
FlexRIO
TM

NI-7931R/7932R/7935R User Manual

NI-793xR User Manual

August 2015
375181B-01

Support

Worldwide Technical Support and Product Information
ni.com

Worldwide Offices

Visit ni.com/niglobal to access the branch office websites, which provide up-to-date
contact information, support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the NI Services appendix. To comment on National
Instruments documentation, refer to the National Instruments website at ni.com/info and
enter the Info Code feedback.

© 2015 National Instruments. All rights reserved.

http://ni.com
http://ni.com/niglobal
http://ni.com/info

Legal Information

Limited Warranty
This document is provided ‘as is’ and is subject to being changed, without notice, in future editions. For the latest version,
refer to ni.com/manuals. NI reviews this document carefully for technical accuracy; however, NI MAKES NO EXPRESS
OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND
SHALL NOT BE LIABLE FOR ANY ERRORS.

NI warrants that its hardware products will be free of defects in materials and workmanship that cause the product to fail to
substantially conform to the applicable NI published specifications for one (1) year from the date of invoice.

For a period of ninety (90) days from the date of invoice, NI warrants that (i) its software products will perform substantially
in accordance with the applicable documentation provided with the software and (ii) the software media will be free from
defects in materials and workmanship.

If NI receives notice of a defect or non-conformance during the applicable warranty period, NI will, in its discretion: (i) repair
or replace the affected product, or (ii) refund the fees paid for the affected product. Repaired or replaced Hardware will be
warranted for the remainder of the original warranty period or ninety (90) days, whichever is longer. If NI elects to repair or
replace the product, NI may use new or refurbished parts or products that are equivalent to new in performance and reliability
and are at least functionally equivalent to the original part or product.

You must obtain an RMA number from NI before returning any product to NI. NI reserves the right to charge a fee for
examining and testing Hardware not covered by the Limited Warranty.

This Limited Warranty does not apply if the defect of the product resulted from improper or inadequate maintenance,
installation, repair, or calibration (performed by a party other than NI); unauthorized modification; improper environment;
use of an improper hardware or software key; improper use or operation outside of the specification for the product; improper
voltages; accident, abuse, or neglect; or a hazard such as lightning, flood, or other act of nature.

THE REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND THE CUSTOMER’S SOLE REMEDIES, AND SHALL
APPLY EVEN IF SUCH REMEDIES FAIL OF THEIR ESSENTIAL PURPOSE.

EXCEPT AS EXPRESSLY SET FORTH HEREIN, PRODUCTS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND AND NI DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO THE
PRODUCTS, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, AND ANY WARRANTIES THAT MAY ARISE FROM
USAGE OF TRADE OR COURSE OF DEALING. NI DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OF OR THE RESULTS OF THE USE OF THE PRODUCTS IN TERMS
OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NI DOES NOT WARRANT THAT THE
OPERATION OF THE PRODUCTS WILL BE UNINTERRUPTED OR ERROR FREE.

In the event that you and NI have a separate signed written agreement with warranty terms covering the products, then the
warranty terms in the separate agreement shall control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the
prior written consent of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected
by copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials
belonging to others, you may use NI software only to reproduce materials that you may reproduce in accordance with the
terms of any applicable license or other legal restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:

• Notices are located in the <National Instruments>_Legal Information and <National Instruments>
directories.

• EULAs are located in the <National Instruments>\Shared\MDF\Legal\license directory.

• Review <National Instruments>_Legal Information.txt for information on including legal information in
installers built with NI products.

U.S. Government Restricted Rights
If you are an agency, department, or other entity of the United States Government (“Government”), the use, duplication,
reproduction, release, modification, disclosure or transfer of the technical data included in this manual is governed by the
Restricted Rights provisions under Federal Acquisition Regulation 52.227-14 for civilian agencies and Defense Federal
Acquisition Regulation Supplement Section 252.227-7014 and 252.227-7015 for military agencies.

Trademarks
Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for more information on National Instruments
trademarks.

ARM, Keil, and µVision are trademarks or registered of ARM Ltd or its subsidiaries.

LEGO, the LEGO logo, WEDO, and MINDSTORMS are trademarks of the LEGO Group.

TETRIX by Pitsco is a trademark of Pitsco, Inc.

FIELDBUS FOUNDATION™ and FOUNDATION™ are trademarks of the Fieldbus Foundation.

EtherCAT® is a registered trademark of and licensed by Beckhoff Automation GmbH.

CANopen® is a registered Community Trademark of CAN in Automation e.V.

DeviceNet™ and EtherNet/IP™ are trademarks of ODVA.

Go!, SensorDAQ, and Vernier are registered trademarks of Vernier Software & Technology. Vernier Software & Technology
and vernier.com are trademarks or trade dress.

Xilinx is the registered trademark of Xilinx, Inc.

Taptite and Trilobular are registered trademarks of Research Engineering & Manufacturing Inc.

FireWire® is the registered trademark of Apple Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Handle Graphics®, MATLAB®, Real-Time Workshop®, Simulink®, Stateflow®, and xPC TargetBox® are registered
trademarks, and TargetBox™ and Target Language Compiler™ are trademarks of The MathWorks, Inc.

Tektronix®, Tek, and Tektronix, Enabling Technology are registered trademarks of Tektronix, Inc.

The Bluetooth® word mark is a registered trademark owned by the Bluetooth SIG, Inc.

The ExpressCard™ word mark and logos are owned by PCMCIA and any use of such marks by National Instruments is under
license.

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft
Corporation in the United States and other countries.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments
and have no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your
software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

Export Compliance Information
Refer to the Export Compliance Information at ni.com/legal/export-compliance for the National Instruments global
trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
YOU ARE ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY AND
RELIABILITY OF THE PRODUCTS WHENEVER THE PRODUCTS ARE INCORPORATED IN YOUR SYSTEM OR
APPLICATION, INCLUDING THE APPROPRIATE DESIGN, PROCESS, AND SAFETY LEVEL OF SUCH SYSTEM
OR APPLICATION.

PRODUCTS ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE
PERFORMANCE, INCLUDING IN THE OPERATION OF NUCLEAR FACILITIES; AIRCRAFT NAVIGATION; AIR
TRAFFIC CONTROL SYSTEMS; LIFE SAVING OR LIFE SUSTAINING SYSTEMS OR SUCH OTHER MEDICAL
DEVICES; OR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD
LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM
(COLLECTIVELY, “HIGH-RISK USES”). FURTHER, PRUDENT STEPS MUST BE TAKEN TO PROTECT AGAINST
FAILURES, INCLUDING PROVIDING BACK-UP AND SHUT-DOWN MECHANISMS. NI EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK
USES.

Compliance

Electromagnetic Compatibility Information
This hardware has been tested and found to comply with the applicable regulatory requirements and limits
for electromagnetic compatibility (EMC) as indicated in the hardware’s Declaration of Conformity (DoC)1.
These requirements and limits are designed to provide reasonable protection against harmful interference
when the hardware is operated in the intended electromagnetic environment. In special cases, for example
when either highly sensitive or noisy hardware is being used in close proximity, additional mitigation
measures may have to be employed to minimize the potential for electromagnetic interference.

While this hardware is compliant with the applicable regulatory EMC requirements, there is no guarantee
that interference will not occur in a particular installation. To minimize the potential for the hardware to
cause interference to radio and television reception or to experience unacceptable performance degradation,
install and use this hardware in strict accordance with the instructions in the hardware documentation and
the DoC1.

If this hardware does cause interference with licensed radio communications services or other nearby
electronics, which can be determined by turning the hardware off and on, you are encouraged to try to correct
the interference by one or more of the following measures:
• Reorient the antenna of the receiver (the device suffering interference).
• Relocate the transmitter (the device generating interference) with respect to the receiver.
• Plug the transmitter into a different outlet so that the transmitter and the receiver are on different branch

circuits.

Some hardware may require the use of a metal, shielded enclosure (windowless version) to meet the EMC
requirements for special EMC environments such as, for marine use or in heavy industrial areas. Refer to
the hardware’s user documentation and the DoC1 for product installation requirements.

When the hardware is connected to a test object or to test leads, the system may become more sensitive to
disturbances or may cause interference in the local electromagnetic environment.

Operation of this hardware in a residential area is likely to cause harmful interference. Users are required to
correct the interference at their own expense or cease operation of the hardware.

Changes or modifications not expressly approved by National Instruments could void the user’s right to
operate the hardware under the local regulatory rules.

1 The Declaration of Conformity (DoC) contains important EMC compliance information and instructions
for the user or installer. To obtain the DoC for this product, visit ni.com/certification, search by
model number or product line, and click the appropriate link in the Certification column.

© National Instruments | vii

Contents

About This Manual
Related Documentation .. xi

Xilinx Documentation .. xiii
Additional Resources.. xiv

Chapter 1
Before You Begin
Development Requirements ... 1-1
Xilinx Licensing Information ... 1-2

Chapter 2
Mounting the NI-793xR

Mounting the NI-793xR Directly on a Flat Surface ... 2-3
Installing the Rubber Feet... 2-4

Chapter 3
Hardware Architecture
NI-7931R .. 3-1

NI-7931R Key Features.. 3-4
Clocking Architecture... 3-5

NI-7932R .. 3-6
NI-7932R Key Features.. 3-9
Clocking Architecture... 3-11

NI-7935R .. 3-12
NI-7935R Key Features.. 3-15
Clocking Architecture... 3-16

Chapter 4
Developing with LabVIEW FPGA
Developing with LabVIEW FPGA... 4-1

Adding the NI-793xR to a LabVIEW Project .. 4-1
Adding an Adapter Module to the Target... 4-1
Adding Items to the NI-793xR Target.. 4-2

Adding NI-793xR Target I/O ... 4-2
Configuring a 10 MHz Reference Clock.. 4-2
Auto-loading Bitfiles on Power-up... 4-3
Interactive Front Panel Communication... 4-3
Using the NI Common Instrument Design Libraries.. 4-4

Using niInstr Instruction Framework ... 4-4
Streaming Overview... 4-4
CLIP Adapters Overview ... 4-4

Contents

viii | ni.com

Data Trigger Overview ...4-4
Basic Elements Overview...4-5
Memory Overview..4-5

Compiling LabVIEW FPGA VIs..4-5
Download, Reset, and Run Side Effects in the LabVIEW FPGA Host Interface4-5
Streaming ..4-6

Flow Control ...4-6
DMA Streaming..4-7

Simulating FPGA Behavior ..4-8

Chapter 5
Programming the High-Speed Serial Ports
Development Flow..5-1
Developing MGT Socketed CLIP...5-2

Socketed CLIP Architecture ...5-2
Accessing the Xilinx Vivado Tools ..5-3
Generating an IP Core from the Xilinx Vivado IP Catalog......................................5-4

Modifying Third-Party IP Core Logic ..5-4
Building a Netlist from the IP Core ..5-5

Writing a VHDL Wrapper Around the Protocol IP Core ...5-7
Constraints and Hierarchy ..5-8
Documenting Your IP...5-9

Adding MGT Socketed CLIP to the LabVIEW Project ...5-9
Configuring MGT Socketed CLIP in the NI-793xR LabVIEW FPGA Targets.......5-10
Using Existing VHDL IP inside CLIP or IPIN...5-11
Improving Performance in Larger Designs through Enable Chain Removal5-11

Chapter 6
Programming with the Real-Time Target
Best Practices ..6-1
Key Concepts ..6-1
Installing and Configuring the NI-793xR...6-2
Creating a Real-Time Application ..6-2
Real-Time System Integration ..6-3

Querying Fan Speed and Temperature Sensors ..6-3
Power/Thermal Protection and Shutdown ..6-4
LabVIEW System Configuration API ..6-4

Communicating with Applications on an RT Target..6-5
Front Panel Communication ...6-5
Network Communication..6-6

Where to Go from Here ..6-6
LabVIEW Help ...6-6
LabVIEW Real-Time Module Release and Upgrade Notes6-7

NI-793xR User Manual

© National Instruments | ix

Appendix A
CLIP Signals

Appendix B
Using the Fan

Appendix C
NI Services

Glossary

© National Instruments | xi

About This Manual

The NI-7931R/7932R/7935R User Manual describes how to use the NI-7931R, NI-7932R, and
NI-7935R controllers for FlexRIO to develop high-performance embedded applications.

This manual provides detailed information about the electrical and mechanical requirements of
component-level IP (CLIP) and LabVIEW FPGA design.

Related Documentation
The following documents contain information that you may find helpful as you read this manual.

Table 1. Documentation Overview

Document Location Description

Getting started
guide for your
controller for
FlexRIO

Available from the Start menu
(Start»All Programs»National
Instruments»NI FlexRIO) and
at ni.com/manuals.

Contains information about
installing, configuring, and
troubleshooting your controller
for FlexRIO.

Specifications for
your controller for
FlexRIO

Contains specifications for your
controller for FlexRIO.

FlexRIO Help Contains information about the
controller for FlexRIO front
panel connectors and I/O,
programming instructions, and
adapter module
component-level IP (CLIP).

LabVIEW
High-Performance
FPGA Developer’s
Guide

Available at ni.com/
tutorial.

Summarizes the most effective
techniques for optimizing
throughput, latency, and FPGA
resources when using the
LabVIEW FPGA Module and
the RIO hardware platform.

www.ni.com/manuals
http://www.ni.com/tutorial/14600/en/
http://www.ni.com/tutorial/14600/en/

About This Manual

xii | ni.com

FPGA Module Help This document is a book within
the LabVIEW Help. Access this
document by navigating to
Start»All Programs»National
Instruments»LabVIEW 201x»
LabVIEW 201x Help, or by
searching for FPGA Module
Help at ni.com/manuals.
Browse to the FPGA Module
book in the Contents tab for
information about using the
LabVIEW FPGA Module.

With the LabVIEW FPGA
Module and LabVIEW, you can
create VIs that run on National
Instruments FPGA targets.

The Getting Started with the
LabVIEW FPGA book provides
links to the top resources that
you can use to get started with
LabVIEW FPGA.

