
UM08001 J-Link / J-Trace User
Guide
This is the user documentation for owners of SEGGER debug probes (J-Link and J-Trace).

This manual documents the J-Link software provided by the J-Link Software and Documentation Pack

and advanced features of J-Link and J-Trace, like Real Time Transfer (RTT), J-Link script files or

Trace.

[+] J-Link Software and Documentation Pack
[+] Working with J-Link and J-Trace
[+] Flash download
[+] Flash breakpoints
[+] Monitor Mode Debugging
[+] Low Power Debugging

Open Flashloader
RDI

[+] ARM SWD specifics
RTT

[+] Trace
[+] Target interfaces and adapters
[+] Background information
[+] Designing the target board for trace

Semihosting
[+] Environmental Conditions & Safety

Contacting support

Contents

J-Link Software and Documentation Pack

https://wiki.segger.com/RTT
https://wiki.segger.com/J-Link_script_files
https://wiki.segger.com/General_information_about_tracing

The J-Link Software and Documentation Pack, available for download on the SEGGER homepage (http

s://www.segger.com/downloads/jlink#J-LinkSoftwareAndDocumentationPack), includes applications

to be used with J-Link and J-Trace and in some cases Flasher.

It also comes with USB-drivers for J-Link, J-Trace and Flasher.

Software Description

J-Link Commander Command-line tool with basic functionality for target analysis.

J-Link GDB Server
The J-Link GDB Server is a server connecting to the GNU Debugger (GDB)
via TCP/IP. It is required for toolchains using the GDB protocol to connect to
J-Link.

J-Link GDB Server
CL

Command line version of the J-Link GDB Server. Same functionality as the
GUI version.

J-Link Remote
Server

Utility which provides the possibility to use J-Link / J-Trace remotely via
TCP/IP.

J-Mem Target memory viewer. Shows the memory content of a running target and
allows editing as well.

J-Flash1 Stand-alone flash programming application.

J-Flash SPI1 Stand-alone (Q)SPI flash programming application.

J-Flash Lite Stand-alone flash programming application with reduced feature set of J-
Flash.

J-Link RTT Viewer Displays the terminal output of the target using RTT. Can be used in parallel
with a debugger or stand-alone.

J-Link SWO Viewer Displays the terminal output of the target using the SWO pin. Can be used
in parallel with a debugger or stand-alone.

J-Link SWO
Analyzer Command line tool that analyzes SWO RAW output and stores it into a file.

JTAGLoad Command line tool that opens an svf file and sends the data in it via J-Link /
J-Trace to the target.

J-Link Configurator GUI-based configuration tool for J-Link. Allows configuration of USB
identification as well as TCP/IP identification of J-Link debug probes.

RDI support
(JLinkRDI.dll)1

Provides Remote Debug Interface (RDI) support. This allows the user to use
J-Link with any RDI-compliant debugger.

J-Link STR91x
Commander Command line tool for handling specific STR91x processors.

J-Link STM32 Command line tool for handling specific STM32 processors.

Software overview

https://www.segger.com/downloads/jlink#J-LinkSoftwareAndDocumentationPack
https://wiki.segger.com/J-Link_Commander
https://wiki.segger.com/J-Link_GDB_Server
https://wiki.segger.com/J-Link_GDB_Server#J-Link_GDB_Server_CL
https://wiki.segger.com/J-Link_Remote_Server
https://wiki.segger.com/J-Mem
https://wiki.segger.com/J-Flash
https://wiki.segger.com/J-Flash_SPI
https://wiki.segger.com/J-Flash_Lite
https://wiki.segger.com/J-Link_RTT_Viewer
https://wiki.segger.com/RTT
https://wiki.segger.com/J-Link_SWO_Viewer
https://wiki.segger.com/J-Link_SWO_Analyzer
https://wiki.segger.com/JTAGLoad
https://wiki.segger.com/J-Link_Configurator
https://wiki.segger.com/J-Link_RDI
https://wiki.segger.com/J-Link_STR91x_Commander
https://wiki.segger.com/J-Link_STM32_Unlock

Unlock

J-Run Command line utility for automated tests.

J-Link License
Manager GUI-based J-Link license management tool

J-Scope Data visualization and analysis tool.

1: Full-featured J-Link (PLUS, PRO, ULTRA+) or an additional license for J-Link Base model required.

This section covers generic troubleshooting advice when encountering issues while using J-Link/J-

Trace.

Most connection issues between J-Link and Target MCU or host PC and J-Link are caused by

problematic or faulty setups. To rule out setup related issues, please refer to the following articles:

Connection issues between Host PC and J-Link
Connection issues between J-Link and target MCU

The J-Link DLL / J-Flash checks the write protection on connect (e.g. when triggering read-back) and

offers to perform a unlock (mass erase) if active write-protection has been detected. In this case, a

message box is shown which allows the user to confirm or decline the unlock. This message box can be

disabled by checking the Remember selected action check box.

The selection will be saved in a registry key.

Troubleshooting

Connection issues

Reset unlock message box

ock messagebox for STM32 devices

https://wiki.segger.com/J-Link_STM32_Unlock
https://wiki.segger.com/J-Run
https://wiki.segger.com/J-Link_License_Manager
https://wiki.segger.com/J-Scope
https://wiki.segger.com/J-Link_cannot_connect_to_the_CPU#J-Link_connection
https://wiki.segger.com/J-Link_cannot_connect_to_the_CPU#Target_connection
https://wiki.segger.com/File:STM32_UnlockDialog.PNG

These keys are located in the registry path HKEY_CURRENT_USER -> Software -> SEGGER -> J-
Link.

To re-enable the message box, the registry key "DontShowAgainUnlock*" needs to be modified

from 1 to 0.

For example, the STM32 devices us the registry key DontShowAgainUnlockSTM.

For some versions of the J-Link Software Pack, Windows Defender under Windows 10 triggered a false

positive alarm for "Trojan:Win32/Tulim.C!plock" which disabled the download of the software

package. This has been recently fixed by Microsoft via new virus definitions. Please make sure that

Windows Defender virus definitions are up to date when downloading the package and are at least at

the following version: Antivirus definition: 1.213.5588.0

This section describes functionality and how to use J-Link and J-Trace.

J-Link WiFi can be set up in multiple ways.

Connect J-Link WiFi to your computer via USB
Start J-Link Commander (JLink.exe)
Set up the SSID of your wireless network with the following command: SetWifi SSID
<your_wifi_ssid>
Set up the password to your wireleass network with the following command: SetWifi Pass
<your_wifi_password>
After a few seconds, J-Link WiFi should be connected to your wireless network (the green WiFi
LED should be always on).

To get the IP address:

After performing the steps listed above, issue the following command in J-Link Commander: USB
J-Link WiFi will reconnect via USB and provide its IP address, e.g.: IP-Addr: 10.1.1.114 (DHCP)

Windows Defender under Windows 10

Working with J-Link and J-Trace

J-Link WiFi setup

Using J-Link Commander

When connecting to J-Link WiFi later on via IP, use this IP address to establish the connection

Connect J-Link WiFi to your computer via USB
Start J-Link Configurator (JLinkConfig.exe)
Right-click on the J-Link WiFi in the list of connected J-Links and select 'Configure'
In the WiFi configuration section, enter the SSID and the password of your wireless network
Click OK
Unplug and reconnect your J-Link WiFi
Click OK
After a few seconds, J-Link WiFi should be connected to your wireless network (the green WiFi
LED should be always on).

To get the IP address:

Start J-Link Commander (JLink.exe/JLinkExe)
J-Link WiFi will connect via USB and provide its IP address, e.g.: IP-Addr: 10.1.1.114 (DHCP)
When connecting to J-Link WiFi later on via IP, use this IP address to establish the connection

J-Link WiFi will only be shown in the Configurator if connected via USB. This is because the

Configurator uses UDP broadcast packets to find J-Links in the network. However, most routers have

UDP broadcast and UDP multicast packets disabled for WiFi networks.

J-Link supports almost all popular IDEs available today. If support for a IDE is lacking, feel free to get

in contact with SEGGER (https://www.segger.com/support/technical-support/).

For a list of supported 3rd-party debuggers and IDEs and documentation on how to get started with

those IDEs and J-Link / J-Trace es well as on how to use the advanced features of J-Link / J-Trace

with any of them, please refer to:

Getting started with various IDEs and

List of supported IDEs (https://www.segger.com/jlink-ide-integration.html).

Using J-Link Configurator

J-Link WiFi in J-Link Configurator

Supported IDEs

Connecting to target system

Power-on sequence

https://wiki.segger.com/J-Link_Commander
https://www.segger.com/support/technical-support/
https://wiki.segger.com/Getting_Started_with_Various_IDEs
https://www.segger.com/jlink-ide-integration.html

In general, J-Link / J-Trace should be powered on before connecting it with the target device. That

means you should first connect J-Link / J-Trace with the host system via USB and then connect J-Link

/ J-Trace with the target device. Power-on the device after you connected J-Link / J-Trace to it.

If the USB driver is working properly and your J-Link / J-Trace is connected with the host system, you

may connect J-Link / J-Trace to your target hardware. Start the J-Link Commander (JLink.exe) which

should now display the normal J-Link / J-Trace related information. After issuing the connect

command and providing the additional information required to connect to the device, the J-Link

connects to the device. Additional information about the targit is shown (e.g. ROM-Table). The

screenshot below shows an example output when connecting to the SEGGER Cortex-M Trace

Reference Board:

J-Link Commander with a connection to the
SEGGER Cortex-M Trace Reference Board

Verifying target device connection

Problems

https://wiki.segger.com/J-Link_Commander
https://wiki.segger.com/J-Link_Commander#connect
https://wiki.segger.com/Tracing_on_ST_STM32F407_(SEGGER_Cortex-M_Trace_Reference_Board)
https://wiki.segger.com/File:JLink_Commander.png

If you experience problems with any of the steps described above, please refer to the J-Link

troubleshooting guide. If you still do not find appropriate help there and your J-Link / J-Trace is an

original SEGGER product, you can contact SEGGER support. Please make sure to provide the

necessary information about your target processor, board etc. and we will try to solve the problem.

J-Link uses indicators (LEDs) to give the user some information about the current status of the

connected J-Link. All J-Links feature the main indicator. Some newer J-Links such as the J-Link Pro /

Ultra come with additional input/output Indicators. In the following, the meaning of these indicators

will be explained.

J-Link V8 and higher comes with a bi-color indicator (Green & Red LED), which can show multiple

colors: green, red and orange. For J-Links up to V7, the main indicator is single color (Green).

Indicator status Meaning

GREEN, flashing at 10 Hz Emulator enumerates.

GREEN, flickering

Emulator is in operation.
Whenever the emulator is executing a command, the LED is
switched off temporarily.
Flickering speed depends on target interface speed.
At low interface speeds, operations typically take longer and the
"OFF" periods are typically longer than at fast speeds.

GREEN, constant Emulator has enumerated and is in idle mode.

GREEN, switched off for
10ms once per second

J-Link heart beat.
Will be activated after the emulator has been in idle mode for at
least 7 seconds.

ORANGE Reset is active on target.

RED, flashing at 1 Hz Emulator has a fatal error.
This should not normally happen.

Indicator status Meaning

GREEN, flashing at 10 Hz Emulator enumerates.

Indicators

Main indicator

Bi-color indicator (J-Link V8 and later)

Single color indicator (J-Link V7 and earlier)

https://wiki.segger.com/J-Link_cannot_connect_to_the_CPU

GREEN, flickering

Emulator is in operation.
Whenever the emulator is executing a command, the LED is
switched off temporarily.
Flickering speed depends on target interface speed.
At low interface speeds, operations typically take longer and the
"OFF" periods are typically longer than at fast speeds.

GREEN, constant Emulator has enumerated and is in idle mode.

GREEN, switched off for
10ms once per second

J-Link heart beat.
Will be activated after the emulator has been in idle mode for at
least 7 seconds.

