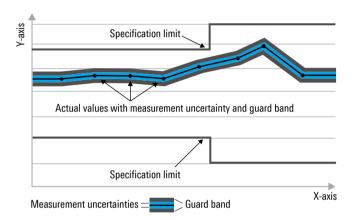

R&S®NRP POWER METER FAMILY

3 warranty

Specifications

CONTENTS

Definitions	3
Overview of the R&S®NRP power sensors	4
Specifications in brief of the R&S®NRP power sensors	5
Multipath diode power sensors	8
R&S®NRP8S(N)/18S(N)/33S(N) three-path diode power sensors, R&S®NRP33SN-V TVAC-compliant three-path diode power sensor	8
R&S®NRP40S(N)/50S(N)/67S(N)/90S(N) three-path diode power sensors, R&S®NRP67SN-V TVAC-compliant three-path diode power sensor	11
R&S®NRP18S-10 high-power three-path diode power sensor	16
R&S®NRP18S-20 high-power three-path diode power sensor	18
R&S®NRP18S-25 high-power three-path diode power sensor	20
Additional characteristics of the R&S®NRPxxS(N)/18S-10/18S-20/18S-25 three-path diode power sensors and the R&S®NRP33SN-V/67SN-V TVAC-compliant three-path diode power sensors	22
Power rating of the R&S®NRP18S-10/-20/-25	25
Average power sensors	26
R&S®NRP6A(N)/18A(N) average power sensors	26
Additional characteristics of the R&S®NRPxxA(N) average power sensors	29
Thermal power sensors	31
R&S®NRP18T(N)/33T(N)/40T(N)/50T(N)/67T(N) thermal power sensors	31
R&S®NRP90T(N)/110T thermal power sensors	32
Additional characteristics of the R&S®NRP18T(N)/33T(N)/40T(N)/50T(N)/67T(N)/90T(N)/110T thermal power sensors	33
Thermal waveguide power sensors	35
R&S®NRP75TWG(N)/90TWG(N)/110TWG(N) thermal waveguide power sensors	35
Additional characteristics of the R&S®NRP75TWG(N)/90TWG(N)/110TWG(N) thermal waveguide power sensors	36
Accessories for R&S®NRP power sensors	38
R&S®NRP-ZKU interface cables	38
R&S®NRP-ZKC interface cables	38
R&S®NRP-ZK6 interface cables	38
R&S®NRP-ZK8 interface cables	38
R&S®NRP-ZKVSRJ Ethernet cables for TVAC applications	39
R&S®NRP-ZKVSMD Ethernet cables for TVAC applications	39
R&S®NRP-ZKASMD Ethernet cables (air side cables)	39
General data for R&S®NRP power sensors and accessories	40
R&S®NRX base unit	41
Options for the R&S®NRX base unit	44
Appendix	45
Reading the uncertainty of multipath power sensors for relative power measurements	45
Technical drawings of the R&S®NRP33SN-V/-67SN-V TVAC-compliant three-path diode power sensor	46
Ordering information	47
Endnotes	50


Definitions

Product data applies under the following conditions:

- Three hours storage at the expected operating temperature followed by 30 minutes warm-up, unless otherwise stated
- · Specified environmental conditions met
- Recommended calibration interval adhered to
- All internal automatic adjustments performed, if applicable

Specifications with limits

Represent warranted product performance by means of a range of values for the specified parameter. These specifications are marked with limiting symbols such as <, \le , \ge , \pm , or descriptions such as maximum, limit of, minimum. Compliance is ensured by testing or is derived from the design. Test limits are narrowed by guard bands to take into account measurement uncertainties, drift and aging, if applicable.

Specifications without limits

Represent warranted product performance for the specified parameter. These specifications are not specially marked and represent values with no or negligible deviations from the given value (e.g. dimensions or resolution of a setting parameter). Compliance is ensured by design.

Typical values (typ.)

Characterizes product performance by means of representative information for the given parameter. When marked with <, > or as a range, it represents the performance met by approximately 80 % of the instruments at production time. Otherwise, it represents the mean value.

Nominal values (nom.)

Characterize product performance by means of a representative value for the given parameter (e.g. nominal impedance). In contrast to typical data, a statistical evaluation does not take place and the parameter is not tested during production.

Measured values (meas.)

Characterize expected product performance by means of measurement results gained from individual samples.

Uncertainties

Represent limits of measurement uncertainty for a given measurand. Uncertainty is defined with a coverage factor of 2 and has been calculated in line with the rules of the Guide to the Expression of Uncertainty in Measurement (GUM), taking into account environmental conditions, aging, wear and tear.

Device settings and GUI parameters are indicated as follows: "parameter: value".

Typical data as well as nominal and measured values are not warranted by Rohde & Schwarz.

In line with the 3GPP/3GPP2 standard, chip rates are specified in million chips per second (Mcps), whereas bit rates and symbol rates are specified in billion bit per second (Gbps), million bit per second (Mbps), thousand bit per second (kbps), million symbols per second (Msps) or thousand symbols per second (ksps), and sample rates are specified in million samples per second (Msample/s). Gbps, Mcps, Msps, ksps, ksps and Msample/s are not SI units.

Overview of the R&S®NRP power sensors

Sensor type R&S®	Frequency range	Power range, max. average power / peak envelope power	Connector type
Three-path diode p	ower sensors		
NRP8S(N)	10 MHz to 8 GHz	100 pW to 200 mW (-70 dBm to +23 dBm)	N (m)
()		max. 1 W (AVG) / 2 W (PK, 10 µs)	
NRP18S(N)	10 MHz to 18 GHz	100 pW to 200 mW (-70 dBm to +23 dBm)	N (m)
		max. 1 W (AVG) / 2 W (PK, 10 μs)	,
NRP33S(N)/	10 MHz to 33 GHz	100 pW to 200 mW (-70 dBm to +23 dBm)	3.50 mm (m)
NRP33SN-V		max. 1 W (AVG) / 2 W (PK, 10 μs)	,
NRP40S(N)	50 MHz to 40 GHz	100 pW to 100 mW (-70 dBm to +20 dBm)	2.92 mm (m)
		max. 200 mW (AVG) / 1 W (PK, 10 μs)	
NRP50S(N)	50 MHz to 50 GHz	100 pW to 100 mW (-70 dBm to +20 dBm)	2.40 mm (m)
		max. 200 mW (AVG) / 1 W (PK, 10 μs)	
NRP67S(N)	50 MHz to 67 GHz	100 pW to 100 mW (-70 dBm to +20 dBm)	1.85 mm (m)
NRP67SN-V		max. 200 mW (AVG) / 1 W (PK, 10 μs)	()
NRP90S(N)	50 MHz to 90 GHz	100 pW to 100 mW (-70 dBm to +20 dBm)	1.35 mm (m) /
		max. 200 mW (AVG) / 1 W (PK, 10 μs)	1.00 mm (m)
liah-power three-r	oath diode power sensors	,	111111111111111111111111111111111111111
NRP18S-10	10 MHz to 18 GHz	1 nW to 2 W (-60 dBm to +33 dBm)	N (m)
		max. 3 W (AVG) / 20 W (PK, 10 µs)	,
NRP18S-20	10 MHz to 18 GHz	10 nW to 15 W (-50 dBm to +42 dBm)	N (m)
		max. 18 W (AVG) / 100 W (PK, 10 µs)	,
NRP18S-25	10 MHz to 18 GHz	30 nW to 30 W (-45 dBm to +45 dBm)	N (m)
100 20		max. 36 W (AVG) / 300 W (PK, 10 μs)	,
Average power ser	nsors	· · · · · · · · · · · · · · · · · · ·	I
NRP6A(N)	8 kHz to 6 GHz	100 pW to 200 mW (-70 dBm to +23 dBm)	N (m)
		max. 1 W (AVG) / 2 W (PK, 10 μs)	,
NRP18A(N)	8 kHz to 18 GHz	100 pW to 200 mW (–70 dBm to +23 dBm)	N (m)
		max. 1 W (AVG) / 2 W (PK, 10 μs)	,
Thermal power ser	nsors		
NRP18T(N)	DC to 18 GHz	300 nW to 100 mW (-35 dBm to +20 dBm)	N (m)
	20101001.2	max. 300 mW (AVG) / 20 W (PK, 1 μs)	,
NRP33T(N)	DC to 33 GHz	300 nW to 100 mW (–35 dBm to +20 dBm)	3.50 mm (m)
55.()	20100002	max. 300 mW (AVG) / 10 W (PK, 1 µs)	0.00
NRP40T(N)	DC to 40 GHz	300 nW to 100 mW (–35 dBm to +20 dBm)	2.92 mm (m)
	20101001.2	max. 300 mW (AVG) / 10 W (PK, 1 µs)	()
NRP50T(N)	DC to 50 GHz	300 nW to 100 mW (–35 dBm to +20 dBm)	2.40 mm (m)
		max. 300 mW (AVG) / 10 W (PK, 1 µs)	
NRP67T(N)	DC to 67 GHz	300 nW to 100 mW (–35 dBm to +20 dBm)	1.85 mm (m)
		max. 300 mW (AVG) / 10 W (PK, 1 μs)	()
NRP90T(N)	DC to 90 GHz	300 nW to 100 mW (–35 dBm to +20 dBm)	1.35 mm (m)
		max. 300 mW (AVG) / 10 W (PK, 1 μs)	()
NRP110T	DC to 110 GHz	300 nW to 100 mW (–35 dBm to +20 dBm)	1.00 mm (m)
	20101100112	max. 300 mW (AVG) / 10 W (PK, 1 µs)	
Thermal waveguide	e power sensors	,	
NRP75TWG(N)	50 GHz to 75 GHz	300 nW to 100 mW (-35 dBm to +20 dBm)	WR15
	33 3.12 3.73 3.12	max. 300 mW (AVG) / 10 W (PK, 1 µs)	
NRP90TWG(N)	60 GHz to 90 GHz	300 nW to 100 mW (–35 dBm to +20 dBm)	WR12
551175(14)	00 0.12 10 00 0.12	max. 300 mW (AVG) / 10 W (PK, 1 µs)	*******
NRP110TWG(N)	75 GHz to 110 GHz	300 nW to 100 mW (–35 dBm to +20 dBm)	WR10
(1 1)	10 0112 10 110 0112	max. 300 mW (AVG) / 10 W (PK, 1 µs)	*****

Specifications in brief of the R&S®NRP power sensors

Sensor type R&S [®]	Impedance matching (SWR)	Rise time Video BW	Zero offset	Noise (typ.)	Uncertainty for power measurements at +20 °C to +25 °C		
			(typ.)		absolute (in dB)	relative (in dB)	
Three-path diod	de power sensors						
NRP8S(N)	10 MHz to 2.4 GHz: < 1.13				0.053 to 0.065	0.022 to 0.050	
	> 2.4 GHz to 8.0 GHz: < 1.20						
NRP18S(N)	10 MHz to 2.4 GHz: < 1.13				0.053 to 0.094	0.022 to 0.069	
	> 2.4 GHz to 8.0 GHz: < 1.20						
	> 8.0 GHz to 18.0 GHz: < 1.25						
NRP33S(N)/	10 MHz to 2.4 GHz: < 1.13				0.053 to 0.134	0.022 to 0.136	
NRP33SN-V	> 2.4 GHz to 8.0 GHz: < 1.20						
	> 8.0 GHz to 18.0 GHz: < 1.25						
	> 18.0 GHz to 26.5 GHz: < 1.30						
	> 26.5 GHz to 33.0 GHz: < 1.35						
NRP40S(N)			0.073 to 0.138	0.028 to 0.142			
	> 2.4 GHz to 8.0 GHz: < 1.20						
	> 8.0 GHz to 18.0 GHz: < 1.25						
	> 18.0 GHz to 26.5 GHz: < 1.30						
	> 26.5 GHz to 33.0 GHz: < 1.35						
	> 33.0 GHz to 40.0 GHz: < 1.37						
NRP50S(N)	50 MHz to 2.4 GHz: < 1.13				0.073 to 0.183	0.028 to 0.184	
	> 2.4 GHz to 8.0 GHz: < 1.20						
	> 8.0 GHz to 18.0 GHz: < 1.25						
	> 18.0 GHz to 26.5 GHz: < 1.30	< 5 µs					
	> 26.5 GHz to 33.0 GHz: < 1.35	> 100 kHz	28 pW	20 pW			
	> 33.0 GHz to 40.0 GHz: < 1.37						
NIDDOZO/NI)	> 40.0 GHz to 50.0 GHz: < 1.40				0.070 (0.055	0.000 (0000	
NRP67S(N)	50 MHz to 200 MHz: < 1.30				0.073 to 0.255	0.028 to 0.266	
NRP67SN-V	> 200 MHz to 2.4 GHz: < 1.13						
	> 2.4 GHz to 8.0 GHz: < 1.20						
	> 8.0 GHz to 18.0 GHz: < 1.25 > 18.0 GHz to 26.5 GHz: < 1.30						
	> 26.5 GHz to 33.0 GHz: < 1.35						
	> 33.0 GHz to 40.0 GHz: < 1.37						
	> 40.0 GHz to 50.0 GHz: < 1.40						
	> 50.0 GHz to 67.0 GHz: < 1.40						
NRP90S(N)	50 MHz to 200 MHz: < 1.30				0.073 to 0.300	0.028 to 0.320	
141(1 000(14)	> 200 MHz to 2.4 GHz: < 1.13				0.070 10 0.000	0.020 10 0.020	
	> 2.4 GHz to 8.0 GHz: < 1.20						
	> 8.0 GHz to 18.0 GHz: < 1.25						
	> 18.0 GHz to 26.5 GHz: < 1.30						
	> 26.5 GHz to 40.0 GHz: < 1.38						
	> 40.0 GHz to 50.0 GHz: < 1.46						
	> 50.0 GHz to 67.0 GHz: < 1.68						
	> 67.0 GHz to 90.0 GHz: < 1.98						

Version 13.01, October 2022

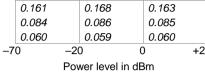
Sensor type R&S [®]	Impedance matching (SWR)		Zero offset	Noise (typ.)	Uncertainty for power measurements at +20 °C to +25 °C	
			(typ.)		absolute (in dB)	relative (in dB)
High-power thr	ee-path diode power sensors					
NRP18S-10	10 MHz to 2.4 GHz: < 1.14		320 pW	230 pW	0.083 to 0.198	0.022 to 0.087
	> 2.4 GHz to 8.0 GHz: < 1.20					
	> 8.0 GHz to 12.4 GHz: < 1.25					
	> 12.4 GHz to 18.0 GHz: < 1.30					
NRP18S-20	10 MHz to 2.4 GHz: < 1.14		3.4 nW	2.4 nW	0.083 to 0.198	0.022 to 0.087
	> 2.4 GHz to 8.0 GHz: < 1.25	< 5 µs				
	> 8.0 GHz to 12.4 GHz: < 1.30	> 100 kHz				
	> 12.4 GHz to 18.0 GHz: < 1.41					
NRP18S-25	10 MHz to 2.4 GHz: < 1.14		12 nW	8 nW	0.083 to 0.219	0.022 to 0.087
	> 2.4 GHz to 8.0 GHz: < 1.25					
	> 8.0 GHz to 12.4 GHz: < 1.30					
	> 12.4 GHz to 18.0 GHz: < 1.41					
Average power	sensors					
NRP6A(N)	8 kHz to < 20 kHz: < 1.25				0.051 to 0.056	0.022 to 0.050
	20 kHz to 2.4 GHz: < 1.13					
	> 2.4 GHz to 6.0 GHz: < 1.20					
NRP18A(N)	8 kHz to < 20 kHz: < 1.25	_	28 pW	20 pW	0.051 to 0.094	0.022 to 0.069
	20 kHz to 2.4 GHz: < 1.13					
	> 2.4 GHz to 8.0 GHz: < 1.20					
	> 8.0 GHz to 18.0 GHz: < 1.25					

Sensor type R&S [®]	Impedance matching (SWR)	Rise time Video BW	Zero offset	Noise (typ.)	Uncertainty for power measurements at +20 °C to +25 °C		
			(typ.)		absolute (in dB)	relative (in dB)	
Thermal power							
NRP18T(N)	DC to 100 MHz: < 1.03				0.040 to 0.082	0.010	
	> 100 MHz to 2.4 GHz: < 1.06						
	> 2.4 GHz to 12.4 GHz: < 1.13						
	> 12.4 GHz to 18.0 GHz: < 1.16						
NRP33T(N)	DC to 100 MHz: < 1.03				0.040 to 0.101	0.010	
	> 100 MHz to 2.4 GHz: < 1.06						
	> 2.4 GHz to 12.4 GHz: < 1.13						
	> 12.4 GHz to 18.0 GHz: < 1.16						
	> 18.0 GHz to 26.5 GHz: < 1.22						
NDD40T(NI)	> 26.5 GHz to 33.0 GHz: < 1.28				0.040 to 0.400	0.040	
NRP40T(N)	DC to 100 MHz: < 1.03				0.040 to 0.108	0.010	
	> 100 MHz to 2.4 GHz: < 1.06 > 2.4 GHz to 12.4 GHz: < 1.13						
	> 12.4 GHz to 18.0 GHz: < 1.16						
	> 18.0 GHz to 26.5 GHz: < 1.10						
	> 26.5 GHz to 40.0 GHz: < 1.28						
NRP50T(N)	DC to 100 MHz: < 1.03				0.040 to 0.143	0.010	
1111 001 (11)	> 100 MHz to 2.4 GHz: < 1.06				0.070100.170	0.070	
	> 2.4 GHz to 12.4 GHz: < 1.13						
	> 12.4 GHz to 18.0 GHz: < 1.16						
	> 18.0 GHz to 26.5 GHz: < 1.22						
	> 26.5 GHz to 40.0 GHz: < 1.28						
	> 40.0 GHz to 50.0 GHz: < 1.30						
NRP67T(N)	DC to 100 MHz: < 1.03				0.040 to 0.209	0.010	
	> 100 MHz to 2.4 GHz: < 1.06						
	> 2.4 GHz to 12.4 GHz: < 1.13	_	15 nW	15 nW			
	> 12.4 GHz to 18.0 GHz: < 1.16		13 1100	13 1100			
	> 18.0 GHz to 26.5 GHz: < 1.22						
	> 26.5 GHz to 40.0 GHz: < 1.28						
	> 40.0 GHz to 50.0 GHz: < 1.30						
	> 50.0 GHz to 67.0 GHz: < 1.35						
NRP90T(N)	DC to 100 MHz: < 1.05				0.041 to 0.269	0.010 to 0.014	
	> 100 MHz to 2.4 GHz: < 1.08						
	> 2.4 GHz to 12.4 GHz: < 1.18						
	> 12.4 GHz to 18.0 GHz: < 1.23						
	> 18.0 GHz to 26.5 GHz: < 1.28						
	> 26.5 GHz to 40.0 GHz: < 1.38 > 40.0 GHz to 50.0 GHz: < 1.46						
	> 50.0 GHz to 67.0 GHz: < 1.46						
	> 67.0 GHz to 80.0 GHz: < 1.60						
	> 80.0 GHz to 90.0 GHz: < 1.66						
NRP110T	DC to 100 MHz: < 1.05				0.041 to 0.290	0.010 to 0.014	
VICE FIOT	> 100 MHz to 2.4 GHz: < 1.08				0.041 10 0.230	0.010 10 0.014	
	> 2.4 GHz to 12.4 GHz: < 1.18						
	> 12.4 GHz to 18.0 GHz: < 1.23						
	> 18.0 GHz to 26.5 GHz: < 1.28						
	> 26.5 GHz to 40.0 GHz: < 1.38						
	> 40.0 GHz to 50.0 GHz: < 1.46						
	> 50.0 GHz to 67.0 GHz: < 1.56						
	> 67.0 GHz to 80.0 GHz: < 1.60						
	> 80.0 GHz to 95.0 GHz: < 1.66						
	> 95.0 GHz to 110 GHz: < 1.70						
Thermal waveg	uide power sensors						
NRP75TWG(N)	50 GHz to 75 GHz: < 1.35				0.190	0.014	
NRP90TWG(N)	60 GHz to 90 GHz: < 1.35	_	20 nW	20 nW	0.194	0.014	
NRP110TWG(N) 75 GHz to 110 GHz: < 1.35				0.198	0.014	

Multipath diode power sensors

$R\&S^{@}NRP8S(N)/18S(N)/33S(N)$ three-path diode power sensors, $R\&S^{@}NRP33SN-V$ TVAC-compliant three-path diode power sensor

Specifications from 10 MHz to 8 GHz apply to the R&S®NRP8S(N). Specifications from 10 MHz to 18 GHz apply to the R&S®NRP18S(N). Specifications from 10 MHz to 33 GHz apply to the R&S®NRP33S(N)/NRP33SN-V.


