Grove - I2C High Accuracy Temp&Humi Sensor(SHT35)

Grove - I2C High Accuracy Temp&Humi Sensor(SHT35) is based on SHT3x-DIS, which is the next generation of Sensirion's temperature and humidity sensors. It builds on a new CMOSens® sensor chip that is at the heart of Sensirion's new humidity and temperature platform. The SHT3x-DIS has increased intelligence, reliability and improved accuracy specifications compared to its predecessor. Its functionality includes enhanced signal processing, two distinctive and user selectable I2C addresses and communication speeds of up to 1 MHz.

Get One Now 📜

[https://www.seeedstudio.com/Grove-I2C-High-Accuracy-Temp%26Humi-Sensor%28SHT35%29-p-3182.html]

- High accuracy of ±1.5 %RH and ±0.1 °C
- Fully calibrated, linearized, and temperature compensated digital output
- I2C Interface with communication speeds up to 1MHz and two user selectable addresses
- Very fast start-up and measurement time

Specification

Item	Value
Operating Voltage	3.3V / 5V
Specified Temperature Range	-40°C to +125°C
Temperature Resolution	0.01°C
Temperature Accuracy Tolerance	±0.1 °C
Specified Humidity Range	0%RH to +100%RH
Humidity Resolution	0.01%RH
Humidity Accuracy Tolerance	±1.5 %RH
Interface	I ² C
I ² C Address	0x45(default) / 0x44(optional)

Applications

- Industrial Freezers and Refrigerators
- Food Processing
- Personal Computers and Servers
- PC Peripherals
- Consumer Electronics
- Handheld/Portable Devices

Hardware Overview

Pin Out

Schemaitc

Power

This module is based on **SHT35**, the input voltage of this chip range from 2.15v-5.5v, so you can use both 3.3v and 5v pin of Arduino to supply for this module.

Platforms Supported

Arduino	Raspberry Pi	
	®	

Caution

The platforms mentioned above as supported is/are an indication of the module's software or theoritical compatibility. We only provide software library or code examples for Arduino platform in most cases. It is not possible to provide software library / demo code for all possible MCU platforms. Hence, users have to write their own software library.

Getting Started

Play With Arduino

Hardware

Materials required

◀

Note

1 Please plug the USB cable gently, otherwise you may damage the port. Please use the USB cable with 4 wires inside, the 2 wires cable can't transfer data. If you are not sure about the wire you have, you can click here [https://www.seeedstudio.com/Micro-USB-Cable-48cm-p-1475.html] to buy

2 Each Grove module comes with a Grove cable when you buy. In case you lose the Grove cable, you can click here

[https://www.seeedstudio.com/Grove-Universal-4-Pin-Buckled-20cm-Cable-%285-PCs-pack%29-p-936.html] to buy.

- Step 1. Connect the Grove I2C High Accuracy Temp&Humi Sensor(SHT35) to port I²C of Grove-Base Shield.
- Step 2. Plug Grove Base Shield into Seeeduino.
- **Step 3.** Connect Seeeduino to PC via a USB cable.

Note

If we don't have Grove Base Shield, We also can directly connect this module to Seeeduino as below.

Seeeduino	Grove Cable	Grove - I2C High Accuracy Temp&Humi Sensor(SHT35)
GND	Black	GND
5V or 3.3V	Red	VCC
SDA	White	SDA
SCL	Yellow	SCL

Software

 Attention

 If this is the first time you work with Arduino, we strongly recommend you

 to see Getting Started with Arduino

 [https://wiki.seeedstudio.com/Getting_Started_with_Arduino/] before the

 start.

- Step 1. Download the Grove-SHT35 Sensor [https://github.com/Seeed-Studio/Seeed_SHT35] Library from Github.
- Step 2. Refer to How to install library
 [https://wiki.seeedstudio.com/How_to_install_Arduino_Library]
 to install library for Arduino.
- **Step 3.** Restart the Arduino IDE. Open the example, you can open it in the following three ways:
 - a. Open it directly in the Arduino IDE via the path: File \rightarrow

Examples \rightarrow Grove Temperature sensor SHT35 \rightarrow

basic_demo.