GREEN, flashing at 1 Hz Emulator has a fatal error.
This should not normally happen.

Some newer, high end J-Links such as the J-Link Pro/Ultra come with additional input/output

indicators.

The input indicator is used to give the user some information about the status of the target hardware.

The output indicator is used to give the user some information about the emulator-to-target

connection.

Indicator status Meaning

GREEN Target voltage could be measured.
Target is connected.

ORANGE Target voltage could be measured.
RESET is pulled low (active) on target side.

RED RESET is pulled low (active) on target side.
If no target is connected, reset will also be active on target side.

Indicator status Meaning

OFF Target power supply via Pin 19 is not active.

GREEN Target power supply via Pin 19 is active.

ORANGE Target power supply via Pin 19 is active.
Emulator pulls RESET low (active).

RED Emulator pulls RESET low (active).

Input and Output indicator

Bi-color input indicator

Bi-color output indicator

By default, only one device is assumed to be in the JTAG scan chain. If multiple devices are in the scan

chain, they must be properly configured. To do so, the exact position of the CPU that should be

addressed has to be specified. Configuration of the scan is done by the application using J-Link / J-

Trace. This could be for example,

an IDE (such as SEGGER Embedded Studio (https://www.segger.com/products/development-tool
s/embedded-studio/), Keil's uVision, IAR's)
a debugger (such as SEGGER Ozone (https://www.segger.com/products/development-tools/ozon
e-j-link-debugger/), IAR C-SPY® debugger, ARM's AXD using RDI)
a flash programming application (such as SEGGER J-Flash)
any other application using J-Link / J-Trace.

It is the application's responsibility to supply a way to configure the scan chain. Most applications offer

a dialog box for this purpose.

J-Link / J-Trace can handle multiple devices in the scan chain. This applies to hardware where

multiple chips are connected to the same JTAG connector. As can be seen in the following figure, the

TCK and TMS lines of all JTAG device are connected, while the TDI and TDO lines form a bus.

JTAG interface

Multiple devices in the scan chain

https://www.segger.com/products/development-tools/embedded-studio/
https://www.segger.com/products/development-tools/ozone-j-link-debugger/
https://wiki.segger.com/J-Flash

JTAG connection example with two devices

Specification Max supported value

Number of devices in chain 32

Total IR length 255

DR length 64 bit (Max. DRLen of the device to connect to)

One or more of these devices can be CPU cores; the other devices can be of any other type but need to

comply with the JTAG standard.

How the scan chain is configured and if it is configurable depends on the application using the J-Link

DLL. In most applications (like J-Flash the scan chain is set via a settings dialog. In command line

based applications, like J-Link Commander, specific commands might be available for that purpose.

If only one device is connected to the scan chain, the default configuration can be used. In other cases,

J-Link / J-Trace may succeed in automatically recognizing the devices on the scan chain, but whether

this is possible depends on the devices present on the scan chain.

Two values are required to setup the chain:

Specifications

Configuration

Determining values for scan chain configuration

https://wiki.segger.com/File:arm_2device_connect.png
https://wiki.segger.com/J-Flash
https://wiki.segger.com/UM08003_JFlash#JTAG_scan_chain
https://wiki.segger.com/J-Link_Commander
https://wiki.segger.com/J-Link_Commander#jtagconf

The position of the target device in the scan chain.
The total number of bits in the instruction registers of the devices before the target device (IR len).

The position can usually be found in the schematics; the IR length can be found in the manual supplied

by the manufacturers of the others devices. For example, ARM7/ARM9 have an IR length of four.

The following table shows a few sample configurations with 1,2 and 3 devices inside a JTAG scan chain

with different configurations.

Device 0 Chip(IR len) Device 1 Chip(IR len) Device 2 Chip(IR len) Position IR len

ARM(4) - - 0 0

ARM(4) Xilinx(8) - 0 0

Xilinx(8) ARM(4) - 1 8

Xilinx(8) Xilinx(8) ARM(4) 2 16

ARM(4) Xilinx(8) ARM(4) 0 0

ARM(4) Xilinx(8) ARM(4) 2 12

Xilinx(8) ARM(4) Xilinx(8) 1 8

The target device is marked in bold.

There are basically three types of speed settings:

Fixed JTAG speed.
Automatic JTAG speed.
Adaptive clocking.

These are explained below.

Sample configurations

JTAG Speed

Fixed JTAG speed

The target is clocked at a fixed clock speed. The maximum JTAG speed the target can handle depends

on the target itself. In general CPU cores without JTAG synchronization logic (such as ARM7-TDMI)

can handle JTAG speeds up to the CPU speed, ARM cores with JTAG synchronization logic (such as

ARM7-TDMI-S, ARM946E-S, ARM966EJ-S) can handle JTAG speeds up to 1/6 of the CPU speed.

JTAG speeds of more than 10 MHz are not recommended.

Selects the maximum JTAG speed handled by the TAP controller.

Note: On ARM cores without synchronization logic, this may not work reliably, because the CPU core

may be clocked slower than the maximum JTAG speed.

If the target provides the RTCK signal, select the adaptive clocking function to synchronize the clock to

the processor clock outside the core. This ensures there are no synchronization problems over the

JTAG interface. If you use the adaptive clocking feature, transmission delays, gate delays, and

synchronization requirements result in a lower maximum clock frequency than with non-adaptive

clocking.

The J-Link support ARMs Serial Wire Debug (SWD). SWD replaces the 5-pin JTAG port with a clock

(SWDCLK) and a single bi-directional data pin (SWDIO), providing all the normal JTAG debug and

test functionality. SWDIO and SWCLK are overlaid on the TMS and TCK pins. In order to

communicate with a SWD device, J-Link sends out data on SWDIO, synchronous to the SWCLK. With

every rising edge of SWCLK, one bit of data is transmitted or received on the SWDIO.

Currently only selection of a fixed SWD speed is supported by J-Link. The target is clocked at a fixed

clock speed. The SWD speed which is used for target communication should not exceed target CPU

speed * 10 . The maximum SWD speed which is supported by J-Link depends on the hardware version

and model of J-Link. For more information about the maximum SWD speed for each J-Link / J-Trace

model, please refer to the J-Link/J-Trace models overview (https://www.segger.com/products/debug-

probes/j-link/models/model-overview/).

Automatic JTAG speed

Adaptive clocking

SWD interface

SWD speed

SWO

https://www.segger.com/products/debug-probes/j-link/models/model-overview/

Serial Wire Output (SWO) support means support for a single pin output signal from the core. For an

explanation what SWO is, please refer to the SWO article.

The supported SWO speeds depend on the connected emulator. They can be retrieved from the

emulator. To get the supported SWO speeds for your emulator, use J-Link Commander:

J-Link> if SWD //Select target interface SWD
J-Link> SWOSpeed

A list of the available probes and the corresponding max. SWO speeds can be found on the SEGGER

homepage (https://www.segger.com/products/debug-probes/j-link/models/model-overview)

In most cases it should not be necessary to configure the SWO speed because this is usually done by

the J-Link. The max. SWO speed in practice is the max. speed which both, target and J-Link can

handle. J-Link can handle the frequencies described on the SEGGER homepage (https://www.segger.c

om/products/debug-probes/j-link/models/model-overview) whereas the max. deviation between the

target and the J-Link speed is about 3%. The computation of possible SWO speeds is typically done by

the debugger. The SWO output speed of the CPU is determined by TRACECLKIN, which is often the

same as the CPU clock.

J-Link / J-Trace is able to debug multiple cores on one target system connected to the same scan chain.

Configuring and using this feature is described in this section.

Multi-core debugging requires multiple debuggers or multiple instances of the same debugger. Two or

more debuggers can use the same J-Link / J-Trace simultaneously. Configuring a debugger to work

with a core in a multi-core environment does not require special settings. All that is required is proper

setup of the scan chain for each debugger. This enables J-Link / J-Trace to debug more than one core

on a target at the same time. The figure on the right shows a host, debugging two CPU cores with two

instances of the same debugger, via one J-Link/J-Trace.

Both debuggers share the same physical connection. The core to debug is selected through the JTAG-

settings as described below.

Max. SWO speeds

Configuring SWO speeds

Multi-core debugging

How multi-core debugging works

https://wiki.segger.com/SWO
https://wiki.segger.com/J-Link_Commander
https://www.segger.com/products/debug-probes/j-link/models/model-overview
https://www.segger.com/products/debug-probes/j-link/models/model-overview

1. Connect your target to J-Link / J-Trace.
2. Start your debugger, for example IAR Embedded Workbench for ARM.
3. Choose Project|Options and configure your scan chain.

The picture below shows the configuration for the first CPU core on your target.

Multi core debugging setup example

Using multi-core debugging in detail

https://wiki.segger.com/File:MultiCoreDebugging.png

J-Link settings - IAR - Multicore debugging - 01

4. Start debugging the first core.
5. Start another debugger, for example another instance of IAR Embedded Workbench for ARM.
6. Choose Project|Options and configure your second scan chain.

The following dialog box shows the configuration for the second ARM core on your target.

J-Link settings - IAR - Multicore debugging - 02

https://wiki.segger.com/File:MultiCoreDebugging01.gif
https://wiki.segger.com/File:MultiCoreDebugging02.gif

7. Start debugging your second core.

Core #1 Core #2 Core #3 TAP number
debugger #1

TAP number
debugger #2

ARM7TDMI ARM7TDMI-
S ARM7TDMI 0 1

ARM7TDMI ARM7TDMI ARM7TDMI 0 2

ARM7TDMI-
S

ARM7TDMI-
S

ARM7TDMI-
S 1 2

For a multi core debugging example project for SEGGER Ozone, please refer to Dual Core Debugging

with Ozone.

Multi-core debugging is more difficult than single-core debugging. You should be aware of the pitfalls

related to JTAG speed and resetting the target.

Each core has its own maximum JTAG speed. The maximum JTAG speed of all cores in the same chain

is the minimum of the maximum JTAG speeds. For example:

Core #1: 2MHz maximum JTAG speed
Core #2: 4MHz maximum JTAG speed
Scan chain: 2MHz maximum JTAG speed

All cores share the same RESET line. You should be aware that resetting one core through the RESET

line means resetting all cores which have their RESET pins connected to the RESET line on the target.

In general, it is possible to have an unlimited number of J-Links / J-Traces connected to the same PC.

Current J-Link models are already factory-configured to be used in a multi-J-Link environment, older

J-Links can be re-configured to use them in a multi-J-link environment.

The OS identifies the USB devices by their product ID, vendor id and serial number. The serial number

reported by current J-Links is a unique number which allows to have an almost unlimited number of J-

Links connected to the same host at the same time. In order to connect to the correct J-Link, the user

Things you should be aware of

JTAG speed

Resetting the target

Connecting multiple J-Links / J-Traces to your PC

https://wiki.segger.com/Dual_Core_Debugging_with_Ozone

has to make sure that the correct J-Link is selected (by SN or IP). In cases where no specific J-Link is

selected, follwing pop up will be shown and allow the user to select the proper J-Link.

J-Link selection dialog

Older J-Links may report USB0-3 instead of unique serial number when enumerating via USB. For

these J-Links, we recommend to re-configure them to use the new enumeration method (report real

serial number) since the USB0-3 behavior is obsolete.

Re-configuration can be done by using the J-Link Configurator, which is part of the J-Link Software

and Documentation Pack.

In some special cases, it may be necessary to switch back to the obsolete USB 0-3 enumeration

method. For example, old IAR EWARM versions supports connecting to a J-Link via the USB0-3

method only. As soon as more than one J-Link is connected to the pc, there is no opportunity to pre-

select the J-Link which should be used for a debug session.

Below, a small instruction of how to re-configure J-Link to enumerate with the old obsolete

enumeration method in order to prevent compatibility problems, a short instruction is give on how to

set USB enumeration method to USB 2 is given:

1. Start J-Link Commander (JLink.exe)
2. Connect to the J-Link you want to re-configure
3. Enter wconf 0 02 // Set USB-Address 2
4. Enter wconf 1 00 // Set enumeration method to USB-Address
5. Power-cycle J-Link in order to apply new configuration.

