. A 1 µs bit time is equivalent to a 1 MHz baud
rate.

© National Instruments 1243

NI-XNET 20.5

Formulas

Baud rate = 1/(Bit time) = [Tq (Sync_seg + TSEG1 + TSEG2)]-1

where Tq = (m)(Tq_min) = (BRP)(minimum time quantum)

Sample Point = (TSEG1 + Sync_Seg) / (TSEG1 + Sync_Seg + TSEG2)

LIN

When the upper nibble (0xF0000000) is clear, you can set only baud rates within the
LIN-specified range (2400 to 20000) for the interface.

When the upper nibble is set to 0x8 (0x80000000), no check for baud rate within LIN-
specified range is performed, and the lowest 16 bits of the value may contain the
custom baud rate. Any custom value higher than 65535 is masked to a 16-bit value.
As with the non-custom values, the interface internally calculates the appropriate
divisor values to program into its UART. Because the interface uses the Atmel
ATA6620 LIN transceiver, which is guaranteed to operate within the limits of the LIN
2.0 specification, there are some special considerations when programming custom
baud rates for LIN:

■ The ATA6620 transceiver incorporates a TX dominant timeout function to
prevent a faulty device it is built into from holding the LIN dominant
indefinitely. If the TX line into the transceiver is held in the dominant state for
too long, the transceiver switches its driver to the recessive state. This places a
limit on how long the break field of a LIN header transmitted by the interface
may be, and thus limits the lowest baud rate that may be set. At the point the
baud rate or break length is set for the interface, it internally uses the baud
rate bit time and break length settings to calculate the resulting break
duration, and returns an error if that duration would be long enough to trigger
the TX dominant timeout.
■ At the other end of the baud range, the ATA6620 is specified to work up to
20000 baud. While the custom bit allows rates higher than that to be
programmed, the transceiver behavior operating above that rate is not
guaranteed.

ni.com1244

NI-XNET 20.5

Interface:Echo Transmit?
Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfEchoTx

Description

The Interface:Echo Transmit? property determines whether Frame Input or Signal
Input sessions contain frames that the interface transmits.

When this property is true, and a frame transmit is complete for an Output session,
the frame is echoed to the Input session. Frame Input sessions can use the Flags
field to differentiate frames received from the bus and frames the interface
transmits. When using nxReadFrame with the raw frame format, you can parse the
Flags field manually by reviewing the Raw Frame Format section. Signal Input
sessions cannot differentiate the origin of the incoming data.

Note Echoed frames are placed into the input sessions only after the frame transmit is
complete. If there are bus problems (for example, no listener) such that the frame did not
transmit, the frame is not received.

Interface:I/O Name
Data Type Direction Required? Default
string Read Only — —

Property Class

XNET Session

© National Instruments 1245

NI-XNET 20.5

Property ID

nxPropSession_IntfIoName

Description

The I/O Name property returns a reference to the interface used to create the
session.

You can pass this I/O into an XNET Interface property node to retrieve hardware
information for the interface, such as the name and serial number. The I/O Name is
the same reference available from the XNET System property node, which is used to
read information for all XNET hardware in the system.

You can use this property on the diagram to:

■ Display a string that contains the name of the interface as shown in
Measurement and Automation Explorer (MAX).
■ Provide a refnum you can wire to a property node to read information for
the interface.

Interface:Output Stream List
Data Type Direction Required? Default
nxDatabaseRef_t[] Read/Write No Empty Array

Property Class

XNET Session

Property ID

nxPropSession_IntfOutStrmList

Description

Note Only CAN and LIN interfaces currently support this property.

ni.com1246

NI-XNET 20.5

The Output Stream List property provides a list of frames for use with the replay
feature (Interface:Output Stream Timing property set to nxOutStrmTimng_Repl
ayExclusive or nxOutStrmTimng_ReplayInclusive). In Replay Exclusive
mode, the hardware transmits only frames that do not appear in the list. In Replay
Inclusive mode, the hardware transmits only frames that appear in the list. For a LIN
interface, the header of each frame written to stream output is transmitted, and the
Exclusive or Inclusive mode controls the response transmission. Using these modes,
you can either emulate an ECU (Replay Inclusive, where the list contains the frames
the ECU transmits) or test an ECU (Replay Exclusive, where the list contains the
frames the ECU transmits), or some other combination.

This property's data type is an array of database handles to frames. If you are not
using a database file or prefer to specify the frames using CAN arbitration IDs or LIN
unprotected IDs, you can use Interface:Output Stream List By ID instead of this
property.

Interface:Output Stream List By ID
Data Type Direction Required? Default
u32[] Read/Write No Empty Array

Property Class

XNET Session

Property ID

nxPropSession_IntfOutStrmListById

Description

Note Only CAN and LIN interfaces currently support this property.

The Output Stream List By ID property provides a list of frames for use with the
replay feature Interface:Output Stream Timing property set to nxOutStrmTimng_
ReplayExclusive or nxOutStrmTimng_ReplayInclusive).

© National Instruments 1247

NI-XNET 20.5

This property serves the same purpose as Interface:Output Stream List, in that it
provides a list of frames for replay filtering. This property provides an alternate
format for you to specify the frames by their CAN arbitration ID or LIN unprotected
ID. The property's data type is an array of unsigned 32-bit integer (U32). Each integer
represents a CAN or LIN frame's identifier, using the same encoding as the Raw
Frame Format.

Within each CAN frame ID value, bit 29 (hex 20000000) indicates the CAN identifier
format (set for extended, clear for standard). If bit 29 is clear, the lower 11 bits (0–10)
contain the CAN frame identifier. If bit 29 is set, the lower 29 bits (0–28) contain the
CAN frame identifier. LIN frame ID values may be within the range of possible LIN IDs
(0–63).

Interface:Output Stream Timing
Data Type Direction Required? Default
u32 Read/Write No Immediate

Property Class

XNET Session

Property ID

nxPropSession_IntfOutStrmTimng

Description

Note Only CAN and LIN interfaces currently support this property.

The Output Stream Timing property configures how the hardware transmits frames
queued using a Frame Output Stream session. The following table lists the accepted
values:

Enumeration Value
nxOutStrmTimng_Immediate 0
nxOutStrmTimng_ReplayExclusive 1

ni.com1248

NI-XNET 20.5

nxOutStrmTimng_ReplayInclusive 2

When you configure this property to be nxOutStrmTimng_Immediate, frames
are dequeued from the queue and transmitted immediately to the bus. The
hardware transmits all frames in the queue as fast as possible.

When you configure this property as nxOutStrmTimng_ReplayExclusive or n
xOutStrmTimng_ReplayInclusive, the hardware is placed into a Replay
mode. In this mode, the hardware evaluates the frame timestamps and attempts to
maintain the original transmission times as the timestamp stored in the frame
indicates. The actual transmission time is based on the relative time difference
between the first dequeued frame and the time contained in the dequeued frame.

When in one of the replay modes, you can use the Interface:Output Stream List
property to supply a list. In Replay Exclusive mode, the hardware transmits only
frames that do not appear in the list. In Replay Inclusive mode, the hardware
transmits only frames that appear in the list. Using these modes, you can either
emulate an ECU (Replay Inclusive, where the list contains the frames the ECU
transmits) or test an ECU (Replay Exclusive, where the list contains the frames the
ECU transmits), or some other combination. You can replay all frames by using
Replay Exclusive mode without setting any list.

Special Considerations for LIN

Only LIN interface as Master supports stream output. You do not need to set the
interface explicitly to Master if you want to use stream output. Just create a stream
output session, and the driver automatically sets the interface to Master at interface
start.

You can use immediate mode to transmit a header or full frame. You can transmit
only the header for a frame by writing the frame to stream output with the desired
ID and an empty data payload. You can transmit a full frame by writing the frame to
stream output with the desired ID and data payload. If you write a full frame for ID n
to stream output, and you have created a frame output session for frame with ID n,
the stream output data takes priority (the stream output frame data is transmitted
and not the frame output data). If you write a full frame to stream output, but the
frame has not been defined in the database, the frame transmits with Enhanced
checksum. To control the checksum type transmitted for a frame, you first must
create the frame in the database and assign it to an ECU using the LIN specification

© National Instruments 1249

NI-XNET 20.5

you desire (the specification number determines the checksum type). You then must
create a frame output object to transmit the response for the frame, and use stream
output to transmit the header. Similarly, to transmit n corrupted checksums for a
frame, you first must create a frame object in the database, create a frame output
session for it, set the transmit n corrupted checksums property, and then use stream
output to transmit the header.

Regarding event-triggered frame handling for immediate mode, if the hardware can
determine that an ID is for an event-triggered frame, which means an event-
triggered frame has been defined for the ID in the database, the frame is processed
as if it were in an event-triggered slot in a schedule. If you write a full frame with
event-triggered ID, the full frame is transmitted. If there is no collision, the next
stream output frame is processed. If there is a collision, the hardware executes the
collision-resolving schedule. The hardware retransmits the frame response at the
corresponding slot time in the collision resolving schedule. If you write a header
frame with an event-triggered ID and there is no collision, the next stream output
frame is processed. If there is a collision, the hardware executes the collision-
resolving schedule.

You can mix use of the hardware scheduler and stream output immediate mode.
Basically, the hardware treats each stream output frame as a separate run-once
schedule containing a single slot for the frame. Transmission of a stream output
frame may interrupt a run-continuous schedule, but may not interrupt a run-once
schedule. Transmission of stream output frames is interleaved with run-continuous
schedule slot executions, depending on the application timing of writes to stream
output. Stream output is prioritized to the equivalent of the lowest priority level for
a run-once schedule. If you write one or more run-once schedules with higher-than-
lowest priority and write frames to stream output, all the run-once schedules are
executed before stream output transmits anything. If you write one or more run-
once schedules with the lowest priority and write frames to stream output, the run-
once schedules execute in the order you wrote them, and are interleaved with
stream output frames, depending on the application timing of writes to stream
output and writes of run-once schedule changes.

In contrast to the immediate mode, neither replay mode allows for the concurrent
use of the hardware scheduler, and an error is reported if you attempt to do so.
Event-triggered frame handling is different for the replay modes. If the hardware can
determine that an ID is for an event-triggered frame, which means an event-

ni.com1250

NI-XNET 20.5

triggered frame has been defined for the ID in the database, the frame is transmitted
as if it were being transmitted during the collision-resolving schedule for the event
triggered frame. The full frame is transmitted with the Data[0] value (the underlying
unconditional frame ID), copied into the header ID. If a frame cannot be found in the
database, it is transmitted with Enhanced checksum. Otherwise, it is transmitted
with the checksum type defined in the database.

The reply modes provide an easy means to replay headers only, full frames only, or
some mix of the two. For either replay mode, the header for each frame is always
transmitted and the slot delay is preserved. For replay inclusive, if you want only to
replay headers, leave the Interface:Output Stream List property empty. To replay
some of the responses, add their frames to Interface:Output Stream List. For frames
that are not in Interface:Output Stream List, you are free to create frame output
objects for them, for which you can change the checksum type or transmit
corrupted checksums.

There is another consideration for the replay of diagnostic slave response frames.
Because the master always transmits only the diagnostic slave response header,
and a slave transmits the response if its NAD matches the one transmitted in the
preceding master request frame, an array of frames for replay might include
multiple slave response frames (each having the same slave response header ID)
transmitted by different slaves (each having a different NAD value in the data
payload). If you are using inclusive mode, you can choose not to replay any slave
response frames by not including the slave response frame in Interface:Output
Stream List. You can choose to replay some or all of the slave response frames by
first including the slave response frame in Interface:Output Stream List, then
including the NAD values for the slave responses you want to play back, in
Interface:LIN:Output Stream Slave Response List By NAD. In this way, you have
complete control over which slave responses are replayed (which diagnostic slaves
you emulate). Replay of a diagnostic master request frame is handled like replay of
any other frame; the header is always transmitted. Using the inclusive mode as an
example, the response may or may not be transmitted depending on whether or not
the master request frame is in Interface:Output Stream List.

Runtime Behavior

When the hardware is in a replay mode, the first frame received from the application
is considered the start time, and all subsequent frames are transmitted at the

© National Instruments 1251

NI-XNET 20.5

appropriate delta from the start time. For example, if the first frame has a
timestamp of 12:01.123, and the second frame has a timestamp of 12:01.456, the
second frame is transmitted 333 ms after the first frame.

If a frame's time is identical or goes backwards relative to the first timestamp, this is
treated as a new start time, and the frame is transmitted immediately on the bus.
Subsequent frames are compared to this new start time to determine the
transmission time. For example, assume that the application sends the hardware
four frames with the following timestamps: 12:01.123, 12:01.456, 12:01.100, and
12:02.100. In this scenario, the first frame transmits immediately, the second frame
transmits 333 ms after the first, the third transmits immediately after the second,
and the fourth transmits one second after the third. Using this behavior, you can
replay a logfile of frames repeatedly, and each new replay of the file begins with new
timing.

A frame whose timestamp goes backwards relative to the previous timestamp, but
still is forward relative to the start time, is transmitted immediately. For example,
assume that the application sends the hardware four frames with the following
timestamps: 12:01.123, 12:01.456, 12:01.400, and 12:02.100. In this scenario, the first
frame transmits immediately, the second frame transmits 333 ms after the first, the
third transmits immediately after the second, and the fourth transmits 544 ms after
the third.

When a frame with an nxFrameType_Special_Delay frame type is received, the
hardware delays for the requested time. The next frame to be dequeued is treated
as a new first frame and transmitted immediately. You can use a Delay Frame with a
time of 0 to restart time quickly. If you replay a logfile of frames repeatedly, you can
insert a Delay Frame at the start of each replay to insert a delay between each
iteration through the file.

When a frame with an nxFrameType_Special_StartTrigger frame type is received, the
hardware treats this frame as a new first frame and uses the absolute time
associated with this frame as the new start time. Subsequent frames are compared
to this new start time to determine the transmission time. Using a Start Trigger is
especially useful when synchronizing with data acquisition products so that you can
replay the first frame at the correct time relative to the start trigger for accurate
synchronized replay.

ni.com1252

NI-XNET 20.5

Restrictions on Other Sessions

When you use Immediate mode, there are no restrictions on frames that you use in
other sessions.

When you use Replay Inclusive mode, you can create output sessions that use
frames that do not appear in the Interface:Output Stream List property. Attempting
to create an output session that uses a frame from the Interface:Output Stream List
property results in an error. Input sessions have no restrictions.

When you use Replay Exclusive mode, you cannot create any other output sessions.
Attempting to create an output session returns an error. Input sessions have no
restrictions.

Interface:Start Trigger Frames to Input Stream?
Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfStartTrigToInStrm

Description

The nxPropSession_IntfStartTrigToInStrm property configures the
hardware to place a start trigger frame into the Stream Input queue after it is
generated. A Start Trigger frame is generated when the interface is started. The
interface start process is described in Interface Transitions. For more information
about the start trigger frame, refer to Special Frames.

The start trigger frame is especially useful if you plan to log and replay CAN data.

© National Instruments 1253

NI-XNET 20.5

Interface:Bus Error Frames to Input Stream?
Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfBusErrToInStrm

Description

Note Only CAN and LIN interfaces currently support this property.

The nxPropSession_IntfBusErrToInStrm property configures the
hardware to place a CAN or LIN bus error frame into the Stream Input queue after it
is generated. A bus error frame is generated when the hardware detects a bus error.
For more information about the bus error frame, refer to Special Frames.

CAN Interface Properties
This category includes CAN-specific interface properties.

Properties in the Interface category apply to the interface and not the session. If
more than one session exists for the interface, changing an interface property
affects all the sessions.
Interface:CAN:64bit FD Baud Rate

Data Type Direction Required? Default
u64 Read/Write No 0

Property Class

XNET Session

ni.com1254

NI-XNET 20.5

Property ID

nxPropSession_IntfCanFdBaudRate64

Description

Note You can modify this property only when the interface is stopped.

Note This property replaces the former 32-bit property. You still can use the baud rate values
used with the 32-bit property. The new custom 64-bit baud rate setting requires using values
greater than 32 bit.

The Interface:CAN:64bit FD Baud Rate property sets the fast data baud rate for CAN
FD+BRS CAN:I/O Mode. The default value for this interface property is the same as
the cluster's FD baud rate in the database. Your application can set this interface FD
baud rate to override the value in the database.

When the upper nibble (0xF0000000) is clear, this is a numeric baud rate (for
example, 500000).

NI-XNET CAN hardware currently accepts the following numeric baud rates: 200000,
250000, 400000, 500000, 800000, 1000000, 1250000, 1600000, 2000000, 2500000,
4000000, 5000000, and 8000000.

Note Not all CAN transceivers are rated to transmit at the requested rate. If you attempt to
use a rate that exceeds the transceiver's qualified rate, XNET Start returns a warning. NI-
XNET Hardware Overview describes the CAN transceivers' limitations.

When the upper nibble of the lower 32 bit is set to 0xA (that is, 0xA0000000), the
remaining bits provide fields for more custom CAN communication baud rate
programming. The fields are shown in the following table:

 63..32 31..28 27..0
Normal Res b0000 Baud Rate (200 k–8 M)

 65..56 55 54..47 46..40 39 38..32 31..28 27 26..13 12..8 7..4 3..0
Custo
m 64-
bit

Res TDC Res TDCO Res TDCF b1010 Res Tq DTSEG
1

DTSEG
2

DSJW

■ Transmitter Delay Compensation (TDC) enables or disables this feature.

© National Instruments 1255

NI-XNET 20.5

■ 0: TDC disabled
■ 1: TDC enabled

■ Transmitter Delay Compensation Offset (TDCO)

■ Valid values are 0–127.
■ Defines the distance between the delay from transmit to receive point and
secondary sample point.

■ Transmitter Delay Compensation Filter Window Length (TDCF)

■ Valid values are 0–127.
■ Defines the minimum value for the secondary sample point position. It is
enabled when TDCF is greater than TDCO.

■ Time quantum (Tq) is used to program the baud rate prescaler.

■ Valid values are 25–800, in increments of 25 ns.

■ Time Segment 1 (DTSEG1) is the time segment before the sample point.

■ Valid values are 0–31.
■ This is the DTSEG1 value from the Bosch M_CAN Controller Area
Network User's Manual, version 3.2.1.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ Time Segment 2 (DTSEG2) is the time segment after the sample point.

■ Valid values are 0–15.
■ This is the DTSEG2 value from the Bosch M_CAN Controller Area
Network User's Manual, version 3.2.1.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ (Re-)Synchronization Jump Width (DSJW)

■ Valid values are 0–15.

ni.com1256

NI-XNET 20.5

■ The actual hardware interpretation of this value is one more than the
programmed value.

For the former 32-bit baud rate property, the following table is valid.

When the upper nibble of the lower 32 bit is set to 0x8 (that is, 0x80000000), the
remaining bits provide fields for more custom CAN communication baud rate
programming.

 31..28 27..26 25..24 23..20 19..16 15..10 9..8 7..0
Custom b1000 Res SJW (0–3) TSEG2 (0–

7)
TSEG1 (1–

15)
Res Tq (25–800)

■ (Re-)Synchronization Jump Width (SJW)

■ Valid programmed values are 0–3.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ Time Segment 2 (TSEG2) is the time segment after the sample point.

■ Valid values are 0–7.
■ This is the Phase_Seg2(D) from the Bosch CAN with Flexible Data-Rate
specification, version 1.0.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ Time Segment 1 (TSEG1) is the time segment before the sample point.

■ Valid programmed values are 1–15.
■ This is the combination of Prop_Seg(D) and Phase_Seg1(D) from the
Bosch CAN with Flexible Data-Rate specification, version 1.0.
■ The actual hardware interpretation of this value is one more than the
programmed value.

■ Time quantum (Tq) is used to program the baud rate prescaler.

■ Valid programmed values are 25–800, in increments of 25 ns.

© National Instruments 1257

NI-XNET 20.5

Formulas

Baud rate = 1/(Bit time) = [Tq (Sync_seg + TSEG1 + TSEG2)]-1

where Tq = (m)(Tq_min) = (BRP)(minimum time quantum)

Sample Point = (TSEG1 + Sync_Seg) / (TSEG1 + Sync_Seg + TSEG2)
Interface:CAN:Disable Protocol Exception
Handling

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfCanDisableProtExceptionHandling

Description

A protocol exception occurs when the CAN hardware detects an invalid combination
of bits on the CAN bus reserved for a future protocol expansion. NI-XNET allows you
to define how the hardware should behave in case of a protocol exception:

■ When this property is enabled (false, default), the CAN hardware stops
receiving frames and starts a bus integration.
■ When this property is disabled (true), the CAN hardware transmits an error
frame when it detects a protocol exception condition.

Interface:CAN:Enable Edge Filter

Data Type Direction Required? Default
bool Read/Write No False

ni.com1258

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_IntfCanEdgeFilter

Description

When this property is enabled, the CAN hardware requires two consecutive
dominant tq for hard synchronization.
Interface:CAN:External Transceiver Config

Data Type Direction Required? Default
u32 Write Only No 0x00000007

Property Class

XNET Session

Short Name

nxPropSession_IntfCANExtTcvrConfig

Description

This property allows you to configure XS series CAN hardware to communicate
properly with your external transceiver. The connector on your XS series CAN
hardware has five lines for communicating with your transceiver.

Line Direction Purpose
Ext_RX In Data received from the CAN bus

.
Ext_TX Out Data to transmit on the CAN bu

s.
Output0 Out Generic output used to configur

e the transceiver mode.

© National Instruments 1259

NI-XNET 20.5

Output1 Out Generic output used to configur
e the transceiver mode.

NERR In Input to connect to the nERR pi
n of your transceiver to route st
atus back from the transceiver t
o the hardware.

The Ext_RX and Ext_TX lines are self explanatory and provide for the transfer of CAN
data to and from the transceiver. The remaining three lines are for configuring the
transceiver and retrieving status from the transceivers. Not all transceivers use all
pins. Typically, a transceiver has one or two lines that can configure the transceiver
mode. The NI-XNET driver natively supports five transceiver modes: Normal, Sleep,
Single Wire Wakeup, Single Wire High Speed, and Power-On. This property
configures how the NI-XNET driver sets the outputs of your external transceiver for
each mode.

The configuration is in the form of a U32 written as a bitmask. The U32 bitmask is
defined as:

31 30..15 14..12 11..9 8..6 5..3 2..0
nERR Conne
cted

Reserved PowerOn Co
nfiguration

SWHighSpee
d Configurati
on

SWWakeup C
onfiguration

Sleep Config
uration

Normal Conf
iguration

Where each configuration is a 3-bit value defined as:

2 1 0
State Supported Output1 Value Output0 Value

The Interface:CAN:Transceiver State property changes the transceiver state. Based
on the transceiver configuration, if the state is supported, the configuration
determines how the two pins are set. If the state is not supported, an error is
returned, because you tried to set an invalid configuration. Note that all transceivers
must support a Normal state, so the State Supported bit for that configuration is
ignored.

Other internal state changes may occur. For example, if you put the transceiver to
sleep and a remote wakeup occurs, the transceiver automatically is changed to the

ni.com1260

NI-XNET 20.5

normal state. For information about the state machine for the transceiver state,
refer to CAN Transceiver State Machine in Additional Topics.

If nERR Connected is set, the nERR pin into the connector determines a transceiver
error. It is active low, meaning a value of 0 on this pin indicates an error. A value of 1
indicates no error. If this line is connected, the NI-XNET driver monitors this line and
reports its status via the Transceiver Error field of nxReadState (StateID = nxS
tate_CANComm).

Examples

TJA1041 (HS): To connect to the TJA1041 transceiver, connect Output0 to the nSTB
pin and Output1 to the EN pin. The TJA1041 does have an nERR pin, so that should
be connected to the nERR input. The TJA1041 supports a power-on state, a sleep
state, and a normal state. As this is not a single wire transceiver, it does not support
any single wire state. For normal operation, the TJA1041 uses a 1 for both nSTB and
EN. For sleep, the TJA1041 uses the standby mode, which uses a 0 for both nSTB and
EN. For power-on, the TJA1041 uses a 1 for nSTB and a 0 for EN. The final
configuration is 0x80005027.

TJA1054 (LS): You can connect and configure the TJA1054 identically to the
TJA1041.

AU5790 (SW): To connect to the AU5790 transceiver, connect Output0 to the nSTB
pin and Output1 to the EN pin. The AU5790 does not support any transceiver status,
so you do not need to connect the nERR pin. The AU5790 supports all states. For
normal operation, the AU5790 uses a 1 for both nSTB and EN. For sleep, the AU5790
uses a 0 for both nSTB and EN. For Single Wire Wakeup, the AU5790 requires nSTB to
be a 0 and EN to be a 1. For Single Wire High-Speed, the AU5790 requires nSTB to be
a 1, and EN to be a 0. For power-on, the sleep state is used so there is less
interference on the bus. The final configuration is 0x00004DA7.
Interface:CAN:FD ISO Mode

Data Type Direction Required? Default
u32 Read/Write No ISO

© National Instruments 1261

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_IntfCanFdIsoMode

Description

This property is valid only when the interface is in CAN FD(+BRS) mode. It specifies
whether the interface is working in the ISO CAN FD standard (ISO standard
11898-1:2015) or non-ISO CAN FD standard (Bosch CAN FD 1.0 specification). Two
ports using different standards (ISO CAN FD vs. non-ISO CAN FD) cannot
communicate with each other.

When you use a CAN FD database (DBC or FIBEX file created with NI-XNET), you can
specify the ISO CAN FD mode when creating an alias name for the database. An alias
is created automatically when you open a new database in the NI-XNET Database
Editor. The specified ISO CAN FD mode is used as default, which you can change in
the session using this property.

Note In ISO CAN FD mode, for every transmitted frame, you can specify in the database or
frame header whether a frame must be sent in CAN 2.0, CAN FD, or CAN FD+BRS mode. In the
frame type field of the frame header, received frames indicate whether they have been sent
with CAN 2.0, CAN FD, or CAN FD+BRS. You cannot use the Interface:CAN:Transmit I/O Mode
property in ISO CAN FD mode, as the frame defines the transmit mode.

Note In Non-ISO CAN FD mode, CAN data frames are received at CAN data typed frames,
which is either CAN 2.0, CAN FD, or CAN FD+BRS, but you cannot distinguish the standard in
which the frame has been transmitted.

Note You also can set the mode to Legacy ISO mode. In this mode, the behavior is the same
as in Non-ISO CAN FD mode (Interface:CAN:Transmit I/O Mode is working, and received
frames have the CAN data type). But the interface is working in ISO CAN FD mode, so you can
communicate with other ISO CAN FD devices. Use this mode only for compatibility with
existing applications.

Interface:CAN:I/O Mode

Data Type Direction Required? Default

ni.com1262

NI-XNET 20.5

u32 Read Only — Same as XNET Cluster CAN:I/O Mode

Property Class

XNET Session

Property ID

nxPropSession_IntfCanIoMode

Description

This property indicates the I/O Mode the interface is using. It is an enumerated list of
three values, as described in the following table:

Enumeration Value Description
CAN 0 This is the default CAN 2.0 A/B s

tandard I/O mode as defined in
ISO 11898-1:2003. A fixed baud
rate is used for transfer, and the
payload length is limited to 8 by
tes.

CAN FD 1 This is the CAN FD mode as spe
cified in the CAN with Flexible
Data-Rate specification, versio
n 1.0. Payload lengths are allow
ed up to 64 bytes, but they are t
ransmitted at a single fixed bau
d rate (defined by the XNET Clu
ster 64bit Baud Rate or XNET Se
ssion Interface:64bit Baud Rate
properties.

CAN FD+BRS 2 This is the CAN FD mode as spe
cified in the CAN with Flexible
Data-Rate specification, versio
n 1.0, with the optional Baud Ra
te Switching enabled. The same
payload lengths as CAN FD mod
e are allowed; additionally, the
data portion of the CAN frame i

© National Instruments 1263

NI-XNET 20.5

s transferred at a different (high
er) baud rate (defined by the XN
ET Cluster CAN:64bit FD Baud R
ate or XNET Session Interface:C
AN:64bit FD Baud Rate properti
es).

The value is initialized from the database cluster when the session is created and
cannot be changed later. However, you can transmit standard CAN frames on a CAN
FD network. Refer to the Interface:CAN:Transmit I/O Mode property.
Interface:CAN:Listen Only?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfCANLstnOnly

Description

Note You can modify this property only when the interface is stopped.

The Listen Only? property configures whether the CAN interface transmits any
information to the CAN bus.

When this property is false, the interface can transmit CAN frames and acknowledge
received CAN frames.

When this property is true, the interface can neither transmit CAN frames nor
acknowledge a received CAN frame. The true value enables passive monitoring of
network traffic, which can be useful for debugging scenarios when you do not want
to interfere with a communicating network cluster.
Interface:CAN:Pending Transmit Order

Data Type Direction Required? Default

ni.com1264

NI-XNET 20.5

u32 Read/Write No As Submitted

Property Class

XNET Session

Property ID

nxPropSession_IntfCANPendTxOrder

Description

Note You can modify this property only when the interface is stopped.

Note Setting this property causes the internal queue to be flushed. If you start a session,
queue frames, and then stop the session and change this mode, some frames may be lost.
Set this property to the desired value once; do not constantly change modes.

The Pending Transmit Order property configures how the CAN interface manages
the internal queue of frames. More than one frame may desire to transmit at the
same time. NI-XNET stores the frames in an internal queue and transmits them onto
the CAN bus when the bus is idle.

This property modifies how NI-XNET handles this queue of frames. The following
table lists the accepted values:

Enumeration Value
nxCANPendTxOrder_AsSubmitted 0
nxCANPendTxOrder_ByIdentifier 1

When you configure this property to be nxCANPendTxOrder_AsSubmitted,
frames are transmitted in the order that they were submitted into the queue. There
is no reordering of any frames, and a higher priority frame may be delayed due to
the transmission or retransmission of a previously submitted frame. However, this
mode has the highest performance.

When you configure this property to be nxCANPendTxOrder_ByIdentifier,
frames with the highest priority identifier (lower CAN ID value) transmit first. The
frames are stored in a priority queue sorted by ID. If a frame currently being
transmitted requires retransmission (for example, it lost arbitration or failed with a

© National Instruments 1265

NI-XNET 20.5

bus error), and a higher priority frame is queued in the meantime, the lower priority
frame is not immediately retried, but the higher priority frame is transmitted
instead. In this mode, you can emulate multiple ECUs and still see a behavior similar
to a real bus in that the highest priority message is transmitted on the bus. This
mode may be slower in performance (possible delays between transmissions as the
queue is re-evaluated), and lower priority messages may be delayed indefinitely due
to frequent high-priority messages.
Interface:CAN:Single Shot Transmit?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfCANSingShot

Description

Note You can modify this property only when the interface is stopped.

Note Setting this property causes the internal queue to be flushed. If you start a session,
queue frames, and then stop the session and change this mode, some frames may be lost.
Set this property to the desired value once; do not constantly change modes.

The Single Shot Transmit? property configures whether the CAN interface retries
failed transmissions.

When this property is false, failed transmissions retry as specified by the CAN
protocol (ISO 11898-1, 6.11 Automatic Retransmission). If a CAN frame is not
transmitted successfully, the interface attempts to retransmit the frame as soon as
the bus is idle again. This retransmit process continues until the frame is
successfully transmitted.

When this property is true, failed transmissions do not retry. If a CAN frame is not
transmitted successfully, no further transmissions are attempted.

ni.com1266

NI-XNET 20.5

Interface:CAN:Termination

Data Type Direction Required? Default
u32 Read/Write No Off (0)

Property Class

XNET Session

Property ID

nxPropSession_IntfCANTerm
Description

Notes You can modify this property only when the interface is stopped.

This property does not take effect until the interface is started.

The Termination property configures the onboard termination of the NI-XNET
interface CAN connector (port). The enumeration is generic and supports two
values: Off and On. However, different CAN hardware has different termination
requirements, and the Off and On values have different meanings, as described
below.

High-Speed CAN
High-Speed CAN networks are typically terminated on the bus itself instead of
within a node. However, NI-XNET allows you to configure termination within the
node to simplify testing. If your bus already has the correct amount of termination,
leave this property in the default state of Off. However, if you require termination,
set this property to On.

Value Meaning Description
Off Disabled Termination is disabled.
On Enabled Termination (120 Ω) is enabled.

© National Instruments 1267

NI-XNET 20.5

Low-Speed/Fault-Tolerant CAN
Every node on a Low-Speed CAN network requires termination for each CAN data
line (CAN_H and CAN_L). This configuration allows the Low-Speed/Fault-Tolerant
CAN port to provide fault detection and recovery. Refer to Termination for more
information about low-speed termination. In general, if the existing network has an
overall network termination of 125 Ω or less, select the default 4.99 kΩ option.
Otherwise, you should turn on termination to enable the 1.11 kΩ option.

Value Meaning Description
Off 4.99 kΩ Termination is set to 4.99 kΩ.
On 1.11 kΩ Termination is set to 1.11 kΩ.

Single-Wire CAN
The ISO standard requires Single-Wire transceivers to have a 9.09 kΩ resistor, and no
additional configuration is supported.
Interface:CAN:Transceiver State

Data Type Direction Required? Default
u32 Read/Write No Normal (0)

Property Class

XNET Session

Property ID

nxPropSession_IntfCANTcvrState

Description

The Transceiver State property configures the CAN transceiver and CAN controller
modes. The transceiver state controls whether the transceiver is asleep or
communicating, as well as configuring other special modes. The following table lists
the accepted values.

Enumeration Value

ni.com1268

NI-XNET 20.5

Normal 0
Sleep 1

Single Wire Wakeup 2
Single Wire High-Speed 3

Normal
This state sets the transceiver to normal communication mode. If the transceiver is
in the Sleep mode, this performs a local wakeup of the transceiver and CAN
controller chip.

Sleep
This state sets the transceiver and CAN controller chip to Sleep (or standby) mode.
You can set the interface to Sleep mode only while the interface is communicating. If
the interface has not been started, setting the transceiver to Sleep mode returns an
error.

Before going to sleep, all pending transmissions are transmitted onto the CAN bus.
Once all pending frames have been transmitted, the interface and transceiver go
into Sleep (or standby) mode. Once the interface enters Sleep mode, further
communication is not possible until a wakeup occurs. The transceiver and CAN
controller wake from Sleep mode when either a local wakeup or remote wakeup
occurs.

A local wakeup occurs when the application sets the transceiver state to either
Normal or Single Wire Wakeup.

A remote wakeup occurs when a remote node transmits a CAN frame (referred to as
the wakeup frame). The wakeup frame wakes up the NI-XNET interface transceiver
and CAN controller chip. The CAN controller chip does not receive or acknowledge
the wakeup frame. After detecting the wakeup frame and idle bus, the CAN interface
enters Normal mode.

When the local or remote wakeup occurs, frame transmissions resume from the
point at which the original Sleep mode was set.

You can use nxReadState to detect when a wakeup occurs. To suspend the
application while waiting for the remote wakeup, use nxWait.

© National Instruments 1269

NI-XNET 20.5

Single Wire Wakeup
For a remote wakeup to occur for Single Wire transceivers, the node that transmits
the wakeup frame first must place the network into the Single Wire Wakeup
Transmission mode by asserting a higher voltage.

This state sets a Single Wire transceiver into the Single Wire Wakeup Transmission
mode, which forces the Single Wire transceiver to drive a higher voltage level on the
network to wake up all sleeping nodes. Other than this higher voltage, this mode is
similar to Normal mode. CAN frames can be received and transmitted normally.

If you are not using a Single Wire transceiver, setting this state returns an error. If
your current mode is Single Wire High-Speed, setting this mode returns an error
because you are not allowed to wake up the bus in high-speed mode.

The application controls the timing of how long the wakeup voltage is driven. The
application typically changes to Single Wire Wakeup mode, transmits a single
wakeup frame, and then returns to Normal mode.

Single Wire High-Speed
This state sets a Single Wire transceiver into Single Wire High-Speed Communication
mode. If you are not using a Single Wire transceiver, setting this state returns an
error.

Single Wire High-Speed Communication mode disables the transceiver's internal
waveshaping function, allowing the SAE J2411 High-Speed baud rate of 83.333
kbytes/s to be used. The disadvantage versus Single Wire Normal Communication
mode, which allows only the SAE J2411 baud rate of 33.333 kbytes/s, is degraded
EMC performance. Other than the disabled waveshaping, this mode is similar to
Normal mode. CAN frames can be received and transmitted normally.

This mode has no relationship to High-Speed transceivers. It is merely a higher
speed mode of the Single Wire transceiver, typically used to download data when
the onboard network is attached to an offboard tester ECU.

The Single Wire transceiver does not support use of this mode in conjunction with
Sleep mode. For example, a remote wakeup cannot transition from sleep to this
Single Wire High-Speed mode. Therefore, setting the mode to Sleep from Single
Wire High-Speed mode returns an error.

ni.com1270

NI-XNET 20.5

Interface:CAN:Transceiver Type

Data Type Direction Required? Default
u32 Read/Write No High-Speed (0) for High-Speed and XS Hardware;

Low-Speed (1) for Low-Speed Hardware

Property Class

XNET Session

Property ID

nxPropSession_IntfCANTcvrType

Description

Note You can modify this property only when the interface is stopped.

For XNET hardware that provides a software-selectable transceiver, the Transceiver
Type property allows you to set the transceiver type. Use the XNET Interface
CAN.Tranceiver Capability property to determine whether your hardware supports a
software-selectable transceiver.

You also can use this property to determine the currently configured transceiver
type.

The following table lists the accepted values:

Enumeration Value
High-Speed (HS) 0
Low-Speed (LS) 1
Single Wire (SW) 2

External (Ext) 3
Disconnected (Disc) 4

The default value for this property depends on your type of hardware. If you have
fixed-personality hardware, the default value is the hardware value. If you have
hardware that supports software-selectable transceivers, the default is High-Speed.