The Integrating Third-Party IP
(FPGA Module) book contains
information about adding
custom HDL code to your
LabVIEW project.

Real-Time Module
Help

This document is a book within
the LabVIEW Help. Access this
document by navigating to
Start»All Programs»National
Instruments»LabVIEW 201x»
LabVIEW 201x Help, or by
searching for Real-Time Module
Help at ni.com/manuals.
Browse to the Real-Time
Module book in the Contents
tab for information about using
the LabVIEW Real-Time
Module.

The Real-Time Module
combines LabVIEW graphical
programming with the power of
a real-time operating system,
enabling you to build real-time
applications. Use this help to
access information about
real-time programming
concepts, step-by-step
instructions for using LabVIEW
with the Real-Time Module,
reference information about
Real-Time Module VIs and
functions, and information
about LabVIEW features on
real-time operating systems.

LabVIEW FPGA
Module Release and
Upgrade Notes

Available at ni.com/
manuals. You can also view
this document by selecting
Start»All Programs»National
Instruments»LabVIEW»
LabVIEW Manuals.

Contains information
about installing the
LabVIEW FPGA Module,
describes new features, and
provides upgrade information.

Table 1. Documentation Overview (Continued)

Document Location Description

www.ni.com/manuals
www.ni.com/manuals
www.ni.com/manuals
www.ni.com/manuals
www.ni.com/manuals

NI-793xR User Manual

© National Instruments | xiii

Xilinx Documentation
Xilinx FPGA documentation provides information required for the successful development of
your controller for FlexRIO. The following table provides a list of specific Xilinx documentation
resources.

All Xilinx documentation can be found at www.xilinx.com.

Table 2. Xilinx Documentation

Document Document Part Number Description

7 Series FPGAs Overview DS180 Outlines the features and
product selection of the
Xilinx 7 series FPGAs,
including Kintex-7 devices.

Kintex-7 FPGAs Data
Sheet: DC and AC Switching
Characteristics

DS182 Contains the DC and AC
switching characteristic
specifications for the
Kintex-7 FPGAs.

Vivado Design Suite:
Release Notes, Installation,
and Licensing

UG973 Provides an overview of the
new release of the Vivado
Design Suite, including
information on new and
changed features,
installation requirements for
the software, and licensing
information.

High-Speed Serial I/O Made
Simple: A Designer’s Guide,
with FPGA Applications

— Recommended for users
new to high-speed serial.

7 Series FPGAs GTX/GTH
Transceivers User Guide

UG476 Technical reference
describing the 7 series
FPGAs GTX/GTH
transceivers.

Vivado Design Suite User
Guide: Using Constraints

UG903 Describes using Xilinx
Design Constraints (XDC)
in Vivado tools.

www.xilinx.com

About This Manual

xiv | ni.com

Additional Resources

Table 3. FlexRIO Development Resources

Development
Resource Location Description

FlexRIO website ni.com/flexrio Contains information about
FlexRIO devices,
application areas, and
technical resources.

FlexRIO Instrument
Development Library

https://decibel.ni.com/
content/docs/DOC-15799

The FlexRIO Instrument
Development Library is a set
of host and FPGA code that
provides FPGA capabilities
commonly found in
instruments such as
acquisition engines, DRAM
interfaces, and trigger logic,
along with the associated
host APIs.

LabVIEW examples Available in NI Example Finder.
In LabVIEW, click Help»Find
Examples»Hardware Input
and Output»FlexRIO.

Contains examples of how to
run FPGA VIs and Host VIs
on your device.

IPNet ni.com/ipnet Contains LabVIEW FPGA
functions and intellectual
property to share.

https://decibel.ni.com/content/docs/DOC-15799
https://decibel.ni.com/content/docs/DOC-15799
http://www.ni.com/flexrio/
http://www.ni.com/ipnet/

© National Instruments | 1-1

1
Before You Begin

This section contains information you need before developing high-performance embedded
applications using the NI-7931R, NI-7932R, and NI-7935R devices.

Development Requirements
Successful system design with the NI-793xR devices may require knowledge in the following
areas, depending on your application.

• Real-time programming

• VHDL code design

• LabVIEW and LabVIEW FPGA programming

If you are unfamiliar with any of these concepts, refer to the following table for a list of resources
for learning the fundamentals required for NI-793xR development.

Table 1-1. Fundamentals Resources

Concept Resources

Real-time programming Real-time programming courses are
available at ni.com/training. You can
also refer to the LabVIEW Real-Time
Module Help at ni.com/manuals.

VHDL code design Some VHDL training or experience is
required before implementing custom
protocols with the high-speed serial
transceivers. Do not attempt to develop
Component-Level IP (CLIP) without
VHDL knowledge. Refer to the FlexRIO
Help for more information about CLIP.

LabVIEW and LabVIEW FPGA
programming

LabVIEW and LabVIEW FPGA training
are available at ni.com/training. You
can also refer to the NI LabVIEW
High-Performance FPGA Developer’s
Guide, available at ni.com/tutorials.

http://www.ni.com/training/
http://www.ni.com/manuals/
http://www.ni.com/tutorials/
http://www.ni.com/training/

1-2 | ni.com

Chapter 1 Before You Begin

Xilinx Licensing Information
Refer to the Xilinx Documentation section of About This Manual for a list of Xilinx
documentation that contains important Xilinx licensing information.

© National Instruments | 2-1

2
Mounting the NI-793xR

This section contains information about mounting the NI-793xR devices.

Note Before you begin mounting the NI-793xR, refer to the getting started guide
for your NI-793xR for instructions about wiring power to the NI-793xR, powering
on the NI-793xR, and connecting the NI-793xR to a host computer.

Caution The NI-793xR mounting orientation is not restricted; however, when
mounting the NI-793xR upside-down, ensure that the FlexRIO adapter module is
supported if you expect shock greater than 30 g/11 ms.

Caution In order to obtain the maximum allowable ambient temperature as
specified in your device’s specifications document, you must maintain at least 1 in.
of clearance on either side of the NI-793xR. Refer to Figure 2-1 for fan clearance
information.

Figure 2-1. Fan Clearance

Keep Out

Zone

1.0 in.
(25.4 mm)

1.0 in.
(25.4 mm)

2-2 | ni.com

Chapter 2 Mounting the NI-793xR

You can mount the NI-793xR in a variety of configurations. The following table lists the
ecommended mounting methods.

The following sections contain instructions for the mounting methods. Before using any of these
mounting methods, record the serial number from the back of the device. You will be unable to
read the serial number from the back of the device after you have mounted it.

Caution You must provide physical support for any FlexRIO adapter modules
during the mounting process.

Table 2-1. Mounting Options

Method Required Accessory Kit NI Part Number

Direct mounting — —

Panel Panel Mount Accessory Kit 784365-01

© National Instruments | 2-3

NI-793xR User Manual

Mounting the NI-793xR Directly on a Flat Surface
For applications sensitive to shock and vibration, NI recommends mounting the device directly
on a flat, rigid surface using the mounting holes in the device.

You will need the following items to mount the device directly on a flat surface:

• Three screws, M4, 7 mm + thickness of mounting surface

Complete the following steps to mount the device.

1. Use the dimensions shown in Figure 2-2 to drill the holes required for mounting the device.

2. Drill clearance holes 4.5 mm in diameter.

3. Align the device on the surface.

4. Fasten the device to the surface with the screws.

Figure 2-2. NI-793xR Dimensions

2.433

4.400

9.214 in.
6.050 in.

5.137 in.

2-4 | ni.com

Chapter 2 Mounting the NI-793xR

Installing the Rubber Feet
The NI-793xR ships with optional rubber feet. Install the rubber feet to the bottom of the device,
as shown in Figure 2-3.

Caution Do not install rubber feet when directly mounting the NI-793xR. The
rubber feet will prevent full contact between the unit and the mounting surface.

Figure 2-3. Installing the Rubber Feet

© National Instruments | 3-1

3
Hardware Architecture

This chapter contains information about the NI-793xR hardware architecture.

NI-7931R
The NI-7931R is an embedded FlexRIO controller with an embedded processor and
reconfigurable FPGA.

Note The NI-7931R hardware does not require calibration.

The following figure shows the NI-7931R front panel connectors. For more information about
the front panel connectors, refer to your device’s specifications document and the FlexRIO Help.
For information about connecting the device to a host computer, refer to the NI-7931R Getting
Started Guide.

Figure 3-1. NI-7931R Front Panel Connectors

1 TRIG
2 REF IN
3 µSD card
4 USB device port
5 USB host

6 1 Gb Ethernet
7 LED indicators*

8 Reset
9 DC power source†

10 FlexRIO adapter module connector‡

* Refer to Figure 3-2 for LED placement.
† Refer to the NI-7931R Getting Started Guide for instructions about how to wire power to the NI-7931R.
‡ Refer to Figure 3-3 for the pinout.

7

3 4 6

9

5 8

10

21

3-2 | ni.com

Chapter 3 Hardware Architecture

The following figure shows the NI-7931R LEDs in more detail.

Figure 3-2. NI-7931R LEDs

RT User
LED

Power
LED

Status
LED

FPGA User
LED

© National Instruments | 3-3

NI-793xR User Manual

The following figure shows the available signals on the NI-7931R adapter module connector.

Figure 3-3. NI-7931R FPGA Connector Pinout

Note Pins S72 and S146 are shorted together.

B
an

k
1

PCB
Primary Side
+3.3V
SCL
TB_Present_n
+12V
Vcco
RSVD
GND
IOModSyncClk_n
IOModSyncClk
GND
GPIO_0_n
GPIO_0
GND
GPIO_1_n
GPIO_1
GND
GPIO_CC_2_n
GPIO_CC_2
GND
GPIO_3_n
GPIO_3
GND
GPIO_4_n
GPIO_4
GND
GPIO_5_n
GPIO_5
GND
GPIO_6_n
GPIO_6
GND
GPIO_7_n
GPIO_7
GND
GPIO_8_n
GPIO_8
GND
GPIO_9_n
GPIO_9
GND
GPIO_10_n
GPIO_10
GND
GPIO_11_n
GPIO_11
GND
GPIO_12_n
GPIO_12
GND

GND

GPIO_13_n
GPIO_13

P2

P1
S148
S147

S146
S145

S144
S143
G36
S142
S141
G35
S140
S139
G34
S138
S137
G33
S136
S135
G32
S134
S133
G31
S132
S131
G30
S130
S129
G29
S128
S127
G28
S126
S125
G27
S124
S123
G26
S122
S121
G25
S120
S119
G24
S118
S117
G23
S116
S115
G22

G37

P2

P1
S74
S73

S72
S71

S70
S69
G36
S68
S67
G35
S66
S65
G34
S64
S63
G33
S62
S61
G32
S60
S59
G31
S58
S57
G30
S56
S55
G29
S54
S53
G28
S52
S51
G27
S50
S49
G26
S48
S47
G25
S46
S45
G24
S44
S43
G23
S42
S41
G22

G37

+12V

+3.3V
SDA
TB_Power_Good

Vcco
Veeprom

TDC_Assert_CLK_n

TDC_Assert_CLK

GND
GPIO_24_n
GPIO_24
GND
GPIO_25_n
GPIO_25
GND
GPIO_CC_26_n
GPIO_CC_26
GND
GPIO_27_n
GPIO_27
GND
GPIO_28_n
GPIO_28
GND
GPIO_29_n
GPIO_29
GND
GPIO_30_n
GPIO_30
GND
GPIO_31_n
GPIO_31
GND
GPIO_32_n
GPIO_32
GND
GPIO_33_n
GPIO_33
GND
GPIO_34_n
GPIO_34
GND
GPIO_35_n
GPIO_35
GND
GPIO_36_n
GPIO_36
GND
GPIO_37_n
GPIO_37
GND

GND

PCB
Secondary Side

B
an

k
0

PCB
Primary Side
GND
GPIO_CC_14_n
GPIO_CC_14
GND
GPIO_15_n
GPIO_15
GND
GPIO_16_n
GPIO_16
GND
GPIO_17_n

GPIO_17
GND
GPIO_18_n
GPIO_18
GND
GPIO_19_n
GPIO_19
GND
GPIO_20_n
GPIO_20
GND
GPIO_21_n
GPIO_21
GND
GPIO_22_n
GPIO_22
GND
GPIO_23_n
GPIO_23
GND
GPIO_58_n
GPIO_58
GND
GPIO_59_n
GPIO_59
GND
GPIO_CC_60_n
GPIO_CC_60
GND
GPIO_61_n
GPIO_61
GND
GPIO_62_n
GPIO_62
GND
GPIO_63_n
GPIO_63
GND

GND

GPIO_64_n
GPIO_64

GPIO_65_n
GPIO_65
GND
GPIO_66_n

GPIO_67_n

GPIO_66
GND

GND
GPIO_67

G20

G21
S114
S113

S112
S111

S110
S109
G18
S108
S107
G17
S106
S105
G16
S104
S103
G15
S102
S101
G14
S100
S99
G13
S98
S97
G12
S96
S95
G11
S94
S93
G10
S92
S91
G9
S90
S89
G8
S88
S87
G7
S86
S85
G6
S84
S83
G5
S82
S81
G4

G19

S80
S79
G3
S78
S77
G2
S76
S75
G1

G20

G21
S40
S39

S38
S37

S36
S35
G18
S34
S33
G17
S32
S31
G16
S30
S29
G15
S28
S27
G14
S26
S25
G13
S24
S23
G12
S22
S21
G11
S20
S19
G10
S18
S17
G9
S16
S15
G8
S14
S13
G7
S12
S11
G6
S10
S9
G5
S8
S7
G4

G19

S6
S5
G3
S4
S3
G2
S2
S1
G1

GND

GND
GPIO_CC_38_n
GPIO_CC_38

GPIO_39_n
GPIO_39

GPIO_40_n
GPIO_40
GND
GPIO_41_n
GPIO_41
GND
GPIO_42_n
GPIO_42
GND
GPIO_43_n
GPIO_43
GND
GPIO_44_n
GPIO_44
GND
GPIO_45_n
GPIO_45
GND
GPIO_46_n
GPIO_46
GND
GPIO_47_n
GPIO_47
GND
GPIO_48_n
GPIO_48
GND
GPIO_49_n
GPIO_49
GND
GPIO_CC_50_n
GPIO_CC_50
GND
GPIO_51_n
GPIO_51
GND
GPIO_52_n
GPIO_52
GND
GPIO_53_n
GPIO_53
GND
GPIO_54_n
GPIO_54
GND
GPIO_55_n
GPIO_55
GND
GPIO_56_n
GPIO_56
GND
GPIO_57_n
GPIO_57
GND

GND

PCB
Secondary Side

B
a
n

k
2

B
an

k
1

B
an

k
2

B
an

k
0

3-4 | ni.com

Chapter 3 Hardware Architecture

NI-7931R Key Features
The NI-7931R device includes the following key features. Refer to the NI-7931R Specifications
for more details.