Reconfiguration of older J-Link models to the new enumeration method

Re-configuration to the old USB 0-3 enumeration method

https://wiki.segger.com/File:GenericIDE_JLink_Select.png
https://wiki.segger.com/J-Link_Configurator
https://wiki.segger.com/J-Link_Software_and_Documentation_Pack
https://wiki.segger.com/J-Link_Commander

Config area
byte Meaning

0 USB-Address. Can be set to 0-3, 0xFF is default which means USB-Address
0.

1
Enumeration method
0x00 / 0xFF: USB-Address is used for enumeration.
0x01: Real-SN is used for enumeration.

For information about the J-Link web control panel, please refer to the J-Link - Web control panel

article.

See: J-Link Reset Strategies

The ARM7/9 architecture requires cooperation of the CPU to access memory when the CPU is running

(not in debug mode). This means that memory cannot normally be accessed while the CPU is executing

the application program. The normal way to read or write memory is to halt the CPU (put it into debug

mode) before accessing memory. Even if the CPU is restarted after the memory access, the real time

behavior is significantly affected; halting and restarting the CPU costs typically multiple milliseconds.

For this reason, most debuggers do not even allow memory access if the CPU is running.

However, there is one other option: DCC (Direct communication channel) can be used to communicate

with the CPU while it is executing the application program. All that is required is the application

program to call a DCC handler from time to time. This DCC handler typically requires less than 1 s per

call.

The DCC handler, as well as the optional DCC abort handler, is part of the J-Link software package and

can be found in the %JLinkInstallDir%\Samples\DCC\IAR directory of the package.

An application program on the host (typically a debugger) that uses DCC (e.g. the J-Link
Commander).
A target application program that regularly calls the DCC handler.

J-Link web control panel

Reset strategies

Using DCC for memory access

Requirements

https://wiki.segger.com/J-Link_-_Web_control_panel
https://wiki.segger.com/J-Link_Reset_Strategies
https://wiki.segger.com/J-Link_Commander

The supplied abort handler should be installed (optional).

The target DCC handler is a simple C-file taking care of the communication. The function

DCC_Process() needs to be called regularly from the application program or from an interrupt handler.

If an RTOS is used, a good place to call the DCC handler is from the timer tick interrupt. In general, the

more often the DCC handler is called, the faster memory can be accessed. On most devices, it is also

possible to let the DCC generate an interrupt which can be used to call the DCC handler.

An optional DCC abort handler (a simple assembly file) can be included in the application. The DCC

abort handler allows data aborts caused by memory reads/writes via DCC to be handled gracefully. If

the data abort has been caused by the DCC communication, it returns to the instruction right after the

one causing the abort, allowing the application program to continue to run. In addition to that, it

allows the host to detect if a data abort occurred.

In order to use the DCC abort handler, 3 things need to be done:

A branch to DCC_Abort has to be placed at address 0x10 ("vector" used for data aborts).
The Abort-mode stack pointer has to be initialized to an area of at least 8 bytes of stack memory
required by the handler.
The DCC abort handler assembly file has to be added to the application.

The J-Link setting file is only relevant for IDE developers and thus not further discussed here

anymore.

It is used to provide information to the J-Link web control panel.

Please refer to the J-Link script files.

Please refer to J-Link Command Strings.

Target DCC handler

Target DCC abort handler

J-Link settings file

J-Link script files

J-Link Command Strings

Switching off CPU clock during debug

https://wiki.segger.com/J-Link_web_control_panel
https://wiki.segger.com/J-Link_script_files
https://wiki.segger.com/J-Link_Command_Strings

We recommend not to switch off CPU clock during debug. However, if you do, you should consider the

following:

With these cores, the TAP controller uses the clock signal provided by the emulator, which means the

TAP controller and ICE-Breaker continue to be accessible even if the CPU has no clock.

Therefore, switching off CPU clock during debug is normally possible if the CPU clock is periodically

(typically using a regular timer interrupt) switched on every few ms for at least a few us. In this case,

the CPU will stop at the first instruction in the ISR (typically at address 0x18).

With these cores, the clock input of the TAP controller is connected to the output of a three-stage

synchronizer, which is fed by clock signal provided by the emulator, which means that the TAP

controller and ICE-Breaker are not accessible if the CPU has no clock.

If the RTCK signal is provided, adaptive clocking function can be used to synchronize the JTAG clock

(provided by the emulator) to the processor clock. This way, the JTAG clock is stopped if the CPU clock

is switched off.

If adaptive clocking is used, switching off CPU clock during debug is normally possible if the CPU clock

is periodically (typically using a regular timer interrupt) switched on every few ms for at least a few us.

In this case, the CPU will stop at the first instruction in the ISR (typically at address 0x18).

Most target systems with external memory have at least one cache. Typically, ARM7 systems with

external memory come with a unified cache, which is used for both code and data. Most ARM9 systems

with external memory come with separate caches for the instruction bus (I-Cache) and data bus (D-

Cache) due to the hardware architecture.

When debugging or otherwise working with a system with processor with cache, it is important to

maintain the cache(s) and main memory coherent. This is easy in systems with a unified cache and

becomes increasingly difficult in systems with hardware architecture. A write buffer and a D-Cache

configured in write-back mode can further complicate the problem.

Non-synthesizable cores (ARM7TDMI, ARM9TDMI, ARM920, etc.)

Synthesizable cores (ARM7TDMI-S, ARM9E-S, etc.)

Cache handling

Cache coherency

ARM9 chips have no hardware to keep the caches coherent, so that this is the responsibility of the

software.

J-Link / J-Trace handles cache cleaning directly through JTAG commands. Unlike other emulators, it

does not have to download code to the target system. This makes setting up J-Link / J-Trace easier.

Therefore, a cache clean area is not required.

Because ARM7 cores have a unified cache, there is no need to handle the caches during debug

Note: The implementation of the cache handling is different for different cores. However, the cache is

handled correctly for all supported ARM9 cores.

ARM9 cores with cache require J-Link / J-Trace to handle the caches during debug. If the processor

enters debug state with caches enabled, J-Link / J-Trace does the following:

J-Link / J-Trace performs the following:

It stores the current write behavior for the D-Cache.
It selects write-through behavior for the D-Cache.

J-Link / J-Trace performs the following:

It restores the stored write behavior for the D-Cache.
It invalidates the D-Cache.

In general, the VCOM feature can be disabled and enabled for debug probes which comes with support

for it via J-Link Commander and J-Link Configurator. Below, a small description of how to use use

them to configure the feature is given.

Cache clean area

Cache handling of ARM7 cores

Cache handling of ARM9 cores

When entering debug state

When leaving debug state

VCOM Virtual COM Port (VCOM)

Configuring Virtual COM Port

Note: VCOM can only be used when debugging via SWD target interface. Pin 5 = J-Link-Tx (out), Pin

17 = J-Link-Rx (in).

Only J-Link models with hardware version 9 or newer come with VCOM capabilities.

The J-Link Configurator allows the user to enable and disable the VCOM.

Start the J-Link Commander and use VCOM enable|disable to either enable or disable the VCOM.

After changing the configuration a power on cycle of the debug probe is necessary in order to use the

new configuration.

This section describes how the flash download feature of the DLL can be used in different debugger

environments.

The J-Link DLL comes with a lot of flash loaders that allow direct programming of internal flash

memory for popular microcontrollers. Moreover, the J-Link DLL also allows programming of CFI-

compliant external NOR flash memory. The flash download feature of the J-Link DLL does not require

an extra license and can be used free of charge.

Being able to download code directly into flash from the debugger or integrated IDE significantly

shortens the turn-around times when testing software. The flash download feature of J-Link is very

efficient and allows fast flash programming. For example, if a debugger splits the download image into

several pieces, the flash download software will collect the individual parts and perform the actual flash

programming right before program execution. This avoids repeated flash programming. Moreover, the

J-Link flash loaders make flash behave like RAM. This means that the debugger only needs to select

the correct device which enables the J-Link DLL to automatically activate the correct flash loader if the

debugger writes to a specific memory address.

Via J-Link Configurator

Via J-Link Commander

Flash download

Benefits of the J-Link flash download feature

https://wiki.segger.com/J-Link_Configurator
https://wiki.segger.com/J-Link_Commander
https://wiki.segger.com/J-Link_Commander#VCOM

This also makes it very easy for debugger vendors to make use of the flash download feature because

almost no extra work is necessary on the debugger side since the debugger does not have to differ

between memory writes to RAM and memory writes to flash.

As mentioned in the introduction, no extra license required. The flash download feature can be used

free of charge.

J-Link supports download into the internal flash of a large number of microcontrollers. You can always

find the latest list of supported devices on the SEGGER Homepge (https://www.segger.com/products/

debug-probes/j-link/technology/cpus-and-devices/overview-of-supported-cpus-and-devices/). In

general, J-Link can be used with any cores listed, even if it does not provide internal flash.

Furthermore, flash download is also available for all CFI-compliant external NOR-flash devices.

The J-Link flash download feature can be used by different debuggers, such as IAR Embedded

Workbench, Keil MDK, GDB based IDEs, For different debuggers there are different steps required

to enable J-Link flash download.

Most debuggers will use the J-Link flashloader by default if the target device is specified.

A few debuggers come with their own flashloaders and need to be configured to use the J-Link

flashloader in order to achieve the maximum possible performance. For further information on how to

specify the target device and on how to use the J-Link flashloader in different debuggers, please refer

to Getting Started with Various IDEs.

Note:
While using flashloaders of a 3rd party application works in most cases, SEGGER can neither offer

support for those nor guarantee that other features won't be impaired as a side effect of not using the

J-Link flashloader

The setup for download into CFI-compliant memory is different from the one for internal flash.

Initialization of the external memory interface the CFI flash is connected to, is user's responsibility and

is expected by the J-Link software to be done prior to performing accesses to the specified CFI area.

Specifying of the CFI area is done in a J-Link script file, as explained in Generic IDE#CFI flash.

Furhter information about this topic can be found in

Licensing

Supported devices

Setup for various debuggers (internal flash)

Setup for various debuggers (CFI flash)

https://www.segger.com/products/debug-probes/j-link/technology/cpus-and-devices/overview-of-supported-cpus-and-devices/
https://wiki.segger.com/Getting_Started_with_Various_IDEs
https://wiki.segger.com/Generic_IDE#CFI_flash

General information about J-Link Script files
Information about setting J-Link script files in various IDEs

The J-Link DLL supports programming of SPIFI flash and the J-Link flash download feature can be

used therefore by different debuggers, such as IAR Embedded Work bench, Keil MDK, GDB based

IDEs, ...

There is nothing special to be done by the user to also enable download into SPIFI flash. The setup and

behavior is the same as if download into internal flash. For more information about how to setup

different debuggers for downloading into SPIFI flash memory, please refer to Setup for various

debuggers (internal flash).

The J-Link DLL also supports programming of any (Q)SPI flash connected to a device that is

supported by the J-Link DLL, if the device allows memory-mapped access to the flash. Most modern

MCUs / CPUs provide a so called "QSPI area" in their memory-map which allows the CPU to read-

access a (Q)SPI flash as regular memory (RAM, internal flash etc.). (Q)SPI flashes, that are not

supported by the J-Link DLL can be added manually, with the Open Flashloader.

There is nothing special to be done by the user to also enable download into a QSPI flash connected to

a specific device. The setup and behavior is the same as if download into internal flash, which mainly

means the device has to be selected and nothing else, would be performed. For more information about

how to setup the J-Link DLL for download into internal flash memory, please refer to Setup for various

debuggers (internal flash).

The sectorization command set and other flash parameters are fully auto-detected by the J-Link DLL,

so no special user setup is required.