Frequency range	R&S®NRP8S(N)	10 MHz to 8 GHz			
	R&S®NRP18S(N)	10 MHz to 18 GHz			
	R&S®NRP33S(N)/NRP33SN-V	10 MHz to 33 GHz			
Impedance matching (SWR)	10 MHz to 2.4 GHz	< 1.13 (1.11)			
	> 2.4 GHz to 8.0 GHz	< 1.20 (1.18)			
	> 8.0 GHz to 18.0 GHz	< 1.25 (1.23)	(): +15 °C to +35 °C		
	> 18.0 GHz to 26.5 GHz	< 1.30 (1.28)			
	> 26.5 GHz to 33.0 GHz	< 1.35 (1.33)			
Power measurement range	continuous average	100 pW to 200 mW (-70	dBm to +23 dBm)		
	burst average	300 nW to 200 mW (-35	dBm to +23 dBm)		
	timeslot/gate average	300 pW to 200 mW (-65 dBm to +23 dBm			
	trace	2 nW to 200 mW (-57 dBm to +23 dBm)			
Maximum power	average power	1 W (+30 dBm) AVG, ma			
·	peak envelope power	2 W (+33 dBm) for max.			
Measurement subranges	path 1	-70 dBm to -15 dBm			
J	path 2	-53 dBm to +5 dBm			
	path 3	-33 dBm to +23 dBm			
Transition regions	with automatic path selection ³	(-20 ± 1) dBm to (-14 ± 1)) dBm		
		(0 ± 1) dBm to $(+6 \pm 1)$ dBm			
Dynamic response	video bandwidth	> 100 kHz (150 kHz)	(): +15 °C to +35 °C		
- ,	rise time 10 %/90 %	< 5 μs (3 μs)	()		
Acquisition	sample rate (continuous)	2 Msps			
. toquiotion	accuracy of time base	±5 ppm			
Triggering	internal				
9909	threshold level range	-38 dBm to +23 dBm			
	threshold level accuracy	identical to uncertainty for absolute power			
	anconola lovol accuracy	measurements			
	threshold level hysteresis	threshold level hysteresis 0 dB to 10 dB			
	dropout ⁴ 0 s to 10 s				
	external	EXTernal[1]: R&S®NRX/NRP2 or R&S®NRP			
	CACOTTAL	EXTernal2: coaxial trigger I/O			
	slope (external, internal)	pos./neg.			
	delay	–5 s to +10 s			
	hold-off	0 s to 10 s			
	resolution (delay, hold-off, dropout)	0.5 µs (sample period)			
	source	INTernal, EXTernal[1], EX	(Tornal?		
	Source	IMMediate, BUS, HOLD	CTCTTAIZ,		
Zero offset	initial, without zeroing	IIVIIVICUIAIC, BOO, HOLD			
	path 1	< 250 [235] (50) pW			
	path 2	< 10.5 [10.3] (2.2) nW			
		,			
	path 3	< 1.10 [0.93] (0.19) μW			
	after external zeroing 5		(): typical at 1 GHz		
	path 1	< 53 [49] (28) pW	+15 °C to +35 °C		
	path 2	< 2.2 [2.1] (1.3) nW			
	path 3	< 224 [192] (108) nW	[]: at frequencies		
Zero drift ⁶	path 1	< 13 [12] (2) pW	≤ 18 GHz		
	path 2	< 0.6 [0.5] (0.1) nW			
	path 3	< 54 [47] (8) nW			
Measurement noise 7	path 1	< 37 [35] (20) pW			
	path 2	< 1.6 [1.5] (0.9) nW			
	path 3	< 158 [136] (76) nW			

	10 MHz	: to <	20 MHz			
	0.224		0.187		0.181	
	0.098		0.087		0.085	
	0.058		0.053		0.053	
-7	0	-20	0	C)	+23
	Power level in dBm					

	20 MHz to					
	0.195		0.177		0.172	
	0.089		0.085		0.083	
	0.055		0.054		0.054	
-7	0 -	-20)	C)	+23
Power level in dBm						

0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C

100 MHz to		
0.161	0.168	0.163
0.084	0.086	0.085

	> 2.4 GHz 1				
	0.162	0.168	0.164		
	0.088	0.089	0.088		+
	0.065	0.063	0.064		+2
-7	0 –2	20	0	+23	

Power level in dBm

0 °C to +50 °C -15 °C to +35 °C +20 °C to +25 °C

> 8 GHz to 12.4 GHz

Power level in dBm						
+23						

	>	12.4	GHz	to	18	GHz	_
ſ	\sim	171			10	22	

	0.174	0.182	0.178					
	0.110	0.111	0.112					
	0.092	0.090	0.094					
-7	0 -	-20	0	+23				
	Power level in dBm							

0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C

> 18 GHz to 26.5 GHz

Power level in dBm

	- 20.0 0		J. 12		
	0.194	0.217	7	0.226	
	0.131	0.138	3	0.155	
	0.114	0.114	1	0.134	
-7	0	-20	0		+23

Power level in dBm

surements 9 in dB U

	10 MHz to	<	20 MHz								
+23	0.267		0.239		0.027						
	0.107		0.097		0.026						
+6	0.047		0.041		0.026						
0	0.260		0.028		0.239						
	0.103		0.024		0.097						
-14	0.044		0.023		0.041						
00											
-20	0.022		0.260		0.267						
	0.022		0.103		0.107						
-70	0.022		0.044		0.047						
	70 20			Λ	-70 -20 -14 0 +6 +23 Power level in dBm						
	–70 –20 Po		–14 er level in d	•		+23					
		we	er level in o	-		+23					
+23	Po	we	er level in o	-		+23					
	100 MHz t	we	er level in o	-		+23					
	100 MHz t	we	er level in o	-	0.027	+23					
+23	100 MHz t 0.213 0.093	we	2.4 GHz 0.217 0.093	-	0.027 0.026	+23					

	20 MHz t	o < 100 MHz		
+23	0.242	0.228	0.027	0 °C to +50 °C
	0.100	0.096	0.026	+15 °C to +35 °C
+6	0.045	0.041	0.026	+20 °C to +25 °C
0	0.235	0.028	0.228	0 °C to +50 °C
	0.097	0.024	0.096	+15 °C to +35 °C
-14	0.043	0.023	0.041	+20 °C to +25 °C
-20	0.022	0.235	0.242	0 °C to +50 °C
	0.022	0.097	0.100	+15 °C to +35 °C
-70	0.022	0.043	0.045	+20 °C to +25 °C
	−70 −2	20 –14	0 +6 +23	
	F	Power level in c	dBm	

	100 MHz to 2.4 GHz							
+23	0.213		0.217		0.027			
	0.093		0.093		0.026			
+6	0.045		0.040		0.026			
0	0.208		0.028		0.217			
	0.090		0.024		0.093			
-14	0.043		0.023		0.040			
-20	0.022		0.208		0.213			
	0.022		0.090		0.093			
-70	0.022		0.043		0.045			
	−70 −20		-14	0	+6	+23		
Power level in dBm								

	> 2.4 GHz	to 8 GHz		
+23	0.211	0.214	0.027	0 °C to +50 °C
	0.095	0.093	0.026	+15 °C to +35 °C
+6	0.050	0.042	0.026	+20 °C to +25 °C
0	0.205	0.028	0.214	0 °C to +50 °C
	0.092	0.024	0.093	+15 °C to +35 °C
-14	0.047	0.023	0.042	+20 °C to +25 °C
-20	0.022	0.205	0.211	0 °C to +50 °C
	0.022	0.092	0.095	+15 °C to +35 °C
-70	0.022	0.047	0.050	+20 °C to +25 °C
	−70 −20	-14) +6 +23	
	Po	ower level in d	Bm	

> 8 GHz to 12.4 GHz							
+23	0.212		0.215		0.029		
	0.099		0.097		0.027		
+6	0.056		0.048		0.027		
0	0.207		0.029		0.215		
	0.095		0.025		0.097		
-14	0.052		0.024		0.048		
-20	0.022		0.207		0.212		
	0.022		0.095		0.099		
-70	0.022		0.052		0.056		
	–70	20	-14	0	+6	+23	
	Power level in dBm						

	> 12.4 GH	z to 18 GHz		
+23	0.219	0.223	0.034	0 °C to +50 °C
	0.109	0.108	0.033	+15 °C to +35 °C
+6	0.069	0.064	0.032	+20 °C to +25 °C
0	0.212	0.031	0.223	0 °C to +50 °C
	0.102	0.027	0.108	+15 °C to +35 °C
-14	0.061	0.026	0.064	+20 °C to +25 °C
-20	0.022	0.212	0.219	0 °C to +50 °C
	0.022	0.102	0.109	+15 °C to +35 °C
-70	0.022	0.061	0.069	+20 °C to +25 °C
	−70 −20	-14 0	+6 +23	
	Po	ower level in de	3m	

> 18 GHz to 26.5 GHz							
+23	0.242		0.254		0.049		
	0.134		0.139		0.049		
+6	0.098		0.099		0.049		
0	0.231		0.038		0.254		
	0.119		0.034		0.139		
-14	0.079		0.032		0.099		
-20	0.022		0.231		0.242		
	0.022		0.119		0.134		
-70	0.022		0.079		0.098		
	−70 −20		-14	0	+6	+23	
Power level in dBm							

	> 26.5 GHz	to 33 GHz		
+23	0.268	0.288	0.067	0 °C to +50 °C
	0.162	0.174	0.067	+15 °C to +35 °C
+6	0.129	0.136	0.067	+20 °C to +25 °C
0	0.252	0.047	0.288	0 °C to +50 °C
	0.137	0.042	0.174	+15 °C to +35 °C
-14	0.096	0.040	0.136	+20 °C to +25 °C
-20	0.023	0.252	0.268	0 °C to +50 °C
	0.023	0.137	0.162	+15 °C to +35 °C
-70	0.023	0.096	0.129	+20 °C to +25 °C
	−70 −20	-14 0	+6 +23	
	Po	wer level in dE	3m	

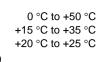
R&S®NRP40S(N)/50S(N)/67S(N)/90S(N) three-path diode power sensors, R&S®NRP67SN-V TVAC-compliant three-path diode power sensor

Specifications from 50 MHz to 40 GHz apply to the R&S®NRP40S(N).

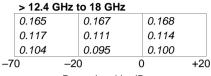
Specifications from 50 MHz to 50 GHz apply to the R&S®NRP50S(N).

Specifications from 50 MHz to 67 GHz apply to the R&S®NRP67S(N)/NRP67SN-V.

Specifications from 50 MHz to 90 GHz apply to the R&S®NRP90S(N).


Frequency range	R&S®NRP40S(N)	50 MHz to 40 GHz					
	R&S®NRP50S(N)	50 MHz to 50 GHz					
	R&S®NRP67S(N)/NRP67SN-V	50 MHz to 67 GHz					
	R&S®NRP90S(N) 50 MHz to 90 GHz						
Impedance matching (SWR)	R&S®NRP40S(N), R&S®NRP50S(N)						
	50 MHz to 2.4 GHz	< 1.13 (1.11)					
	> 2.4 GHz to 8.0 GHz	< 1.20 (1.18)					
	> 8.0 GHz to 18.0 GHz	< 1.25 (1.23)					
	> 18.0 GHz to 26.5 GHz	< 1.30 (1.28)	(): +15 °C to +35 °C				
	> 26.5 GHz to 33.0 GHz	< 1.35 (1.33)					
	> 33.0 GHz to 40.0 GHz	< 1.37 (1.35)					
	> 40.0 GHz to 50.0 GHz	< 1.40 (1.38)					
	R&S®NRP67S(N), R&S®NRP67SN-\	· · · · · · · · · · · · · · · · · · ·					
	50 MHz to 200 MHz	< 1.30 (1.28)					
	> 200 MHz to 2.4 GHz	< 1.13 (1.11)					
	> 2.4 GHz to 8.0 GHz	< 1.20 (1.18)					
	> 8.0 GHz to 18.0 GHz	< 1.25 (1.23)					
	> 18.0 GHz to 26.5 GHz	< 1.30 (1.28)	(): +15 °C to +35 °C				
	> 26.5 GHz to 33.0 GHz	< 1.35 (1.33)	()				
	> 33.0 GHz to 40.0 GHz	< 1.37 (1.35)					
	> 40.0 GHz to 50.0 GHz	< 1.40 (1.38)					
	> 50.0 GHz to 67.0 GHz	< 1.68 (1.66)					
	R&S®NRP90S(N)						
	50 MHz to 200 MHz	< 1.30 (1.28)					
	> 200 MHz to 2.4 GHz	< 1.13 (1.11)					
	> 2.4 GHz to 8.0 GHz	< 1.20 (1.18)					
	> 8.0 GHz to 18.0 GHz	< 1.25 (1.23)					
	> 18.0 GHz to 26.5 GHz	< 1.30 (1.28)	(): +15 °C to +35 °C				
	> 26.5 GHz to 40.0 GHz	< 1.38 (1.36)	(). 113 0 10 133 0				
	> 40.0 GHz to 50.0 GHz	< 1.46 (1.44)					
	> 50.0 GHz to 67.0 GHz	< 1.68 (1.66)					
	> 67.0 GHz to 90.0 GHz	< 1.98 (1.96)					
Power measurement range	continuous average	100 pW to 100 mW (–7)	0 dBm to 120 dBm)				
rower measurement range	burst average	300 nW to 100 mW (–3					
	timeslot/gate average	300 pW to 100 mW (–6					
	trace	2 nW to 100 mW (–57 c					
Maximum power	average power	0.2 W (+23 dBm) AVG,					
Maximum power	peak envelope power	1 W (+30 dBm) for max					
Measurement subranges	path 1	-70 dBm to -15 dBm	. 10 μδ				
weasurement subranges	patri i path 2	-53 dBm to +5 dBm					
	path 3						
Transition regions	with automatic path selection ³	-33 dBm to +20 dBm	2) dBm				
Transition regions	with automatic path selection	(-20 ± 3) dBm to (-14 ± 3)	,				
Dynamic response	video bandwidth	(0 ± 3) dBm to $(+6 \pm 3)$	UDIII				
Dynamic response		> 100 kHz (150 kHz)	(): +15 °C to +35 °C				
Acquicition	rise time 10 %/90 %	< 5 μs (3 μs)					
Acquisition	sample rate (continuous)	2 Msps					
	accuracy of time base	±5 ppm					

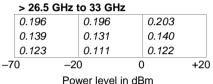
Version 13.01, October 2022


Triggering	internal				
	threshold level range	-38 dBm to +20 dE	3m		
	threshold level accuracy	identical to uncerta	inty for absolu	ute power mea	surements
	threshold level hysteresis	0 dB to 10 dB			
	dropout ⁴	0 s to 10 s			
	external	EXTernal[1]: R&S®	NRX/NRP2 o	r R&S®NRP-Z	5
		EXTernal2: coaxia	l trigger I/O		
	slope (external, internal)	pos./neg.			
	delay	−5 s to +10 s			
	hold-off	0 s to 10 s			
Zero offset	resolution (delay, hold-off,	0.5 µs (sample per	iod)		
	dropout)				
	source	INTernal, EXTerna	I[1], EXTernal	2,	
		IMMediate, BUS, F	HOLD		
Zero offset	initial, without zeroing	Typ. at 1 GHz			
		+15 °C to +35 °C	≤ 18 GHz	≤ 67 GHz	≤ 90 GHz
	path 1	< 50 pW	< 235 pW	< 280 pW	< 480 pW
	path 2	< 4.8 nW	< 22.0 nW	< 26.3 nW	< 46.0 nW
	path 3	< 0.23 µW	< 1.06 µW	< 1.34 µW	< 2.20 µW
	after external zeroing 5	Typ. at 1 GHz			
		+15 °C to +35 °C	≤ 18 GHz	≤ 67 GHz	≤ 90 GHz
	path 1	< 28 pW	< 49 pW	< 58 pW	< 100 pW
	path 2	< 2.7 nW	< 4.6 nW	< 5.5 nW	< 9.5 nW
	path 3	< 130 nW	< 220 nW	< 280 nW	< 450 nW
Zero drift ⁶		Typ. at 1 GHz			
		+15 °C to +35 °C	≤ 18 GHz	≤ 67 GHz	≤ 90 GHz
	path 1	< 2 pW	< 12 pW	< 14 pW	< 24 pW
	path 2	< 0.2 nW	< 1.1 nW	< 1.3 nW	< 2.3 nW
	path 3	< 9 nW	< 9 nW	< 67 nW	< 110 nW
Measurement noise 7	·	Typ. at 1 GHz			
		+15 °C to +35 °C	≤ 18 GHz	≤ 67 GHz	≤ 90 GHz
	path 1	< 20 pW	< 35 pW	< 41 pW	< 70 pW
	path 2	< 1.9 nW	< 3.3 nW	< 3.9 nW	< 6.7 nW
	path 3	< 90 nW	< 155 nW	< 196 nW	< 320 nW

	50 MHz	to <	200 MHz	Z		
	0.241		0.196	C). 193	
	0.113		0.098	0	0.099	
	0.077		0.073	0	0.077	
-7	0	-20)	0		+20
Power level in dBm						

	200 MH	z to	8 GHz			
	0.162		0.172		0.171	
	0.095		0.094		0.097	
	0.081		0.074		0.078	
-7	0	-2	0	()	+20
		Pον	ver level i	n dE	3m	

> 8	GHz to	12.4 GHz		
0.1	52	0.157	0.15	7
0.1	03	0.098	0.10	1
0.0	90	0.081	0.08	6
-7 0	-2	0	0	+20

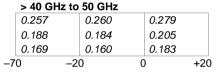


0 °C to +50 °C
+15 °C to +35 °C
+20 °C to +25 °C

0.090		0.081		0.086	
0	-20)	()	+
	Pov	ver level i	n dE	ßm	

Power level in dBm

> 18 G	Hz to 26.5 GH	Z	
0.176	0.176	0.180	
0.122	0.114	0.120	
0.107	0.095	0.103	
– 70	-20	0	+20



0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C

0.114 0.120 0.095 0.103	
-20 0 +	
	⊦2
Power level in dBm	

Power	ievei	ın	aBit

> 33	GHz to	40 GHz		
0.21	6	0.217	0.229	
0.15	2	0.145	0.159	
0.13	4	0.122	0.138	
-70	-2	0	0	+20

0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C

Power level in dBm	Power	level	in	dBm
--------------------	-------	-------	----	-----

Power level in dBm

>	50	GHZ	z to	67	GH	Z

-7	0	-20)	C)	+20	
	0.221		0.217		0.255		
	0.242		0.243		0.278		
	0.318		0.327		0.357		

> 67 G	Hz to 90 GHz		
0.364	0.377	0.388	
0.276	0.294	0.319	
0.251	0.269	0.300	
-70	-20	0	+20

