PXI-5152 Specifications

Contents

PXI-5152 Specifications	3
i Al-3132 Specifications	

PXI-5152 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty. Warranted specifications account for measurement uncertainties, temperature drift, and aging. Warranted specifications are ensured by design or verified during production and calibration.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- Typical specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- **Measured** specifications describe the measured performance of a representative model.

Specifications in this document are **Typical** unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- All filter settings
- All impedance selections
- Sample clock set to 1 GS/s
- Real-Time Interleaved Sampling (TIS) mode provides a 2 GS/s real-time sample rate for a single channel
- The module is warmed up for 15 minutes at ambient temperature
- Calibration cycle is maintained

• The PXI/PCI chassis fan speed is set to HIGH, the foam fan filters are removed if present, and the empty slots contain chassis slot blockers and filler panels. For more information about cooling, refer to the **Maintain Forced-Air Cooling Note to Users**.

Vertical

Analog Input (Channel 0 and Channel 1)

Number of channels	Two (simultaneously sampled)
Connectors	BNC

Impedance and Coupling

Input Impedance (software-selectable)		
50 Ω	$50~\Omega$ $\pm 1.5\%$	
1 M Ω = 1 M Ω ±0.75% in parallel with a nominal capacitance of 22 pF		
Input coupling Software-selectable: AC, DC, GND		

Voltage Levels

Range (V _{pk-pk})	50 Ω Offset (V)	1 MΩ Offset (V)
0.1	±1	±1
0.2		
0.4		
1		
2	±6	±10
4	±5	

Range (V _{pk-pk})	50 Ω Offset (V)	1 MΩ Offset (V)
10	±2	

Table 1. Full Scale (FS) Input Range and Programmable Vertical Offset Range

Maximum input overload 7 V_{rms} with |Peaks| ≤10 V 50 Ω |Peaks| ≤42 V $1\,\mathrm{M}\Omega$

Accuracy

Resolution		8 bits
DC accuracy, warranted ^{[1][2]}		
0.1 V to 1 V input range	±(1.26% of Inp	ut + 1.0% of FS + 500 μV)
2 V to 10 V input range	±(1.26% of Inp	ut + 1.0% of FS + 5 mV)
Programmable vertical offset acc	uracy ^[2]	±0.9% of offset setting, warranted
DC Drift, nominal ^[3]		
0.1 V to 1 V input range	±(0.052% of	FInput + 100 μV) per °C
2 V to 10 V input range	±(0.052% of	Input + 1.0 mV) per °C
Crosstalk		
CH 0 to/from CH 1[4]		
10 MHz	•	<-80 dB

100 MHz	<-60 dB	
Ext Trig to CH 0 or CH 1[5]		
10 MHz	<-80 dB	
100 MHz	<-80 dB	

Bandwidth and Transient Response

Bandwidth (-	-3 dB), warranted[6], [7]	
0.1 V input ra	ange	
50 Ω	165 MHz, typical	
	135 MHz minimum	
1 ΜΩ	135 MHz, typical	
	110 MHz minimum	
All other inp	ut ranges	
50 Ω	340 MHz, typical	
	300 MHz minimum	
1 ΜΩ	300 MHz, typical	
	260 MHz minimum	
Rise/fall time	<u>[8]</u>	
0.1 V input ra	ange	

50 Ω	2.4 ns	
1 ΜΩ	2.8 ns ^[9]	
All other input ranges		
50 Ω	1.2 ns	
1 ΜΩ	1.4 ns ^[9]	
Bandwidth limit filter		20 MHz noise filter
AC coupling cutoff (-3 dB) ^[10]		
50 Ω	106 kHz	2
1 ΜΩ	12 Hz	