Setup for various debuggers (SPIFI flash)

QSPI flash support

Setup the DLL for QSPI flash download

Using the DLL flash loaders in custom applications

https://wiki.segger.com/J-Link_script_files
https://wiki.segger.com/Getting_Started_with_Various_IDEs
https://wiki.segger.com/Open_Flashloader
https://wiki.segger.com/index.php?title=Setup_for_various_debuggers_(internal_flash)&action=edit&redlink=1

The J-Link DLL flash loaders make flash behave as RAM from a user perspective, since flash

programming is triggered by simply calling the J-Link API functions for memory reading / writing. For

more information about how to setup the J-Link API for flash programming please refer to the J-Link

SDK (https://www.segger.com/products/debug-probes/j-link/technology/j-link-sdk/).

By default, when downloading an application to flash via J-Link, it is assumed that this application

does not change during the debug session. This allows J-Link to do some optimization like caching

certain target contents and so speed up debugging (depending on the IDE integration and the behavior

of the IDE, reaction time can be 2-3 times faster with caching certain contents). However, there are

cases where the application, downloaded at debug session start, may change during debugging it.

These case are for example:

The application contains self-modifying code
There are some constant arrays etc. downloaded as part of the application but these are modified
during the execution (e.g. non-volatile configuration data etc.)

When debugging in such cases, memory windows etc. in the IDE may show the original (now incorrect)

value. In order to debug in such cases,J-Link needs to be aware of that certain ranges of the flash

memory are considered to be "volatile"during the debug session. This can be achieved with the

ExcludeFlashCacheRange J-Link Command String.

ExcludeFlashCacheRange <SAddr>-<EAddr>
Example:
//
// Mark the first 64 KiB of the flash as volatile
//
ExcludeFlashCacheRange 0x08000000-0x0800FFFF

This chapter describes the flash breakpoints feature of the J-Link DLL and how it can be used in

different debugger environments.

The J-Link DLL supports a feature called flash breakpoints which allows the user to set an unlimited

number of breakpoints in flash memory rather than only being able to use the hardware breakpoints of

the device. Usually when using hardware breakpoints only, a maximum of 2 (ARM 7/9/11) to 8

(Cortex-A/R) breakpoints can be set. The flash memory can be the internal flash memory of a

supported microcontroller or external CFI-compliant flash memory. This feature allows setting an

Debugging applications that change flash contents at runtime

Flash breakpoints

Introduction

https://www.segger.com/products/debug-probes/j-link/technology/j-link-sdk/
https://wiki.segger.com/J-Link_Command_Strings#ExcludeFlashCacheRange

unlimited number of breakpoints even if the application program is located in flash memory, thereby

utilizing the debugging environment to its fullest. In the following sections the setup for different

debuggers for use of the flash breakpoints feature is explained.

There are basically 2 types of breakpoints in a computer system: Hardware breakpoints and software

breakpoints. Hardware breakpoints require a dedicated hardware unit for every breakpoint. In other

words, the hardware dictates how many hardware breakpoints can be set simultaneously. ARM 7/9

cores have 2 breakpoint units (called "watchpoint units" in ARM's documentation), allowing 2

hardware breakpoints to be set. Hardware breakpoints do not require modification of the program

code. Software breakpoints are different: The debugger modifies the program and replaces the

breakpointed instruction with a special value. Additional software breakpoints do not require

additional hardware units in the processor, since simply more instructions are replaced. This is a

standard procedure that most debuggers are capable of, however, this usually requires the program to

be located in RAM.

Using flash break points allows setting an unlimited number of breakpoints even if the user application

is not located in RAM. On modern microcontrollers this is the standard scenario because on most

microcontrollers the internal RAM is not big enough to hold the complete application. When replacing

instructions in flash memory this requires re-programming of the flash which takes much more time

than simply replacing a instruction when debugging in RAM. The J-Link flash breakpoints feature is

highly optimized for fast flash programming speed and in combination with the instruction set

simulation only re-programs flash that is absolutely necessary. This makes debugging in flash using

flash breakpoints almost as flawless as debugging in RAM.

The J-Link flash algorithm is specially designed for this purpose and sets/clears flash breakpoints

extremely fast; on microcontrollers with fast flash the difference between software breakpoints in RAM

and flash is hardly noticeable.

A lot of effort was put into making flash breakpoints really usable and convenient. Flash sectors are

programmed only when necessary; this is usually the moment when execution of the target program is

started. Often, more than one breakpoint is located in the same flash sector, which allows

programming multiple breakpoints by programming just a single sector. The contents of program

How do breakpoints work?

What is special about software breakpoints in flash?

What performance can I expect?

How is this performance achieved?

memory are cached, avoiding time consuming reading of the flash sectors. A smart combination of

software and hardware breakpoints allows us to use hardware breakpoints a lot of times, especially

when the debugger is source level-stepping, avoiding re-programming the flash in these situations. A

built-in instruction set simulator further reduces the number of required flash operations. This

minimizes delays for the user, while maximizing the life time of the flash. All resources of the ARM

microcontroller are available to the application program, no memory is lost for debugging.

In order to use the flash

breakpoints feature a

separate license is necessary

for each J-Link. For some

devices J-Link comes with a

device-based license and

some J-Link models also

come with a full license for

flash breakpoints. For more

information about licensing

itself and which devices have

a device-based license,

please refer to The J-Link

model overview (https://www.segger.com/products/debug-probes/j-link/models/model-overview/).

In general, the unlimited flash breakpoints feature of the J-Link DLL can be used free of charge for

evaluation and non-commercial use. If used in a commercial project, a license needs to be purchased

when the evaluation is complete. There is no time limit on the evaluation period.

J-Link supports flash breakpoints for a large number of microcontroller devices. A list of all supported

devices can be found on the SEGGER homepage (https://www.segger.com/products/debug-probes/j-li

nk/technology/cpus-and-devices/overview-of-supported-cpus-and-devices/). Furthermore, flash

breakpoints are also available for all CFI compliant external NOR-flashes as well as QSPI flashes

Licensing

Flash break point limit license warning

Free for evaluation and non-commercial use

Supported devices

Setup with various IDES

https://www.segger.com/products/debug-probes/j-link/models/model-overview/
https://www.segger.com/products/debug-probes/j-link/technology/cpus-and-devices/overview-of-supported-cpus-and-devices/
https://wiki.segger.com/File:FlashBP_Eval_Warning.png

In compatible debuggers, flash breakpoints work if the J-Link flash loader works and a license for flash

breakpoints is present. No additional setup is required. The flash breakpoint feature is available for

internal flashes and for external flash (parallel NOR CFI flash as well as QSPI flash). For more

information about how to setup various debuggers for flash download, please refer to Getting started

with various IDEs. Whether flash breakpoints are available can be verified using the J-Link control

panel:

J-Link - Web control panel - Settings tab

Flash breakpoints can be used in all debuggers which use the proper J-Link API to set breakpoints.

Known compatible debuggers / debug interfaces are:

IAR Embedded Workbench
Keil MDK
GDB-based debuggers
Freescale Codewarrior
Mentor Graphics Sourcery CodeBench
RDI-compliant debuggers
emIDE
SEGGER Embedded Studio
SEGGER Ozone

Known incompatible debuggers / debug interfaces:

Rowley Crossworks

Compatibility with various debuggers

Flash Breakpoints in QSPI flash

https://wiki.segger.com/Getting_Started_with_Various_IDEs
https://wiki.segger.com/File:VerifyFlashBPLic.PNG

Many modern CPUs allow direct execution from QSPI flash in a so-called "QSPI area" in their

memory-map. This feature is called execute-in-place (XIP). On some cores like Cortex-M where

hardware breakpoints are only available in a certain address range, sometimes J-Link flash

breakpoints are the only possibility to set breakpoints when debugging code running in QSPI flash.

The setup for the debugger is the same as for downloading into QSPI flash. For more information

please refer to QSPI flash support.

In general, there are two standard debug modes available for CPUs:

1. Halt mode
2. Monitor mode

Halt mode is the default debug mode used by J-Link. In this mode the CPU is halted and stops

program execution when a breakpoint is hit or the debugger issues a halt request. This means that no

parts of the application continue running while the CPU is halted (in debug mode) and peripheral

interrupts can only become pending but not taken as this would require execution of the debug

interrupt handlers. In some circumstances halt mode may cause problems during debugging specific

systems:

1. Certain parts of the application need to keep running in order to make sure communication with
external components does not break down.
This for example is the case for Bluetooth applications where the Bluetooth link needs to be kept
up while the CPU is in debug mode, otherwise the communication would fail and a resume or
single stepping of the user application would not be possible.

2. Some peripherals are also stopped when the CPU enters debug mode. For example, Pulse-width
modulation (PWM) units for motor control applications may be halted while in an undefined / or
even dangerous state, resulting in unwanted side-effects on the external hardware connected to
these units.

This is where monitor mode debugging becomes effective. In monitor debug mode the CPU is not

halted but takes a specific debug exception and jumps into a defined exception handler that executes

(usually in a loop) a debug monitor software that performs communication with J-Link (in order to

read/write CPU registers and so on). The main effect is the same as for halting mode: the user

application is interrupted at a specific point but in contrast to halting mode, the fact that the CPU

QSPI flashbreakpoint setup

Monitor Mode Debugging

executes a handler also allows it to perform some specific operations on debug entry / exit or even

periodically during debug mode with almost no delay. This enables the handling of such complex

debug cases as those explained above.

As explained before, J-Link uses halt mode debugging by default. In order to enable monitor mode

debugging, the J-Link software needs to be explicitly told to use monitor mode debugging. This is done

slightly different depending on the IDE used. In general, the IDE does not notice any difference

between halting and monitor debug mode. If J-Link is unable to locate a valid monitor in the target

memory, it will default back to halt mode debugging in order to still allow debugging.

For instructions on how to enable Monitor Mode Debugging, please refer to Enable Monitor Mode

Debugging

Many CPUs only support one of these debug modes, halt mode or monitor mode. In the following it is

explained for which CPU cores monitor mode is available and the resulting limitations, if any.

For Cortex-M3 and Cortex-M4, monitor mode debugging is supported. The monitor code provided by

SEGGER can easily be linked into the user application.

The user-specific monitor functions must not block the generic monitor for more than 100ms.
Manipulation of the stackpointer register (SP) from within the IDE is not possible as the
stackpointer is necessary for resuming the user application on Go().
The unlimited number of flash breakpoints feature cannot be used in monitor mode. (this may
change in future versions)
It is not possible to debug the monitor itself while using monitor mode.

A CPU core-specific monitor code (also monitor) is necessary to perform monitor mode debugging

with J-Link. This monitor code performs the communication with J-Link while the CPU is in debug

mode (meaning in the monitor exception). The monitor code needs to be compiled and linked as a

normal part of the application.

Enabling monitor debugging mode

Availability and limitations of monitor mode

Cotex-M3 and Cortex-M4

Considerations & Limitations

Monitor code

https://wiki.segger.com/Generic_IDE#Enable_Monitor_Mode_Debugging

Monitor codes for different cores are available from SEGGER upon request via the Support ticket

system (https://www.segger.com/ticket).

In general, the monitor code consists of three files:

JLINK_MONITOR.c: Contains user-specific functions that are called on debug mode entry, exit and
periodically while the CPU is in debug mode. Functions can be filled with user-specific code. None
of the functions must block the generic monitor for more than 100ms.
JLINK_MONITOR.h: Header file to populate JLINK_MONITOR_ functions.
JLINK_MONITOR_ISR.s: Generic monitor assembler file. This file should not be modified by the
user.

In general it is possible to debug interrupts when using monitor mode debugging but there are some

things that need to be taken care of when debugging interrupts in monitor mode:

Only interrupts with a lower priority than the debug/monitor interrupt can be debugged / stepped.
Setting breakpoints in interrupt service routines (ISRs) with higher priority than the debug/monitor
interrupt will result in malfunction because the CPU cannot take the debug interrupt when hitting
the breakpoint.