Open Ct	rl+O			
Open Recent	>			
Sketchbook	>		_	
Examples	;	▲		
Close Ct	rl+W	Radio	>	
Save Ct	rl+S	Robot Control	>	
Save As Ct	rl+Shift+S	Robot Motor	>	
		SD	>	
Page Setup Ct	rl+Shift+P	Servo	>	
Print Ctrl+P	rl+P	SpacebrewYun	>	
Preferences Ct	rl+Comma	Stepper	>	
		Temboo	>	
Quit Ct	rl+Q	RETIRED	>	
Seriel mintln	("Start fig	Converting and SUT25		hasis domo
berrar. printin		Grove remperature sensor an 133		Dasic denno

b. Open it in your computer by click the **basic_demo.ino** which you can find in the folder

XXXX\Arduino\libraries\Seeed_SHT35master\examples\basic_demo, XXXX is the location you installed the Arduino IDE.

c. Or, you can just click the icon in upper right corner of the code block to copy the following code into a new sketch in the Arduino IDE.

```
#include "Seeed SHT35.h"
1
2
3
4
5
   #ifdef ARDUINO SAMD VARIANT COMPLIANCE
6
     #define SDAPIN 20
7
     #define SCLPIN 21
8
     #define RSTPIN 7
9
     #define SERIAL SerialUSB
10 #else
    #define SDAPIN A4
11
12
     #define SCLPIN A5
     #define RSTPIN 2
13
14
     #define SERIAL Serial
   #endif
15
16
17
   SHT35 sensor(SCLPIN);
18
19
20
   void setup()
21
22
       SERIAL.begin(115200);
23
       delay(10);
24
       SERIAL.println("serial start!!");
25
       if(sensor.init())
26
27
         SERIAL.println("sensor init failed!!!");
```

```
28
29
        delay(1000);
30 }
31
32
33
   void loop()
34
35
         u16 value=0;
36
        u8 data[6]={0};
37
        float temp,hum;
38
        if(NO_ERROR!=sensor.read_meas_data_single_shot(HIGH_)
39
40
          SERIAL.println("read temp failed!!");
          SERIAL.println("
                             ");
41
          SERIAL.println("
42
                             ");
          SERIAL.println("
43
                             ");
44
45
        else
46
          SERIAL.println("result=====>");
47
          SERIAL.print("temperature =");
48
49
          SERIAL.println(temp);
50
51
          SERIAL.print("humidity =");
          SERIAL.println(hum);
52
53
          SERIAL.println("
                             ");
54
          SERIAL.println("
                             ");
55
          SERIAL.println("
56
                            ");
57
58
        delay(1000);
59 }
```

A

Attention

The library file may be updated. This code may not be applicable to the updated library file, so we recommend that you use the first two methods.

- Step 4. Upload the demo. If you do not know how to upload the code, please check How to upload code
 [https://wiki.seeedstudio.com/Upload_Code/].
- Step 5. Open the Serial Monitor of Arduino IDE by click Tool-> Serial Monitor. Or tap the Ctrl+Shift+M key at the same time. Set the baud rate to 115200.

Success

If every thing goes well, when you open the Serial Monitor , it may show as below:

```
1
   serial start!!
2
3
   temperature =24.10
4
   humidity =51.09
5
6
7
   result=====>
8
   temperature =24.10
9
   humidity =50.96
10
11
12 result=====>
13 temperature =24.10
   humidity =51.04
14
15
16
17 result=====>
18 temperature =24.11
19 humidity =51.09
```

Play With Raspberry Pi (With Grove Base Hat for Raspberry Pi)

Ē

Hardware

• Step 1. Things used in this project:

- Step 2. Plug the Grove Base Hat into Raspberry.
- Step 3. Connect the Grove I2C High Accuracy Temp&Humi Sensor(SHT35) to I²C port of the Base Hat.
- Step 4. Connect the Raspberry Pi to PC through USB cable.

Software

- Step 1. Follow Setting Software
 [https://wiki.seeedstudio.com/Grove_Base_Hat_for_Raspberry_
 Pi/#installation] to configure the development environment.
- Step 2. Download the source file by cloning the grove.py library.

