

Voltage High-Channel Bundle

Datasheet and Specifications cDAQ-9174, NI-9205, and cRIO-9940

Voltage High-Channel Bundle

In-Box Components

Recommended Software

P/N: 785748-3501

No code software that accelerates measurement configuration and logging with NI DAQ Hardware.


- · Acquire data and log test results to .tdms or .csv files
- Inline calculations for simple math, filtering, Boolean logic, and more
- Integrated TDMS Viewer for interactive data review

Table of Contents

This document combines the PDFs of this system together. The page numbers in the table of contents correspond to the page number of PDF the component's documentation begins.

cDAQ-9171 Specifications	3
NI-9205 Specifications	13
cRIO-9940 Dimensional Drawings	28

cDAQ-9171 Specifications

DEVICE SPECIFICATIONS

NI cDAQ[™]-9171

NI CompactDAQ One-Slot Bus-Powered USB Chassis

These specifications are for the NI cDAQ-9171 chassis only. These specifications are typical at 25 °C unless otherwise noted. For the C Series module specifications, refer to the documentation for the C Series module you are using.

Analog Input

Input FIFO size	127 samples
Maximum sample rate ¹	Determined by the C Series module
Timing accuracy ²	50 ppm of sample rate
Timing resolution ²	12.5 ns
Number of channels supported	Determined by the C Series module

Analog Output

Number of channels supported	
Hardware-timed task	
Onboard regeneration	16
Non-regeneration	Determined by the C Series module
Non-hardware-timed task	Determined by the C Series module
Maximum update rate	
Onboard regeneration	1.6 MS/s (multi-channel, aggregate)
Non-regeneration	Determined by the C Series module

¹ Performance dependent on type of installed C Series module and number of channels in the task.

² Does not include group delay. For more information, refer to the documentation for each C Series module

Timing accuracy	50 ppm of sample rate
Timing resolution	12.5 ns
Output FIFO size	
Onboard regeneration	8,191 samples shared among channels used
Non-regeneration	127 samples
AO waveform modes	Non-periodic waveform, periodic waveform regeneration mode from onboard memory, periodic waveform regeneration from host buffer including dynamic update

Digital Waveform Characteristics

Waveform acquisition (DI) FIFO	
Parallel modules	511 samples
Serial modules	63 samples
Waveform generation (DO) FIFO	
Parallel modules	2,047 samples
Serial modules	63 samples
Digital input sample clock frequency	
Streaming to application memory	System-dependent
Finite	0 MHz to 10 MHz
Digital output sample clock frequency	
Streaming from application memory	System-dependent
Regeneration from FIFO	0 MHz to 10 MHz
Finite	0 MHz to 10 MHz
Timing accuracy	50 ppm

General-Purpose Counters/Timers

Number of counters/timers	4
Resolution	32 bits
Counter measurements	Edge counting, pulse, semi-period, period, two-edge separation, pulse width
Position measurements	X1, X2, X4 quadrature encoding with Channel Z reloading; two-pulse encoding

Output applications	Pulse, pulse train with dynamic updates, frequency division, equivalent time sampling
Internal base clocks	80 MHz, 20 MHz, 100 kHz
External base clock frequency	0 MHz to 20 MHz
Base clock accuracy	50 ppm
Output frequency	0 MHz to 20 MHz
Inputs	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down
Routing options for inputs	Any module PFI, analog trigger, many internal signals
FIFO	Dedicated 127-sample FIFO

Frequency Generator

Number of channels	1
Base clocks	20 MHz, 10 MHz, 100 kHz
Divisors	1 to 16 (integers)
Base clock accuracy	50 ppm
Output	Any module PFI terminal

Module PFI Characteristics

Functionality	Static digital input, static digital output, timing input, and timing output
Timing output sources ³	Many analog input, analog output, counter, digital input, and digital output timing signals
Timing input frequency	0 MHz to 20 MHz
Timing output frequency	0 MHz to 20 MHz

Digital Triggers

Source	Any module PFI terminal
Polarity	Software-selectable for most signals

³ Actual available signals are dependent on type of installed C Series module.