Under some circumstances it may be useful or even necessary to have some servicing interrupts still

firing while the CPU is "halted" for the debugger (meaning it has taken the debug interrupt and is

executing the monitor code). This is for example the case when a Bluetooth link is supposed to be kept

active. In general it is possible to have such interrupts by just assigning a higher priority to them than

the debug interrupt has. Please keep in mind that there are some limitations for such interrupts:

They cannot be debugged
No breakpoints must be set in any code used by these interrupts

In some applications, there might be an additional software layer that takes all interrupts in the first

place and forwards them to the user application by explicitly calling the ISRs from the user application

vector table. For such cases, it is impossible for J-Link to automatically check for the existence of a

monitor mode handler as the handler is usually linked in the user application and not in the additional

software layer, so the DLL will automatically switch back to halt mode debugging. In order to enable

Debugging interrupts

Servicing interrupts in debug mode

Forwarding Monitor Interrupts

https://www.segger.com/ticket

monitor mode debugging for such cases, the base address of the vector table of the user application

that includes the actual monitor handler needs to be manually specified. For more information about

how to do this for various IDEs, please refer to Enabling monitor debugging mode.

For Cortex-M based target CPUs if the target application contains some code that issues a reset (e.g. a

watchdog reset), some special care needs to be taken regarding breakpoints. In general, a target reset

will leave the debug logic of the CPU untouched meaning that breakpoints etc. are left intact, however

monitor mode gets disabled (bits in DEMCR get cleared). J-Link automatically restores the monitor

bits within a few microseconds, after they have been detected as being cleared without explicitly being

cleared by J-Link.

However, there is a small window in which it can happen that a breakpoint is hit before J-Link has

restored the monitor bits. If this happens, instead of entering debug mode, a HardFault is triggered. To

avoid this, a special version of the HardFault_Handler is needed which detects if the reason for the

HardFault was a breakpoint and if so, just ignores it and resumes execution of the target application. A

sample for such a HardFault handler can be downloaded from the SEGGER website (https://www.segg

er.com/downloads/appnotes), file: "Generic SEGGER HardFault handler".

This chapter describes how to debug low power modes on a supported target CPU.

As power consumption is an important factor for embedded systems, CPUs provide different kinds of

low power modes to reduce power consumption of the target system. As useful this is for the

application, as problematic it is for debugging. In general, how and if debugging target applications

that make use of low power modes is possible heavily depends on the target device. This is because the

behavior in low power modes is implementation defined and differs from device to device.

The following cases are the most common ones:

1. The device provides specific special function registers for debugging to keep some clocks running
necessary for debugging, while it is in a low power mode.

2. The device wakes up automatically, as soon as there is a request by the debug probe on the
debug interface

3. The device powers off the debug interface partially, allowing the debug probe to read-access
certain parts but does not allow to control the CPU.

4. The device powers off the debug interface completely and the debug probe loses the connection
to the device (temporarily)

Target application performs reset (Cortex-M)

Low Power Debugging

Introduction

https://www.segger.com/downloads/appnotes

While cases 1-3 are the most convenient ones from the debug perspective because the low power mode

is transparent to the end user, they do not provide a real-world scenario because certain things cannot

be really tested if certain clocks are still active which would not be in the release configuration with no

debug probe attached. In addition to that, the power consumption is significantly higher than in the

release configuration which may cause problems on some hardware designs which are specifically

designed for very low power consumption.

The last case (debug probes temporarily loses connection) usually causes the end of a debug session

because the debugger would get errors on accesses like "check if CPU is halted/hit a BP". To avoid this,

there is a special setting for J-Link that can be activated, to handle such cases in a better way, which is

explained in the following.

While usually the J-Link DLL handles communication losses as errors, there is a possibility to enable

low power mode handling in the J-Link DLL, which puts the DLL into a less restrictive mode (low-

power handling mode) when it comes to a connection loss. The low-power handling mode is disabled

by default to allow the DLL to react on target communication breakdowns. This behavior however is

not desired when debugging target is unresponsive only temporarily. How the low-power mode

handling mode is enabled, depends on the debug environment

Please refer to Low power mode debugging for instructions on how to enable low power mode

handling.

As the connection to the target is temporary lost while it is in low power mode, some restrictions apply

while debugging:

Make sure that the IDE does not perform periodic accesses to memory while the target is in a low
power mode. E.g.: Disable periodic refresh of memory windows, close live watch windows etc.
Avoid issuing manual halt requests to the target while it is in a low power mode.
Do not try to set breakpoints while the target already is in a low power mode. If a breakpoint in a
wake-up routine is supposed to be hit as soon as the target wakes up from low power mode, set
this breakpoint before the target enters low power mode. This is necessary because setting break
points is disabled by design while in low power mode.
Single stepping instructions that enter a low power mode (e.g. WFI/WFE on Cortex-M) is not
possible/supported.
Device in low power modes that require a reset to wake-up can only be debugged when this does
not reset the device's debug interface. Otherwise breakpoints and other settings are lost which
may result in unpredictable behavior.

Activating low power mode handling for J-Link

Restrictions

https://wiki.segger.com/Generic_IDE#Low_power_debugging

J-Link does it's best to handle cases where one or more of the above restrictions is not considered but

depending on how the IDE reacts to specific operations to fail, error messages may appear or the debug

session will be terminated by the IDE.

Refer to Open Flashloader

Refer to J-Link RDI

Serial Wire Debug (SWD) is a debug interface specified by ARM, as a low pin count (2: SWCLK,

SWDIO) alternative to the traditional 4-wire JTAG (IEEE 1149.1) debug interface. It was released

before 2-wire cJTAG (IEEE 1149.7) was released. This chapter explains SWD specifics that do not

apply for other debug interfaces.

By default, SWD was designed as a point-to-point protocol where only one device is connected to J-

Link at the same time. With the SWD V2 specification, ARM introduced support for SWD multi-drop

which allows (similar to JTAG) having multiple devices sharing the same debug signals (SWCLK and

SWDIO) and so allow to address many devices on the same PCB with just one debug connector.

Note:

Not all devices that support SWD also support multi-drop. This requires SWDv2 compatibility. For

more information about if a specific device supports multi-drop, please refer to the technical reference

manual of the specific device.

The different devices on the multi-drop bus are identified by a combination of their <DeviceID> and a

so-called <InstanceID>. While the <DeviceID> is fixed per device, the <InstanceID> is usually

determined by a device via certain GPIOs being sampled at boot time (please refer to the technical

reference manual of the specific device for more information about how to determine its

Open Flashloader

RDI

ARM SWD specifics

SWD multi-drop

How it works

https://wiki.segger.com/Open_Flashloader
https://wiki.segger.com/J-Link_RDI

<InstanceID>). By default, all devices on the SWD multi-drop bus are active (to be backward

compatible in case only a single device is mounted on the PCB) and would all respond to commands

being received.

On debug session start, J-Link will send a special sequence that contains the <DeviceID> and

<InstanceID> which makes sure that only the affected device is selected and all other ones enter a

listening state where they do not respond on the bus anymore but still listen for a wake-up sequence

containing their ID pair. From there on, only the selected device is responsive and can be debugged.

In order to select a specific device on the multi-drop bus, J-Link needs to know the <DeviceID> and

<InstanceID> of the device to communicate with. This ID pair can be passed to J-Link via J-Link script

files. The J-Link script needs to implement the ConfigTargetSettings function and provide the

following contents:

int ConfigTargetSettings(void) {
 JLINK_ExecCommand("SetSWDTargetId=0x01234567"); // 28-bit target ID
 JLINK_ExecCommand("SetSWDInstanceId=0x8"); // 4-bit instance ID
 return 0;
}

SWD multi-drop needs to be supported by the J-Link hardware in use. For an overview about which

models and hardware versions support SWD multi-drop, please refer to Software and Hardware

Features Overview.

Refer to RTT.

This section provides information about tracing in general as well as information about how to use

SEGGER J-Trace.

Setting up SWD multi-drop in the J-Link software

J-Link SWD multi-drop support

RTT

Trace

Introduction - Trace

https://wiki.segger.com/J-Link_script_files
https://wiki.segger.com/J-Link_script_files#ConfigTargetSettings
https://wiki.segger.com/Software_and_Hardware_Features_Overview
https://wiki.segger.com/RTT

With increasing complexity of embedded systems, demands to debug probes and utilities (IDE, ...)

increased, too. With tracing, it is possible to get an even better idea about what is happening / has

happened on the target system, when tracking down a specific error. A special trace component in the

target CPU (e.g. ETM on ARM targets) registers instruction fetches done by the CPU as well as some

additional actions like execution/skipping of conditional instructions, target addresses of branch/jump

instructions etc. and provides these events to the trace probe. Instruction trace allows reproducing

what instructions have been executed by the CPU in which order, which conditional instructions have

been executed/skipped etc., allowing to reconstruct a full execution flow of the CPU.

Note:

To use any of the trace features mentioned in this chapter, the CPU needs to implement this specific

trace hardware unit. For more information about which targets support tracing, please refer to Target

devices with trace support.

Backtrace makes use of the information received from instruction trace and reconstructs the

instruction flow from a specific point (e.g. when a breakpoint is hit) backwards as far as possible with

the amount of sampled trace data.

Example scenario: A breakpoint is set on a specific error case in the source that the application

occasionally hits.

When the breakpoint is hit, the debugger can recreate the instruction flow, based on the trace data

provided by J-Trace, of as many instructions as fit into the trace buffer, that have been executed before

the breakpoint was hit. This for example allows tracking down very complex problems e.g. interrupt

related issues. These problems are hard to find with traditional debugging methods (stepping, printf

debugging, ...) as they change the real-time behavior of the application and therefore might make the

problem to disappear.

There are two common approaches how a trace probe collects trace data:

1. Buffer trace:
Collects trace data while the CPU is running and stores them in a buffer on the trace probe. If the
buffer is full, the buffers oldest trace data is overwritten with new data. The debugger on the PC
side can request trace data from the probe only when the target CPU is halted. This allows doing
backtrace as described in What is backtrace?.

2. Streaming trace: Trace data is collected and streamed to the PC in real-time, while the CPU is
running and executing code. This way, the trace buffer is read and "emptied" while being filled with
trace data. This increases the amount of trace data that can used to an theoretically unlimited size
(on modern systems multiple terabytes). Streaming trace allows to implement more complex trace

What is backtrace?

Most common trace types

features like code coverage and code profiling as these require a complete instruction flow, not
only the last executed instructions as when using buffer trace.
Note:
A J-Trace PRO is required to use this feature, as it is not supported by the J-Link models.

Code coverage metrics are a way to describe the "quality" of code, as it shows how much code was

executed while running in a test setup. A code coverage analyzer measures the execution of code and

shows how much of a source line, block, function or file has been executed. With this information it is

possible to detect code which has not been covered by tests or may even be unreachable. This enables a

fast and efficient way to improve the code or to create a suitable test suite for uncovered blocks.

Note: As this feature makes use of streaming trace, a J-Trace PRO is required.

Code profiling is a form of measuring the execution time and the execution count of functions, blocks

or instructions. It can be used as a metric for the complexity of a system and can highlight where

computing time is spent. This provides a great insight into the running system and is essential when

identifying code that is executed frequently, potentially placing a high load onto a system. The code

profiling information can help to optimize a system, as it accurately shows which blocks take the most

time and are worth optimizing.

Note:
As this feature makes use of streaming trace, a J-Trace PRO is required.

This is the most common streaming tracing method. The target outputs trace data + a trace clock on

specific pins. These pins are sampled by J-Trace and the trace data is collected. As trace data is output

with a relatively high frequency (easily >= 100 MHz on modern embedded systems) a high end

hardware, like J-Trace PRO, is necessary to be able to sample and digest the trace data sent by the

target CPU. Our J-Trace PRO models support up to 4-bit trace which can be manually set by the user

by overwriting the global variable JLINK_TRACE_Portwidth (4 by default). Please refer to Global DLL

variables for further information.

What is code coverage?

What is code profiling?