© National Instruments 1271

NI-XNET 20.5

This attribute uses the following values:

High-Speed
This configuration enables the High-Speed transceiver. This transceiver supports
baud rates of 40 kbaud to 1 Mbaud. When using a High-Speed transceiver, you also
can communicate with a CAN FD bus. Refer to NI-XNET Hardware Overview to
determine which CAN FD baud rates are supported.

Low-Speed/Fault-Tolerant
This configuration enables the Low-Speed/Fault-Tolerant transceiver. This
transceiver supports baud rates of 40–125 kbaud.

Single Wire
This configuration enables the Single Wire transceiver. This transceiver supports
baud rates of 33.333 kbaud and 83.333 kbaud.

External
This configuration allows you to use an external transceiver to connect to your CAN
bus. Refer to the XNET Session Interface:CAN:External Transceiver Config property
for more information.

Disconnect
This configuration allows you to disconnect the CAN controller chip from the
connector. You can use this value when you physically change the external
transceiver.
Interface:CAN:Transmit I/O Mode

Data Type Direction Required? Default
u32 Read/Write No Same as Interface:CAN:I/O Mode

ni.com1272

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_IntfCanTxIoMode

Description

This property specifies the I/O Mode the interface uses when transmitting a CAN
frame. By default, it is the same as the XNET Cluster CAN:I/O Mode property.
However, even if the interface is in CAN FD+BRS mode, you can force it to transmit
frames in the standard CAN format. For this purpose, set this property to CAN.

Note This property is not supported in CAN FD+BRS ISO mode. If you are using ISO CAN FD
mode, you define the transmit I/O mode in the database with the I/O Mode property of the
frame. (When a database is not used (for example, in frame stream mode), define the
transmit I/O mode with the frame type field of the frame data.) Note that ISO CAN FD mode is
the default mode for CAN FD in NI-XNET.

Note This property affects only the transmission of frames. Even if you set the transmit I/O
mode to CAN, the interface still can receive frames in FD modes (if the XNET Cluster CAN:I/O
Mode property is configured in an FD mode).

The Transmit I/O mode may not exceed the mode set by the XNET Cluster CAN:I/O
Mode property.
Interface:CAN:Transmit Pause

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfCanTransmitPause

© National Instruments 1273

NI-XNET 20.5

Description

When this property is enabled, the CAN hardware waits for two bit times before
transmitting the next frame. This allows other CAN nodes to transmit lower priority
CAN messages while this CAN node is transmitting high-priority CAN messages with
high speed.

Ethernet Interface Properties
This category includes Ethernet-specific interface properties.

Properties in the Interface category apply to the interface and not the session. If
more than one session exists for the interface, changing an interface property
affects all the sessions.
Interface:Ethernet:Adjust Local Time

Data Type Direction Required? Default
u64 Write Only No 0

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetAdjustLocalTime

Description

A write of this property applies a positive or negative phase adjustment, in
nanoseconds, to the local time that is used to timestamp Ethernet frames (see
nxReadFrame). This adjustment can be used to align the local time with another
timescale.

As an example for using this property, consider an application that synchronizes a
DAQmx and XNET device using a start trigger signal. The start trigger signal ensures
that the hardware devices begin their I/O simultaneously, but the resulting
timestamps (e.g., t0 in waveforms) might appear different because each driver

ni.com1274

NI-XNET 20.5

initializes its time from the operating system at a different time. The difference in
appearance is cosmetic, as the I/O is actually synchronized. In order to mitigate this
difference, you can retrieve the timestamp of the start trigger from DAQmx and
XNET, subtract one from the other, and write that difference to this property. For
more information, refer to XNET synchronization examples for Ethernet.
Interface:Ethernet:IPv4 Address

Data Type Direction Required? Default
string Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetIpV4Address

Description

Indicates the IPv4 address that is configured on the the XNET interface in the
network by the OS stack. The IPv4 address is returned as a string in dotted-decimal
notation. For example, 192.0.2.1.
Interface:Ethernet:Link Speed

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetLinkSpeed

© National Instruments 1275

NI-XNET 20.5

Description

Indicates the current link speed on the interface or shows if the link is down. This
property is an enumerated list of values, as described in the following table:

Enumeration Value Description
nxEnetLinkSpeed_LinkDown 0 The link for the Ethernet interfa

ce is down.
nxEnetLinkSpeed_100Mbps 1 The Ethernet interface is operat

ing at 100 Mb/s (Fast Ethernet) c
apability.

nxEnetLinkSpeed_1000Mbps 2 The Ethernet interface is operat
ing at 1000 Mb/s (Gigabit Ethern
et) capability.

Interface:Ethernet:Link Speed Configured

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetLinkSpeedConf

Description

Indicates the link speed that is configured for the Ethernet interface. This property is
configured using MAX or the System Configuration property Link Speed Configured.
This property is an enumerated list of values, as described in the following table:

Enumeration Value Description
nxEnetLinkSpeed_100Mbps 1 The Ethernet interface is

configured for 100 Mb/s (Fast
Ethernet) capability.

ni.com1276

NI-XNET 20.5

nxEnetLinkSpeed_1000Mbps 2 The Ethernet interface is
configured for 1000 Mb/s (Gigabit

Ethernet) capability.
Interface:Ethernet:Jumbo Frames

Data Type Direction Required? Default
u32 Read Only No Disabled

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetJumboFrames

Description

Indicates the jumbo frame setting for the interface. Use NI-MAX or the System
Configuration XNET:Interface:Ethernet:Jumbo Frames property to change the
Jumbo Frames property.

This property is an enumerated list of values, as described in the following table:

Enumeration Value Description
nxEnetJumboFrames_Disabled 0 Jumbo frames will not be receiv

ed on the monitor path. Jumbo
frames will not be transmitted o
r received on the OS stack path.

nxEnetJumboFrames_9018Byt
es

1 Jumbo frames up to 9018 bytes
can be received on the monitor
path. Jumbo frames up to 9018
bytes can be transmitted or rec
eived on the OS stack path.

Note The network interface must independently be configured for jumbo frames in the OS in
order to use jumbo frames through the OS stack.

Note Jumbo frames are not supported on the Endpoint path.

© National Instruments 1277

NI-XNET 20.5

Interface:Ethernet:MAC Address

Data Type Direction Required? Default
string Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetMacAddress

Description

Indicates the MAC address that uniquely identifies the XNET Interface in the
network. This MAC address applies to the endpoint as well as the OS stack. The MAC
address is an individual (unicast) EUI-48 MAC address that is assigned to the
hardware according to the requirements of IEEE Std 802.

The MAC address is returned as a string of six octets. Each octet consists of two
hexadecimal (0-9, A-F) digits; the octets are separated by colon. For example, 00:80
:2F:AB:CD:EF.
Interface:Ethernet:Operational Status

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetOperationalStatus

ni.com1278

NI-XNET 20.5

Description

Indicates the operational status of the interface (that is, communicating or not). It is
an enumerated list as described in the following table:

Enumeration Value Description
nxEnetOperationalStatus_Dow
n

0 The interface cannot transmit o
r receive frames (packets).

nxEnetOperationalStatus_Up 1 The interface is ready to transm
it and receive frames (packets).

This property corresponds to interface operational status as specified in IETF
management standards like RFC 2863 and RFC 8343.

Interface state
The XNET interface Communicating state behaves differently for Ethernet compared
to other XNET protocols, such as CAN. The OS stack provides a network interface,
and the operating system brings its network interface to communicating state ("link
up") at power on. The operating system keeps the interface in communicating state
until it is powered off. Therefore, the Ethernet interface is communicating at its
physical layer (PHY) before and after the existence of any XNET session.

XNET interface states have a limited context; they control the transfer of frames to/
from the XNET endpoint and monitor paths, but they do not control the actual
communicating state ("link up" or "link down") of the interface. The Operational
Status property returns the actual communicating state of the interface.

As a consequence of this state behavior, it is possible to enable the time sync
protocol prior to starting the XNET interface because the time sync protocol
operates independently from the endpoint and monitor paths (like the OS stack).

Read behavior
Although the link is up prior to XNET interface start, if a frame is received prior to the
initial XNET start and would normally be received by endpoint or monitor, nxRead
will not return the frame.

The nxStart discards all unread frames from the receive queue.

© National Instruments 1279

NI-XNET 20.5

The nxStop function has no effect on the receive queue, and link down/up events
have no effect on the receive queue. If frames are received but not read, and your
application stops the interface without restarting, XNET Read will return the
previously received frames.

All unread frames are discarded from the receive queue when the XNET session is
cleared.

Write behavior
When the nxStop is invoked, or when the link goes down, pending frames in the
XNET transmit queues are discarded.

nxWrite ignores the operational status of the link when the XNET interface is not
running. If you invoke XNET Write prior to starting the XNET interface, the frame is
queued regardless of the operational status. If the link is up when nxStart is invoked,
those queued frames are transmitted. If the link is down when nxStart is invoked,
those queued frames are discarded.

If you invoke nxWrite on a started XNET interface and the link is down, the frame is
not queued and an error is returned. After the link comes back up, when you invoke
nxWrite again, frames are queued for transmission (with no need to restart the XNET
interface).

You can use nxWait (Transmit Complete) to ensure that frames are transmitted
before you clear the XNET session.
Interface:Ethernet:OS Network Adapter Name

Data Type Direction Required? Default
string Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetOsNetworkAdapterName

ni.com1280

NI-XNET 20.5

Description

On NI-XNET Ethernet hardware, each port can be accessed as an XNET interface, or
using operating system (OS) APIs for Ethernet. The OS Network Adapter Name
property returns the name of the Ethernet interface for this XNET session as the
interface is represented in the OS.

■ On Windows, this is the network adapter name.
■ On Linux, this is the network interface name.

This name is used in applications such as Wireshark.
Interface:Ethernet:OS Network Adapter
Description

Data Type Direction Required? Default
string Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetOsNetworkAdapterDescription

Description

On NI-XNET Ethernet hardware, each port can be accessed as an XNET interface, or
using operating system (OS) APIs for Ethernet. The OS Network Adapter Description
property returns the description of the Ethernet interface for this XNET session as
the interface is represented in the OS.

■ In NI MAX, this name is shown on the Network Settings tab for the system,
listed under Network Adapters.
■ On Windows, this is the network adapter description in network properties.

© National Instruments 1281

NI-XNET 20.5

■ On Linux, this is the network interface name and is the same as the OS
Network Adapter Name property.

Interface:Ethernet:PHY State

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetPhyState

Description

Indicates the master/slave state that the interface is using for the Ethernet PHY. This
property is configured using NI MAX or the System Configuration property PHY State
Configured. This property is an enumerated list of values, as described in the
following table:

Enumeration Value Description
nxEnetPhyState_Slave 0 Slave state as defined in IEEE St

d 802.3.
nxEnetPhyState_Master 1 Master state as defined in IEEE

Std 802.3.

Two PHYs that are physically connected must be configured to use opposing PHY
States. In other words, one PHY must be configured to be the Master, and the other
PHY must be configured to be the slave. In traditional Ethernet networks, this
master/slave state is negotiated automatically. However, in automotive Ethernet
networks such as IEEE 100BASE-T1, the master/slave state is configured statically
and is typically determined by the PHY State setting of the ECU that you are
connecting to.

ni.com1282

NI-XNET 20.5

Interface:Ethernet:Port Mode

Data Type Direction Required? Default
u32 Read Only Yes Direct

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetPortMode

Description

Indicates the hardware connectivity for the port. This property is configured using
NI MAX or the System Configuration property PHY State Configured. This property
uses an enumerated list with the following values:

Enumeration Value Description
nxEnetPortMode_Direct 0 The port is directly connected; f

rames received and transmitted
on the port have no relationshi
p to any other port on the XNET
device. Input and output sessio
ns are supported in Direct mod
e.

nxEnetPortMode_Tap 1 This port is connected to anoth
er port on the XNET device usin
g a Tap, as shown in Using Ether
net. The pair of connected port
s are referred to as Tap partner
s. A frame received on one Tap
partner is immediately transmit
ted out the other Tap partner, t
o mimic behavior of an Etherne
t cable. When an input session i
s created using an XNET interfa
ce for either Tap partner, and th

© National Instruments 1283

NI-XNET 20.5

e monitor suffix is used with the
XNET interface, the session rea
ds frames received on both Tap
partners. Output sessions are n
ot supported in Tap mode. Whe
n you set Tap on this port, the P
ort Mode of its Tap partner is au
tomatically set to Tap as well.

For the PXIe-8521, physical port numbers 1 and 2 are Tap partners, and physical port
numbers 3 and 4 are Tap partners. This property cannot be changed while an XNET
session is started on the port. When this property is changed and Save Changes is
invoked on the hardware resource, the link is brought down and back up in order to
configure the change.
Ethernet Statistics Properties
This category includes statistical counters for the session's Ethernet interface.

Counter Names and Counter Values properties each return an array of strings (both
same size), displaying all name/value pairs. Each string is returned separately so
that you can customize the display.

Receive (Rx) and Transmit (Tx) statistics (for example, see Rx Bytes) return more
specific statistics as unsigned long integers (U64 datatype).

When the Port Mode of the session interface is Direct, receive and transmit statistics
are relative to this interface. When the Port Mode is Tap, receive statistics refer to
this session's interface, and the values of all transmit statistics do not increment. (To
obtain statistics for frames received by the Tap partner, use a session with the Tap
partner interface.) Refer to Using Ethernet for more information about Direct and
Tap port modes.

When the description of a statistic refers to frame length, that length is measured
from the start of the destination MAC address to the last octet of the Frame Check
Sequence.

The statistics refer to good (error-free) frames and bad frames. On the endpoint path
(e.g., "ENET1"), only good frames are returned from XNET Read. On the monitor
path (e.g., "ENET1/monitor"), good and bad frames are returned from XNET Read.

ni.com1284

NI-XNET 20.5

These statistics are counted at the Media Access Control (MAC) layer. Therefore,
when Port Mode is Direct, the statistics apply to all receives frames, including those
forwarded to the OS stack as well as the XNET endpoint (see
Interface:Ethernet:Endpoint:Receive Filter). The number of good frames returned
from XNET Read might not match with the number of good frames counted by these
statistics.

Note All statistics are reset when the system powers up or the device is reset.

List of Ethernet Statistics

The following table lists the name and description of each Ethernet statistic in this
version of NI-XNET. Some statistics in this table might not provide a named property
to obtain a single value, with the expectation that the statistic is only appropriate for
display purposes.

Name Description
Rx Bytes Count of the number of bytes (octets) received.

The count for each frame is its frame length. Ba
d frames are counted in addition to good frames
. Read this counter twice to obtain an estimate o
f received bandwidth over the time between the
two reads.
This statistic corresponds to etherStatsOct
ets as described in RFC 2819.

Rx Good Frames Count of error-free frames received. This count i
s equal to (Rx Good Unicast + Rx Good Multica
st + Rx Good Broadcast).

Rx Bad Frames Count of frames received with an error detected
by the Ethernet MAC and/or PHY.
This statistic corresponds to ifInErrors as d
escribed in RFC 2863.

Rx Good Unicast Count of error-free unicast frames received. A u
nicast frame contains a destination MAC addres
s with an I/G bit of 0 (individual address).
This statistic corresponds to ifHCInUcastPk
ts in RFC 2863.

© National Instruments 1285

NI-XNET 20.5

Rx Good Multicast Count of error-free multicast frames received. A
multicast frame contains a destination MAC add
ress with an I/G bit of 1 (group address), and an
address that is not the all-stations broadcast ad
dress (all 1's).
This statistic corresponds to ifHCInMultica
stPkts in RFC 2863, and etherStatsMulti
castPkts in RFC 2819.

Rx Good Broadcast Count of error-free broadcast frames received. A
broadcast frame contains a destination MAC ad
dress with an I/G bit of 1 (group address), and us
es the all-stations broadcast address (all 1's).
This statistic corresponds to ifHCInBroadca
stPkts in RFC 2863, and etherStatsBroad
castPkts in RFC 2819.

Rx Good VLAN Tagged Count of error-free VLAN tagged frames received
. For information on VLAN tagged frames, refer t
o Interface:Ethernet:Endpoint:Receive Filter.

Rx Good Pause Frames Count of error-free PAUSE frames received. A PA
USE frame contains EtherType of 8808 hex (MAC
Control), and payload with an opcode of PAUSE.

Rx Good 64 Byte Frames Count of error-free frames received with a frame
length of exactly 64 bytes.
This statistic corresponds to etherStatsPkt
s64Octets as described in RFC 2819.

Rx Good 65 to 127 Byte Frames Count of error-free frames received with a frame
length between 65 and 127 bytes.
This statistic corresponds to etherStatsPkt
s65to127Octets as described in RFC 2819.

Rx Good 128 to 255 Byte Frames Count of error-free frames received with a frame
length between 128 and 255 bytes.
This statistic corresponds to etherStatsPkt
s128to255Octets as described in RFC 2819.

Rx Good 256 to 511 Byte Frames Count of error-free frames received with a frame
length between 256 and 511 bytes.

ni.com1286

NI-XNET 20.5

This statistic corresponds to etherStatsPkt
s256to511Octets as described in RFC 2819.

Rx Good 512 to 1023 Byte Frames Count of error-free frames received with a frame
length between 512 and 1023 bytes.
This statistic corresponds to etherStatsPkt
s512to1023Octets as described in RFC 281
9.

Rx Good 1024 to Max Byte Frames Count of error-free frames received with a frame
length between 1024 and the maximum specifie
d by IEEE Std 802.3. For information on maximu
m frame length, refer to Read (Frame Ethernet).
This statistic corresponds to etherStatsPkt
s1024to1518Octets as described in RFC 28
19.

Rx Frame Check Sequence Errors Count of received frames that had a bad Frame
Check Sequence, and frame length is between 6
4 and the maximum specified by IEEE Std 802.3.
This statistic corresponds to etherStatsCRC
AlignErrors as described in RFC 2819.

Rx Undersize Frames Count of received frames that were fewer than 6
4 bytes in length, but otherwise well formed.
This statistic corresponds to etherStatsUnd
ersizePkts as described in RFC 2819.

Rx Fragment Frames Count of received frames that were fewer than 6
4 bytes in length, and had a bad Frame Check Se
quence.
This statistic corresponds to etherStatsFra
gments as described in RFC 2819.

Rx Oversize Frames Count of received frames that exceeded the max
imum frame length specified by IEEE Std 802.3.
For information on maximum frame length, refe
r to Read (Frame Ethernet).
This statistic corresponds to etherStatsOve
rsizePkts as described in RFC 2819.

© National Instruments 1287

NI-XNET 20.5

Rx Invalid Opcode Count of frames received with EtherType of 880
8 hex (MAC Control), and payload with an opcod
e that was not PAUSE.

Tx Bytes Count of the number of bytes (octets) transmitt
ed. The count for each frame is its frame length.
Read this counter twice to obtain an estimate of
transmitted bandwidth over the time between t
he two reads.

Tx Good Frames Count of error-free frames transmitted. This cou
nt is equal to (Tx Good Unicast + Tx Good Multi
cast + Tx Good Broadcast).

Tx Good Unicast Count of error-free unicast frames transmitted.
A unicast frame contains a destination MAC addr
ess with an I/G bit of 0 (individual address).
This statistic corresponds to ifHCOutUcastP
kts in RFC 2863.

Tx Good Multicast Count of error-free multicast frames transmitted
. A multicast frame contains a destination MAC a
ddress with an I/G bit of 1 (group address), and
an address that is not the all-stations broadcast
address (all 1's).
This statistic corresponds to ifHCOutMultic
astPkts in RFC 2863.

Tx Good Broadcast Count of error-free broadcast frames transmitte
d. A broadcast frame contains a destination MAC
address with an I/G bit of 1 (group address), and
uses the all-stations broadcast address (all 1's).
This statistic corresponds to ifHCOutBroadc
astPkts in RFC 2863.

Tx Good VLAN Tagged Count of error-free VLAN tagged frames transmit
ted. For information on VLAN tagged frames, ref
er to Interface:Ethernet:Endpoint:Receive Filter.

Tx Good Pause Frames Count of error-free PAUSE frames transmitted. A
PAUSE frame contains EtherType of 8808 hex (M
AC Control), and payload with an opcode of PAU
SE.

Tx Good 64 Byte Frames Count of error-free frames transmitted with a fra
me length of exactly 64 bytes.

ni.com1288

NI-XNET 20.5

Tx Good 65-127 Byte Frames Count of error-free frames transmitted with a fra
me length between 65 and 127 bytes.

Tx Good 128-255 Byte Frames Count of error-free frames transmitted with a fra
me length between 128 and 255 bytes.

Tx Good 256-511 Byte Frames Count of error-free frames transmitted with a fra
me length between 256 and 511 bytes.

Tx Good 512-1023 Byte Frames Count of error-free frames transmitted with a fra
me length between 512 and 1023 bytes.

Tx Good 1024-Max Byte Frames Count of error-free frames transmitted with a fra
me length between 1024 and the maximum spe
cified by IEEE Std 802.3. For information on max
imum frame length, refer to a Write (Frame Ethe
rnet).

Interface:Ethernet:Statistics:Counter Names

Data Type Direction Required? Default
1Dstring Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetStatsCounterNames

Description

This property returns the name of each Ethernet statistics property supported by
XNET. The name uses uppercase for the first letter of each word, with space as a
separator between words.

The name at a specific index corresponds to the counter at the same index in
Counter Values. The array of strings for this property is the same size as the Counter
Values array of strings.

The Counter Names and Counter Values properties are intended to be used together
to display all statistics on the front panel. These properties do not require
knowledge of specific property names. For example, if a new version of NI-XNET

© National Instruments 1289

NI-XNET 20.5

adds a statistic property (to the end of the arrays), the new property will display
without change to your application.

Statistics are grouped as receive (rx) and transmit (tx).

When the Port Mode of the session's interface is set to Direct, receive and transmit
are relative to that interface.

When the Port Mode is set to Tap, receive statistics refer to this session's interface,
and all transmit statistics are zero. If you want to get statistics for frames received by
the Tap partner, use a session with the Tap partner's interface.

All statistics reset to zero when the system powers up or the device is reset.
Interface:Ethernet:Statistics:Counter Values

Data Type Direction Required? Default
1Dstring Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetStatsCounterValues

Description

This property returns the counter value of each Ethernet statistics property
supported by XNET. Each counter value is returned as a string for display, but the
internal counter uses a 64-bit unsigned integer (U64) data type to avoid rollover. The
counter resets to zero when the system powers up or the device is reset, and
increments according to the description in Counter Names.

The counter value at a specific index corresponds to the name at the same index in
Counter Names. The array of strings for this property is the same size as the Counter
Names array of strings. Refer to Counter Names for a description of each counter
value.

ni.com1290

NI-XNET 20.5

The array of counters are not provided as a single snapshot in time. For example, it
is possible that a new frame is received as the values are returned, such that index 3
does not count the new frame, and index 4 does count the new frame.
Interface:Ethernet:Statistics:Rx Bytes Count

Data Type Direction Required? Default
u64 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetStatsRxBytes

Description

This is a count of the number of bytes (octets) received. The count for each frame is
its frame length. Bad frames are counted in addition to good frames. Reading this
counter twice can be used to obtain an estimate of received bandwidth over the
time between the two reads.

This statistic is analogous to the etherStatsOctets parameter as described in RFC
2819.
Interface:Ethernet:Statistics:Rx Good Frames
Count

Data Type Direction Required? Default
u64 Read Only No N/A

Property Class

XNET Session

© National Instruments 1291

NI-XNET 20.5

Property ID

nxPropSession_IntfEnetStatsRxGoodFrames

Description

This is a count of error-free frames received. This count is equal to (Rx Good Unicast
+ Rx Good Multicast + Rx Good Broadcast).
Interface:Ethernet:Statistics:Rx Bad Frames
Count

Data Type Direction Required? Default
u64 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetStatsRxBadFrames

Description

This is a count of frames received with an error detected by the Ethernet MAC and/or
PHY. This statistic is analogous to the ifInErrors parameter as described in RFC 2863.
Interface:Ethernet:Statistics:Tx Bytes Count

Data Type Direction Required? Default
u64 Read Only No N/A

Property Class

XNET Session

ni.com1292

NI-XNET 20.5

Property ID

nxPropSession_IntfEnetStatsTxBytes

Description

This is a count of the number of bytes (octets) transmitted. The count for each frame
is its frame length. Reading this counter twice can be used to obtain an estimate of
transmitted bandwidth over the time between the two reads.
Interface:Ethernet:Statistics:Tx Good Frames
Count

Data Type Direction Required? Default
u64 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetStatsTxGoodFrames

Description

This is a count of error-free frames transmitted. This count is equal to (Tx Good
Unicast + Tx Good Multicast + Tx Good Broadcast).
Ethernet Endpoint Properties
This category includes properties related to the endpoint path of the session's
Ethernet interface, as described in Using Ethernet.
Interface:Ethernet:Endpoint:Receive Filter

Data Type Direction Required? Default
nxEptRxFilter_Element_t* Read/Write No Refer to Description

© National Instruments 1293

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetEptReceiveFilter

Description

Each frame that is received by the interface is forwarded to either the XNET
endpoint or the OS stack (not both). The Receive Filter property configures zero,
one, or two identification elements (filters) for this forwarding decision.

The following C language pseudo-code describes how XNET forwards each received
frame to either the XNET endpoint or the OS stack:

 // TRUE forwards to XNET endpoint, FALSE forwards to OS stack
boolean forwardFrameToEndpoint = FALSE;
for (int i = 0; i < 2; i++)
{
 boolean endpointMatch =
 (RxFilter[i].useVID || RxFilter[i].usePriority ||
RxFilter[i].useDestinationMAC);

 if (RxFilter[i].useVID && (RxFilter[i].VID != frameVID)
 endpointMatch = FALSE;

 if (RxFilter[i].usePriority && (RxFilter[i].Priority != framePriority))
 endpointMatch = FALSE;

 if (RxFilter[i].useDestinationMAC && (RxFilter[i].DestinationMAC !=
frameDestinationMAC))
 endpointMatch = FALSE;

 // Only one element must match in order to forward to XNET endpoint.
 forwardFrameToEndpoint = forwardFrameToEndpoint || endpointMatch;
}

The default value is:

ni.com1294

NI-XNET 20.5

RxFilter[0].UseVID = TRUE, RxFilter[0].VID = 2,
RxFilter[0].UsePriority = TRUE, RxFilter[0].Priority = 3,
RxFilter[0].UseDestinationMAC = FALSE,
RxFilter[1].UseVID = TRUE, RxFilter[1].VID = 2,
RxFilter[1]UsePriority = TRUE, RxFilter[1].Priority = 2,
RxFilter[1].UseDestinationMAC = FALSE

This default value corresponds to AVB traffic (SR class A and B) using the defaults
specified for the credit-based shaper in IEEE Std 802.1Q.

If an XNET input session is not started for the interface's endpoint (e.g., Frame Input
Stream session on "ENET1"), all frames are forwarded to the OS stack. As described
in Using Ethernet, an XNET input session for the interface's monitor (e.g., Frame
Input Stream session on "ENET1/monitor") receives all frames regardless of the
value of this property.

If you write this property with fewer than two elements, the missing element is
configured with all three "use" flags set to false. For example, if you write zero
elements (an empty array), all traffic is forwarded to the OS stack.

IEEE Std 802.1Q specifies that VLAN ID (VID) and destination MAC address can be
used for forwarding decisions. The VID is typically used for a type of traffic, and
destination MAC address is used for a specific stream (flow). The Priority Code Point
(PCP) determines how the frame travels through transmit queues in the network.
The PCP is commonly known as priority.

The data type for VID is U16. Each VID value ranges from 1 to 4094. The VID in this
property applies only to a tagged frame. The tagged frame must use a Tag Protocol
Identification (TPID) of hex 8100, which is the Customer VLAN Tag (C-TAG) format
commonly known as a VLAN tag. This property's VID value is compared to the VID
value in the Tag Control Info of the frame. An untagged frame has an implicit VID of
1, but if this property's UseVID is true and VID is 1, the untagged frame forwards to
the OS stack.

The data type for priority is U8. Each priority value ranges from 0 to 7. The priority in
this property applies only to a tagged frame. The tagged frame must use a Tag
Protocol Identification (TPID) of hex 8100, which is the Customer VLAN Tag (C-TAG)
format commonly known as a VLAN tag. This property's priority value is compared
to the Priority Code Point (PCP) value in the Tag Control Info of the frame. An

© National Instruments 1295

NI-XNET 20.5

untagged frame has an implicit priority of 0, but if this property's UsePriority is true
and Priority is 0, the untagged frame forwards to the OS stack.

The destination MAC address is a string of six octets. Each octet consists of two
hexadecimal (0-9, A-F) digits. The octets are separated by colon. For example:
00:80:2F:AB:CD:EF.
Interface:Ethernet:Endpoint:Transmit
Bandwidth

Data Type Direction Required? Default
u64 Read/Write No Refer to Description

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetEptTransmitBandwidth

Description

This property configures the maximum bandwidth for the credit-based shaper
algorithm specified in IEEE Std 802.1Q, which is used for all transmissions from the
endpoint. The value is in units of bits per second.

This property applies when you call nxWriteFrame to transmit frames using an
endpoint session. The endpoint is the highest importance for transmit, and the OS
stack is lower importance. This property corresponds to the adminIdleSlope
parameter as described in IEEE Std 802.1Q. The default value corresponds to 75% of
the default link speed. On devices that support multiple link speeds, the Transmit
Bandwidth will be coerced to the closest valid value when the link speed changes to
a speed less than the Transmit Bandwidth.

ni.com1296

NI-XNET 20.5

Ethernet Time Sync Properties
This category includes properties for the time synchronization protocol (IEEE Std
802.1AS) that operates on the XNET Interface. XNET refers to the synchronized time
on the network as network time.

XNET uses the generic term clock for a distinct instance of the protocol that keeps
synchronized time. You can think of the clock as representing the software (code)
that is running in order to implement the protocol. IEEE Std 802.1AS refers to clock
as a time-aware system.

XNET uses the generic term port to reference the physical port that exchanges
protocol messages to synchronize time. Each clock contains one or more ports. In
XNET, there is a one-to-one relationship between a time sync port and an XNET
Interface. In IEEE Std 802.1AS-2011, a time-aware end station is a clock with one
port, and a time-aware bridge is a clock with two or more ports. An Ordinary Clock
in IEEE Std 1588-2008 is a clock with one port, and a Boundary Clock is a clock with
two or more ports.

XNET uses the the term grandmaster to refer to the clock in the network that acts
as the source of time for other clocks in the network. A clock that receives time from
the grandmaster is a slave clock.

In the XNET Session, properties listed directly in the Time Sync category apply to
the clock in the protocol. Properties listed in the Time Sync»Port category apply to
a specific port of the clock, and the port corresponds to the current XNET Interface
of the session.

By default, each XNET interface uses a distinct clock, and therefore the Time Sync

properties and Time Sync»Port properties apply to the same entity. For example,
for a 4-port Ethernet card using time synchronization protocol, each physical port
runs as a time-aware end station by default, and the ports are unrelated to one
another.
Interface:Ethernet:Time Sync:Protocol

Data Type Direction Required? Default
u32 Read/Write No IEEE Std 802.1AS-2011 (0)

© National Instruments 1297

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimeProtocol

Description

This property configures the time synchronization protocol that the clock is using.
This protocol is indicated in all time sync messages that are transmitted by the
session's interface (port). This property uses an enumerated list with the following
values:

Enumeration Value Description
nxEnetTimeProtocol_IEEE8021
as

0 IEEE Standard 802.1AS-2011: Ti
ming and Synchronization for T
ime-Sensitive Applications in Br
idged Local Area Networks.

Note This property currently supports only one protocol; in future releases, it may be
expanded to support additional protocols.

Interface:Ethernet:Time Sync:Protocol Enabled?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimeProtocolEnabled

Description

This property enables (runs) or disables the time synchronization protocol:

ni.com1298

NI-XNET 20.5

■ When this property is true, the protocol transmits and receives messages in
order to synchronize time with its neighboring ports.
■ When this property is false, the protocol does not transmit messages, and
messages received for the protocol are ignored.

This property must be written to false prior to changing the value of the Protocol
property. All other writable Time Sync properties can be changed while this
property is true.

The Protocol Enabled? property is created only when at least one XNET Session
exists on the Ethernet interface; therefore, this property is effectively false when no
XNET Session is created. The time synchronization protocol does not run outside the
context of XNET sessions.

This property is not associated with the state of input/output on the session (see
State Models). It is possible to enable the time synchronization protocol prior to
starting the session (e.g., to wait for Synced to equal true prior to timestamping
received frames). It is also possible to start the session with the time
synchronization protocol disabled, in which case frames from nxReadFrame contain
a network synced? flag of false.

For the Protocol of IEEE Std 802.1AS-2011, a property value of true
corresponds to running the clock's protocol, as described in 7.4 of IEEE Std
802.1AS-2011. A property value of true does not necessarily indicate that time is
synchronized with the neighboring port. The AS Capable property is used to
determine if the neighboring port is running 802.1AS.
Interface:Ethernet:Time Sync:BMCA Enabled?

Data Type Direction Required? Default
bool Read/Write No True

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimeBMCAEnabled

© National Instruments 1299

NI-XNET 20.5

Description

Enables (runs) the Best Master Clock Algorithm (BMCA) of the time synchronization
Protocol. The BMCA dynamically exchanges messages over the network to select the
best grandmaster in the network, and to change all port states in order to transfer
timing messages from the selected grandmaster to slaves.

When this property is true, Protocol runs the BMCA. The Port State property is
determined from operation of the BMCA. The XNET interface is capable of acting as a
grandmaster. Therefore, the BMCA can set the Port State property to Slave (i.e.,
XNET interface receives time) or Master (XNET interface sends time). The Port State
Configured property is not used while the BMCA is enabled. The BMCA uses the
following properties in order for its selection of grandmaster (with exceptions for
topology):

■ Priority1
■ Clock Class
■ Clock Accuracy
■ Clock Offset Scaled Log Variance
■ Priority2
■ Clock ID

When this property is false, the BMCA is not operational. The false value is useful for
in-vehicle applications in which the topology for time synchronization is considered
to be part of the vehicle's static design. The Port State Configured property must be
written in order to specify the Master or Slave state for the port. The read-only Port
State property reflects Port State Configured.

This property becomes read only when a port is in Tap mode.
Interface:Ethernet:Time Sync:Offset From Master

Data Type Direction Required? Default
u64 Read Only No N/A

Property Class

XNET Session

ni.com1300

NI-XNET 20.5

Property ID

nxPropSession_IntfEnetTimeOffsetFromMaster

Description

This property provides the positive or negative offset in time between this clock and
the grandmaster. Offset From Master can be used to determine when this XNET
interface is sufficiently synchronized to the grandmaster in order to continue.

The time synchronization protocol specifies that this offset is received by a slave
port, and that offset is used to compute the offset that transmits on a master port to
the next clock in the network. Technically, the offset is relative to the previous
master port (i.e., nearest neighbor); but practically, the offset is relative to the
grandmaster. This offset does not account for clock inaccuracies in the
communication path from grandmaster to slave (e.g., switches).

When Port State is Master, this XNET interface acts as grandmaster, and therefore
this property returns 0.0.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
offsetFromMaster parameter as described in 14.3.2 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Clock ID

Data Type Direction Required? Default
string Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimeClkID

Description

This property uniquely identifies the clock in the network.

© National Instruments 1301

NI-XNET 20.5

The Clock ID is formed by taking the MAC address assigned to the clock and
mapping it to an array of eight bytes, according to rules in the IEEE Std 802 EUI-48
standard. The best master clock algorithm (BMCA) uses this property as a tie-
breaker among clocks that would otherwise be equal.

The Clock ID is returned as a string of eight octets. Each octet consists of two
hexadecimal (0-9, A-F) digits. The octets are separated by colon. For example,
00:80:2F:AB:CD:EF:00:01

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
clockIdentity parameter as described in 14.2.1 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Clock Class

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimeClkClass

Description

This property provides the traceability of time or frequency distributed by the clock
when it is the grandmaster.The value for this property is an integer.

Integer Clock Class Specification

6 The clock is synchronized to a primary time refe
rence. The distributed timescale is PTP. A clock i
n this class cannot be a slave to another clock in
the domain.

7 The clock has previously been designated as Clo
ck Class 6, but has lost the ability to synchronize
to a primary time reference. A clock in this class
is in holdover mode and operates within holdov
er specifications. The distributed timescale is PT

ni.com1302

NI-XNET 20.5

P. A clock in this class cannot be a slave to anoth
er clock in the domain.

13 The clock is synchronized to an application-spe
cific time source. The distributed timescale is AR
B. A clock in this class cannot be a slave to anot
her clock in the domain.

14 The clock has previously been designated as Clo
ck Class 13, but has lost the ability to synchroniz
e to an application-specific time source. A clock
in this class is in holdover mode and operates w
ithin holdover specifications. The distributed ti
mescale is ARB. A clock in this class cannot be a
slave to another clock in the domain.

52 The clock is degradation alternative A for a Cloc
k Class 7 clock that is not within holdover specif
ication. A clock in this class cannot be a slave to
another clock in the domain.

58 The clock is degradation alternative A for a Cloc
k Class 14 clock that is not within holdover speci
fication. A clock in this class cannot be a slave to
another clock in the domain.

68—122 The clock uses an alternate PTP profile.
133—170 The clock uses an alternate PTP profile.
187 The clock is degradation alternative B for a Cloc

k Class 7 clock that is not within holdover specif
ication. A clock in this class can be a slave to an
other clock in the domain.

193 The clock is degradation alternative B for a Cloc
k Class 14 clock that is not within holdover speci
fication. A clock of this class can be a slave to an
other clock in the domain.

216—232 The clock uses an alternate PTP profile.
248 The default Clock Class. This class is used if non

e of the other class definitions apply.
255 The clock is a slave-only clock.