Analog input function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Analog output function	Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Counter/timer function	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down

Module I/O States

At power-on	Module-dependent. Refer to the documentation
	for each C Series module.

Note The NI cDAQ-9171 may revert the input/output of the modules to their power-on state when the USB cable is removed.

Bus Interface

USB specification	USB 2.0 Hi-Speed
High-performance data streams	6
Data stream types available	Analog input, analog output, digital input, digital output, counter/timer input, counter/timer output, NI-XNET ⁴

Note If you are connecting the NI cDAQ-9171 to a USB hub, the hub must be externally powered.

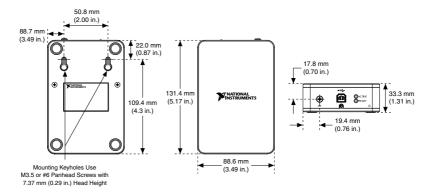
Power Requirements

Caution The protection provided by the NI cDAQ-9171 chassis can be impaired if it is used in a manner not described in this document.

Note Some C Series modules have additional power requirements. For more information about C Series module power requirements, refer to the documentation for each C Series module.

When a session is active, CAN or LIN (NI-XNET) C Series modules use a total of two data streams regardless of the number of NI-XNET modules in the chassis.

Note Sleep mode for C Series modules is not supported in the NI cDAQ-9171.


Power consumption from USB	5 V, 500 mA maximum
Suspend mode	2.5 mA maximum

Physical Characteristics

Weight (unloaded)	353 g (12.5 oz)
Dimensions (unloaded)	131.4 mm × 88.6 mm × 33.3 mm
	$(5.17 \text{ in.} \times 3.49 \text{ in.} \times 1.31 \text{ in.})$ Refer to the
	following figure.
USB connector securement	
USB securement type	Jackscrew provided on locking USB cable
	(part number 198506-01 or 780534-01)
Torque for jackscrew	0.41 N · m (3.6 lb · in.)
Chassis ground	
Gauge	1.31 mm ² (16 AWG) or larger wire
Torque for ground screw	0.76 N · m (6.7 lb · in.)

If you need to clean the chassis, wipe it with a dry towel.

Figure 1. NI cDAQ-9171 Dimensions

Environmental

Operating temperature (IEC-60068-2-1 and IEC-60068-2-2)	-20 °C to 55 °C
Storage temperature (IEC-600068-2-1 and IEC-60068-2-2)	-40 °C to 85 °C
Operating humidity (IEC-60068-2-56)	10% to 90% RH, noncondensing
Storage humidity (IEC-60068-2-56)	5% to 95% RH, noncondensing
Pollution Degree (IEC 60664)	2
Maximum altitude	5,000 m

Indoor use only.

Hazardous Locations

U.S. (UL)	Class I, Division 2, Groups A, B, C, D, T4; Class I, Zone 2, AEx nA IIC T4
Canada (C-UL)	Class I, Division 2, Groups A, B, C, D, T4; Class I, Zone 2, Ex nA IIC T4
Europe (ATEX) and International (IECEx)	Ex nA IIC T4 Gc

Shock and Vibration

To meet these specifications, you must panel mount the NI cDAQ-9171 system, use an NI locking USB cable, and affix ferrules to the ends of the terminal lines.

Operational shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with	
	MIL-PRF-28800F.)	
Random vibration		
Operating	5 Hz to 500 Hz, 0.3 g _{rms}	
Non-operating	5 Hz to 500 Hz, 2.4 g _{rms} (Tested in accordance with IEC 60068-2-64. Non-operating test profile exceeds the requirements of MIL PRF-28800F, Class 3.)	

Safety and Hazardous Locations Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1
- EN 60079-0:2012. EN 60079-15:2010
- IEC 60079-0: Ed 6, IEC 60079-15; Ed 4
- UL 60079-0; Ed 6, UL 60079-15; Ed 4
- CSA 60079-0:2011, CSA 60079-15:2012

Note For UL and other safety certifications, refer to the product label or the *Online* Product Certification section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations and certifications, and additional information, refer to the Online Product Certification section.