Figure 1. PXI-5152 Frequency Response, 50 $\Omega, 1\,\text{V},$ Measured

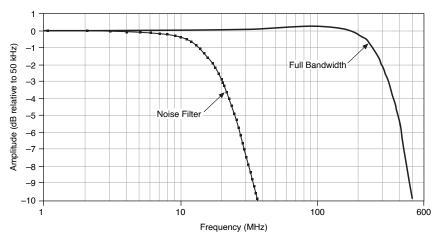


Figure 2. PXI-5152 Frequency Response, 50 Ω , 1 V Input Range, Measured

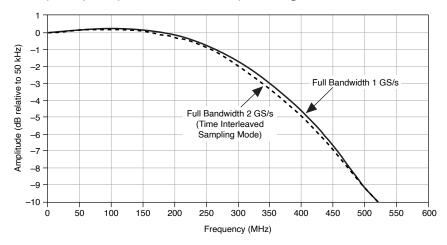


Figure 3. PXI-5152 Step Response, 50 $\Omega,$ 10 $V_{pk\text{-}pk}$ through 0.2 $V_{pk\text{-}pk}$ Input Range, Measured

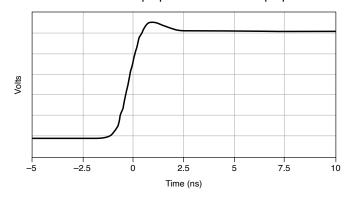
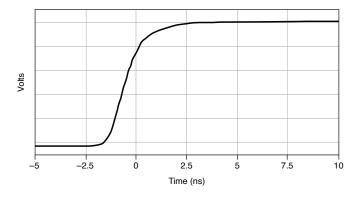



Figure 4. PXI-5152 Step Response, 50 Ω , 0.1 V_{pk-pk} Input Range, Measured

Spectral Characteristics

Noise filter on	7.3	
Noise filter off	7.1	
Signal to Noise and Distortion (SINAD)[11]		
Noise filter on	45 dB	
Noise filter off	43 dB	

Figure 5. PXI-5152 Dynamic Performance, 50 Ω , 1 V_{pk-pk} Range, 9.425 MHz, -1 dBFS Input Signal, Measured

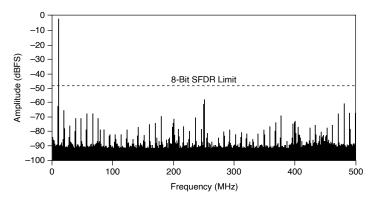
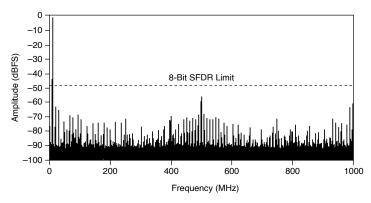



Figure 6. PXI-5152 TIS Dynamic Performance, 50 Ω , 1 V_{pk-pk} Range, 9.425 MHz, -1 dBFS Input Signal, Measured

Noise

Range (V _{pk-pk})	Noise Filter On	Noise Filter Off
0.1	240 μV _{rms} (0.24% FS)	320 μV _{rms} (0.32% FS)
0.2	480 μV _{rms} (0.24% FS)	600 μV _{rms} (0.30% FS)
0.4	960 μV _{rms} (0.24% FS)	1.12 mV _{rms} (0.28% FS)
1	2.4 mV _{rms} (0.24% FS)	2.6 mV _{rms} (0.26% FS)
2	4.8 mV _{rms} (0.24% FS)	6.0 mV _{rms} (0.30% FS)
4	9.6 mV _{rms} (0.24% FS)	11.2 mV _{rms} (0.28% FS)
10	24 mV _{rms} (0.24% FS)	26 mV _{rms} (0.26% FS)

Table 2. RMS Noise[12]

Channel-to-channel skew	<100 ps

Horizontal

Sample Clock

Sources		
Internal	Onboard clock (internal VCSO) $\overline{^{[13]}}$	
External	PFI 0 (front panel SMB connector)	

Onboard Clock (Internal VCSO)

Sample rate range	
Real-time sampling (single shot)[14]	15.26 kS/s to 1 GS/s
TIS ^[15] mode (single shot)	2 GS/s (single channel only)

Random interleaved sampling (RIS) $mode^{[16]}$ 2 GS/s to 20 GS/s in increments of 1 GS/s (repetitive waveforms only)		
Timebase accuracy		
Not phase-locked to Reference clock	• •	°C of external calibration temperature, ±7 ppm per °C outside of ±3 °C of external ature, warranted
Phase-locked to Reference clock	Equal to the Reference clock accuracy[17]	
Sample clock delay range		±1 Sample clock period
Sample clock delay/adjustment resolution		≤5 ps

