

GSR stands for galvanic skin response, is a method of measuring the electrical conductance of the skin. Strong emotion can cause stimulus to your sympathetic nervous system, resulting more sweat being secreted by the sweat glands. Grove - GSR allows you to spot such strong emotions by simple attaching two electrodes to two fingers on one hand. It is an interesting to create emotion related projects like sleep quality monitor.

Grove-GSR Sensor measures the resistance of the people, NOT Conductivity!

Get One Now 📜

[https://www.seeedstudio.com/Grove-GSR-sensor-p-1614.html]

Version

Product Version	Changes	Released Date
Grove - GSR_Sensor V1.0	Initial	June 19, 2013
Grove - GSR_Sensor V1.2	Add C3 100nf between M324PW- TSSOP14 and GND	July 31, 2014

Specification

Parameter	Value/Range
Operating voltage	3.3V/5V
Sensitivity	Adjustable via a potentiometer
Input Signal	Resistance, NOT Conductivity
Output Signal	Voltage, analog reading
Finger contact material	Nickel

Tip More details about Grove modules please refer to Grove System [https://wiki.seeedstudio.com/Grove_System/]

Platforms Supported

Caution

The platforms mentioned above as supported is/are an indication of the module's software or theoritical compatibility. We only provide software library or code examples for Arduino platform in most cases. It is not

possible to provide software library / demo code for all possible MCU platforms. Hence, users have to write their own software library.

Getting Started

Play With Arduino

Hardware

• Step 1. We need to prepare the below stuffs:

- Step 2. Connect the Grove-GSR to A0 on Base Shield.
- Step 3. Plug the base Shield into Seeeduino-V4.2.
- Step 4. Connect Seeeduino-V4.2 to PC by using a USB cable.

Note

If we don't have a Base Shield, don't worry, the sensor can be connected to your Arduino directly. Please follow below tables to connect with Arduino.

Seeeduino	Grove-GSR Sensor
GND	Black
5V	Red
NC	White
A0	Yellow

Software

• Step 1. Copy the code into Arduino IDE and upload.

- Step 2. Do not Wear the GSR sensor.
- Step 3. Click the Tools-> Serial Plotter from Arduino IDE
- Step 4. Use the screw driver to adjust resistor until the serial output as 512.
- Step 5. Wear the GSR sensor.
- Step 6. We will see the below graph. Please deep breath and see the trends.

Human Resistance = ((1024+2*Serial_Port_Reading)*10000)/(512-Serial_Port_Reading), unit is ohm, Serial_Port_Reading is the value display on Serial Port(between 0~1023)

Play With Raspberry Pi (With Grove Base Hat for Raspberry Pi)

Hardware

• Step 1. Things used in this project:

- Step 2. Plug the Grove Base Hat into Raspberry Pi.
- **Step 3**. Connect the Grove GSR Sensor to to the A0 port of the Base Hat.
- Step 4. Connect the Raspberry Pi to PC through USB cable.

Note

For step 3 you are able to connect the Grove - GSR sensor to **any Analog Port** but make sure you change the command with the corresponding port number.

Software

- Step 1. Follow Setting Software
 [https://wiki.seeedstudio.com/Grove_Base_Hat_for_Raspberry_
 Pi/#installation] to configure the development environment.
- Step 2. Download the source file by cloning the grove.py library.

• Step 3. Excute below commands to run the code.

1 cd grove.py/grove
2 nano grove_gsr_sensor.py

Then you should copy following code in this file and hit Ctrl+X to quit and save.

```
1
    import math
2
    import sys
3
    import time
    from grove.adc import ADC
4
5
6
7
    class GroveGSRSensor:
8
9
        def __init__(self, channel):
            self.channel = channel
10
            self.adc = ADC()
11
12
13
        @property
        def GSR(self):
14
15
            value = self.adc.read(self.channel)
16
            return value
17
18
   Grove = GroveGSRSensor
19
20
21
    def main():
22
        if len(sys.argv) < 2:</pre>
            print('Usage: {} adc_channel'.format(sys.argv[0]
23
24
            sys.exit(1)
25
26
        sensor = GroveGSRSensor(int(sys.argv[1]))
27
28
        print('Detecting...')
29
        while True:
30
            print('GSR value: {0}'.format(sensor.GSR))
31
            time.sleep(.3)
32
```


• Step 4. Excute below command to run the code

```
python grove_gsr_sensor.py 0
                                                          Ē
1
    !!!success
2
       If everything goes well, you will be able to see the
3
4
5
    ```python
6
7
 pi@raspberrypi:~/grove.py/grove $ python grove gsr senso
8
 Detecting...
 GSR value: 503
9
10 GSR value: 503
11
 GSR value: 503
12 GSR value: 503
13 GSR value: 503
14 GSR value: 383
15 GSR value: 256
16 GSR value: 314
17 GSR value: 348
18 GSR value: 361
19 GSR value: 368
20 GSR value: 371
21
 ^CTraceback (most recent call last):
 File "grove_gsr_sensor.py", line 69, in <module>
22
 main()
23
24
 File "grove_gsr_sensor.py", line 66, in main
25
 time.sleep(.3)
26 KeyboardInterrupt
```

You can quit this program by simply press Ctrl + C.

#### Notice

You may have noticed that for the analog port, the silkscreen pin number is something like **A1**, **A0**, however in the command we use parameter **0** and **1**, just the same as digital port. So please make sure you plug the module into the correct port, otherwise there may be pin conflicts.

# FAQ

## Q1: What is the unit of output?

A1: We measure the signal by voltage and print to COM port as  $(0 \sim 1023)$ .

# Grove - GSR v1.0

# Grove - GSR v1.2

## Resources

### • [PDF] Download Wiki PDF

[https://files.seeedstudio.com/wiki/Grove-GSR\_Sensor/res/Grove-GSR\_Sensor\_WiKi.pdf]

## • [Eagle] Grove - GSR v1.0 Eagle File [https://files.seeedstudio.com/wiki/Grove-GSR\_Sensor/res/Grove-GSR\_Eagle\_File\_V1.0.zip]

- [Eagle] Grove GSR v1.2 Eagle File [https://files.seeedstudio.com/wiki/Grove-GSR\_Sensor/res/Grove-GSR\_Eagle\_File\_V1.2.zip]
- [Datasheet] LM324 datasheet
   [https://files.seeedstudio.com/wiki/Grove-GSR\_Sensor/res/Lm324.pdf]

# Projects

**eMotion - Towards a Better Future**: We believe we can use biometric sensors, the security of the Helium platform and strength of Google Cloud to surface possible anxiety states.



towards-a-better-future-a01489)

eMotion - Towards a Better Future (https://www.backsterio/factoryeight/emotion

# Tech Support

## Please submit any technical issue into our forum

[https://forum.seeedstudio.com/].



[https://www.seeedstudio.com/act-4.html? utm\_source=wiki&utm\_medium=wikibanner&utm\_campaign=newpr oducts]