Tracing via trace pins

Cortex-M specifics

https://wiki.segger.com/J-Link_script_files#Global_DLL_variables

The trace clock output by the CPU is usually 1/2 of the speed of the CPU clock, but trace data is output

double data rate (on each edge of the trace clock). There are usually 4 trace data pins on which data is

output, resulting in 1 byte trace data being output per trace clock (2 * 4 bits).

There are certain signal timings that must be met, such as rise/fall timings for clock and data, as well

as setup and hold timings for the trace data. These timings are specified by the vendor that designs the

trace hardware unit (e.g. ARM that provides the ETM as a trace component for their cores).

Some target CPUs do not meet the trace timing requirements when it comes to the trace data setup

times (some output the trace data at the same time they output a trace clock edge, resulting on

effectively no setup time). Another case where timing requirements may not be met is for example

when having one trace data line on a hardware that is longer than the other ones (necessary due to

routing requirements on the PCB). For such cases J-Trace PRO allows to adjust the timing of the trace

signals, inside the J-Trace firmware. For example, in case the target CPU does not provide a

(sufficient) trace data setup time, the data sample timing can be adjusted inside J-Trace. This causes

the data edges to be recognized by J-Trace delayed, virtually creating a setup time for the trace data.

Further information about the following trace related topics can be found on the SEGGER web page (ht

tps://www.segger.com/products/debug-probes/j-trace/technology/setting-up-trace/).

Trace timings
How to setup trace with J-Trace PRO
How trace signals can be adjusted with J-Trace PRO

Some target CPUs provide trace functionality via an on-chip trace buffer that is used to store the trace

data output by the trace hardware unit on the device. This allows to use backtrace on such targets with

a regular J-Link, as the on-chip trace buffer can be read out via the regular debug interface J-Link uses

to communicate with the target CPU. Downside of this implementation is that it needs RAM on the

target CPU that can be used as a trace buffer. This trace buffer is very limited (usually between 1 and 4

KiB) and reduces the RAM that can be used by the target application, while tracing is done.

Trace signal timing

Adjusting trace signal timing on J-Trace

Tracing with on-chip trace buffer

https://www.segger.com/products/debug-probes/j-trace/technology/setting-up-trace/

Note:

Streaming trace is not possible with this trace implementation

Some CPUs provide a choice to either use the on-chip trace buffer for tracing (e.g. when the trace pins

are needed as GPIOs etc. or are not available on all packages of the device).

For J-Link:
The on-chip trace buffer is automatically used, as this is the only method J-Link supports.
For J-Trace:
By default, tracing via trace pins is used. If, for some reason, the on-chip trace buffer shall be used
instead, the J-Link software needs to be made aware of this. The trace source can be selected via
the SelectTraceSource command string.
For more information about the syntax and how to use J-Link Command Strings, please refer to J-
Link Command Strings.

If and which kind of trace is support by a target device, is implementation defined. For information

about trace support of a target device, please refer to the device's User/Reference Manual.

General overview of all target devices that can be debugged with J-Link (https://www.segger.com/
products/debug-probes/j-link/technology/cpus-and-devices/overview-of-supported-cpus-and-devic
es/)
List of devices trace was tested with, including sample projects working out-of-the-box with J-
Trace (https://www.segger.com/products/debug-probes/j-trace/technology/tested-devices/)

With introducing streaming trace, some additional concepts needed to be introduced in order to make

real time analysis of the trace data possible. In the following, some considerations and specifics, that

need to be kept in mind when using streaming trace, are explained.

Analysis of trace data requires that J-Trace is aware of which instruction is present at what address on

the target device. As reading from the target memory every time is not feasible during live analysis

(would lead to a too big performance drop), a copy of the application contents is cached in the J-Link

CPUs that provide tracing via pins and on-chip buffer

Target devices with trace support

Additional information about device support

Streaming trace

Download and execution address

https://wiki.segger.com/J-Link_Command_Strings#SelectTraceSource
https://wiki.segger.com/J-Link_Command_Strings
https://www.segger.com/products/debug-probes/j-link/technology/cpus-and-devices/overview-of-supported-cpus-and-devices/
https://www.segger.com/products/debug-probes/j-trace/technology/tested-devices/

software at the time the application download is performed. This implies that streaming trace is only

possible when the application was downloaded in the same debug session.

This also implies that the execution address must be the same as the download address. In case both

addresses differ from each other, the J-Link software needs to be told that the unknown addresses hold

the same data as the cached ones.

This is done via the J-Link command string: ReadIntoTraceCache

This chapter gives an overview about J-Link / J-Trace specific hardware details, such as the pinouts

and available adapters.

All J-Link (except for J-Link EDU mini) and J-Trace models have the same pinout.

J-Link and J-Trace have a JTAG

connector compatible to ARM's

Multi-ICE. The JTAG connector

is a 20 way Insulation

Displacement Connector (IDC)

keyed box header (2.54mm male)

that mates with IDC sockets

mounted on a ribbon cable.

(*) On some models like the J-

Link ULTRA, these pins are
reserved for firmware extension
purposes. They can be left open

or connected to GND in normal

debug environment. Please do not assume them to be connected to GND inside J-Link.

The following table lists the J-Link / J-Trace JTAG pinout.

Target interfaces and adapters

20-pin J-Link connector

Pinout for JTAG

J-Link / J-Trace 20-pin JTAG pinout

https://wiki.segger.com/J-Link_Command_Strings
https://wiki.segger.com/J-Link_Command_Strings#ReadIntoTraceCache
https://wiki.segger.com/File:JTAG_Port.png

PIN SIGNAL TYPE Description

1 VTref Input

This is the target reference voltage.
It is used to check if the target has power, to create the logic-
level reference for the input comparators and to control the
output logic levels to the target. It is normally fed from VDD of
the target board and must not have a series resistor.

2 Not
connected NC This pin is not connected.

3 nTRST Output

JTAG Reset.
Output from J-Link to the Reset signal of the target JTAG port.
Typically connected to nTRST of the target CPU. This pin is
normally pulled HIGH on the target to avoid unintentional resets
when there is no connection.

5 TDI Output
JTAG data input of target CPU.
It is recommended that this pin is pulled to a defined state on the
target board. Typically connected to TDI of the target CPU.

7 TMS Output
JTAG mode set input of target CPU.
This pin should be pulled up on the target. Typically connected
to TMS of the target CPU.

9 TCK Output
JTAG clock signal to target CPU.
It is recommended that this pin is pulled to a defined state of the
target board. Typically connected to TCK of the target CPU.

11 RTCK Input

Return test clock signal from the target.
Some targets must synchronize the JTAG inputs to internal
clocks. To assist in meeting this requirement, you can use a
returned, and adjusted, TCK to dynamically control the TCK rate.
J-Link supports adaptive clocking, which waits for TCK changes
to be echoed correctly before making further changes. Connect
to RTCK if available, otherwise to GND.

13 TDO Input JTAG data output from target CPU.
Typically connected to TDO of the target CPU.

15 nRESET I/O

Target CPU reset signal.
Typically connected to the RESET pin of the target CPU, which
is typically called "nRST", "nRESET" or "RESET". This signal is
an active low signal.

17 DBGRQ NC

This pin is not connected in J-Link.
It is reserved for compatibility with other equipment to be used
as a debug request signal to the target system. Typically
connected to DBGRQ if available, otherwise left open.

19 5V-Supply Output

This pin can be used to supply power to the target hardware.
Older J-Links may not be able to supply power on this pin. For
more information about how to enable/disable the power supply,
please refer to Target power supply.

4, 6,
8,

GND Ground GND pins connected to GND in J-Link.
They should also be connected to GND in the target system.

10,
12

14,
16,
18,
20

Res Reserved

On some models like the J-Link ULTRA, these pins are reserved
for firmware extension purposes.
They can be left open or connected to GND in normal debug
environment. They are not essential for JTAG or SWD in general
Please do not assume them to be connected to GND inside
J-Link.

We strongly advise following the recommendations given by the chip manufacturer. These

recommendations are normally in line with the recommendations given in the table Pinout for JTAG.

In case of doubt you should follow the recommendations given by the semiconductor manufacturer.

You may take any female header following the specifications of DIN 41651.

For example:

Harting part-no. 09185206803

Molex part-no. 90635-1202

Tyco Electronics part-no. 2-215882-0

Target board design

The J-Link and J-Trace JTAG

connector is also compatible to

ARM's Serial Wire Debug (SWD).

(*) On some models like the J-
Link ULTRA, these pins are

reserved for firmware extension
purposes. They can be left open

or connected to GND in normal

debug environment. Please do

not assume them to be connected

to GND inside J-Link.

The following table lists the J-Link / J-Trace SWD pinout.

Pinout for SWD

J-Link / J-Trace 20-pin SWD pinout

https://wiki.segger.com/File:TargetConnectionForJTAG.png
https://wiki.segger.com/File:SWD_Port.png

PIN SIGNAL TYPE Description

1 VTref Input

This is the target reference voltage.
It is used to check if the target has power, to create the logic-
level reference for the input comparators and to control the
output logic levels to the target. It is normally fed from VDD of
the target board and must not have a series resistor.

2 Not
connected NC This pin is not connected.

3 Not used NC
This pin is not used by J-Link when selecting SWD as interface
type.
If the device may also be accessed via JTAG, this pin may be
connected to nTRST, otherwise leave open.

5 Not used NC
This pin is not used by J-Link when selecting SWD as interface
type.
If the device may also be accessed via JTAG, this pin may be
connected to TDI, otherwise leave open.

7 SWDIO Output
JTAG mode set input of target CPU.
This pin should be pulled up on the target. Typically connected
to TMS of the target CPU.

9 SWCLK Output
JTAG clock signal to target CPU.
It is recommended that this pin is pulled to a defined state of
the target board. Typically connected to TCK of the target CPU.

11 Not used NC

This pin is not used by J-Link when selecting SWD as interface
type.
If the device may also be accessed via JTAG, this pin may be
connected to RTCK, otherwise leave open.

13 SWO Input Serial Wire Output trace port.
(Optional, not required for SWD communication.)

15 nRESET I/O

Target CPU reset signal.
Typically connected to the RESET pin of the target CPU, which
is typically called "nRST", "nRESET" or "RESET". This signal is
an active low signal.

17 Not used NC This pin is not connected in J-Link.

19 5V-Supply Output

This pin can be used to supply power to the target hardware.
Older J-Links may not be able to supply power on this pin. For
more information about how to enable/disable the power
supply, please refer to Target power supply.

4, 6,
8, 10,
12

GND Ground GND pins connected to GND in J-Link.
They should also be connected to GND in the target system.

14,
16,
18,
20

Res Reserved On some models like the J-Link ULTRA, these pins are
reserved for firmware extension purposes.
They can be left open or connected to GND in normal debug
environment. They are not essential for JTAG or SWD in

general
Please do not assume them to be connected to GND inside
J-Link.

We strongly advise following the recommendations given by the chip manufacturer. These

recommendations are normally in line with the recommendations given in the table Pinout for SWD.

In case of doubt you should follow the recommendations given by the semiconductor manufacturer.

The J-Link and J-Trace JTAG connector is also compatible to ARM's Serial Wire Debug (SWD).

(*) On some models like the J-Link ULTRA, these pins are reserved for firmware extension purposes.

They can be left open or connected to GND in normal debug environment. Please do not assume them

to be connected to GND inside J-Link.

Target board design

Pinout for SWD + Virtual COM Port (VCOM)

https://wiki.segger.com/File:TargetConnectionForSWD.png

The following table lists the J-Link / J-Trace SWD pinout.

J-Link / J-Trace 20-pin SWD + VCOM pinout

https://wiki.segger.com/File:SWD_Port_VCOM.png

PIN SIGNAL TYPE Description

1 VTref Input

This is the target reference voltage.
It is used to check if the target has power, to create the logic-
level reference for the input comparators and to control the
output logic levels to the target. It is normally fed from VDD of
the target board and must not have a series resistor.