• Kintex-7 XC7K325T FPGA

• 2 GB onboard FPGA-accessible DRAM

• NI Linux Real-Time (32-bit) controller

• FPGA to host data transfer rates of 200 MB/s (single direction), 150 MB/s (bidirectional)

• Real-Time processor to USB external storage data transfer rates of 60 MB/s

• Real-Time processor to SD external storage data transfer rates of 12.0 MB/s (read),
9.0 MB/s (write)

The following figure illustrates the key components of the NI-7931R architecture.

Figure 3-4. NI-7931R Architecture Key Components

RT Host
RT

Controller

RAM

NV Storage

RT Clock

Watch Dog

LabVIEW

Host VI

Interrupts
DMA
Controls/Indicators

NI-Defined Bus
Interfaces/Streaming IP

Memory
Controller

DRAM

REF IN

Adapter
Module

User Selected
Adapter Module

CLIP

SD

1 Gig E

USB

TRIG

LV FPGA VI

Clocking
Architecture

© National Instruments | 3-5

NI-793xR User Manual

Clocking Architecture
The NI-7931R device includes dedicated clocking hardware to provide a flexible clocking
solution for your FlexRIO system. Refer to Chapter 4, Developing with LabVIEW FPGA, for
information about configuring clocks with LabVIEW FPGA.

The NI-7931R clocking architecture includes the following clocks:

• 10 MHz Reference Clock

• 40 MHz Onboard Clock (default)

• 100 MHz Clock

• 200 MHz Clock

• DRAM Clock

The following figure illustrates the clocking circuitry on the NI-7931R.

Figure 3-5. NI-7931R Clocking Diagram

Memory
Controller

PLL

40 MHz

100 MHz

100
MHz

10 MHz
Reference Clock

Kintex-7 FPGA

200 MHz

DRAM
Clock

166 MHz

Adapter
Module

PLL

100 MHz
Oscillator

REF IN

IoModSyncClock

Ref Clk Enable

3-6 | ni.com

Chapter 3 Hardware Architecture

NI-7932R
The NI-7932R is an embedded FlexRIO controller with a LabVIEW Real-Time processor and
reconfigurable FPGA. The NI-7932R includes a high-speed serial interface that uses Xilinx
multi-gigabit transceiver (MGT) technology; you can reuse existing protocol IP that works with
MGTs, or you can develop your own protocol IP. Refer to Chapter 5, Programming the
High-Speed Serial Ports, for information about interfacing with MGTs via the SFP+ ports.

Note The NI-7932R hardware does not require calibration.

The following figure shows the NI-7932R front panel connectors. For more information about
the front panel connectors, refer to your device’s specifications document and the FlexRIO Help.
For information about connecting the device to a host computer, refer to the NI-7932R Getting
Started Guide.

Figure 3-6. NI-7932R Front Panel Connectors

1 TRIG
2 REF IN
3 uSD card
4 USB device port
5 USB host
6 1 Gb Ethernet

7 LED indicators*

8 Reset
9 DC power source†

10 FlexRIO adapter module connector‡

11 SFP+ connectors

* Refer to Figure 3-7 for LED placement.
† Refer to the NI-7932R Getting Started Guide for instructions about how to wire power to the NI-7932R.
‡ Refer to Figure 3-8 for the pinout.

11

7

3 4 6

9

5 8

21

10

© National Instruments | 3-7

NI-793xR User Manual

The following figure shows the NI-7932R LEDs in more detail.

Figure 3-7. NI-7932R LEDs

RT User
LED

Power
LED

Status
LED

FPGA User
LED

3-8 | ni.com

Chapter 3 Hardware Architecture

The following figure shows the available signals on the NI-7932R adapter module connector.

Figure 3-8. NI-7932R FPGA Connector Pinout

Note Pins S72 and S146 are shorted together.

B
an

k
1

PCB
Primary Side
+3.3V
SCL
TB_Present_n
+12V
Vcco
RSVD
GND
IOModSyncClk_n
IOModSyncClk
GND
GPIO_0_n
GPIO_0
GND
GPIO_1_n
GPIO_1
GND
GPIO_CC_2_n
GPIO_CC_2
GND
GPIO_3_n
GPIO_3
GND
GPIO_4_n
GPIO_4
GND
GPIO_5_n
GPIO_5
GND
GPIO_6_n
GPIO_6
GND
GPIO_7_n
GPIO_7
GND
GPIO_8_n
GPIO_8
GND
GPIO_9_n
GPIO_9
GND
GPIO_10_n
GPIO_10
GND
GPIO_11_n
GPIO_11
GND
GPIO_12_n
GPIO_12
GND

GND

GPIO_13_n
GPIO_13

P2

P1
S148
S147

S146
S145

S144
S143
G36
S142
S141
G35
S140
S139
G34
S138
S137
G33
S136
S135
G32
S134
S133
G31
S132
S131
G30
S130
S129
G29
S128
S127
G28
S126
S125
G27
S124
S123
G26
S122
S121
G25
S120
S119
G24
S118
S117
G23
S116
S115
G22

G37

P2

P1
S74
S73

S72
S71

S70
S69
G36
S68
S67
G35
S66
S65
G34
S64
S63
G33
S62
S61
G32
S60
S59
G31
S58
S57
G30
S56
S55
G29
S54
S53
G28
S52
S51
G27
S50
S49
G26
S48
S47
G25
S46
S45
G24
S44
S43
G23
S42
S41
G22

G37

+12V

+3.3V
SDA
TB_Power_Good

Vcco
Veeprom

TDC_Assert_CLK_n

TDC_Assert_CLK

GND
GPIO_24_n
GPIO_24
GND
GPIO_25_n
GPIO_25
GND
GPIO_CC_26_n
GPIO_CC_26
GND
GPIO_27_n
GPIO_27
GND
GPIO_28_n
GPIO_28
GND
GPIO_29_n
GPIO_29
GND
GPIO_30_n
GPIO_30
GND
GPIO_31_n
GPIO_31
GND
GPIO_32_n

GPIO_32
GND
GPIO_33_n
GPIO_33
GND
GPIO_34_n
GPIO_34
GND
GPIO_35_n
GPIO_35
GND
GPIO_36_n
GPIO_36
GND
GPIO_37_n
GPIO_37
GND

GND

PCB
Secondary Side

B
an

k
0

PCB
Primary Side
GND
GPIO_CC_14_n
GPIO_CC_14
GND
GPIO_15_n
GPIO_15
GND
GPIO_16_n
GPIO_16
GND
GPIO_17_n

GPIO_17
GND
GPIO_18_n
GPIO_18
GND
GPIO_19_n
GPIO_19
GND
GPIO_20_n
GPIO_20
GND
GPIO_21_n
GPIO_21
GND
GPIO_22_n
GPIO_22
GND
GPIO_23_n
GPIO_23
GND
GPIO_58_n
GPIO_58
GND
GPIO_59_n
GPIO_59
GND
GPIO_CC_60_n
GPIO_CC_60
GND
GPIO_61_n
GPIO_61
GND
GPIO_62_n
GPIO_62
GND
GPIO_63_n
GPIO_63
GND

GND

GPIO_64_n
GPIO_64

GPIO_65_n
GPIO_65
GND
GPIO_66_n

GPIO_67_n

GPIO_66
GND

GND
GPIO_67

G20

G21
S114
S113

S112
S111

S110
S109
G18
S108
S107
G17
S106
S105
G16
S104
S103
G15
S102
S101
G14
S100
S99
G13
S98
S97
G12
S96
S95
G11
S94
S93
G10
S92
S91
G9
S90
S89
G8
S88
S87
G7
S86
S85
G6
S84
S83
G5
S82
S81
G4

G19

S80
S79
G3
S78
S77
G2
S76
S75
G1

G20

G21
S40
S39

S38
S37

S36
S35
G18
S34
S33
G17
S32
S31
G16
S30
S29
G15
S28
S27
G14
S26
S25
G13
S24
S23
G12
S22
S21
G11
S20
S19
G10
S18
S17
G9
S16
S15
G8
S14
S13
G7
S12
S11
G6
S10
S9
G5
S8
S7
G4

G19

S6
S5
G3
S4
S3
G2
S2
S1
G1

GND

GND
GPIO_CC_38_n
GPIO_CC_38

GPIO_39_n
GPIO_39

GPIO_40_n
GPIO_40
GND
GPIO_41_n
GPIO_41
GND
GPIO_42_n
GPIO_42
GND
GPIO_43_n
GPIO_43
GND
GPIO_44_n
GPIO_44
GND
GPIO_45_n
GPIO_45
GND
GPIO_46_n
GPIO_46
GND
GPIO_47_n
GPIO_47
GND
GPIO_48_n
GPIO_48
GND
GPIO_49_n
GPIO_49
GND
GPIO_CC_50_n
GPIO_CC_50
GND
GPIO_51_n
GPIO_51
GND
GPIO_52_n
GPIO_52
GND
GPIO_53_n
GPIO_53
GND
GPIO_54_n
GPIO_54
GND
GPIO_55_n
GPIO_55
GND
GPIO_56_n
GPIO_56
GND
GPIO_57_n
GPIO_57
GND

GND

PCB
Secondary Side

B
a
n

k
2

B
an

k
1

B
an

k
2

B
an

k
0

© National Instruments | 3-9

NI-793xR User Manual

NI-7932R Key Features
The NI-7932R device includes the following key features. Refer to the NI-7932R Specifications
for more details.

• SFP+ line rates of 3.125 Gbps, 6.25 Gbps, and 10.3125 Gbps

• Kintex-7 XC7K325T FPGA

• 2 GB onboard FPGA-accessible DRAM

• NI Linux Real-Time (32-bit) controller

• FPGA to host data transfer rates of 200 MB/s (single direction), 150 MB/s (bidirectional)

• Real-Time processor to USB external storage data transfer rates of 60 MB/s

• Real-Time processor to SD external storage data transfer rates of 12.0 MB/s (read),
9.0 MB/s (write)

3-10 | ni.com

Chapter 3 Hardware Architecture

The following figure illustrates the key components of the NI-7932R architecture.

Figure 3-9. NI-7932R Architecture Key Components

RT Host
RT

Controller

RAM

NV Storage

RT Clock

Watch Dog

LabVIEW

Host VI

Interrupts
DMA
Controls/Indicators

NI-Defined Bus
Interfaces/Streaming IP

Memory
Controller

DRAM

REF IN

Adapter
Module

SFP+

User Selected
Adapter Module

CLIP

SD

1 Gig E

USB

TRIG

User Defined
Socketed

CLIP

LV FPGA VI

Clocking
Architecture

© National Instruments | 3-11

NI-793xR User Manual

Clocking Architecture
The NI-7932R device includes dedicated clocking hardware to provide a flexible clocking
solution for your FlexRIO system. Refer to Chapter 4, Developing with LabVIEW FPGA, for
information about configuring clocks with LabVIEW FPGA.

The NI-7932R clocking architecture includes the following clocks:

• 10 MHz Reference Clock

• 40 MHz Onboard Clock (default)

• 100 MHz Clock

• 156.25 MHz Clock/312.5 MHz MGT Clock1

• 200 MHz Clock

• DRAM Clock

The following figure illustrates the clocking circuitry on the NI-7932R.

Figure 3-10. NI-7932R Clocking Diagram

1 This clock is user-selectable for either 156.25 MHz or 312.5 MHz.

Memory
Controller

PLL

40 MHz

100 MHz

100
MHz

10 MHz
Reference Clock

Kintex-7 FPGA

200 MHz

DRAM
Clock

166 MHz

MGT
Oscillator

MGT
Ref
Clk156.25 MHz/

312.5 MHz

Frequency
Select

Adapter
Module

PLL

100 MHz
Oscillator

REF IN

Ref Clk Enable

IoModSyncClock

3-12 | ni.com

Chapter 3 Hardware Architecture

NI-7935R
The NI-7935R is an embedded FlexRIO controller with a LabVIEW Real-Time processor and
reconfigurable FPGA. The NI-7935R includes a high-speed serial interface that uses Xilinx
multi-gigabit transceiver (MGT) technology; you can reuse existing protocol IP that works with
MGTs, or you can develop your own protocol IP. Refer to Chapter 5, Programming the
High-Speed Serial Ports, for information about interfacing with MGTs via the SFP+ ports.

Note The NI-7935R hardware does not require calibration.

The following figure shows the NI-7935R front panel connectors. For more information about
the front panel connectors, refer to your device’s specifications document and the FlexRIO Help.
For information about connecting the device to a host computer, refer to the NI-7935R Getting
Started Guide.

Figure 3-11. NI-7935R Front Panel Connectors

1 TRIG
2 REF IN
3 uSD card
4 USB device port
5 USB host
6 1 GB Ethernet

7 LED indicators*

8 Reset
9 DC power source†

10 FlexRIO adapter module connector‡

11 SFP+ connectors

* Refer to Figure 3-12 for LED placement.
† Refer to the NI-7935R Getting Started Guide for instructions about how to wire power to the NI-7935R.
‡ Refer to Figure 3-13 for the pinout.

11

7

3 4 6

9

5 8

21

10

© National Instruments | 3-13

NI-793xR User Manual

The following figure shows the NI-7935R LEDs in more detail.