The best master clock algorithm (BMCA) uses this property in its comparison of
clock quality.

© National Instruments 1303

NI-XNET 20.5

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
clockClass parameter as described in 14.2.3 of IEEE Std 802.1AS-2011, which in turn
references 7.6.2.4 of IEEE Std 1588-2008, which describes the clock class
specification.
Interface:Ethernet:Time Sync:Clock Accuracy

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimeClkAccuracy

Description

This property provides the accuracy of the hardware clock (e.g., oscillator)
distributed by the clock when it is the grandmaster. This property uses an
enumerated list with the following values:

Enumeration Value Description
nxEnetTimeClkAccuracy_Withi
n25nsec

32 Time is accurate to within 25 ns

nxEnetTimeClkAccuracy_Withi
n100nsec

33 Time is accurate to within 100 n
s

nxEnetTimeClkAccuracy_Withi
n250nsec

34 Time is accurate to within 250 n
s

nxEnetTimeClkAccuracy_Withi
n1usec

35 Time is accurate to within 1 µs

nxEnetTimeClkAccuracy_Withi
n2500nsec

36 Time is accurate to within 2500
ns

nxEnetTimeClkAccuracy_Withi
n10usec

37 Time is accurate to within 10 µs

ni.com1304

NI-XNET 20.5

nxEnetTimeClkAccuracy_Withi
n25usec

38 Time is accurate to within 25 µs

nxEnetTimeClkAccuracy_Withi
n100usec

39 Time is accurate to within 100 µ
s

nxEnetTimeClkAccuracy_Withi
n250usec

40 Time is accurate to within 250 µ
s

nxEnetTimeClkAccuracy_Withi
n1msec

41 Time is accurate to within 1 ms

nxEnetTimeClkAccuracy_Withi
n2500usec

42 Time is accurate to within 2500
µs

nxEnetTimeClkAccuracy_Withi
n10msec

43 Time is accurate to within 10 m
s

nxEnetTimeClkAccuracy_Withi
n25msec

44 Time is accurate to within 25 m
s

nxEnetTimeClkAccuracy_Withi
n100msec

45 Time is accurate to within 100
ms

nxEnetTimeClkAccuracy_Withi
n250msec

46 Time is accurate to within 250
ms

nxEnetTimeClkAccuracy_Withi
n1sec

47 Time is accurate to within 1 s

nxEnetTimeClkAccuracy_Withi
n10sec

48 Time is accurate to within 10 s

nxEnetTimeClkAccuracy_Great
erThan10sec

49 Time accuracy is greater than 1
0 s

nxEnetTimeClkAccuracy_Unkn
own

254 Clock is not synchronized

The best master clock algorithm (BMCA) uses this property in its comparison of
clock quality.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
clockAccuracy parameter as described in 14.2.4 of IEEE Std 802.1AS-2011, which in
turn references 7.6.2.5 of IEEE Std 1588-2008, which describes clock accuracy values.

© National Instruments 1305

NI-XNET 20.5

Interface:Ethernet:Time Sync:Clock Offset Scaled
Log Variance

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimeClkOffsetVar

Description

This property provides an estimate of the precision of the timestamping that the
clock uses for the protocol. This estimate depends on the stability of the hardware
clock (e.g., oscillator), as well as any error introduced in the timestamping process.
The estimate is a second-order statistic on the variation of the frequency of the
hardware clock. Valid values range from 0 to 65535.

The best master clock algorithm (BMCA) uses this property in its comparison of
clock quality.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
offsetScaledLogVariance attribute, specified in 14.2.5 of IEEE Std 802.1AS-2011,
which in turn references 7.6.3 of IEEE Std 1588-2008.
Interface:Ethernet:Time Sync:Priority1

Data Type Direction Required? Default
u32 Read/Write No 246

Property Class

XNET Session

ni.com1306

NI-XNET 20.5

Property ID

nxPropSession_IntfEnetTimePriority1

Description

The best master clock algorithm (BMCA) uses this property as the first comparison
to determine the grandmaster. Lower values take precedence. Valid values range
from 0 to 255. The value 255 specifies that the clock is not grandmaster-capable
(slave only). For example, if you write this property to zero, and all other clocks in
the network have a Priority1 greater than zero, this clock is likely to be selected as
grandmaster.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
priority1 attribute, specified in 14.2.6 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Priority2

Data Type Direction Required? Default
u32 Read/Write No 248

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePriority2.html

Description

The best master clock algorithm (BMCA) uses this property as a secondary
comparison, after comparing the properties for clock quality, and before using Clock
ID as a tie-breaker. Lower values take precedence. Valid values range from 0 to 255.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
priority2 attribute, specified in 14.2.7 of IEEE Std 802.1AS-2011.

© National Instruments 1307

NI-XNET 20.5

Interface:Ethernet:Time Sync:Steps to
Grandmaster

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimeStepsToGM

Description

This property provides the number of steps that this clock is removed from the
grandmaster. For example, if there is a single Ethernet cable that connects this clock
to the grandmaster, this property returns the value 1.

The best master clock algorithm (BMCA) uses this property for topology analysis. If
two potentially equal grandmasters provide the same timescale, the BMCA can
select the one that is closer, with the rationale that each step has an adverse effect
on accuracy.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
stepsRemoved attribute, specified in 14.3.1 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Grandmaster Clock
ID

Data Type Direction Required? Default
string Read Only No N/A

Property Class

XNET Session

ni.com1308

NI-XNET 20.5

Property ID

nxPropSession_IntfEnetTimeGMClkID

Description

This property provides the Clock ID of the currently selected grandmaster for this
clock.

The Grandmaster Clock ID is returned as a string of eight octets. Each octet consists
of two hexadecimal (0-9, A-F) digits. The octets are separated by colon. For example,
00:80:2F:AB:CD:EF:00:12.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
grandmasterIdentity attribute, specified in 14.4.3 of IEEE Std 802.1AS-2011. This
property also uses the gmPresent Boolean specified in 10.2.3.13 of IEEE Std
802.1AS-2011. If gmPresent is true, this property returns the Clock ID of the
grandmaster. If gmPresent is false, this property returns the Clock ID of the XNET
Interface. If grandmaster information has not been received (e.g., Protocol Enabled
is false, or BMCA is disabled and the slave does not receive announce messages),
this property returns the invalid value of all zeroes.
Interface:Ethernet:Time Sync:Grandmaster Clock
Class

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimeGMClkClass

© National Instruments 1309

NI-XNET 20.5

Description

This property provides the Clock Class of the currently selected grandmaster for this
clock.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to
grandmasterClockClass, specified in 14.4.4 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Grandmaster Clock
Accuracy

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimeGMClkAccuracy

Description

This property provides the Clock Accuracy of the currently selected grandmaster for
this clock.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
grandmasterClockAccuracy attribute, specified in 14.4.5 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Grandmaster Clock
Offset Scaled Log Variance

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

ni.com1310

NI-XNET 20.5

Property ID

nxPropSession_IntfEnetTimeGMClkOffsetVar

Description

This property provides the Clock Offset Scaled Log Variance of the currently selected
grandmaster for this clock.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
grandmasterOffsetScaledLogVariance attribute, specified in 14.4.6 of IEEE Std
802.1AS-2011.
Interface:Ethernet:Time Sync:Grandmaster
Priority1

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimeGMPriority1

Description

This property provides the Priority1 of the currently selected grandmaster for this
clock.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
grandmasterPriority1 attribute, specified in 14.4.7 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Grandmaster
Priority2

Data Type Direction Required? Default

© National Instruments 1311

NI-XNET 20.5

u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimeGMPriority2

Description

This property provides the Priority2 of the currently selected grandmaster for this
clock.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
grandmasterPriority2 attribute, specified in 14.4.8 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Adjust Network
Time

Data Type Direction Required? Default
u64 Write Only No 0

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimeAdjustNetworkTime

Description

When this clock is the grandmaster (that is, the Grandmaster Clock ID equals the
Clock ID), a write of this property applies a positive or negative adjustment to the
time distributed to the network. This can be used to align network time with
another timescale.

ni.com1312

NI-XNET 20.5

When this clock is a slave (not the grandmaster), a write of this property has no
effect (error returned); the adjustment will be overridden when time is received
from the grandmaster.

This property corresponds to the lastGmPhaseChange parameter of the
ClockSourceTime.invoke function, specified in the IEEE Std 802.1AS-2011.
Time Sync Port Properties
This category includes port properties for the session's Ethernet interface on which
time synchronization protocol (IEEE Std 802.1AS) is operating. For more
information, refer to Ethernet Time Sync Properties.
Interface:Ethernet:Time Sync:Port:Port State
Configured
Interface:Ethernet:Time Sync:Port:Port State
Configured

Data Type Direction Required? Default
u32 Read/Write No Slave

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortStateConfigured

Description

This property configures the Port State when BMCA Enabled? is false. Valid values
are nxEnetTimePortState_Master and nxEnetTimePortState_Slave.
If BMCA Enabled? is true, the value in this property is ignored.

This property becomes read only when a port is in Tap mode.

© National Instruments 1313

NI-XNET 20.5

Interface:Ethernet:Time Sync:Port:Port State
Interface:Ethernet:Time Sync:Port:Port State

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortState

Description

Provides the current state of the port. This property uses an enumerated list with
the following values:

Enumeration Value Description
nxEnetTimePortState_Disabled 3 The protocol is disabled on the

port. No protocol messages are
transmitted in this state. The po
rt discards received messages f
or the protocol. The port is in th
is state when Protocol Enabled?
is false.

nxEnetTimePortState_Master 6 Port is sending time. If the clock
has only one port, the port is ac
ting as grandmaster.

nxEnetTimePortState_Passive 7 Port is exchanging messages to
measure Propagation Delay but
is not sending time (Master) or r
eceiving time (Slave).

nxEnetTimePortState_Slave 9 Port is receiving time. In IEEE St
d 802.1AS, the port is not neces
sarily synchronized (calibrated)

ni.com1314

NI-XNET 20.5

. In IEEE Std 1588, the port is as
sumed to be synchronized.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
portRole parameter, specified in 14.6.3 of IEEE Std 802.1AS-2011, which in turn
references 8.2.5.3.1 of IEEE Std 1588-2008. The only valid values for IEEE Std
802.1AS-2011 are Disabled, Master, Slave, and Passive.
Interface:Ethernet:Time Sync:Port:Propagation
Delay
Interface:Ethernet:Time Sync:Port:Propagation
Delay

Data Type Direction Required? Default
f64 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortPropDelay

Description

This property provides the propagation delay for the Ethernet cable between this
clock and its neighboring clock. Propagation delay is the time it takes for a single bit
to travel along the wire (i.e., PHY to PHY). Propagation delay is a fundamental
measurement that is required for time synchronization.

This property uses a double-precision floating-point, and the value is provided in
seconds, which is typically used for relative times. To convert the value to
nanoseconds, multiply this property value by 1,000,000,000.

The propagation speed for copper wires is close to 2 * 10^8 meters/second
(5 nanoseconds/meter). Therefore, multiplying this property value by 200,000,000

© National Instruments 1315

NI-XNET 20.5

provides a close approximation of the cable length in meters. For example,
800 nanoseconds of propagation delay occurs with approximately 160 meters of
copper cable.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
neighborPropDelay attribute, specified in 14.6.7 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Port:Propagation
Delay Configured
Interface:Ethernet:Time Sync:Port:Propagation
Delay Configured

Data Type Direction Required? Default
f64 Read/Write No 0

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortPropDelayConfigured

Description

Configures the Propagation Delay when Pdelay Enabled? is false. If Pdelay Enabled?
is true, the value in this property is ignored.
Interface:Ethernet:Time Sync:Port:Propagation
Delay Threshold
Interface:Ethernet:Time Sync:Port:Propagation
Delay Threshold

Data Type Direction Required? Default

ni.com1316

NI-XNET 20.5

f64 Read/Write No 0.0000008 (800 ns)

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortPropDelayThreshold

Description

For IEEE Std 802.1AS, if the Propagation Delay exceeds the threshold in this
property, the protocol assumes that a switch or router that is not 802.1AS-capable
exists between this clock and the neighboring 802.1AS-capable clock. The resulting
asymmetries would have an adverse effect on time synchronization accuracy, so
this port sets AS Capable? to false. If Pdelay Enabled? is false, this property is
ignored.

This property uses a double-precision floating-point, and the value is provided in
seconds, which is typically used for relative times. To convert the value to
nanoseconds, multiply this property value by 1000000000 (for read).

The propagation speed for copper wires is close to 2 * 10^8 meters/second
(5 nanoseconds/meter). Therefore, multiplying this property value by 200000000
provides a close approximation of the cable length in meters. For example,
800 nanoseconds of propagation delay occurs with approximately 160 meters of
copper cable.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
neighborPropDelayThresh parameter, specified in 14.6.8 of IEEE Std 802.1AS-2011.
The default value is specified in IEEE Std 802.1AS-2011/Cor1-2013.

This property becomes read only when a port is in Tap mode.
Interface:Ethernet:Time Sync:Port:Pdelay
Enabled?

© National Instruments 1317

NI-XNET 20.5

Interface:Ethernet:Time Sync:Port:Pdelay
Enabled?

Data Type Direction Required? Default
bool Read/Write No True

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortPdelayEnabled

Description

Enables the exchange of Pdelay (peer-to-peer delay) messages, as a means of
measuring Propagation Delay.

When this property is true, the port transmits Pdelay request messages
(Pdelay_Req) to the neighboring clock and processes received Pdelay response
messages (Pdelay_Resp). The port also processes received Pdelay request messages
and transmits Pdelay response messages. The Propagation Delay is measured using
this message exchange. The Propagation Delay Configured property is not used
while Pdelay is enabled.

When this property is false, Pdelay messages are not transmitted, and received
Pdelay messages are ignored. The false value is useful for in-vehicle applications in
which the topology for time synchronization is considered to be part of the vehicle's
static design. The Propagation Delay Configured property must be used in order to
specify the propagation delay for the port. The read-only Propagation Delay
property reflects Propagation Delay Configured.

For the Protocol of IEEE Std 802.1AS-2011, a property value of true
corresponds to propagation delay measurement as described in 11.1.2 of IEEE Std
802.1AS-2011. A property value of false is not specified in IEEE Std 802.1AS-2011.
Behavior analogous to a property value of false is specified for 802.1AS as part of

ni.com1318

NI-XNET 20.5

the AUTOSAR Specification of Time Synchronization over Ethernet, and the Avnu
Automotive Ethernet AVB Functional and Interoperability Specification.
Interface:Ethernet:Time Sync:Port:Log
Pdelay_Req Interval Configured
Interface:Ethernet:Time Sync:Port:Log
Pdelay_Req Interval Configured

Data Type Direction Required? Default
u32 Read/Write No 1 second (0)

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortLogPdelayIntervalConfigured

Description

If Pdelay Enabled? is true, this property configures the interval between successive
transmissions of the Pdelay_Req message by this port.

According to the standards, a message transmission interval is a signed integer in
the range -128 to 127, represented as the logarithm to the base 2 of the time interval
measured in seconds. For example, value 0 is 1 second, and value -3 is
125 milliseconds. The interval is provided as an enumerated list for usability:

Enumeration Value Description
nxEnetTimePdelayReqInterval_
125ms

-3 Message transmission interval
of 125 milliseconds.

nxEnetTimePdelayReqInterval_
250ms

-2 Message transmission interval
of 250 milliseconds.

© National Instruments 1319

NI-XNET 20.5

nxEnetTimePdelayReqInterval_
500ms

-1 Message transmission interval
of 500 milliseconds. This value i
s supported on all NI products.

nxEnetTimePdelayReqInterval_
1s

0 Message transmission interval
of 1 second. This value is suppo
rted on all NI products.

nxEnetTimePdelayReqInterval_
2s

1 Message transmission interval
of 2 seconds. This value is supp
orted on all NI products.

The enumerated list is limited to values that are practical in implementation, but
not all values are supported for all NI products. All NI products support the values
listed as such in the table.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
initialLogPdelayReqInterval parameter as described in 14.6.18 of IEEE Std
802.1AS-2011. The initialLogPdelayReqInterval parameter is used for the initial
transmit interval of Pdelay_Req, but afterward the interval can only be changed by
receiving a special Signaling message from the neighboring clock (see 10.5.4.3 of
IEEE Std 802.1AS-2011). The Signaling message is optional, and if not used in the
network, this property configures the interval exclusively.

This property becomes read only when a port is in Tap mode.
Interface:Ethernet:Time Sync:Port:Log
Pdelay_Req Interval
Interface:Ethernet:Time Sync:Port:Log
Pdelay_Req Interval

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

ni.com1320

NI-XNET 20.5

Property ID

nxPropSession_IntfEnetTimePortLogPdelayInterval

Description

If Pdelay Enabled? is true, this property provides the current interval used for
successive transmissions of the Pdelay_Req message by this port.

According to the standards, a message transmission interval is a signed integer in
the range -128 to 127, represented as the logarithm to the base 2 of the time interval
measured in seconds. For example, value 0 is 1 second, and value -3 is
125 milliseconds. The interval is provided as an enumerated list for usability:

Enumeration Value Description
nxEnetTimePdelayReqInterval_
125ms

-3 Message transmission interval
of 125 milliseconds.

nxEnetTimePdelayReqInterval_
250ms

-2 Message transmission interval
of 250 milliseconds.

nxEnetTimePdelayReqInterval_
500ms

-1 Message transmission interval
of 500 milliseconds. This value i
s supported on all NI products.

nxEnetTimePdelayReqInterval_
1s

0 Message transmission interval
of 1 second. This value is suppo
rted on all NI products.

nxEnetTimePdelayReqInterval_
2s

1 Message transmission interval
of 2 seconds. This value is supp
orted on all NI products.

The enumerated list is limited to values that are practical in implementation, but
not all values are supported for all NI products. All NI products support the values
listed as such in the table.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
currentLogPdelayReqInterval parameter as described in 14.6.19 of IEEE Std
802.1AS-2011. If the optional Signaling message is used in the network, the
currentLogPdelayReqInterval parameter can be different from its initial value (see
Log Pdelay_Req Interval Configured).

© National Instruments 1321

NI-XNET 20.5

Interface:Ethernet:Time Sync:Port:Log Sync
Interval Configured
Interface:Ethernet:Time Sync:Port:Log Sync
Interval Configured

Data Type Direction Required? Default
u32 Read/Write No 125 milliseconds (-3)

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortLogSyncIntervalConfigured

Description

If Port State is Master, this property configures the interval between successive
transmissions of the sync message by this port.

According to the standards, a message transmission interval is a signed integer in
the range -128 to 127, represented as the logarithm to the base 2 of the time interval
measured in seconds. For example, value 0 is 1 second, and value -3 is 125
milliseconds. The interval is provided as an enumerated list for usability:

Enumeration Value Description
nxEnetTimeSyncInterval_125m
s

-3 Message transmission interval
of 125 milliseconds.

nxEnetTimeSyncInterval_250m
s

-2 Message transmission interval
of 250 milliseconds.

nxEnetTimeSyncInterval_500m
s

-1 Message transmission interval
of 500 milliseconds. This value i
s supported on all NI products.

ni.com1322

NI-XNET 20.5

nxEnetTimeSyncInterval_1s 0 Message transmission interval
of 1 second. This value is suppo
rted on all NI products.

nxEnetTimeSyncInterval_2s 1 Message transmission interval
of 2 seconds. This value is supp
orted on all NI products.

The enumerated list is limited to values that are practical in implementation, but
not all values are supported for all NI products. All NI products support the values
listed as such in the table.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
initialLogSyncInterval parameter as described in 14.6.14 of IEEE Std 802.1AS-2011.
The initialLogSyncInterval parameter is used for the initial transmit interval of
Synch, but afterward the interval can only be changed by receiving a special
Signaling message from the neighboring clock (see 10.5.4.3 of IEEE Std
802.1AS-2011). The Signaling message is optional, and if not used in the network,
this property configures the interval exclusively.
nterface:Ethernet:Time Sync:Port:Log Sync
Interval
Interface:Ethernet:Time Sync:Port:Log Sync
Interval

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortLogSyncInterval

© National Instruments 1323

NI-XNET 20.5

Description

If Port State is Master, this property provides the current interval used for successive
transmissions of the sync message by this port.

According to the standards, a message transmission interval is a signed integer in
the range -128 to 127, represented as the logarithm to the base 2 of the time interval
measured in seconds. For example, value 0 is 1 second, and value -3 is
125 milliseconds. The interval is provided as an enumerated list for usability:

Enumeration Value Description
nxEnetTimeSyncInterval_125m
s

-3 Message transmission interval
of 125 milliseconds.

nxEnetTimeSyncInterval_250m
s

-2 Message transmission interval
of 250 milliseconds.

nxEnetTimeSyncInterval_500m
s

-1 Message transmission interval
of 500 milliseconds. This value i
s supported on all NI products.

nxEnetTimeSyncInterval_1s 0 Message transmission interval
of 1 second. This value is suppo
rted on all NI products.

nxEnetTimeSyncInterval_2s 1 Message transmission interval
of 2 seconds. This value is supp
orted on all NI products.

The enumerated list is limited to values that are practical in implementation, but
not all values are supported for all NI products. All NI products support the values
listed as such in the table.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
currentLogSyncInterval parameter as described in 14.6.15 of IEEE Std 802.1AS-2011.
If the optional Signaling message is used in the network, the currentLogSyncInterval
parameter can be different from its initial value (see Log Sync Interval Configured).
Interface:Ethernet:Time Sync:Port:Sync
Receipt Timeout

ni.com1324

NI-XNET 20.5

Interface:Ethernet:Time Sync:Port:Sync Receipt
Timeout

Data Type Direction Required? Default
u32 Read/Write No 3

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortSyncReceiptTimeout

Description

If Port State is Slave, this property configures the number of sync intervals (see Log
Sync Interval) to wait without receiving a sync message before assuming that the
neighboring Master is no longer available and that the best master clock algorithm
(BMCA) needs to run, if enabled.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
syncReceiptTimeout parameter as described in 14.6.16 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time Sync:Port:Log
Announce Interval Configured
Interface:Ethernet:Time Sync:Port:Log Announce
Interval Configured

Data Type Direction Required? Default
u32 Read/Write No 1 second (0)

© National Instruments 1325

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortLogAnnounceIntervalConfigured

Description

If Announce Transmit Enabled? is true, this property configures the interval between
successive transmissions of the announce message by this port.

According to the standards, a message transmission interval is a signed integer in
the range -128 to 127, represented as the logarithm to the base 2 of the time interval
measured in seconds. For example, value 0 is 1 second, and value -3 is 125
milliseconds. The interval is provided as an enumerated list for usability:

Enumeration Value Description
nxEnetTimeAnnounceInterval_
125ms

-3 Message transmission interval
of 125 milliseconds.

nxEnetTimeAnnounceInterval_
250ms

-2 Message transmission interval
of 250 milliseconds.

nxEnetTimeAnnounceInterval_
500ms

-1 Message transmission interval
of 500 milliseconds. This value i
s supported on all NI products.

nxEnetTimeAnnounceInterval_
1s

0 Message transmission interval
of 1 second. This value is suppo
rted on all NI products.

nxEnetTimeAnnounceInterval_
2s

1 Message transmission interval
of 2 second. This value is suppo
rted on all NI products.

The enumerated list is limited to values that are practical in implementation, but
not all values are supported for all NI products. All NI products support the values
listed as such in the table.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
initialLogAnnounceInterval attribute as described in 14.6.11 of IEEE Std
802.1AS-2011. The initialLogAnnounceInterval parameter is used for the initial

ni.com1326

NI-XNET 20.5

transmit interval of Announce, but afterward the interval can only be changed by
receiving a special Signaling message from the neighboring clock (see 10.5.4.3 of
IEEE Std 802.1AS-2011). The Signaling message is optional, and if not used in the
network, this property configures the interval exclusively.
Interface:Ethernet:Time Sync:Port:Log
Announce Interval
Interface:Ethernet:Time Sync:Port:Log Announce
Interval

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortLogAnnounceInterval

Description

If Announce Transmit Enabled? is true, this property provides the current interval
used for successive transmissions of the announce message by this port.

According to the standards, a message transmission interval is a signed integer in
the range -128 to 127, represented as the logarithm to the base 2 of the time interval
measured in seconds. For example, value 0 is 1 second, and value -3 is 125
milliseconds. The interval is provided as an enumerated list for usability:

Enumeration Value Description
nxEnetTimeAnnounceInterval_
125ms

-3 Message transmission interval
of 125 milliseconds.

nxEnetTimeAnnounceInterval_
250ms

-2 Message transmission interval
of 250 milliseconds.

© National Instruments 1327

NI-XNET 20.5

nxEnetTimeAnnounceInterval_
500ms

-1 Message transmission interval
of 500 milliseconds. This value i
s supported on all NI products.

nxEnetTimeAnnounceInterval_
1s

0 Message transmission interval
of 1 second. This value is suppo
rted on all NI products.

nxEnetTimeAnnounceInterval_
2s

1 Message transmission interval
of 2 seconds. This value is supp
orted on all NI products.

The enumerated list is limited to values that are practical in implementation, but
not all values are supported for all NI products. All NI products support the values
listed as such in the table.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
currentLogAnnounceInterval parameter as described in 14.6.12 of IEEE Std
802.1AS-2011. If the optional Signaling message is used in the network, the
currentLogAnnounceInterval parameter can be different from its initial value (see
Log Announce Interval Configured).
Interface:Ethernet:Time Sync:Port:Announce
Transmit Enabled?
Interface:Ethernet:Time Sync:Port:Announce
Transmit Enabled?

Data Type Direction Required? Default
bool Read/Write No True

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortAnnounceTransmitEnabled

ni.com1328

NI-XNET 20.5

Description

Enables the transmit of announce messages, which provide properties of this port
as a potential grandmaster. Announce messages are required for proper operation
of the best master clock algorithm (BMCA), so this property is ignored when BMCA
Enabled? is true.

When this property is true, the port transmits announce messages. This value is the
default behavior as specified in the protocol standard.

When this property is false, the port does not transmit announce messages. When
this property is false in the grandmaster, slave ports will not receive information
about that grandmaster (e.g. properties like Grandmaster Clock Accuracy).
Therefore, the false value is useful for in-vehicle applications in which each slave
assumes properties for its grandmaster as part of the vehicle's static design.

For the Protocol of IEEE Std 802.1AS-2011, a property value of true
corresponds to announce message transmission as described in 10.3 of IEEE Std
802.1AS-2011. A property value of false is not specified in IEEE Std 802.1AS-2011.
Behavior analogous to a property value of false is specified for 802.1AS as part of the
AUTOSAR Specification of Time Synchronization over Ethernet, and the Avnu
Automotive Ethernet AVB Functional and Interoperability Specification.

This property becomes read only when a port is in Tap mode.
Interface:Ethernet:Time Sync:Port:Announce
Receipt Timeout
Interface:Ethernet:Time Sync:Port:Announce
Receipt Timeout

Data Type Direction Required? Default
u32 Read/Write No 3

Property Class

XNET Session

© National Instruments 1329

NI-XNET 20.5

Property ID

nxPropSession_IntfEnetTimePortAnnounceReceiptTimeout

Description

If Port State is Slave, this property configures the number of announce intervals (see
Log Announce Interval) to wait without receiving an announce message before
assuming that the neighboring Master is no longer available and that the best
master clock algorithm (BMCA) needs to run, if enabled.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
announceReceiptTimeout parameter as described in 14.6.13 of IEEE Std
802.1AS-2011.
Interface:Ethernet:Time Sync:Port:AS
Capable?
Interface:Ethernet:Time Sync:Port:AS Capable?

Data Type Direction Required? Default
bool Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortASCapable

Description

This property is specific to the IEEE Std 802.1AS Protocol. It returns true if the
neighboring port is running the protocol according to the requirements in the
standard; it returns false otherwise.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
asCapable parameter as described in 14.6.6 of IEEE Std 802.1AS-2011.

ni.com1330

NI-XNET 20.5

Interface:Ethernet:Time Sync:Port:Synced?
Interface:Ethernet:Time Sync:Port:Synced?

Data Type Direction Required? Default
bool Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortSynced

Description

This property indicates whether the clock using the time synchronization protocol is
successfully synchronized to other clocks in the network.

For the Protocol of IEEE Std 802.1AS-2011, this property is true when AS
Capable is true and the following conditions apply:

■ If Port State is Slave, XNET clock adjustment algorithm (servo) is in its final
stage (calibrated). Sufficient messages have been exchanged such that
synchronization quality (e.g., Offset From Master) is unlikely to improve
significantly, but no fixed metric is applied as a threshold.
■ If Port State is Master and best master clock algorithm (BMCA) is enabled, at
least two announce intervals have elapsed. Master state means that the XNET
port is acting as grandmaster (the source of time in the network), so Synced?
would normally be true immediately. When using the BMCA, the XNET port
initializes assuming that it is a potential grandmaster (Master), but when it
receives an announce message from a better grandmaster, the Port State
changes to Slave. By waiting up to two announce intervals, the XNET port
avoids reporting a false-positive from Synced? (i.e., true because it was Master
upon initialization, then false when a better grandmaster is detected, and
then true again after slave calibration).

© National Instruments 1331

NI-XNET 20.5

■ If Port State is Master and BMCA is disabled, Synced? is true immediately. As
BMCA is disabled, this XNET port will act as the Master (grandmaster)
indefinitely.

In the IEEE 1588-2008 standard (on which IEEE Std 802.1AS-2011 is based), this
Synced? flag is analogous to transition out of the UNCALIBRATED state. For 802.1AS,
behavior similar to this property is specified as the AVB_Sync state of the Avnu
Automotive Ethernet AVB Functional and Interoperability Specification.

Note Time synchronization occurs independently from start of the interface. For example,
you can read and write Ethernet frames when time sync is not enabled, or when the time
sync protocol is not synced.

Interface:Ethernet:Time Sync:Port:Sync Stat
Interface:Ethernet:Time Sync:Port:Sync Stat

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortSyncStatus

Description

This property provides the current synchronization status of the time
synchronization protocol. This property uses an enumerated list with the following
values:

Enumeration Value Description
nxEnetTimePortSyncStatus_Sy
nced

0 The clock using the time synchr
onization protocol is successfull
y synchronized with other clock
s in the network.

ni.com1332

NI-XNET 20.5

nxEnetTimePortSyncStatus_En
etLinkDown

1 The interface cannot transmit o
r receive frames (packets).

nxEnetTimePortSyncStatus_Pr
otocolDisabled

2 Time synchronization protocol i
s disabled.

nxEnetTimePortSyncStatus_Me
asuringPropDelay

3 The port is exchanging message
s to measure Propagation Delay
, but the port is not sending tim
e (master) or receiving time (sla
ve).

nxEnetTimePortSyncStatus_Ma
sterPendingAnnounce

4 The Port State is master with th
e BMCA enabled and is waiting
until at least two Announce Inte
rvals have elapsed before decla
ring the port synchronized. This
avoids reporting a false-positiv
e when the best master clock al
gorithm (BMCA) has not finishe
d electing the best master.

nxEnetTimePortSyncStatus_Wa
itingForMaster

5 The Port State is slave and a syn
c message has not been receive
d from the master.

nxEnetTimePortSyncStatus_Sy
ncingToMaster

6 The Port State is slave and the X
NET clock adjustment algorith
m (servo) has not reached its fi
nal state (calibrated). A sufficie
nt number of messages need to
be exchanged so that synchroni
zation quality (e.g., Offset From
Master) is unlikely to improve si
gnificantly, but no fixed metric i
s applied as a threshold.

nxEnetTimePortSyncStatus_Pe
erNotProtoCapable

7 The time synchronization proto
col is not detecting a neighbor t
hat is running the protocol acco
rding to the requirements in the
standard.

nxEnetTimePortSyncStatus_Pr
opDelayExceedsTreshold

8 For IEEE Std 802.1AS, the meas
ured propagation delay exceed
s the value specified by the pro
perty Propagation Delay Thresh

© National Instruments 1333

NI-XNET 20.5

old. As a result, the time synchr
onization protocol sets the AS C
apable? property to false.

nxEnetTimePortSyncStatus_Sy
ncReceiptTimeout

9 The Port State is slave and the t
ime synchronization protocol h
as not received a sync message
from the Master in at least the n
umber of sync intervals specifie
d by the Sync Receipt Timeout
property.

nxEnetTimePortSyncStatus_Fre
quencyOutOfRange

10 The Port State is slave and the g
randmaster clock has exceeded
the frequency range of the XNE
T clock (±100 ppm).

nxEnetTimePortSyncStatus_Sy
ncIntervalOutOfRange

11 The Port State is slave and the
master is sending sync message
s outside of the supported sync
interval range.

nxEnetTimePortSyncStatus_Mu
ltipleMastersDetected

12 The Port State is configured as
master with the BMCA disabled
and another master has been d
etected by the time synchroniza
tion protocol.

Statistics
Port Statistics Properties
This category contains statistical counters for the Time Sync Port associated with
this session's Ethernet interface.

Counter Names and Counter Values properties each return an array of strings (both
same size), displaying all name/counter pairs. Each string is returned separately so
that you can customize the display.

Receive (Rx) and Transmit (Tx) statistics (for example, see Rx Sync Count) return
more specific statistics as unsigned long integers (U64 datatype).

Statistics are grouped as receive (rx) and transmit (tx).

ni.com1334

NI-XNET 20.5

When the Port Mode of the session interface is Direct, receive and transmit statistics
are relative to this interface. When the Port Mode is Tap, receive statistics refer to
this session's interface, and the values of all transmit statistics are zero. (To obtain
statistics for frames received by the Tap partner, use a session with the Tap partner
interface.) Refer to Using Ethernet for more information about Direct and Tap port
modes.

All statistics reset to zero when the system powers up or the device is reset.
Interface:Ethernet:Time
Sync:Port:Statistics:Counter Names
Interface:Ethernet:Time
Sync:Port:Statistics:Counter Names

Data Type Direction Required? Default
1Dstring Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortStatsCounterNames

Description

This property returns the name of each Ethernet statistics property supported by
XNET. The name uses uppercase for the first letter of each word, with space as a
separator between words.

The name at a specific index corresponds to the counter at the same index in
Counter Values. The array of strings for this property is the same size as the Counter
Values array of strings.

The Counter Names and Counter Values properties are intended to be used together
to display all statistics on the front panel. These properties do not require

© National Instruments 1335

NI-XNET 20.5

knowledge of specific property names. For example, if a new version of NI-XNET
adds a statistic property (to the end of the arrays), the new property will display
without change to your application.

Statistics are grouped as receive (rx) and transmit (tx).

When the Port Mode of the session's interface is set to Direct, receive and transmit
are relative to that interface.

When the Port Mode is set to Tap, receive statistics refer to this session's interface,
and all transmit statistics are zero. If you want to get statistics for frames received by
the Tap partner, use a session with the Tap partner's interface.

All statistics reset to zero when the system powers up or the device is reset.
Interface:Ethernet:Time
Sync:Port:Statistics:Counter Values
Interface:Ethernet:Time
Sync:Port:Statistics:Counter Values

Data Type Direction Required? Default
1Dstring Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortStatsCounterValues

Description

This property returns the counter value of each Time Sync Port statistics property
supported by XNET. Each counter value is returned as a string for display, but the
internal counter uses a 64-bit unsigned integer (U64) data type to avoid rollover. The

ni.com1336

NI-XNET 20.5

counter resets to zero when the system powers up or the device is reset, and
increments according to the description in Counter Names.

The counter value at a specific index corresponds to the name at the same index in
Counter Names. The array of strings for this property is the same size as the Counter
Names array of strings. Refer to Counter Names for a description of each counter
value.

The array of counters are not provided as a single snapshot in time. For example, it
is possible that a new frame is received as the values are returned, such that index 3
does not count the new frame, and index 4 does count the new frame.
Interface:Ethernet:Time
Sync:Port:Statistics:Rx Sync Count
Interface:Ethernet:Time Sync:Port:Statistics:Rx
Sync Count

Data Type Direction Required? Default
u64 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortStatsRxSync

Description

A count of the number of Sync messages received.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
rxSyncCount parameter as described in 14.7.2 of IEEE Std 802.1AS-2011.

© National Instruments 1337

NI-XNET 20.5

Interface:Ethernet:Time
Sync:Port:Statistics:Rx Announce Count
Interface:Ethernet:Time Sync:Port:Statistics:Rx
Announce Count

Data Type Direction Required? Default
u64 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortStatsRxAnnounce

Description

A count of the number of announce messages received.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
rxAnnounceCount parameter as described in 14.7.7 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time
Sync:Port:Statistics:Rx Pdelay Request Count
Interface:Ethernet:Time Sync:Port:Statistics:Rx
Pdelay Request Count

Data Type Direction Required? Default
u64 Read Only No N/A

ni.com1338

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortStatsRxPdelayRequest

Description

A count of the number of Pdelay_Req messages received.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
rxPdelayRequestCount parameter as described in 14.7.4 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time
Sync:Port:Statistics:Tx Sync Count
Interface:Ethernet:Time Sync:Port:Statistics:Tx
Sync Count

Data Type Direction Required? Default
u64 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortStatsTxSync

Description

A count of the number of Sync messages transmitted.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
txSyncCount parameter as described in 14.7.12 of IEEE Std 802.1AS-2011.

© National Instruments 1339

NI-XNET 20.5

Interface:Ethernet:Time
Sync:Port:Statistics:Tx Announce Count
Interface:Ethernet:Time Sync:Port:Statistics:Tx
Announce Count

Data Type Direction Required? Default
u64 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortStatsTxAnnounce

Description

A count of the number of announce messages transmitted.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
txAnnounceCount parameter as described in 14.7.17 of IEEE Std 802.1AS-2011.
Interface:Ethernet:Time
Sync:Port:Statistics:Tx Pdelay Request Count
Interface:Ethernet:Time Sync:Port:Statistics:Tx
Pdelay Request Count

Data Type Direction Required? Default
u64 Read Only No N/A

ni.com1340

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_IntfEnetTimePortStatsTxPdelayRequest

Description

A count of the number of Pdelay_Req messages transmitted.