0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C

Power level in dBm

Power level in dBm

Uncertainty for relative power measurements 9 in dB

	50 MHz t	0 <	200 MHz	<u> </u>		
+20	0.285		0.252		0.046	
	0.127		0.117		0.045	
+6	0.081		0.077		0.045	
0	0.277		0.040		0.252	
	0.121		0.038		0.117	
-14	0.073		0.038		0.077	
-20	0.028		0.277		0.285	
	0.028		0.121		0.127	
-70	0.028		0.073		0.081	
	−70 −2	0	-14	0	+6	+20
Power level in dBm						

	200 MHz t	to < 8 GHz							
+20	0.214	0.221	0.047	0 °C to +50 °C					
	0.109	0.109	0.047	+15 °C to +35 °C					
+6	0.083	0.077	0.047	+20 °C to +25 °C					
0	0.206	0.040	0.221	0 °C to +50 °C					
	0.102	0.038	0.109	+15 °C to +35 °C					
-14	0.076	0.038	0.077	+20 °C to +25 °C					
-20	0.029	0.206	0.214	0 °C to +50 °C					
	0.029	0.102	0.109	+15 °C to +35 °C					
-70	0.029	0.076	0.083	+20 °C to +25 °C					
	Power level in dBm								

	> 8 GHz to	1	2.4 GHz				
+20	0.195		0.199		0.050		
	0.111		0.108		0.049		
+6	0.086		0.080		0.049		
0	0.187		0.041		0.199		
	0.104		0.039		0.108		
-14	0.079		0.039		0.080		
-20	0.029		0.187		0.195		
	0.029		0.104		0.111		
-70	0.029		0.079		0.086		
	−70 −20		-14	0	+6	+20	
	Power level in dBm						

	> 12.4 GH	z to 18 GHz						
+20	0.203	0.205	0.054	0 °C to +50 °C				
	0.117	0.113	0.054	+15 °C to +35 °C				
+6	0.092	0.085	0.054	+20 °C to +25 °C				
0	0.194	0.043	0.205	0 °C to +50 °C				
	0.109	0.041	0.113	+15 °C to +35 °C				
-14	0.083	0.041	0.085	+20 °C to +25 °C				
-20	0.030	0.194	0.203	0 °C to +50 °C				
	0.030	0.109	0.117	+15 °C to +35 °C				
-70	0.030	0.083	0.092	+20 °C to +25 °C				
	-70 -20 -14 0 +6 +20							
Power level in dBm								

> 18 GHz to 26.5 GHz								
+20	0.226		0.227		0.064			
	0.134		0.130		0.064			
+6	0.106		0.099		0.064			
0	0.214		0.048		0.227			
	0.122		0.046		0.130			
-14	0.092		0.046		0.099			
-20	0.032		0.214		0.226			
	0.032		0.122		0.134			
-70	0.032		0.092		0.106			
	– 7 0 –	20	-14	0	+6	+20		
Power level in dBm								

	> 26.5 GH	z to 33 GHz						
+20	0.252	0.254	0.074	0 °C to +50 °C				
	0.153	0.151	0.074	+15 °C to +35 °C				
+6	0.122	0.117	0.074	+20 °C to +25 °C				
0	0.236	0.054	0.254	0 °C to +50 °C				
	0.135	0.052	0.151	+15 °C to +35 °C				
-14	0.101	0.051	0.117	+20 °C to +25 °C				
-20	0.034	0.236	0.252	0 °C to +50 °C				
	0.034	0.135	0.153	+15 °C to +35 °C				
-70	0.034	0.101	0.122	+20 °C to +25 °C				
	-70 -20 -14 0 +6 +20							
	Power level in dBm							

	> 33 GHz	to	40 GHz			
+20	0.285		0.289		0.088	
	0.176		0.179		0.087	
+6	0.141		0.142		0.087	
0	0.263		0.062		0.289	
	0.151		0.060		0.179	
-14	0.111		0.059		0.142	
-20	0.036		0.263		0.285	
	0.036		0.151		0.176	
-70	0.036		0.111		0.141	
	–70 –20		-14	0	+6	+20
Power level in dBm						

	> 40 GHz 1	to 50 GHz						
+20	0.336	0.344	0.110	0 °C to +50 °C				
	0.214	0.224	0.110	+15 °C to +35 °C				
+6	0.174	0.184	0.109	+20 °C to +25 °C				
0	0.304	0.077	0.344	0 °C to +50 °C				
	0.174	0.074	0.224	+15 °C to +35 °C				
-14	0.126	0.073	0.184	+20 °C to +25 °C				
-20	0.040	0.304	0.336	0 °C to +50 °C				
	0.040	0.174	0.214	+15 °C to +35 °C				
-70	0.040	0.126	0.174	+20 °C to +25 °C				
	-70 -20 -14 0 +6 +20							
	Power level in dBm							

	> 50 G	Hz to	67 GHz			
+20	0.419		0.436		0.152	
	0.280		0.307		0.151	
+6	0.233		0.266		0.151	
0	0.365		0.109		0.436	
	0.210		0.105		0.307	
-14	0.150		0.103		0.266	
-20	0.047		0.365		0.419	
	0.047		0.210		0.280	
-70	0.047		0.150		0.233	
	-7 0	-20	-14	0	+6	+20
Power level in dBm						

	> 67 GHz t	o 90 GHz						
+20	0.472	0.480	0.182	0 °C to +50 °C				
	0.322	0.358	0.181	+15 °C to +35 °C				
+6	0.271	0.320	0.180	+20 °C to +25 °C				
0	0.409	0.140	0.480	0 °C to +50 °C				
	0.233	0.135	0.358	+15 °C to +35 °C				
-14	0.163	0.133	0.320	+20 °C to +25 °C				
-20	0.058	0.409	0.472	0 °C to +50 °C				
	0.058	0.233	0.322	+15 °C to +35 °C				
-70	0.058	0.163	0.271	+20 °C to +25 °C				
	-70 -20 -14 0 +6 +20							
	Power level in dBm							

R&S®NRP18S-10 high-power three-path diode power sensor

Specifications apply when the power sensor is operated together with the RF power attenuator supplied. Please refer to the specifications of the R&S®NRP18S when operating the power sensor section alone.

Frequency range		10 MHz to 18 GHz		
Impedance matching (SWR)	10 MHz to 2.4 GHz	< 1.14		
	> 2.4 GHz to 8.0 GHz	< 1.20		
	> 8.0 GHz to 12.4 GHz	< 1.25		
	> 12.4 GHz to 18.0 GHz	< 1.30		
Power measurement range	continuous average	1 nW to 2 W (-60 dBm to	+33 dBm)	
•	burst average	3 μW to 2 W (-25 dBm to	· · · · · · · · · · · · · · · · · · ·	
	timeslot/gate average	3 nW to 2 W (-55 dBm to		
	trace	20 nW to 2 W (-47 dBm to		
Maximum power	average power	3 W (+35 dBm) AVG	,	
•	peak envelope power	20 W (+43 dBm) for max.	10 µs	
Measurement subranges	path 1	-60 dBm to -5 dBm		
3	path 2	-43 dBm to +15 dBm		
	path 3	-23 dBm to +33 dBm		
Transition regions	with automatic path selection ³	(-10 ± 1.5) dBm to (-4 ± 1.5)	1.5) dBm	
		(10 ± 1.5) dBm to $(+16 \pm 1.5)$		
Dynamic response	video bandwidth	> 100 kHz (150 kHz)	(): +15 °C to +35 °C	
,	rise time 10 %/90 %	< 5 µs (3 µs)		
Acquisition	sample rate (continuous)	2 Msps		
	accuracy of time base	±5 ppm		
Triggering	internal	_ = 0 рр		
999	threshold level range	-27 dBm to +33 dBm		
	threshold level accuracy	identical to uncertainty for absolute power		
	amounted to voir accountably	measurements	aboolato porroi	
	threshold level hysteresis	0 dB to 10 dB		
	dropout ⁴	0 s to 10 s		
	external	EXTernal[1]: R&S®NRX/NRP2 or R&S®NRP-Z		
		EXTernal2: coaxial trigger I/O		
	slope (external, internal)	pos./neg.		
	delay	-5 s to +10 s		
	hold-off	0 s to 10 s		
	resolution (delay, hold-off, dropout)	0.5 µs (sample period)		
	source	INTernal, EXTernal[1], EX	Ternal2	
	000.00	IMMediate, BUS, HOLD		
Zero offset	initial, without zeroing	,		
	path 1	< 2.9 (0.6) nW		
	path 2	< 120 (25) nW	-	
	path 3	< 12.3 (2.2) µW	_	
		~ 12.3 (2.2) μνν		
	after external zeroing 5	000 (000)		
	path 1	< 600 (320) pW	(): typical at 1 GHz	
	path 2	< 26 (14) nW	+15 °C to +35 °C	
	path 3	< 2.0 (1.2) μνν		
Zero drift ⁶	path 1	< 145 (23) pW		
	path 2	< 6.0 (1.0) nW		
	path 3	< 615 (90) nW		
Measurement noise 7	path 1	< 425 (230) pW		
	path 2	< 18 (10) nW		
	path 3	< 1.8 (0.9) µW		

	10 MHz to < 100 MHz								
	0.238	0.218	0.244	0.268					
	0.117	0.140	0.179	0.210					
	0.083	0.120	0.163	0.198					
-60 +20 +30 +32 +3									
Power level in dBm									
	> 2 4 GH	7 to 12 4	GHz						

	100 MHZ to 2.4 GHZ							
	0.186	0.195	0.212	0.228				
	0.108	0.127	0.153	0.174				
	0.085	0.109	0.138	0.162				
-60	+20) +3	0 +32	+33				
Pow	er level in	dBm						

0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C

	> 2.4 GH	z to 12.4	GHz		
	0.193	0.205	0.221	0.237	
	0.128	0.145	0.168	0.188	
	0.103	0.124	0.150	0.176	
-60) +20) +3	0 +3	2 +3	3 -6
	Po	wer level	in dBm		

	> 12.4 G	Hz to 18 (3Hz		
	0.208	0.219	0.234	0.249	0 °C to +50 °C
	0.147	0.162	0.183	0.201	+15 °C to +35 °C
	0.123	0.140	0.164	0.190	+20 °C to +25 °C
-60) +20) +3	0 +32	+33	
	Pov	wer level ir	n dBm		

Uncertainty for relative power measurements 9, 10 in dB

10 MHz to < 100 MHz									
+30	0.356		0.316		0.028				
	0.162		0.147		0.026				
+16	0.076		0.069		0.026				
+10	0.347		0.032		0.316				
	0.157		0.025		0.147				
-4	0.073		0.024		0.069				
-10	0.022		0.347		0.356				
	0.022		0.157		0.162				
-60	0.022		0.073		0.076				
-60 -10 -4 +10 +16 +30									
Power level in dBm									

	100 MH	z to <	2.4 GH	łz			
+30	0.273		0.278		0.028		0 °C to +50 °C
	0.136		0.138		0.026		+15 °C to +35 °C
+16	0.068		0.067		0.026		+20 °C to +25 °C
+10	0.266		0.032		0.278		0 °C to +50 °C
	0.133		0.025		0.138		+15 °C to +35 °C
-4	0.066		0.024		0.067		+20 °C to +25 °C
-10	0.022		0.266		0.273		0 °C to +50 °C
	0.022		0.133		0.136		+15 °C to +35 °C
-60	0.022		0.066		0.068		+20 °C to +25 °C
	-60 -	10	-4	+10	+16	+30	
	Po	wer le	evel in d	lΒm			

> 2.4 GHz to 12.4 GHz								
+30	0.269		0.274		0.030			
	0.139		0.140		0.028			
+16	0.076		0.072		0.027			
+10	0.262		0.033		0.274			
	0.136		0.026		0.140			
-4	0.073		0.024		0.072			
-10	0.022		0.262		0.269			
	0.022		0.136		0.139			
-60	0.022		0.073		0.076			
	-60	-10	-4	+10	+16	+30		

	> 12.4 GH:	z to 18 GHz		
+30	0.275	0.280	0.034	0 °C to +50 °C
	0.148	0.150	0.033	+15 °C to +35 °C
+16	0.087	0.085	0.033	+20 °C to +25 °C
+10	0.266	0.035	0.280	0 °C to +50 °C
	0.142	0.028	0.150	+15 °C to +35 °C
-4	0.080	0.026	0.085	+20 °C to +25 °C
-10	0.022	0.266	0.275	0 °C to +50 °C
	0.022	0.142	0.148	+15 °C to +35 °C
-60	0.022	0.080	0.087	+20 °C to +25 °C
	-60 -10	-4 +10	+16 +30	

R&S®NRP18S-20 high-power three-path diode power sensor

Specifications apply when the power sensor is operated together with the RF power attenuator supplied. Please refer to the specifications of the R&S®NRP18S when operating the power sensor section alone.

Frequency range		10 MHz to 18 GHz		
Impedance matching (SWR)	10 MHz to 2.4 GHz	< 1.14		
	> 2.4 GHz to 8.0 GHz	< 1.25		
	> 8.0 GHz to 12.4 GHz	< 1.30		
	> 12.4 GHz to 18.0 GHz	< 1.41		
Power measurement range	continuous average	10 nW to 15 W (-50 dBm	to +42 dBm)	
· ·	burst average	30 μW to 15 W (-15 dBm	· · · · · · · · · · · · · · · · · · ·	
	timeslot/gate average	30 nW to 15 W (-45 dBm		
	trace	200 nW to 15 W (-37 dBr		
Maximum power	average power	18 W (+42.5 dBm) AVG	,	
	peak envelope power	100 W (+50 dBm) for max	a. 10 us	
Measurement subranges	path 1	-50 dBm to +5 dBm		
g	path 2	-33 dBm to +25 dBm		
	path 3	-13 dBm to +42 dBm		
Transition regions	with automatic path selection ³	(0 ± 1.75) dBm to $(+6 \pm 1.$	75) dBm	
Translati regione	mar automatic patri delection	(20 ± 1.75) dBm to $(+26 \pm$		
Dynamic response	video bandwidth	> 100 kHz (150 kHz)	(): +15 °C to +35 °C	
	rise time 10 %/90 %	< 5 μs (3 μs)	()	
Acquisition	sample rate (continuous)	2 Msps		
	accuracy of time base	±5 ppm		
Triggering	Internal	10 pp		
	threshold level range	-17 dBm to +42 dBm		
	threshold level accuracy	identical to uncertainty for absolute power		
	tineshold level decardey	measurements	absolute power	
	threshold level hysteresis	0 dB to 10 dB		
	dropout ⁴	0 s to 10 s		
	external	EXTernal[1]: R&S®NRX/NRP2 or R&S®NRP-Z		
	oxioniai	EXTernal2: coaxial trigger I/O		
	slope (external, internal)	pos./neg.		
	delay	-5 s to +10 s		
	hold-off	0 s to 10 s		
	resolution (delay, hold-off, dropout)	0.5 μs (sample period)		
	source	INTernal, EXTernal[1], EX	Ternal2	
	Source	IMMediate, BUS, HOLD	rromaiz,	
Zero offset	initial, without zeroing			
	path 1	< 30 (6) nW	_	
	path 2	< 1.30 (0.26) µW	_	
	•	` ''		
	path 3	< 130 (23) μW		
	after external zeroing 5	T		
	path 1	< 6.3 (3.4) nW	(): typical at 1 CUI-	
	path 2	< 270 (150) nW	(): typical at 1 GHz +15 °C to +35 °C	
	path 3	< 27 (13) μW	+10 010+30 0	
Zero drift ⁶	path 1	< 1.5 (0.24) nW		
	path 2	< 63 (11) nW		
	path 3	< 6.5 (1.0) µW		
Measurement noise 7	path 1	< 4.5 (2.4) nW		
	path 2	< 190 (110) nW		
	path 3	< 19 (9) µW		

10 MHz to < 100 MHz 100 MHz to 2.4 GHz 0 °C to +50 °C 0.256 0.223 0.244 0.276 0.208 0.208 0.226 0.253 +15 °C to +35 °C 0.124 0.123 0.157 0.204 0.116 0.121 0.149 0.188 +20 °C to +25 °C 0.083 0.090 0.133 0.186 0.085 0.093 0.127 0.172 +42 -50 +30 +36 +40 +42 -50 +30 +36 +40 Power level in dBm Power level in dBm > 2.4 GHz to 12.4 GHz > 12.4 GHz to 18 GHz 0 °C to +50 °C 0.218 0.221 0.237 0.264 0.236 0.239 0.254 0.279 0.140 0.145 0.204 0.165 +15 °C to +35 °C 0.169 0.169 0.189 0.222 +20 °C to +25 °C 0.107 0.143 0.183 0.198 0.113 0.130 0.135 0.160 -50 +36 +40 +42 -50 +30 +36 +40 +42

Power level in dBm

Power level in dBm

Unce	ertainty fo	or relative	power mea	asurements	^{9, 10} in	dB		
	10 MHz to	< 100 MHz			100 MHz	z to < 2.4 GH	łz	
+40	0.356 0.162	0.316 0.147	0.028 0.026	+40	0.273 0.136	0.278 0.138	0.028 0.026	0 °C to +50 °C +15 °C to +35 °C
+26	0.076	0.069	0.026	+26	0.068	0.067	0.026	+20 °C to +25 °C
+20	0.347 0.157	0.032 0.025	0.316 0.147	+20	0.266 0.133	0.032 0.025	0.278 0.138	0 °C to +50 °C +15 °C to +35 °C
+6	0.073	0.024	0.069	+6	0.066	0.024	0.067	+20 °C to +25 °C
0	0.022 0.022	0.347 0.157	0.356 0.162	0	0.022 0.022	0.266 0.133	0.273 0.136	0 °C to +50 °C +15 °C to +35 °C
-50	0.022 -50 0	0.073 +6 +20	0.076 0 +26 +4		<i>0.0</i> 22 -50	0.066 0 +6	0.068 +20 +26	+20 °C to +25 °C
	Pow	er level in dBi	m		Po	wer level in o	lBm	
	> 2.4 GHz	to 12.4 GHz			> 12.4 G	Hz to 18 GH	lz	
+40	0.269 0.139	0.274 0.140	0.030 0.028	+40	0.275 0.148	0.280 0.150	0.034 0.033	0 °C to +50 °C +15 °C to +35 °C
+26	0.076	0.072	0.027	+26	0.087	0.085	0.033	+20 °C to +25 °C
+20	0.262 0.136	0.033 0.026	0.274 0.140	+20	0.266 0.142	0.035 0.028	0.280 0.150	0 °C to +50 °C +15 °C to +35 °C
+6	0.073	0.024	0.072	+6	0.080	0.026	0.085	+20 °C to +25 °C
0	0.022 0.022	0.262 0.136	0.269 0.139	0	0.022 0.022	0.266 0.142	0.275 0.148	0 °C to +50 °C +15 °C to +35 °C
-50	0.022	0.073	0.076	-50	0.022	0.080	0.087	+20 °C to +25 °C
	-50 0	+6 +20) +26 +4	0	-50	0 +6	+20 +26	+40

R&S®NRP18S-25 high-power three-path diode power sensor

Specifications apply when the power sensor is operated together with the RF power attenuator supplied. Please refer to the specifications of the R&S®NRP18S when operating the power sensor section alone.