2 Not
connected NC This pin is not connected.

3 Not used NC
This pin is not used by J-Link when selecting SWD as interface
type.
If the device may also be accessed via JTAG, this pin may be
connected to nTRST, otherwise leave open.

5 J-Link Tx Output
This pin is used as VCOM Tx (out on J-Link side) in case
VCOM functionality of J-Link is enabled.
For further information about VCOM, please refer to VCOM

7 SWDIO Output
JTAG mode set input of target CPU.
This pin should be pulled up on the target. Typically connected
to TMS of the target CPU.

9 SWCLK Output
JTAG clock signal to target CPU.
It is recommended that this pin is pulled to a defined state of
the target board. Typically connected to TCK of the target CPU.

11 Not used NC

This pin is not used by J-Link when selecting SWD as interface
type.
If the device may also be accessed via JTAG, this pin may be
connected to RTCK, otherwise leave open.

13 SWO Input Serial Wire Output trace port.
(Optional, not required for SWD communication.)

15 nRESET I/O

Target CPU reset signal.
Typically connected to the RESET pin of the target CPU, which
is typically called "nRST", "nRESET" or "RESET". This signal is
an active low signal.

17 J-Link Rx Input
This pin is used as VCOM Rx (in on J-Link side) in case VCOM
functionality of J-Link is enabled.
For further information, please refer to VCOM.

19 5V-Supply Output

This pin can be used to supply power to the target hardware.
Older J-Links may not be able to supply power on this pin. For
more information about how to enable/disable the power
supply, please refer to Target power supply.

4, 6,
8, 10,
12

GND Ground GND pins connected to GND in J-Link.
They should also be connected to GND in the target system.

14,
16,

Res Reserved On some models like the J-Link ULTRA, these pins are
reserved for firmware extension purposes.
They can be left open or connected to GND in normal debug

18,
20

environment. They are not essential for JTAG or SWD in
general
Please do not assume them to be connected to GND inside
J-Link.

(*) On some models like the J-Link ULTRA, these pins are reserved for firmware extension purposes.

They can be left open or connected to GND in normal debug environment. Please do not assume them

to be connected to GND inside J-Link.

The following table lists the pinout for the SPI interface on J-Link.

Pinout for SPI

J-Link / J-Trace 20-pin SPI pinout

https://wiki.segger.com/File:SPI_Port.png

PIN SIGNAL TYPE Description

1 VTref Input

This is the target reference voltage.
It is used to check if the target has power, to create the logic-
level reference for the input comparators and to control the
output logic levels to the target. It is normally fed from VDD of
the target board and must not have a series resistor.

2 Not
connected NC This pin is not connected.

Leave open on target side

3 Not
connected NC This pin is not connected.

Leave open on target side

5 DI Output Data-input of target SPI.
Output of J-Link, used to transmit data to the target SPI.

7 nCS Output Chip-select of target SPI (active LOW).

9 CLK Output SPI clock signal.

11 Not
connected NC This pin is not connected.

Leave open on target side

13 DO Input Data-out of target SPI. Input of J-Link, used to receive data
from the target SPI.

15 nRESET I/O Target CPU reset signal.

17 Not
connected NC This pin is not connected.

Leave open on target side

19 5V-Supply Output

This pin can be used to supply power to the target hardware.
Older J-Links may not be able to supply power on this pin. For
more information about how to enable/disable the power
supply, please refer to Target power supply.

4, 6,
8, 10,
12

GND Ground GND pins connected to GND in J-Link.
They should also be connected to GND in the target system.

14,
16,
18,
20

Res Reserved

On some models like the J-Link ULTRA, these pins are
reserved for firmware extension purposes.
They can be left open or connected to GND in normal debug
environment. They are not essential for JTAG or SWD in
general
Please do not assume them to be connected to GND inside
J-Link.

Pinout for QSPI

(*) On some models like the J-
Link ULTRA, these pins are

reserved for firmware extension
purposes. They can be left open

or connected to GND in normal

debug environment. Please do

not assume them to be connected

to GND inside J-Link.

The following table lists the pinout for the QSPI interface on J-Link.

J-Link / J-Trace 20-pin QSPI pinout

https://wiki.segger.com/File:QSPI_Port.png

PIN SIGNAL TYPE Description

1 VTref Input

This is the target reference voltage
It is used to check if the target has power, to create the logic-
level reference for the input comparators and to control the
output logic levels to the target.
It is normally fed from Vdd of the target board and must not
have a series resistor.

2 Not\n
connected NC Leave open on target side

3 IO1 I/O Bi-directional data I/O pin 1

5 IO0/DI I/O
Single: Data-input of target SPI. Output of programmer, used
to transmit data to the target SPI.
Quad: Bi-directional data I/O pin 0

7 nCS Output Chip-select of target SPI (active LOW).

9 CLK Output SPI clock signal.

11 IO2 I/O Bi-directional data I/O pin 2

13 DO Input

Single: Data-out of target SPI. Input of programmer, used to
receive data from the target SPI.
Quad: Must be connected to same signal as pin 3 IO1/DO to
guarantee correct operation for temporary single mode
transfers during QSPI mode.

15 nRESET Output
Target CPU reset signal (active LOW). Typically connected to
the reset pin of the target CPU, which is typically called
"nRST", "nRESET" or "RESET".

17 IO3 I/O Bi-directional data I/O pin 3

19 5V-Supply Output This pin can be used to supply power to the target hardware.
Older J-Links may not be able to supply power on this pin.

4, 6, 8,
10, 12 GND Ground GND pins connected to GND in J-Link.

They should also be connected to GND in the target system.

14, 16,
18, 20 Res Reserved

On some models like the J-Link ULTRA, these pins are
reserved for firmware extension purposes.
They can be left open or connected to GND in normal debug
environment. They are not essential for JTAG or SWD in
general
Please do not assume them to be connected to GND
inside J-Link.

19-pin JTAG/SWD and Trace connector

J-Trace provides a JTAG / SWD +

Trace connector. This connector is

a 19-pin connector (0.05" /

1.27mm). It connects to the target

via an 1-1 cable.

The following table lists the J-Link / J-Trace SWD pinout.

J-Link 19-Pin Cortex-M Adapter / J-Trace 19-pin pinout

https://wiki.segger.com/File:19pinTracePort.png

PIN SIGNAL TYPE Description

1 VTref Input

This is the target reference voltage.
It is used to check if the target has power, to create the
logic-level reference for the input comparators and to
control the output logic levels to the target. It is normally fed
from VDD of the target board and must not have a series
resistor.

2 SWDIO / TMS I/O /
Output

SWDIO: (Single) bi-directional data pin.
TMS: JTAG mode set input of target CPU.
This pin should be pulled up on the target. Typically
connected to TMS of the target CPU.

4 SWCLK / TCK Output
SWCLK: Clock signal to target CPU.
TCK: JTAG clock signal to target CPU.

It is recommended that this pin is pulled to a defined state
of the target board.

6 SWO / TDO Input
SWO: Serial Wire Output trace port. (Optional, not
required for SWD communication)
JTAG data output from target CPU. Typically connected
to TDO of the target CPU.

--- --- --- This pin (normally pin 7) is not existent on the 19-pin
JTAG/SWD and Trace connector.

8 NC / TDI NC /
Output

SWD: Not used. J-Link will ignore the signal on this pin
when using SWD.
TDI: JTAG data input of target CPU. It is recommended
that this pin is pulled to a defined state on the target
board. Typically connected to TDI of the target CPU.

9 Not connected
(TRST) NC

By default, TRST is not connected, but the Cortex-M
Adapter comes with a solder bridge (NR1) which allows
TRST to be connected to pin 9 of the Cortex-M adapter.

10 nRESET I/O
Target CPU reset signal. Typically connected to the RESET
pin of the target CPU, which is typically called "nRST",
"nRESET" or "RESET". This signal is an active low signal.

11 5V-Supply Output

This pin can be used to supply power to the target
hardware.
Older J-Links may not be able to supply power on this pin.
For more information about how to enable/disable the
power supply, please refer to Target power supply. If you do
not plan to supply power to the target via this pin it is
recommended to connect it to GND.

12 TRACECLK Input Input trace clock.
Trace clock = 1/2 CPU clock in most cases.

13 5V-Supply Output

This pin can be used to supply power to the target
hardware.
Older J-Links may not be able to supply power on this pin.
For more information about how to enable/disable the
power supply, please refer to Target power supply. If you do
not plan to supply power to the target via this pin it is
recommended to connect it to GND.

14 TRACEDATA[0] Input Input Trace data pin 0.

16 TRACEDATA[1] Input Input Trace data pin 1.

18 TRACEDATA[2] Input Input Trace data pin 2.

20 TRACEDATA[3] Input Input Trace data pin 3.

3, 5,
15,
17,
19

GND Ground
GND pins connected to GND in J-Link.
They should also be connected to GND in the target
system.

J-Trace connects to the target board via a 19-pin trace cable. Alternatively J-Trace can be connected

with a 20-pin JTAG cable.

Note: Never connect trace cable and JTAG cable at the same time because this may lead to unstable

debug and trace connections.

Connecting the target board

Some target boards only provide a 9-pin

JTAG/SWD connector for Cortex-M. For

these devices SEGGER provides a 20-pin -

> 9-pin Cortex-M adapter.

The J-Link EDU mini also comes with a 9-

pin Cortex-M connector.

9-pin JTAG/SWD connector

9-pin JTAG/SWD connector pinout

https://wiki.segger.com/File:190405_J-trace_connection-final.jpg
https://wiki.segger.com/File:9-PinConnector_Port.png

PIN SIGNAL TYPE Description

1 VTref Input

This is the target reference voltage.
It is used to check if the target has power, to create the logic-level
reference for the input comparators and to control the output logic
levels to the target. It is normally fed from VDD of the target board
and must not have a series resistor.

2 SWDIO /
TMS

I/O /
Output

SWDIO: (Single) bi-directional data pin.
TMS: JTAG mode set input of target CPU.
This pin should be pulled up on the target. Typically connected
to TMS of the target CPU.

4 SWCLK /
TCK Output

SWCLK: Clock signal to target CPU.
TCK: JTAG clock signal to target CPU.

It is recommended that this pin is pulled to a defined state of the
target board.

6 SWO /
TDO Input

SWO: Serial Wire Output trace port. (Optional, not required for
SWD communication)
JTAG data output from target CPU. Typically connected to TDO
of the target CPU.

--- --- --- This pin (normally pin 7) is not existent on the 9-pin JTAG/SWD
connector.

8 NC / TDI NC /
Output

SWD: Not used. J-Link will ignore the signal on this pin when
using SWD.
TDI: JTAG data input of target CPU. It is recommended that
this pin is pulled to a defined state on the target board.
Typically connected to TDI of the target CPU.

9 NC(TRST) NC
By default, TRST is not connected, but the Cortex-M Adapter
comes with a solder bridge (NR1) which allows TRST to be
connected to pin 9 of the Cortex-M adapter.

10 nRESET I/O
Target CPU reset signal. Typically connected to the RESET pin of
the target CPU, which is typically called "nRST", "nRESET" or
"RESET". This signal is an active low signal.

3, 5 GND Ground GND pins connected to GND in J-Link.
They should also be connected to GND in the target system.

Pull-up/pull-down resistors

Unless otherwise specified by the semiconductor manufacturer, arm recommends 100kOhms pull-

ups/pull-downs. In case of doubt you should follow the recommendations given by the semiconductor

manufacturer.

On the 20 pin connector pin 19,

on the 19 pin connector pin 11 and 13

can be used to supply power to the target hardware. Supply voltage is 5V, max. current is 300mA. The

output current is monitored and protected against overload and short-circuit.

Power can be controlled via the J-Link Commander.

Note: The 9 pin connector does not support this feature.