CE Compliance (€

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU: Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)
- 2014/34/EU; Potentially Explosive Atmospheres (ATEX)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/ certification, search by model number or product line, and click the appropriate link in the Certification column

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the Minimize Our Environmental Impact web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法(中国 RoHS)

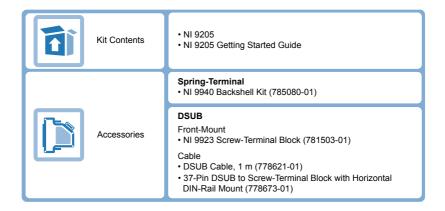
(A) 中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物 质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs china。 (For information about China RoHS compliance, go to ni.com/environment/rohs china.)

Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software, the patents .txt file on your media, or the National Instruments Patent Notice at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the Export Compliance Information at ni.com/ legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.

© 2013—2016 National Instruments. All rights reserved.

NI-9205 DataSheet

DATASHEET


NI 9205

16 AI Differential/32 AI Single-Ended, ± 200 mV to ± 10 V, 16 Bit, 250 kS/s Aggregate

- DSUB or push-in spring terminal connectivity
- 250 V RMS, CAT II, channel-to-earth isolation (spring terminal); 60 V DC, CAT I, channel-toearth isolation (DSUB)

The NI 9205 is a C Series module for use with any CompactDAQ or CompactRIO system. Each channel has programmable input ranges of ± 200 mV, ± 1 V, ± 5 V, and ± 10 V. To protect against signal transients, the NI 9205 includes ± 30 V of overvoltage protection between input channels and common (COM). In addition, the NI 9205 also includes a channel-to-earthground isolation barrier for safety, noise immunity, and high common-mode voltage range.

NI C Series Overview

NI provides more than 100 C Series modules for measurement, control, and communication applications. C Series modules can connect to any sensor or bus and allow for high-accuracy measurements that meet the demands of advanced data acquisition and control applications.

- Measurement-specific signal conditioning that connects to an array of sensors and signals
- Isolation options such as bank-to-bank, channel-to-channel, and channel-to-earth ground
- -40 °C to 70 °C temperature range to meet a variety of application and environmental needs
- Hot-swappable

The majority of C Series modules are supported in both CompactRIO and CompactDAQ platforms and you can move modules from one platform to the other with no modification.

CompactRIO

CompactRIO combines an open-embedded architecture with small size, extreme ruggedness, and C Series modules in a platform powered by the NI LabVIEW reconfigurable I/O (RIO) architecture. Each system contains an FPGA for custom timing, triggering, and processing with a wide array of available modular I/O to meet any embedded application requirement.

CompactDAQ

CompactDAO is a portable, rugged data acquisition platform that integrates connectivity, data acquisition, and signal conditioning into modular I/O for directly interfacing to any sensor or signal. Using CompactDAQ with LabVIEW, you can easily customize how you acquire, analyze, visualize, and manage your measurement data.

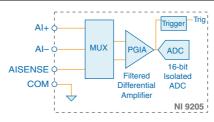
Software

LabVIEW Professional Development System for Windows

- Use advanced software tools for large project development
- Generate code automatically using DAO Assistant and Instrument I/O Assistant
- Use advanced measurement analysis and digital signal processing
- Take advantage of open connectivity with DLLs, ActiveX, and .NET objects
- Build DLLs, executables, and MSI installers

NI LabVIEW FPGA Module

- Design FPGA applications for NI RIO hardware
- Program with the same graphical environment used for desktop and real-time applications
- Execute control algorithms with loop rates up to 300 MHz
- Implement custom timing and triggering logic, digital protocols, and DSP algorithms
- Incorporate existing HDL code and third-party IP including Xilinx IP generator functions
- Purchase as part of the LabVIEW Embedded Control and Monitoring Suite



- Design deterministic real-time applications with LabVIEW graphical programming
- Download to dedicated NI or third-party hardware for reliable execution and a wide selection of I/O
- Take advantage of built-in PID control, signal processing, and analysis functions
- Automatically take advantage of multicore CPUs or set processor affinity manually
- Take advantage of real-time OS, development and debugging support, and board support
- Purchase individually or as part of a LabVIEW suite

Input Circuitry

The NI 9205 channels share a common ground (COM) that is isolated from other modules in the system. All channels share a programmable gain instrumentation amplifier and are multiplexed to an ADC. Each channel also has ± 30 V overvoltage protection.