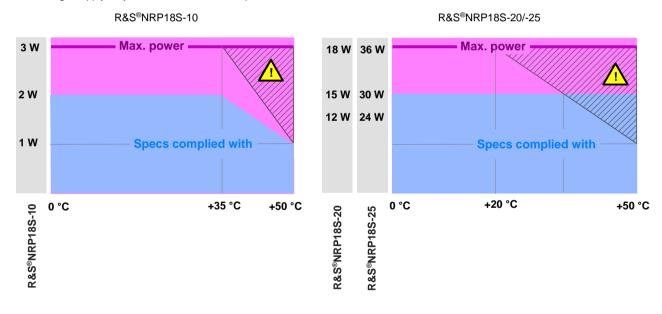
Frequency range		10 MHz to 18 GHz				
Impedance matching (SWR)	10 MHz to 2.4 GHz	< 1.14				
	> 2.4 GHz to 8.0 GHz	< 1.25				
	> 8.0 GHz to 12.4 GHz	< 1.30				
	> 12.4 GHz to 18.0 GHz	< 1.41				
Power measurement range	continuous average	30 nW to 30 W (-45 dBm	to +45 dBm)			
_	burst average	100 µW to 30 W (−10 dBr	· · · · · · · · · · · · · · · · · · ·			
	timeslot/gate average	100 nW to 30 W (-40 dBr	n to +45 dBm) 1			
	trace	600 nW to 30 W (-32 dBr				
Maximum power	average power	36 W (+45.5 dBm) AVG	,			
•	peak envelope power	300 W (+55 dBm) for max	z. 10 μs			
Measurement subranges	path 1	-45 dBm to +10 dBm	•			
•	path 2	-28 dBm to +30 dBm				
	path 3	-8 dBm to +45 dBm				
Transition regions	with automatic path selection ³	$(+5 \pm 2)$ dBm to $(+11 \pm 2)$	dBm			
3		(25 ± 2) dBm to $(+31 \pm 2)$				
Dynamic response	video bandwidth	> 100 kHz (150 kHz)	(): +15 °C to +35 °C			
	rise time 10 %/90 %	< 5 µs (3 µs)				
Acquisition	sample rate (continuous)	2 Msps				
•	accuracy of time base	±5 ppm				
Triggering	Internal					
33. 3	threshold level range	−12 dBm to +45 dBm				
	threshold level accuracy	identical to uncertainty for absolute power				
	,	measurements	and a second particular			
	threshold level hysteresis	0 dB to 10 dB				
	dropout ⁴	0 s to 10 s				
	external	EXTernal[1]: R&S®NRX/NRP2 or R&S®NRP-Z				
		EXTernal2: coaxial trigger I/O				
	slope (external, internal)	pos./neg.				
	delay	-5 s to +10 s				
	hold-off	0 s to 10 s				
	resolution (delay, hold-off, dropout)	0.5 µs (sample period)				
	source	INTernal, EXTernal[1], EX	(Ternal2,			
		IMMediate, BUS, HOLD	•			
Zero offset	initial, without zeroing	, , , , , , , , , , , , , , , , , , , ,				
	path 1	< 100 (20) nW				
	path 2	< 4.2 (0.9) µW				
	path 3	< 430 (80) μW				
		< 430 (80) μνν				
	after external zeroing 5	24 (42) 144				
	path 1	< 21 (12) nW	(): typical at 1 GHz			
	path 2	< 880 (500) nW	+15 °C to +35 °C			
	path 3	< 90 (44) μνν				
Zero drift ⁶	path 1	< 5.1 (0.8) nW				
	path 2	< 210 (35) nW				
	path 3	< 22 (3) µW				
Measurement noise 7	path 1	< 15 (8) nW				
	path 2	< 620 (350) nW				
	path 3	< 64 (31) μW				

10 MHz to < 100 MHz 100 MHz to 2.4 GHz 0.303 0 °C to +50 °C 0.268 0.242 0.264 0.224 0.227 0.247 0.282 +15 °C to +35 °C 0.129 0.135 0.171 0.227 0.122 0.133 0.165 0.214 0.101 +20 °C to +25 °C 0.083 0.146 0.209 0.087 0.102 0.141 0.196 +45 -45 +35 +40 +43 +45 -45 +35 +40 +43 Power level in dBm Power level in dBm > 2.4 GHz to 12.4 GHz > 12.4 GHz to 18 GHz 0 °C to +50 °C 0.233 0.239 0.258 0.292 0.250 0.255 0.273 0.305 0.145 0.155 0.228 0.177 +15 °C to +35 °C 0.183 0.169 0.202 0.244 0.207 +20 °C to +25 °C 0.108 0.121 0.155 0.171 0.219 0.131 0.141 +40 +43 -45 +35 +45 -45 +35 +40 +43 +45

7.	Po		level in		140	170	, ,	P	ower	level in dB	sm	140	,
								-					
Unce	ertainty	for	relati	ve p	ower n	nea	surements	^{9, 10} in	dB	3			
	10 MHz t	0 <	100 MH	lz				100 MF	lz to	< 2.4 GHz			
+43	0.356		0.316		0.028		+43	0.273		0.278	0.028		0 °C to +50 °C
	0.162		0.147		0.026			0.136		0.138	0.026		+15 °C to +35 °C
+31	0.076		0.069		0.026		+31	0.068		0.067	0.026		+20 °C to +25 °C
+25	0.347		0.032		0.316		+25	0.266		0.032	0.278		0 °C to +50 °C
	0.157		0.025		0.147			0.133		0.025	0.138		+15 °C to +35 °C
+11	0.073		0.024		0.069		+11	0.066		0.024	0.067	•	+20 °C to +25 °C
+5	0.022		0.347		0.356		+5	0.022		0.266	0.273		0 °C to +50 °C
	0.022		0.157		0.162			0.022		0.133	0.136		+15 °C to +35 °C
-45	0.022		0.073		0.076		-45	0.022		0.066	0.068		+20 °C to +25 °C
			+11	+25		+43		-45	+5		25 +31	+43	
	Po	wer	level in	dBm				P	ower	level in dB	sm		
	> 2.4 GH	z to		Hz					GHz	to 18 GHz			
+43	0.269		0.274		0.030		+43	0.275		0.280	0.034		0 °C to +50 °C
	0.139		0.140		0.028			0.148		0.150	0.033		+15 °C to +35 °C
+31	0.076		0.072		0.027		+31	0.087		0.085	0.033		+20 °C to +25 °C
. 25							. 25						
+25	0.262		0.033		0.274		+25	0.266		0.035	0.280		0 °C to +50 °C
	0.136		0.026		0.140			0.142		0.028	0.150		+15 °C to +35 °C
+11	0.073		0.024		0.072		+11	0.080		0.026	0.085		+20 °C to +25 °C
+5							+5						
+5	0.022		0.262		0.269		+5	0.022		0.266	0.275		0 °C to +50 °C
	0.022		0.136		0.139			0.022		0.142	0.148		+15 °C to +35 °C
-45			0.073		0.076		- 1	0.022		0.080	0.087		+20 °C to +25 °C
	-45 +	-5	+11	+25	+31	+43	,	-45	+5	+11 +	25 +31	+43	

Additional characteristics of the R&S®NRPxxS(N)/18S-10/18S-20/18S-25 three-path diode power sensors and the R&S®NRP33SN-V/67SN-V TVAC-compliant three-path diode power sensors

Sensor type	R&S®NRPxxS(N)	three-path diode power sensor		
	R&S®NRP18S-10/-20/-25	three-path diode power sensor with preceding		
		RF power attenuator		
	R&S®NRP33SN-V	three-path diode power sensor for use in		
	R&S®NRP67SN-V	thermal vacuum		
Measurand		power of incident wave		
		power of source (DUT) into 50 Ω ¹¹		
RF connector	R&S®NRP8S(N)/NRP18S(N)	N (male)		
	R&S®NRP18S-10/-20/-25	, ,		
	R&S®NRP33S(N)	3.5 mm (male)		
	R&S®NRP33SN-V			
	R&S®NRP40S(N)	2.92 mm (male)		
	R&S®NRP50S(N)	2.4 mm (male)		
	R&S®NRP67S(N)	1.85 mm (male)		
	R&S®NRP67SN-V	1.05 mm (male)		
		4.05 (
	R&S®NRP90S (1424.6421.02);	1.35 mm (male)		
	R&S®NRP90SN (1424.6450.02)	()		
DE 44 12	R&S®NRP90S (1424.6421.03)	1.00 mm (male)		
RF attenuation ¹²	R&S®NRPxxS(N)	not applicable		
	R&S®NRP33SN-V			
	R&S®NRP67SN-V			
	R&S®NRP18S-10	10 dB		
	R&S®NRP18S-20	20 dB		
	R&S [®] NRP18S-25	25 dB		
Measurement functions	stationary and recurring waveforms	continuous average		
		burst average		
		timeslot/gate average		
		trace		
	single events	burst average		
	Single Stanie	timeslot/gate average		
		trace		
Continuous average function	manaurand	mean power over recurring acquisition interval		
Continuous average function	measurand			
	aperture	10 µs to 2.0 s (20 ms default)		
	window function	uniform or von Hann ¹³		
	duty cycle correction 14	0.001 % to 100.0 %		
	capacity of measurement buffer 15	1 to 8192 results		
Burst average function	measurand	mean power over burst portion of recurring signal		
		(trigger settings required)		
	detectable burst width ¹⁶	5 µs to 8 s		
	minimum gap between bursts	5 μs		
	dropout period ¹⁷ for burst end	1 µs to 300 ms		
	detection	·		
	exclusion periods 18			
	start	0 s to 1 s		
	end	0 s to 1 s		
	resolution (dropout and exclusion	0.5 μs (sample period)		
	periods)	0.0 ps (sample pellou)		
Timoslot/gato average function	. ,	maan nawar ayar individual timaalata/aata-		
Timeslot/gate average function	measurand	mean power over individual timeslots/gates		
	number of timeslots/gates	1 to 32 (consecutive)		
	nominal length	10 μs to 0.1 s		
	start of first timeslot/gate	at delayed trigger event		
	exclusion periods			
		0 - 4- 4 -		
	start	0 s to 1 s		
	start end	0 s to 1 s		


Trace function	measurand	mean, random, maximum and minimum power			
		over pixel length			
	acquisition				
	length	10 µs to 3.0 s			
	start (referenced to delayed trigger)	-3.0 s to 3.0 s			
	result				
	pixel	1 to 100 000			
	resolution	≥ 0.5 µs (sample period)			
Averaging filter	modes	auto off (fixed averaging number)			
Averaging inter	modes	auto on (continuously auto-adapted)			
		auto once (automatically fixed once)			
	auto off	T			
	supported measurement functions	all			
	averaging number	1, 2, 4, 6, 8, 10 to 65536 (1 or all even numbers			
		between 2 and 65536)			
	auto on/once				
	supported measurement functions	continuous average, burst average, timeslot/gate average			
	normal operating mode	averaging number adapted to resolution setting			
	fixed point approximation and the	and power to be measured			
	fixed noise operating mode	averaging number adapted to specified noise content			
	result output				
	moving mode	continuous result output, independent of			
		averaging number			
	repeat mode	only final result			
Attenuation correction	function	corrects the measurement result by means of a			
Attendation correction	Tariouon	fixed factor (dB offset)			
	rongo	-200.000 dB to +200.000 dB			
F	range				
Embedding ¹⁹	function	incorporates a two-port device at the sensor			
		input so that the measurement plane is shifted to			
		the input of this device			
	parameters	S_{11} , S_{21} , S_{12} and S_{22} of device			
	number of devices	0 to 999			
	total number of frequencies	≤ 80000			
Gamma correction	function	removes the influence of impedance mismatch			
		from the measurement result so that the			
		measurand corresponds to the power of the			
		source (DUT) into 50 Ω			
	parameters	magnitude and phase of reflection coefficient of			
	parameters				
F	from a tile on	source (DUT)			
Frequency response correction	function	takes the frequency response of the sensor			
		section and of the RF power attenuator into			
		account (if applicable)			
	parameter	center frequency of test signal			
	residual uncertainty	see specification of calibration uncertainty and			
		uncertainty for absolute and relative power			
		measurements			
Measurement times 20	continuous average				
Av: averaging number	single measurements	$2 \times (aperture + 100 \mu s) \times Av + t_z$			
	buffered measurements	2 × (aperture + 116 μ s) × buffer size + t_z			
	without averaging	$t_z = 2 \text{ ms (typ.)}$			
Zeroing (duration)	without averaging	$\frac{t_z = 2 \text{ ms (typ.)}}{5.3 \text{ s}}$			
Zeroing (duration)	ganaral				
Measurement error due to	general	depends on CCDF and RF bandwidth of test			
modulation ²¹		signal			
	WCDMA (3GPP test model 1 to 64)				
	TODIVIT (OCIT TOOL MODEL TO OH)				
	worst case	-0.02 dB to +0.05 dB			
		-0.02 dB to +0.05 dB -0.01 dB to +0.03 dB			
	worst case	-0.01 dB to +0.03 dB			
	worst case typical	-0.01 dB to +0.03 dB			

Change of input reflection	R&S®NRP8S(N)/18S(N)/33S(N)/33SN-V	//18S-10/18S-20/1	8S-25			
coefficient with respect to	10 MHz to 2.4 GHz	+15 °C to +35 °C		°C to +50 °C		
power ²²	> 2.4 GHz	< 0.01; < 0.02	<	0.02; < 0.03		
	R&S®NRP40S(N)/50S(N) /67S(N)/67SN		,	,		
		levels ≤ 10 dBm	le	vels > 10 dBm		
	50 MHz to 8.0 GHz	< 0.006 (meas.)	<	0.015 (meas.)		
	> 8.0 GHz to 18.0 GHz	< 0.014 (meas.)		0.027 (meas.)		
	> 18.0 GHz to 26.5 GHz	< 0.019 (meas.)	<	0.039 (meas.)		
	> 26.5 GHz to 33.0 GHz	< 0.023 (meas.)	<	0.048 (meas.)		
	> 33.0 GHz to 40.0 GHz	< 0.027 (meas.)	<	0.057 (meas.)		
	> 40.0 GHz to 50.0 GHz	< 0.029 (meas.)	<	0.068 (meas.)		
	> 50.0 GHz to 67.0 GHz	< 0.035 (meas.)		0.080 (meas.)		
	> 67.0 GHz to 90.0 GHz	< 0.040 (meas.)	<	0.090 (meas.)		
Calibration uncertainty ²³	R&S®NRP8S(N)/18S(N)/33S(N) R&S®NRP33SN-V	path 1	path 2	path 3		
	10 MHz to < 100 MHz	0.058 dB	0.052 dB	0.053 dB		
	100 MHz to 2.4 GHz	0.060 dB	0.058 dB	0.058 dB		
	> 2.4 GHz to 8.0 GHz	0.065 dB	0.062 dB	0.063 dB		
	> 8.0 GHz to 12.4 GHz	0.075 dB	0.071 dB	0.072 dB		
	> 12.4 GHz to 18.0 GHz	0.092 dB	0.088 dB	0.089 dB		
	> 18.0 GHz to 26.5 GHz	0.092 dB 0.093 dB	0.089 dB	0.090 dB		
	> 26.5 GHz to 33.0 GHz	0.093 dB 0.113 dB	0.009 dB 0.108 dB	0.109 dB		
	> 26.5 GHZ to 33.0 GHZ R&S®NRP40S(N)/50S(N)/67S(N)	path 1	path 2	path 3		
	R&S®NRP67SN-V/90S(N)	•		·		
	50 MHz to < 200 MHz	0.076 dB	0.070 dB	0.071 dB		
	200 MHz to 8.0 GHz	0.080 dB	0.071 dB	0.072 dB		
	> 8.0 GHz to 12.4 GHz	0.089 dB	0.079 dB	0.080 dB		
	> 12.4 GHz to 18.0 GHz	0.104 dB	0.093 dB	0.094 dB		
	> 18.0 GHz to 26.5 GHz	0.107 dB	0.092 dB	0.093 dB		
	> 26.5 GHz to 33.0 GHz	0.123 dB 0.107		0.108 dB		
	> 33.0 GHz to 40.0 GHz	0.133 dB 0.115 d		0.117 dB		
	> 40.0 GHz to 50.0 GHz	0.168 dB	0.150 dB	0.152 dB		
	> 50.0 GHz to 67.0 GHz	0.220 dB 0.199 d		0.202 dB		
	> 50.0 GHz to 90.0 GHz	0.249 dB 0.242 d		0.245 dB		
	R&S®NRP18S-10/-20/-25 24	path 1 path 2		path 3		
	10 MHz to < 100 MHz	0.083 dB	0.078 dB	0.079 dB		
	100 MHz to 2.4 GHz	0.084 dB 0.083		0.083 dB		
	> 2.4 GHz to 8.0 GHz	0.088 dB	0.086 dB	0.087 dB		
	> 8.0 GHz to 12.4 GHz	0.096 dB	0.093 dB	0.094 dB		
	> 12.4 GHz to 18.0 GHz	0.090 dB		0.109 dB		
Host interface	mechanical	8-pin male M12				
nost interiude	power supply	+5 V/0.5 A (USB high-power device)				
				ed and full-speed modes		
	орооч	according to the specification				
	remote control protocols	supports USB test and measurement device				
	, , , , , , , , , , , , , , , , , , , ,	class (USBTMC) and legacy mode for				
		compatibility with R&S®NRP-Zxx power sensors				
	trigger input EXTernal[1]	differential (0 V/+3.3 V)				
	reference clock	(5.77.50.77				
	signal level	LVDS				
	frequency	20 MHz				
	permissible total cable length	≤ 5 m				
Ethernet interface	mechanical	RJ-45 jack				
only for R&S®NRPxxSN types and	power supply	power over Ethe	ernet (PoE) o	class 1 device		
he R&S®NRP33SN-V/67SN-V	speed	10/100/1000 Mb	oit/s			
	remote control protocols	VXI11, HiSLIP (high-speed l	_AN instrument		
		protocol), SCPI-	• .			
	permissible cable length	≤ 100 m				
Frigger-I/O EXTernal2	mechanical	SMB built-in jacl	k			
	impedance					
	input	10 kΩ (nom.) or	50 Ω (nom.)) selectable		
	output	50 Ω (nom.)	, ,			
	signal level					
	input	compatible with	3 V or 5 V lo	ogic, max1 to +6 V		
	output	≥ 2 V into 50 Ω l				

Vacuum-specific characteristics	recommended	vacuum bake for 100 h at +85 °C and
of the R&S®NRP33SN-V/67SN-V	bake-out procedure	P < 10 ⁻⁵ mbar
	typical mass loss during bake-out	85 mg
Mounting of R&S®NRPxxSN-V	general data	Two threaded through-holes are provided for
onto a baseplate		mounting the sensor to a baseplate.
for technical drawings see Appendix		Using a low-outgassing thermal interface material
		such as graphite foil is highly recommended.
	distance between mounting holes	2" (50.8 mm)
	thread standard	UNC 8-32
	thread length	½ " (6.35 mm)
Dimensions (W × H × L)	R&S [®] NRPxxS	48 mm × 30 mm × 138 mm
		(1.89 in × 1.18 in × 5.43 in)
	R&S®NRPxxSN,	73 mm × 26 mm × 146 mm
	R&S®NRP33SN-V/67SN-V	(2.87 in × 1.02 in × 5.75 in)
	R&S®NRP18S-10	48 mm × 30 mm × 184 mm
		(1.89 in × 1.18 in × 7.25 in)
	R&S®NRP18S-20	53 mm × 46 mm × 252 mm
		(2.09 in × 1.82 in × 9.93 in)
	R&S®NRP18S-25	53 mm × 46 mm × 310 mm
		(2.09 in × 1.82 in × 12.21 in)
Weight	R&S®NRPxxS	< 0.20 kg (0.44 lb)
	R&S®NRPxxSN,	< 0.35 kg (0.77 lb)
	R&S®NRP33SN-V/67SN-V	
	R&S®NRP18S-10	< 0.27 kg (0.59 lb)
	R&S®NRP18S-20	< 0.37 kg (0.81 lb)
	R&S®NRP18S-25	< 0.47 kg (1.02 lb)

Power rating of the R&S®NRP18S-10/-20/-25

Hatched area: The maximum surface temperatures permitted by IEC 1010-1 are exceeded. Provide protection against inadvertent contacting or apply only a short-term load to the power sensor.