Figure 3-12. NI-7935R LEDs

RT User
LED

Power
LED

Status
LED

FPGA User
LED

3-14 | ni.com

Chapter 3 Hardware Architecture

The following figure shows the available signals on the NI-7935R adapter module connector.

Figure 3-13. NI-7935R FPGA Connector Pinout

Note Pins S72 and S146 are shorted together.

B
an

k
1

PCB
Primary Side
+3.3V
SCL
TB_Present_n
+12V
Vcco
RSVD
GND
IOModSyncClk_n
IOModSyncClk
GND
GPIO_0_n
GPIO_0
GND
GPIO_1_n
GPIO_1
GND
GPIO_CC_2_n
GPIO_CC_2
GND
GPIO_3_n
GPIO_3
GND
GPIO_4_n
GPIO_4
GND
GPIO_5_n
GPIO_5
GND
GPIO_6_n
GPIO_6
GND
GPIO_7_n
GPIO_7
GND
GPIO_8_n
GPIO_8
GND
GPIO_9_n
GPIO_9
GND
GPIO_10_n
GPIO_10
GND
GPIO_11_n
GPIO_11
GND
GPIO_12_n
GPIO_12
GND

GND

GPIO_13_n
GPIO_13

P2

P1
S148
S147

S146
S145

S144
S143
G36
S142
S141
G35
S140
S139
G34
S138
S137
G33
S136
S135
G32
S134
S133
G31
S132
S131
G30
S130
S129
G29
S128
S127
G28
S126
S125
G27
S124
S123
G26
S122
S121
G25
S120
S119
G24
S118
S117
G23
S116
S115
G22

G37

P2

P1
S74
S73

S72
S71

S70
S69
G36
S68
S67
G35
S66
S65
G34
S64
S63
G33
S62
S61
G32
S60
S59
G31
S58
S57
G30
S56
S55
G29
S54
S53
G28
S52
S51
G27
S50
S49
G26
S48
S47
G25
S46
S45
G24
S44
S43
G23
S42
S41
G22

G37

+12V

+3.3V
SDA
TB_Power_Good

Vcco
Veeprom

TDC_Assert_CLK_n

TDC_Assert_CLK

GND
GPIO_24_n
GPIO_24
GND
GPIO_25_n
GPIO_25
GND
GPIO_CC_26_n
GPIO_CC_26
GND
GPIO_27_n
GPIO_27
GND
GPIO_28_n
GPIO_28
GND
GPIO_29_n
GPIO_29
GND
GPIO_30_n
GPIO_30
GND
GPIO_31_n
GPIO_31
GND
GPIO_32_n
GPIO_32
GND
GPIO_33_n
GPIO_33
GND
GPIO_34_n
GPIO_34
GND
GPIO_35_n
GPIO_35
GND
GPIO_36_n
GPIO_36
GND
GPIO_37_n
GPIO_37
GND

GND

PCB
Secondary Side

B
an

k
0

PCB
Primary Side
GND
GPIO_CC_14_n
GPIO_CC_14
GND
GPIO_15_n
GPIO_15
GND
GPIO_16_n
GPIO_16
GND
GPIO_17_n

GPIO_17
GND
GPIO_18_n
GPIO_18
GND
GPIO_19_n
GPIO_19
GND
GPIO_20_n
GPIO_20
GND
GPIO_21_n
GPIO_21
GND
GPIO_22_n
GPIO_22
GND
GPIO_23_n
GPIO_23
GND
GPIO_58_n
GPIO_58
GND
GPIO_59_n
GPIO_59
GND
GPIO_CC_60_n
GPIO_CC_60
GND
GPIO_61_n
GPIO_61
GND
GPIO_62_n
GPIO_62
GND
GPIO_63_n
GPIO_63
GND

GND

GPIO_64_n
GPIO_64

GPIO_65_n
GPIO_65
GND
GPIO_66_n

GPIO_67_n

GPIO_66
GND

GND
GPIO_67

G20

G21
S114
S113

S112
S111

S110
S109
G18
S108
S107
G17
S106
S105
G16
S104
S103
G15
S102
S101
G14
S100
S99
G13
S98
S97
G12
S96
S95
G11
S94
S93
G10
S92
S91
G9
S90
S89
G8
S88
S87
G7
S86
S85
G6
S84
S83
G5
S82
S81
G4

G19

S80
S79
G3
S78
S77
G2
S76
S75
G1

G20

G21
S40
S39

S38
S37

S36
S35
G18
S34
S33
G17
S32
S31
G16
S30
S29
G15
S28
S27
G14
S26
S25
G13
S24
S23
G12
S22
S21
G11
S20
S19
G10
S18
S17
G9
S16
S15
G8
S14
S13
G7
S12
S11
G6
S10
S9
G5
S8
S7
G4

G19

S6
S5
G3
S4
S3
G2
S2
S1
G1

GND

GND
GPIO_CC_38_n
GPIO_CC_38

GPIO_39_n
GPIO_39

GPIO_40_n
GPIO_40
GND
GPIO_41_n
GPIO_41
GND
GPIO_42_n
GPIO_42
GND
GPIO_43_n
GPIO_43
GND
GPIO_44_n
GPIO_44
GND
GPIO_45_n
GPIO_45
GND
GPIO_46_n
GPIO_46
GND
GPIO_47_n
GPIO_47
GND
GPIO_48_n
GPIO_48
GND
GPIO_49_n
GPIO_49
GND
GPIO_CC_50_n
GPIO_CC_50
GND
GPIO_51_n
GPIO_51
GND
GPIO_52_n
GPIO_52
GND
GPIO_53_n
GPIO_53
GND
GPIO_54_n
GPIO_54
GND
GPIO_55_n
GPIO_55
GND
GPIO_56_n
GPIO_56
GND
GPIO_57_n
GPIO_57
GND

GND

PCB
Secondary Side

B
a
n

k
2

B
an

k
1

B
an

k
2

B
an

k
0

© National Instruments | 3-15

NI-793xR User Manual

NI-7935R Key Features
The NI-7935R device includes the following key features. Refer to the NI-7935R Specifications
for more details.

• SFP+ line rates of 3.125 Gbps, 6.25 Gbps, and 10.3125 Gbps

• Kintex-7 XC7K410T FPGA

• 2 GB onboard FPGA-accessible DRAM

• NI Linux Real-Time (32-bit) controller

• FPGA to host data transfer rates of 200 MB/s (single direction), 150 MB/s (bidirectional)

• Real-Time processor to USB external storage data transfer rates of 60 MB/s

• Real-Time processor to SD external storage data transfer rates of 12.0 MB/s (read),
9.0 MB/s (write)

The following figure illustrates the key components of the NI-7935R architecture.

Figure 3-14. NI-7935R Architecture Key Components

RT Host
RT

Controller

RAM

NV Storage

RT Clock

Watch Dog

LabVIEW

Host VI

Interrupts
DMA
Controls/Indicators

NI-Defined Bus
Interfaces/Streaming IP

Memory
Controller

DRAM

REF IN

Adapter
Module

SFP+

User Selected
Adapter Module

CLIP

SD

1 Gig E

USB

TRIG

User Defined
Socketed

CLIP

LV FPGA VI

3-16 | ni.com

Chapter 3 Hardware Architecture

Clocking Architecture
The NI-7935R device includes dedicated clocking hardware to provide a flexible clocking
solution for your FlexRIO system. Refer to Chapter 4, Developing with LabVIEW FPGA, for
information about configuring clocks with LabVIEW FPGA.

The NI-7935R clocking architecture includes the following clocks:

• 10 MHz Reference Clock

• 40 MHz Onboard Clock (default)

• 100 MHz Clock

• 156.25 MHz Clock/312.5 MHz MGT Clock1

• 200 MHz Clock

• DRAM Clock

1 This clock is user-selectable for either 156.25 MHz or 312.5 MHz.

© National Instruments | 3-17

NI-793xR User Manual

The following figure illustrates the clocking circuitry on the NI-7935R.

Figure 3-15. NI-7935R Clocking Diagram

Memory
Controller

PLL

40 MHz

100 MHz

100
MHz

10 MHz
Reference Clock

Kintex-7 FPGA

200 MHz

DRAM
Clock

166 MHz

MGT
Oscillator

MGT
Ref
Clk156.25 MHz/

312.5 MHz

Frequency
Select

Adapter
Module

PLL

100 MHz
Oscillator

REF IN

Ref Clk Enable

IoModSyncClock

© National Instruments | 4-1

4
Developing with LabVIEW
FPGA

This chapter contains information about developing your NI-793xR-based project with
LabVIEW FPGA. LabVIEW FPGA provides FPGA target support, configuration for clocking
and routing, and interfacing with LabVIEW on your host computer for a fully integrated
development experience.

Refer to the NI LabVIEW High-Performance FPGA Developer’s Guide for information about
techniques to optimize throughput, latency, and FPGA resources. Refer to the Related
Documentation section of this manual for a full list of LabVIEW FPGA documentation that you
may find helpful as you develop your application.

Developing with LabVIEW FPGA
For information about installing FlexRIO Support, installing the NI-793xR, and installing an
adapter module, refer to the getting started guide for your NI-793xR device.

Adding the NI-793xR to a LabVIEW Project
1. Launch LabVIEW. The LabVIEW Getting Started window appears.

2. Click Create Project or open an existing project.

3. Right-click the project root in the Project Explorer window and select New»Targets and
Devices from the shortcut menu to display the Add Targets and Devices dialog box.

a. If the hardware is connected to the host, select Existing target or device. Select your
device under Real-Time FlexRIO and click OK.

b. If the hardware is not connected to the host, select New target or device. Select your
device under Real-Time FlexRIO and click OK.

Adding an Adapter Module to the Target
Skip this section if you are not using an adapter module.

1. Expand the FPGA target by clicking the + button, then right-click IO Module and select
Properties.

2. Select the General category and check the Enable IO Module box.

3. Select your adapter module from the IO Modules list, and select the CLIP you want to use
from the Component Level IP box.

4. Click OK.

4-2 | ni.com

Chapter 4 Developing with LabVIEW FPGA

Adding Items to the NI-793xR Target
You can add new or existing FPGA VIs, FPGA I/O items, FPGA FIFO, or FPGA clocks to the
NI-793xR target in the Project Explorer window. You can also use folders to organize items
under the FPGA target in the Project Explorer window. You might use the folder option for
organizing items if you intend to use multiple FPGA I/O items.

Complete the following steps to add an item to the NI-793xR target in the Project Explorer
window.

1. Right-click the FPGA target and select New from the shortcut menu to add a new item, such
as a VI, FPGA I/O item, or folder. Then select the item you want to add to the project. The
item appears in the Project Explorer window under the FPGA target.

2. Double-click the new item in the Project Explorer window to edit or configure the item.
If you added an FPGA base clock, right-click the FPGA base clock and select Properties
from the shortcut menu to configure the clock.

Note You also can drag and drop existing items into the FPGA target in the Project
Explorer window.

Adding NI-793xR Target I/O
Complete the following steps to add target I/O for the NI-793xR and to access signals from any
instantiated CLIP on the block diagram:

1. Place an FPGA I/O node on the FPGA target block diagram. The FPGA I/O node is located
on the palette under Functions»FPGA I/O»FPGA I/O Node.

2. Right-click the FPGA I/O node and select Add New FPGA I/O.

3. In the New FPGA I/O dialog box, select resources under Available Resources and add
them to New FPGA I/O using the right arrow button.

4. To remove a resource, select the resource under New FPGA I/O and click the left arrow
button.

5. Click OK.

Configuring a 10 MHz Reference Clock

Note By default, the NI-793xR derives its 10 MHz Reference Clock from an
internal oscillator.

To source an external 10 MHz reference clock from the REF IN front panel, complete the
following steps.

1. Once the target has been added to the project, expand the FPGA target and right-click
Reference Clock Source (Onboard 10 MHz Clock) and select Properties.

2. Enable the Use the external front panel clock input as the reference clock checkbox.

3. Click OK.

© National Instruments | 4-3

NI-793xR User Manual

For information about optimizing your LabVIEW FPGA code for throughput, latency, or
resource utilization, refer to the High-Performance LabVIEW FPGA Developer’s Guide.

Auto-loading Bitfiles on Power-up
You can configure the NI-793xR to auto-load a bitfile on power-up, or you can use a startup
executable on the Real-Time controller to load a specific bitfile when the device powers up.
Complete the following steps to auto-load a bitfile on the NI-793xR.

1. In MAX, expand Remote Systems and select your NI-793xR target from the list of
Real-Time targets.

2. Expand Devices and Interfaces and select the NI-793xR FPGA target.

Note You must select the NI-793xR FPGA target under Devices and Interfaces.
Selecting the NI-793xR target directly under Remote Systems updates the
Real-Time controller firmware and not the FPGA firmware.

3. Navigate to your bitfile and select Open.

4. In the Update Firmware window, select Begin Update. This process may take a few
minutes to complete.

5. Restart your controller.

In addition to using MAX to auto-load bitfiles for FPGA, you can use the system configuration
API to programmatically set the bitfile that is auto-loaded on power-up.

Interactive Front Panel Communication
Use interactive front panel communication to communicate with an FPGA VI running on an
FPGA target with no additional programming. With interactive front panel communication, the
host computer displays the FPGA VI front panel window and the FPGA target executes the
FPGA VI block diagram.

The LabVIEW front panel window communicates with the FPGA target block diagram through
the controls and indicators. You can communicate with an FPGA target connected directly to
host computer or connected to a remote system over the network. As the FPGA target block
diagram continues to run, the host computer updates values on the FPGA VI front panel window
as often as possible. The execution rate of the FPGA VI is not affected by communication with
the host computer. However, the front panel data you share during interactive front panel
communication is not deterministic.

Use interactive front panel communication between the FPGA target and the host computer to
control and test VIs running on the FPGA target. After downloading and running the FPGA VI,
keep LabVIEW open on the host computer to display and interact with the front panel window
of the FPGA VI.

4-4 | ni.com

Chapter 4 Developing with LabVIEW FPGA

During interactive front panel communication, you cannot use LabVIEW debugging tools,
including probes, execution highlighting, breakpoints, and single-stepping. To identify errors
before you compile, download, and run the FPGA VI on the FPGA target, consider using a test
bench.