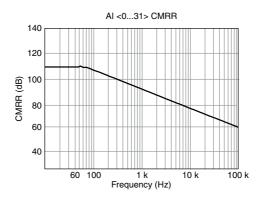
Figure 1. Input Circuitry for One Analog Input Channel on the NI 9205

NI 9205 Specifications

The following specifications are typical for the range -40 °C to 70 °C unless otherwise noted. All voltages are relative to COM unless otherwise noted.

Caution Do not operate the NI 9205 in a manner not specified in this document. Product misuse can result in a hazard. You can compromise the safety protection built into the product if the product is damaged in any way. If the product is damaged, return it to NI for repair.

MTBF 775,832 hours at 25 °C; Bellcore Issue 6, Method 1, Case 3, Limited Part Stress Method


Analog Input Characteristics

Number of channels	16 differential/32 single-ended channels
ADC resolution	16 bits
DNL	No missing codes guaranteed
Conversion time (maximum sampling rate)	
CompactRIO & CompactDAQ chassis	4.00 μs (250 kS/s)
R Series Expansion chassis	4.50 μs (222 kS/s)
Input coupling	DC
Nominal input ranges	$\pm 10 \text{ V}, \pm 5 \text{ V}, \pm 1 \text{ V}, \pm 0.2 \text{ V}$
Minimum overrange, ±10 V range	4%
Maximum working voltage for analog inputs (signal + common mode)	Each channel must remain within $\pm 10.4~V$ of COM
Input impedance (AI-to-COM)	
Powered on	$>$ 10 G Ω in parallel with 100 pF
Powered off/overload	4.7 kΩ minimum
Input bias current	±100 pA

Crosstalk, at 100 kHz

Clossiaik, at 100 kHz	
Adjacent channels	-65 dB
Non-adjacent channels	-70 dB
Analog bandwidth	370 kHz
Overvoltage protection	
AI channel, 0 to 31	±30 V, one channel only
AISENSE	±30 V
Settling time for multichannel measurements	s, accuracy, all ranges
±120 ppm of full-scale step, ±8 LSB	4 μs convert interval
±30 ppm of full-scale step, ±2 LSB	8 μs convert interval
Analog triggers	
Number of triggers	1
Resolution	10 bits, 1 in 1,024
Bandwidth, -3 dB	370 kHz
Accuracy	±1% of full scale
Scaling coefficients	
±10 V range	328 μV/LSB
±5 V range	164.2 μV/LSB
±1 V range	$32.8~\mu V/LSB$
±0.2 V range	6.57 μV/LSB
CMRR, DC to 60 Hz	100 dB

Figure 2. CMRR, Al+ to Al-

Analog Input Absolute Accuracy

The following values are based on calibrated scaling coefficients, which are stored in the onboard EEPROM.

Table 1. Absolute accuracy

Range	Accuracy at Full Scale ¹	Random Noise², σ	Sensitivity ³
±10 V	6,230 μV	237 μV RMS	96.0 μV
±5 V	3,230 μV	121 μV RMS	46.4 μV
±1 V	692 μV	29 μV RMS	10.4 μV
±0.2 V	175 μV	15 μV RMS	4.0 μV

Residual gain error	
±10 V range	115 ppm of reading
±5 V range	135 ppm of reading
±1 V range	155 ppm of reading
±0.2 V range	215 ppm of reading
Gain tempco	11 ppm/°C
Reference tempco	5
Residual offset error	
$\pm 10 \text{ V range}$	20 ppm of range
±5 V range	20 ppm of range
±1 V range	25 ppm of range
±0.2 V range	40 ppm of range
Offset tempco	
±10 V range	44 ppm of range/°C
±5 V range	47 ppm of range/°C
±1 V range	66 ppm of range/°C
±0.2 V range	162 ppm of range/°C
INL error	76 ppm of range

Absolute accuracy values at full scale on the analog input channels assume the device is operating within 70 °C of the last external calibration and are valid for averaging 100 samples immediately following self-calibration.