Average power sensors

R&S®NRP6A(N)/18A(N) average power sensors

Specifications from 8 kHz to 6 GHz apply to the R&S®NRP6A(N). Specifications from 8 kHz to 18 GHz apply to the R&S®NRP18A(N).

Frequency range	R&S®NRP6A(N)	8 kHz to 6 GHz	8 kHz to 6 GHz		
	R&S®NRP18A(N)	8 kHz to 18 GHz			
Impedance matching (SWR)	8 kHz to < 20 kHz	< 1.25 (1.23)			
	20 kHz to 2.4 GHz	< 1.13 (1.11)	() 1 E OC to 2 E OC		
	> 2.4 GHz to 8.0 GHz	< 1.20 (1.18)	(): +15 °C to +35 °C		
	> 8.0 GHz to 18.0 GHz	< 1.25 (1.23)			
Power measurement range		100 pW to 200 mW (-70 d	dBm to +23 dBm)		
Maximum power	average power	1 W (+30 dBm) AVG, max	k. 10 V DC		
	peak envelope power	, , ,			
Measurement subranges	path 1	-70 dBm to -15 dBm			
	path 2				
	path 3	-33 dBm to +23 dBm			
Transition regions	with automatic path selection ³	(-20 ± 1) dBm to (-14 ± 1)	(-20 ± 1) dBm to (-14 ± 1) dBm		
		(0 ± 1) dBm to $(+6 \pm 1)$ dBm			
Dynamic response	rise time 10 %/90 %	< 5 ms			
Acquisition	sample rate (continuous)				
	accuracy of time base				
Zero offset	initial, without zeroing				
	path 1	< 235 (50) pW			
	path 2	< 10.3 (2.2) nW			
	path 3	< 0.93 (0.19) μW			
	after external zeroing 5	,			
	path 1	< 49 (28) pW	(): typical at 1 GHz		
	path 2	< 2.1 (1.3) nW			
	path 3	< 192 (108) nW	+15 °C to +35 °C		
Zero drift ⁶	path 1	< 12 (2) pW			
	path 2	< 0.5 (0.1) nW			
	path 3	< 47 (8) nW	-		
Measurement noise 7	path 1	< 35 (20) pW			
	path 2	< 1.5 (0.9) nW			
	path 3	< 136 (76) nW			

	8 kHz to	o < 2	0 kHz			
	0.238		0.229		0.223	
	0.093		0.093		0.089	
	0.052		0.052		0.051	
-7	0	-20	0	C		+23

	20 kHz	to <	100 MHz			
	0.166		0.171		0.166	
	0.080		0.082		0.081	
	0.054		0.053		0.054	
-7	0	-20	0	C)	+23
		Pov	ver level i	n dE	3m	

0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C

Power level in dBm

	100 MH	z to	2.4 GHz			
	0.161		0.168		0.163	
	0.081		0.083		0.082	
	0.054		0.054		0.054	
-7	0	-20	0	C)	+23

0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C

Power level in dBm

Power level in dBm

> 8 GHz to 12.4 GH;	> 8	B G	Hz t	o 12	.4 G	Hz
---------------------	-----	-----	------	------	------	----

-7	0	-20)	()	+23
	0.076		0.073		0.074	
	0.096		0.096		0.095	
	0.166		0.172		0.166	

0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C

Power level in dBm

Power level in dBm

Uncertainty for relative power measurements 9 in dB

	8 kHz to <	: 2	0 kHz			
+23	0.299		0.292		0.027	
	0.107		0.105		0.026	
+6	0.046		0.041		0.026	
0	0.293		0.029		0.292	
	0.104		0.024		0.105	
-14	0.044		0.023		0.041	
-20	0.022		0.293		0.299	
	0.022		0.104		0.107	
-70	0.022		0.044		0.046	
	-70 - 20)	-14	0	+6	+23
	Po	we	er level in	dBm	I	

	20 kHz to	< 100 MHz		
+23	0.220	0.222	0.027	0 °C to +50 °C
	0.094	0.093	0.026	+15 °C to +35 °C
+6	0.044	0.040	0.026	+20 °C to +25 °C
0	0.214	0.028	0.222	0 °C to +50 °C
	0.091	0.024	0.093	+15 °C to +35 °C
-14	0.042	0.023	0.040	+20 °C to +25 °C
-20	0.022	0.214	0.220	0 °C to +50 °C
	0.022	0.091	0.094	+15 °C to +35 °C
-70	0.022	0.042	0.044	+20 °C to +25 °C
	−70 −20	-14 0	+6 +23	
	Po	wer level in de	3m	

	100 MHz to 2.4 GHz						
+23	0.213		0.217		0.027		
	0.093		0.093		0.026		
+6	0.045		0.040		0.026		
0	0.208		0.028		0.217		
	0.090		0.024		0.093		
-14	0.043		0.023		0.040		
-20	0.022		0.208		0.213		
	0.022		0.090		0.093		
-70	0.022		0.043		0.045		
	−70 −20		-14	0	+6	+23	
	Po	we	r level in	dBm			

	> 2.4 GHz	to 8 GHz		
+23	0.211	0.214	0.027	0 °C to +50 °C
	0.095	0.093	0.026	+15 °C to +35 °C
+6	0.050	0.042	0.026	+20 °C to +25 °C
0	0.205	0.028	0.214	0 °C to +50 °C
	0.092	0.024	0.093	+15 °C to +35 °C
-14	0.047	0.023	0.042	+20 °C to +25 °C
-20	0.022	0.205	0.211	0 °C to +50 °C
	0.022	0.092	0.095	+15 °C to +35 °C
-70	0.022	0.047	0.050	+20 °C to +25 °C
	−70 −20	-14 0	+6 +23	
	Po	ower level in d	Bm	

	> 8 GHz to	o 1	2.4 GHz			
+23	0.212		0.215		0.029	
	0.099		0.097		0.027	
+6	0.056		0.048		0.027	
0	0.207		0.029		0.215	
	0.095		0.025		0.097	
-14	0.052		0.024		0.048	
-20	0.022		0.207		0.212	
	0.022		0.095		0.099	
-70	0.022		0.052		0.056	
	−70 −20		-14	0	+6	+23
	Po	we	er level in	dBr	m	

	> 12.4 GH	z to 18 GHz		
+23	0.219	0.223	0.034	0 °C to +50 °C
	0.109	0.108	0.033	+15 °C to +35 °C
+6	0.069	0.064	0.032	+20 °C to +25 °C
0	0.212	0.031	0.223	0 °C to +50 °C
	0.102	0.027	0.108	+15 °C to +35 °C
-14	0.061	0.026	0.064	+20 °C to +25 °C
-20	0.022	0.212	0.219	0 °C to +50 °C
	0.022	0.102	0.109	+15 °C to +35 °C
-70	0.022	0.061	0.069	+20 °C to +25 °C
	−70 −20	-14 0	+6 +23	
	Po	ower level in dB	3m	

Additional characteristics of the R&S®NRPxxA(N) average power sensors

Sensor type		three-path diode power sensor
Measurand		power of incident wave
Measuranu		power of incident wave
RF connector		N (male)
Measurement functions	stationary and recurring waveforms	continuous average
Continuous average function	measurand	mean power over recurring acquisition
Continuous average function	measurand	interval
	aperture	10 μs to 2.0 s (20 ms default)
	window function	uniform or von Hann 13
	duty cycle correction ¹⁴	0.001 % to 100.0 %
	capacity of measurement buffer ¹⁵	1 to 8192 results
Averaging filter	modes	auto off (fixed averaging number)
Averaging inter	modes	auto on (continuously auto-adapted)
		auto once (automatically fixed once)
	auto off	auto once (automatically fixed once)
	supported measurement functions	all
	averaging number	1, 2, 4, 6, 8, 10 to 65536 (1 or all even
	averaging number	numbers between 2 and 65536)
	auto on/once	Humbers between 2 and 00000)
	normal operating mode	averaging number adapted to resolution
	normal operating mode	setting and power to be measured
	fixed noise operating mode	averaging number adapted to specified
	nixed holde operating mode	noise content
	result output	Holde content
	moving mode	continuous result output, independent of
	moving mode	averaging number
	repeat mode	only final result
Attenuation correction	function	corrects the measurement result by
Attenuation correction	Tanoton	means of a fixed factor (dB offset)
	range	-200.000 dB to +200.000 dB
Embedding	function	incorporates a two-port device at the
	Tariotori	sensor input so that the measurement
		plane is shifted to the input of this device
	parameters	S_{11} , S_{21} , S_{12} and S_{22} of device
	number of devices	0 to 999
	total number of frequencies	≤ 80000
Gamma correction	function	removes the influence of impedance
		mismatch from the measurement result
		so that the measurand corresponds to the
		power of the source (DUT) into 50 Ω
	parameters	magnitude and phase of reflection
	'	coefficient of source (DUT)
Frequency response correction	function	takes the frequency response of the
		sensor section and of the RF power
		attenuator into account (if applicable)
	parameter	center frequency of test signal
	residual uncertainty	see specification of calibration uncertainty
	•	and uncertainty for absolute and relative
		power measurements
Measurement time 20	continuous average	
Av: averaging number	single measurements	$2 \times (aperture + 5 ms) \times Av -5 ms + t_z$
0 0		$t_z = 2 \text{ ms (typ.)}$
Zeroing (duration)		6.6 s
Measurement error due to	general	depends on CCDF and RF bandwidth of
modulation ²¹		test signal
	WCDMA (3GPP test model 1 to 64)	
	worst case	-0.02 dB to +0.05 dB
	typical	-0.01 dB to +0.03 dB
	E-UTRA test model 1.1 (E-TM1.1), 20 MHz	
	worst case	-0.03 dB to +0.08 dB
	WOISI Case	-0.03 dD t0 +0.00 dD

Change of input reflection co-	8 kHz to 2.4 GHz	< 0.02 (0.01)		() 45	00.105.00	
efficient with respect to power 22	> 2.4 GHz	< 0.03 (0.02)		(): +15	°C to +35 °C	
Calibration uncertainty 23		path 1	path 2	path 2 path 3		
-	8 kHz to < 20 kHz	0.052 dB	0.050	0.050 dB 0.050 dB		
	20 kHz to < 100 MHz	0.055 dB	0.052 dB 0.053 dB			
	100 MHz to 2.40 GHz	0.054 dB	54 dB 0.052 dB 0.053 dB			
	> 2.4 GHz to 8.0 GHz	0.056 dB	0.053	0.053 dB 0.053 dE		
	> 8.0 GHz to 12.4 GHz	0.065 dB	0.062	2 dB	0.062 dB	
	> 12.4 GHz to 18.0 GHz	0.076 dB	0.073	3 dB	0.075 dB	
Host interface	mechanical	8-pin male M12	connec	ctor (A-co	oded)	
	power supply	+5 V/0.5 A (USI				
	speed	supports high-s				
	'	according to the				
	remote control protocols	supports USB to	est and	measure	ement device	
	•	class (USBTMC				
		compatibility with R&S®NRP-Zxx power sensors				
	trigger input EXTernal[1]	differential (0 V/+3.3 V)				
	reference clock					
	signal level	LVDS	LVDS			
	frequency	20 MHz				
	permissible total cable length	≤ 5 m	≤ 5 m			
Ethernet interface	mechanical	RJ-45 jack				
only for R&S®NRPxxAN types	power supply	power over Ethernet (PoE) class 1 device				
	speed	10/100/1000 Mbit/s				
	remote control protocols	VXI11, HiSLIP (VXI11, HiSLIP (high-speed LAN instrument			
		protocol), SCPI-	protocol), SCPI-RAW (port 5025)			
	permissible cable length	≤ 100 m	≤ 100 m			
Trigger-I/O EXTernal2	mechanical	SMB built-in jac	SMB built-in jack			
	impedance					
	input	10 kΩ (nom.) or	· 50 Ω (ı	nom.) se	lectable	
	output	50 Ω (nom.)				
	signal level					
	input	compatible with	3 V or	5 V logic	, max1 to +6 V	
	output	≥ 2 V into 50 Ω	load, m	ax. 5.3 \	/	
Dimensions (W × H × L)	R&S®NRPxxA	48 mm × 30 mn	n × 138	mm		
-		(1.89 in × 1.18 i	n × 5.43	3 in)		
	R&S®NRPxxAN	73 mm × 26 mn	1 × 146	mm		
		(2.87 in × 1.02 i	n × 5.75	5 in)		
Weight	R&S®NRPxxA	< 0.20 kg (0.44	lb)			
	R&S®NRPxxAN	< 0.35 kg (0.77	< 0.35 kg (0.77 lb)			

Thermal power sensors

$R\&S^{@}NRP18T(N)/33T(N)/40T(N)/50T(N)/67T(N) \ thermal\ power\ sensors$

Specifications from DC to 18 GHz apply to the R&S®NRP18T(N). Specifications from DC to 33 GHz apply to the R&S®NRP33T(N). Specifications from DC to 40 GHz apply to the R&S®NRP40T(N). Specifications from DC to 50 GHz apply to the R&S®NRP50T(N). Specifications from DC to 67 GHz apply to the R&S®NRP67T(N).

Frequency range	R&S®NRP18T(N)	DC to 18 GHz	7			
	R&S®NRP33T(N)	DC to 33 GHz	<u>z</u>			
	R&S®NRP40T(N)	DC to 40 GHz	<u>z</u>			
	R&S®NRP50T(N)	DC to 50 GHz	<u>z</u>			
	R&S®NRP67T(N)	DC to 67 GHz				
mpedance matching (SWR)	DC to 100 MHz	DC to 100 MHz < 1.03				
	> 100 MHz to 2.4 GHz	< 1.06				
	> 2.4 GHz to 12.4 GHz	< 1.13				
	> 12.4 GHz to 18.0 GHz	< 1.16				
	> 18.0 GHz to 26.5 GHz	< 1.22				
	> 26.5 GHz to 33.0 GHz	< 1.28				
	> 33.0 GHz to 40.0 GHz	< 1.28				
	> 40.0 GHz to 44.0 GHz	< 1.30				
	> 44.0 GHz to 50.0 GHz	< 1.30				
	> 50.0 GHz to 67.0 GHz	< 1.35				
Power measurement range		300 nW to 10	0 mW (-35 dBm t	o +20 dBm),		
		continuous, in a single range				
Maximum power	average power	0.3 W (+25 dl	0.3 W (+25 dBm), continuous			
	peak envelope power					
	R&S®NRP18T(N)	20 W (43 dBr	20 W (43 dBm) for max. 1 μs			
	R&S®NRP33T(N)/40T(N)/	10 W (40 dBr	10 W (40 dBm) for max. 1 μs			
	50T(N)/67T(N)					
Acquisition	sample rate	50 ksps (sigma-delta)				
	accuracy of time base	±5 ppm				
Zero offset	after external zeroing 5	< 25 nW (typ.	15 nW at 1 GHz)			
Zero drift ⁶		< 8 nW				
Measurement noise ⁷		< 25 nW (typ.	15 nW at 1 GHz)			
Uncertainty for absolute power		+20 °C to	+15 °C to	0 °C to		
measurements ²⁵		+25 °C	+35 °C	+50 °C		
	DC to 100 MHz	0.040 dB	0.046 dB	0.067 dB		
	> 100 MHz to 2.4 GHz	0.048 dB	0.053 dB	0.072 dB		
	> 2.4 GHz to 8.0 GHz	0.054 dB	0.059 dB	0.079 dB		
	> 8.0 GHz to 12.4 GHz	0.063 dB	0.068 dB	0.085 dB		
	> 12.4 GHz to 18.0 GHz	0.082 dB	0.086 dB	0.100 dB		
	> 18.0 GHz to 26.5 GHz	0.086 dB	0.086 dB	0.102 dB		
	> 26.5 GHz to 33.0 GHz	0.101 dB	0.105 dB	0.121 dB		
	> 33.0 GHz to 40.0 GHz	0.108 dB	0.112 dB	0.127 dB		
	> 40.0 GHz to 44.0 GHz	0.138 dB	0.141 dB	0.155 dB		
	> 44.0 GHz to 50.0 GHz	0.143 dB	0.146 dB	0.159 dB		
	> 50.0 GHz to 59.0 GHz	0.206 dB	0.208 dB	0.220 dB		
	> 59.0 GHz to 67.0 GHz	0.209 dB	0.212 dB	0.223 dB		
Uncertainty for relative power measurements ²⁶		0.010 dB				

R&S®NRP90T(N)/110T thermal power sensors

Specifications from DC to 90 GHz apply to the R&S®NRP90T(N). Specifications from DC to 110 GHz apply to the R&S®NRP110T.