Note You cannot use interactive front panel communication while the FPGA is
configured to execute on a third-party simulator. You can either use a host VI to
execute the FPGA VI or change the execution mode of the FPGA target by
right-clicking the FPGA target in the Project Explorer window and selecting Select
Execution Mode.

Using the NI Common Instrument Design Libraries
NI provides instrument design libraries that you can use to create application-specific
instrumentation designs for NI-793xR devices. The following sections provide an overview of
the instrument design libraries. The instrument design libraries are located at <LVDir>\
instr.lib_niInstr. For information about the VIs in each instrument design library, refer
to the Programming section of the FlexRIO Help.

Using niInstr Instruction Framework
Use the Instruction Framework instrument design library to build a communication network in
LabVIEW FPGA. Standard communication methods, such as using controls and indicators to
pass information between the host and the FPGA, may not scale well for large applications. Use
the Instruction Framework to provide a scalable communication framework that larger
applications may require, at the cost of increased complexity. Certain instrument design libraries
require the use of the Instruction Framework.

Streaming Overview
The Streaming Instrument Design Library provides a consistent mechanism to handle both finite
and continuous transfer streams. It provides stream monitoring and handshaking. It contains VIs
for both the Host and FPGA.

CLIP Adapters Overview
The CLIP Adapters instrument design library includes AXI4-Lite and AXI4-Stream wrappers.
These wrappers implement protocol timing and signaling into simple reader or writer endpoints
that present 4-wire handshaking to the diagram. This handshaking allows for easier transition to
many FPGA features without the need to implement this state logic on your own.

Data Trigger Overview
This instrument design library can be used to generate a trigger on an input signal under various
conditions. The triggers produced by this library are typically consumed by the acquisition block
in order to determine when to start and stop acquiring data.

This library supports multiple trigger types, data types, and samples per cycle.

© National Instruments | 4-5

NI-793xR User Manual

Basic Elements Overview
This instrument design library contains several low-level elements, such as edge detectors,
latches, and FIFOs. Using this library can be beneficial when developing new FPGA logic for
your software-designed instrument. These basic elements are used in other instrument design
libraries and the sample projects for your device.

Memory Overview
Use the Memory instrument design library to access DRAM and BRAM on the device in a
consistent manner. This library provides a basic read and write interface to DRAM and BRAM.

In addition to the basic memory interface, you can use this instrument design library to reset the
DRAM or BRAM. When memory read operations are posted to memory, there is some amount
of latency before the associated data is retrieved from memory and presented to the FPGA
diagram. Furthermore, multiple read operations can be queued up at once. You can use the
Memory instrument design library to reset those queued memory operations.

This instrument design library also adds support for arbitration between the read and write ports
of DRAM.

Compiling LabVIEW FPGA VIs
You may need to purchase and install additional licenses to compile FPGA designs that
incorporate licensed cores from Xilinx or third-party IP vendors. Refer to UG 973: Vivado
Design Suite: Release Notes, Installation, and Licensing at xilinx.com for information about
managing licenses.

The NI-793xR targets include large FPGA devices that require a 64-bit compile worker. Refer
to the FlexRIO Support Readme for more information about what platforms to use to compile
bitfiles.

You cannot add additional licenses to remote compile workers in the NI LabVIEW FPGA
Compile Cloud Service. You cannot use NI LabVIEW FPGA Compile Cloud Service to compile
designs that incorporate Xilinx or other third-party licensed cores.

Download, Reset, and Run Side Effects in the
LabVIEW FPGA Host Interface
When the NI-793xR FPGA loads, it performs a power-on self-configuration sequence that
configures various on-board hardware. This configuration occurs at the following times:

• At device power-up after the bitfile loads.

• At the first time Run is called after a new bitfile is downloaded and the bitfile is not set to
Run on Load.

• When Run is called after Reset.

4-6 | ni.com

Chapter 4 Developing with LabVIEW FPGA

For more information about Run, Reset, and other Invoke methods, refer to the
LabVIEW FPGA Module Help.

Note When self-configuration executes, the clocking configuration enters an
indeterminate state. When the clocking configuration is in an indeterminate state, you
cannot rely on clocking stability from the clocking and routing hardware on the
NI-793xR.

Streaming

Flow Control
Any application that logs information must have rigorous flow control because the FlexRIO
adapter module can generate far more data than the application nodes can process. The
FPGA-to-Host FIFO uses Ready for Input signals to communicate to the DRAM whether it is
ready to process more data. The following figure demonstrates how you can implement flow
control on an NI-793xR target.

Figure 4-1. Host-Side FIFO to FPGA Flow Control

For information about data transfer rates, refer to the following sections:

• NI-7931R Key Features

• NI-7932R Key Features

• NI-7935R Key Features

Ready?

Ready? Ready?

Ready?

Ready?

Ready?Ready?

Data DRAM/
BRAM

MGT

Data DRAM/
BRAM

Target
to Host
FIFO

Host
Side
FIFO

SSD

Data
DRAM/
BRAM

Target
to

Host

Host
Side
FIFO

NIL

FPGA Module Real-Time Controller

© National Instruments | 4-7

NI-793xR User Manual

DMA Streaming
The NI-793xR devices support both host-to-target streaming and target-to-host streaming
through DMA channels that connect the host to your target. Use DMA streaming to allow the
maximum throughput of data from your host application to be streamed to the target at high rates
of speed.

The NI-793xR provides up to 16 DMA channels that can be accessed by your Host. These
channels can be used in a variety of ways to meet your application’s needs. The total overall
bandwidth of the device limits your DMA use, whether you use 1 DMA channel or 16.

The maximum width of a DMA channel is 256 bits. To use the full width of the DMA channel
to achieve maximum throughput, create a data construct that matches the 256-bit data width of
the DMA channel. You can either create a cluster that contains 4 U64s, or an array of 4 U64s.
To use an array, the FIFO must be configured to return multiple elements per read/write. You can
also write up to 1,024 bits at a time from LabVIEW FPGA, and the Ready for Input connection
throttles the connection to the FIFO to prevent overflow.

Theoretically, DMA throughput is maximized and is most consistent when the DMA FIFO
buffer is sized as large as possible to absorb variations in the readiness of the host memory.
However, sizing the FIFO larger consumes block RAM resources on the FPGA and increases
the timing pressure on the FIFO. NI recommends making the FIFO as large as you can
successfully compile with, in order to sustain throughput through the PCIe bus to and from host
memory. You can change the size of the FIFO by configuring the Requested Number of
Elements for the FIFO in the project properties. You can validate the DMA sizing through
benchmarking, and you can use VIs in the Streaming Design Library to monitor the health of a
FIFO.

For more detailed information about using DMA, DMA best practices, and how to make design
decisions on how to implement DMA in your application, refer to the Transferring Data Using
Direct Memory Access topic of the LabVIEW FPGA Help.

Total throughput depends on the SCTL rate from the FPGA that is reading or writing the DMA
channels. The data throughput is calculated by the following equation:

(Data Width × Samples per Cycle) × Number of DMA FIFOs × SCTL Clock Rate =
Data Throughput

Note The total data throughput cannot exceed the maximum data specification for
your device. Refer to the Specifications document for your device for information
about data throughput limits.

Note The number of array elements fed into the DMA FIFO from the Host can limit
the maximum throughput for your application. Use large array subsets and set your
FIFO depths to be deep enough to sustain high throughput.

4-8 | ni.com

Chapter 4 Developing with LabVIEW FPGA

Simulating FPGA Behavior
You can simulate an FPGA VI that has been added to an NI-793xR target; however, you cannot
open a reference to the simulated FPGA VI from the NI-793xR target. Instead, you must open a
reference to the simulated FPGA VI by changing the application instance to My Computer. You
can select the application instance for a VI by using the application instance shortcut menu.

Note If you attempt to open a reference to a simulated FPGA target from an
NI-793xR target, a broken run arrow and an error message appear in your VI.

Complete the following steps to change the application instance for your simulated FPGA VI.

1. Navigate to the bottom left corner of the front panel window or block diagram. The application
instance selection shortcut menu displays the current application instance of the VI.

2. Right-click the shortcut menu and select the My Computer instance in which to run the VI,
as shown in the following figure.

Note Selecting a new application instance reopens the VI in the selected
application instance. The VI also remains open in the original application instance.

You also can use the Application:Default:Application property to return the default
application reference programmatically. Use the Application property to open the target
application instance programmatically.

© National Instruments | 5-1

5
Programming the
High-Speed Serial Ports

This chapter provides information about programming the multi-gigabit transceivers (MGTs)
for the NI-7932R and NI-7935R, including information about creating socketed CLIP and using
LabVIEW.

Note The NI-7931R does not have MGTs or high-speed serial ports.

Development Flow
Refer to the following diagram for an overview of the NI-793xR development process for
implementing a high-speed serial protocol.

Figure 5-1. NI-793xR Development Process

If the sample project code is sufficient for your application, you do not have to modify the IP
core, update the VHDL CLIP wrapper, or refresh the CLIP.

Update VHDL
CLIP Wrapper

Modify/regenerate
IP core using
Xilinx Vivado

Create IP core
using Xilinx Vivado
or license/buy from

third party

Write custom
protocol core IP

Create
Sample
Project

Update LabVIEW
FPGA project and

refresh CLIP

Update LabVIEW
FPGA and

LabVIEW Host
application code

Write VHDL
CLIP Wrapper

Create LabVIEW
FPGA project and

import CLIP

Write LabVIEW
FPGA and

LabVIEW Desktop
application code

Deploy
Application

No YesCompatible
IP commercially

available?

No

No

YesSample
Project Exists for

Protocol?

Start

5-2 | ni.com

Chapter 5 Programming the High-Speed Serial Ports

Developing MGT Socketed CLIP
This section provides steps for creating socketed CLIP for use with your application. Socketed
CLIP provides the following functionality:

• Allows you to insert HDL IP into an FPGA target, enabling VHDL code to communicate
directly with an FPGA VI.

• Allows the CLIP to communicate directly with circuitry external to the FPGA.

• Allows your IP to communicate directly with both the FPGA VI and the external adapter
module connector interface.

Socketed CLIP Architecture
Figure 5-2 shows an overview of the NI-7932R socketed CLIP interface. Figure 5-3 shows an
overview of the NI-7935R socketed CLIP interface.

Figure 5-2. NI-7932R Socketed CLIP Architecture

NI-7932R

Xilinx Kintex-7 FPGA

Socketed CLIP

PORT 0 /
PORT 1

Connectors

156.25 MHz/
312.5 MHz

Clock

MGT_RefClks

High Speed
Serial IO

High-Speed Serial
Protocol IP

LabVIEW FPGA VI

+

LabVIEW FPGAXilinx GTXE2_CHANNEL/
GTXE2_COMMON

Primitives

© National Instruments | 5-3

NI-793xR User Manual

Figure 5-3. NI-7935R Socketed CLIP Architecture

Accessing the Xilinx Vivado Tools
Complete the following steps to run Xilinx Vivado:

1. If you installed Xilinx Vivado separately from LabVIEW FPGA, use this version.
Otherwise, LabVIEW FPGA installs LabVIEW FPGA Xilinx Tools.

Note If Vivado is installed by LabVIEW FPGA, it does not appear in Programs
and Features.

2. Open the Xilinx Vivado Tool directory by navigating to C:\NIFPGA\programs\
VivadoXXXX_Y, where XXXX and Y refer to the Xilinx Vivado tool versions. For
example, <VIVADO_DIR> version 2013.4 is located at C:\NIFPGA\programs\
Vivado2013_4.

3. Run the Xilinx Vivado batch file: <XilinxVivadoDir>\bin\vivado.bat.

You may receive the following warning when launching Vivado.

Your XILINX_EDK environment variable is undefined. You may not be
able to run some features properly. Please set up your XILINX_EDK
environment to get full functionality.

This error message is expected. You can ignore the error message if you are not using the
Xilinx Embedded Development Kit (EDK). The EDK is not required for development with
the NI-793xR.

4. Click New Project and follow the instructions in the wizard.

NI-7935R

Xilinx Kintex-7 FPGA

Socketed CLIP

PORT 0 /
PORT 1

Connectors

156.25 MHz/
312.5 MHz

Clock

MGT_RefClks

High Speed
Serial IO

High-Speed Serial
Protocol IP

LabVIEW FPGA VI

+

LabVIEW FPGAXilinx GTXE2_CHANNEL/
GTXE2_COMMON

Primitives

5-4 | ni.com

Chapter 5 Programming the High-Speed Serial Ports

Generating an IP Core from the Xilinx Vivado IP Catalog
You may need to purchase and install additional licenses to generate some protocol IP core from
Xilinx or third-party IP vendors. Refer to UG 973: Vivado Design Suite: Release Notes,
Installation, and Licensing at xilinx.com for information about managing licenses.

Complete the following steps to create a Xilinx Vivado project:

1. Refer to the Xilinx Documentation section of this manual for information about licensing
before creating a Xilinx Vivado project.

2. Launch the Xilinx Vivado IP catalog.

a. Select Manage IP on the Vivado start screen.

b. Locate the appropriate IP core to launch the configuration dialog. For example, the
Aurora 64B66B IP core is located in Communication and Networking»Serial
Interfaces»Aurora 64B66B.

3. Select the IP core settings. NI recommends that you select AXI4-Stream for high-speed
data streams when possible.

Note NI does not recommend selecting AXI4-Lite for DRP accesses in the Xilinx
IP cores because compatibility with LabVIEW FPGA AXI4-Lite adapters cannot be
guaranteed. Refer to the Aurora sample projects for an example of how to use the
LabVIEW FPGA AXI4-Lite adapters to connect to DRP within the CLIP.

Modifying Third-Party IP Core Logic
If you modify a third-party IP core for your high-speed serial protocol, consult the Xilinx
Product Guide for the IP you are using before attempting to make any modifications.

Adhere to the following guidelines when modifying third-party IP core logic:

• Ensure all clocks are connected.