² Differential mode

³ Sensitivity is a function of noise and indicates the smallest voltage change that can be detected.

Analog Input Accuracy Formulas

Absolute Accuracy = Reading * Gain Error + Range * Offset Error + Noise Uncertainty

where

Gain Error = Residual Gain Error + Gain Tempco * Temp Change from Last Internal Cal + Reference Tempco * Temp Change from Last External Cal

Offset Error = Residual Offset Error + Offset Tempco * Temp Change from Last Internal Cal + INL Error

Noise Uncertainty = (Random Noise * 3) / $\sqrt{100}$ for a coverage factor of 3 σ and averaging 100 points

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

Temp Change from Last External Cal = 70 °C *Temp Change from Last Internal Cal* = 1 °C Number of Readings = 100

Coverage Factor = 3σ

For example, on the ± 10 V range, the absolute accuracy at full scale is as follows:

 $Gain\ Error = 115\ ppm + 11\ ppm * 1 + 5\ ppm * 70$

 $Gain\ Error = 476\ ppm$

Offset Error = 20 ppm + 44 ppm * 1 + 76 ppm

Offset Error = 140 ppm

Noise Uncertainty = $(237 \mu V * 3) / \sqrt{100}$

Noise Uncertainty = $72 \mu V$

Absolute Accuracy = $10 \text{ V} * 476 \text{ ppm} + 10 \text{ V} * 140 \text{ ppm} + 72 \mu\text{V}$

Absolute Accuracy = 6,231 μ V, rounds to 6,230 μ V

Digital Characteristics

1 digital input channel, 1 digital output channel	
±30 V	
2.0 V	
3.3 V	

⁴ The digital input and digital output channel are supported only in FPGA Interface mode in software.

Input low, V _{IL}	
Minimum	0 V
Maximum	0.34 V
Output high, V_{OH} , sourcing 75 μA	
Minimum	2.1 V
Maximum	3.3 V
Output low, V_{OH} , sinking 250 μA	
Minimum	0 V
Maximum	0.4 V
External digital triggers	
Source	PFI0
Delay	100 ns maximum

Power Requirements

Power consumption from chassis	
Active mode	625 mW maximum
Sleep mode	15 mW
Thermal dissipation (at 70 °C)	
Active mode	625 mW maximum
Sleep mode	15 mW

Physical Characteristics

If you need to clean the module, wipe it with a dry towel.

Tip For two-dimensional drawings and three-dimensional models of the C Series module and connectors, visit ni.com/dimensions and search by module number.

pring terminal wiring	
Gauge	0.13 mm ² to 1.5 mm ² (26 AWG to 16 AWG) copper conductor wire
Wire strip length	10 mm (0.394 in.) of insulation stripped from the end
Temperature rating	90 °C, minimum
Wires per spring terminal	One wire per spring terminal; two wires per spring terminal using a 2-wire ferrule
Ferrules	0.14 mm ² to 1.5 mm ²

Connector securement

Securement type	Screw flanges provided
Torque for screw flanges	0.2 N · m (1.80 lb · in.)
Weight	
NI 9205 with spring terminal	163 g (5.7 oz)
NI 9205 with DSUB	148 g (5.3 oz)

Safety Voltages

Connect only voltages that are within the following limits:

Maximum voltage ⁵		
Channel-to-COM	±30 V DC	

NI 9205 with Spring Terminal Isolation Voltages

Channel-to-channel	None
Channel-to-earth ground	
Continuous	250 V RMS, Measurement Category II
Withstand up to 5,000 m	3,000 V RMS, verified by a 5 s dielectric withstand test

Measurement Category II is for measurements performed on circuits directly connected to the electrical distribution system. This category refers to local-level electrical distribution, such as that provided by a standard wall outlet, for example, 115 V for U.S. or 230 V for Europe.