External Sample Clock

Sources	PFI 0 (front panel SMB connector)
Frequency range ^[18]	350 MHz to 1 GHz
Duty cycle tolerance	45% to 55%

Phase-Locked Loop (PLL) Reference Clock

Sources	PXI_CLK10 (PXI backplane connector)
	PFI 0 (front panel SMB connector)
Frequency range ^[19]	5 MHz to 20 MHz in 1 MHz increments

	Default: 10 MHz
Duty cycle tolerance	45% to 55%
Exported Reference Clock destinations	PXI_Trig <07> (backplane connector)
	PFI 1 (front panel SMB connector)

Sample Clock and Reference Clock Input (PFI 0, Front Panel Connector)

Input voltage range	Sine wave: 0.65 V _{pk-pk} to 2.8 V _{pk-pk}	
	(0 dBm to 13 dBm)	
Maximum input overload	7 V RMS with Peaks ≤10 V	
Impedance	50 Ω	
Coupling	AC	

Reference Clock Output (PFI 1, Front Panel Connector)

Output impedance	50 Ω
Logic type	3.3 V CMOS, except when exporting 5 V
Maximum drive current	±24 mA

Trigger

Trigger types ^[20]	Edge	
	Window	
	Hysteresis	
	Video	
	Digital	
	Immediate	
	Software	
Trigger sources	CH 0	
	CH 1	
	TRIG	
	PFI <01>	
	PXI_Trig <06>	
	PXI Star Trigger	
	Software	
Time resolution		
Onboard clock, time-to-digital conversion circuit (TDC) on		5 ps
Onboard clock, TDC off		1 ns

External clock, 1	TDC off External clock period
Minimum rearr	n time ^[21]
TDC on	8 µs
TDC off	1 μs
Holdoff	From ream time up to [(2 ³² - 1) × Sample clock period]
Trigger delay	From 0 up to $[(2^{35} - 1) - Posttrigger Samples] \times (1 / Sample Rate)$, in seconds

Analog Trigger

Trigger types	Edge Window Hysteresis
Sources	CH 0 (front panel BNC connector) CH 1 (front panel BNC connector) TRIG (front panel BNC connector)
Trigger level range ^[22]	
CH 0, CH 1	100% FS
TRIG (External trigger)	±5 V
Voltage resolution	8 bits (1 in 256)

Trigger level accuracy^[23]

CH 0, CH 1 ±5% FS up to 10 MHz, warranted

TRIG (External trigger) ±1 V (±10% FS) up to 10 MHz, warranted

Edge trigger sensitivity^[22], warranted

CH 0, CH 1 10% FS

TRIG (External trigger) 1.0 Vpp

Trigger jitter^[23] ≤10 ps_{rms}, typical

≤20 ps_{rms}, maximum

Trigger filters

Low frequency reject (LF) 50 kHz

High frequency reject (HF) 50 KHz

Digital Trigger

Trigger type	Digital
Sources	PXI_Trig <06> (backplane connector) PFI <01> (front panel SMB connectors) PXI Star Trigger (backplane connector)
	The star mager (such plane connector)

External Trigger Input (Front Panel Connector)

Connector	BNC
Impedance	1 M Ω in parallel with a nominal capacitance of 22 pF
Coupling	AC, DC
AC coupling cutoff (-3 dB)	12 Hz
Input voltage range	±5 V
Maximum input overload	Peaks ≤42 V

PFI 0 and PFI 1 (Programmable Function Interface, Front Panel Connectors)

Connector	SMB jack
Direction	Bidirectional

As an Input (Trigger)

Destination	Start trigger (acquisition arm)
	Reference (stop) trigger
	Arm reference trigger
	Advance trigger

Input impedance	150 kΩ, nominal
V _{IH}	2.0 V
V _{IL}	0.8 V
Maximum input overload	-0.5 V to 5.5 V
Maximum frequency	25 MHz