• Ensure AXI4-Lite management signals are connected correctly to the Xilinx DRP signals
on the GTXE2_CHANNEL and GTXE2_COMMON primitives.

• Select Include Shared Logic in example design in the IP wizard to access various
resources outside of the IP core logic, such as MGT_RefClk input buffers and QPLL
wrappers.

The following examples explain the differences in how the IBUFDS_GTE2 resource is exposed
with and without the Include Shared Logic in example design option.

• Option 1: Include the IBUFDS_GTE2 input buffer primitive inside the core by selecting
Include Shared Logic in core in the IP wizard. The image on the left in Figure 5-4 shows
this option.

• Option 2: Instantiate a single IBUFDS_GTE2 input buffer in your top level CLIP VHDL,
connect its output signal to both cores, and select Include Shared Logic in example design
in the IP wizard. The image on the right in Figure 5-4 shows this option.

© National Instruments | 5-5

NI-793xR User Manual

Note Do not modify the IP core unless you understand the required reference
clock(s) and clocking resources.

The following figure shows the difference between the top-level CLIP VHDL with shared logic
in the core (left) and without shared logic (right).

Figure 5-4. Top-Level CLIP VHDL and Shared Logic

Building a Netlist from the IP Core
LabVIEW FPGA does not support Verilog source files in Component Level IP. However, you
can generate EDIF netlists from any synthesized Verilog components in the IP you’re using and
instantiate the netlist in a VHDL wrapper.The following steps are an example of how to generate
an EDIF netlist from the IP core:

1. Open the example project for your IP core in Vivado.

2. Set the appropriate top-level source file for which you plan to generate a netlist.

3. Run synthesis.

4. Open the Synthesized Design using one of the following methods.

• Select Open Synthesized Design in the Synthesis Completed pop-up window.

• Select the Design Run tab, then select Open Synthesized Design in the left hand
pane.

5. In the Tcl Console, enter write_edif <name of entity>.edf to create the netlist
that you use when you import the IP core into your LabVIEW project. The netlist location
is indicated by the Tcl Console window.

IP Core WITHOUT
Shared Logic

IP Core WITHOUT
Shared Logic

Top Level CLIP VHDLTop Level CLIP VHDL

MGT_RefClk MGT_RefClk

IBUFDS_GTE2

IBUFDS_GTE2

IBUFDS_GTE2

IP Core WITH
Shared Logic

IP Core WITH
Shared Logic

?

5-6 | ni.com

Chapter 5 Programming the High-Speed Serial Ports

6. The following figure shows the cells associated with the design in the Netlist window.

7. To build .edf files for an associated cell, enter the following command:
write_edif -cell <name of cell> <file name>.edf
For example, to create an .edf for clock_module_i, enter the following command:
write_edif -cell clock_module_i
aurora_64b66b_clock_module.edf

Note You may have to specify a longer path name depending on the location of the
cell in your project. For example, clock_module_i may be located under
aurora_64b66b_0_block_i/clock_module_i.

8. Copy the netlist into your LabVIEW FPGA CLIP directory.

9. Include your netlist in the list of synthesis files when running the CLIP Wizard.

© National Instruments | 5-7

NI-793xR User Manual

Writing a VHDL Wrapper Around the Protocol IP Core
A VHDL wrapper is generally necessary to adapt the protocol signals to the dataflow semantics
used within the LabVIEW FPGA diagram. NI recommends that you adhere to the following
guidelines when writing a VHDL wrapper around the protocol IP core:

• Keep the interface between the CLIP and the LabVIEW FPGA diagram as simple as
possible.

Note LabVIEW stores values in big-endian format, and your IP may accept only
little-endian format. NI recommends performing any conversions in the CLIP and
keeping endian conversions off the LabVIEW diagram for ease of use.

• Do not pass asynchronous signals to the LabVIEW FPGA diagram. Register the signals in
a clock domain in the VHDL logic before passing them to the LabVIEW FPGA diagram.

• Use AXI4-Stream and AXI4-Lite interfaces for streaming data and register accesses.
NI provides AXI4-Stream and AXI4-Lite wrappers to use on the LabVIEW FPGA
diagram. Refer to the Generating an IP Core from the Xilinx Vivado IP Catalog section of
this document for more information about IP core logic.

• If you expose an AXI4-Lite endpoint, use Xilinx AXI4 interconnect IP to expose only
one AXI4-Lite endpoint to the LabVIEW FPGA diagram.

• Document the frequency of clocks coming from CLIP. Consider supporting enable chain
removal.

• Implement a state machine that allows asynchronous resets. If you declare an input signal
as a reset signal in the CLIP wizard, then that signal is asserted when the LabVIEW FPGA
VI is not running.

• Implement a state machine that resets the protocol cores when the PORT# module is absent
if your state machine does not already account for this.

• Connect various clocks from your CLIP to the DebugClks std_logic_vector in order to use
host-side frequency counter debugging utilities.

• Provide timing constraints in XDC for your CLIP. Include timing constraints for clocks
within your CLIP, but do not include pin/location constraints on MGTs transceiver lanes
and RefClks. Refer to UG 903: Vivado Design Suite User Guide: Using Constraints at
xilinx.com for more information about timing constraints in XDC for your CLIP.

• Use the TXOUTCLK and/or RXOUTCLK clock constraints for your high-speed serial
CLIP if your protocol uses it directly.

– The following is an example syntax for the constraint: create_clock -period
<period in ns> [get_pins %ClipInstancePath%/<path to your
clock pin relative to the top level CLIP VHDL>].

5-8 | ni.com

Chapter 5 Programming the High-Speed Serial Ports

• If you generate an asynchronous reset within your CLIP VHDL, create a false path
constraint from the register that generates the reset signal. Include a “don’t touch” attribute
for any false path constraints.

– The following is an example syntax for the “don’t touch” attribute: attribute
dont_touch : string; attribute dont_touch of <signal name> :
signal is "true";

– The following is an example syntax for the false path constraint: set_false_path
-from [get_cells %ClipInstancePath%/<path to your register>]

• When writing constraints, you may need to refer to the CLIP’s instance name or the
absolute path to the CLIP instance in the VHDL hierarchy. Refer to the Constraints and
Hierarchy or more information about using the search-and-replace keywords
%ClipInstanceName% and %ClipInstancePath%.

Constraints and Hierarchy
You can include CLIP-specific user constraints in the compilation using a constraints file,
depending on your specific FPGA target. You can use this mechanism for all constraints except
pin placement constraints. For example, you can access a clock directly from a global clock input
pin through a global clock buffer for socketed CLIP. You must constrain the period of this clock.

For constraints on specific components within CLIP, you might need to specify the location of
the component within the overall VHDL hierarchy. In such cases, consider prefacing the
constraints with the following macros. Prefacing allows the constraints to be applied regardless
of the component location in the VHDL hierarchy. If you want to use this example code, copy
the code to a text file and save the file as DemoClipAdder.xdc. Add this constraints file along
with the VHD file as synthesis files in the Configuring CLIP wizard to implement this constraint.

Xilinx Vivado
create_clock -period 10.000 -name %ClipInstanceName%Clk -waveform
{0.000 5.000} -add [get_pins %ClipInstancePath%/clk]

set_clock_latency -clock [get_clocks {%ClipInstanceName%CLK}] 10.0
[get_pins {%ClipInstancePath%/cAddOut[0]}]

To instantiate the CLIP multiple times, each CLIP instance must have a unique name, and the
name must follow VHDL naming conventions. When you include these macros, you do not need
to include a separate constraints file for each instance because the FPGA Module creates a
unique instance name.

If a CLIP signal is not used, the Xilinx compilation tools might remove the signal from the
bitstream. In such cases, you might get an NGBuild error during compilation. To resolve this
issue, remove the constraint or use the signal in an FPGA VI.

Caution In order to guarantee data integrity and timing closure, verify that I/O
nodes from the CLIP are written in the same clock domain in which they are read on
the LabVIEW diagram and that I/O nodes to the CLIP are read in the same clock

© National Instruments | 5-9

NI-793xR User Manual

domain in which they are written on the LabVIEW diagram. In rare cases where
crossing clock domains is desirable, refer to KnowledgeBase 6OB8E8FM at
ni.com/kb for more information about how to write timing constraints between the
CLIP and the LabVIEW diagram in order to specify timing exceptions on these paths
and achieve timing closure. Note that data corruption might still occur when crossing
clock domains.

Documenting Your IP
NI recommends documenting the behavior of your CLIP. Refer to the following guidelines for
information about how to document your CLIP and how documenting your CLIP can affect the
rest of your design:

• Document the endianness of your CLIP in order to properly interface your CLIP to the
LabVIEW FPGA diagram. Refer to the Writing a VHDL Wrapper Around the Protocol IP
Core section of this chapter for more information about how CLIP endianness affects the
design process.

• Clearly define the portion of your entity interface that is facing the diagram, and which
portion of your entity is facing the front panel.

• Document the connector signals by describing which signals are used, which signals are
unused, and the manner in which the signal is used. Signal use can affect which ports are
active with your IP and the behavior of cables upon ingestion and removal.

• Document how you integrate AXI4-Lite signals with LabVIEW data types. Some
AXI4-Lite signals do not integrate easily with LabVIEW data types; for example, address
ports can have widths of 11, but LabVIEW only provides addresses with widths of 8, 16,
32, and 64. Additionally, the AXI4-Lite and AXI4-Stream adapters are configured for use
with fixed-point I/O.

• Document how clocks are used and how they are routed in your CLIP for use with the IP.
You must route clocks to the diagram for use with the single-cycle timed loop (SCTL) in
LabVIEW FPGA.

• Document the address map of individual components within any AXI4-Lite interfaces.

Adding MGT Socketed CLIP to the LabVIEW
Project
After configuring the MGT Socketed CLIP in VHDL, you can use LabVIEW FPGA to continue
the development process. LabVIEW FPGA provides FPGA target support, configuration for
clocking and routing, and interfacing with LabVIEW on your host computer for a fully
integrated development experience.

Refer to the Related Documentation section of this manual for a list of LabVIEW FPGA
documentation that you may find helpful as you develop your application.

5-10 | ni.com

Chapter 5 Programming the High-Speed Serial Ports

Configuring MGT Socketed CLIP in the NI-793xR
LabVIEW FPGA Targets
Complete the following steps to configure MGT Socketed CLIP in your NI-793xR LabVIEW
project:

1. Create a new project by selecting File»New»Project, or open an existing project by
selecting File»Open.

2. Right-click the project in the Project Explorer window and select New»Targets and
Devices from the shortcut menu to display the Add Targets and Devices dialog box.

3. Select New target or device and select your device.

4. Right-click the device in the Project Explorer window and select New»FPGA Target to
add an FPGA target to the Controller for FlexRIO.

5. Add the protocol IP through your CLIP. Right-click the device name and select
Properties»Component-Level IP.

Note If you are using example CLIP or pre-made CLIP, you can import the CLIP
using the dialog box, or you can click on the Create File icon to create a new CLIP
using the CLIP Wizard.

Note You can modify a CLIP by selecting the preexisting CLIP Declaration Name
and clicking Modify File.

6. If you are generating new CLIP, follow the instructions in the CLIP Wizard to interface
your CLIP with LabVIEW FPGA. You do not need to use the CLIP Wizard if you are
reusing an existing CLIP. Refer to the FPGA Module Help for more detailed information
about the CLIP Wizard. The CLIP Wizard guides you through the following tasks.

• Adding VHDL source, XDC constraints, and EDF/EDN/EDIF netlists

• Configuring device types

• Configuring generics

• Performing syntax checks

• Specifying how to use the signals in your CLIP

Note In Step 2 of the CLIP Wizard, select the appropriate Component Level IP
Type for your target.

Note After you create the CLIP and add the files, you do not need to modify the
CLIP for any changes to take place if you do not change the source paths. If you
change the source paths or modify the CLIP source files, you must use the CLIP
Wizard.

© National Instruments | 5-11

NI-793xR User Manual

7. Instantiate the CLIP in the MGT Socket. When you add a new target to the project,
LabVIEW automatically creates a compatible MGT Socket in the project. Right-click the
socket and select Properties, then select General under Category.

8. Select a declaration from the drop-down menu under Socketed Component Level IP
Declaration.

9. Click OK. The user-defined signals in your CLIP appear under the socket item in the
Project Explorer window.

10. Right-click the MGT Socket and select Clocking Selections under Category to configure
the Clocking and IO Configuration properties for your device.

Note Clocking and routing information is compile-time static and cannot be
reconfigured at runtime.

Note The NI-793xR devices support empty sockets.

11. Select the clock that your CLIP requires and explicitly assign it a connection. You must add
the clock to your LabVIEW project in order to select it from the Connections window. If
your CLIP does not require any clocks, leave this page blank.

12. Click OK.

Refer to Chapter 3, Hardware Architecture, for more information about NI-793xR clocking
capabilities.

Using Existing VHDL IP inside CLIP or IPIN
To use existing IP in your project, refer to the Importing External IP Into LabVIEW FPGA white
paper at ni.com.

CLIP does not support custom user libraries in the VHDL. If your VHDL uses custom user
libraries, use one of the following workarounds:

• Create a netlist from the VHDL and integrate the netlist using CLIP.

• Reference the default reference library instead of a custom user library.

Refer to the Creating or Acquiring IP (FPGA Module) topic in the LabVIEW FPGA Module
Help for more information about using existing VHDL IP inside CLIP or IPIN.

Improving Performance in Larger Designs through
Enable Chain Removal
By default, LabVIEW adds code to the FPGA code to enforce data flow. This code addition is
referred to as the enable chain. In larger applications, the enable chain can create routing
congestion and limit performance. You can remove the enable chain under certain
circumstances. Refer to Improving Timing Performance in Large Designs (FPGA Module) in the
LabVIEW FPGA Module Help for more information about how to remove enable chains and
when to do so.

© National Instruments | 6-1

6
Programming with the
Real-Time Target

This chapter contains information about programming with the LabVIEW Real-Time target. For
information about developing LabVIEW Real-Time applications, refer to the
LabVIEW Real-Time Module Help.