For the Protocol of IEEE Std 802.1AS-2011, this property corresponds to the
txPdelayRequestCount parameter as described in 14.7.14 of IEEE Std 802.1AS-2011.

FlexRay Interface Properties
This category includes FlexRay-specific interface properties.

Properties in the Interface category apply to the interface and not the session. If
more than one session exists for the interface, changing an interface property
affects all the sessions.

These properties are calculated based on constraints in the FlexRay Protocol
Specification. To calculate these properties, the constraints use cluster settings and
knowledge of the oscillator that the FlexRay interface uses.

At Create Session time, the XNET driver automatically calculates these properties,
and they are passed down to the hardware. However, you can use the XNET
property node to change these settings.

Note Changing the interface properties can affect the integration and communication of the
XNET FlexRay interface with the cluster.

Interface:FlexRay:Accepted Startup Range

Data Type Direction Required? Default
u32 Read/Write No Calculated from Cluster Settings

© National Instruments 1341

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayAccStartRng

Description

Range of measure clock deviation allowed for startup frames during node
integration. This property corresponds to the pdAcceptedStartupRange node
parameter in the FlexRay Protocol Specification.

The range for this property is 0–1875 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.
Interface:FlexRay:Allow Halt Due To Clock?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayAlwHltClk

Description

Controls the FlexRay interface transition to the POC: halt state due to clock
synchronization errors. If set to true, the node can transition to the POC: halt state. If
set to false, the node does not transition to the POC: halt state and remains in the
POC: normal passive state, allowing for self recovery.

ni.com1342

NI-XNET 20.5

This property corresponds to the pAllowHaltDueToClock node parameter in
the FlexRay Protocol Specification.

The property is a Boolean flag.

The default value of this property is false.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.

Refer to nxReadState for more information about the POC: halt and POC: normal
passive states.
Interface:FlexRay:Allow Passive to Active

Data Type Direction Required? Default
u32 Read/Write No 0

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayAlwPassAct

Description

Number of consecutive even/odd cycle pairs that must have valid clock correction
terms before the FlexRay node can transition from the POC: normal-passive to the
POC: normal-active state. If set to zero, the node cannot transition from POC:
normal-passive to POC: normal-active.

This property corresponds to the pAllowPassiveToActive node parameter in
the FlexRay Protocol Specification.

The property is expressed as the number of even/odd cycle pairs, with values of 0–
31.

The default value of this property is zero.

© National Instruments 1343

NI-XNET 20.5

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.

Refer to nxReadState for more information about the POC: normal-active and
POC: normal-passive states.
Interface:FlexRay:Auto Asleep When Stopped?

Data Type Direction Required? Default
bool Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

nxPropSession_IntfFlexRayAutoAslpWhnStp

Description

This property indicates whether the FlexRay interface (node) automatically places
the FlexRay transceiver and controller into sleep when the interface is stopped. The
default value of this property is False, and you must handle the wakeup/sleep
processing manually using nxSetProperty with the property ID of nxPropSess
ion_IntfFlexRaySleep.

When this property is called with the value True while the interface is asleep, the
interface is put to sleep immediately. When this property is called with the value
False, the interface is set to a local awake state immediately.

If the interface is asleep when nxStart is called, the FlexRay interface waits for a
wakeup pattern on the bus before transitioning out of the POC:READY state. To
initiate a bus wakeup, set nxSetProperty with the property ID of nxPropSessi
on_IntfFlexRaySleep and a value of nxFlexRaySleep_RemoteWake.

After nxStop is called, if this property is True, the FlexRay interface automatically
goes back to sleep to be ready to handle the wakeup on subsequent nxStart calls.

ni.com1344

NI-XNET 20.5

When this property is False when nxStop is called, the FlexRay interface remains in
the sleep state it was in prior to the nxStop call.

You can overwrite the default value by writing this property prior to starting the
FlexRay interface (refer to Session States for more information).
Interface:FlexRay:Cluster Drift Damping

Data Type Direction Required? Default
u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayClstDriftDmp

Description

Local cluster drift damping factor used for rate correction.

This property corresponds to the pAllowPassiveToActive node parameter in
the FlexRay Protocol Specification. The range for the property is 0–20 MT.

The cluster drift damping property should be configured in such a way that the
damping values in all nodes within the same cluster have approximately the same
duration.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.
Interface:FlexRay:Coldstart?

Data Type Direction Required? Default
bool Read Only No False

Property Class

XNET Session

© National Instruments 1345

NI-XNET 20.5

Property ID

nxPropSession_IntfFlexRayColdstart

Description

This property specifies whether the FlexRay interface operates as a coldstart node
on the cluster. This property is read only and calculated from the XNET Session
Interface:FlexRay:Key Slot Identifier property. If the KeySlot Identifier is 0 (invalid
slot identifier), the XNET FlexRay interface does not act as a coldstart node, and this
property is false. If the KeySlot Identifier is 1 or more, the XNET FlexRay interface
transmits a startup frame from that slot, and the ColdStart? property is true.

This property returns a Boolean flag (true/false).

The default value of this property is false.
Interface:FlexRay:Connected Channels

Data Type Direction Required? Default
u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

nxPropSession_IntfFlexRayConnectedChs

Description

This property specifies the channel(s) that the FlexRay interface (node) is physically
connected to. The default value of this property is connected to all channels
available on the cluster. However, if you are using a node connected to only one
channel of a multichannel cluster that uses wakeup, you must set the value
properly. If you do not, your node may not wake up, as the wakeup pattern cannot
be received on a channel that is not physically connected.

ni.com1346

NI-XNET 20.5

This property corresponds to the pChannels node parameter in the FlexRay
Protocol Specification.

The values supported for this property (enumeration) are A = 1, B = 2, and A and B =
3.

You can overwrite the default value by writing this property prior to starting the
FlexRay interface (refer to Session States for more information).
Interface:FlexRay:Decoding Correction

Data Type Direction Required? Default
u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayDecCorr

Description

This property specifies the value that the receiving FlexRay node uses to calculate
the difference between the primary time reference point and secondary reference
point. The clock synchronization algorithm uses the primary time reference and the
sync frame's expected arrival time to calculate and compensate for the node's local
clock deviation.

This property corresponds to the pDecodingCorrection node parameter in the
FlexRay Protocol Specification.

The range for the property is 14–143 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.
Interface:FlexRay:Delay Compensation Ch A

Data Type Direction Required? Default

© National Instruments 1347

NI-XNET 20.5

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayDelayCompA

Description

This property specifies the value that the XNET FlexRay interface (node) uses to
compensate for reception delays on channel A. This takes into account the assumed
propagation delay up to the maximum allowed propagation delay (cPropagatio
nDelayMax) for microticks in the 0.0125–0.05 range. In practice, you should apply
the minimum of the propagation delays of all sync nodes.

This property corresponds to the pDelayCompensation[A] node parameter in
the FlexRay Protocol Specification.

The property range is 0–200 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.
Interface:FlexRay:Delay Compensation Ch B

Data Type Direction Required? Default
u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayDelayCompB

ni.com1348

NI-XNET 20.5

Description

This property specifies the value that the XNET FlexRay interface (node) uses to
compensate for reception delays on channel B. This takes into account the assumed
propagation delay up to the maximum allowed propagation delay (Propagation
Delay Max) for microticks in the 0.0125–0.05 range. In practice, you should apply
the minimum of the propagation delays of all sync nodes.

This property corresponds to the pDelayCompensation[B] node parameter in
the FlexRay Protocol Specification.

The property range is 0–200 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.
Interface:FlexRay:Key Slot Identifier

Data Type Direction Required? Default
u32 Read/Write No 0

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayKeySlotID

Description

This property specifies the FlexRay slot number from which the XNET FlexRay
interface transmits a startup frame, during the process of integration with other
cluster nodes.

For a network (cluster) of FlexRay nodes to start up for communication, at least two
nodes must transmit startup frames. If your application is designed to test only one
external ECU, you must configure the XNET FlexRay interface to transmit a startup
frame. If the one external ECU does not transmit a startup frame itself, you must use

© National Instruments 1349

NI-XNET 20.5

two XNET FlexRay interfaces for the test, each of which must transmit a startup
frame.

There are two methods for configuring the XNET FlexRay interface as a coldstart
node (transmit startup frame).

Output Session with Startup Frame
Create an output session that contains a startup frame (or one of its signals). The
XNET Frame FlexRay:Startup? property is true for a startup frame. If you use this
method, this Key Slot Identifier property contains the identifier property of that
startup frame. You do not write this property.

Write this Key Slot Identifier Property
This interface uses the identifier (slot) you write to transmit a startup frame using
that slot.

Note If you create an output session that contains the startup frame, with the same
identifier as that specified in the Key Slot Identifier property, the data you write to the
session transmits in the frame. If you do not create an output session that contains the
startup frame, the interface transmits a null frame for startup purposes.

If you create an output session that contains a startup frame with an identifier that
does not match the Key Slot Identifier property, an error is returned.

The default value of this property is 0 (no startup frame).

You can overwrite the default value by writing an identifier that corresponds to the
identifier of a startup frame prior to starting the FlexRay interface (refer to Session
States for more information).
Interface:FlexRay:Latest Tx

Data Type Direction Required? Default
u32 Read Only No 0

Property Class

XNET Session

ni.com1350

NI-XNET 20.5

Property ID

nxPropSession_IntfFlexRayLatestTx

Description

This property specifies the number of the last minislot in which a frame
transmission can start in the dynamic segment. This is a read-only property, as the
FlexRay controller evaluates it based on the configuration of the frames in the
dynamic segment.

This property corresponds to the pLatestTx node parameter in the FlexRay
Protocol Specification.

The range of values for this property is 0–7981 minislots.

This property can be read any time prior to closing the FlexRay interface.
Interface:FlexRay:Listen Timeout

Data Type Direction Required? Default
u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayListTimo

Description

This property specifies the upper limit for the startup listen timeout and wakeup
listen timeout.

Refer to Summary of the FlexRay Standard for more information about startup and
wakeup procedures within the FlexRay protocol.

This property corresponds to the pdListenTimeout node parameter in the
FlexRay Protocol Specification.

© National Instruments 1351

NI-XNET 20.5

The range of values for this property is 1284–1283846 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.
Interface:FlexRay:Macro Initial Offset Ch A

Data Type Direction Required? Default
u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayMacInitOffA

Description

This property specifies the integer number of macroticks between the static slot
boundary and the following macrotick boundary of the secondary time reference
point based on the nominal macrotick duration. This property applies only to
Channel A.

This property corresponds to the pMacroInitialOffset[A] node parameter in
the FlexRay Protocol Specification.

The range of values for this property is 2–72 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.
Interface:FlexRay:Macro Initial Offset Ch B

Data Type Direction Required? Default
u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

ni.com1352

NI-XNET 20.5

Property ID

nxPropSession_IntfFlexRayMacInitOffB

Description

This property specifies the integer number of macroticks between the static slot
boundary and the following macrotick boundary of the secondary time reference
point based on the nominal macrotick duration. This property applies only to
Channel B.

This property corresponds to the pMacroInitialOffset[B] node parameter in
the FlexRay Protocol Specification.

The range of values for this property is 2–72 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.
Interface:FlexRay:Max Drift

Data Type Direction Required? Default
u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayMaxDrift

Description

This property specifies the maximum drift offset between two nodes that operate
with unsynchronized clocks over one communication cycle.

This property corresponds to the pdMaxDrift node parameter in the FlexRay
Protocol Specification.

The range of values for this property is 2–1923 MT.

© National Instruments 1353

NI-XNET 20.5

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface (refer to Session States for more
information).
Interface:FlexRay:Micro Initial Offset Ch A

Data Type Direction Required? Default
u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayMicInitOffA

Description

This property specifies the number of microticks between the closest macrotick
boundary described by the Macro Initial Offset Ch A property and the secondary
time reference point. This parameter depends on the Delay Compensation property
for Channel A, and therefore you must set it independently for each channel.

This property corresponds to the pMicroInitialOffset[A] node parameter in
the FlexRay Protocol Specification.

The range of values for this property is 0–240 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.
Interface:FlexRay:Micro Initial Offset Ch B

Data Type Direction Required? Default
u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

ni.com1354

NI-XNET 20.5

Property ID

nxPropSession_IntfFlexRayMicInitOffB

Description

This property specifies the number of microticks between the closest macrotick
boundary described by the Macro Initial Offset Ch B property and the secondary
time reference point. This parameter depends on the Delay Compensation property
for Channel B, and therefore you must set it independently for each channel.

This property corresponds to the pMicroInitialOffset[B] node parameter in
the FlexRay Protocol Specification.

The range of values for this property is 0–240 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface.
Interface:FlexRay:Microtick

Data Type Direction Required? Default
u32 Read Only No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayMicrotick

Description

This property specifies the duration of a microtick. This property is calculated based
on the product of the Samples per Microtick interface property and the BaudRate
cluster. This is a read-only property.

This property corresponds to the pdMicrotick node parameter in the FlexRay
Protocol Specification.

© National Instruments 1355

NI-XNET 20.5

This property can be read any time prior to closing the FlexRay interface.
Interface:FlexRay:Null Frames To Input Stream?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayNullToInStrm

Description

This property indicates whether the Frame Input Stream Mode session should return
FlexRay null frames from nxReadFrame.

When this property uses the default value of false, FlexRay null frames are not
returned for a Frame Input Stream Mode session. This behavior is consistent with
the other two frame input modes (Frame Input Single-Point Mode and Frame Input
Queued Mode), which never return FlexRay null frames from nxReadFrame.

When you set this property to true for a Frame Input Stream Mode session, nxRead
Frame returns all FlexRay null frames that are received by the interface. This feature
is used to monitor all frames that occur on the network, regardless of whether new
payload is available or not. When you use nxReadFrame, each frame's type field
indicates a null frame.

You can overwrite the default value prior to starting the FlexRay interface (refer to
Session States for more information).
Interface:FlexRay:Offset Correction

Data Type Direction Required? Default
i32 Read Only No N/A

ni.com1356

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayOffCorr

Description

This property provides the maximum permissible offset correction value, expressed
in microticks. The offset correction synchronizes the cycle start time. The value
indicates the number of microticks added or subtracted to the offset correction
portion of the network idle time, to synchronize the interface to the FlexRay
network. The value is returned as a signed 32-bit integer (i32). The offset correction
value calculation takes place every cycle, but the correction is applied only at the
end of odd cycles. This is a read-only property.

This property can be read anytime prior to closing the FlexRay interface.
Interface:FlexRay:Offset Correction Out

Data Type Direction Required? Default
u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayOffCorrOut

Description

This property specifies the magnitude of the maximum permissible offset correction
value. This node parameter is based on the value of the maximum offset correction
for the specific cluster.

© National Instruments 1357

NI-XNET 20.5

This property corresponds to the pOffsetCorrectionOut node parameter in
the FlexRay Protocol Specification.

The value range for this property is 5–15266 MT.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface (refer to Session States for more
information)
Interface:FlexRay:Rate Correction

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayRateCorr

Description

Read-only property that provides the rate correction value, expressed in microticks.
The rate correction synchronizes frequency. The value indicates the number of
microticks added to or subtracted from the configured number of microticks in a
cycle, to synchronize the interface to the FlexRay network.

The value is returned as a signed 32-bit integer (i32). The rate correction value
calculation takes place in the static segment of an odd cycle, based on values
measured in an even-odd double cycle.

This property can be read prior to closing the FlexRay interface.
Interface:FlexRay:Rate Correction Out

Data Type Direction Required? Default
u32 Read/Write No Calculated from Cluster Settings

ni.com1358

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayRateCorrOut

Description

This property specifies the magnitude of the maximum permissible rate correction
value. This node parameter is based on the value of the maximum rate correction for
the specific cluster.

This property corresponds to the pRateCorrectionOut node parameter in the
FlexRay Protocol Specification.

The range of values for this property is 2–1923 MT.

This property is calculated from the microticks per cycle and clock accuracy.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface (refer to Session States for more
information).
Interface:FlexRay:Samples Per Microtick

Data Type Direction Required? Default
u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRaySampPerMicro

Description

This property specifies the number of samples per microtick.

© National Instruments 1359

NI-XNET 20.5

There is a defined relationship between the "ticks" of the microtick timebase and
the sample ticks of bit sampling. Specifically, a microtick consists of an integral
number of samples.

As a result, there is a fixed phase relationship between the microtick timebase and
the sample clock ticks.

This property corresponds to the pSamplesPerMicrotick node parameter in
the FlexRay Protocol Specification.

The supported values for this property are 1, 2, and 4 samples.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface (refer to Session States for more
information).
Interface:FlexRay:Single Slot Enabled?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRaySingSlotEn

Description

This property serves as a flag to indicate whether the FlexRay interface (node)
should enter single slot mode following startup.

This Boolean property supports a strategy to limit frame transmissions following
startup to a single frame (designated by the XNET Session Interface:FlexRay:Key Slot
Identifier property). If you leave this property false prior to start (default), all
configured output frames transmit. If you set this property to true prior to start, only
the key slot transmits. After the interface is communicating (integrated), you can set
this property to false at runtime to enable the remaining transmissions (the

ni.com1360

NI-XNET 20.5

protocol's ALL_SLOTS command). After the interface is communicating, you cannot
set this property from false to true.

This property corresponds to the pSingleSlotEnabled node parameter in the
FlexRay Protocol Specification.

You can overwrite the default value prior to starting the FlexRay interface (refer to
Session States for more information).
Interface:FlexRay:Sleep

Data Type Direction Required? Default
u32 Write Only No N/A

Property Class

XNET Session

Short Name

nxPropSession_IntfFlexRaySleep

Description

Use the Sleep property to change the NI-XNET FlexRay interface sleep/awake state
and optionally to initiate a wakeup on the FlexRay cluster.

The following table lists the accepted values:

String Value Description
nxFlexRaySleep_LocalSl
eep

0 Set interface and transceiver(s)
to sleep

nxFlexRaySleep_LocalWa
ke

1 Set interface and transceiver(s)
to awake

nxFlexRaySleep_RemoteW
ake

2 Set interface and transceivers t
o awake and attempt to wake u
p the FlexRay bus by sending th
e wakeup pattern on the config
ured wakeup channel

© National Instruments 1361

NI-XNET 20.5

This property is write only. Setting a new value is effectively a request, and the
property node returns before the request is complete. To detect the current
interface sleep/wake state, use nxReadState.

The FlexRay interface maintains a state machine to determine the action to perform
when this property is set (request). The following table specifies the sleep/wake
action on the FlexRay interface.

Request Current Local State
Sleep Awake

nxFlexRaySleep_LocalSl
eep

No action Change local state

nxFlexRaySleep_LocalWa
ke

Attempt to integrate with the b
us (move from POC:READY to P
OC:NORMAL)

No action

nxFlexRaySleep_RemoteW
ake

Attempt to wake up the bus foll
owed by an attempt to integrat
e with the bus (move from POC:
READY to POC:NORMAL ACTIVE)
. If the interface is not yet starte
d, setting nxFlexRaySleep_
RemoteWake schedules a rem
ote wake to be generated once
the interface has started.

No action

Interface:FlexRay:Statistics Enabled?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayStatisticsEn

ni.com1362

NI-XNET 20.5

Description

This XNET Boolean property enables reporting FlexRay error statistics. When this
property is false (default), calls to nxReadState always return zero for each
statistic. To enable FlexRay statistics, set this property to true in your application.

You can overwrite the default value prior to starting the FlexRay interface (refer to
Session States for more information).
Interface:FlexRay:Symbol Frames To Input
Stream?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Short Name

nxPropSession_IntfFlexRaySymToInStrm

Description

This property indicates whether the Frame Input Stream Mode session should return
FlexRay symbols from nxReadFrame.

When this property uses the default value of false, FlexRay symbols are not returned
for a Frame Input Stream Mode session. This behavior is consistent with the other
two frame input modes (Frame Input Single-Point Mode and Frame Input Queued
Mode), which never return FlexRay symbols from nxReadFrame.

When you set this property to True for a Frame Input Stream Mode session, nxRead
Frame returns all FlexRay symbols the interface receives. This feature detects
wakeup symbols and Media Access Test Symbols (MTS). When you use nxReadFra
me, each frame's type field indicates a symbol.

When the frame type is FlexRay Symbol, the first payload byte (offset 0) specifies the
type of symbol: 0 for MTS, 1 for wakeup. The frame payload length is 1 or higher,

© National Instruments 1363

NI-XNET 20.5

with bytes beyond the first reserved for future use. The frame timestamp specifies
when the symbol window occurred. The cycle count, channel A indicator, and
channel B indicator are encoded the same as FlexRay data frames. All other fields in
the frame are unused (0).

You can overwrite the default value prior to starting the FlexRay interface (refer to
Session States for more information).
Interface:FlexRay:Sync Frame Status

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRaySyncStatus

Description

This property returns the status of sync frames since the interface (enumeration)
start. Within Limits means the number of sync frames is within the protocol's limits
since the interface start. Below Minimum means that in at least one cycle, the
number of sync frames was below the limit the protocol requires (2 or 3, depending
on number of nodes). Overflow means that in at least one cycle, the number of sync
frames was above the limit set by the XNET Cluster FlexRay:Sync Node Max
property. Both Min and Max means that both minimum and overflow errors have
occurred (this is unlikely).

If the interface is not started, this property returns Within Limits. If you start the
interface, but it fails to communicate (integrate), this property may be helpful in
diagnosing the problem.

Refer to Summary of the FlexRay Standard for more information about the FlexRay
protocol startup and cluster integration procedure.

This property can be read any time prior to closing the FlexRay interface.

ni.com1364

NI-XNET 20.5

Interface:FlexRay:Sync Frames Channel A Even

Data Type Direction Required? Default
u32 [16] Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRaySyncChAEven

Description

This property returns an array of sync frames (slot IDs) transmitted or received on
channel A during the last even cycle. This read-only property returns an array in
which each element holds the slot ID of a sync frame. If the interface is not started,
this returns an empty array. If you start the interface, but it fails to communicate
(integrate), this property may be helpful in diagnosing the problem.

Refer to Summary of the FlexRay Standard for more information about the FlexRay
protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.
Interface:FlexRay:Sync Frames Channel A Odd

Data Type Direction Required? Default
u32 [16] Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRaySyncChAOdd

© National Instruments 1365

NI-XNET 20.5

Description

This property returns an array of sync frames (slot IDs) transmitted or received on
channel A during the last odd cycle. This read-only property returns an array in
which each element holds the slot ID of a sync frame. If the interface is not started,
this returns an empty array. If you start the interface, but it fails to communicate
(integrate), this property may be helpful in diagnosing the problem.

Refer to Summary of the FlexRay Standard for more information about the FlexRay
protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.
Interface:FlexRay:Sync Frames Channel B Even

Data Type Direction Required? Default
u32 [16] Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRaySyncChBEven

Description

This property returns an array of sync frames (slot IDs) transmitted or received on
channel B during the last even cycle. This read-only property returns an array in
which each element holds the slot ID of a sync frame. If the interface is not started,
this returns an empty array. If you start the interface, but it fails to communicate
(integrate), this property may be helpful in diagnosing the problem.

Refer to Summary of the FlexRay Standard for more information about the FlexRay
protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

ni.com1366

NI-XNET 20.5

Interface:FlexRay:Sync Frames Channel B Odd

Data Type Direction Required? Default
u32 [16] Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRaySyncChBOdd

Description

This property returns an array of sync frames (slot IDs) transmitted or received on
channel B during the last odd cycle. This read-only property returns an array in
which each element holds the slot ID of a sync frame. If the interface is not started,
this returns an empty array. If you start the interface, but it fails to communicate
(integrate), this property may be helpful in diagnosing the problem.

Refer to Summary of the FlexRay Standard for more information about the FlexRay
protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.
Interface:FlexRay:Termination

Data Type Direction Required? Default
u32 Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayTerm

© National Instruments 1367

NI-XNET 20.5

Description

This property controls termination at the NI-XNET interface (enumeration)
connector (port). This applies to both channels (A and B) on each FlexRay interface.
False means the interface is not terminated (default). True means the interface is
terminated.

You can overwrite the default value by writing this property prior to starting the
FlexRay interface (refer to Session States for more information). You can start the
FlexRay interface by calling nxStart with scope set to either Normal or Interface
Only on the session.
Interface:FlexRay:Wakeup Channel

Data Type Direction Required? Default
u32 Read/Write No A

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayWakeupCh

Description

This property specifies the channel the FlexRay interface (node) uses to send a
wakeup pattern. This property is used only when the XNET Session
Interface:FlexRay:Sleep property is set to nxFlexRaySleep_RemoteWake.

This property corresponds to the pWakeupChannel node parameter in the
FlexRay Protocol Specification.

The values supported for this property (enumeration) are A = 0 and B = 1.

You can overwrite the default value by writing this property prior to starting the
FlexRay interface (refer to Session States for more information).

ni.com1368

NI-XNET 20.5

Interface:FlexRay:Wakeup Pattern

Data Type Direction Required? Default
u32 Read/Write No 2

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayWakeupPtrn

Description

This property specifies the number of repetitions of the wakeup symbol that are
combined to form a wakeup pattern when the FlexRay interface (node) enters the
POC:wakeup send state. The POC:wakeup send state is one of the FlexRay controller
state transitions during the wakeup process. In this state, the controller sends the
wakeup pattern on the specified Wakeup Channel and checks for collisions on the
bus.

This property corresponds to the pWakeupPattern node parameter in the
FlexRay Protocol Specification.

The supported values for this property are 2–63.

You can overwrite the default value by writing a value within the specified range to
this property prior to starting the FlexRay interface (refer to Session States for more
information).

LIN Interface Properties
This category includes LIN-specific interface properties.

Properties in the Interface category apply to the interface and not the session. If
more than one session exists for the interface, changing an interface property
affects all the sessions.

© National Instruments 1369

NI-XNET 20.5

Interface:LIN:Break Delimiter Length

Data Type Direction Required? Default
u32 Read/Write No 0

Property Class

XNET Session

Property ID

nxPropSession_IntfLINBreakDelimiterLength

Description

This property determines the length of the delimiter placed between the break and
sync in the frame header.

This length is in addition to the length internally added by the hardware serial UART,
which is approximately equal to one bit time at a baud rate equal to (9 /
break bit length) × bus baud rate.

The value is specified in bit times at the bus baud rate. As shown in the following
table, the maximum value varies per the break length value in order to keep the
overall break transmit time below the maximum specified for LIN (1.4 × 14 bit
times).

Break Bit Length Break Delimiter Length (Max)
10 8
11 7
12 6
13 5
14 4
15 2
16 1

17 or greater 0

ni.com1370

NI-XNET 20.5

Interface:LIN:Break Length

Data Type Direction Required? Default
u32 Read/Write No 13

Property Class

XNET Session

Property ID

nxPropSession_IntfLINBreakLength

Description

This property determines the length of the serial break used at the start of a frame
header (schedule entry). The value is specified in bit-times.

The valid range is 10–36 (inclusive). The default value is 13, which is the value the
LIN standard specifies.

At baud rates below 9600, the upper limit may be lower than 36 to avoid violating
hold times for the bus. For example, at 2400 baud, the valid range is 10–14.

This property is applicable only when the interface is the master.
Interface:LIN:DiagP2min

Data Type Direction Required? Default
Double Read/Write No 0.05

Property Class

XNET Session

Property ID

nxPropSession_IntfLINDiagP2min

© National Instruments 1371

NI-XNET 20.5

Description

When the interface is the slave, this is the minimum time in seconds between
reception of the last frame of the diagnostic request message and transmission of
the response for the first frame in the diagnostic response message by the slave.

This property applies only to the interface as slave. An attempt to write the property
for interface as master results in error nxErrInvalidPropertyValue being reported.
Interface:LIN:DiagSTmin

Data Type Direction Required? Default
Double Read/Write No 0

Property Class

XNET Session

Property ID

nxPropSession_IntfLINDiagSTmin

Description

When the interface is the slave, this property sets the minimum time in seconds it
places between the end of transmission of a frame in a diagnostic response message
and the start of transmission of the response for the next frame in the diagnostic
response message.

When the interface is the master, this property sets the minimum time in seconds it
places between the end of transmission of a frame in a diagnostic request message
and the start of transmission of the next frame in the diagnostic request message.
Interface:LIN:Master?

Data Type Direction Required? Default
bool Read/Write No False

ni.com1372

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_IntfLINMaster

Description

Note You can set this property only when the interface is stopped.

This Boolean property specifies the NI-XNET LIN interface role on the network:
master (true) or slave (false).

In a LIN network (cluster), there always is a single ECU in the system called the
master. The master transmits a schedule of frame headers. Each frame header is a
remote request for a specific frame ID. For each header, typically a single ECU in the
network (slave) responds by transmitting the requested ID payload. The master ECU
can respond to a specific header as well, and thus the master can transmit payload
data for the slave ECUs to receive. For more information, refer to Summary of the
LIN Standard.

The default value for this property is false (slave). This means that by default, the
interface does not transmit frame headers onto the network. When you use input
sessions, you read frames that other ECUs transmit. When you use output sessions,
the NI-XNET interface waits for the remote master to send a header for a frame in the
output sessions, then the interface responds with data for the requested frame.

If you call the nxWriteState function to request execution of a schedule, that
implicitly sets this property to true (master). You also can set this property to true
using nxSetProperty, but no schedule is active by default, so you still must call
the nxWriteState function at some point to request a specific schedule.

Regardless of this property's value, you use can input and output sessions. This
property specifies which hardware transmits the scheduled frame headers: NI-XNET
(true) or a remote master ECU (false).

© National Instruments 1373

NI-XNET 20.5

Interface:LIN:No Response Frames to Input
Stream?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfLINNoResponseToInStrm

Description

This property configures the hardware to place a LIN no response frame into the
Stream Input queue after it is generated. A no response frame is generated when the
hardware detects a header with no response. For more information about the no
response frame, refer to Special Frames.
Interface:LIN:Checksum to Input Stream?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfLINChecksumToInStrm

ni.com1374

NI-XNET 20.5

Description

This property configures the hardware to place the received checksum for each LIN
Data frame into the Event ID (Info) field. When false, the Event ID field contains 0 for
all LIN Data stream input frames.
Interface:LIN:Output Stream Slave Response List
By NAD

Data Type Direction Required? Default
u32[] Read/Write No Empty Array

Property Class

XNET Session

Property ID

nxPropSession_IntfLINOStrSlvRspLstByNAD

Description

The Output Stream Slave Response List by NAD property provides a list of NADs for
use with the replay feature (Interface:Output Stream Timing property set to Replay
Exclusive or Replay Inclusive).

For LIN, the array of frames to replay might contain multiple slave response frames,
each with the same slave response identifier, but each having been transmitted by a
different slave (per the NAD value in the data payload). This means that processing
slave response frames for replay requires two levels of filtering. First, you can
include or exclude the slave response frame or ID for replay using Interface:Output
Stream List or Interface:Output Stream List By ID. If you do not include the slave
response frame or ID for replay, no slave responses are transmitted. If you do
include the slave response frame or ID for replay, you can use the Output Stream
Slave Response List by NAD property to filter which slave responses (per the NAD
values in the array) are transmitted. This property is always inclusive, regardless of
the replay mode (inclusive or exclusive). If the NAD is in the list and the response
frame or ID has been enabled for replay, any slave response for that NAD is

© National Instruments 1375

NI-XNET 20.5

transmitted. If the NAD is not in the list, no slave response for that NAD is
transmitted. The property's data type is an array of unsigned 32-bit integer (u32).
Currently, only byte 0 is required to hold the NAD value. The remaining bits are
reserved for future use.
Interface:LIN:Schedule Names

Data Type Direction Required? Default
string Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfLINSchedNames

Description

This property returns a comma-separated list of schedules for use when the NI-XNET
LIN interface acts as a master (Interface:LIN:Master? is true). When the interface is
master, you can pass the index of one of these schedules to the nxWriteState
function to request a schedule change.

When the interface does not act as a master, you cannot control the schedule, and
the nxWriteState function returns an error if it cannot set the interface into
master mode (for example, if the interface already is started).

This list of schedules is the same list the XNET Cluster LIN:Schedules property used
to configure the session.
Interface:LIN:Sleep

Data Type Direction Required? Default
u32 Write Only No N/A

Property Class

XNET Session

ni.com1376

NI-XNET 20.5

Property ID

nxPropSession_IntfLINSleep

Description

Use the Sleep property to change the NI-XNET LIN interface sleep/awake state and
optionally to change remote node (ECU) sleep/awake states.

The following table lists the accepted values:

String Value Description
nxLINSleep_RemoteSleep 0 Set interface to sleep locally an

d transmit sleep requests to re
mote nodes

nxLINSleep_RemoteWake 1 Set interface to awake locally a
nd transmit wakeup requests to
remote nodes

nxLINSleep_LocalSleep 2 Set interface to sleep locally an
d not to interact with the netwo
rk

nxLINSleep_LocalWake 3 Set interface to awake locally a
nd not to interact with the netw
ork

The property is write only. Setting a new value is effectively a request, and the
property node returns before the request is complete. To detect the current
interface sleep/wake state, use nxReadState.

The LIN interface maintains a state machine to determine the action to perform
when this property is set (request). The following sections specify the action when
the interface is master and slave.

Sleep/Wake Action for Master

Request Current Local State
Sleep Awake

© National Instruments 1377

NI-XNET 20.5

nxLINSleep_RemoteSleep No action Change local state; pause sched
uler; transmit go-to-sleep reque
st frame

nxLINSleep_RemoteWake Change local state; transmit ma
ster wakeup pattern (serial brea
k); resume scheduler

No action

nxLINSleep_LocalSleep No action Change local state
nxLINSleep_LocalWake Change local state; resume sch

eduler
No action

When the master's scheduler pauses, it finishes the pending entry (slot) and saves
its current position. When the master's scheduler resumes, it continues with the
schedule where it left off (entry after the pause).

The go-to-sleep request is frame ID 60, payload length 8, payload byte 0 has the
value 0, and the remaining bytes have the value 0xFF.

If the master is in the Sleep state, and a remote slave (ECU) transmits the slave
wakeup pattern, this is equivalent to setting this property to Local Wake. In addition,
a pending nxWait for nxCondition_IntfRemoteWakeup returns. This nxWai
t does not apply to setting this property, because you know when you set it.

Sleep/Wake Action for Slave

Request Current Local State
Sleep Awake

nxLINSleep_RemoteSleep Error Error
nxLINSleep_RemoteWake Transmit slave wakeup pattern;

change local state when first br
eak from master is received

No action

nxLINSleep_LocalSleep No action Change local state
nxLINSleep_LocalWake Change local state No action

According to the LIN protocol standard, Remote Sleep is not supported for slave
mode, so that request returns an error.

If the slave is in Sleep state, and a remote master (ECU) transmits the master
wakeup pattern, this is equivalent to setting this property to Local Wake. In addition,

ni.com1378

NI-XNET 20.5

a pending nxWait for nxCondition_IntfRemoteWakeup returns. This nxWai
t does not apply to setting this property, because you know when you set it.
Interface:LIN:Start Allowed without Bus Power?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfLINAlwStartWoBusPwr

Description

Note You can modify this property only when the interface is stopped.

The Start Allowed Without Bus Power? property configures whether the LIN
interface does not check for bus power present at interface start, or checks and
reports an error if bus power is missing.

When this property is true, the LIN interface does not check for bus power present at
start, so no error is reported if the interface is started without bus power.

When this property is false, the LIN interface checks for bus power present at start,
and nxErrMissingBusPower is reported if the interface is started without bus power.
Interface:LIN:Termination

Data Type Direction Required? Default
u32 Read/Write No Off (0)

Property Class

XNET Session

© National Instruments 1379

NI-XNET 20.5

Property ID

nxPropSession_IntfLINTerm

Description

Notes You can modify this property only when the interface is stopped.

This property does not take effect until the interface is started.

The Termination property configures the NI-XNET interface LIN connector (port)
onboard termination. The enumeration is generic and supports two values: Off
(disabled) and On (enabled).

The following table lists the accepted values:

String Value
nxLINTerm_Off 0
nxLINTerm_On 1

Per the LIN 2.1 standard, the Master ECU has a ~1 k termination resistor between
Vbat and Vbus. Therefore, use this property only if you are using your interface as
the master and do not already have external termination.

For more information about LIN cabling and termination, refer to NI-XNET LIN
Hardware.

Source Terminal Interface Properties
This category includes properties to route trigger signals between multiple DAQmx
and XNET devices.
Interface:Source Terminal:Start Trigger

Data Type Direction Required? Default
string Read/Write No (Disconnected)

Property Class

XNET Session

ni.com1380

NI-XNET 20.5

Property ID

nxPropSession_IntfSrcTermStartTrigger

Description

This property specifies the name of the internal terminal to use as the interface Start
Trigger. The data type is NI Terminal (DAQmx terminal), represented as a string.

This property is supported for C Series modules in a CompactDAQ chassis. It is not
supported for CompactRIO, PXI, or PCI (refer to nxConnectTerminals for those
platforms).

The digital trigger signal at this terminal is for the Start Interface transition, to begin
communication for all sessions that use the interface. This property routes the start
trigger, but not the timebase (used for timestamp of received frames and cyclic
transmit of frames). Routing the timebase is not required for CompactDAQ, because
all modules in the chassis automatically use a shared timebase.

Use this property to connect the interface Start Trigger to triggers in other modules
and/or interfaces. When you read this property, you specify the interface Start
Trigger as the source of a connection. When you write this property, you specify the
interface Start Trigger as the destination of a connection, and the value you write
represents the source. For examples that demonstrate use of this property to
synchronize NI-XNET and NI-DAQmx hardware, refer to the Synchronization category
within the NI-XNET examples.