As an Output (Event)

Sources	Start trigger (acquisition arm)
	Reference (stop) trigger
	End of record
	Done (end of acquisition)
	Probe compensation ^[24]
Output impedance	50 Ω
Logic type	3.3 V CMOS
Maximum drive current	±24 mA
Maximum frequency	25 MHz

Waveform Specifications

Real-Time and RIS Modes	Real-Time TIS Mode
8 MB standard (8 MS) per channel	8 MB standard (8 MS)
64 MB option (64 MS) per channel	64 MB option (64 MS)
256 MB option (256 MS) per channel	256 MB option (256 MS)
512 MB option (512 MS) per channel	512 MB option (512 MS)

Table 3. Onboard Memory Size

Minimum record length	1 sample
Number of pretrigger samples	Zero up to full record length
Number of posttrigger samples	Zero up to full record length
Maximum number of records in o	onboard memory ^[26]
8 MB per channel	32,768
64 MB per channel	100,000
256 MB per channel	100,000
512 MB per channel	100,000
Allocated onboard memory per record	[(Record length × 1 byte/sample) + 400 bytes] rounded up to next multiple of 128 bytes

Calibration

External Calibration

External calibration calibrates the VCSO and the voltage reference. All calibration constants are stored in nonvolatile memory.

Self-Calibration

Self-calibration is done on software command. The calibration corrects for gain, offset, triggering, and timing errors for all input ranges.

Calibration Specifications

Interval for external calibration	2 years
Warm-up time ^[27]	15 minutes

Software

Driver Software

Driver support for the PXI-5152 was first available in NI-SCOPE 3.2.

NI-SCOPE is an IVI-compliant driver that allows you to configure, control, and calibrate the PXI-5152. NI-SCOPE provides application programming interfaces for many development environments.

Application Software

NI-SCOPE provides programming interfaces, documentation, and examples for the following application development environments:

- LabVIEW
- LabWindows[™]/CVI[™]
- Measurement Studio
- Microsoft Visual C/C++
- .NET (C# and VB.NET)

Interactive Soft Front Panel and Configuration

When you install NI-SCOPE on a 64-bit system, you can monitor, control, and record measurements from the PXI-5152 using InstrumentStudio.

InstrumentStudio is a software-based front panel application that allows you to perform interactive measurements on several different device types in a single program.

Note InstrumentStudio is supported only on 64-bit systems. If you are using a 32-bit system, use the NI-SCOPE-specific soft front panel instead of InstrumentStudio.

Interactive control of the PXI-5152 was first available via InstrumentStudio in NI-SCOPE and via the NI-SCOPE SFP in NI-SCOPE3.2. InstrumentStudio and the NI-SCOPE SFP are included on the NI-SCOPE media.

NI Measurement & Automation Explorer (MAX) also provides interactive configuration and test tools for the PXI-5152. MAX is included on the driver media.

TClk Specifications

You can use the NI TClk synchronization method and the NI-TClk driver to align the Sample clocks on any number of supported devices, in one or more chassis. For more information about TClk synchronization, refer to the **NI-TClk Synchronization Help**, which is located within the **NI High-Speed Digitizers Help**. For other configurations, including multichassis systems, contact NI Technical Support at ni.com/support.

Intermodule SMC Synchronization Using NI-TClk for Identical Modules

Synchronization specifications are valid under the following conditions:

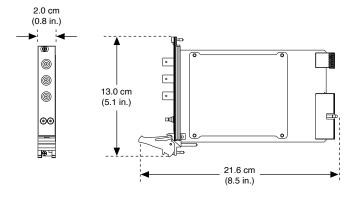
- All modules are installed in one NI PXI-1042 chassis
- The NI-TClk driver is used to align the Sample clocks of each module.

- All parameters are set to identical values for each module.
- Modules are synchronized without using an external Sample clock.
- Sample clock set to 1 GS/s and all filters are disabled.

Note Although you can use NI-TClk to synchronize non-identical SMCbased modules, these specifications apply only to synchronizing identical modules.