Best Practices
For information about LabVIEW Real-Time programming best practices, refer to the Real-Time
Module Best Practices topic of the Real-Time Module Help. This page includes an overview of
best practices for designing, developing, and deploying applications with LabVIEW Real-Time.

Key Concepts
The following key concepts provide the basic information you need to start using the Real-Time
FlexRIO Target.

• Real-time (RT) application—An application designed for stable execution and precise
timing.

• Determinism—The characteristic of a real-time application that describes how
consistently the application responds to external events or performs operations within a
given time limit. Maximizing determinism is often a priority when designing real-time
applications.

• Jitter—The time difference between the fastest and slowest executions of the application.
Minimizing jitter is often a priority when designing real-time applications.

• Real-time operating system (RTOS)—An operating system designed to run applications
with increased determinism and reduced jitter. A general-purpose operating system, like
Microsoft Windows, completes operations at unpredictable times. In contrast, each
operation an RTOS performs has a known maximum completion time. By designing an
application for an RTOS, you can make sure an application will run deterministically.

• RT target—A controller, such as an NI-793xR, that runs an RTOS.

• Stand-alone RT application—An RT application that runs automatically when you power
on an RT target.

• Device driver software—A software component that translates commands from
LabVIEW into a format appropriate for a particular RT target and any installed I/O devices.
You install the appropriate device driver software as a part of configuring your RT target.

6-2 | ni.com

Chapter 6 Programming with the Real-Time Target

• Host computer—The computer you use to design a real-time application. You deploy a
real-time application from the host computer to the RT target. You can also communicate
with the RT target through a user interface running on the host computer.

• NI Measurement & Automation Explorer (MAX)—The software you use to configure
RT targets. After you install the Real-Time Module on the host computer, you can use MAX
to install the Real-Time Module, the RTOS, and device driver software on the RT target.

• Subnet—A subdivision of a network over which devices can communicate using TCP/IP
protocol. MAX automatically detects RT targets connected to the same subnet as the host
computer.

• Shared variable—A memory space that you can read data from and write data to. You can
read and write shared variables on a single computer with single-process shared variables
or on multiple computers with network-published shared variables. Use shared variables to
publish only the latest values in a data set to one or more computers.

• RT FIFO—Acts like a fixed-size queue, where the first value you write to the FIFO queue
is the first value that you can read from the FIFO queue. An RT FIFO ensures deterministic
behavior by imposing a size restriction on the data you share and by pre-allocating memory
for the data. Use RT FIFO functions to share data between VIs or parallel loops running on
an RT target.

• Network stream—A lossless, unidirectional, one-to-one communication channel that
consists of a writer endpoint and a reader endpoint. Use network streams to stream lossless
data over a network.

Installing and Configuring the NI-793xR
Refer to the getting started guide for your NI-793xR for instructions about how to perform the
following tasks before developing a real-time application for your NI-793xR:

1. Install support for the NI-793xR on the host computer.

2. Detect and configure the NI-793xR.

3. Install software on the NI-793xR.

Creating a Real-Time Application
For step by step instructions about creating a project and adding a Real-Time target to it, refer
to the Creating a Real-Time FlexRIO Project topic of the FlexRIO Help.

For conceptual information about real-time applications, refer to Tutorial: Creating a Real-Time
Application topic in the Real-Time Module How-To book of the Real-Time Module Help.

© National Instruments | 6-3

NI-793xR User Manual

Real-Time System Integration
The following sections contain information about integrating your Real-Time system with
LabVIEW.

Querying Fan Speed and Temperature Sensors
Use the System Configuration API to query the fan sensors or the temperature sensor on the
NI-793xR. The System Configuration API can read device properties remotely from a
development machine or monitoring system, or you can access these properties locally through
the device for self-monitoring.

The NI-793xR includes four temperature sensors and one fan. Three of the temperature sensors
monitor the CPU, and one temperature sensor monitors the FPGA. Refer to the following table
for the resource you must use to access each temperature sensor and fan, as well as each
component’s operating range.

Note All temperatures are reported in degrees Celsius (°C).

Note CPU Temp 1 and FPGA Temp are both on-die temperature sensors for their
respective component. CPU Temp 2 and CPU Temp 3 are onboard temperature
sensors near the CPU. Use CPU Temp 2 and CPU Temp 3 as redundant sensors, or
for monitoring internal ambient temperature.

To query the System Fan properties, including the speed reading and PWM (pulse width
modulation) duty cycle, filter for the system resource and query the properties under the
System Resources::Fans category and the FlexRIO::System Resources::FanPWM
property. The speed reading property is in units of RPM, and the PWM property is in units of
percentage.

Table 6-1. NI-793xR Temperature Sensors and Fan

Sensor Name Resource Operating Range

CPU Temp 1 System <98 °C

CPU Temp 2 System <85 °C

CPU Temp 3 System <85 °C

System Fan System For information about the fan, refer
to the Using the Fan section.

FPGA Temp System <96 °C

Current Temp RIO0 <96 °C

6-4 | ni.com

Chapter 6 Programming with the Real-Time Target

To query the CPU Temp x and FPGA Temp sensors, filter for the system resource and query
the properties under the System Resources::Temperature Sensors category.

Figure 6-1. Querying Fan and CPU Temperatures

You can also monitor the FPGA Temp sensor on the RIO0 resource. To do this, filter for the
RIO0 resource and query the Devices & Chassis::Current Temp property.

Figure 6-2. Querying FPGA Temperature

Power/Thermal Protection and Shutdown
If the FPGA overheats or the temperature monitor cannot be read, FPGA communication is shut
down and accesses to the FPGA do not work. Additionally, a device status message appears in
MAX under the FPGA item that has been shut down. If the FPGA communication shuts down,
power cycle the system and contact NI customer support at ni.com/support. In order to
avoid seeing this error again, improve the airflow to your chassis or consider reduced FPGA
logic in your design.

You can also query the device status through the LabVIEW System Configuration API.

LabVIEW System Configuration API
The LabVIEW System Configuration API allows you to gather information and perform tasks
programmatically on both local and remote systems. The System Configuration palette is located
on the functions palette in LabVIEW under Measurement I/O.

Note If Measurement I/O does not appear on the functions palette, you can enable
it by selecting Customize»Change Visible Palette.

www.ni.com/support

© National Instruments | 6-5

NI-793xR User Manual

Complete the following steps to use the LabVIEW System Configuration API with your
NI-793xR Real-Time project.

1. Open a session and point to your target using its IP address.

2. Enter your user name and password, if applicable.

3. Open the System Configuration palette in LabVIEW.

4. Open the Property Node (Hardware) to obtain information such as the device temperature
and device model name.

Refer to the NI System Configuration API Help topic of the LabVIEW Help for more information
about using the LabVIEW System Configuration API. For information about the FlexRIO
System Configuration API, refer to the FlexRIO System Configuration Expert topic in the
FlexRIO Help.

Communicating with Applications on an
RT Target
The RT Engine on the RT target does not provide a user interface for applications. You can use
one of two communication protocols, front panel communication or network communication, to
provide a user interface on the host computer for RT target VIs.

Front Panel Communication
With front panel communication, LabVIEW and the RT Engine execute different parts of the
same VI. LabVIEW on the host computer displays the front panel of the VI while the RT Engine
executes the block diagram. A user interface thread handles the communication between
LabVIEW and the RT Engine.

Use front panel communication between LabVIEW on the host computer and the RT Engine to
control and test VIs running on an RT target. After downloading and running the VIs, keep
LabVIEW on the host computer open to display and interact with the front panel of the VI.

You also can use front panel communication to debug VIs while they run on the RT target. You
can use LabVIEW debugging tools—such as probes, execution highlighting, breakpoints, and
single stepping—to locate errors on the block diagram code. Refer to the Building, Deploying,
and Debugging Applications (Real-Time Module) topic of the Real-Time Module Help for
information about debugging applications.

Front panel communication is a good communication method to use during development
because front panel communication is a quick method for monitoring and interfacing with VIs
running on an RT target. However, front panel communication is not deterministic and can affect
the determinism of a time-critical VI. Use network communication methods to increase the
efficiency of the communication between a host computer and VIs running on the RT target.

6-6 | ni.com

Chapter 6 Programming with the Real-Time Target

Network Communication
With network communication, a host VI runs on the host computer and communicates with the
VI running on the RT target using specific network communication methods such as TCP, VI
Server, and in the case of non-networked RT Series plug-in devices, shared memory reads and
writes. You might use network communication for the following reasons:

• You want to run another VI on the host computer.

• You want to control the data exchanged between the host computer and the RT target. You
can customize communication code to specify which front panel objects get updated and
when. You also can control which components are visible on the front panel because some
controls and indicators might be more important than others.

• You want to control timing and sequencing of the data transfer.

• You want to perform additional data processing or logging.

For more information about interacting with the front panels of RT target VIs, refer to the
Interacting with the Front Panels of RT Target VIs topic in the LabVIEW Real-Time Module
Help.

Note The Interacting with the Front Panels of RT Target VIs topic in the
LabVIEW Real-Time Module Help contains information about an embedded UI,
which is not available on NI-793xR targets.

Where to Go from Here
The Real-Time Module includes a comprehensive documentation set designed to help you create
deterministic applications to run on RT targets.

LabVIEW Help
The LabVIEW Help, available by selecting Help»LabVIEW Help in LabVIEW, contains the
following information that is specific to the Real-Time Module:

• Real-Time Module Best Practices—Information about best practices for designing,
developing, and deploying applications with the Real-Time Module.

• Real-Time Module Concepts—Information about programming concepts, application
architectures, and Real-Time Module features you can use to create deterministic
applications.

• Real-Time Module How-To—Step-by-step instructions for using Real-Time Module
features.

• Real-Time VIs—Reference information about Real-Time Module VIs, functions, and
error codes.

© National Instruments | 6-7

NI-793xR User Manual

• Real-Time Operating Systems—Information about using LabVIEW on real-time
operating systems.

• Real-Time Module Error Codes—Information about error codes specific to the
Real-Time Module.

LabVIEW Real-Time Module Release and
Upgrade Notes
The LabVIEW Real-Time Module Release and Upgrade Notes contains information to help you
install and configure the Real-Time Module and a list of upgrade issues and new features.
Complete the following steps to access this document:

1. Open the labview\manuals directory.

2. Double-click RT_Release_Upgrade_Notes.pdf to open this manual.

© National Instruments | A-1

A
CLIP Signals

This chapter contains lists of CLIP signals for the NI-7932R and NI-7935R devices.

NI-7932R
Refer to the following table for a list of the NI-7932R socketed CLIP signals.

Table A-1. NI-7932R CLIP Signals

Port Direction Clock Domain Description

MGT_RefClk0_p In (pad) — Differential input clock that you
must connect to an
IBUFDS_GTE2 input buffer
primitive when this input clock
is used in your design

MGT_RefClk0_n In (pad)

SocketClk40 In Clock A 40 MHz clock that runs
continuously regardless of
connectivity. This signal is
connected to the 40 MHz
Onboard Clock signal, which
is the default top-level clock for
the LabVIEW FPGA VI.

A-2 | ni.com

Appendix A CLIP Signals

aResetSl In Async This signal is not required.

This signal is an asynchronous
reset signal from the
LabVIEW FPGA environment.
If you create an input signal to
your CLIP and assign it as Reset
in the CLIP wizard, that signal is
driven as an asynchronous reset
signal. Reset all CLIP state
machines and logic whenever
this signal is logic high.

This signal is driven high when
you call the LabVIEW FPGA
Reset invoke method. Call Run
on the FPGA VI to deassert this
signal.

Do not use CLIP inputs from the
LabVIEW FPGA VI in the
CLIP until aResetS1 is
deasserted.

Port<0..1>_RX_p In (pad) — Dedicated MGT receive signals
for Port <0..1>.

Port<0..1>_RX_n In (pad) —

Port<0..1>_TX_p Out (pad) — Dedicated MGT transmit
signals for Port <0..1>.

Port<0..1>_TX_n Out (pad) —

Port<0..1>_Tx_Fault In Async When high, indicates a laser
fault. Low indicates normal
operation.

Port<0..1>_LOS In Async When high, this input indicates
that the received optical power
is below the worst-case receiver
sensitivity. Low indicates
normal operation.

Port<0..1>_ABS In Async When high, this input indicates
that a module is plugged into the
SFP+ socket. Low indicates that
a module has been detected.

Table A-1. NI-7932R CLIP Signals (Continued)

Port Direction Clock Domain Description

© National Instruments | A-3

NI-793xR User Manual

Port<0..1>_Tx_
Disable

Out Async When high, this output shuts
down the transmitter optical
transmitter. When low,
operation is enabled.

Port<0..1>_Rs<0..1> Out Async Rate selection pins.

Port<0..1>_SCL In/Out Async Bidirectional serial clock signal
for the two-wire communication
interface on the Port <0..1>
connector.

Valid values: 0 and Z (open
drain).

This signal is also called
MODDEF1.

Port<0..1>_SDA In/Out Async Bidirectional serial data signal
for the two-wire communication
interface on the Port <0..1>
connector.

Valid values: 0 and Z (open
drain).

This signal is also called
MODDEF2.

Port<0..1>_
MacAddress

In Async Unique 48-bit MAC address
assigned to Port<0..1>. Use this
address when implementing a
network interface controller on
Port<0..1>.

Port<0..1>_
MacAddressValid

In Async When asserted, this signal
indicates that
Port<0..1>_MacAddress is
valid.

Table A-1. NI-7932R CLIP Signals (Continued)

Port Direction Clock Domain Description

A-4 | ni.com

Appendix A CLIP Signals

NI-7935R
Refer to the following table for a list of the NI-7935R socketed CLIP signals.

sPort<0..1>_
EnablePower

Out SocketClk40 Enables or disables the power
supply to Port <0..1>.

This signal is active high.

sPort<0..1>_
PowerGood

In SocketClk40 Indicates that the power supply
to the cable for Port <0..1> is
enabled.

This signal may deassert if an
over-power condition is
detected.