The connection this property creates is disconnected when you clear (close) all
sessions that use the interface.

SAE J1939 Properties

This section includes SAE J1939-specific properties.

SAE J1939:ECU
Data Type Direction Required? Default
nxDatabaseRef_t Write Only No Unassigned

© National Instruments 1381

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_J1939ECU

Description

Note This property applies to only the CAN J1939 application protocol. The database from
which the ECU reference is passed in this property must be open when this property is
called, because database references are valid only when the database is open.

This property assigns a database ECU to a J1939 session. Setting this property
changes the node address and J1939 64-bit ECU name of the session to the values
stored in the database ECU object. Changing the node address starts an address
claiming procedure, as described in the SAE J1939:Node Address property.

Changing the node address causes NI-XNET to start the interface; you must set any
properties that are to be set before the interface starts before changing the node
address. Also, note that setting the node address does not start the session. J1939
traffic is not retained by an input session until nxStart or nxRead are explicitly
called.

You can assign the same ECU to multiple sessions running on the same CAN
interface (for example, CAN1). All sessions with the same assigned ECU represent
one J1939 node.

If multiple sessions have been assigned the same ECU, setting the SAE J1939:Node
Address property in one session changes the address in all sessions with the same
assigned ECU running on the same CAN interface.

For more information, refer to the SAE J1939:Node Address property.

SAE J1939:ECU Busy
Data Type Direction Required? Default
bool Read/Write No False

ni.com1382

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_J1939ECUBusy

Description

Note This property applies to only the CAN J1939 application protocol.

Busy is a special ECU state defined in the SAE J1939 standard. A busy ECU receives
subsequent RTS messages while handling a previous RTS/CTS communication.

If the ECU cannot respond immediately to an RTS request, the ECU may send CTS
Hold messages. In this case, the originator receives information about the busy state
and waits until the ECU leaves the busy state. (That is, the ECU no longer sends CTS
Hold messages and sends the first CTS message with the requested data.)

Use the ECU Busy property to simulate this ECU behavior. If a busy XNET ECU
receives a CTS message, it sends CTS Hold messages instead of CTS data messages
immediately. Afterward, if clearing the busy property, the XNET ECU resumes
handling the transport protocol starting with CTS data messages, as the originator
expects.

SAE J1939:Include Destination Address in PGN
Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_J1939IncludeDestAddrInPGN

© National Instruments 1383

NI-XNET 20.5

Description

Note This property applies only to the CAN J1939 application protocol.

Incoming J1939 frames are matched to an XNET database by the Parameter Group
Number (PGN) of the frame. When receiving PDU1 frames, the destination address
of the frame (J1939 PS field) is ignored when calculating the PGN, in accordance to
the J1939 specification. This causes an XNET session to receive all frames that share
the same PGN, making it difficult to distinguish destinations for traffic.

When set to True, this property instructs NI-XNET to include the destination address
when extracting the PGN from the frame. This allows the same PGN sent to different
destination addresses to be handled by separate input sessions.

This property may be set at any time. When set after session start, it will not affect
frames already received.

The SAE J1939:Include Destination Address in PGN property is
valid only for input sessions. It is not valid for stream sessions. This property affects
all frames in a session.

SAE J1939:Maximum Repeat CTS
Data Type Direction Required? Default
u32 Read/Write No 2

Property Class

XNET Session

Property ID

nxPropSession_J1939MaxRepeatCTS

Description

Note This property applies to only the CAN J1939 application protocol.

ni.com1384

NI-XNET 20.5

This property limits the number of requests for retransmission of data packet(s)
using the TP.CM_CTS message.

This property is related to handling the transport protocol.

SAE J1939:Node Address
Data Type Direction Required? Default
u32 Read/Write No Null (254)

Property Class

XNET Session

Property ID

nxPropSession_J1939Address

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the node address of a J1939 session by starting an address
claiming procedure. Setting the SAE J1939:Node Address property causes NI-XNET
to start the interface, but it does not start the session. Any properties that are to be
set before the interface starts must be set before you set this property. J1939 traffic
is not retained by an input session until nxStart or nxRead are explicitly called.

After setting this property to a valid value (≤ 253), reading the property returns the
null address (254) until the address is granted. Poll the property and wait until the
address gets to a valid value again before starting to write. Refer to the NI-XNET
examples that demonstrate this procedure.

The node address value determines the source address in a transmitting session or a
destination address in a receiving session. The source address in the extended
frame identifier is overwritten with the node address of the session before
transmitting.

© National Instruments 1385

NI-XNET 20.5

In NI-XNET, you can assign the same J1939 node address to multiple sessions
running on the same interface (for example, CAN1). Those sessions represent one
J1939 node. By assigning different J1939 node addresses to multiple sessions
running on the same interface, you also can create multiple nodes on the same
interface.

If a J1939 ECU is assigned to multiple sessions, changing the address in one session
also changes the address in all other sessions with the same assigned ECU.

For more information, refer to the SAE J1939:ECU property.

SAE J1939:NodeName
Data Type Direction Required? Default
u64 Read/Write Yes 0

Property Class

XNET Session

Property ID

nxPropSession_J1939Name

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the name value of a J1939 session. The name is an unsigned
64-bit integer value. Beside the SAE J1939:Node Address property, the value is
specific to the ECU you want to emulate using the session. That means the session
can act as if it were the real-world ECU, using the identical address and name value.

The name value is used within the address claiming procedure. If the ECU (session)
wants to claim its address, it sends out an address claiming message. That message
contains the ECU address and the name value of the current session's ECU. If there is
another ECU within the network with an identical address but lower name value, the
current session loses its address. In this case, the session cannot send out further

ni.com1386

NI-XNET 20.5

messages, and all addressed messages using the previous address of the current
session are addressed to another ECU within the network.

The most significant bit (bit 63) in the Node Name defines the ECU's arbitrary
address capability (bit 63 = 1 means it is arbitrary address capable). If the node
cannot use the assigned address, it automatically tries to claim another random
value between 128 and 247 until it is successful.

The name value has multiple bit fields, as described in SAE J1939-81 (Network
Management). A single 64-bit value represents the name value within XNET.

For more information, refer to the SAE J1939:Node Address property.

SAE J1939:Number of Packets Received
Data Type Direction Required? Default
u32 Read/Write No 255

Property Class

XNET Session

Property ID

nxPropSession_J1939NumPacketsRecv

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the maximum number of data packet(s) that can be received
in one block at the responder node.

This property is related to handling the transport protocol.

SAE J1939:Number of Packets Response
Data Type Direction Required? Default
u32 Read/Write No 255

© National Instruments 1387

NI-XNET 20.5

Property Class

XNET Session

Property ID

nxPropSession_J1939NumPacketsResp

Description

Note This property applies to only the CAN J1939 application protocol.

This property limits the maximum number of packets in a response. This allows the
originator node to limit the number of packets in the TP.CM_CTS message. When the
responder complies with this limit, it ensures the sender always can retransmit
packets that the responder may not have received.

This property is related to handling the transport protocol.
SAE J1939:Timing:Hold Time Th

Data Type Direction Required? Default
f64 Read/Write No 0.5 s

Property Class

XNET Session

Property ID

nxPropSession_J1939HoldTimeTh

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the Hold Time Timeout value at the responder node. The
value specifies the minimum delay between a TP.CM_CTS hold message and the
next TP.CM_CTS message, in seconds.

ni.com1388

NI-XNET 20.5

This property is related to handling the transport protocol.
SAE J1939:Timing:Response Time Tr_GD

Data Type Direction Required? Default
f64 Read/Write No 0.05 s

Property Class

XNET Session

Property ID

nxPropSession_J1939ResponseTimeTrGD

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the Device Response Time for global destination messages
(TP.CM_BAM messages). The value is the minimum delay between sending two
TP.CM_BAM messages, in seconds. The recommended range is 0.05 s to 0.200 s.

This property is related to handling the transport protocol.
SAE J1939:Timing:Response Time Tr_SD

Data Type Direction Required? Default
f64 Read/Write No 0 s

Property Class

XNET Session

Property ID

nxPropSession_J1939ResponseTimeTrSD

© National Instruments 1389

NI-XNET 20.5

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the Device Response Time value for specific destination
messages (TP.CM_RTS/CTS messages). The value specifies the minimum delay
between receipt of a message and sending a response. This value also specifies a
minimum time delay between packets of a multipacket message directed to a
specific destination.

According to the J1939 specification, the time between packets of a multipacket
message directed to a specific destination may be 0 ms to 200 ms. Increasing the
value of nxPropSession_J1939ResponseTimeTrSD can adversely affect
performance in handling multipacket messages.
SAE J1939:Timing:Timeout T1

Data Type Direction Required? Default
f64 Read/Write No 0.75 s

Property Class

XNET Session

Property ID

nxPropSession_J1939TimeoutT1

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T1 value for the responder node. The value is the
maximum gap between two received TP.DT messages in seconds.

This property is related to handling the transport protocol.
SAE J1939:Timing:Timeout T2

Data Type Direction Required? Default

ni.com1390

NI-XNET 20.5

f64 Read/Write No 1.25 s

Property Class

XNET Session

Property ID

nxPropSession_J1939TimeoutT2

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T2 value at the responder node. This value is the
maximum gap between sending out the TP.CM_CTS message and receiving the next
TP.DT message, in seconds.

This property is related to handling the transport protocol.
SAE J1939:Timing:Timeout T3

Data Type Direction Required? Default
f64 Read/Write No 1.25 s

Property Class

XNET Session

Property ID

nxPropSession_J1939TimeoutT3

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T3 value at the originator node. This value is the
maximum gap between sending out a TP.CM_RTS message or the last TP.DT
message and receiving the TP.CM_CTS response, in seconds.

© National Instruments 1391

NI-XNET 20.5

This property is related to handling the transport protocol.
SAE J1939:Timing:Timeout T4

Data Type Direction Required? Default
f64 Read/Write No 1.05 s

Property Class

XNET Session

Property ID

nxPropSession_J1939TimeoutT4

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T4 value at the originator node. This value is the
maximum gap between the TP.CM_CTS hold message and the next TP.CM_CTS
message, in seconds.

This property is related to handling the transport protocol.

XNET Signal Properties
This section includes the XNET Signal properties.

Byte Order

Data Type Direction Required? Default
u32 Read/Write Yes N/A

Property Class

XNET Signal

ni.com1392

NI-XNET 20.5

Property ID

nxPropSig_ByteOrdr

Description

Signal byte order in the frame payload. This property defines how signal bytes are
ordered in the frame payload when the frame is loaded in memory. The signal byte
order values (decimal value in parentheses) are:

nxSigByteOrdr_LittleEndian (0)
Higher significant signal bits are placed on higher byte addresses. In NI-CAN, this
was called Intel Byte Order.

Little Endian Signal with Start Bit 12

nxSigByteOrdr_BigEndian (1)
Higher significant signal bits are placed on lower byte addresses. In NI-CAN, this was
called Motorola Byte Order.

Big Endian Signal with Start Bit 12

© National Instruments 1393

NI-XNET 20.5

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this signal, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

Comment

Data Type Direction Required? Default
char * Read/Write No Empty String

Property Class

XNET Signal

Property ID

nxPropSig_Comment

Description

Comment describing the signal object.

A comment is a string containing up to 65535 characters.

Configuration Status

Data Type Direction Required? Default
i32 Read Only No N/A

ni.com1394

NI-XNET 20.5

Property Class

XNET Signal

Property ID

nxPropSig_ConfigStatus

Description

The signal object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to the n
xStatusToString error code input to convert the value to a text description of
the configuration problem.

By default, incorrectly configured signals in the database are not returned from the
XNET Frame Signals property because they cannot be used in the bus
communication. You can change this behavior by setting the XNET Database
ShowInvalidFromOpen? property to true. When a signal configuration status
becomes invalid after the database is opened, the signal still is returned from the
Signals property even if the ShowInvalidFromOpen? property is false.

Examples of invalid signal configuration:

■ The signal is specified using bits outside the frame payload.
■ The signal overlaps another signal in the frame. For example, two
multiplexed signals with the same multiplexer value are using the same bit in
the frame payload.
■ The frame containing the signal is invalid (for example, a CAN frame is
defined with more than 8 payload bytes).

Data Type

Data Type Direction Required? Default
u32 Read/Write Yes N/A

© National Instruments 1395

NI-XNET 20.5

Property Class

XNET Signal

Property ID

nxPropSig_DataType

Description

Signal data type. This property determines how the bits of a signal in a frame must
be interpreted to build a value. The signal data types (decimal value in parentheses)
are:

nxSigDataType_Signed (0)
Signed integer with positive and negative values.

nxSigDataType_Unsigned (1)
Unsigned integer with no negative values.

nxSigDataType_IEEEFloat (2)
Float value with 7 or 15 significant decimal digits (32 bit or 64 bit).

nxSigDataType_ByteArray (3)
Signal >64 bit. This can be accessed only using conversion sessions (see
nxConvertByteArrayToFramesSinglePoint and
nxConvertFramesToByteArraySinglePoint).

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this signal, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)

ni.com1396

NI-XNET 20.5

rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

Default Value

Data Type Direction Required? Default
Double Read/Write No 0.0 (If Not in Database)

Property Class

XNET Signal

Property ID

nxPropSig_Default

Description

The signal default value, specified as scaled floating-point units.

The data type is 64-bit floating point (DBL).

The initial value of this property comes from the database. If the database does not
provide a value, this property uses a default value of 0.0.

For all three signal output sessions, this property is used when a frame transmits
prior to a call to nxWrite. The XNET Frame Default Payload property is used as the
initial payload, then the default value of each signal is mapped into that payload
using this property, and the result is used for the frame transmit.

For all three signal input sessions, this property is returned for each signal when nx
Read is called prior to receiving the first frame.

For more information about when this property is used, refer to the discussion of nx
Read/nxWrite for each session mode.

© National Instruments 1397

NI-XNET 20.5

Frame

Data Type Direction Required? Default
u32 Read Only N/A Parent Frame

Property Class

XNET Signal

Property ID

nxPropSig_FrameRef

Description

Reference to the signal parent frame.

This property returns the refnum to the signal parent frame. The parent frame is
defined when the signal object is created. You cannot change it afterwards.

Maximum Value

Data Type Direction Required? Default
Double Read/Write No 1000.0

Property Class

XNET Signal

Property ID

nxPropSig_Max

Description

The scaled signal value maximum.

nxRead and nxWrite do not limit the signal value to a maximum value. Use this
database property to set the maximum value.

ni.com1398

NI-XNET 20.5

Minimum Value

Data Type Direction Required? Default
Double Read/Write No 0.0

Property Class

XNET Signal

Property ID

nxPropSig_Min

Description

The scaled signal value minimum.

nxRead and nxWrite do not limit the signal value to a minimum value. Use this
database property to set the minimum value.

Mux:Data Multiplexer?

Data Type Direction Required? Default
bool Read/Write No False

Property Class

XNET Signal

Property ID

nxPropSig_MuxIsDataMux

Description

This property defines the signal that is a multiplexer signal. A frame containing a
multiplexer value is called a multiplexed frame.

A multiplexer defines an area within the frame to contain different information
(dynamic signals) depending on the multiplexer signal value. Dynamic signals with a

© National Instruments 1399

NI-XNET 20.5

different multiplexer value (defined in a different subframe) can share bits in the
frame payload. The multiplexer signal value determines which dynamic signals are
transmitted in the given frame.

To define dynamic signals in the frame transmitted with a given multiplexer value,
you first must create a subframe in this frame and set the multiplexer value in the
subframe. Then you must create dynamic signals using nxCreateObject to
create child signals of this subframe.

Multiplexer signals may not overlap other static or dynamic signals in the frame.

Dynamic signals may overlap other dynamic signals when they have a different
multiplexer value.

A frame may contain only one multiplexer signal.

The multiplexer signal is not scaled. Scaling factor and offset do not apply.

In NI-CAN, the multiplexer signal was called mode channel.

Mux:Dynamic?

Data Type Direction Required? Default
bool Read Only No False

Property Class

XNET Signal

Property ID

nxPropSig_MuxIsDynamic

Description

Use this property to determine if a signal is static or dynamic. Dynamic signals are
transmitted in the frame when the multiplexer signal in the frame has a given value
specified in the subframe. Use the Multiplexer Value property to determine with
which multiplexer value the dynamic signal is transmitted.

ni.com1400

NI-XNET 20.5

This property is read only. To create a dynamic signal, create the signal object as a
child of a subframe instead of a frame. The dynamic signal cannot be changed to a
static signal afterwards.

In NI-CAN, dynamic signals were called mode-dependent signals.

Mux:Multiplexer Value

Data Type Direction Required? Default
u32 Read Only N/A N/A

Property Class

XNET Signal

Property ID

nxPropSig_MuxValue

Description

The multiplexer value applies to dynamic signals only (the XNET Signal
Mux:Dynamic? property returns true). This property defines which multiplexer value
is transmitted in the multiplexer signal when this dynamic signal is transmitted in
the frame.

The multiplexer value is determined in the subframe. All dynamic signals that are
children of the same subframe object use the same multiplexer value.

Dynamic signals with the same multiplexer value may not overlap each other, the
multiplexer signal, or static signals.

Mux:Subframe

Data Type Direction Required? Default
nxDatabaseRef_t Read Only N/A Parent Subframe

Property Class

XNET Signal

© National Instruments 1401

NI-XNET 20.5

Property ID

nxPropSig_MuxSubfrmRef

Description

Reference to the subframe parent.

This property is valid only for dynamic signals that have a subframe parent. For
static signals or the multiplexer signal, this property returns 0 and an error
indication.

Name (Short)

Data Type Direction Required? Default
char * Read/Write Yes Defined in nxdbCreateObject

Property Class

XNET Signal

Property ID

nxPropSig_Name

Description

String identifying a signal object.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the short name. The space (), period (.), and other special
characters are not supported within the name. The short name must begin with a
letter (uppercase or lowercase) or underscore, and not a number. The short name is
limited to 128 characters.

A signal name must be unique for all signals in a frame.

This short name does not include qualifiers to ensure that it is unique, such as the
database, cluster, and frame name. It is for display purposes.

You can write this property to change the signal's short name.

ni.com1402

NI-XNET 20.5

Name Unique to Cluster

Data Type Direction Required? Default
string Read Only N/A N/A

Property Class

XNET Signal

Property ID

nxPropSig_NameUniqueToCluster

Description

This property returns a signal name unique to the cluster that contains the signal. If
the single name is not unique within the cluster, the name is <frame-
name>.<signal-name>.

You can pass the name to the nxdbFindObject function to retrieve the reference
to the object, while the single name is not guaranteed success in nxdbFindObjec
t because it may be not unique in the cluster.

Number of Bits

Data Type Direction Required? Default
u32 Read/Write Yes N/A

Property Class

XNET Signal

Property ID

nxPropSig_NumBits

Description

The number of bits the signal uses in the frame payload.

© National Instruments 1403

NI-XNET 20.5

IEEE Float numbers are limited to 32 bit or 64 bit.

Integer (signed and unsigned) numbers are limited to 1–64 bits. NI-XNET converts all
integers to doubles (64-bit IEEE Float). Integer numbers with more than 52 bits (the
size of the mantissa in a 64-bit IEEE Float) cannot be converted exactly to double,
and vice versa; therefore, NI-XNET will round them appropriately. If you are
interested in the full precision, use a conversion session and byte array conversion.

Byte Arrays are signals that can extend every size, even >64 bits. The only way to
access them is through a Frame Read/Write session, and a conversion session that
will access the signal data as a byte array (see
nxConvertByteArrayToFramesSinglePoint and
nxConvertFramesToByteArraySinglePoint).

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this signal, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

PDU

Data Type Direction Required? Default
nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET Signal

ni.com1404

NI-XNET 20.5

Property ID

nxPropSig_PDURef

Description

Reference to the signal's parent PDU.

This property returns the reference to the signal's parent PDU. The parent PDU is
defined when the signal object is created. You cannot change it afterwards.

Scaling Factor

Data Type Direction Required? Default
Double Read/Write No 1.0

Property Class

XNET Signal

Property ID

nxPropSig_ScaleFac

Description

Factor a for linear scaling ax+b.

Linear scaling is applied to all signals with the IEEE Float data type, unsigned and
signed. For identical scaling 1.0x+0.0, NI-XNET optimized scaling routines do not
perform the multiplication and addition.

Scaling Offset

Data Type Direction Required? Default
Double Read/Write No 0.0

Property Class

XNET Signal

© National Instruments 1405

NI-XNET 20.5

Property ID

nxPropSig_ScaleOff

Description

Offset b for linear scaling ax+b.

Linear scaling is applied to all signals with the IEEE Float data type, unsigned and
signed. For identical scaling 1.0x+0.0, NI-XNET optimized scaling routines do not
perform the multiplication and addition.

Start Bit

Data Type Direction Required? Default
u32 Read/Write Yes N/A

Property Class

XNET Signal

Property ID

nxPropSig_StartBit

Description

The least significant signal bit position in the frame payload.

This property determines the signal starting point in the frame. For the integer data
type (signed and unsigned), it means the binary signal representation least
significant bit position. For IEEE Float signals, it means the mantissa least significant
bit.

The NI-XNET Database Editor shows a graphical overview of the frame. It
enumerates the frame bytes on the left and the byte bits on top. The bit number in
the frame is calculated as byte number x 8 + bit number. The maximum bit number
in a CAN or LIN frame is 63 (7 x 8 + 7); the maximum bit number in a FlexRay frame is
2031 (253 x 8 + 7).

ni.com1406

NI-XNET 20.5

Frame Overview in the NI-XNET Database Editor with a Signal Starting in
Bit 12
This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this signal, the session returns an error. To ensure
that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

Unit

Data Type Direction Required? Default
char * Read/Write No Empty String

Property Class

XNET Signal

© National Instruments 1407

NI-XNET 20.5

Property ID

nxPropSig_Unit

Description

This property describes the signal value unit. NI-XNET does not use the unit
internally for calculations. You can use the string to display the signal value along
with the unit.

XNET Subframe Properties
This section includes the XNET Subframe properties.

Dynamic Signals

Data Type Direction Required? Default
nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET Subframe

Property ID

nxPropSubfrm_DynSigRefs

Description

Dynamic signals in the subframe.

This property returns an array of references to dynamic signals in the subframe.
Those signals are transmitted when the multiplexer signal in the frame has the
multiplexer value defined in the subframe.

Dynamic signals are created with nxdbCreateObject by specifying a subframe
as the parent.

ni.com1408

NI-XNET 20.5

Frame

Data Type Direction Required? Default
nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET Subframe

Property ID

nxPropSubfrm_FrmRef

Description

Returns the reference to the parent frame. The parent frame is defined when the
subframe is created, and you cannot change it afterwards.

Multiplexer Value

Data Type Direction Required? Default
u32 Read/Write Yes N/A

Property Class

XNET Subframe

Property ID

nxPropSubfrm_MuxValue

Description

Multiplexer value for this subframe.

This property specifies the multiplexer signal value used when the dynamic signals
in this subframe are transmitted in the frame. Only one subframe is transmitted at a
time in the frame.

© National Instruments 1409

NI-XNET 20.5

There also is a multiplexer value for a signal object as a read-only property. It
reflects the value set on the parent subframe object.

This property is required. If the property does not contain a valid value, and you
create an XNET session that uses this subframe, the session returns an error. To
ensure that the property contains a valid value, you can do one of the following:

■ Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.
■ Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:)
rather than use a file. The property does not contain a default in this case, so
you must set a valid value prior to creating a session.

For more information about using database files and in-memory databases, refer to
Databases.

Name (Short)

Data Type Direction Required? Default
char * Read/Write Yes Defined in nxdbCreateObject

Property Class

XNET Subframe

Property ID

nxPropSubfrm_Name

Description

String identifying a subframe object.

Lowercase letters (a–z), uppercase letters (A–Z), numbers, and the underscore (_)
are valid characters for the short name. The space (), period (.), and other special
characters are not supported within the name. The short name must begin with a

ni.com1410

NI-XNET 20.5

letter (uppercase or lowercase) or underscore, and not a number. The short name is
limited to 128 characters.

A subframe name must be unique for all subframes in a frame.

This short name does not include qualifiers to ensure that it is unique, such as the
database, cluster, and frame name. It is for display purposes.

You can write this property to change the subframe's short name.

Name Unique to Cluster

Data Type Direction Required? Default
string Read Only N/A N/A

Property Class

XNET Subframe

Property ID

nxPropSubfrm_NameUniqueToCluster

Description

This property returns a subframe name unique to the cluster that contains the
subframe. If the single name is not unique within the cluster, the name is <frame-
name>.<subframe-name>.

You can pass the name to the nxdbFindObject function to retrieve the reference
to the object, while the single name is not guaranteed success in nxdbFindObjec
t because it may be not unique in the cluster.

PDU

Data Type Direction Required? Default
nxDatabaseRef_t Read Only N/A N/A

© National Instruments 1411

NI-XNET 20.5

Property Class

XNET Subframe

Property ID

nxPropSubfrm_PDURef

Description

Reference to the subframe's parent PDU.

This property returns the reference to the subframe's parent PDU. The parent PDU is
defined when the subframe object is created. You cannot change it afterwards.

XNET System Properties

Description

The XNET System properties provide information about all NI-XNET hardware in
your system, including all devices and interfaces.

You retrieve a system handle with nxSystemOpen and release it with nxSystemC
lose. Pass the system handle to all system property calls.

Devices

Data Type Direction Required? Default
u32[] Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_DevRefs

ni.com1412

NI-XNET 20.5

Description

Returns an array of handles to physical XNET devices in the system. Each physical
XNET board is a hardware product such as a PCI/PXI board.

You can pass the XNET Device handle to nxGetProperty and nxGetPropertyS
ize to access properties of the device.

Interfaces

Data Type Direction Required? Default
u32[] Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_IntfRefs

Description

Returns an array of handles to all interfaces contained within the current system.

System refers to the execution target of this property node. If this property node
executes on an RT target, it reports interfaces physically on the RT target.

Interfaces (All)

Data Type Direction Required? Default
u32[] Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_IntfRefsAll

© National Instruments 1413

NI-XNET 20.5

Description

Returns an array of handles to all interfaces contained within the current system,
including those not equipped with a transceiver cable.

System refers to the execution target of this property node. If this property node
executes on an RT target, it reports interfaces physically on the RT target.

Interfaces (CAN)

Data Type Direction Required? Default
u32[] Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_IntfRefsCAN

Description

Returns an array of handles to all available interfaces on the system that support the
CAN Protocol.

Interfaces (FlexRay)

Data Type Direction Required? Default
u32[] Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_IntfRefsFlexRay

ni.com1414

NI-XNET 20.5

Description

Returns an array of handles to all available interfaces on the system that support the
FlexRay protocol.

Interfaces (LIN)

Data Type Direction Required? Default
u32[] Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_IntfRefsLIN

Description

Returns an array of handles to all available interfaces on the system that support the
LIN Protocol.

Interfaces (Ethernet)

Data Type Direction Required? Default
1Dref Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_IntfRefsEthernet

© National Instruments 1415

NI-XNET 20.5

Description

Returns an array of all available interfaces on the system that support the Ethernet
Protocol.

The system refers to the execution target of this property node. If this property node
executes on an RT target, it reports interfaces physically on the RT target.

Version:Build

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_VerBuild

Description

Returns the driver version [Build] as a U32.

Remarks

The driver version is specified in the following format: [Major].[Minor].[Update]
[Phase][Build].

For example, 1.2.3f4 returns:

■ [Major] = 1
■ [Minor] = 2
■ [Update] = 3
■ [Phase] = Final/Release
■ [Build] = 4

A larger version number implies a newer XNET driver version.

ni.com1416

NI-XNET 20.5

Use this property for:

■ Determining driver functionality or release date.
■ Determining upgrade availability.

Version:Major

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_VerMajor

Description

Returns the driver version [Major] as a U32.

Remarks

The driver version is specified in the following format: [Major].[Minor].[Update]
[Phase][Build].

For example, 1.2.3f4 returns:

■ [Major] = 1
■ [Minor] = 2
■ [Update] = 3
■ [Phase] = Final/Release
■ [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

© National Instruments 1417

NI-XNET 20.5

■ Determining driver functionality or release date.
■ Determining upgrade availability.

Version:Minor

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_VerMinor

Description

Returns the driver version [Minor] as a U32.

Remarks

The driver version is specified in the following format: [Major].[Minor].[Update]
[Phase][Build].

For example, 1.2.3f4 returns:

■ [Major] = 1
■ [Minor] = 2
■ [Update] = 3
■ [Phase] = Final/Release
■ [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

■ Determining driver functionality or release date.

ni.com1418

NI-XNET 20.5

■ Determining upgrade availability.

Version:Phase

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_VerPhase

Description

Returns the driver version [Phase] as a u32.

Enumeration Value
nxPhase_Development 0
nxPhase_Alpha 1
nxPhase_Beta 2
nxPhase_Release 3

Note The driver's official version always has a phase of Release.

Remarks

The driver version is specified in the following format: [Major].[Minor].[Update]
[Phase][Build].

For example, 1.2.3f4 returns:

■ [Major] = 1
■ [Minor] = 2
■ [Update] = 3
■ [Phase] = Final/Release
■ [Build] = 4

© National Instruments 1419

NI-XNET 20.5

A larger version number implies a newer XNET driver version.

Use this property for:

■ Determining driver functionality or release date.
■ Determining upgrade availability.

Version:Update

Data Type Direction Required? Default
u32 Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_VerUpdate

Description

Returns the driver version [Update] as a U32.

Remarks

The driver version is specified in the following format: [Major].[Minor].[Update]
[Phase][Build].

For example, 1.2.3f4 returns:

■ [Major] = 1
■ [Minor] = 2
■ [Update] = 3
■ [Phase] = Final/Release
■ [Build] = 4

A larger version number implies a newer XNET driver version.

ni.com1420

NI-XNET 20.5

Use this property for:

■ Determining driver functionality or release date.
■ Determining upgrade availability.

Additional Topics
This section includes additional information.

Overall Additional Topics

Cyclic and Event Timing

Multiplexed Signals

Raw Frame Format

Required Properties

Special Frames

State Models

CAN Additional Topics

NI-CAN

CAN Timing Type and Session Mode

CAN Transceiver State Machine

FlexRay Additional Topics

FlexRay Timing Type and Session Mode

Protocol Data Units

FlexRay Startup/Wakeup

LIN Additional Topics

LIN Frame Timing and Session Mode

© National Instruments 1421

NI-XNET 20.5

Additional Information
This section includes additional information that applies to all vehicle
communication protocols.

Cyclic and Event Timing
For all embedded network protocols (for example, CAN, FlexRay, and LIN), the
transmit of a specific frame is classified as one of the following:

■ Cyclic: The frame transmits at a cyclic (periodic) rate, regardless of whether
the application has updated its payload data. The advantage of cyclic
behavior is that the application does not need to worry about when to
transmit, yet data changes arrive at other ECUs within a well-defined
deadline.
■ Event: The frame transmits when a specific event occurs. This event often is
simply that the application updated the payload data, but other events are
possible. The advantage is that the frame transmits on the network only as
needed.

The following sections describe how the cyclic and event concept apply to each
protocol.

Within NI-XNET, a Cyclic frame begins transmit as soon as the session starts,
regardless of whether you called the appropriate nxWrite function. The call to the
appropriate nxWrite function is the event that drives an Event frame transmit.

CAN

For each frame, the XNET Frame CAN:Timing Type property determines whether the
network transfer is cyclic or event:

■ Cyclic Data: This is typical Cyclic frame behavior.
■ Event Data: This is typical Event frame behavior.
■ Cyclic Remote: Because one ECU in the network transmits the CAN remote
frame at a cyclic (periodic) rate, the resulting CAN data frame also is cyclic.

ni.com1422

NI-XNET 20.5

■ Event Remote: One ECU in the network transmits the CAN remote frame
based on an event. Another ECU responds with the corresponding CAN data
frame. In NI-XNET, the appropriate nxWrite function generates the event to
transmit the CAN remote frame.

FlexRay

For each frame, the XNET Frame FlexRay:Timing Type property determines whether
the network transfer is cyclic or event:

■ Cyclic (in static segment): No null frame transmits, so this is typical Cyclic
frame behavior.
■ Event (in static segment): The null frame indicates no event.
■ Cyclic (in dynamic segment): The frame transmits each FlexRay cycle. This
configuration is not common for the dynamic segment, which typically is for
Event frames only.
■ Event (in dynamic segment): This is typical Event frame behavior.

LIN

As described in the Using LIN topic, the currently running schedule entries
determine each LIN frame's timing. In each schedule entry, the master transmits a
single frame header, and the payload of one (or more) frames can follow.

For each schedule entry, the XNET LIN Schedule Entry Type property determines
how the associated frames transmit. The schedule run mode also contributes to the
cyclic or event behavior.

■ Cyclic: Unconditional type, Continuous run mode: This is typical Cyclic frame
behavior.
■ Event: Unconditional type, Once run mode: Although the frame transmits
unconditionally, the schedule runs once based on an event, so this is Event
frame behavior. In NI-XNET, the nxWriteState (nxState_LINSchedule
Change) function changes the mode to the run-once schedule. This
effectively generates the event to transmit the LIN frame.

© National Instruments 1423

NI-XNET 20.5

■ Event: Sporadic type: In this schedule entry, the master can transmit one of
multiple Event-driven frames. In NI-XNET, the appropriate nxWrite function
writes signal or frame values to generate the event to transmit. Because the
entry itself is Event, this behavior applies regardless of the schedule's run
mode.
■ Event: Event-triggered type: In this schedule entry, multiple slave ECUs can
transmit in the entry, each using an Event-driven frame. In NI-XNET, the
appropriate nxWrite function writes signal or frame values to generate the
event to transmit. Because the entry itself is Event, this behavior applies
regardless of the schedule's run mode.

Multiplexed Signals
Multiplexed signals do not appear in every instance of a frame; they appear only if
the frame indicates this.

For this reason, a frame can contain a multiplexer signal and several subframes. The
multiplexer signal is at most 16 bits long and contains an unsigned integer number
that identifies the subframe instance in the instance of a frame. The subframes
contain the multiplexed signals.

This means the frame signal content is not fixed (static), but can change depending
on the multiplexer signal (dynamic) value.

A frame can contain both a static and a dynamic part.

Creating Multiplexed Signals

In the API
Creating multiplexed signals in the API is a two-step process:

1. Create the multiplexer signal and subframes as children of the frame object.
The subframes are assigned the mode value; that is, the value of the
multiplexer signal for which this subframe becomes active.

2. Create the multiplexed signals as children of their respective subframes. This
automatically assigns the signals as dynamic signals to the subframe's parent
frame.

ni.com1424

NI-XNET 20.5

In the NI-XNET Database Editor
You create multiplexed signals simply by changing their Signal Type to Multiplexed
and assigning them mode values. The Database Editor handles subframe
manipulation completely behind the scenes.

Reading Multiplexed Signals

You can read multiplexed signals like static signals without any additional effort.
Because the frame read also contains the multiplexer signal, the NI-XNET driver can
decide which signals are present in the frame and return new values for only those
signals.

Writing Multiplexed Signals

Writing multiplexed signals needs additional consideration. As writing signals
results in a frame being created and sent over the network, writing multiplexed
signals requires the multiplexer signal be part of the writing session. This is needed
for the NI-XNET driver to decide which set of dynamic signals a certain frame
contains. Only the subframe dynamic signals selected with the multiplexer signal
value are written to the frame; the values for the other dynamic signals of that frame
are ignored.

Support for Multiplexed Signals

Multiplexed signals are currently supported for CAN only. FlexRay does not support
them.

Raw Frame Format
This topic describes the raw data format for frames. nxReadFrame and
nxWriteFrame use this format.

The raw frame format is ideal for log files, because you can transfer the data
between NI-XNET and the file with very little conversion.

The raw frame format consists of one or more frames encoded in a sequence of
bytes. The encoding can be different for each protocol supported by NI-XNET.

© National Instruments 1425

NI-XNET 20.5

CAN, FlexRay, and LIN

This format is used for CAN, FlexRay, and LIN interfaces. This includes frames for SAE
J1939 and CAN FD. Refer to the NI-XNET log file examples for VIs that convert raw
frame data to/from LabVIEW clusters for CAN, FlexRay, or LIN frames. Each frame is
encoded as one Base Unit, followed by zero or more Payload Units.

Base Unit
In the following table, Byte Offset refers to the offset from the frame start. For
example, if the first frame is in raw data bytes 0–23, and the second frame is in bytes
24–47, the second frame Identifier starts at byte 32 (24 + Byte Offset 8).

Element Byte Offset Description
Timestamp 0 to 7 64-bit timestamp in 100 ns increments.

The timestamp format is absolute. The 64-bit element contains the
number of 100 ns intervals that have elapsed since 1 January 1601 0
0:00:00 Coordinated Universal Time (UTC). IN previous releases, this
timestamp was called nxTimestamp_t.

This element contains a 64-bit unsigned integer (U64) in native byte
order. For little-endian computing platforms (for example, Windows)
, Byte Offset 0 is the least significant byte. For more information, refe
r to the NI-XNET examples for log file access.

Identifier 8 to 11 The frame identifier.
This element contains a 32-bit unsigned integer (U32) in native byte
order.

When Type specifies a CAN frame, bit 29 (hex 20000000) indicates th
e CAN identifier format: set for extended, clear for standard. If bit 29
is clear, the lower 11 bits (0–10) contain the CAN frame identifier. If b
it 29 is set, the lower 29 bits (0–28) contain the CAN frame identifier.

When Type specifies a FlexRay frame, the lower 16 bits contain the sl
ot number.

When Type specifies a LIN frame, this element contains a number in
the range 0–63 (inclusive). This number is the LIN frame's ID (unprot
ected).

For SAE J1939 frames, the PGN and address fields are mapped to th
e Extended CAN identifier and written in the same way as for CAN.

ni.com1426

NI-XNET 20.5

All unused bits are 0.