Frequency range	R&S®NRP90T(N)	DC to 90 GHz	z (calibrated up to	98 GHz ²⁷)		
	R&S®NRP110T	DC to 110 GH	Ηz			
Impedance matching (SWR)	DC to 100 MHz	< 1.05	< 1.05			
	> 100 MHz to 2.4 GHz	< 1.08	< 1.08			
	> 2.4 GHz to 12.4 GHz	< 1.18				
	> 12.4 GHz to 18.0 GHz	< 1.23				
	> 18.0 GHz to 26.5 GHz	< 1.28				
	> 26.5 GHz to 40.0 GHz	< 1.38	< 1.38			
	> 40.0 GHz to 50.0 GHz	< 1.46				
	> 50.0 GHz to 67.0 GHz	< 1.56				
	> 67.0 GHz to 80.0 GHz	< 1.60				
	> 80.0 GHz to 95.0 GHz	< 1.66				
	> 95.0 GHz to 110.0 GHz	< 1.70				
Power measurement range		300 nW to 10) nW to 100 mW (-35 dBm to +20 dBm),			
_		continuous, ir	continuous, in a single range			
Maximum power	average power	0.3 W (+25 dl	0.3 W (+25 dBm), continuous			
-	peak envelope power	10 W (40 dBr	10 W (40 dBm) for max. 1 μs			
Acquisition	sample rate	50 ksps (sign	50 ksps (sigma-delta)			
-	accuracy of time base	±5 ppm	·			
Zero offset	after external zeroing 5	< 34 nW (typ.	15 nW at 1 GHz)			
Zero drift ⁶		< 11 nW				
Measurement noise 7		< 34 nW (typ.	15 nW at 1 GHz)			
Uncertainty for absolute power		+20 °C to	+15 °C to	0 °C to		
measurements 25, 27		+25 °C	+35 °C	+50 °C		
	DC to 100 MHz	0.041 dB	0.047 dB	0.068 dB		
	> 100 MHz to 2.4 GHz	0.051 dB	0.057 dB	0.074 dB		
	> 2.4 GHz to 12.4 GHz	0.074 dB	0.078 dB	0.093 dB		
	> 12.4 GHz to 18.0 GHz	0.098 dB	0.101 dB	0.113 dB		
	> 18.0 GHz to 26.5 GHz	0.099 dB	0.103 dB	0.115 dB		
	> 26.5 GHz to 40.0 GHz	0.118 dB	0.122 dB	0.135 dB		
	> 40.0 GHz to 50.0 GHz	0.166 dB	0.169 dB	0.182 dB		
	> 50.0 GHz to 59.0 GHz	0.226 dB	0.229 dB	0.244 dB		
	> 59.0 GHz to 67.0 GHz	0.231 dB	0.235 dB	0.249 dB		
	> 67.0 GHz to 80.0 GHz	0.251 dB	0.255 dB	0.270 dB		
	> 80.0 GHz to 95.0 GHz	0.269 dB	0.273 dB	0.289 dB		
	> 95.0 GHz to 110.0 GHz	0.290 dB	0.294 dB	0.311 dB		
Uncertainty for relative power	DC to 67.0 GHz	0.010 dB		·		
measurements ²⁶	> 67.0 GHz to 110.0 GHz	0.014 dB				

Additional characteristics of the R&S®NRP18T(N)/33T(N)/40T(N)/50T(N)/67T(N)/90T(N)/110T thermal power sensors

Sensor type		thermoelectric power sensor		
Measurand		power of incident wave		
		power of source (DUT) into 50 Ω ¹¹		
RF connector	R&S®NRP18T(N)	N (male)		
	R&S®NRP33T(N)	3.50 mm (male)		
	R&S®NRP40T(N)	2.92 mm (male)		
	R&S®NRP50T(N)	2.40 mm (male)		
	R&S®NRP67T(N)	1.85 mm (male)		
		,		
	R&S®NRP90T(N)	1.35 mm (male)		
	R&S®NRP110T	1.00 mm (male)		
Measurement function	stationary and recurring waveforms	continuous average		
Continuous average function	measurand	mean power over recurring acquisition interval		
	aperture	0.5 ms to 300 ms (5 ms default)		
	window function	uniform or von Hann 13		
	duty cycle correction 14	0.001 % to 100.0 %		
	capacity of measurement buffer 15	1 to 8192 results		
Averaging filter	modes	auto off (fixed averaging number)		
Averaging inter	modes			
		auto on (continuously auto-adapted)		
		auto once (automatically fixed once)		
	auto off			
	averaging number	1, 2, 4, 6, 8, 10 to 65536 (1 or all even numbers		
		between 2 and 65536)		
	auto on/once			
	normal operating mode	averaging number adapted to resolution setting		
	gg	and power to be measured		
	fixed noise operating mode	averaging number adapted to specified noise		
	nixed hoise operating mode	content		
	na aculta acutacut	Content		
	result output			
	moving mode	continuous result output, independent of		
		averaging number		
	repeat mode	only final result		
Attenuation correction	function	corrects the measurement result by means of a		
		fixed factor (dB offset)		
	range	-200.000 dB to +200.000 dB		
Embedding	function	incorporates a two-port device at the sensor input		
3		so that the measurement plane is shifted to the		
		input of this device		
	naramatara			
	parameters	S ₁₁ , S ₂₁ , S ₁₂ and S ₂₂ of device		
	frequencies	0 to 999		
Gamma correction	function	removes the influence of impedance mismatch		
		from the measurement result so that the power of		
		the source (DUT) into 50 Ω can be read		
	parameters	magnitude and phase of reflection coefficient of		
		source (DUT)		
Frequency response correction	function	takes the frequency response of the power sensor		
- in the second		into account		
	parameter	center frequency of test signal		
	-			
	residual uncertainty	see specification of calibration uncertainty and		
		uncertainty for absolute and relative power		
		measurements		
Measurement time ²⁰	continuous average	$2 \times (aperture + 300 \mu s) \times Av + t_z + t_d$		
Av: averaging number	single measurements	t_z : = 4 ms (typ.)		
		t _d must be taken into account when auto delay is		
		active		
	delay time t _d			
	R&S®NRP18T(N)	80 ms		
	R&S®NRP33T(N)/40T(N)/50T(N)/	40 ms		
	67T(N)/90T(N)/110T			
Zeroing (duration)		10 s		
Change of input reflection co-	only for power levels > 15 dBm	< 0.005		
efficient with respect to power 22	· · · · · · · · · · · · · · · · · ·	The state of the s		

Calibration uncertainty ²⁸	R&S®NRP18T(N)/33T(N)/40T(N)/50	OT(N)/67T(N)
·	DC to 100 MHz	0.040 dB
	> 100 MHz to 2.4 GHz	0.047 dB
	> 2.4 GHz to 8.0 GHz	0.054 dB
	> 8.0 GHz to 12.4 GHz	0.063 dB
	> 12.4 GHz to 18.0 GHz	0.082 dB
	> 18.0 GHz to 26.5 GHz	0.085 dB
	> 26.5 GHz to 33.0 GHz	0.101 dB
	> 33.0 GHz to 40.0 GHz	0.108 dB
	> 40.0 GHz to 44.0 GHz	0.138 dB
	> 44.0 GHz to 50.0 GHz	0.143 dB
	> 50.0 GHz to 59.0 GHz	0.190 dB
	> 59.0 GHz to 67.0 GHz R&S [®] NRP90T(N)/110T	0.193 dB
	DC to 100 MHz	0.041 dB
	> 100 MHz to 2.4 GHz	0.051 dB
	> 2.4 GHz to 12.4 GHz	0.074 dB
	> 12.4 GHz to 18.0 GHz	0.098 dB
	> 18.0 GHz to 26.5 GHz	0.099 dB
	> 26.5 GHz to 40.0 GHz	0.118 dB
	> 40.0 GHz to 50.0 GHz	0.166 dB
	> 50.0 GHz to 59.0 GHz	0.211 dB
	> 59.0 GHz to 67.0 GHz	0.217 dB
	> 67.0 GHz to 80.0 GHz	0.220 dB
	> 80.0 GHz to 95.0 GHz	0.240 dB
	> 95.0 GHz to 110.0 GHz	0.263 dB
Linearity ²⁹	DC to 67.0 GHz	0.007 dB
	> 67.0 GHz to 110.0 GHz	0.010 dB
Temperature effect 30	DC to 100 MHz	< 0.002 dB/K
	> 100 MHz to 50.0 GHz	< 0.003 dB/K
	> 50.0 GHz to 110.0 GHz	< 0.004 dB/K
Host interface	mechanical	8-pin male M12 connector (A-coded)
	power supply	+5 V/0.5 A (USB high-power device)
	speed	supports high-speed and full-speed modes
	'	according to the specification
	remote control protocols	supports USB test and measurement device
	·	class (USBTMC) and legacy mode for
		compatibility with R&S®NRP-Zxx power sensors
	trigger input EXTernal[1]	differential (0 V/+3.3 V)
	reference clock	
	signal level	LVDS
	frequency	20 MHz
	permissible total cable length	≤ 5 m
Ethernet interface	mechanical	RJ-45 jack
only for R&S®NRPxxTN types		-
only for Nas INFESTIN types	power supply	power over Ethernet (PoE) class 1 device 10/100/1000 Mbit/s
	speed	VXI11, HiSLIP (high-speed LAN instrument
	remote control protocols	, , , ,
	manusianih la pali la la sauti	protocol), SCPI-RAW (port 5025)
Tulous I/O FYT	permissible cable length	≤ 100 m
Trigger-I/O EXTernal2	mechanical	SMB built-in jack
	impedance	1010/
	input	10 kΩ (nom.) or 50 Ω (nom.) selectable
	output	50 Ω (nom.)
	signal level	
	input	compatible with 3 V or 5 V logic,
		max1 V to +6 V
	output	≥ 2 V into 50 Ω load, max. 5.3 V
Dimensions (W × H × L)	R&S®NRPxxT	48 mm × 30 mm × 138 mm
,	The state of the s	$(1.89 \text{ in} \times 1.18 \text{ in} \times 5.43 \text{ in})$
,		(1.00 11 × 1.10 11 × 0.10 11)
	R&S®NRPxxTN	73 mm × 26 mm × 146 mm
-	R&S [®] NRPxxTN	,
Weight	R&S®NRPxxTN R&S®NRPxxT	73 mm × 26 mm × 146 mm

Thermal waveguide power sensors

R&S®NRP75TWG(N)/90TWG(N)/110TWG(N) thermal waveguide power sensors

Specifications from 50 GHz to 75 GHz apply to the R&S®NRP75TWG(N). Specifications from 60 GHz to 90 GHz apply to the R&S®NRP90TWG(N). Specifications from 75 GHz to 110 GHz apply to the R&S®NRP110TWG(N).

Frequency range	R&S®NRP75TWG(N)	50 GHz to 75	50 GHz to 75 GHz			
	R&S®NRP90TWG(N)	60 GHz to 90	60 GHz to 90 GHz			
	R&S®NRP110TWG(N)	75 GHz to 11	0 GHz			
Impedance matching (SWR)		< 1.35				
Power measurement range		300 nW to 10	0 mW (-35 dBm t	o +20 dBm),		
		continuous, ir	n a single range			
Maximum power	average power	0.3 W (+25 d	Bm), continuous			
	peak envelope power	10 W (40 dBr	10 W (40 dBm) for max. 1 μs			
Acquisition	sample rate	50 ksps (sign	50 ksps (sigma-delta)			
	accuracy of time base	±5 ppm	±5 ppm			
Zero offset	after external zeroing 5	< 28 nW (typ. 20 nW)				
Zero drift ⁶		< 10 nW				
Measurement noise 7		< 28 nW (typ. 20 nW)				
Uncertainty for absolute power		+20 °C to	+15 °C to	0 °C to		
measurements 25		+25 °C	+35 °C	+50 °C		
	R&S®NRP75TWG(N),	0.190 dB	0.193 dB	0.204 dB		
	50 GHz to 75 GHz					
	R&S®NRP90TWG(N),	0.194 dB	0.197 dB	0.208 dB		
	60 GHz to 90 GHz					
	R&S®NRP110TWG(N),	0.198 dB	0.201 dB	0.212 dB		
	75 GHz to 110 GHz					
Uncertainty for relative power measurements ²⁶		0.014 dB				

Additional characteristics of the R&S $^{\otimes}$ NRP75TWG(N)/90TWG(N)/110TWG(N) thermal waveguide power sensors

Sensor type		thermoelectric power sensor
Measurand		power of incident wave
		power of source (DUT) into matched waveguide 11
RF connector	R&S®NRP75TWG(N)	WR15
	R&S®NRP90TWG(N)	WR12
	R&S®NRP110TWG(N)	WR10
Measurement function	stationary and recurring waveforms	continuous average
Continuous average function	measurand	mean power over recurring acquisition interval
	aperture	0.5 ms to 300 ms (5 ms default)
	window function	uniform or von Hann 13
	duty cycle correction 14	0.001 % to 100.0 %
	capacity of measurement buffer 15	1 to 8192 results
Averaging filter	modes	auto off (fixed averaging number)
		auto on (continuously auto-adapted)
		auto once (automatically fixed once)
	auto off	
	averaging number	1, 2, 4, 6, 8, 10 to 65536 (1 or all even numbers
		between 2 and 65536)
	auto on/once	1
	normal operating mode	averaging number adapted to resolution setting
	manual operating meas	and power to be measured
	fixed noise operating mode	averaging number adapted to specified noise
	inca helde operating mede	content
	result output	CONTON
	moving mode	continuous result output, independent of
	moving mode	averaging number
	repeat mode	only final result
Attenuation correction	function	corrects the measurement result by means of a
	Tariotion	fixed factor (dB offset)
	range	-200.000 dB to +200.000 dB
Embedding	function	incorporates a two-port device at the sensor input
	Tariotion	so that the measurement plane is shifted to the
		input of this device
	parameters	S_{11} , S_{21} , S_{12} and S_{22} of device
	frequencies	0 to 999
Gamma correction	function	removes the influence of impedance mismatch
	Tunction	from the measurement result so that the power of
		the source (DUT) into 50 Ω can be read
	parameters	magnitude and phase of reflection coefficient of
	parameters	source (DUT)
Frequency response correction	function	takes the frequency response of the power sensor
rrequency response correction	Tunction	into account
	parameter	center frequency of test signal
	residual uncertainty	see specification of calibration uncertainty and
	residual difcertairity	uncertainty for absolute and relative power
		,
Measurement time 20	continuous avorage	measurements
	continuous average single measurements	2 × (aperture + 300 μ s) × Av + t_z + t_d t_z : = 4 ms (typ.)
Av: averaging number	single measurements	t_z = 4 ms (typ.) t_d must be taken into account when auto delay is
		· -
	dolay timo t	active
Zaraina (duration)	delay time t _d	150 ms
Zeroing (duration) Change of input reflection co-	anh fan navyan lavele 45 JD:-	10 s
Unange of input reflection co-	only for power levels > 15 dBm	< 0.005

Calibration uncertainty 28	R&S®NRP75TWG(N)		
	50 GHz to 75 GHz	0.180 dB	
	R&S®NRP90TWG(N)	<u> </u>	
	60 GHz to 90 GHz	0.184 dB	
	R&S®NRP110TWG(N)		
	75 GHz to 110 GHz	0.188 dB	
Linearity 29		0.010 dB	
Temperature effect 30		< 0.004 dB/K	
Host interface	mechanical	8-pin male M12 connector (A-coded)	
	power supply	+5 V/0.5 A (USB high-power device)	
	speed	supports high-speed and full-speed modes	
		according to the specification	
	remote control protocols	supports USB test and measurement device	
	· ·	class (USBTMC) and legacy mode for	
		compatibility with R&S®NRP-Zxx power sensors	
	trigger input EXTernal[1]	differential (0 V/+3.3 V)	
	reference clock		
	signal level	LVDS	
	frequency	20 MHz	
	permissible total cable length	≤ 5 m	
Ethernet interface	mechanical	RJ-45 jack	
only for R&S®NRPxxTN types	power supply	power over Ethernet (PoE) class 1 device	
	speed	10/100/1000 Mbit/s	
	remote control protocols	VXI11, HiSLIP (high-speed LAN instrument	
	·	protocol), SCPI-RAW (port 5025)	
	permissible cable length	≤ 100 m	
Trigger-I/O EXTernal2	mechanical	SMB built-in jack	
	impedance		
	input	10 kΩ (nom.) or 50 Ω (nom.) selectable	
	output	50 Ω (nom.)	
	signal level		
	input	compatible with 3 V or 5 V logic,	
		max1 V to +6 V	
	output	≥ 2 V into 50 Ω load, max. 5.3 V	
Dimensions (W × H × L)	R&S®NRPxxTWG	48 mm × 30 mm × 128 mm	
•		$(1.89 \text{ in} \times 1.18 \text{ in} \times 5.04 \text{ in})$	
	R&S®NRPxxTWGN	73 mm × 26 mm × 136 mm	
		(2.87 in × 1.02 in × 5.35 in)	
Weight	R&S®NRPxxTWG	< 0.20 kg (0.44 lb)	
-	R&S®NRPxxTWGN	< 0.35 kg (0.77 lb)	

Accessories for R&S®NRP power sensors

Accessories are not approved for the usage in thermal vacuum chambers.

R&S®NRP-ZKU interface cables

The R&S®NRP-ZKU interface cables are used to connect Rohde & Schwarz power sensors described in this data sheet to any standard-conforming USB downstream port (USB-A receptacle), e.g. on a PC, USB hub or a Rohde & Schwarz instrument.

Connectors	sensor side	8-pin female M12 connector (A-coded)
	host side	USB-A plug
Length	model .02	0.75 m
	model .03	1.50 m
	model .04	3.00 m
	model .05	5.00 m

The R&S®NRP-ZKU interface cables must not be combined with passive USB extension cables as well as commercially available M12 extension cables. Using such extension cables can affect the reliability of the high-speed data transfer.

R&S®NRP-ZKC interface cables

The R&S®NRP-ZKC interface cables are used to connect Rohde & Schwarz power sensors described in this data sheet to any standard-conforming USB downstream port (USB-C receptacle), e.g. on a PC or mobile device.

Connectors	sensor side	8-pin female M12 connector (A-coded)
	host side	USB-C plug
Length	model .02	0.75 m
	model .03	1.50 m
	model .04	3.00 m

The R&S®NRP-ZKC interface cables must not be combined with passive USB extension cables as well as commercially available M12 extension cables. Using such extension cables can affect the reliability of the high-speed data transfer.

R&S®NRP-ZK6 interface cables

The R&S®NRP-ZK6 interface cables are used to connect Rohde & Schwarz power sensors described in this data sheet to an R&S®NRX power meter, R&S®NRP2 power meter, R&S®NRP-Z5 sensor hub or a Rohde & Schwarz instrument providing a 6-pole circular receptacle for R&S®NRP power sensors.

Connectors	sensor side	8-pin female M12 connector (A-coded)
	host side	6-pole circular plug with push-pull locking
Length	model .02	1.50 m
	model .03	3.00 m
	model .04	5.00 m

The R&S®NRP-ZK6 interface cables must not be combined with the R&S®NRP-Z2/-Z3/-Z4 cables as well as commercially available M12 extension cables. Using such extension or adapter cables can affect the reliability of the high-speed data transfer.

R&S®NRP-ZK8 interface cables

The R&S®NRP-ZK8 interface cables are used to connect Rohde & Schwarz power sensors described in this data sheet to an R&S®NRX power meter. Compared to R&S®NRP-ZK6, they contain an additional signal pair for routing the common time base clock provided by the NRX to sensors A, B, C and D.

Connectors	sensor side	8-pin female M12 connector (A-coded)
	host side	8-pole circular plug with push-pull locking
Length	model .02	1.50 m
	model .03	3.00 m
	model .04	5.00 m

The R&S®NRP-ZK8 interface cables must not be combined with commercially available M12 extension cables. Using such extension cables can affect the reliability of the high-speed data transfer.

R&S®NRP-ZKVSRJ Ethernet cables for TVAC applications

The R&S®NRP-ZKVSRJ Gigabit Ethernet cables are used to connect the R&S®NRP33SN-V and R&S®NRP67SN-V power sensors to a PoE-capable Ethernet switch, a PoE injector or to the vacuum side of an RJ-45 vacuum feedthrough.

Connectors		2 × RJ-45
Length	model .02	1.50 m
	model .03	3.00 m
	model .05	5.00 m
	model .15	15.00 m
	model .30	30.00 m
	model .60	60.00 m
Electrical specifications	cable category	Cat. 6
	conductor type	26 AWG (stranded)
Temperature range	operating and non-operating	-40 °C to +120 °C
Vacuum-specific specifications	insulation and sheath material	FEP
-	bake-out procedure	vacuum bake for 72 h at (100 ± 10) °C and
	(performed in factory)	$P < 5 \cdot 10^{-4}$ mbar, in line with MSFC-SPEC-684
	packaging	metalized polyester foil, vacuum welded

R&S®NRP-ZKVSMD Ethernet cables for TVAC applications

The R&S®NRP-ZKVSMD Gigabit Ethernet cables are used to connect the R&S®NRP33SN-V and R&S®NRP67SN-V power sensors to the vacuum side of a 9-pole Micro-D (f) vacuum feedthrough. They are complemented by the R&S®NRP-ZKASMD air side cables.

Connectors		1 × RJ-45
		1 × Micro-D (m), in line with MIL-DTL-83513
Length	model .02	1.50 m
	model .03	3.00 m
	model .05	5.00 m
	model .15	15.00 m
	model .30	30.00 m
	model .60	60.00 m
Electrical specifications	cable category	Cat. 6
	conductor type	26 AWG (stranded)
Temperature range	operating and non-operating	–40 °C to +120 °C
Vacuum-specific specifications	insulation and sheath material	FEP
	bake-out procedure	vacuum bake for 72 h at (100 ± 10) °C and
	(performed in factory)	P < 5 · 10 ⁻⁴ mbar, in line with MSFC-SPEC-684
	packaging	metalized polyester foil, vacuum welded

R&S®NRP-ZKASMD Ethernet cables (air side cables)

The R&S®NRP-ZKASMD Gigabit Ethernet cables are used to connect the air side of a 9-pole Micro-D (f) vacuum feedthrough to a PoE-capable Ethernet switch, a PoE injector, etc. The pinout of the Micro-D connector matches the R&S®NRP-ZKVSMD vacuum side cables.