Skew[28]	500 ps
Skew after manual adjustment	≤5 ps
Sample clock delay/adjustment resolution	≤5 ps

Power


Current draw	
+3.3 VDC	1.1 A
+5 VDC	1.9 A
+12 VDC	500 mA
-12 VDC	210 mA
Total power	21.65 W

Physical

Dimensions	3U, one-slot, PXI module

	21.6 cm × 2.0 cm × 13.0 cm
	(8.5 in × 0.8 in × 5.1 in)
Weight	462 g (16.3 oz)

Figure 7. PXI-5152 Dimensions

Environment

Environment

Maximum altitude	2,000 m (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 55 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
Relative humidity range	10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Storage Environment

Ambient temperature range	-40 °C to 71 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
Relative humidity range	5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Shock and Vibration

Operational shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27.
	Test profile developed in accordance with MIL-PRF-28800F.)

Random vibration

Operating 5 Hz to 500 Hz, 0.31 g_{rms} (Tested in accordance with IEC 60068-2-64.)

Nonoperating 5 Hz to 500 Hz, 2.46 g_{rms} (Tested in accordance with IEC 60068-2-64. Test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Compliance and Certifications

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the Product Certifications and Declarations section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the Product Certifications and Declarations section.

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit ni.com/product-certifications, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/ environment/weee.

电子信息产品污染控制管理办法(中国 RoHS)

- ❷⑤❷ 中国 RoHS— NI 符合中国电子信息产品中限制使用某些有害物 质指令(RoHS)。关于 NI 中国 RoHS 合规性信息,请登录 ni.com/environment/ rohs_china。(For information about China RoHS compliance, go to ni.com/ environment/rohs_china.)
 - ¹ Programmable vertical offset = 0 V.
 - ² Within ±5 °C of self-calibration temperature.
 - ³ Use DC drift to calculate errors when temperature changes more than ±5 °C since the last self-calibration.
 - ⁴ Measured on one channel with test signal applied to another channel, with same range setting on both channels.

- $^{5}_{-}$ 10 V signal applied to external trigger channel. Applies to all ranges on CH 0 and CH 1.
- ⁶ Bandwidth for 0 to 30 °C. Reduce by 0.25% per °C above 30 °C for all input ranges. Filter off for all input ranges.
- ⁷ Normalized to 51 kHz.
- ⁸ Filter off.
- $\frac{9}{2}$ 50 Ω terminator connected to front panel BNC connector.
- $\frac{10}{10}$ 50 Ω source assumed.
- $\frac{11}{1}$ 1 V input range, 10 MHz, -1 dBFS input signal. Includes the 2nd through the 5th harmonics.
- 12 50 Ω terminator connected to input.
- $\underline{^{13}}$ Internal Sample clock is locked to the Reference clock or derived from the onboard VCSO.
- $\underline{\underline{^{14}}}$ Divide by **n** decimation used for all rates less than 1 GS/s.
- $\frac{15}{1}$ TIS is a type of real-time sampling that is sometimes called ping-pong.
- ¹⁶ RIS is a type of equivalent-time sampling.
- ¹⁷ Refer to your chassis specifications for the Reference clock accuracy.
- $\frac{18}{10}$ Divide by **n** decimation available where 1 ≤ **n** ≤ 65,535. For more information about the Sample clock and decimation, refer to the **NI High-Speed Digitizers Help**.
- $\frac{19}{1}$ The PLL Reference clock frequency must be accurate to ±50 ppm.
- $\frac{20}{10}$ Refer to the following sources and the **NI High-Speed Digitizers Help** for more information about which sources are available for each trigger type.

- ²¹ Holdoff set to 0. Onboard Sample clock at maximum rate.
- ²² DC to 300 MHz.
- $\frac{23}{2}$ Within ±5 °C of self-calibration temperature.
- $\frac{24}{1}$ 1 kHz, 50% duty cycle square wave. PFI 1 only.
- ²⁵ Single-record mode and multiple-record mode.
- ²⁶ It is possible to exceed these numbers if you fetch records while acquiring data. For more information, refer to the **High-Speed Digitizers Help**.

27

 $\frac{28}{2}$ Caused by clock and analog path delay differences. No manual adjustment performed.