Following is the

grove_I2C_High_Accuracy_tem_hum_SHT35_sensor.py code.

```
Ē
1
    import time
2
    from grove.i2c import Bus
3
    def CRC(data):
4
      crc = 0xff
5
6
      for s in data:
7
        crc ^= s
8
        for i in range(8):
          if crc & 0x80:
9
            crc <<= 1
10
11
            crc ^= 0x131
12
          else:
13
            crc <<= 1
14
      return crc
15
    class GroveTemperatureHumiditySensorSHT3x(object):
16
17
18
        def init (self, address=0x45, bus=None):
19
            self.address = address
20
21
22
            self.bus = Bus(bus)
23
24
        def read(self):
25
26
            self.bus.write i2c block data(self.address, 0x24
27
28
            # measurement duration < 16 ms</pre>
            time.sleep(0.016)
29
30
            # read 6 bytes back
31
32
            # Temp MSB, Temp LSB, Temp CRC, Humididty MSB, H
33
            data = self.bus.read_i2c_block_data(0x45, 0x00, (
34
            temperature = data[0] * 256 + data[1]
35
            celsius = -45 + (175 * temperature / 65535.0)
36
            humidity = 100 * (data[3] * 256 + data[4]) / 655:
37
            if data[2] != CRC(data[:2]):
```

```
38
                raise RuntimeError("temperature CRC mismatch
39
            if data[5] != CRC(data[3:5]):
                raise RuntimeError("humidity CRC mismatch")
40
            return celsius, humidity
41
42
43
44
    def main():
45
        sensor = GroveTemperatureHumiditySensorSHT3x()
46
        while True:
47
            temperature, humidity = sensor.read()
48
49
            print('Temperature in Celsius is {:.2f} C'.forma<sup>.</sup>
            print('Relative Humidity is {:.2f} %'.format(hum:
50
51
52
            time.sleep(1)
53
   if __name__ == "__main__":
54
55
      main()
```

Success

If everything goes well, you will be able to see the following result

1	pi@raspberrypi:~/grove.pv/grove \$ python grove I2C High
2	Temperature in Celsius is 20.47 C
3	Relative Humidity is 40.28 %
4	Temperature in Celsius is 20.47 C
5	Relative Humidity is 40.47 %
6	Temperature in Celsius is 20.47 C
7	Relative Humidity is 40.70 %
8	Temperature in Celsius is 20.43 C
9	Relative Humidity is 40.70 %
10	Temperature in Celsius is 20.41 C
11	Relative Humidity is 40.60 %
12	<pre>^CTraceback (most recent call last):</pre>
13	File "grove_I2C_High_Accuracy_tem_hum_SHT35_sensor.py"
14	main()
15	File "grove_I2C_High_Accuracy_tem_hum_SHT35_sensor.py"
16	<pre>time.sleep(1)</pre>

You can quit this program by simply press Ctrl+C.

Schematic Online Viewer

Resources

- [Zip] Grove I2C High Accuracy Temp&Humi Sensor(SHT35)
 Eagle Files [https://files.seeedstudio.com/wiki/Grove-I2C_High_Accuracy_Temp-Humi_Sensor-SHT35/res/Grove%20-%20I2C%20High%20Accuracy%20Temp%26Humi%20Sensor%2 0(SHT35).zip]
- [Zip] Seeed SHT35 Library [https://github.com/Seeed-Studio/Seeed_SHT35/archive/master.zip]
- [PDF] Datasheet SHT3x-DIS
 [https://files.seeedstudio.com/wiki/Grove-I2C_High_Accuracy_Temp-Humi_Sensor-SHT35/res/Datasheet%20SHT3x-DIS.pdf]

Projects

Transportation data visualization with Google Map: We use the Wio LTE cat.1 to monitor transportation GPS and other info. For cold chain, we can monitor the GPS location together with temperature and humidity. For the bicycling, we can monitor the GPS location together with the hear rate.

404 Not Found

openresty

Tech Support

Please do not hesitate to submit the issue into our forum

[https://forum.seeedstudio.com/]

[https://www.seeedstudio.com/act-4.html? utm_source=wiki&utm_medium=wikibanner&utm_campaign=newpr oducts]