Connectors		1 x Micro-D (m), in line with MIL-DTL-83513
		1 x RJ-45
Length	model .02	1.50 m
	model .03	3.00 m
	model .05	5.00 m
	model .15	15.00 m
	model .30	30.00 m
	model .60	60.00 m
Electrical specifications	cable category	Cat. 6
	conductor type	26 AWG (stranded)
Temperature range	operating and non-operating	–20 °C to +120 °C
Vacuum-specific specifications	insulation and sheath material	FEP
•	bake-out procedure	none
	(performed in factory)	

The R&S®NRP-ZKASMD cables have a visible marking that identifies them as air side cables. Though they are not designed for vacuum use and are not vacuum baked in factory, their FEP insulation and sheathing prevents serious contamination of the vacuum chamber through inadvertent vacuum-side use.

General data for R&S®NRP power sensors and accessories

Temperature ³¹	R&S®NRPxxS(N), R&S®NRP18S-10/-20/-25 R&S®NRPxxT(N), R&S®NRPxxA(N), R&S®NRP-ZKx	
	operating temperature range	0 °C to +50 °C
	permissible temperature range	–10 °C to +55 °C
	storage temperature range	−40 °C to +85 °C
	R&S®NRP33SN-V/67SN-V	
	operating temperature range	0 °C to +50 °C
	permissible temperature range	−10 °C to +60 °C
	storage temperature range	−40 °C to +85 °C
Climatic resistance	damp heat	+25 °C/+55 °C cyclic at 95 % relative humidity
		with restrictions: noncondensing,
		in line with EN 60068-2-30
Mechanical resistance	vibration	
	sinusoidal	5 Hz to 55 Hz, 0.15 mm amplitude,
		1.8 g at 55 Hz,
		55 Hz to 150 Hz, 0.5 g constant,
		in line with EN 60068-2-6
	random	8 Hz to 650 Hz, 1.9 g (RMS),
		in line with EN 60068-2-64
	shock	45 Hz to 2 kHz, max. 40 g shock spectrum,
		in line with MIL-STD-810E, method 516.4,
		procedure I
Altitude	R&S®NRPxxS(N), R&S®NRP18S-10/-20	V-25
	R&S®NRPxxT(N), R&S®NRPxxA(N), R&S®NRP-ZKx	
	operating	max. 2000 m
	transport	max. 15000 m
Air pressure	R&S®NRP33SN-V/67SN-V	
•	operating ³²	0 hPa to 1060 hPa
	transport	0 hPa to 1060 hPa
Electromagnetic compatibility	EU: in line with EMC Directive	applied harmonized standards:
, , ,	2014/30/EU	 EN 61326-1 (industrial environment)
		• EN 55011 (class B)
RoHS	EU: in line with Directive 2011/65/EU	applied harmonized standard:
	on the restriction of the use of certain	EN IEC 63000
	hazardous substances in electrical and	
	electronic equipment	
Calibration interval	recommended	2 years

R&S®NRX base unit

Application		universal power meter
Sensors		R&S®NRPxxS(N), R&S®NRPxxA(N),
		R&S®NRPxxT(N), R&S®NRPxxTWG(N),
		R&S®NRP-Zxx and R&S®NRQ6
Sensor connectors	standard	two sensor connectors (A and B) on front panel
	with R&S®NRX-B4 option	two additional sensor connectors (C and D) on rear
	connector	8-pole receptacle; mates with R&S®NRP-ZK8, R&S®NRP-ZK6 and 6-pole push-pull plug of
		R&S®NRP-Zxx series sensors
Measurement channels	standard	one measurement channel
	with R&S®NRX-K2 option	two measurement channels
	with R&S®NRX-K2 and R&S®NRX-K4 options	four measurement channels
Frequency range		DC to 110 GHz (sensor-dependent)
Power measurement range		0.1 fW to 30 W (average)
		(sensor-dependent)
Measurement functions		1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Single channel		see sensor specifications, plus:
- G		relative measurement referenced to result or user-
		selectable reference value, storage of minima and
		maxima (max., min., max. – min.), limit monitoring
	display	, , , , , , , , , , , , , , , , , , , ,
	absolute	in W, dBm and dBμV
	relative	in dB, as change in percent (Δ %) or as quotient
Multichannel		simultaneous measurement in up to 4 channels;
		individual results, ratios, relative ratios 33, or
		difference of results of 2 channels can be displayed
	display	
	ratio	in dB, as change in percent (Δ %), as quotient or as
		one of the following impedance matching
		parameters:
		SWR, return loss, reflection coefficient
	relative ratio 33	in dB, as change in percent (Δ %) or as quotient
Measurement uncertainty		see sensor specifications
Accuracy of common time base		±5 ppm
clock for sensors A, B, C and D Display		(R&S®NRP-ZK8 required)
Physical characteristics	type	127 mm (5") TFT color display
·	resolution	800 x 480 pixel (WVGA)
Result representation	numeric measurements	up to four results can simultaneously be displayed i separate windows using selectable layouts:
		full-size
		• 2 x half-size
		• half-size + 2 x 1/4-size
		• half-size + 3 × 1/6-size
	format resolution	digital, digital + bargraph
	digital values	selectable in four steps:
		• 1 dB/1.0 %/2 ½ digits (W, quotient)
		 0.1 dB/1.0 %/2 ½ digits (W, quotient)
		 0.01 dB/0.1 %/3 ½ digits (W, quotient)
		 0.001 dB/0.01 %/4 ½ digits (W, quotient)
	bargraph	depending on user-definable scale end values
	auxiliary values (optional in full- or half-size windows)	
	extremes	maximum, minimum, maximum – minimum
	statistical parameters	mean, standard deviation, measurement count
	measurement of power versus time	one or two traces can be displayed in one window:
		absolute power
		 ratio of two channels
		sum of two channels
		difference of two channels
	The state of the s	
	additional information	marker measurements

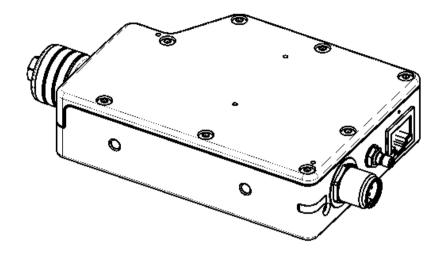
	power envelope statistics	versus absolute power in dBm or versus relative power referenced to the average power level:
		• CCDF
		• CDF
		• PDF
	additional information	marker measurements
Manual operation		via capacitive touch panel and/or keypad
Remote control		
Systems		IEC 60625.1 (IEEE 488.1),
		IEC 60625.2 (IEEE 488.2)
Command set		SCPI-1999.0
IEC/IEEE bus (R&S®NRX-B8	interface functions	SH1, AH1, T6, L4, SR1, RL1, PP1, DC1, DT1, C0
option)	connector	24-pin Amphenol (female)
USB		USB 2.0 high-speed
	connector	USB type B receptacle
	supported protocols	USBTMC via VISA
Ethernet		10/100/1000BASE-T
	connector	RJ-45 modular socket
	supported protocols	VXI-11, HiSLIP, SCPI-RAW
Measurement times	single continuous average	add 2 ms (meas.) to sensor specifications
	measurements, with	add = mo (model) to defider openinoations
	SYSTem:SPEed FAST	
Analog outputs and trigger I/O	SISICM.SIECU FASI	
Out 1/Trig Out	Out 1 (analog output 1)	recorder output; user-definable linear relation to
Cut 1/ Thy Out	Out 1 (analog output 1)	measurement result
	output voltage range	0 V to 2.5 V (no load)
		,
	output resistance	600 Ω (nom.)
	accuracy of no-load output voltage	±(0.4 % of output voltage + 4 mV)
	resolution	16 bit
	update rate	same as result rate of sensor
	Trig Out (trigger output)	signaling output; user-definable logic levels for the
		PASS and FAIL states in the case of limit monitoring
	high-level output voltage	(5.1 ± 0.2) V (≥ 10 kΩ load),
		2.6 V (nom.) (50 Ω load)
	low-level output voltage	0 V to 0.4 V (meas.) (5 mA sink current)
	output impedance	50 Ω (nom.)
	connector	BNC (female)
Trig In/Out 2	Trig In (trigger input)	input for trigger signals to sensors
		(routed internally to ports Sensor A–D; translated to
		*TRG command for sensors operated on standard
		USB ports and via network)
	input impedance	10 kΩ (nom.) or 50 Ω (nom.) selectable
	absolute minimum voltage	-3 V
	absolute maximum voltage	6 V (with 10 kΩ input impedance),
		4 V (with 50 Ω input impedance)
	low-to-high input threshold	$(1.8 \pm 0.3) \text{ V}$
	high-to-low input threshold	(1.15 ± 0.25) V
	Out 2 (analog output 2)	recorder output; user-definable linear relation to
	(**************************************	measurement result
	electrical characteristics	see Out 1
	connector	BNC (female)
USB host ports		two USB 2.0 high-speed host ports
poi.to		(one on front panel, one on rear panel)
	connector	USB type A receptacle
Firmware update	CONTROCTO	from a USB flash memory stick (copy .rsu file to
i iiiiwai e upuate		root directory and connect to either USB host port
		of R&S®NRX)
		from the R&S®NRP toolkit via Ethernet or
		USBTMC using a Windows program; VISA
Environmental conditions		installation is required
Environmental conditions	anarating tamparating rate	0.00 to 150.00
Temperature	operating temperature range	0 °C to +50 °C
	permissible temperature range	-10 °C to +55 °C
	storage temperature range	-40 °C to +70 °C
Damp heat	storage temperature range noncondensing	+25 °C/+55 °C, 95 % rel. humidity, cyclic,
Damp heat Altitude		

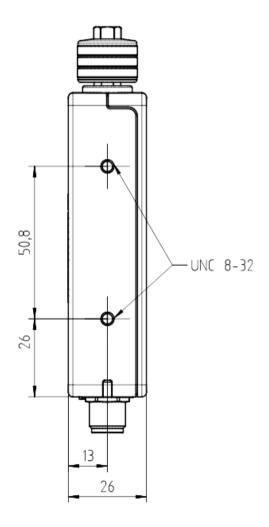
Mechanical resistance		
Vibration	sinusoidal	5 Hz to 55 Hz, 0.15 mm amplitude const., 55 Hz to 150 Hz, acceleration 0.5 g const., in line with EN 60068-2-6
	random	10 Hz to 500 Hz, acceleration 1.9 g (RMS), in line with EN 60068-2-64
Shock		40 g shock spectrum, in line with MIL-STD-810E, method 516.4, procedure I
Power rating		-
Rated voltage	nominal voltage	100 V to 240 V
	voltage range	90 V to 264 V
Rated frequency	nominal frequency	50 Hz to 60 Hz or 400 Hz
	frequency range	47 Hz to 63Hz or 380 Hz to 420 Hz
Rated current (including options,	at 100 V AC	max. 1.7 A
connected sensors and connected USB devices)	at 240 V AC	max. 0.8 A
Product conformity		
Electromagnetic compatibility	EU: in line with EMC Directive 2014/30/EU	applied harmonized standards: • EN 61326-1 (industrial environment) • EN 55011 (class B)
Electrical safety	EU: in line with Low Voltage Directive 2014/35/EU	applied harmonized standard: EN 61010-1
	USA	UL 61010-1
	Canada	CAN/CSA-C22.2 No. 61010-1
RoHS	EU: in line with Directive 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment	applied harmonized standard: EN IEC 63000
Dimensions	W×H×D	234 mm × 106 mm × 272 mm (9.21 in × 4.17 in × 10.71 in)
Weight	without any options installed	2.35 kg (5.18 lb)
•	with R&S®NRX-B1, R&S®NRX-B4 and R&S®NRX-B8 options installed	2.58 kg (5.69 lb)

Options for the R&S®NRX base unit

R&S®NRX-B1 sensor check source	application	as a power reference for testing sensors		
	mutually exclusive with	R&S®NRX-B9		
	frequency	50 MHz (nom.) or 1 GHz (nom.) selectable		
	power			
	CW and pulses	−20 dBm (10 µW)		
	•	−10 dBm (100 μW)		
		0 dBm (1 mW)		
		+10 dBm (10 mW)		
	CW only	+20 dBm (100 mW)		
	uncertainty			
	+20 °C to +25 °C	0.85 % at 50 MHz		
	120 0 10 120 0	1.00 % at 1 GHz		
	+15 °C to +35 °C	1.00 % at 1 GHz		
	+13 C t0 +33 C	1.20 % at 1 GHz		
	0 °C to 150 °C			
	0 °C to +50 °C	1.00 % at 50 MHz, 0 dBm 1.30 % at 50 MHz, -20 dBm, -10 dBm,		
		+10 dBm, +20 dBm		
	1	1.50 % at 1 GHz		
	pulse repetition frequency	10 kHz ± 5 ppm ³⁴		
	duty cycle	(50 ± 0.02) %		
	on/off ratio	60 dB (typ.)		
	rise/fall time	5 ns (typ.) at 1 GHz,		
		20 ns (typ.) at 50 MHz		
	SWR	< 1.05 (typ.)		
	RF connector	N (female) on front panel		
	source impedance	50 Ω (nom.)		
	weight	0.155 kg		
	recommended calibration interval	2 years		
R&S®NRX-B4 third (C) and fourth (D) sensor connector	application	provides two additional sensor connectors on rea		
(2) 2020.	weight	0.025 kg		
R&S®NRX-B8 GPIB/IEEE488	application	provides a GPIB/IEEE488 interface		
interface	weight	0.055 kg		
R&S [®] NRX-B9 interface for R&S [®] NRT-Z sensors	application	provides an additional connector for R&S®NRT-Z14, R&S®NRT-Z43 or R&S®NRT-Z44 directional power sensors		
	mutually exclusive with	R&S®NRX-B1		
	connector	LEMO S series, ERA model, size 2, 6-pole		
		receptacle on front panel (1: RXD+, 2: RXD-, 3: V _{SUPPLY} , 4: GND, 5: TXD-, 6: TXD+)		
	weight	0.135 kg		
R&S®NRX-K2 second measurement channel		allows using up to two sensors simultaneously		
R&S®NRX-K4 third and fourth measurement channel	application	allows using up to four sensors simultaneously (R&S®NRX-K2 required)		

Appendix


Reading the uncertainty of multipath power sensors for relative power measurements


The example shows a level step of approx. 14 dB (-4 dBm \rightarrow +10 dBm) at 1.9 GHz and an ambient temperature of +28 °C for an R&S®NRP8S power sensor. The expanded uncertainty for relative power measurements in this example is 0.093 dB.

Power level 2: +10 dBm

Technical drawings of the R&S $^{\rm @}$ NRP33SN-V/-67SN-V TVAC-compliant three-path diode power sensor

Dimensions in mm

Ordering information

Designation Base unit	Туре	Order No.
Power meter	R&S®NRX	1424.7005.02
Options for the R&S®NRX base unit		
Second measurement channel	R&S®NRX-K2	1424.9208.02
Third and fourth measurement channel	R&S®NRX-K4	1424.9308.02
Sensor check source	R&S®NRX-B1	1424.7805.02
Third (C) and fourth (D) sensor connector for R&S®NRP	R&S®NRX-B4	1424.8901.02
GPIB/IEEE488 interface	R&S®NRX-B8	1424.8301.02
Sensor interface, for R&S®NRT	R&S®NRX-B9	1424.8601.02
Three-path diode power sensors		
100 pW to 200 mW, 10 MHz to 8 GHz	R&S®NRP8S	1419.0006.02
100 pW to 200 mW, 10 MHz to 8 GHz, LAN version	R&S®NRP8SN	1419.0012.02
100 pW to 200 mW, 10 MHz to 18 GHz	R&S®NRP18S	1419.0029.02
100 pW to 200 mW, 10 MHz to 18 GHz, LAN version	R&S®NRP18SN	1419.0035.02
100 pW to 200 mW, 10 MHz to 33 GHz	R&S®NRP33S	1419.0064.02
100 pW to 200 mW, 10 MHz to 33 GHz, LAN version	R&S®NRP33SN	1419.0070.02
100 pW to 100 mW, 50 MHz to 40 GHz	R&S®NRP40S	1419.0041.02
100 pW to 100 mW, 50 MHz to 40 GHz, LAN version	R&S®NRP40SN	1419.0058.02
100 pW to 100 mW, 50 MHz to 50 GHz	R&S®NRP50S	1419.0087.02
100 pW to 100 mW, 50 MHz to 50 GHz, LAN version	R&S®NRP50SN	1419.0093.02
100 pW to 100 mW, 50 MHz to 67 GHz	R&S®NRP67S	1424.6396.02
100 pW to 100 mW, 50 MHz to 67 GHz, LAN version	R&S®NRP67SN	1424.6409.02
100 pW to 100 mW, 50 MHz to 90 GHz, 1.35 mm connector	R&S®NRP90S	1424.6421.02
100 pW to 100 mW, 50 MHz to 90 GHz, 1.00 mm connector	R&S®NRP90S	1424.6421.03
100 pW to 100 mW, 50 MHz to 90 GHz, 1.00 mm connector	R&S®NRP90SN	1424.6450.02
High-power three-path diode power sensors	1183 1111 90311	1424.0430.02
1 nW to 2 W, 10 MHz to 18 GHz	R&S®NRP18S-10	1424.6721.02
10 nW to 15 W, 10 MHz to 18 GHz	R&S®NRP18S-20	1424.6738.02
30 nW to 30 W, 10 MHz to 18 GHz	R&S®NRP18S-25	1424.6744.02
TVAC-compliant three-path diode power sensor	R&S INF 103-23	1424.0744.02
100 pW to 200 mW, 10 MHz to 33 GHz, LAN version, TVAC-compliant	R&S®NRP33SN-V	1419.0129.02
100 pW to 100 mW, 50 MHz to 67 GHz, LAN version, TVAC-compliant	R&S®NRP67SN-V	1424.6415.02
Thermal power sensors	R&S INFO/SIN-V	1424.0413.02
300 nW to 100 mW, DC to 18 GHz	R&S®NRP18T	1424.6115.02
300 nW to 100 mW, DC to 18 GHz, LAN version	R&S®NRP18TN	1424.6121.02
300 nW to 100 mW, DC to 33 GHz	R&S®NRP33T	1424.6138.02
300 nW to 100 mW, DC to 33 GHz, LAN version	R&S®NRP33TN	1424.6144.02
300 nW to 100 mW, DC to 40 GHz	R&S®NRP40T	1424.6150.02
300 nW to 100 mW, DC to 40 GHz, LAN version	R&S®NRP40TN	1424.6167.02
300 nW to 100 mW, DC to 40 GHz	R&S®NRP50T	1424.6173.02
	R&S®NRP50TN	
300 nW to 100 mW, DC to 50 GHz, LAN version	R&S®NRP67T	1424.6180.02
300 nW to 100 mW, DC to 67 GHz		1424.6196.02
300 nW to 100 mW, DC to 67 GHz, LAN version	R&S®NRP67TN	1424.6209.02
300 nW to 100 mW, DC to 90 GHz	R&S®NRP90T	1424.6473.02
300 nW to 100 mW, DC to 90 GHz, LAN version	R&S®NRP90TN	1424.6480.02
300 nW to 100 mW, DC to 110 GHz	R&S®NRP110T	1424.6215.02
Thermal waveguide power sensors	D & C®NIDDZETIMO	4700 0500 00
300 nW to 100 mW, 50 GHz to 75 GHz	R&S®NRP75TWG	1700.2529.02
300 nW to 100 mW, 50 GHz to 75 GHz, LAN version	R&S®NRP75TWGN	1440.5010.02
300 nW to 100 mW, 60 GHz to 90 GHz	R&S®NRP90TWG	1700.2312.02
300 nW to 100 mW, 60 GHz to 90 GHz, LAN version	R&S®NRP90TWGN	1440.5078.02
300 nW to 100 mW, 75 GHz to 110 GHz	R&S®NRP110TWG	1173.8709.02
300 nW to 100 mW, 75 GHz to 110 GHz, LAN version	R&S®NRP110TWGN	1440.5132.02
Average power sensors	D 0 00:	
100 pW to 200 mW, 8 kHz to 6 GHz	R&S®NRP6A	1424.6796.02
100 pW to 200 mW, 8 kHz to 6 GHz, LAN version	R&S®NRP6AN	1424.6809.02
100 pW to 200 mW, 8 kHz to 18 GHz	R&S®NRP18A	1424.6815.02
100 pW to 200 mW, 8 kHz to 18 GHz, LAN version	R&S®NRP18AN	1424.6821.02