Caution Do not connect the NI 9205 with spring terminal to signals or use for measurements within Measurement Categories III or IV.

NI 9205 with DSUB Isolation Voltages

Channel-to-channel	None
Channel-to-earth ground	
Continuous	60 V DC, Measurement Category I
Withstand	
up to 2,000 m	1,000 V RMS, verified by a 5 s dielectric withstand test
up to 5,000 m	500 V RMS

⁵ The maximum voltage that can be applied or output between AI and COM without creating a safety

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as *MAINS* voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

Caution Do not connect the NI 9205 with DSUB to signals or use for measurements within Measurement Categories II, III, or IV.

Note Measurement Categories CAT I and CAT O are equivalent. These test and measurement circuits are for other circuits not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV.

Hazardous Locations

U.S. (UL)	Class I, Division 2, Groups A, B, C, D, T4; Class I, Zone 2, AEx nA IIC T4 Gc
Canada (C-UL)	Class I, Division 2, Groups A, B, C, D, T4; Ex nA IIC T4 Gc
Europe (ATEX) and International (IECEx)	Ex nA IIC T4 Gc

Safety and Hazardous Locations Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1
- EN 60079-0:2012, EN 60079-15:2010
- IEC 60079-0: Ed 6, IEC 60079-15; Ed 4
- UL 60079-0; Ed 6, UL 60079-15; Ed 4
- CSA C22.2 No. 60079-0, CSA C22.2 No. 60079-15

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Industrial immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity

- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations and certifications, and additional information, refer to the Online Product Certification section.

CE Compliance (€

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)
- 2014/34/EU; Potentially Explosive Atmospheres (ATEX)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/ certification, search by model number or product line, and click the appropriate link in the Certification column

Shock and Vibration

To meet these specifications, you must panel mount the system.

Operating vibration	
Random (IEC 60068-2-64)	5 g_{rms} , 10 Hz to 500 Hz
Sinusoidal (IEC 60068-2-6)	5 g, 10 Hz to 500 Hz
Operating shock (IEC 60068-2-27)	30 g, 11 ms half sine; 50 g, 3 ms half sine; 18 shocks at 6 orientations

Environmental

Refer to the manual for the chassis you are using for more information about meeting these specifications.

Operating temperature (IEC 60068-2-1, IEC 60068-2-2)	-40 °C to 70 °C
Storage temperature (IEC 60068-2-1, IEC 60068-2-2)	-40 °C to 85 °C
Ingress protection	IP40
Operating humidity (IEC 60068-2-78)	10% RH to 90% RH, noncondensing
Storage humidity (IEC 60068-2-78)	5% RH to 95% RH, noncondensing
Pollution Degree	2
Maximum altitude	5,000 m

Indoor use only.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Minimize Our Environmental Impact* web page at *ni.com/environment*. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

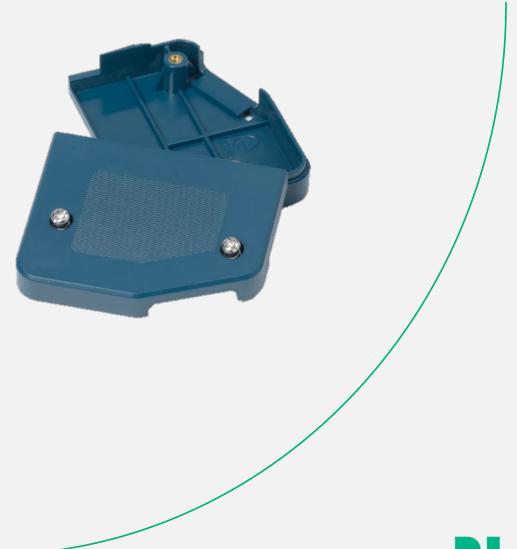
X

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit *ni.com/environment/weee*.