Table A-2. NI-7935R CLIP Signals

Port Direction Clock Domain Description

MGT_RefClk0_p In (pad) — Differential input clock that you
must connect to an
IBUFDS_GTE2 input buffer
primitive when this input clock
is used in your design

MGT_RefClk0_n In (pad) —

SocketClk40 In Clock A 40 MHz clock that runs
continuously regardless of
connectivity. This signal is
connected to the 40 MHz
Onboard Clock signal, which is
the default top-level clock for the
LabVIEW FPGA VI.

Table A-1. NI-7932R CLIP Signals (Continued)

Port Direction Clock Domain Description

© National Instruments | A-5

NI-793xR User Manual

aResetSl In Async This signal is not required.

This signal is an asynchronous
reset signal from the
LabVIEW FPGA environment.
If you create an input signal to
your CLIP and assign it as Reset
in the CLIP wizard, that signal is
driven as an asynchronous reset
signal. Reset all CLIP state
machines and logic whenever
this signal is logic high.

This signal is driven high when
you call the LabVIEW FPGA
Reset invoke method. Call Run
on the FPGA VI to deassert this
signal.

Do not use CLIP inputs from the
LabVIEW FPGA VI in the CLIP
until aResetS1 is deasserted.

Port<0..1>_RX_p In (pad) — Dedicated MGT receive signals
for Port <0..1>.

Port<0..1>_RX_n In (pad) —

Port<0..1>_TX_p Out (pad) — Dedicated MGT transmit signals
for Port <0..1>.

Port<0..1>_TX_n Out (pad) —

Port<0..1>_Tx_Fault In Async When high, indicates a laser
fault. Low indicates normal
operation.

Port<0..1>_LOS In Async When high, this input indicates
that the received optical power is
below the worst-case receiver
sensitivity. Low indicates
normal operation.

Port<0..1>_ABS In Async When high, this input indicates
that a module is plugged into the
SFP+ socket. Low indicates that
a module has been detected.

Table A-2. NI-7935R CLIP Signals (Continued)

Port Direction Clock Domain Description

A-6 | ni.com

Appendix A CLIP Signals

Port<0..1>_Tx_
Disable

Out Async When high, this output shuts
down the transmitter optical
transmitter. When low, operation
is enabled.

Port<0..1>_Rs<0..1> Out Async Rate selection pins.

Port<0..1>_SCL In/Out Async Bidirectional serial clock signal
for the two-wire communication
interface on the Port <0..1>
connector.

Valid values: 0 and Z (open
drain).

This signal is also called
MODDEF1.

Port<0..1>_SDA In/Out Async Bidirectional serial data signal
for the two-wire communication
interface on the Port <0..1>
connector.

Valid values: 0 and Z (open
drain).

This signal is also called
MODDEF2.

Port<0..1>_
MacAddress

In Async Unique 48-bit MAC address
assigned to Port<0..1>. Use this
address when implementing a
network interface controller on
Port<0..1>.

Port<0..1>_
MacAddressValid

In Async When asserted, this signal
indicates that
Port<0..1>_MacAddress is
valid.

Table A-2. NI-7935R CLIP Signals (Continued)

Port Direction Clock Domain Description

© National Instruments | A-7

NI-793xR User Manual

sPort<0..1>_
EnablePower

Out SocketClk40 Enables or disables the power
supply to Port <0..1>.

This signal is active high.

sPort<0..1>_
PowerGood

In SocketClk40 Indicates that the power supply
to the cable for Port <0..1> is
enabled.

This signal may deassert if an
over-power condition is
detected.

Table A-2. NI-7935R CLIP Signals (Continued)

Port Direction Clock Domain Description

© National Instruments | B-1

B
Using the Fan

The NI-793xR includes a low power consumption DC fan for cooling the device. The following
table lists the fan specifications.

Refer to the Sanyo Denki website for complete specifications.

Replacing the Fan
The NI-793xR includes a replaceable fan assembly. For fan troubleshooting information and to
order replacement parts , refer to ni.com/support.

Table B-1. NI-793xR Fan Specifications

Manufacturer Sanyo Denki

Manufacturer part number 9GA0412G7001

Rated voltage 12 V

Operating voltage range 7 V to 13.8 V

Rated speed 13,100 rpm

Air flow 0.36 m3/min (12.7 CFM)

Operating temperature -10 °C to 70 °C

Life expectancy (continual operation)
40,000 h (60 °C)

70,000 h (40 °C)

http://www.ni.com/support

© National Instruments | C-1

C
NI Services

National Instruments provides global services and support as part of our commitment to your
success. Take advantage of product services in addition to training and certification programs
that meet your needs during each phase of the application life cycle; from planning and
development through deployment and ongoing maintenance.

To get started, register your product at ni.com/myproducts.

As a registered NI product user, you are entitled to the following benefits:

• Access to applicable product services.

• Easier product management with an online account.

• Receive critical part notifications, software updates, and service expirations.

Log in to your National Instruments ni.com User Profile to get personalized access to your
services.

Services and Resources

• Maintenance and Hardware Services—NI helps you identify your systems’ accuracy and
reliability requirements and provides warranty, sparing, and calibration services to help you
maintain accuracy and minimize downtime over the life of your system. Visit ni.com/
services for more information.

– Warranty and Repair—All NI hardware features a one-year standard warranty that
is extendable up to five years. NI offers repair services performed in a timely manner
by highly trained factory technicians using only original parts at a National
Instruments service center.

– Calibration—Through regular calibration, you can quantify and improve the
measurement performance of an instrument. NI provides state-of-the-art calibration
services. If your product supports calibration, you can obtain the calibration certificate
for your product at ni.com/calibration.

• System Integration—If you have time constraints, limited in-house technical resources, or
other project challenges, National Instruments Alliance Partner members can help. To learn
more, call your local NI office or visit ni.com/alliance.

http://www.ni.com/myproducts
http://www.ni.com
http://www.ni.com/services
http://www.ni.com/services
http://www.ni.com/calibration
http://www.ni.com/alliance

C-2 | ni.com

Appendix C NI Services

• Training and Certification—The NI training and certification program is the most
effective way to increase application development proficiency and productivity. Visit
ni.com/training for more information.

– The Skills Guide assists you in identifying the proficiency requirements of your
current application and gives you options for obtaining those skills consistent with
your time and budget constraints and personal learning preferences. Visit ni.com/
skills-guide to see these custom paths.

– NI offers courses in several languages and formats including instructor-led classes at
facilities worldwide, courses on-site at your facility, and online courses to serve your
individual needs.

• Technical Support—Support at ni.com/support includes the following resources:

– Self-Help Technical Resources—Visit ni.com/support for software drivers and
updates, a searchable KnowledgeBase, product manuals, step-by-step troubleshooting
wizards, thousands of example programs, tutorials, application notes, instrument
drivers, and so on. Registered users also receive access to the NI Discussion Forums
at ni.com/forums. NI Applications Engineers make sure every question submitted
online receives an answer.

– Software Support Service Membership—The Standard Service Program (SSP) is a
renewable one-year subscription included with almost every NI software product,
including NI Developer Suite. This program entitles members to direct access to
NI Applications Engineers through phone and email for one-to-one technical support,
as well as exclusive access to online training modules at ni.com/
self-paced-training. NI also offers flexible extended contract options that
guarantee your SSP benefits are available without interruption for as long as you need
them. Visit ni.com/ssp for more information.

• Declaration of Conformity (DoC)—A DoC is our claim of compliance with the Council
of the European Communities using the manufacturer’s declaration of conformity. This
system affords the user protection for electromagnetic compatibility (EMC) and product
safety. You can obtain the DoC for your product by visiting ni.com/certification.

For information about other technical support options in your area, visit ni.com/services,
or contact your local office at ni.com/contact.

You also can visit the Worldwide Offices section of ni.com/niglobal to access the branch
office websites, which provide up-to-date contact information, support phone numbers, email
addresses, and current events.

http://www.ni.com/training
http://www.ni.com/skills-guide
http://www.ni.com/skills-guide
http://www.ni.com/support
http://www.ni.com/support
http://www.ni.com/forums
http://www.ni.com/self-paced-training
http://www.ni.com/self-paced-training
http://www.ni.com/ssp
http://www.ni.com/certification
http://www.ni.com/services
http://www.ni.com/contact
http://www.ni.com/niglobal

© National Instruments | G-1

Glossary

C

CLIP Component-level intellectual property. CLIP provides access to
adapter module physical I/O from within the LabVIEW FPGA
environment.

D

DDR3 Double data rate. This term usually refers to the communication
mechanism used to read and write DRAM.

DRAM Dynamic random-access memory

F

FPGA Field-programmable gate array.

NI-793xR modules use Xilinx Kintex-7 FPGAs.

G

GPIO General-purpose input/output

H

HDL Hardware-description language. Language that describes a
circuit’s operation, design, and organization.

L

LVFPGA LabVIEW FPGA

M

MGT Multi-gigabit transceiver. An MGT is a SerDes capable of
operating at serial bits above 1 Gb/s.

Glossary

G-2 | ni.com

P

PFI Programmable function interface

S

SCTL Single cycle timed loop

SFP+ Enhanced small form-factor pluggable

V

VHDL VHSIC Hardware Description Language

	NI-7931R/7932R/7935R User Manual
	Support
	Worldwide Technical Support and Product Information
	Worldwide Offices
	National Instruments Corporate Headquarters

	Legal Information
	Limited Warranty
	Copyright
	End-User License Agreements and Third-Party Legal Notices
	U.S. Government Restricted Rights
	Trademarks
	Patents
	Export Compliance Information
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Compliance
	Contents
	About This Manual
	Related Documentation
	Table 1. Documentation Overview
	Xilinx Documentation
	Table 2. Xilinx Documentation

	Additional Resources
	Table 3. FlexRIO Development Resources

	Chapter 1 Before You Begin
	Development Requirements
	Table 1-1. Fundamentals Resources

	Xilinx Licensing Information

	Chapter 2 Mounting the NI-793xR
	Figure 2-1. Fan Clearance
	Table 2-1. Mounting Options
	Mounting the NI-793xR Directly on a Flat Surface
	Figure 2-2. NI-793xR Dimensions

	Installing the Rubber Feet
	Figure 2-3. Installing the Rubber Feet

	Chapter 3 Hardware Architecture
	NI-7931R
	Figure 3-1. NI-7931R Front Panel Connectors
	Figure 3-2. NI-7931R LEDs
	Figure 3-3. NI-7931R FPGA Connector Pinout
	NI-7931R Key Features
	Figure 3-4. NI-7931R Architecture Key Components

	Clocking Architecture
	Figure 3-5. NI-7931R Clocking Diagram

	NI-7932R
	Figure 3-6. NI-7932R Front Panel Connectors
	Figure 3-7. NI-7932R LEDs
	Figure 3-8. NI-7932R FPGA Connector Pinout
	NI-7932R Key Features
	Figure 3-9. NI-7932R Architecture Key Components

	Clocking Architecture
	Figure 3-10. NI-7932R Clocking Diagram

	NI-7935R
	Figure 3-11. NI-7935R Front Panel Connectors
	Figure 3-12. NI-7935R LEDs
	Figure 3-13. NI-7935R FPGA Connector Pinout
	NI-7935R Key Features
	Figure 3-14. NI-7935R Architecture Key Components

	Clocking Architecture
	Figure 3-15. NI-7935R Clocking Diagram

	Chapter 4 Developing with LabVIEW FPGA
	Developing with LabVIEW FPGA
	Adding the NI-793xR to a LabVIEW Project
	Adding an Adapter Module to the Target
	Adding Items to the NI-793xR Target

	Adding NI-793xR Target I/O
	Configuring a 10 MHz Reference Clock
	Auto-loading Bitfiles on Power-up
	Interactive Front Panel Communication
	Using the NI Common Instrument Design Libraries
	Using niInstr Instruction Framework
	Streaming Overview
	CLIP Adapters Overview
	Data Trigger Overview
	Basic Elements Overview
	Memory Overview

	Compiling LabVIEW FPGA VIs
	Download, Reset, and Run Side Effects in the LabVIEW FPGA Host Interface
	Streaming
	Flow Control
	Figure 4-1. Host-Side FIFO to FPGA Flow Control
	DMA Streaming

	Simulating FPGA Behavior

	Chapter 5 Programming the High-Speed Serial Ports
	Development Flow
	Figure 5-1. NI-793xR Development Process

	Developing MGT Socketed CLIP
	Socketed CLIP Architecture
	Figure 5-2. NI-7932R Socketed CLIP Architecture
	Figure 5-3. NI-7935R Socketed CLIP Architecture

	Accessing the Xilinx Vivado Tools
	Generating an IP Core from the Xilinx Vivado IP Catalog
	Modifying Third-Party IP Core Logic
	Figure 5-4. Top-Level CLIP VHDL and Shared Logic
	Building a Netlist from the IP Core

	Writing a VHDL Wrapper Around the Protocol IP Core
	Constraints and Hierarchy
	Documenting Your IP

	Adding MGT Socketed CLIP to the LabVIEW Project
	Configuring MGT Socketed CLIP in the NI-793xR LabVIEW FPGA Targets
	Using Existing VHDL IP inside CLIP or IPIN
	Improving Performance in Larger Designs through Enable Chain Removal

	Chapter 6 Programming with the Real-Time Target
	Best Practices
	Key Concepts
	Installing and Configuring the NI-793xR
	Creating a Real-Time Application
	Real-Time System Integration
	Querying Fan Speed and Temperature Sensors
	Table 6-1. NI-793xR Temperature Sensors and Fan
	Figure 6-1. Querying Fan and CPU Temperatures
	Figure 6-2. Querying FPGA Temperature

	Power/Thermal Protection and Shutdown
	LabVIEW System Configuration API

	Communicating with Applications on an RT Target
	Front Panel Communication
	Network Communication

	Where to Go from Here
	LabVIEW Help
	LabVIEW Real-Time Module Release and Upgrade Notes

	Appendix A CLIP Signals
	Table A-1. NI-7932R CLIP Signals
	Table A-2. NI-7935R CLIP Signals

	Appendix B Using the Fan
	Table B-1. NI-793xR Fan Specifications

	Appendix C NI Services
	Glossary
	C-M
	P-V