Type 12 The frame type.
This element specifies the fundamental frame type. The Identifier, Fl
ag, and Info element interpretation is different for each type.

The upper 3 bits of this element specify the protocol. The valid value
s in decimal are:

0 CAN
1 FlexRay
2 LIN
6 J1939
7 Special

The lower 5 bits of this element contain the specific type.

The following Type values may occur for CAN:

CAN Data (0) The CAN data frame contains payload data. Th
is is the most commonly used frame type for
CAN.

CAN 2.0 Data (8) The CAN frame contains payload data. It has b
een transmitted in ISO CAN FD mode as a CAN
2.0 frame.

CAN FD Data (16) The CAN frame contains payload data. It has b
een transmitted in ISO CAN FD+BRS mode as
a CAN FD frame.

CAN FD BRS Data (
24)

The CAN frame contains payload data. It has b
een transmitted in ISO CAN FD+BRS mode as
a CAN FD+BRS frame.

CAN Remote (1) A CAN remote frame. An ECU transmits a CAN
remote frame to request data for the correspo
nding identifier. Your application can respond
by writing a CAN data frame for the identifier.

Delay (224) The Delay frame is used with the replay featur
e to insert a relative time delay between fram
e transmissions. For information about this fr
ame, including the other frame fields, refer to
Special Frames.

© National Instruments 1427

NI-XNET 20.5

Log Trigger (225) A Log Trigger frame. This frame is generated
when a trigger occurs on an external connecti
on (for example, PXI_Trig0). For information a
bout this frame, including the other frame fiel
ds, refer to Special Frames.

Start Trigger (226) A Start Trigger frame is generated when the in
terface is started. (Refer to Start Interface for
more information.) For information about thi
s frame, including the other frame fields, refer
to Special Frames.

CAN Bus Error (2) A CAN Bus Error frame is generated when a b
us error is detected on the CAN bus. For infor
mation about this frame, including the other f
rame fields, refer to Special Frames.

The following Type values may occur for FlexRay:

FlexRay Data (32) FlexRay data frame. The frame contains paylo
ad data. This is the most commonly used fram
e type for FlexRay. All elements in the frame a
re applicable.

FlexRay Null (33) FlexRay null frame. When a FlexRay null frame
is received, it indicates that the transmitting E
CU did not have new data for the current cycl
e.
Null frames occur in the static segment only. T
his frame type does not apply to frames in the
dynamic segment.

This frame type occurs only when you set the
XNET Session Interface:FlexRay:Null Frames
To Input Stream? property to true. This prope
rty enables logging of received null frames to
a session with the Frame Input Stream Mode.
Other sessions are not affected.

For this frame type, the payload array is empt
y (size 0), and preamble? and echo? are fal
se. The remaining elements in the frame refle
ct the data in the received null frame and the t
imestamp when it was received.

ni.com1428

NI-XNET 20.5

FlexRay Symbol (34) FlexRay symbol frame. The frame contains a s
ymbol received on the FlexRay bus.
For this frame type, the first payload byte (offs
et 0) specifies the type of symbol: 0 for MTS, 1
for wakeup. The frame payload length is 1 or
higher, with bytes beyond the first byte reserv
ed for future use. The frame timestamp specif
ies when the symbol window occurred. The cy
cle count, channel A indicator, and channel B i
ndicator are encoded the same as FlexRay dat
a frames. All other fields in the frame are unus
ed (0).

Log Trigger (225) A Log Trigger frame. This frame is generated w
hen a trigger occurs on an external connectio
n (for example, PXI_Trig0). For information ab
out this frame, including the other frame field
s, refer to Special Frames.

Start Trigger (226) A Start Trigger frame is generated when the in
terface is started. (Refer to Start Interface for
more information.) For information about this
frame, including the other frame fields, refer t
o Special Frames.

The following Type values may occur for LIN:

LIN Data (64) The LIN data frame contains payload data.

Log Trigger (225) A Log Trigger frame. This frame is generated w
hen a trigger occurs on an external connection
(for example, PXI_Trig0). For information about
this frame, including the other frame fields, ref
er to Special Frames.

Start Trigger (226) A Start Trigger frame is generated when the int
erface is started. (Refer to Start Interface for mo
re information.) For information about this fra
me, including the other frame fields, refer to Sp
ecial Frames.

LIN Bus Error (65) A LIN Bus Error frame is generated when a bus
error is detected on the LIN bus. For informatio
n about this frame, including the other frame fi
elds, refer to Special Frames.

© National Instruments 1429

NI-XNET 20.5

LIN No Response (
66)

A LIN No Response frame is generated when a
header with no response is detected on the LIN
bus. For information about this frame, includin
g the other frame fields, refer to Special Frames
.

Flags 13 Eight Boolean flags that qualify the frame type.
Bit 7 (hex 80) is protocol independent (supported in CAN, FlexRay, a
nd LIN frames). If set, the frame is echoed (returned from the approp
riate nxRead function after NI-XNET transmitted on the network). If
clear, the frame was received from the network (from a remote ECU).

For FlexRay frames:

■ Bit 0 is set if the frame is a Startup frame
■ Bit 1 is set if the frame is a Sync frame
■ Bit 2 specifies the frame Preamble bit
■ Bit 4 specifies if the frame transfers on Channel A
■ Bit 5 specifies if the frame transfers on Channel B

For LIN frames:

■ Bit 0 is set if the frame occurred in an event-triggered entry (
slot). When bit 0 is set, the Info element contains the event-tri
ggered frame ID, and the Identifier element contains the Unco
nditional ID from the first payload byte.

All unused bits are zero.

Info 14 Information that qualifies the frame Type.
This element is not used for CAN.

For FlexRay frames, this element provides the frame cycle count (0–
63).

For LIN frames read for a non-stream input session, if bit 0 of the Fla
gs element is clear, the Info element is unused (0). If bit 0 of the Flag
s element is set (event-triggered entry), the Info element contains th
e event-triggered frame ID, and the Identifier element contains the U
nconditional ID from the first payload byte.

For LIN frames read for a stream input session, if
Interface:LIN:Checksum to Input Stream? is false (default), the Info e

ni.com1430

NI-XNET 20.5

lement contains 0 for each frame. If true, the Info element contains t
he received checksum for each frame.

For SAE J1939 frames, the three lowest bits of this element contain t
he three highest bits of the PayloadLength.

PayloadLengt
h

15 The PayloadLength indicates the number of valid data bytes in Paylo
ad.
For all standard CAN and LIN frames, PayloadLength cannot exceed
8. Because this base unit always contains 8 bytes of payload data, th
e entire frame is contained in the base unit, and no additional paylo
ad units exist.

For CAN FD frames, PayloadLength can be 0–8, 12, 16, 20, 24, 32, 48,
or 64.

For FlexRay frames, PayloadLength is 0–254 bytes.

For SAE J1939 frames, PayloadLength is 0–1785 bytes; the low 8 bits
are in this element, and the high three bits are found in the low bits
of the Info field.

If PayloadLength is 0–8, only the base unit exists. If PayloadLength is
9 or greater, one or more payload units follow the base unit. Additio
nal payload units are provided in increments of 8 bytes, to optimize
efficiency for DMA transfers. For example, if PayloadLength is 12, byt
es 0–7 are in the base unit Payload, bytes 8–11 are in the first half of
the next payload unit, and the last 4 bytes of the next payload unit ar
e ignored.

In other words, each raw data frame can vary in length. You can calc
ulate each frame size (in bytes) using the following pseudocode:

 U16 FrameSize; // maximum 272 for largest FlexRay fra
me
 FrameSize = 24; // 24 byte base unit
 if (PayloadLength > 8)
 FrameSize = FrameSize +
 (U16)(PayloadLength - 1) AND 0xFFF8;

The last pseudocode line subtracts 1 and truncates to the nearest m
ultiple of 8 (using bitwise AND). This adds bytes for additional paylo
ad units. For example, PayloadLength of 9 through 16 requires one a
dditional payload unit of 8 bytes.

© National Instruments 1431

NI-XNET 20.5

The NI-XNET example code helps you handle the variable-length fra
me encoding details.

Payload 16 to 23 This element always uses 8 bytes in the log file, but PayloadLength d
etermines the number of valid bytes.

Payload Unit
The base unit PayloadLength element determines the number of additional payload
units (0–31).

Element Byte Offset Description
Payload 0 to 7 This element always uses 8 byt

es in the log file, but PayloadLe
ngth determines the number of
valid bytes.

Ethernet

This format is used for Ethernet interfaces. All fields use big-endian byte order (most
significant byte first), also known as network order.

In the following table, Byte Offset refers to the offset from the beginning of the
frame. For example, if the first frame is in raw data bytes 0 127, and the second
frame is in bytes 128 255, the second frame's Source MAC Address starts at offset
156 (128 + Byte Offset 28).

The following table specifies the overall frame format, including header fields that
are specific to XNET (e.g., timestamps).

Field Byte Offset Description
Length 0 to 1 This unsigned 16-bit integer pro

vides the length of the entire fra
me, including two bytes for the
Length field itself.
The length of Frame Data (IEEE
Std 802.3 frame data) can be co
mputed by subtracting 28 from
this Length, to account for the fi
elds that are specific to Nationa
l Instruments (and the FCS).

ni.com1432

NI-XNET 20.5

Type 2 to 3 This unsigned 16-bit integer pro
vides the type of the Ethernet fr
ame.
The type is an enumerated valu
e:

Frame Data (value 0): Ethernet f
rame received or transmitted.

Local Timestamp 4 to 11 This timestamp uses XNET local
time.
This is an absolute timestamp i
n 1 nanosecond increments. Th
is 64-bit type contains the num
ber of 1 ns intervals that have el
apsed since 1 January 1970 00:
00:00 International Atomic Tim
e (TAI). The time represented by
zero corresponds to the PTP ep
och as specified in time synchro
nization protocols (e.g., IEEE St
d 802.1AS). The timestamp poin
t in the Ethernet frame occurs a
t the beginning of the first symb
ol following the start of frame d
elimiter.

Note As of 00:00:00, 1 Jan
uary 2018 UTC, UTC was b
ehind TAI by 37 seconds.

The location of the timestamp
point depends on the Port Mod
e of the session's interface. Whe
n Port Mode is Direct, the times
tamp point's location correspo
nds to time synchronization pro
tocols, using the reference plan
e marking the boundary betwe
en the port's connector (copper
wire) and PHY. When Port Mode
is Tap, the timestamp point's lo
cation is the midpoint between

© National Instruments 1433

NI-XNET 20.5

the connector/PHY reference pl
ane of this session's interface a
nd the connector/PHY reference
plane of the Tap partner.

This field is ignored by nxWriteF
rame.

Network Timestamp 12 to 19 This timestamp uses network ti
me (clock of the network's time
synchronization protocol, such
as IEEE Std 802.1AS).
This is an absolute timestamp i
n 1 nanosecond increments. Th
is 64-bit type contains the num
ber of 1 ns intervals that have el
apsed since 1 January 1970 00:
00:00 International Atomic Tim
e (TAI). The time represented by
zero corresponds to the PTP ep
och as specified in time synchro
nization protocols (e.g., IEEE St
d 802.1AS). The timestamp poin
t in the Ethernet frame occurs a
t the beginning of the first symb
ol following the start of frame d
elimiter.

Note As of 00:00:00, 1 Jan
uary 2018 UTC, UTC was b
ehind TAI by 37 seconds.

The location of the timestamp
point depends on the Port
Mode of the session's interface.
When Port Mode is Direct, the ti
mestamp point's location corre
sponds to time synchronization
protocols, using the reference p
lane marking the boundary bet
ween the port's connector (cop
per wire) and PHY. When Port M

ni.com1434

NI-XNET 20.5

ode is Tap, the timestamp point
's location is the midpoint betw
een the connector/PHY referenc
e plane of this session's interfac
e and the connector/PHY refere
nce plane of the Tap partner.

This field is ignored by nxWriteF
rame.

Flags 20 to 23 This 32-bit field provides Boole
an flags that qualify the frame.
Bit 0 corresponds to the lowest
bit (i.e., hex 00000001).

■ Transmit (bit 31): Boole
an value that indicates w
hether the frame occurre
d due to transmit (true) o
r not (false).

For nxRead on the monit
or path:

■ When Port Mode of t
his session's interface i
s Direct, the monitor pa
th echoes each transmi
t that was submitted to
nxWriteFrame on the e
ndpoint path.
■ When Port Mode of t
his session's interface i
s Tap, the value true in
dicates that the frame
was received by the Ta
p partner, and transmit
ted on this interface.

For nxReadFrame on the
endpoint path, this flag is
always false.

© National Instruments 1435

NI-XNET 20.5

■ Receive (bit 30): Boolea
n value that indicates wh
ether the frame occurred
due to receive (true) or no
t (false).

For nxReadFrame on the
monitor path:

■ When Port Mode of t
his session's interface i
s Direct, this flag is true
when a frame is receive
d on the interface.
■ When Port Mode of t
his session's interface i
s Tap, the value true in
dicates that the frame
was received by this int
erface, and will be tran
smitted on the Tap part
ner.

For nxReadFrame on the
endpoint path, this flag is
always true.
■ Network Synced (bit 23
): Contains the value of th
e Synced property at the t
ime that both timestamp
s are acquired, to specify
whether the Network Tim
estamp is synchronized t
o the network (true) or no
t (false).
■ Error (bit 16): Indicates
that an error occurred du
ring reception/transmissi
on of the frame (false = go

ni.com1436

NI-XNET 20.5

od frame, true = bad fram
e).

All unused bits are 0.

This field is ignored by nxWriteF
rame.

Frame Data 24 (Length-5) Data of the IEEE Std 802.3 fram
e. The Frame Data begins with t
he destination MAC address, an
d ends with the frame's last byt
e of MSDU.
The maximum length of this arr
ay is provided in the Payload Le
ngth Maximum property.

FCS (Length-4) to (Length-1) IEEE Std 802.3 Frame Check Seq
uence (FCS) that was received
with the Frame Data.
This field is ignored by nxWriteF
rame.

The following tables provide examples of the two most commonly used formats for
Frame Data on Ethernet, as specified in IEEE Std 802.3 and IEEE Std 802.1Q.

The following table shows Frame Data for an untagged frame. An untagged frame
uses the default Priority 0, default Drop Eligible false, and the default VLAN Identifier
(VID) 1.

Field Byte Offset Description
Destination MAC Address 24 to 29 This is the destination MAC add

ress as specified in IEEE Std 802
and IEEE Std 802.3. The MAC ad
dress consists of 6 bytes.

Source MAC Address 30 to 35 This is the source MAC address
as specified in IEEE Std 802 and
IEEE Std 802.3. The MAC addres
s consists of 6 bytes. For Write,
XNET can automatically popula
te this field (see Source MAC Ad
dress Auto).

© National Instruments 1437

NI-XNET 20.5

EtherType 36 to 37 This 16-bit unsigned integer sp
ecifies the protocol that is used
to encode/decode bytes in the
MSDU. In other words, the Ether
Type determines what the fram
e contains. EtherType values ar
e assigned by the IEEE Registrat
ion Authority (IEEE-RA). Exampl
es include hex 0800 for Internet
Protocol version 4 (IPv4), hex 08
DD for Internet Protocol version
6 (IPv6), and hex 22F0 for IEEE S
td 1722.

MSDU 38 to (Length-5) The remaining bytes of the Fra
me Data contain the frame's pa
yload, which IEEE 802 standard
s refer to as the mac_service_d
ata_unit (MSDU). IEEE Std 802.3
specifies that the minimum len
gth of the MSDU is 46 bytes (pa
dded as necessary), and the ma
ximum length of the MSDU is 15
00 bytes. Another term used for
the maximum length of the MS
DU is the Maximum Transmissio
n Unit (MTU).

The following table shows Frame Data for a frame with a VLAN tag.

Field Byte Offset Description
Destination MAC Address 24 to 29 This is the destination MAC add

ress as specified in IEEE Std 802
and IEEE Std 802.3. The MAC ad
dress consists of 6 bytes.

Source MAC Address 30 to 35 This is the source MAC address
as specified in IEEE Std 802 and
IEEE Std 802.3. The MAC addres
s consists of 6 bytes. For Write,
XNET can automatically popula
te this field (see Source MAC Ad
dress Auto).

ni.com1438

NI-XNET 20.5

Tag Protocol ID 36 to 37 IEEE Std 802.1Q specifies a tag t
hat adds information to the fra
me without changing its conten
t (i.e., EtherType or MSDU). Use
of the tag is optional. If a frame
contains a tag, this Tag Protocol
Identification (TPID) field specif
ies the encoding of the tag's inf
ormation (Tag Control Info).
TPID of hex 8100 is the Custome
r VLAN Tag (C-TAG), which is the
general-purpose tag format co
mmonly known as a VLAN tag.

Tag Control Info 38 to 39 IEEE Std 802.1Q specifies the 16
-bit Tag Control Info for a C-TAG
as follows:

■ Bits 13-15 (upper 3 bits
): Priority Code Point (PC
P). This field is commonly
known as the Priority of t
he frame. The Priority is
mapped to a traffic class,
and that traffic class dete
rmines the timing and im
portance of the frame as i
t egresses from a queue a
t each port in the switche
d Ethernet network. In ot
her words, the Priority de
termines how the frame t
ravels through queues.
■ Bit 12: Drop Eligibility I
ndicator (DEI): This field i
s commonly known as th
e Drop Eligible indicator. I
f Drop Eligible is true, the
frame can be discarded b
y metering algorithms in
preference to frames in w
hich Drop Eligible is false.

© National Instruments 1439

NI-XNET 20.5

■ Bits 0-11 (lower 12 bits)
: VLAN Identifier (VID): Thi
s VLAN Identifier specifies
where the frame travels t
hrough the network (i.e.,
on which ports of a switc
h it egresses). Within a fra
me, VID value 0 indicates
a null VID, meaning that t
he tag contains only prior
ity information (commonl
y known as priority-tag).
The default VID value for
all ports is 1, and therefor
e untagged and priority-t
agged frames use the def
ault VID of 1.

EtherType 40 to 41 This 16-bit unsigned integer sp
ecifies the protocol that is used
to encode/decode bytes in the
MSDU. In other words, the Ether
Type determines what the fram
e contains. EtherType values ar
e assigned by the IEEE Registrat
ion Authority (IEEE-RA). Exampl
es include hex 0800 for Internet
Protocol version 4 (IPv4), hex 08
DD for Internet Protocol version
6 (IPv6), and hex 22F0 for IEEE S
td 1722.

MSDU 42 to (Length-5) The remaining bytes of the Fra
me Data contain the frame's pa
yload, which IEEE 802 standard
s refer to as the mac_service_d
ata_unit (MSDU). IEEE Std 802.3
specifies that the minimum len
gth of the MSDU is 46 bytes (pa
dded as necessary), and the ma
ximum length of the MSDU is 15
00 bytes. Another term used for
the maximum length of the MS

ni.com1440

NI-XNET 20.5

DU is the Maximum Transmissio
n Unit (MTU).

Required Properties
When you create a new object, the properties may be:

■ Optional: The property has a default value after creation, and the
application does not need to set the property when the default value is
desired for the session.
■ Required: The property has no default value after creation. An undefined
required property returns an error from nxCreateSession. A required
property means you must provide a value for the property after you create the
object.

The following NI-XNET object classes have no required properties:

■ Session
■ System
■ Device
■ Interface
■ Database
■ ECU
■ LIN Schedule

This topic lists all required database properties. Properties with a protocol prefix (for
example, FlexRay:) in the property name apply only to a session that uses the
specified protocol.

The Cluster object class requires the following properties:

■ 64bit Baud Rate*
■ FlexRay:Action Point Offset
■ FlexRay:CAS Rx Low Max
■ FlexRay:Channels
■ FlexRay:Cluster Drift Damping

© National Instruments 1441

NI-XNET 20.5

■ FlexRay:Cold Start Attempts
■ FlexRay:Cycle
■ FlexRay:Dynamic Slot Idle Phase
■ FlexRay:Listen Noise
■ FlexRay:Macro Per Cycle
■ FlexRay:Max Without Clock Correction Fatal
■ FlexRay:Max Without Clock Correction Passive
■ FlexRay:Minislot Action Point Offset
■ FlexRay:Minislot
■ FlexRay:Network Management Vector Length
■ FlexRay:NIT
■ FlexRay:Number of Minislots
■ FlexRay:Number of Static Slots
■ FlexRay:Offset Correction Start
■ FlexRay:Payload Length Static
■ FlexRay:Static Slot
■ FlexRay:Symbol Window
■ FlexRay:Sync Node Max
■ FlexRay:TSS Transmitter
■ FlexRay:Wakeup Symbol Rx Idle
■ FlexRay:Wakeup Symbol Rx Low
■ FlexRay:Wakeup Symbol Rx Window
■ FlexRay:Wakeup Symbol Tx Idle
■ FlexRay:Wakeup Symbol Tx Low
■ Tick

The Frame object class requires the following properties:

■ FlexRay:Base Cycle
■ FlexRay:Channel Assignment
■ FlexRay:Cycle Repetition

ni.com1442

NI-XNET 20.5

■ Identifier
■ Payload Length

The Subframe object class requires the following properties:

■ Multiplexer Value

The Signal object class requires the following properties:

■ Byte Order
■ Data Type
■ Number of Bits
■ Start Bit

The LIN Schedule Entry object class requires the following properties:

■ Delay
■ Event Identifier
■ Frames

* For FlexRay, Baud Rate always is required. For CAN and LIN, when you use a Frame
I/O Stream session, you can specify Baud Rate using either the XNET Cluster 64bit
Baud Rate property or XNET Session Interface:64bit Baud Rate property. For CAN
and LIN with other session modes, the XNET Cluster Baud Rate property is required.

Special Frames
The NI-XNET driver offers a few special frames not directly used in bus
communication.

Delay Frame

A Delay frame is used during replay. When a frame with a Delay frame type is in the
stream output queue while the Interface:Output Stream Timing property is set to a
replay mode, the hardware delays for the requested time. The fields of the Delay
frame are as follows:

Element Description

© National Instruments 1443

NI-XNET 20.5

Timestamp Amount of time to delay. Note that this is not an
absolute time and is not related to any other ti
me in the replay frames. A time of 0.25 (that is, a
bsolute time of 6:00:00.250PM 12/31/1903) will
delay 250 ms.

Identifier 0 (Ignored)
Type nxFrameType_Special_Delay
Flags 0 (Ignored)
Info 0 (Ignored)
Payload Length 0
Payload N/A

Log Trigger Frame

A Log Trigger frame is a special frame that can be received by a Frame Stream Input
session. This frame is generated when a rising edge is detected on an external
connection (PXI_Trig or FrontPanel trigger). To enable the hardware to log this
frame, you must use nxConnectTerminals to connect the external connection
to the internal LogTrigger terminal. A Log Trigger frame is applicable to CAN,
FlexRay, and LIN. The fields of the Log Trigger frame are as follows:

Element Description
Timestamp Time when the trigger occurred.
Identifier 0
Type nxFrameType_Special_LogTrigger
Flags 0
Info 0
Payload Length 0
Payload N/A

Start Trigger Frame

A Start Trigger frame is a special frame that a Frame Stream Input session can
receive. This frame is generated when the interface is started. (Refer to Start
Interface for more information.) To enable the hardware to log this frame, you must
enable the Interface:Start Trigger Frames to Input Stream? property. A Start Trigger

ni.com1444

NI-XNET 20.5

frame is applicable to CAN, FlexRay, and LIN. The fields of the Start Trigger frame are
as follows:

Element Description
Timestamp Time when the interface started.
Identifier 0
Type nxFrameType_Special_StartTrigger
Flags 0
Info 0
Payload Length 0
Payload N/A

Bus Error Frame

A CAN Bus Error frame is a special that can be received by a Frame Stream Input
session. This frame is generated when a bus error is detected on the CAN bus. To
enable the hardware to log this frame, you must enable the Interface:Bus Error
Frames to Input Stream? property. A Bus Error frame is applicable to CAN and LIN.
The fields of the Bus Error frame are as follows:

CAN Frame

Element Description
Timestamp Time when the bus error was detected.
Identifier 0
Type nxFrameType_Special_CANBusError
Flags 0
Info 0
Payload Length 5 (may increase in the future)
Payload Byte 0: CAN Comm State

0 = Error Active
1 = Error Passive
2 = Bus Off

Byte 1: TX Error Counter

© National Instruments 1445

NI-XNET 20.5

Byte 2: RX Error Counter

Byte 3: Detected Bus Error

0 = None (never returned)
1 = Stuff
2 = Form
3 = Ack
4 = Bit 1
5 = Bit 0
6 = CRC

Byte 4: Transceiver Error?

0 = no error
1 = error

LIN Frame

Element Description
Timestamp Time when the bus error was detected.
Identifier 0
Type nxFrameType_Special_LINBusError
Flags 0
Info 0
Payload Length 5 (may increase in the future)
Payload Byte 0: LIN Comm State

0 = Idle
1 = Active
2 = Inactive

Byte 1: Detected Bus Error

0 = None (never returned)
1 = UnknownId
2 = Form
3 = Framing
4 = Readback

ni.com1446

NI-XNET 20.5

5 = Timeout
6 = CRC

Byte 2: Identifier on bus

Byte 3: Received byte on bus

Byte 4: Expected byte on bus

LIN No Response Frame

A LIN No Response frame is a special frame that a Frame Stream Input session can
receive. This frame is generated when a header with no response is detected on the
LIN bus. To enable the hardware to log this frame, you must enable the
Interface:LIN:No Response Frames to Input Stream? property. The No Response
frame fields are as follows:

Element Description
Timestamp Time when the end of header (ID) was detected.
Identifier Unprotected version of header ID
Type nxFrameType_LIN_NoResponse
Flags 0
Info 0
Payload Length 0
Payload N/A

State Models
The following figures show the state model for the NI-XNET session and the
associated NI-XNET interface.

The session controls the transfer of frame values between the interface (network)
and the data structures that Read or Write access. In other words, the session
controls the receipt or transmission of specific frames for the session.

The interface controls communication on the physical network cluster. Multiple
sessions can share the interface. For example, you can use one session for input on
interface CAN1 and a second session for output on interface CAN1.

© National Instruments 1447

NI-XNET 20.5

Although most state transitions occur automatically when you call the the
appropriate nxRead or nxWrite function, you can perform a more specific
transition using nxStart and nxStop. If you invoke a transition that has already
occurred, the transition is not repeated, and no error is returned.

Session State Model

For a description of each state, refer to Session States. For a description of each
transition, refer to Session Transitions.

Note Starting a Signal Input Waveform session discards any previous samples and frames
(the same result as running nxFlush). Note that when calling nxReadSignalWaveform for the
first time on the session, the session will be started if it was not already. Stopping the session
after the first start requires the session to be explicitly started in the future.

Interface State Model

For a description of each state, refer to Interface States. For a description of each
transition, refer to Interface Transitions.

For more information about state models, refer to the following topics:

Session States

ni.com1448

NI-XNET 20.5

Session Transitions

Interface States

Interface Transitions

Session States

Stopped

The session initially is created in the Stopped state. In the Stopped state, the session
does not transfer frame values to or from the interface.

While the session is Stopped, you can change properties specific to this session. You
can set any Session Properties except those in the Interface category (refer to
Stopped in Interface States).

While the session is Started, you cannot change properties of objects in the
database, such as frames or signals. The properties of these objects are committed
when the session is created.

Started

In the Started state, the session is started, but is waiting for the associated interface
to be started also. The interface must be communicating for the session to exchange
data on the network.

For most applications, the Started state is transitory in nature. When you call the
appropriate nxRead or nxWrite function or nxStart using defaults, the
interface is started along with the session. Once the interface is Communicating, the
session automatically transitions to Communicating without interaction by your
application.

If you call nxStart with the scope of Session Only, the interface is not started. You
can use this advanced feature to prepare multiple sessions for the interface, then
start communication for all sessions together by starting the interface (nxStart
with scope of Interface Only).

© National Instruments 1449

NI-XNET 20.5

Communicating

In the Communicating state, the session is communicating on the network with
remote ECUs. Frame or signal values are received for an input session. Frame or
signal values are transmitted for an output session. Your application accesses these
values using the appropriate nxRead or nxWrite function.

Session Transitions

Create

When the session is created, the database, cluster, and frame properties are
committed to the interface. For this configuration to succeed, the interface must be
in the Stopped state. There is one exception: You can create a Frame Stream Input
session while the interface is communicating.

When your application calls nxCreateSession, the session is created. To ensure
that all sessions for the interface are created prior to start, you typically place all
calls to nxCreateSession in sequence prior to the first use of the appropriate nx
Read or nxWrite function (for example, prior to the main loop).

Clear

When the session is cleared, it is stopped (no longer communicates), and then all its
resources are removed. This clears the session explicitly. To change the properties of
database objects that a session uses, you may need to call nxdbSetProperty to
change those properties, then recreate the session.

Set Session Property

While the session is Stopped, you can change properties specific to this session. You
can set any XNET Session Properties except those in the Interface category (refer to
Stopped in Interface States).

You cannot set properties of a session in the Started or Communicating state. If
there is an exception for a specific property, the property help states this.

ni.com1450

NI-XNET 20.5

Start Session

For an input session, you can start the session simply by calling the appropriate nxR
ead function. To read received frames, the appropriate nxRead function performs
an automatic Start of scope Normal, which starts the session and interface.

For an output session, if you leave the Auto Start? property at its default value of
true, you can start the session simply by calling the appropriate nxWrite function.
The auto-start feature of the appropriate nxWrite function performs a Start of
scope Normal, which starts the session and interface.

To start the session prior to calling the appropriate nxRead or nxWrite function,
you can call nxStart. The nxStart default scope is Normal, which starts the
session and interface. You also can use nxStart with scope of Session Only (this
Start Session transition) or Interface Only (the interface Start Interface transition).

Stop Session

You can stop the session by calling nxStop. nxStop provides the same scope as n
xStart, allowing you to stop the session, interface, or both (normal scope).

When the session stops, the underlying queues are not flushed. For example, if an
input session receives frames, and then you call nxStop, you still can call the
appropriate nxRead function to read the frame values from the queues. To discard
session frame queues, call nxFlush.

Interface Communicating

This transition occurs when the session interface enters the Communicating state.

Interface Not Communicating

This transition occurs when the session interface exits the Communicating state.

The session also exits its Communicating state when the session stops due to nxSt
op.

© National Instruments 1451

NI-XNET 20.5

Interface States

Stopped

The interface always exists, because it represents the communication controller of
the NI-XNET hardware product port. This physical port is wired to a cable that
connects to one or more remote ECUs.

The NI-XNET interface initially powers on in the Stopped state. In the Stopped state,
the interface does not communicate on its port.

While the interface is Stopped, you can change properties specific to the interface.
These properties are in the Session Property Interface Properties. When more than
one session exists for a given interface, the Interface category properties provide
shared access to the interface configuration. For example, if you set an interface
property using one session, then get that same property using a second session, the
returned value reflects the change.

Properties that you change in the interface are not saved from one execution of your
application to another. When the last session for an interface is cleared, the interface
properties are restored to defaults.

Started

In the Started state, the interface is started, but it is waiting for the associated
communication controller to complete its integration with the network.

This state is transitory in nature, in that your application does not control transition
out of the Started state. For CAN and LIN, integration with the network occurs in a
few bit times, so the transition is effectively from Stopped to Communicating. For
FlexRay, integration with the network entails synchronization with global FlexRay
time, which can take as long as hundreds of milliseconds.

Communicating

In the Communicating state, the interface is communicating on the network. One or
more communicating sessions can use the interface to receive and/or transmit
frame values.

ni.com1452

NI-XNET 20.5

The interface remains in the Communicating state as long as communication is
feasible. For information about how the interface transitions in and out of this state,
refer to Comm State Communicating and Comm State Not Communicating.

Interface Transitions

Set Interface Property

While the interface is Stopped, you can change interface-specific properties. These
properties are in the Session Property Interface Properties. When more than one
session exists for a given interface, the Interface category properties provide shared
access to the interface configuration. For example, if you set an interface property
using one session, then get that same property using a second session, the returned
value reflects the change.

You cannot set properties of the interface while it is in the Started or
Communicating state. If there is an exception for a specific property, the property
help states this.

Start Interface

You can request the interface start in two ways:

■ The appropriate nxRead or nxWrite function method: The automatic
start described for the Start Session transition uses a scope of Normal, which
requests the interface and session start.
■ nxStart method: If you call this function with scope of Normal or Interface
Only, you request the interface start.

After you request the interface start, the actual transition depends on whether you
have connected the interface start trigger. You connect the start trigger by calling nx
ConnectTerminals with a destination of Interface Start Trigger with a
destination of Interface Start Trigger or by writing the XNET Session Interface:Source
Terminal:Start Trigger property.

The Start Interface transition occurs as follows, based on the start trigger
connection:

© National Instruments 1453

NI-XNET 20.5

■ Disconnected (default): Start Interface occurs as soon as it is requested (the
appropriate nxRead or nxWrite function or nxStart).
■ Connected: Start Interface occurs when the connected source terminal
transitions low-to-high (for example, pulses). Every Start Interface transition
requires a new low-to-high transition, so if your application stops the interface
(for example, nxStop), then restarts the interface, the connected source
terminal must transition low-to-high again.

Stop Interface

Under normal conditions, the interface is stopped when the last session is stopped
(or cleared). In other words, the interface communicates as long as at least one
session is in use.

If a significant number of errors occur on the network, the communication
controller may stop the interface on its own. For more information, refer to Comm
State Not Communicating.

If your application calls nxStop with scope of Interface Only, that immediately
transitions the interface to the Stopped state. Use this feature with care, because it
affects all sessions that use the interface and is not limited to the session passed to n
xStop. In other words, using nxStop with a scope of Interface Only stops
communication by all sessions simultaneously.

Comm State Communicating

This transition occurs when the interface is integrated with the network.

For CAN, this occurs when communication enters Error Active or Error Passive state.
For information about the specific CAN interface communication states, refer to nxR
eadState.

For FlexRay, this occurs when communication enters one Normal Active or Normal
Passive state. For information about the specific FlexRay interface communication
states, refer to nxReadState.

For LIN, this occurs when communication enters the Active state. The interface
remains communicating while in the Active or Inactive state (not affected by bus

ni.com1454

NI-XNET 20.5

activity). For more information about the specific LIN interface communication
states, refer to nxReadState.

Comm State Not Communicating

This transition occurs when the interface no longer is integrated with the network.

For CAN, this occurs when communication enters Bus Off or Idle state. For
information about the specific CAN interface communication states, refer to nxRea
dState.

For FlexRay, this occurs when communication enters the Halt, Config, Default
Config, or Ready state. For information about the specific FlexRay interface
communication states, refer to nxReadState.

For LIN, this occurs when communication enters the Idle state. For more
information about the specific LIN interface communication states, refer to nxRead
State.

CAN Additional Topics
This section includes additional CAN-related information.

NI-CAN
NI-CAN is the legacy application programming interface (API) for National
Instruments CAN hardware. Generally speaking, NI-CAN is associated with the
legacy CAN hardware, and NI-XNET is associated with the new NI-XNET hardware.

If you are starting a new application, you typically use NI-XNET (not NI-CAN).

Compatibility

If you have an existing application that uses NI-CAN, a compatibility library is
provided so that you can reuse that code with a new NI-XNET CAN product. Because
the features of the compatibility library apply to the NI-CAN API and not NI-XNET, it
is described in the NI-CAN documentation. For more information, refer to the NI-
CAN Hardware and Software Manual.

© National Instruments 1455

NI-XNET 20.5

NI-XNET CAN Products in MAX

When the compatibility library is installed, NI-XNET CAN products also are visible in
the NI-CAN branch under Devices and Interfaces. Here you can configure the
devices for use with the NI-CAN API. This configuration is independent from the
configuration of the same device for NI-XNET under the root of Devices and

Interfaces. The following figure shows the same NI-XNET device, the NI PCI-8513,
configured for use with the NI-XNET API (interfaces CAN1 and CAN2) and with the NI-
CAN API (interfaces CAN3 and CAN4).

Transition

If you have an existing application that uses NI-CAN and intend to use only new NI-
XNET hardware from now on, you may want to transition your code to NI-XNET.

NI-XNET unifies many concepts of the earlier NI-CAN API, but the key features are
similar.

The following table lists NI-CAN terms and analogous NI-XNET terms.

ni.com1456

NI-XNET 20.5

NI-CAN Term NI-XNET Term Comment
CANdb file Database NI-XNET supports more databa

se file formats than the NI-CAN
Channel API, including the FIBE
X, AUTOSAR, and LDF formats.

Message Frame The term Frame is the industry
convention for the bits that tran
sfer on the bus. This term is use
d in standards such as CAN.

Channel Signal The term Signal is the industry
convention. This term is used in
standards such as FIBEX and AU
TOSAR.

Channel API Task Session (Signal I/O) Unlike NI-CAN, NI-XNET support
s simultaneous use of channel (
signal) I/O and frame I/O.

Frame API CAN Object (Queue L
ength Zero)

Session (Frame I/O Single-Point
)

The NI-CAN CAN Object provide
d both input (read) and output (
write) in one object. NI-XNET pr
ovides a different object for eac
h direction, for better control. If
the NI-CAN queue length for a d
irection is zero, that is analogou
s to NI-XNET Frame I/O Single-P
oint.

Frame API CAN Object (Queue L
ength Nonzero)

Session (Frame I/O Queued) If the NI-CAN queue length for a
direction is nonzero, that is ana
logous to NI-XNET Frame I/O Qu
eued.

Frame API Network Interface O
bject

Session (Frame I/O Stream) The NI-CAN Network Interface
Object provided both input (rea
d) and output (write) in one obj
ect. NI-XNET provides a differen
t object for each direction, for b
etter control.

Interface Interface NI-CAN started interface names
at CAN0, but NI-XNET starts at C
AN1 (or FlexRay1).