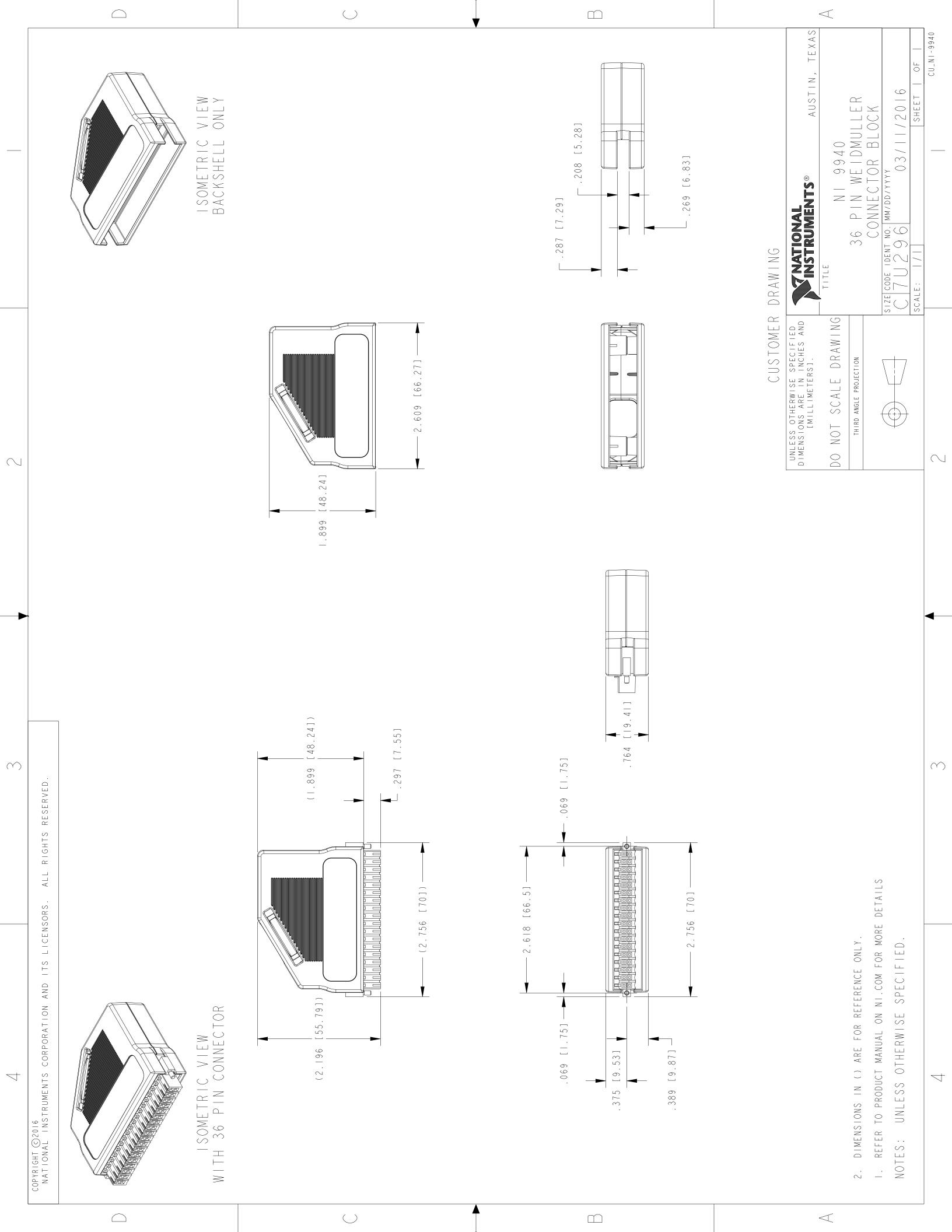
电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs china.)

Calibration


You can obtain the calibration certificate and information about calibration services for the NI 9205 at *ni.com/calibration*.

Calibration interval


2 years

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software, the patents .txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.

cRIO-9940 Dimensional Drawing