Designation	Туре	Order No.
Recommended extras for R&S®NRX		
19" rack adapter (for one R&S®NRX power meter and one empty casing)	R&S®ZZA-KNA22	1177.8184.00
19" rack adapter (for two R&S®NRX power meters)	R&S®ZZA-KNA24	1177.8149.00
Recommended extras for R&S®NRPxxS(N)/T(N)/A(N)		
A minimum of one interface cable is required for power sensor operation.		
USB-A interface cable, length: 0.75 m	R&S®NRP-ZKU	1419.0658.02
USB-A interface cable, length: 1.50 m	R&S®NRP-ZKU	1419.0658.03
USB-A interface cable, length: 3.00 m	R&S®NRP-ZKU	1419.0658.04
USB-A interface cable, length: 5.00 m	R&S®NRP-ZKU	1419.0658.05
USB-C interface cable, length: 0.75 m	R&S®NRP-ZKC	1425.2442.02
USB-C interface cable, length: 1.50 m	R&S®NRP-ZKC	1425.2442.03
USB-C interface cable, length: 3.00 m	R&S®NRP-ZKC	1425.2442.04
6-pole interface cable, length: 1.50 m	R&S®NRP-ZK6	1419.0664.02
6-pole interface cable, length: 3.00 m	R&S®NRP-ZK6	1419.0664.03
6-pole interface cable, length: 5.00 m	R&S®NRP-ZK6	1419.0664.04
8-pole interface cable, length: 1.50 m	R&S®NRP-ZK8	1424.9408.02
8-pole interface cable, length: 3.00 m	R&S®NRP-ZK8	1424.9408.03
8-pole interface cable, length: 5.00 m	R&S®NRP-ZK8	1424.9408.04
Ethernet cable for TVAC applications, 2 x RJ-45, length: 1.50 m	R&S®NRP-ZKVSRJ	1425.2407.02
Ethernet cable for TVAC applications, 2 x RJ-45, length: 3.00 m	R&S®NRP-ZKVSRJ	1425.2407.03
Ethernet cable for TVAC applications, 2 x RJ-45, length: 5.00 m	R&S®NRP-ZKVSRJ	1425.2407.05
Ethernet cable for TVAC applications, 2 x RJ-45, length: 15.00 m	R&S®NRP-ZKVSRJ	1425.2407.15
Ethernet cable for TVAC applications, 2 x RJ-45, length: 30.00 m	R&S®NRP-ZKVSRJ	1425.2407.30
Ethernet cable for TVAC applications, 2 x RJ-45, length: 60.00 m	R&S®NRP-ZKVSRJ	1425.2407.60
Ethernet cable for TVAC applications, RJ-45 to Micro-D, length: 1.50 m	R&S®NRP-ZKVSMD	1425.2413.02
Ethernet cable for TVAC applications, RJ-45 to Micro-D, length: 3.00 m	R&S®NRP-ZKVSMD	1425.2413.03
Ethernet cable for TVAC applications, RJ-45 to Micro-D, length: 5.00 m	R&S®NRP-ZKVSMD	1425.2413.05
Ethernet cable for TVAC applications, RJ-45 to Micro-D, length: 15.00 m	R&S®NRP-ZKVSMD	1425.2413.15
Ethernet cable for TVAC applications, RJ-45 to Micro-D, length: 30.00 m	R&S®NRP-ZKVSMD	1425.2413.30
Ethernet cable for TVAC applications, RJ-45 to Micro-D, length: 60.00 m	R&S®NRP-ZKVSMD	1425.2413.60
Ethernet cable (air side cable), Micro-D to RJ-45, length: 1.50 m	R&S®NRP-ZKASMD	1425.2420.02
Ethernet cable (air side cable), Micro-D to RJ-45, length: 3.00 m	R&S®NRP-ZKASMD	1425.2420.03
Ethernet cable (air side cable), Micro-D to RJ-45, length: 5.00 m	R&S®NRP-ZKASMD	1425.2420.05
Ethernet cable (air side cable), Micro-D to RJ-45, length: 15.00 m	R&S®NRP-ZKASMD	1425.2420.15
Ethernet cable (air side cable), Micro-D to RJ-45, length: 30.00 m	R&S®NRP-ZKASMD	1425.2420.30
Ethernet cable (air side cable), Micro-D to RJ-45, length: 60.00 m	R&S®NRP-ZKASMD	1425.2420.60
Sensor hub	R&S®NRP-Z5	1146.7740.02
Recommended extras for waveguide connectors	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Torque wrench SW 3/32 (for waveguide screws)	R&S®ZCTW	1175.2014.02
Recommended extras for R&S®NRP110T		
Waveguide bracket for R&S®NRP110T	R&S®NRP-ZBW	1700.2141.02
WR15 to 1 mm (f) adapter	R&S®WCA75	3626.1044.02
WR12 to 1 mm (f) adapter	R&S®WCA90	3626.1050.02
WR10 to 1 mm (f) adapter	R&S®WCA110	3626.1067.02

Designation	Туре	Order No.
Documentation		
Documentation of calibration values	R&S®DCV-1	0240.2187.06
Printout of DCV (in combination with DCV only)	R&S®DCV-ZP	1173.6506.02
Accredited calibration for R&S®NRX-B1, R&S®NRPxxS(N), R&S®NRPxxA(N), R&S®NRPxxT(N) and R&S®NRPxxTWG(N)	R&S®NRP-ACA	1419.0812.00

Warranty		
R&S®NRX base unit, power sensors and R&S®NRP-Z5		3 years
All other items ³⁵		1 year
Service options		
Extended warranty, one year	R&S®WE1	Please contact your local Rohde & Schwarz sales office.
Extended warranty, two years	R&S®WE2	
Extended warranty with calibration coverage, one year	R&S®CW1	
Extended warranty with calibration coverage, two years	R&S®CW2	
Extended warranty with accredited calibration coverage, one year	R&S®AW1	
Extended warranty with accredited calibration coverage, two years	R&S®AW2	

Extended warranty with a term of one and two years (WE1 and WE2)

Repairs carried out during the contract term are free of charge ³⁶. Necessary calibration and adjustments carried out during repairs are also covered.

Extended warranty with calibration (CW1 and CW2)

Enhance your extended warranty by adding calibration coverage at a package price. This package ensures that your Rohde & Schwarz product is regularly calibrated, inspected and maintained during the term of the contract. It includes all repairs ³⁶ and calibration at the recommended intervals as well as any calibration carried out during repairs or option upgrades.

Extended warranty with accredited calibration (AW1 and AW2)

Enhance your extended warranty by adding accredited calibration coverage at a package price. This package ensures that your Rohde & Schwarz product is regularly calibrated under accreditation, inspected and maintained during the term of the contract. It includes all repairs ³⁶ and accredited calibration at the recommended intervals as well as any accredited calibration carried out during repairs or option upgrades.

For product brochure, see PD 5213.5539.12 and www.rohde-schwarz.com

Endnotes

- Specifications apply to timeslots/gates with a duration of 12.5 % referenced to the signal period (duty cycle 1:8). For other waveforms, the following equation applies: lower measurement limit = lower measurement limit for continuous average mode / √(duty cycle).
- ² With a resolution of 256 pixel.
- 3 Specifications apply to the default transition setting of 0 dB. The transition regions can be shifted by as much as -20 dB using an adequate offset.
- ⁴ Time span prior to triggering, where the trigger signal must be entirely below the threshold level in the case of a positive slope and vice versa in the case of a negative slope.
- 5 Specifications expressed as an expanded uncertainty with a confidence level of 95 % (two standard deviations). For calculating zero offsets at higher confidence levels, use the properties of the normal distribution (e.g. 99.7 % confidence level for three standard deviations).
- ⁶ Within one hour after zeroing, permissible temperature change ±1 °C, following a two-hour warm-up of the power sensor.
- ⁷ Two standard deviations at 10.24 s integration time in continuous average mode, with aperture time set to default value. The integration time is defined as the total time used for signal acquisition, i.e. the product of twice the aperture time and the averaging number. Multiplying the noise specifications by √(10.24 s/integration time) yields the noise contribution at other integration times. Using a von Hann window function increases noise by a factor of 1.22.
- Expanded uncertainty (k = 2) for absolute power measurements on CW signals with automatic path selection and the default transition setting of 0 dB. Specifications include calibration uncertainty, linearity and temperature effect. Zero offset, zero drift and measurement noise must additionally be taken into account when measuring low powers. As a rule of thumb, the contribution of zero offset can be neglected for power levels above –40 dBm. The contribution of measurement noise depends on power and integration time and can be neglected below 0.01 dB.

Example: The uncertainty of a power measurement at 3.2 nW (-55 dBm) and 1.9 GHz is to be determined for an R&S®NRP8S. The ambient temperature is +29 °C and the averaging number is set to 32 in the continuous average mode with an aperture time of 20 ms.

Since path 1 is used for the measurement, the typical absolute uncertainty due to zero offset is 28 pW (typical) after external zeroing, which corresponds to a relative measurement uncertainty of

10
$$\lg \frac{3.2 \text{ nW} + 28 \text{ pW}}{3.2 \text{ nW}} dB = 0.038 dB.$$

Using the formula in footnote 7, the absolute noise contribution of path 1 is typically 20 pW $\times \sqrt{(10.24 \text{ s}/(32 \times 2 \times 0.02 \text{ s}))} = 56.6 \text{ pW}$, which corresponds to a relative measurement uncertainty of

10
$$\lg \frac{3.2 \text{ nW} + 56.6 \text{ pW}}{3.2 \text{ nW}} dB = 0.076 dB.$$

Combined with the uncertainty of 0.084 dB for absolute power measurements under the given conditions, the total expanded uncertainty is $\sqrt{0.038^2 + 0.076^2 + 0.084^2}$ dB = 0.119 dB.

The contribution of zero drift has been neglected in this case. It must be treated like zero offset if it is relevant for total uncertainty.

Expanded uncertainty (k = 2) for relative power measurements on CW signals of the same frequency with automatic path selection and a default transition setting of 0 dB. For reading the measurement uncertainty diagrams of universal, average and level control sensors, see the Appendix.

Specifications include calibration uncertainty (only if different paths are affected), linearity and temperature effect. Zero offset, zero drift and measurement noise must additionally be taken into account when measuring low powers. As a rule of thumb, the contribution of zero offset can be neglected for power levels above –40 dBm. The contribution of measurement noise depends on power and integration time and can be neglected below 0.01 dB.

Example: The uncertainty of a power step from 0.5 mW (–3 dBm) to 10 nW (–50 dBm) at 5.4 GHz is to be determined for an R&S®NRP8S. The ambient temperature is +20 °C and the averaging number is set to 16 for both measurements in the continuous average mode with an aperture time of 20 ms. For the calculation of total uncertainty, the relative contribution of noise, zero offset and zero drift must be taken into account for both measurements. In this example, all contributions at –3 dBm and the effect of zero drift at –50 dBm have been neglected.

Since path 1 is used for the -50 dBm measurement, the typical absolute uncertainty due to zero offset is 28 pW after external zeroing, which corresponds to a relative measurement uncertainty of

10
$$\lg \frac{10 \text{ nW} + 28 \text{ pW}}{10 \text{ nW}} dB = 0.012 dB.$$

Using the formula in footnote 7, the absolute noise contribution of path 1 is typically 20 pW $\times \sqrt{(10.24 \text{ s/}(16 \times 2 \times 0.02 \text{ s}))} = 80 \text{ pW}$, which corresponds to a relative measurement uncertainty of

10
$$\lg \frac{10 \text{ nW} + 80 \text{ pW}}{40 \text{ pW}} \text{ dB} = 0.035 \text{ dB}.$$

Combined with the uncertainty of 0.050 dB for relative power measurements under the given conditions, the total expanded uncertainty is

$$\sqrt{0.012^2 + 0.035^2 + 0.050^2}$$
 dB = 0.062 dB.

Specifications are based on the assumption that the measurements follow each other so fast (at intervals of no more than 10 s) that the temperature of the power attenuator does not change significantly. In the case of the R&S®NRP18S-10, the average power must not exceed 1 W to be compliant with accuracy specifications for relative power measurements. For the R&S®NRP18S-20, the maximum average power is 10 W. For the R&S®NRP18S-20, maximum average power is 20 W for compliance with the specifications for relative power measurements.

¹¹ Gamma correction activated.

¹² Preceding sensor section (nominal value).

- 13 Preferably used with determined modulation when the aperture time cannot be matched to the modulation period. Compared to a uniform window, measurement noise is about 22 % higher.
- ¹⁴ For measuring the power of periodic bursts based on an average power measurement.
- ¹⁵ To increase measurement speed, the power sensor can be operated in buffered mode. In this mode, measurement results are stored in a buffer of user-definable size and then output as a block of data when the buffer is full. To enhance measurement speed even further, the sensor can be set to record the entire series of measurements when triggered by a single event. In this case, the power sensor automatically starts a new measurement as soon as it has completed the previous one.
- 16 For moving mode, the maximum burst width of a single burst is 8 s. For repeat mode the mean burst length is limited to 8 s/averaging number.
- 17 This parameter enables power measurements on modulated bursts. The parameter must be longer in duration than modulation-induced power drops within the burst.
- ¹⁸ To exclude unwanted portions of the signal from the measurement result.
- 19 If embedding is used in conjunction with the R&S®NRP18S-10/-20/-25, the data of the RF power attenuator preceding the sensor section is taken into account (automatically upon power-up of the sensor).
- Specifications are valid for repeat mode, extending from the beginning to the end of all transfers. The actual values depend on the host system, therefore typical values are specified. They have been measured with a USB connection including one USB hub using the USBTMC protocol and an Ethernet network including one PoE switch using the HiSLIP protocol. For R&S®NRPxxT(N) sensors the specified measurement time is valid for an aperture time less than 100 ms.
- ²¹ Measurement error referenced to a CW signal of equal power and frequency. Specifications apply up to +20 dBm for automatic path selection or within a subrange to the maximum level of the subrange minus 3 dB.
- ²² Change of the reflection coefficient (error vector magnitude) referenced to 0 dBm. Applies to the R&S®NRPxxS(N) and the sensor section of the R&S®NRP18S-10/-20/-25.
- ²³ Expanded uncertainty (k = 2) for absolute power measurements on CW signals at the calibration level within a temperature range from +20 °C to +25 °C and at the calibration frequencies. Specifications include zero offset and measurement noise (up to a 2σ value of 0.004 dB). The calibration level is –20 dBm for path 1 and 0 dBm for paths 2 and 3 and the sensor section of the R&S®NRP18S-10/-20/-25.
- ²⁴ Specifications include sensor section and RF power attenuator.
- ²⁵ Expanded uncertainty (k = 2) for absolute power measurements. Specifications include calibration uncertainty, linearity and temperature effect. Zero offset and measurement noise must additionally be taken into account when measuring low powers, whereas zero drift is negligible over the entire measurement range. As a rule of thumb, the contribution of zero offset can be neglected for power levels above –20 dBm if external zeroing has been applied. The contribution of measurement noise can be neglected below 0.01 dB.

Example: The power to be measured with an R&S®NRP50TN is 5 μW (–23 dBm) at 48 GHz; ambient temperature +29 °C; averaging number set to 64 in continuous average mode with an aperture time of 5 ms (default).

The absolute uncertainty due to zero offset (after external zeroing) is 25 nW, which corresponds to a relative measurement uncertainty of

$$10 \lg \frac{5 \mu W + 25 \text{ nW}}{5 \mu W} dB = 0.022 dB.$$

Using the formula in footnote 7, the absolute noise contribution is 25 nW \times $\sqrt{(10.24 \text{ s/}(64 \times 2 \times 0.005 \text{ s}))}$ = 100 nW, which corresponds to a relative measurement uncertainty of

$$10 \lg \frac{5 \mu W + 100 \text{ nW}}{5 \mu W} dB = 0.086 dB.$$

Combined with the value of 0.149 dB specified for the uncertainty of absolute power measurements at 48 GHz and +29 °C ambient temperature, the total expanded uncertainty is

$$\sqrt{0.149^2 + 0.022^2 + 0.086^2}$$
 dB = 0.173 dB.

- Expanded uncertainty (k = 2) for relative power measurements on CW signals of the same frequency. Specifications include linearity and temperature effect. Zero offset and measurement noise must additionally be taken into account when measuring low powers, whereas zero drift is negligible over the entire measurement range. As a rule of thumb, the contribution of zero offset can be neglected for power levels above –20 dBm if external zeroing has been applied. The contribution of measurement noise can be neglected below 0.01 dB. See also the example in footnote 9 for taking into account zero offset and noise with relative measurements.
- ²⁷ For R&S®NRP90T(N) absolute accuracy is calibrated up to 98 GHz. Reflection of the sensors is calibrated up to 90 GHz. The specified absolute uncertainty for R&S®NRP90T(N) is valid up to 90 GHz. The uncertainty from 90 GHz to 98 GHz is approximately 0.45 dB.
- ²⁸ Expanded uncertainty (k = 2) for absolute power measurements at the calibration level (0 dBm) within a temperature range from +20 °C to +25 °C and at the calibration frequencies. Specifications include zero offset and measurement noise (up to a 2σ value of 0.004 dB).
- 29 Expanded uncertainty for relative power measurements referenced to the calibration level (0 dBm), excluding zero offset, zero drift and measurement noise.
- ³⁰ Error of an absolute power measurement with respect to temperature.
- 31 The operating temperature range defines the span of ambient temperature in which the instrument complies with specifications. In the permissible temperature range, the instrument is still functioning but compliance with specifications is not warranted.
- ³² To operate the R&S®NRP33SN-V/67SN-V at an air pressure below 795 hPa the sensor has to be mounted onto a temperature-controlled baseplate. In this case the temperature of the baseplate is regarded as the ambient temperature of the sensor.
- 33 Quotient of a measured and a stored power ratio, e.g. for measuring gain compression of amplifiers.

 $^{^{\}rm 34}\,$ Guaranteed by design and the specifications of the internal oscillator.

³⁵ For options installed, the remaining base unit warranty applies if longer than 1 year. Exception: all batteries have a 1 year warranty.

³⁶ Excluding defects caused by incorrect operation or handling and force majeure. Wear-and-tear parts are not included.

Service that adds value

- Local and personalized
 Customized and flexible
 Uncompromising quality
 Long-term dependability

Rohde & Schwarz

The Rohde&Schwarz technology group is among the trailblazers when it comes to paving the way for a safer and connected world with its leading solutions in test&measurement, technology systems and networks & cybersecurity. Founded more than 85 years ago, the group is a reliable partner for industry and government customers around the globe. The independent company is headquartered in Munich, Germany and has an extensive sales and service network with locations in more than 70 countries.

www.rohde-schwarz.com

Sustainable product design

- ► Environmental compatibility and eco-footprint
- ► Energy efficiency and low emissions
- ► Longevity and optimized total cost of ownership

Certified Quality Management ISO 9001

Certified Environmental Management

ISO 14001

Rohde & Schwarz training

www.training.rohde-schwarz.com

Rohde & Schwarz customer support

www.rohde-schwarz.com/support

1.0852.22 13.01 PDP/PDW 1 en