© National Instruments 1457

NI-XNET 20.5

CAN Timing Type and Session Mode
For each XNET Frame CAN:Timing Type property value, this topic describes how the
frame behaves for each XNET session mode.

An input session receives the CAN data frame from the network, and an output
session transmits the CAN data frame. The CAN data frame data (payload) is
mapped to/from signal values.

You use CAN remote frames to request the associated CAN data frame from a remote
ECU. When Timing Type is Cyclic Remote or Event Remote, an input session
transmits the CAN remote frame, and an output session receives the CAN remote
frame.

Cyclic Data

The data frame transmits in a cyclic (periodic) manner. The XNET Frame
CAN:Transmit Time property defines the time between cycles.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY,
Frame Input Single-Point, and Frame Input Queued Modes
You specify the CAN frame (or its signals) when you create the session. When the
CAN data frame is received, a subsequent call to the appropriate nxRead function
returns its data. For information about how the data is represented for each mode,
refer to Session Modes.

If the CAN remote frame is received, it is ignored (with no effect on the appropriate n
xRead function).

Frame Input Stream Mode
You specify the CAN cluster when you create the session, but not the specific CAN
frame. When the CAN data frame is received, a subsequent call to the appropriate n
xRead function returns its data.

If the CAN remote frame is received, a subsequent call to the appropriate nxRead
function for the stream returns it.

ni.com1458

NI-XNET 20.5

Signal Output Single-Point, Signal Output Waveform, Signal Output XY,
Frame Output Single-Point, and Frame Output Queued Modes
You specify the CAN frame (or its signals) when you create the session. When you
write data using the appropriate nxWrite function, the CAN data frame is
transmitted onto the network. For information about how the data is represented
for each mode, refer to Session Modes.

When the session and its associated interface are started, the first cycle occurs, and
the CAN data frame transmits. After that first transmit, the CAN data frame transmits
once every cycle, regardless of whether the appropriate nxWrite function is
called. If no new data is available for transmit, the next cycle transmits using the
previous CAN data frame (repeats the payload).

If you pass the CAN remote frame to the appropriate nxWrite function, it is
ignored.

Frame Output Stream Mode
You specify the CAN cluster when you create the session, but not the specific CAN
frame. When you write the CAN data frame using the nxWrite function, it is
transmitted onto the network.

The stream I/O modes do not use the database-specified timing for frames.
Therefore, CAN data and CAN remote frames transmit only when you pass them to
the nxWrite function, and do not transmit cyclically afterward.

When using a stream output timing of immediate mode, data is transmitted onto
the network as soon as possible.

When using a stream output timing of either Replay Exclusive or Replay Inclusive,
data is transmitted onto the network based on the timestamps in the frame.

Event Data

The data frame transmits in an event-driven manner. For output sessions, the event
is the appropriate nxWrite function. The XNET Frame CAN:Transmit Time property
defines the minimum interval.

© National Instruments 1459

NI-XNET 20.5

Signal Input Single-Point, Signal Input Waveform, Signal Input XY,
Frame Input Single-Point, and Frame Input Queued Modes
The behavior is the same as Cyclic Data.

Frame Input Stream Mode
The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the
database-specified timing for all frames, you can read either CAN data or CAN
remote frames.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY,
Frame Output Single-Point, and Frame Output Queued Modes
The behavior is the same as Cyclic Data, except that the CAN data frame does not
continue to transmit cyclically after the data from the appropriate nxWrite
function has transmitted. Because the database-specified timing for the frame is
event based, after the CAN data frames for the appropriate nxWrite function have
transmitted, the CAN data frame does not transmit again until a subsequent call to
the appropriate nxWrite function.

Frame Output Stream Mode
The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the
database-specified timing for all frames, you can write either CAN data or CAN
remote frames.

Cyclic Remote

The CAN remote frame transmits in a cyclic (periodic) manner, followed by the
associated CAN data frame as a response.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY,
Frame Input Single-Point, and Frame Input Queued Modes
You specify the CAN frame (or its signals) when you create the session. When the
CAN data frame is received, a subsequent call to the appropriate nxRead function

ni.com1460

NI-XNET 20.5

returns its data. For information about how the data is represented for each mode,
refer to Session Modes.

When the session and its associated interface are started, the first cycle occurs, and
the CAN remote frame transmits. This CAN remote frame requests data from the
remote ECU, which soon responds with the associated CAN data frame (same
identifier). After that first transmit, the CAN remote frame transmits once every
cycle. You do not call the appropriate nxWrite function for the session.

The CAN remote frame cyclic transmit is independent of the corresponding CAN
data frame reception. When NI-XNET transmits a CAN remote frame, it transmits a
CAN remote frame again CAN:Transmit Time later, even if no CAN data frame is
received.

Frame Input Stream Mode
The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the
database-specified timing for all frames, you can read either CAN data or CAN
remote frames.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY,
Frame Output Single-Point, and Frame Output Queued Modes
You specify the CAN frame (or its signals) when you create the session. When you
write data using the appropriate nxWrite function, the CAN data frame is
transmitted onto the network when the associated CAN remote frame is received
(same identifier). For information about how the data is represented for each mode,
refer to Session Modes.

Although the session receives the CAN remote frame, you do not call nxRead to
read that frame. NI-XNET detects the received CAN remote frame, and immediately
transmits the next CAN data frame. Your application uses the appropriate nxWrite
function to provide the CAN data frames used for transmit. When you call the
appropriate nxWrite function, the CAN data frame does not transmit immediately,
but instead waits for the associated CAN remote frame to be received.

© National Instruments 1461

NI-XNET 20.5

Frame Output Stream Modes
The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the
database-specified timing for all frames, you can write either CAN data or CAN
remote frames.

Event Remote

The CAN remote frame transmits in an event-driven manner, followed by the
associated CAN data frame as a response. For input sessions, the event is the
appropriate nxWrite function.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY,
Frame Input Single-Point, and Frame Input Queued Modes
You specify the CAN frame (or its signals) when you create the session. When the
CAN data frame is received, its data is returned from a subsequent call to the
appropriate nxRead function. For information about how the data is represented
for each mode, refer to Session Modes.

This CAN Timing Type and mode combination is somewhat advanced, in that you
must call both the appropriate nxRead and nxWrite functions. You must call the
appropriate nxWrite function to provide the event that triggers the CAN remote
frame transmit. When you call the appropriate nxWrite function, the data is
ignored, and one CAN remote frame transmits as soon as possible. Each call to the
appropriate nxWrite function transmits only one CAN remote frame, even if you
provide multiple signal or frame values. When the remote ECU receives the CAN
remote frame, it responds with a CAN data frame, which is received and read using
the appropriate nxRead function.

Frame Input Stream Modes
The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the
database-specified timing for all frames, you can read either CAN data or CAN
remote frames.

ni.com1462

NI-XNET 20.5

Signal Output Single-Point, Signal Output Waveform, Signal Output XY,
Frame Output Single-Point, and Frame Output Queued Modes
The behavior is the same as Cyclic Remote. When you write data using the
appropriate nxWrite function, the CAN data frame transmits onto the network
when the associated CAN remote frame is received (same identifier). Unlike Cyclic
Data, the remote ECU sends the associated CAN remote frame in an event-driven
manner, but the behavior is the same regarding the appropriate nxWrite function
and the CAN data frame transmit.

Frame Output Stream Mode
The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the
database-specified timing for all frames, you can write either CAN data or CAN
remote frames.

CAN Transceiver State Machine
The CAN hardware internally runs a state machine for controlling the transceiver
state. The transceiver can either be an internal transceiver or an external transceiver.
On hardware that contains software selectable transceivers, you can configure the
selected transceriver by setting the Interface:CAN:Transceiver Type property. If you
choose an external transceiver, you can configure its behaviors by setting the
Interface:CAN:External Transceiver Config property. Both bus conditions as well as
the Interface:CAN:Transceiver State property can affect the current transceiver state.
The following state machine shows the different states of the transceiver state
machine and how the various states transition.

© National Instruments 1463

NI-XNET 20.5

T# Condition From To
1 Power-on/close last ses

sion
Any Power-on

2 Interface is started Power-on Normal
3 Interface:CAN:Transcei

ver State with value No
rmal

Power-on Normal

4 Interface:CAN:Transcei
ver State with value No
rmal

Sleep Normal

5 Interface:CAN:Transcei
ver State with value No
rmal

SW Wakeup Normal

6 Interface:CAN:Transcei
ver State with value No
rmal

SW High Speed Normal

ni.com1464

NI-XNET 20.5

7 Interface:CAN:Transcei
ver State with value Sle
ep

Normal Sleep

8 Interface:CAN:Transcei
ver State with value Sle
ep

SW Wakeup Sleep

9 Wakeup Pattern receive
d on the bus

Sleep Normal

10 Interface:CAN:Transcei
ver State with value SW
Wakeup

Power-on SW Wakeup

11 Interface:CAN:Transcei
ver State with value SW
Wakeup

Normal SW Wakeup

12 Interface:CAN:Transcei
ver State with value SW
Wakeup

Sleep SW Wakeup

13 Interface:CAN:Transcei
ver State with value SW
HighSpeed

Power-on SW High Speed

14 Interface:CAN:Transcei
ver State with value SW
HighSpeed

Normal SW High Speed

15 Interface:CAN:Transcei
ver State with value SW
HighSpeed

Sleep SW High Speed

16 Interface:CAN:Transcei
ver State with value SW
HighSpeed

SW Wakeup SW High Speed

FlexRay Additional Topics
This section includes additional FlexRay-related information.

FlexRay Startup/Wakeup
Use the FlexRay Startup mechanism to take an idle interface and properly integrate
into a FlexRay cluster.

© National Instruments 1465

NI-XNET 20.5

If your cluster does not support the wakeup mechanism, this process is
straightforward. After creating your FlexRay session, call nxStart, which causes
the interface to transition from Default Config to Ready, where it attempts to
integrate with the FlexRay cluster. If your node is a coldstart node, it initiates
integration; otherwise, it attempts to integrate with a running FlexRay cluster. Once
integration has occurred, the interface transitions to Normal Active, where it
typically remains while it is communicating with other FlexRay nodes. When you call n
xStop, the interface transitions back to Default Config (via Halt) to be ready to start
the process again.

If your cluster supports the wakeup mechanism, the process becomes a bit more
complex. The route the XNET hardware takes depends on whether the interface is
currently awake or asleep. By default, XNET hardware starts in the awake state, and
the startup process is exactly the same as if your cluster does not support wakeup.
However, to use the wakeup mechanism your cluster is configured for, before calling n
xStart, you need to put the interface to sleep. You can do this in one of two ways.
First, you can set the Interface:FlexRay:Sleep property to nxFlexRaySleep_Loc
alSleep. This performs the one-time action of putting the interface to sleep.
Alternately, you can set the Interface:FlexRay:Auto Asleep When Stopped? property
to true. This puts the interface to sleep immediately. It also puts the interface to
sleep automatically every time the interface is stopped, so the startup process is the
same between your first start and subsequent starts.

If your interface is asleep when the nxStart API call is invoked, the interface
progresses to Ready, where it waits for all connected channels to be awake before
attempting to integrate with the cluster. After all connected channels are awake, the
integration process occurs exactly like a cluster that does not support wakeup.

If you want your interface to wake up a sleeping network, you must configure your
FlexRay interface to wake up the bus. You can do this in two ways. The first way is to
set the Interface:FlexRay:Sleep property to nxFlexRaySleep_RemoteWake
after you put your FlexRay interface to sleep. When you invoke the nxStart API
call, the interface progresses though the Ready state and into the Wakeup state. In
Wakeup, the interface generates the wakeup pattern on the FlexRay channel
configured by the Interface:FlexRay:Wakeup Channel property and transitions back

ni.com1466

NI-XNET 20.5

to Ready. If you have a multichannel bus, a separate node on the bus wakes up the
other channel.

After all connected channels are awake, the integration process occurs exactly like a
cluster that does not support wakeup. The second way is to invoke the nxStart
API call to start the interface. The interface progresses to Ready, where it waits for all
connected channels to be awake before attempting to integrate with the cluster.
During this time, if you set the Interface:FlexRay:Sleep property to nxFlexRaySle
ep_RemoteWake, the interface transitions into Wakeup, where it generates the
wakeup pattern on the FlexRay channel configured by the Interface:FlexRay:Wakeup
Channel property and transitions back to Ready. If you have a multichannel bus, a
separate node on the bus wakes up the other channel. After all connected channels
are awake, the integration process occurs exactly like a cluster that does not
support wakeup.

© National Instruments 1467

NI-XNET 20.5

T# Condition From To
1 Start trigger received1 Default Config Config2

2 Startup process initiate
d

Config Ready

3 Remote Wakeup initiat
ed (Interface:FlexRay:Sl
eep property set to nx
FlexRaySleep_Rem
oteWake)

Ready Wakeup

ni.com1468

NI-XNET 20.5

4 Wakeup channel awake Wakeup Ready
5 All connected channels

are awake and integrati
on is successful3

Ready Normal Active

6 Clock Correction Failed
counter reached Maxim
um Without Clock Corr
ection Passive Value

Normal Active Normal Passive

7 Number of valid correct
ion terms reached the
passive to active limit

Normal Passive Normal Active

8 1. Clock Correction Fail
ed counter reached Ma
ximum Without Clock C
orrection Fatal Value

2. Interface stopped (n
xStop)

9 Interface stopped (nxS
top)

Halt Default Config

1If you are not using synchronization, the nxStart API call internally generates the Start Trigger.

2In NI-XNET, this is a transitory state under normal situations. The Config state is nontransitory on
ly if the startup procedure fails to continue.

3Any of the following conditions can satisfy all channels awake: the wakeup pattern was transmit
ted or received on all connected channels, a local wakeup is requested, or the interface is not asle
ep.

FlexRay Timing Type and Session Mode
For each XNET Frame FlexRay:Timing Type property value, this topic describes how
the frame behaves for each XNET session mode.

An input session receives the FlexRay data frame from the network, and an output
session transmits the FlexRay data frame. The FlexRay data frame data (payload) is
mapped to/from signal values.

© National Instruments 1469

NI-XNET 20.5

You use FlexRay null frames in the static segment to indicate that no new payload
exists for the frame. In the dynamic segment, if no new payload exists for the frame,
it simply does not transmit (no frame).

For NI-XNET input sessions, the Timing Type does not directly impact the
representation of data from the appropriate nxRead function.

For NI-XNET output sessions, the Timing Type determines whether to transmit a
data frame when no new payload data is available.

Cyclic Data

The data frame transmits in a cyclic (periodic) manner.

If the frame is in the static segment, the rate can be once per cycle (FlexRay:Cycle
Repetition 1), once every N cycles (FlexRay:Cycle Repetition N), or multiple times
per cycle (FlexRay:In Cycle Repetitions:Enabled?).

If the frame is in the dynamic segment, the rate is once per cycle.

If no new payload data is available when it is time to transmit, the payload data
from the previous transmit is repeated.

Signal Input Single-Point, Signal Input Waveform, and Signal Input XY
Modes
You specify the FlexRay signals when you create the session, and a specific FlexRay
data frame contains each signal. When the FlexRay data frame is received, a
subsequent call to the appropriate nxRead function returns its data. For
information about how the data is represented for each mode, refer to Session
Modes.

If a FlexRay null frame is received, it is ignored (no effect on the nxRead function).
FlexRay null frames are not used to map signal values.

Frame Input Queued and Frame Input Single-Point Modes
You specify the FlexRay frame(s) when you create the session. When the FlexRay
data frame is received, a subsequent call to the appropriate nxRead function

ni.com1470

NI-XNET 20.5

returns its data. For information about how the data is represented for each mode,
refer to Session Modes.

If a FlexRay null frame is received, it is ignored (not returned).

Frame Input Stream Mode
You specify the FlexRay cluster when you create the session, but not the specific
FlexRay frames. When any FlexRay data frame is received, a subsequent call to the
appropriate nxRead function returns it.

If the XNET Session Interface:FlexRay:Null Frames To Input Stream? property is true,
and FlexRay null frames are received, a subsequent call to nxRead for the stream
returns them. If Null Frames To Input Stream? is false (default), FlexRay null frames
are ignored (not returned). You can determine whether each frame value is data or
null by evaluating the type element (refer to the appropriate nxRead function).

Signal Output Single-Point, Signal Output Waveform, Signal Output XY,
Frame Output Single-Point, and Frame Output Queued Modes
You specify the FlexRay frame (or its signals) when you create the session. When you
write data using the appropriate nxWrite function, the FlexRay data frame is
transmitted onto the network. For information about how the data is represented
for each mode, refer to Session Modes.

When the session and its associated interface are started, the FlexRay data frame
transmits according to its rate. After that first transmit, the FlexRay data frame
transmits according to its rate, regardless of whether the appropriate nxWrite
function is called. If no new data is available for transmit, the next cycle transmits
using the previous FlexRay data frame (repeats the payload).

If the frame is contained in the static segment, a FlexRay data frame transmits at all
times. The FlexRay null frame is not transmitted. If you pass the FlexRay null frame
to the appropriate nxWrite function, it is ignored.

If the frame is contained in the dynamic segment, a FlexRay data frame transmits
every cycle. The dynamic frame minislot is always used.

© National Instruments 1471

NI-XNET 20.5

Frame Output Stream Mode
This session mode is not supported for FlexRay.

Event Data

The data frame transmits in an event-driven manner. The event is the appropriate n
xWrite function.

Because FlexRay is a time-driven protocol, the minimum interval between events is
specified based on the FlexRay cycle. This minimum interval is configured in the
same manner as a Cyclic frame.

If the frame is in the static segment, the interval can be once per cycle
(FlexRay:Cycle Repetition 1), once every N cycles (FlexRay:Cycle Repetition N), or
multiple times per cycle (FlexRay:In Cycle Repetitions:Enabled?).

If the frame is in the dynamic segment, the interval is once per cycle.

If no new event (payload data) is available when it is time to transmit, no frame
transmits. In the static segment, this lack of new data is represented as a null frame.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY,
Frame Input Single-Point, Frame Input Queued, and Frame Input
Stream Modes
The behavior is the same as Cyclic Data.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY,
Frame Output Single-Point, and Frame Output Queued Modes
The behavior is similar to Cyclic Data, except that the FlexRay data frame does not
continue to transmit cyclically after the data from the appropriate nxWrite
function has transmitted. Because the database-specified timing for the frame is
event based, after the FlexRay data frames for the appropriate nxWrite function
have transmitted, the FlexRay data frame does not transmit again until a
subsequent call to the appropriate nxWrite function.

ni.com1472

NI-XNET 20.5

If the frame is contained in the static segment, a FlexRay null frame transmits when
no new data is available (no new call to the appropriate nxWrite function). If you
pass the FlexRay null frame to the appropriate nxWrite function, it is ignored.

If the frame is contained in the dynamic segment, the frame does not transmit when
no new data is available. The dynamic frame minislot is used only when new data is
provided to the appropriate nxWrite function.

Frame Output Stream Mode
This session mode is not supported for FlexRay.

Protocol Data Units (PDUs) in NI-XNET

Introduction to Protocol Data Units

Protocol Data Units (PDUs) are encapsulated network data that are a way to
communicate information between independent protocols, such as in a CAN-
FlexRay gateway. You can think of them as containers of signals. The container
(PDU) can be in multiple frames. A single frame can contain multiple PDUs.

Relationship Between Frames, Signals, and PDUs

Frames and PDUs

The frame element contains an arbitrary number of nonoverlapping PDUs. A frame
can have multiple PDUs, and the same PDU can exist in different frames. The
following figure shows the one-to-n (one PDU in n number of frames) and n-to-one
(n number of PDUs in one frame) relationships.

© National Instruments 1473

NI-XNET 20.5

Signals and PDUs

A PDU acts like a container for a logical group of signals.

The following figure represents the relationship between frames, PDUs, and signals.

Protocol Data Unit Properties

Start Bit
The start bit of the PDU within the frame indicates where in the frame the particular
PDU data starts.

ni.com1474

NI-XNET 20.5

Length
The PDU length defines the PDU size in bytes.

Update Bit
The receiver uses the update bit to determine whether the frame sender has
updated data in a particular PDU. Update bits allow for the decoupling of a signal
update from a frame occurrence. Update bits is an optional PDU property.

PDU Timing and Frame Timing

Because the same PDU can exist in multiple Frames, PDUs can have flexible
transmission schedules. For example, if PDU A is present in Frame 1 (Timing 1) as
well as in Frame 2 (Timing 2), the receiving node receives it as per the different
timings of the containing frames. (Refer to the following figure.)

Programming PDUs with NI-XNET

You can use PDUs in two ways to create a session for read/write:

■ Create a signal I/O session using signals within the PDU. To do this, use the
signal name as you would with signals contained within a frame.
■ Create an I/O session to read/write the raw PDU data. To do this, pass the
PDU(s) to the special Create Session modes for PDU. These modes operate like
the equivalent frame modes.

Important points to consider while programming with PDUs:

■ PDUs currently are supported only on FlexRay interfaces.
■ On the receive side, if the PDU has an update bit associated with it, the NI-
XNET driver sets the update bit when new data is received for the particular
PDU from the bus. Otherwise, if no new data is received for this PDU, the PDU

© National Instruments 1475

NI-XNET 20.5

is discarded. On the transmit side, the NI-XNET driver sets the update bit when
it detects that new data is available for the particular PDU in the PDUs queue
or table. The NI-XNET driver clears the bit if no new data is detected in the
PDU queue or table. If the frame containing the PDUs has cyclic timing, even if
no new data is available for any of the PDUs in the frame, the frame is
transmitted across the bus with the update bits all cleared. However, if the
PDU containing the frame has event timing, it is transmitted across the bus
only if at least one PDU that it contains has new data (with update bit set).
■ The read-only XNET Cluster PDUs Required? property is useful when
programming traversal through the database, as it indicates whether to
consider PDUs in the traversal.

LIN Additional Topics
This section includes additional LIN-related information.

LIN Frame Timing and Session Mode
This section describes the LIN behavior for each XNET session mode. As context for
describing LIN frame transfer on the network, this section uses the timing concepts
described in the LIN section of Cyclic and Event Timing.

An input session receives the LIN data frame (payload) from the network, and an
output session transmits the LIN data frame. The LIN data frame payload is mapped
to/from signal values.

For NI-XNET input sessions, the timing of each LIN schedule entry does not directly
impact the representation of data from the appropriate nxRead function.

For NI-XNET output sessions, the timing of each LIN schedule entry determines
whether to transmit a data frame when no new payload data is available.

You can configure the NI-XNET LIN interface to run as the LIN master by requesting a
schedule (nxWriteState function). If the NI-XNET LIN interface runs as a LIN slave
(default), a remote ECU on the network must execute schedules as LIN master for
these modes to operate.

ni.com1476

NI-XNET 20.5

Cyclic

The LIN data frame transmits in a cyclic (periodic) manner.

This implies that the LIN master is running a continuous schedule, and the LIN data
frame is contained within an unconditional schedule entry.

If no new payload data is available when it is time to transmit, the payload data
from the previous transmit is repeated.

Signal Input Single-Point, Signal Input Waveform, and Signal Input XY
Modes
You specify the signals when you create the session, and a specific LIN data frame
contains each signal. When the LIN data frame is received, a subsequent call to the
appropriate nxRead function returns its signal data. For information about how the
data is represented for each mode, refer to Session Modes.

Frame Input Queued and Frame Input Single-Point Modes
You specify the LIN frame(s) when you create the session. When the LIN data frame
is received, a subsequent call to the appropriate nxRead function returns its data.
For information about how the data is represented for each mode, refer to Session
Modes.

Frame Input Stream Mode
You specify the LIN cluster when you create the session, but not the specific LIN
frames. When any LIN data frame is received, a subsequent call to the appropriate n
xRead function returns it.

Signal Output Single-Point, Signal Output XY, Frame Output Single-
Point, and Frame Output Queued Modes
You specify the LIN frame (or its signals) when you create the session. When you
write data using the appropriate nxWrite function, the LIN data frame is
transmitted onto the network. For information about how the data is represented
for each mode, refer to Session Modes.

© National Instruments 1477

NI-XNET 20.5

When the session and its associated interface are started, the LIN data frame
transmits according to its schedule entry. Assuming that the LIN frame is contained
in only one entry of the continuous schedule, the time between frame transmissions
is the same as the time to execute the entire schedule (all entries). After that first
transmit, the LIN data frame transmits according to its schedule entry, regardless of
whether the appropriate nxWrite function is called. If no new data is available for
transmit, the next cycle transmits using the previous LIN data frame (repeats the
payload).

Signal Output Waveform Mode
If the NI-XNET interface runs as a LIN master, NI-XNET executes schedules, and
therefore controls the timing of LIN frames. When running as a LIN master, this
session mode is supported, and NI-XNET resamples the waveform data such that it
transmits at the scheduled frame rates.

If the NI-XNET interface runs as a LIN slave (default), this session mode is not
supported. When running as a LIN slave, NI-XNET does not know which schedule the
LIN master is executing. Because the LIN schedule is not known, the frame transfer
rates also are not known, which makes it impossible to resample the waveform
data.

Frame Output Stream Mode
This mode is available only when the LIN interface is master. You specify the LIN
cluster when you create the session, but not the specific LIN frame.

The stream I/O modes do not use the database-specified timing for frames.
Therefore, LIN data frames transmit only when you pass them to the nxWrite
function and do not transmit cyclically afterward.

When using a stream output timing of immediate mode, data is transmitted onto
the network as soon as possible. Specifically, if the data array is empty, only the
header part of the frame is transmitted (with the expectation that a slave transmits
the response). If the data array is not empty, the header + response parts of the
frame (the full frame) is transmitted. You can use this mode in conjunction with the
scheduler, in which case each frame written to stream output is handled as a run-
once schedule with lowest priority and having a single one-frame entry. A run-

ni.com1478

NI-XNET 20.5

continuous schedule is interrupted to transmit the frame. A run-once schedule is not
interrupted, and the frame is transmitted only when there are no pending run-once
schedules with higher-than-lowest priority.

When using a stream output timing of either Replay Exclusive or Replay Inclusive,
data is transmitted onto the network based on the timestamps in the frame.

Refer to the Interface:Output Stream Timing property for more details about using
this mode with LIN.

Event

The LIN data frame transmits in an event-driven manner. The event is the
appropriate nxWrite function.

If no new event (payload data) is available when it is time to transmit, no frame
transmits. This means that the LIN master transmits the frame header, but no
payload data follows this header.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY,
Frame Input Single-Point, Frame Input Queued, and Frame Input
Stream Modes
The behavior is the same as Cyclic.

Signal Output Single-Point, Signal Output XY, Frame Output Single-
Point, and Frame Output Queued Modes
The behavior is similar to Cyclic, except that the LIN data frame does not continue to
transmit after the data from the appropriate nxWrite function has transmitted.

If the frame is contained in a sporadic schedule entry, and there are values for
multiple frames pending for that entry, NI-XNET selects a single frame to transmit in
each entry. NI-XNET selects the frame using the order in the XNET LIN Schedule
Entry Frames property. For example, if the Frames property contains three frames,
and you write data for the first and third, NI-XNET transmits the first frame (index 0)
in the next occurrence of the sporadic entry, and then transmits the third frame
(index 2) when that sporadic entry executes again.

© National Instruments 1479

NI-XNET 20.5

If the frame is contained in an event-triggered schedule entry, a collision may occur
if another ECU transmits in the same schedule entry. If the NI-XNET LIN interface
runs as a LIN master, it automatically uses the XNET LIN Schedule Entry Collision
Resolving Schedule property to resolve this collision.

Signal Output Waveform Mode
The behavior is the same as Cyclic.

If the NI-XNET interface runs as a LIN master, NI-XNET executes schedules, and
therefore controls the timing of LIN frames. An event-driven LIN frame can transmit
at most once per execution of its schedule entry.

If the NI-XNET interface runs as a LIN slave (default), this session mode is not
supported.

Frame Output Stream Mode
When using a stream output timing of immediate mode, if the frame for transmit is
defined as an event-triggered frame in the database, and a collision occurs during
transmit, the interface automatically executes the collision resolving schedule
defined for the frame, exactly as if the frame were transmitted in a scheduled event-
triggered slot.

When using a stream output timing of either Replay Exclusive or Replay Inclusive, if
the frame for transmit is determined to be defined as an event-triggered frame in
the database, the frame is transmitted with a header ID equal to the unconditional
frame ID contained in data byte 0. The data is transmitted without modification. In
other words, the frame is transmitted as an unconditional frame associated with the
event-triggered frame.

Refer to the Interface:Output Stream Timing property for more details about using
this mode with LIN.

ni.com1480

NI-XNET 20.5

Summary of the CAN Standard
The following topics summarize the CAN standard.

History and Use of CAN

CAN Identifiers and Message Priority

CAN Frames

CAN Error Detection and Confinement

Low-Speed CAN

History and Use of CAN
In the past few decades, advances in automotive technology have led to increased
use of electronic control systems for engine timing, anti-lock brake systems, and
distributorless ignition. With conventional wiring, data is exchanged in these
systems using dedicated signal lines. As the complexity and number of devices has
increased, using dedicated signal lines becomes increasingly difficult and
expensive.

To overcome the limitations of conventional automotive wiring, Bosch developed
the Controller Area Network (CAN) in the mid-1980s. Using CAN, devices (controllers,
sensors, and actuators) are connected on a common serial bus. This network of
devices can be thought of as a scaled-down, real-time, low-cost version of networks
used to connect personal computers. Any device on a CAN network can
communicate with any other device using a common pair of wires.

As CAN implementations increased in the automotive industry, CAN was
standardized internationally as ISO 11898. CAN chips were created by major
semiconductor manufacturers such as Intel, Motorola, and Philips. With these
developments, manufacturers of industrial automation equipment began to
consider CAN for use in industrial applications. Comparison of the requirements for
automotive and industrial device networks showed numerous similarities, including
the transition away from dedicated signal lines, low cost, resistance to harsh
environments, and high real-time capabilities.

© National Instruments 1481

NI-XNET 20.5

Because of these similarities, CAN became widely used in photoelectric sensors and
motion controllers for textile machinery, packaging machines, and production line
equipment. By the mid-1990s, CAN was specified as the basis of many industrial
device networking protocols, including DeviceNet, and CANopen.

On April 17, 2012, Bosch released an updated CAN specification, CAN with Flexible
Data-Rate. This specification improves CAN performance by making two key
additions to the CAN standard: increasing the maximum payload size from 8 to 64
bytes and maximum baud rate from 1 to 2 Mb/s or more. Remote frames always are
transmitted in the CAN 2.0 standard format.

With its growing popularity in automotive and industrial applications, CAN has been
increasingly used in a wide variety of diverse applications. Use in agricultural
equipment, nautical machinery, medical apparatus, semiconductor manufacturing
equipment, and machine tools testify to the versatility of CAN.

CAN Identifiers and Message Priority
When a CAN device transmits data onto the network, an identifier that is unique
throughout the network precedes the data. The identifier defines not only the
content of the data, but also the priority.

When a device transmits a message onto the CAN network, all other devices on the
network receive that message. Each receiving device performs an acceptance test
on the identifier to determine if the message is relevant to it. If the received
identifier is not relevant to the device (such as RPM received by an air conditioning
controller), the device ignores the message.

When more than one CAN device transmits a message simultaneously, the identifier
is used as a priority to determine which device gains access to the network. The
lower the numerical value of the identifier, the higher its priority.

The following figure shows two CAN devices attempting to transmit messages, one
using identifier 647 hex, and the other using identifier 6FF hex. As each device
transmits the 11 bits of its identifier, it examines the network to determine if a
higher-priority identifier is being transmitted simultaneously. If an identifier
collision is detected, the losing device(s) immediately stop transmission and wait for
the higher-priority message to complete before automatically retrying. Because the
highest priority identifier continues its transmission without interruption, this

ni.com1482

NI-XNET 20.5

scheme is referred to as nondestructive bitwise arbitration, and CAN’s identifier is
often referred to as an arbitration ID. This ability to resolve collisions and continue
with high-priority transmissions is one feature that makes CAN ideal for real-time
applications.

1 Device A: ID = 11001000111 (647 hex)
2 Device B: ID = 11011111111 (6FF hex)
3 Device B Loses Arbitration; Device A Wins Arbitration and Proceeds
S = Start Frame Bit

Example of CAN Arbitration

CAN Frames
In a CAN network, the messages transferred across the network are called frames.
The CAN protocol supports two frame formats as defined in the Bosch version 2.0
specifications, the essential difference being in the length of the arbitration ID. In
the standard frame format (also known as 2.0A), the length of the ID is 11 bits. In the
extended frame format (also known as 2.0B), the length of the ID is 29 bits. The
following figure shows the essential fields of the standard and extended frame
formats, and the following topics describe each field.

© National Instruments 1483

NI-XNET 20.5

Standard and Extended Frame Formats

Start of Frame (SOF)

Start of Frame is a single bit (0) that marks the beginning of a CAN frame.

Arbitration ID

The arbitration ID fields contain the identifier for a CAN frame. The standard format
has one 11-bit field, and the extended format has two fields, which are 11 and 18
bits in length. In both formats, bits of the arbitration ID are transmitted from high to
low order.

Remote Transmit Request (RTR)

The Remote Transmit Request bit is dominant (0) for data frames, and recessive (1)
for remote frames. Data frames are the fundamental means of data transfer on a
CAN network, and are used to transmit data from one device to one or more
receivers. A device transmits a remote frame to request transmission of a data frame
for the given arbitration ID. The remote frame is used to request data from its source
device, rather than waiting for the data source to transmit the data on its own.

Identifier Extension (IDE)

The Identifier Extension bit differentiates standard frames from extended frames.
Because the IDE bit is dominant (0) for standard frames and recessive (1) for
extended frames, standard frames are always higher priority than extended frames.

Data Length Code (DLC)

The Data Length Code is a 4-bit field that indicates the number of data bytes in a
data frame. In a remote frame, the Data Length Code indicates the number of data
bytes in the requested data frame. Valid Data Length Codes range from zero to eight.

Data Bytes

For data frames, this field contains from 0 to 8 data bytes. Remote CAN frames
always contain zero data bytes.

ni.com1484

NI-XNET 20.5

Cyclic Redundancy Check (CRC)

The 15-bit Cyclic Redundancy Check detects bit errors in frames. The transmitter
calculates the CRC based on the preceding bits of the frame, and all receivers
recalculate it for comparison. If the CRC calculated by a receiver differs from the CRC
in the frame, the receiver detects an error.

Acknowledgment Bit (ACK)

All receivers use the Acknowledgment Bit to acknowledge successful reception of
the frame. The ACK bit is transmitted recessive (1), and is overwritten as dominant
(0) by all devices that receive the frame successfully. The receivers acknowledge
correct frames regardless of the acceptance test performed on the arbitration ID. If
the transmitter of the frame detects no acknowledgment, it could mean that the
receivers detected an error (such as a CRC error), the ACK bit was corrupted, or there
are no receivers (for example, only one device on the network). In such cases, the
transmitter automatically retransmits the frame.

End of Frame

Each frame ends with a sequence of recessive bits. After the required number of
recessive bits, the CAN bus is idle, and the next frame transmission can begin.

CAN FD Frames
The CAN FD standard supports the same two frame formats as defined in the Bosch
version 2.0 specification, as well as two additional frame formats. The essential
difference between the original and new format is the addition of a few bits to
redefine the DLC and increase the data phase speed. The following figure shows the
essential fields of the standard and extended FD frame formats, and the following
sections describe each field that differs from the CAN 2.0 specification.

© National Instruments 1485

NI-XNET 20.5

CAN FD Standard and Extended Frame Formats

Extended Data Length Bit (EDL)

The EDL bit indicates the frame is a CAN FD frame. This is the r0 bit in a standard
frame and is transmitted dominate. For a CAN FD frame, the EDL bit is transmitted
recessive.

When this bit is set, the DLC is interpreted differently than when the frame is a
standard CAN 2.0 frame. as shown in the following table:

DLC CAN 2.0 CAN FD
0..8 0..8 0..8

9 8 12
10 8 16
11 8 20
12 8 24
13 8 32
14 8 48
15 8 64

Bit Rate Switch Bit (BRS)

The BRS bit indicates whether the bit rate of the nonarbitration portion of the CAN
frame is transmitted at the standard data rate or the fast CAN FD rate. This bit is
transmitted dominate to transmit at the standard rate and recessive to transmit at
the CAN FD rate.

ni.com1486

NI-XNET 20.5

Error State Indicator Bit (ESI)

The ESI bit is transmitted dominate by a node in the Error Active State and recessive
by a node in the Error Passive State.

Cyclic Redundancy Check Sequence (CRC)

The CAN FD standard uses a different CRC polynomial than the CAN 2.0 standard.
The CAN 2.0 standard uses a 15-bit CRC, while the CAN FD standard uses two
separate CRC polynomials. The first CRC is 17 bits, for frames with a payload of 0–16
bytes. The second CRC is 21 bits, for frames larger than 16 bytes.

CAN Error Detection and Confinement
One of the most important and useful features of CAN is its high reliability, even in
extremely noisy environments. CAN provides a variety of mechanisms to detect
errors in frames. This error detection is used to retransmit the frame until it is
received successfully. CAN also provides an error confinement mechanism used to
remove a malfunctioning device from the CAN network when a high percentage of
its frames result in errors. This error confinement prevents malfunctioning devices
from disturbing the overall network traffic.

Error Detection
Whenever any CAN device detects an error in a frame, that device transmits a special
sequence of bits called an error flag. This error flag is normally detected by the
device transmitting the invalid frame, which then retransmits to correct the error.
The retransmission starts over from the start of frame, and thus arbitration with
other devices can occur again.

CAN devices detect the following errors, which are described in the following topics:

■ Bit error
■ Stuff error
■ CRC error
■ Form error

© National Instruments 1487

NI-XNET 20.5

■ Acknowledgment error

Bit Error
During frame transmissions, a CAN device monitors the bus on a bit-by-bit basis. If
the bit level monitored is different from the transmitted bit, a bit error is detected.
This bit error check applies only to the Data Length Code, Data Bytes, and Cyclic
Redundancy Check fields of the transmitted frame.

Stuff Error
Whenever a transmitting device detects five consecutive bits of equal value, it
automatically inserts a complemented bit into the transmitted bit stream. This stuff
bit is automatically removed by all receiving devices. The bit stuffing scheme is used
to guarantee enough edges in the bit stream to maintain synchronization within a
frame.

A stuff error occurs whenever six consecutive bits of equal value are detected on the
bus.

CRC Error
A CRC error is detected by a receiving device whenever the calculated CRC differs
from the actual CRC in the frame.

Form Error
A form error occurs when a violation of the fundamental CAN frame encoding is
detected. For example, if a CAN device begins transmitting the Start Of Frame bit for
a new frame before the End Of Frame sequence completes for a previous frame
(does not wait for bus idle), a form error is detected.

Acknowledgment Error
An acknowledgment error is detected by a transmitting device whenever it does not
detect a dominant Acknowledgment Bit (ACK).

ni.com1488

NI-XNET 20.5

Error Confinement
To provide for error confinement, each CAN device must implement a transmit error
counter and a receive error counter. The transmit error counter is incremented when
errors are detected for transmitted frames, and decremented when a frame is
transmitted successfully. The receive error counter is used for received frames in
much the same way. The error counters are increased more for errors than they are
decreased for successful reception/transmission. This ensures that the error
counters will generally increase when a certain ratio of frames (roughly 1/8)
encounter errors. By maintaining the error counters in this manner, the CAN
protocol can generally distinguish temporary errors (such as those caused by
external noise) from permanent failures (such as a broken cable). For complete
information about the rules used to increment/decrement the error counters, refer
to the CAN specification (ISO 11898).

With regard to error confinement, each CAN device may be in one of three states:
error active, error passive, and bus off.

Error Active State
When a CAN device is powered on, it begins in the error active state. A device in error
active state can normally take part in communication, and transmits an active error
flag when an error is detected. This active error flag (sequence of dominant 0 bits)
causes the current frame transmission to abort, resulting in a subsequent
retransmission. A CAN device remains in the error active state as long as the
transmit and receive error counters are both below 128. In a normally functioning
network of CAN devices, all devices are in the error active state.

Error Passive State
If either the transmit error counter or the receive error counter increments above
127, the CAN device transitions into the error passive state. A device in error passive
state can still take part in communication, but transmits a passive error flag when an
error is detected. This passive error flag (sequence of recessive 1 bits) generally does
not abort frames transmitted by other devices. Because passive error flags cannot
prevail over any activity on the bus line, they are noticed only when the error
passive device is transmitting a frame. Thus, if an error passive device detects a

© National Instruments 1489

NI-XNET 20.5

receive error on a frame which is received successfully by other devices, the frame is
not retransmitted.

One special rule to keep in mind: When an error passive device detects an
acknowledgment error, it does not increment its transmit error counter. Thus, if a
CAN network consists of only one device (for example, if you do not connect a cable
to the National Instruments CAN interface), and that device attempts to transmit a
frame, it retransmits continuously but never goes into bus off state (although it
eventually reaches error passive state).

Bus Off State
If the transmit error counter increments above 255, the CAN device transitions into
the bus off state. A device in the bus off state does not transmit or receive any
frames, and thus cannot have any influence on the bus. The bus off state disables a
malfunctioning CAN device that frequently transmits invalid frames, so that the
device does not adversely affect other devices on the network. When a CAN device
transitions to bus off, it can be placed back into error active state (with both
counters reset to zero) only by manual intervention. For sensor/actuator types of
devices, this often involves powering the device off then on. For NI-XNET network
interfaces, communication can be started again using an API function.

Low-Speed CAN
Low-Speed CAN is commonly used to control "comfort" devices in an automobile,
such as seat adjustment, mirror adjustment, and door locking. It differs from High-
Speed CAN in that the maximum baud rate is 125K and it utilizes CAN transceivers
that offer fault-tolerant capability. This enables the CAN bus to keep operating even
if one of the wires is cut or short-circuited because it operates on relative changes in
voltage, and thus provides a much higher level of safety. The transceiver solves
many common and frequent wiring problems such as poor connectors, and also
overcomes short circuits of either transmission wire to ground or battery voltage, or
the other transmission wire. The transceiver resolves the fault situation without
involvement of external hardware or software. On the detection of a fault, the
transceiver switches to a one wire transmission mode and automatically switches
back to differential mode if the fault is removed.

ni.com1490

NI-XNET 20.5

Special resistors are added to the circuitry for the proper operation of the fault-
tolerant transceiver. The values of the resistors depend on the number of nodes and
the resistance values per node. For guidelines on selecting the resistor, refer to
Cabling Requirements for Low-Speed/Fault-Tolerant CAN.

Single Wire CAN
Single wire CAN is found primarily in specialty automotive applications and
emphasizes low cost. Defined in the SAE 2411 specification, single wire CAN uses
only one single-ended CAN data wire, as opposed to the differential CAN wires
found in most applications. The reduced noise immunity of single wire CAN limit its
speed compared to the other CAN physical layers.

Single wire CAN offers four communication modes. The first two modes relate the
CAN bus speed. The first mode, Normal Mode, allows the controller to run at 33.333
Kbits/s and is the mode the bus runs in when conducting in-vehicle traffic. The
second mode, High Speed Mode, allows the controller to run at 83.333 Kbits/s and is
for data download when attached to an offboard tester ECU.

When running in either of the first two modes, the nominal voltage levels are 0 V and
4 V. If a controller goes into Sleep Mode, it ignores all traffic running at these voltage
levels. The final mode is called High Voltage Wakeup mode and transmits only at
normal communication speeds at nominal voltage levels of 0 V and 12 V (actual high
voltage is typically close to Vbat). If a controller goes into Sleep Mode, it wakes up
when receiving a CAN frame at the high-voltage signaling levels.

For cabling guidelines and other information, refer to Single Wire Physical Layer.

© National Instruments 1491

NI-XNET 20.5

Summary of the Ethernet Standard
Automotive Ethernet refers to Ethernet-based communication used as an in-
vehicle networking technology, especially communication among electronic control
units (ECUs) of a vehicle. Benefits to using Automotive Ethernet include faster data
communication for in-vehicle networking; cost-saving, lighter weight cabling; and
software interfaces for upper layers of the Ethernet stack that are the same as those
utilized for standard Ethernet.

The Ethernet protocol enables an open technology, high bandwidth network for in-
vehicle communication and improves the ability to share data from a common
source to an entire network. One critical element of Ethernet is the Ethernet frame
(also known as an Ethernet packet), which includes such data as destination MAC
address, source MAC address, 802.1Q header (optional), EtherType or length of
frame, payload, and a Cyclic Redundancy Check (CRC) called the Frame Check
Sequence (FCS). A minimum inter-frame gap of 12 bytes must follow the termination
of the Ethernet frame or packet.

IEEE 802 is a family of IEEE standards related to the Data Link and Physical (PHY)
layers of the Open Systems Interconnection (OSI) network communication model.
The IEEE 802 standards are specific to networks that transport variable-size packets.
Within this family are the IEEE 802.1 standards that provide specifications for local
area network (LAN), metropolitan area network (MAN), and bridging architecture
and network management. Also in this family are the IEEE 802.3 standards, which
define the physical layer (PHY) and the media access control (MAC) of the data link
layer of wired Ethernet.

The Ethernet standard as it applies to in-vehicle networking is especially influenced
by the following specifications:

■ IEEE 802.1AS-2011: Specifies the protocol and procedures used to ensure
time synchronization for time sensitive applications, such as audio and video,
over a virtual bridged local area network.
■ IEEE 802.1Q-2018: Specifies how MAC service is supported by bridged
networks, principles of operation, and the operation of MAC and VLAN
bridges, including management, protocols, and algorithms.

ni.com1492

NI-XNET 20.5

■ IEEE 802.3bw: 100BASE-T1 Physical Layer (PHY) specifications and
management parameters for full duplex 100 Mb/s communication over single
twisted pair cabling.
■ IEEE 802.3bp: 1000BASE-T1 Physical Layer (PHY) specifications and
management parameters for full duplex 1 Gb/s communication over single
twisted pair cabling.
■ IEEE 1722-2016: Transport protocol standard for time-sensitive
applications on bridged local area networks. This standard enables
interoperable audio and video streaming by defining raw and compressed
audio/video formats, synchronization mechanisms, and address assignments.

PDF versions of the IEEE 802 standards are available on the Institute of Electrical
and Electronics Engineers (IEEE) website, ieee.org.

© National Instruments 1493

NI-XNET 20.5

Summary of the FlexRay Standard
The following topics summarize the FlexRay standard:

FlexRay Overview

Increasing Communications Demands

FlexRay Network

FlexRay Bus Benefits

Data Security and Error Handling

Protocol Operation Control

Communication Cycle

Startup

Clock Synchronization

Frame Format

FlexRay Overview
The FlexRay communications network is a new, deterministic, fault-tolerant, and
high-speed bus system developed in conjunction with automobile manufacturers
and leading suppliers.

FlexRay delivers the error tolerance and time-determinism performance
requirements for X-by-wire applications (for example, drive-by-wire, steer-by-wire,
brake-by-wire, etc.). The FlexRay protocol serves as a communication infrastructure
for future generation high-speed control applications in vehicles by providing the
following services:

■ Message exchange service—Provides deterministic cycle-based message
transport.
■ Synchronization service—Provides a common timebase to all nodes.
■ Start-up service—Provides an autonomous start-up procedure.

ni.com1494

NI-XNET 20.5

■ Error management service—Provides error handling and error signaling.
■ Symbol service—Allows the realization of a redundant communication path.
■ Wakeup service—Addresses power management needs.

Increasing Communications Demands
In recent years, the amount of electronics introduced into automobiles has
increased significantly. This trend is expected to continue as automobile
manufacturers initiate further advances in safety, reliability, and comfort. The
introduction of advanced control systems—combining multiple sensors, actuators,
and electronic control units—is placing boundary demands on the existing
Controller Area Network (CAN) communication bus.

Requirements for future in-car control applications include the combination of
higher data rates, deterministic behavior, and the support of fault tolerance. For
example, drive-by-wire, which replaces direct mechanical control of a vehicle with
CPU-generated bus commands, demands high-speed bus systems that are fault
tolerant, are deterministic, and can support distributed control systems.

Increased functionality requires more flexibility in both bandwidth and system
extension. Communications availability, reliability, and data bandwidth are the keys
for targeted applications in power train, chassis, and body control.

Requirements Comparison
As shown in the figure above, the FlexRay bus addresses the significant increase in
requirements for in-vehicle applications. As the amount of electronics in
automobiles increases, high-bandwidth, deterministic, and redundant
communications are available through the FlexRay communications bus.

© National Instruments 1495

NI-XNET 20.5

FlexRay Network
The following topics discuss the FlexRay network.

FlexRay Bus Benefits

Data Security and Error Handling

Protocol Operation Control

Communication Cycle

Startup

Clock Synchronization

Frame Format

FlexRay Bus Benefits
The FlexRay Communications System Specification Version 2.0 outlines many key
bus network benefits:

■ Provides up to 10 Mbits/s data rate on each channel, or a gross data rate up
to 20 Mbits/s.
■ Significantly increases Frame Length (compared to CAN—8 bytes per frame).
■ Makes synchronous and asynchronous data transfer possible.
■ Guarantees frame latency and jitter during synchronous transfer (real-time
capabilities).
■ Provides prioritization of messages during asynchronous transfer.
■ Provides fault-tolerant clock synchronization via a global timebase.
■ Gives error detection and signaling.
■ Enables error containment on the physical layer through the use of an
independent Bus Guardian mechanism.
■ Provides scalable fault tolerance through single or dual-channel
communication.

ni.com1496

NI-XNET 20.5

Data Security and Error Handling
The FlexRay network provides scalable fault tolerance by allowing single or dual-
channel communication. For security-critical applications, the devices connected to
the bus may use both channels for transferring data. However, you also can connect
only one channel when redundancy is not needed, or to increase the bandwidth by
using both channels for transferring nonredundant data.

Within the physical layer, FlexRay provides fast error detection and signaling, as well
as error containment through an independent Bus Guardian. The Bus Guardian is a
mechanism on the physical layer that protects a channel from interference caused
by communication not aligned with the cluster communication schedule.

Protocol Operation Control

In the default config state, the controller is stopped. This is the power-on state.

© National Instruments 1497

NI-XNET 20.5

In the config state, the controller is stopped. You can configure the controller in this
state.

In the ready state, the controller can transition to the wakeup or startup states to
perform a coldstart (startup of a bus) or integrate into a running cluster.

In the wakeup state, the controller can wake up nodes that are sleeping while the
rest of the cluster is active.

The startup state is not a single state, but represents a state machine that is used for
bus startup. The state machine has three different paths, depending on how the
interface will participate in the startup process. The leading coldstart node is the
interface that is initiating the schedule synchronization. The following coldstart
node(s) are other coldstart-capable interfaces joining the leading coldstarter in
starting up the FlexRay bus. The non-coldstart nodes connect to a currently running
bus.

After properly integrating onto the bus, the controller transitions through the three
operating states (Normal Active, Normal Passive, and Halt), which are similar to the
CAN operating states of Error Active, Error Passive, and Bus Off.

When the interface is in Normal Active state, it is fully synchronized and supports
clusterwide clock synchronization.

When the interface is in Normal Passive state, it stops transmitting frames and
symbols, but received frames are still processed. It still can perform clock
synchronization based on received frames, but it does not contribute to the clock
synchronization.

When the interface is in Halt state, all frame and symbol processing is stopped, as is
macrotick generation.

Communication Cycle
The Communication Cycle is the fundamental element of the media-access scheme
within FlexRay. A cycle duration is fixed when the network becomes configured. A
FlexRay schedule has 64 cycles, numbered 0–63. After cycle 63, the schedule restarts
at cycle 0. The time window the Communication Cycle defines has two parts, a static
segment and dynamic segment. The configuration also defines the segment
lengths.

ni.com1498

NI-XNET 20.5

The Static Segment's purpose is to provide a time window for scheduling a number
of time-triggered messages. This part of the Communication Cycle is reserved for
the synchronous communication, which guarantees a specified frame latency and
jitter through fault-tolerant clock synchronization. You must configure the messages
to be transferred in the Static Segment before starting the communication, and the
maximum amount of data transferred in the Static Segment cannot exceed the
Static Segment duration. This provides for bus determinism, because each static
slot is given a guaranteed time on the bus, and only one device may transfer data
within a given slot.

In the Dynamic Segment, each device may transfer event-triggered messages, which
its Frame ID prioritizes. This part of the cycle forms a communication scheme similar
to the CAN bus. The Frame ID is for controlling the media access.

The Symbol Window is an optional part of the communication cycle where you can
transmit a special symbol (Media Access Test Symbol (MTS)) on the network to test
the Bus Guardian.

The Network Idle Time (NIT) is the part of the communication cycle where the node
calculates and applies clock correction to maintain synchronization with the
FlexRay bus.

The following figure shows the communication cycle of a given time period. The
figure shows that the bandwidth used for time-triggered and event-triggered
messages is scalable.

Startup
The action of initiating a startup process is called a coldstart. Only a subset of
nodes, called coldstart nodes, may initiate a startup.

A coldstart attempt begins with the transmission of the collision avoidance symbol
(CAS). Only the coldstart node that transmits the CAS can transmit frames in the four

© National Instruments 1499

NI-XNET 20.5

cycles that follow the CAS. During the fifth cycle, other coldstart nodes can join it;
later on, all other nodes can join it also.

In each cluster consisting of at least three nodes, at least three nodes must be
configured as coldstart nodes. If a cluster has only two nodes, both of them must be
configured as coldstart nodes.

The coldstart node that transmits the CAS is called a leading coldstart node. The
other coldstart nodes are called following coldstart nodes.

During the startup process, a node can transmit only startup frames. A startup frame
has an indicator in the header segment (refer to Frame Format) that indicates it is a
startup frame. All startup frames are also sync frames, which contain an indicator
that nodes use to assist with clock correction.

The following diagram shows the startup state machine as the FlexRay Protocol
Specification v. 2.1 defines it.

ni.com1500

NI-XNET 20.5

The following diagram shows the state transitions for a leading coldstart node
(Node A), following coldstart node (Node B), and non-coldstart node (Node C).

Path of the Leading Coldstart Node
When a coldstart node enters startup, it listens to the FlexRay bus to make sure the
bus is idle before commencing a coldstart attempt. If no communication is detected,
the node transmits a CAS symbol followed by the first regular cycle, numbered cycle
zero. From cycle zero onward, the node transmits its startup frame. During this time,
only one node (the leading coldstart node) can transmit startup frames. If two nodes
happen to transmit the CAS at the same time, both would transmit startup nodes
during this time, and both would detect the error and restart the coldstart process.

Starting in cycle four, other coldstart nodes begin to transmit their startup frames.
The leading coldstart node collects startup frames in cycles four and five and
performs clock correction. If there are no errors, the node leaves startup and enters
normal active.

Path of a Following Coldstart Node
When a coldstart node enters startup, it listens to the FlexRay bus to make sure the
bus is idle before commencing a coldstart attempt. If communication is detected,
the node tries to receive a valid pair of startup frames to derive its schedule and
calculate its initial clock correction.

© National Instruments 1501

NI-XNET 20.5

After successfully receiving these frames, it collects all sync frames during the
following two cycles and performs clock correction. If there are no errors during the
clock correction, the node begins to transmit its own startup frames.

If there still are no errors after three cycles of transmitting startup frames, the node
leaves startup and enters normal active.

Path of a Non-Coldstart Node
When a non-coldstart node enters startup, it listens to the FlexRay bus and tries to
receive FlexRay frames. If communication is detected, the node tries to receive a
valid pair of startup frames to derive its schedule and clock correction from the
coldstart nodes.

In the following two cycles, the node receives startup frames. After receiving valid
startup frames during four consecutive cycles from at least two different coldstart
nodes, the node leaves startup and enters normal active.

Clock Synchronization
FlexRay is a time-triggered bus, requiring every node in the cluster to have
approximately the same view of time. Time in FlexRay is based on cycles,
macroticks, and microticks. A cycle is composed of an integer number of
macroticks, and a macrotick is composed of an integer number of microticks.

A cycle consists of an integer number of macroticks, which must be identical for all
nodes in the cluster. This value remains the same for each cycle. The duration of a
macrotick also is identical (within tolerances) for all nodes in a cluster. However,
each node derives the macrotick from its microtick, which is derived from a local
oscillator. The number of microticks per macrotick may differ for each node on the
cluster (because they may use different local oscillators). In addition, the number of
microticks per macrotick may differ from macrotick to macrotick within the same
node, if required.

Clock synchronization is required to ensure that the time differences between the
nodes of a cluster remain consistent. There are two types of time differences—phase
(offset) differences and frequency (rate) differences. FlexRay nodes perform both
offset and rate correction to remain synchronized.

ni.com1502

NI-XNET 20.5

Rate correction is performed during the entire cycle. A positive or negative integer
number of microticks are added to the configured number of microticks in a
communication cycle. The actual number is determined by a clock synchronization
algorithm computed after the static segment of every odd cycle.

Offset correction is performed only during the NIT of every odd cycle. A positive or
negative integer number of microticks are added during the NIT offset correction
segment. The actual number is determined by a clock synchronization algorithm
computed during every cycle (but as mentioned above, the correction actually is
performed only during odd cycles).

Frame Format
The following figure shows the FlexRay frame format. The FlexRay frame has three
segments: header, payload, and trailer.

■ Header—Includes the Frame ID, Payload Length, Header CRC, and Cycle
Count. The Frame ID identifies a frame and is for prioritizing event-triggered
frames. The Payload Length contains the number of words transferred in the
frame. The Header CRC is for detecting errors during the transfer. The Cycle
Count contains the value of a counter that advances incrementally each time
a Communication Cycle starts. Additionally, the header includes some
indicators to help identify the frame type. The Payload Preamble indicator
indicates whether an optional vector is contained within the payload segment
of the transmitted frame (for example, a network management vector). The
Null Frame indicator indicates whether the frame is a normal or null frame (a
frame that does not contain a valid payload). The Sync Frame indicator
indicates whether the frame is a special sync frame used for clock

© National Instruments 1503

NI-XNET 20.5

synchronization. Finally, the Startup Frame indicator indicates whether the
frame is a startup frame to help start the FlexRay cluster.
■ Payload—Contains the data the frame transfers. The FlexRay payload or
data frame length is up to 127 words (254 bytes), which is more than 30 times
greater than CAN.
■ Trailer—Contains three 8-bit CRCs to detect errors.

ni.com1504

NI-XNET 20.5

Summary of the LIN Standard
The following topics summarize the LIN standard:

History and Use of LIN

LIN Topology and Behavior

LIN Frame Format

LIN Bus Timing

LIN Error Detection and Confinement

LIN Sleep and Wakeup

Advanced Frame Types

History and Use of LIN
Local Interconnect Network (LIN) was developed to create a standard for low-cost,
low-end multiplexed communication in automotive networks. Whereas CAN
addressed the need for high-bandwidth, advanced error-handling networks, the
hardware and software costs of CAN implementation became prohibitive for lower
performance devices like power window and seat controllers. LIN provides cost-
efficient communication in applications where the bandwidth and versatility of CAN
are not required. LIN can be implemented relatively inexpensively using the
standard serial UART embedded into most modern low-cost 8-bit microcontrollers.

LIN Topology and Behavior
The LIN bus connects a single master device (node) and one or more slave devices
(nodes) together in a LIN cluster. A node capability file describes the behavior of
each node. The node capability files are inputs to a system defining tool, which
generates a LIN description file (LDF) that describes the behavior of the entire
cluster. You can parse the LDF to generate the specified behavior in the desired
nodes. At this point, the master device's master task starts transmitting headers on

© National Instruments 1505

NI-XNET 20.5

the bus, and all the slave tasks in the cluster (including the master devices's own
slave task) respond, as specified in the LDF.

In general terms, you use the LDF to configure and create the LIN cluster's
scheduling behavior. For example, it defines the cluster's baud rate, the ordering
and time delays for the master task's transmission of headers, and the behavior of
each slave task in response.

LIN Frame Format
LIN is a polled bus with a single master node and one or more slave nodes. The
master node contains both a master task and a slave task. Each slave node contains
only a slave task. The master task in the master node controls all communication
over LIN.

The basic unit of transfer on the LIN bus is the frame, which is divided into a header
and a response. The master node always transmits the header, which consists of
three distinct fields: the Break, the Synchronization Field (Sync), and the
Identifier Field (ID). A slave task (which can reside in either the master node or a
slave node) always transmits the response; a response consists of a data payload
and a checksum.

Normally, the master task runs a predefined schedule, which describes the headers
to transmit on the bus, in a continuously repeating loop. Prior to starting the LIN,
each slave task is configured either to publish data to the bus or subscribe to data in
response to each received header ID. On receiving the header, each slave task
verifies ID parity and then checks the ID to determine whether it needs to publish or
subscribe during the response portion of the frame. If the slave task needs to
publish a response, it transmits one to eight data bytes to the bus, followed by a
checksum byte. If the slave task needs to subscribe, it reads the data payload and
checksum byte from the bus and takes appropriate internal action. For standard
slave-to-master communication, the master broadcasts the identifier to the
network, and one and only one slave responds with a data payload.

A separate slave task that exists in the master node accomplishes master-to-slave
communication. This task self-receives all headers transmitted on the bus and
responds as if it were an independent slave. To transmit data bytes, the master first
must update its internal slave task's response with the data values it wants to

ni.com1506

NI-XNET 20.5

transmit. The master then transmits the appropriate header, and the internal slave
task transmits its response to the bus.

Break

Every LIN frame begins with the Break, comprised of at least 13 dominant bits
followed by a break delimiter of at least one recessive bit. This serves as a start-of-
frame notice to all nodes on the bus.

Sync

The Sync field is the second field that the master task transmits in the header. Sync
is defined as the character x55. The Sync field allows slave nodes that perform
automatic baud rate detection to measure the baud rate period and adjust their
internal baud rate to synchronize with the bus.

ID

The ID field is the final field in the header transmitted by the master task. This field
provides identification for each message on the network and ultimately determines
which devices in the network receive or respond to each transmission. All slave
tasks continually listen for Identifier Fields, verify their parity, and determine
whether they are publishers or subscribers for this particular identifier. LIN provides
64 IDs. IDs 0–59 (0x3B) are for signal-carrying (data) frames, 60 (0x3C) and 61 (0x3D)
carry diagnostic data, and 62 (0x3E) and 63 (0x3F) are reserved for future protocol
enhancements. The ID is protected, as it is transmitted over the bus by performing a
2-bit parity calculation on the 6-bit ID and combining the parity and the ID into a
single byte called the protected ID. This protected ID has the lower 6 bits containing
the raw ID and the upper two bits containing the parity.

The following figure shows how parity is calculated using the raw ID and how the
protected ID is formed from the combination of the parity bits and raw ID.

Protected ID(7:6) Protected ID(5:0)
P(1) P(0) Raw ID(5:0)

¬ (ID(1) ID(3) ID(4) ID(5)) ID(0) ID(1) ID(2) ID(4) 0–63

© National Instruments 1507

NI-XNET 20.5

Data Payload

The slave task transmits the Data Payload field in the response. This field contains
one to eight bytes of data.

Checksum

The slave task transmits the Checksum field as the last byte in the response. The
message portion included in the checksum can differ based on the checksum mode
in use. The classic checksum is calculated using the data bytes. The enhanced
checksum is calculated using the data bytes and protected ID.

The LIN 2.1 specification defines the checksum calculation process as the summing
of all values, subtracting 255 every time the sum is greater than or equal to 256, then
inverting the result. Per the LIN 2.1 specification, classic checksum is for use with
LIN 1.x slave devices and enhanced checksum with LIN 2.x slave devices. It further
specifies that IDs 60–61 always use classic checksum. NI-XNET uses the checksum
configuration obtained from the database to determine which checksum algorithm
to use for a particular frame. Per the LIN 2.1 specification, IDs 60–61 always use
classic checksum, regardless of the setting of the checksum attribute.

The following figure shows how a master task header and slave task response
combine to create a LIN full frame.

ni.com1508

NI-XNET 20.5

LIN Bus Timing
A nominal time for a LIN frame to be transmitted across the bus is the number of bits
multiplied by the time for each bit. Because different entities transmit the two LIN
frame fields, the timing breaks down into the time for the header to be transmitted
and the time for the response to be transmitted, as shown below.

TBit [s] = Time it takes to transmit 1 bit (1/Baud_Rate)

NData = Number of data bytes in response

THeader_Nominal [s] = 34 * TBit

TResponse_Nominal [s] = 10 * (NData + 1) * TBit

TFrame_Nominal [s] = THeader_Nominal + TResponse_Nominal

However, to allow for byte processing and other delays within a device, each
segment is allocated an additional 40 percent as compared to the nominal time for
the frame to transmit.

THeader_Maximum [s] = 1.4 * THeader_Nominal

TResponse_Maximum [s] = 1.4 * TResponse_Nominal

TFrame_Maximum [s] = THeader_Maximum + TResponse_Maximum

LIN Error Detection and Confinement
The LIN 2.1 specification specifies that slave tasks should handle error detection
and that error monitoring by the master task is not required. The LIN 2.1
specification does not require handling of multiple errors within one LIN frame or
the use of error counters. On encountering the first error in a frame, the slave task
aborts processing of the frame until detection of the next Break-Sync sequence (in
the next header the master transmits). With NI-XNET, you can determine whether
any of these errors have occurred by checking the Last Error Code (LEC) field by
reading XNET Read (State LIN Comm).vi.

LIN also provides a mechanism for slave nodes to report errors to the master node.
The LIN 2.1 specification defines a 1-bit scalar signal named response_error, which

© National Instruments 1509

NI-XNET 20.5

each slave publishes to the master in one of its unconditional frames. This bit is set
whenever a frame that a slave node receives or transmits (except for an event-
triggered response) contains an error in the response field. The bit is cleared after
the frame containing the signal is successfully published to the master.

LIN Sleep and Wakeup
LIN provides a mechanism for devices to enter sleep state and potentially conserve
power. Per the LIN 2.1 specification, the master may force all slaves into sleep mode
by sending a diagnostic master request frame (ID=60, 0x3C) with the first data byte
equal to 0 and the remaining bytes set to 0xFF. This special frame is called the go-to-
sleep command. Slaves also enter sleep mode automatically if LIN is inactive for
more than 4 seconds.

LIN also provides a mechanism for waking devices on the bus. Wakeup is one task
that any node on the bus (a slave as well as the master) may initiate. Per the LIN 2.1
specification, force the bus dominant for 250 µs to 5 ms to issue the wakeup
request. Each slave should detect the wakeup request and be ready to process
headers within 100 ms. The master also should detect the wakeup request and start
sending headers when the slave nodes are ready (within 100–150 ms after receiving
the wakeup request). If the master does not issue headers within 150 ms after
receiving the first wakeup request, the slave requesting wakeup may try issuing a
second wakeup request (and waiting for another 150 ms). If the master still does not
respond, the slave may issue the wakeup request and wait 150 ms a third time. If
there still is no response, the slave must wait for 1.5 seconds before issuing a fourth
wakeup request.

The master may wake up the bus just by starting to send a normal break. However, if
this happens, the slaves may not be awake, and the slave nodes may not process
the first header transmitted.

Advanced Frame Types
The LIN 2.1 specification classifies LIN frames into five types: unconditional, event
triggered, sporadic, diagnostic, and reserved. It is important to note that the
differences in these frame types are due to either the timing of how they are
transmitted or the data bytes' content. Regardless of frame classification, a LIN

ni.com1510

NI-XNET 20.5

frame always consists of a header that the master task transmits and a response
that a slave task transmits.

The unconditional frame type is most commonly used. Unconditional frames carry
signals (data), and their identifiers are 0–59 (0x3B). Whenever the publisher of an
unconditional frame receives the header, it always transmits a response.

The event-triggered frame type attempts to conserve bus bandwidth by requesting
an unconditional frame response from multiple slaves within one frame slot time.
The event-triggered frame may have an ID of 0–59 (0x3B). When an unconditional
frame is used as an event frame, the bytes of data are restricted to 1–7 bytes instead
of 1–8 bytes. This is because the first data byte must be loaded with the protected ID
of the slave's unconditional frame.

The event-triggered frame works as follows: The master writes an event-triggered ID
in a header. The slaves respond to the event-triggered ID only if their data has been
updated. If only one slave publishes a response, the master receives it and looks at
the first data byte, which indicates which slave (through the protected ID) published
the response. If multiple slaves publish a response, a collision occurs. When the
master detects this collision, it invokes a new schedule to resolve the collision. This
collision resolving schedule queries each unconditional frame associated with the
event-triggered frame to get the responses from all objects. Afterwards, the original
schedule is continued.

Sporadic frames attempt to provide some dynamic behavior to LIN. Sporadic frames
always carry signals (data), and their IDs are 0–59 (0x3B). Only the slave task
associated with the master node can send sporadic frames. The header of a
sporadic frame is sent in its frame slot only when the master task knows that a data
value (signal) within the frame has been updated. If multiple unconditional frames
associated with a sporadic slot have updated data, the master transmits only the
highest priority frame, which the order that the frames appear in the sporadic frame
list determines.

Diagnostic frames are always eight data bytes in length and always carry diagnostic
or configuration data. Their ID is either 60 (0x3C) for a master request frame or 61
(0x3D) for a slave response frame.

Reserved frames have an ID of 62 (0x3E) and 63 (0x3F). You must not use them in a
LIN 2.x cluster.

© National Instruments 1511

NI-XNET 20.5

Bus Monitor
The following topic describes the Bus Monitor.
Overview

Overview
The NI-XNET Bus Monitor is a universal analysis tool for displaying and logging CAN,
FlexRay, or LIN network data. You can display network information as either last
recent data or historical data view. To identify more detailed frame information, you
can assign a network database to the Bus Monitor. If a received frame is found in the
database, you can display the message name and comment information in the
Monitor view or ID Log view. In addition to the network data, the Bus Monitor can
provide statistical information. For offline data analysis, you can stream all received
network data to disk in two log file formats.

In the Bus Monitor in the CAN protocol mode, you can interactively transmit an
event frame or a periodic frame onto the network. In this mode, you can quickly
verify the correct setup of your CAN network and debug your communication with
the device under test.

NI-XNET errors that appear while doing a CAN, FlexRay, or LIN measurement within
the Bus Monitor are shown in the main user interface.

You can launch the NI-XNET Bus Monitor in three distinct protocol modes: CAN,
FlexRay, or LIN, from NI MAX or the NI-XNET Windows Start menu category. You
cannot switch from one protocol mode to the other during run time. You can run the
Bus Monitor in multiple instances on different ports, and can verify the network
communication on several CAN, FlexRay, or LIN bus topologies in parallel.

Note The NI-XNET Bus Monitor utility does not support Automotive Ethernet hardware.

ni.com1512

NI-XNET 20.5

Database Editor
The NI-XNET Database Editor is a small standalone tool for creating and maintaining
embedded network databases. You can use the editor to:

■ Configure the basic network.
■ Define frames and signals exchanged on the network.
■ Assign frames to ECUs that send and receive them.

To launch the Database Editor, go to Start»All Programs»National Instruments»NI-

XNET»Database Editor.

Why Databases?

Database Formats

Clusters

Frames

PDUs

Signals

ECUs

Why Databases?
Databases are the means of choice for managing your embedded networks.
Although it is possible (and supported) in principle to run a network without a
database, using a database is highly recommended to have a consistent set of
network parameters for all nodes in the network. This is especially true for FlexRay,
where you need to set up about 30 parameters consistently to get a running
network.

Additionally, a database can manage the contents of the data exchanged over the
network. You can store frames and signals running on the network in a database, as
well as information about which ECU is transmitting or receiving which data. This
information also is needed for each node in the network.

© National Instruments 1513

NI-XNET 20.5

Database Formats
For NI-XNET, NI adopted the ASAM FIBEX standard as a database storage format.
FIBEX (FIeld Bus EXchange) is a vendor-independent exchange format for embedded
network data. It is an XML-based text format. The NI-XNET Database Editor can read
and write this format.

In addition, the Database Editor can import the AUTOSAR database format (.arxm
l), NI-CAN format (.ncd), vector CANdb format (.dbc), and LIN description file
format (.ldf) and convert them to FIBEX.

Clusters
The basic entity of a database is a cluster. A cluster is the description of a single
network (for example, a CAN or FlexRay bus).

For CAN, the cluster contains only the baud rate. For FlexRay, there are about 30
global network parameters to set for a cluster. The NI-XNET Database Editor
includes an Easy view, where you can set the six most important parameters; the
other parameters are then chosen automatically to obtain a functioning network. If
you start with FlexRay, this is probably the method of choice. However, if you have
an existing database, you can use the Expert view to set individual parameters.

Usually, a database contains only one cluster. For example, the NI-CAN database
and CANdb formats support only one cluster. However, FIBEX and AUTOSAR support
multiple clusters per database; for example, you might describe all of a car's
networks in a single database.

Frames
Each cluster can contain an arbitrary number of frames. A frame is a single message
that is exchanged on the cluster. In NI-CAN, this is equivalent to an NI-CAN message.

The basic properties of a frame are its identifier (Arbitration ID for CAN, Slot ID for
FlexRay) and the payload length, which can be any value between 0 and 8 for CAN
and any even value between 0 and 254 for FlexRay.

ni.com1514

NI-XNET 20.5

In addition, several protocol-specific properties exist. You can use the NI-XNET
Database Editor to edit these properties in a protocol type-specific way.

PDUs
A Protocol Data Unit (PDU) is a data unit defined in a cluster and exchanged within a
frame. Like a frame, a PDU contains an arbitrary number of signals. You can map one
or more PDUs to a frame by defining a start bit and update bit in the frame
properties window. You can map one PDU to multiple frames.

For CAN and LIN, NI-XNET supports only a one-to-one relationship between frames
and PDUs, and does not support an update bit for PDUs. Signals returned from the
frame are the same as signals returned from the mapped PDU. In this case, you can
deactivate the Use PDUs editor option to hide PDUs in the editor. If the file contains
frames with advanced PDU configuration (using a one-to-n or n-to-one relationship
or update bits), you cannot deactivate Use PDUs in the editor.

FIBEX files prior to version 3.0, .DBC files, and .NCD files cannot contain an
advanced PDU configuration.

Signals
Each frame contains an arbitrary number of signals, which are the basic data
exchange units on the network. These signals are equivalent to NI-CAN channels.

Some of the signal properties are:

■ Start bit: the signal start position within the frame
■ Number of bits: the signal length within the frame
■ Data type: the data type (signed, unsigned, or float)
■ Byte order: little or big endian
■ Scaling factor and offset: for converting physical data to binary
representation

© National Instruments 1515

NI-XNET 20.5

ECUs
ECUs appear in the NI-XNET Database Editor only as transmitters and receivers of
frames within clusters. They are not separate entities. That is, the same ECU might
appear in different database clusters, but in the exported FIBEX file, they appear as
different ECU entities.

In the LabVIEW Project Provider, you can sort frames by ECUs.

ni.com1516

NI-XNET 20.5

Port Configuration Utility
The following topic describes the Port Configuration Utility.
Overview

Overview
The NI-XNET Port Configuration Utility is a tool included with the NI-XNET run-time
installer that provides basic functionality to configure NI-XNET devices. You can
update firmware and perform a self-test on NI-XNET devices, rename ports, and
perform a port blink. This utility can configure hardware on Windows hosts only.

After installing NI-XNET, you can find the Port Configuration Utility the following
directory: \Program Files (x86) \National Instruments\NI-XNET\
portConfig.

© National Instruments 1517

NI-XNET 20.5

© 2022 National Instruments Corporation.