The following commands are available to control power:

Command Explanation

power on Switch target power on

power off Switch target power off

power on perm Set target power supply default to "on"

power off perm Set target power supply default to "off"

VTref is the target reference voltage. It is used by the J-Link to check if the target has power, to create

the logic-level reference for the input comparators and to control the output logic levels to the target. It

is normally fed from VDD of the target board and must not have a series resistor.

Current hardware versions of J-Link support configuring a fixed voltage for VTref which is then

generated by J-Link on its own and fed to the input comparators of J-Link.

This allows saving the VTref pin in the board design.

For more information on how to configure and enable the fixed VTref feature on J-Link, please refer to

J-Link Commander and its "VTREF" command.

Target power supply

Reference voltage (VTref)

https://wiki.segger.com/J-Link_Commander
https://wiki.segger.com/J-Link_Commander#power
https://wiki.segger.com/J-Link_Commander#power
https://wiki.segger.com/J-Link_Commander#power
https://wiki.segger.com/J-Link_Commander#power
https://wiki.segger.com/J-Link_Commander#VTREF

In cases where the VTref signal should not be wired to save one more pin / place on the target

hardware interface connector (e.g. in production environments), SEGGER offers a special adapter

called J-Link Supply Adapter which can be used for such purposes. Further information regarding this,

can be found on the SEGGER website (https://www.segger.com/products/debug-probes/j-link/access

ories/adapters/supply-adapter/).

There are various adapters available for J-Link as for example the JTAG isolator, the J-Link RX

adapter or the J-Link Cortex-M adapter.

For more information about the different adapters, please refer to the SEGGER website (https://www.

segger.com/products/debug-probes/j-link/accessories/adapters/overview/).

For general background information about embedded systems, embedded programming languages,

debug communication and more, please refer to the Knowledge Base of this wiki.

J-Link / J-Trace comes with a DLL, which allows - amongst other functionalities - reading and writing

RAM, CPU registers, starting and stopping the CPU, and setting breakpoints. The standard DLL does

not have API functions for flash programming. However, the functionality offered can be used to

program the flash. In that case, a flashloader is required.

This requires extra code. This extra code typically downloads a program into the RAM of the target

system, which is able to erase and program the flash. This program is called RAM code. It contains an

implementation of the flash programming algorithm for the particular flash. Different flash chips have

different programming algorithms; the programming algorithm also depends on other things such as

endianness of the target system and organization of the flash memory (for example 1 * 8 bits, 1 * 16

bits, 2 * 16 bits or 32 bits). The RAM code requires data to be programmed into the flash memory.

There are 2 ways of supplying this data: Data download to RAM or data download via DCC.

The data (or part of it) is downloaded to another part of the RAM of the target system. The Instruction

pointer (R15) of the CPU is then set to the start address of the RAM code, the CPU is started, executing

the RAM code. The RAM code, which contains the programming algorithm for the flash chip, copies

Adapters

Background information

Flash programming

How does flash programming via J-Link / J-Trace work?

Data download to RAM

https://www.segger.com/products/debug-probes/j-link/accessories/adapters/supply-adapter/
https://www.segger.com/products/debug-probes/j-link/accessories/adapters/overview/
https://wiki.segger.com/Knowledge_Base

the data into the flash chip. The CPU is stopped after this. This process may have to be repeated until

the entire data is programmed into the flash.

In this case, the RAM code is started as described above before downloading any data. The RAM code

then communicates with the host computer (via DCC, JTAG and J-Link / J-Trace), transferring data to

the target. It programs the data into flash and waits for new data from the host. The WriteMemory

functions of J-Link / J-Trace are used to transfer the RAM code only, but not to transfer the data. The

CPU is started and stopped only once. Using DCC for communication is typically faster than using

WriteMemory for RAM download because the overhead is lower.

There are different solutions available to program internal or external flashes connected to ARM cores

using J-Link / J-Trace. The different solutions have different fields of application, but of course also

some overlap.

J-Flash is a stand-alone Windows application, which can read / write data files and program the flash

in almost any ARM system. For information about J-Flash, Please refer to J-Flash.

RDI (Remote debug interface) is a standard not commonly used anymore, for "debug transfer agents"

such as J-Link. It allows using J-Link from any RDI compliant debugger. RDI by itself does not include

download to flash. To debug in flash, you need to somehow program your application program

(debuggee) into the flash. You can use J-Flash for this purpose, use the flash loader supplied by the

debugger company (if they supply a matching flash loader) or use the flash loader integrated in the J-

Link RDI software. The RDI software as well as the RDI flash loader require licenses from SEGGER.

A lot of debuggers (some of them integrated into an IDE) come with their own flash loaders (e.g. IAR).

The flash loaders can of course be used if they match your flash configuration, which is something that

needs to be checked with the vendor of the debugger.

Data download via DCC

Available options for flash programming

J-Flash - Complete flash programming solution

RDI flash loader: Allows flash download from any RDI-compliant tool chain

Flash loader of compiler / debugger

Write your own flash loader

https://wiki.segger.com/J-Flash

Please refer to Open Flashloader.

The heart of J-Link / J-Trace is a microcontroller. The firmware is the software executed by the

microcontroller inside of the J-Link / J-Trace. The J-Link / J-Trace firmware sometimes needs to be

updated. This firmware update is performed automatically as necessary by the J-Link DLL.

Every time you connect to J-Link / J-Trace, the J-Link DLL checks if its embedded firmware is newer

than the one used the J-Link / J-Trace. The DLL will then update the firmware automatically. This

process usually takes less than 3 seconds and does not require power cycle of the J-Link.

It is recommended to always use the latest version of J-Link DLL, available as part of the

J-Link Software and Documentation Pack.

Downgrading J-Link / J-Trace is not performed automatically through an old J-Link DLL. J-Link / J-

Trace will continue using its current, newer firmware when using older versions of the J-Link DLL.

J-Link / J-Trace firmware

The red box identifies the new firmware.

The green box identifies the old firmware which has been replaced.

Firmware update

Downgrading / Replacing the firmware

https://wiki.segger.com/Open_Flashloader
https://wiki.segger.com/File:Firmware_Update_Marked.png

Note:

Downgrading J-Link / J-Trace is not recommended. It is performed by the users own risk!
Out dated firmware might not execute properly with newer hardware versions.

There are multiple ways to replace the firmware of a J-Link / J-Trace. However, the procedure itself is

always the same:

1. The current J-Link / J-Trace firmware has to be invalidated.
2. The J-Link / J-Trace has to be updated to the desired firmware.

The two most common ways to do this are:

Via the J-Link Configurator:

1. Open the J-Link Configurator of the J-Link Software and Documentation Pack with the J-Link
DLL containing the desired Firmware version.

2. Right click on the J-Link / J-Trace you want to replace the firmware on.
3. Click on "Replace firmware".

"Updating firmware" identifies the new firmware.

"Replacing firmware" identifies the old firmware which has been replaced.

https://wiki.segger.com/J-Link_Configurator
https://wiki.segger.com/File:Firmware_Downgrade_Marked.png

Via the J-Link Commander:

1. Connect to the J-Link / J-Trace you want to replace the firmware on.
2. Execute the InvalidateFW command string via the command: exec InvalidateFW.
3. Connect to the J-Link with any application using the the J-Link DLL containing the desired

Firmware version.
This automatically replaces the invalidated firmware with its embedded firmware.

In the screenshot, the yellow box contains information about the formerly used J-Link / J-Trace

firmware version, which is invalidated. This is also show in the screenshot, were the invalidated

firmware (2nd red box) is replaced with the one provided by the currently used J-Link DLL (green

box).

This chapter describes the hardware requirements which have to be met by the target board.

Failure to observe high-speed design rules when designing a target system containing an ARM

Embedded Trace Macrocell (ETM) trace port can result in incorrect data being captured by J-Trace.

Serious consideration must be given to high-speed signals when designing the target system.

The signals coming from an ARM ETM trace port can have very fast rise and fall times, even at

relatively low frequencies.

Note:These principles apply to all of the trace port signals (TRACECLK, TRACEDATA[0],

TRACEDATA[1], TRACEDATA[2], TRACEDATA[3]).

Stubs are short pieces of track that tee off from the main track carrying the signal to, for example, a test

point or a connection to an intermediate device. Stubs cause impedance discontinuities that affect

signal quality and must be avoided.

Special care must therefore be taken when ETM signals are multiplexed with other pin functions and

where the PCB is designed to support both functions with differing tracking requirements.

Designing the target board for trace

Overview of high-speed board design

Avoiding stubs

Minimizing Signal Skew (Balancing PCB Track Lengths)

https://wiki.segger.com/J-Link_Commander
https://wiki.segger.com/J-Link_Command_Strings#InvalidateFW

It must be attempted to match the lengths of the PCB tracks carrying the trace signals from the CPU to

the 19-pin JTAG/SWD and Trace connector to be within approximately 0.5 inches (12.5mm) of each

other. Any greater differences directly impact the setup and hold time requirements.

Normal high-speed design rules must be observed. For example, do not run dynamic signals parallel to

each other for any significant distance, keep them spaced well apart, and use a ground plane and so

forth. Particular attention must be paid to the TRACECLK signal. If in any doubt, place grounds or

static signals between the TRACECLK and any other dynamic signals.

Termination is almost certainly necessary, but there are some circumstances where it is not required.

The decision is related to track length between the CPU and the 19-pin JTAG/SWD and Trace

connector, see Terminating the trace signal for further reference.

There are three options for the trace signal termination:

Matched impedance.
Series (source) termination.
DC parallel termination.

Where available, the best termination scheme is to have the CPU manufacturer match the output

impedance of the driver to the impedance of the PCB track on your board. This produces the best

possible signal.

This method requires a resistor fitted in series with the signal. The resistor value plus the output

impedance of the driver must be equal to the PCB track impedance.

This requires either a single resistor to ground, or a pull-up/pull-down combination of resistors

(Thevenin termination), fitted at the end of each signal and as close as possible to the 19-pin

JTAG/SWD and Trace connector. If a single resistor is used, its value must be set equal to the PCB

track impedance. If the pull-up/pull-down combination is used, their resistance values must be

Minimizing Crosstalk

Using impedance matching and termination

Terminating the trace signal

Matched impedance

Series (source) termination

DC parallel termination

selected so that their parallel combination equals the PCB track impedance.

Caution:

At lower frequencies, parallel termination requires considerably more drive capability from the CPU

than series termination and so, in practice, DC parallel termination is rarely used.

Series (source) termination is the most commonly used method. The basic rules are:

1. The series resistor must be placed as close as possible to the ASIC pin (less than 0.5 inches).
2. The value of the resistor must equal the impedance of the track minus the output impedance of

the output driver. So for example, a 50 PCB track driven by an output with a 17 impedance,
requires a resistor value of 33.

3. A source terminated signal is only valid at the end of the signal path. At any point between the
source and the end of the track, the signal appears distorted because of reflections. Any device
connected between the source and the end of the signal path therefore sees the distorted signal
and might not operate correctly. Care must be taken not to connect devices in this way, unless the
distortion does not affect device operation.

The table below lists the specifications that apply to the signals as seen at the 19-pin JTAG/SWD and

Trace connector.

Signal name Description Value

twl TRACECLK LOW pulse width Min. 2 ns

twh TRACECLK HIGH pulse width Min. 2 ns

tr/tf Clock and data rise/fall time Max. 3 ns

ts Data setup time Min. 3 ns

th Data hold time Min. 2 ns

Note: J-Trace PRO has been designed to work with min. 1 ns ts and min. 1 ns th.

Refer to Semihosting

Common trades for all devices:

Rules for series terminators

Signal requirements

Semihosting

Environmental Conditions & Safety

https://wiki.segger.com/Semihosting

Operating temperature +5°C ... +60°C (+5°C ... +45°C for Flasher Portable PLUS while
charging internal battery)
Storage temperature -20°C ... +65°C
Relative humidity (non-condensing) Max. 90% rH
For indoor use only. Use on current-limited USB ports only.

J-Link WiFi:

This device is test equipment and consequently is exempt from part 15 of the FCC rules under
section 15.103.

If not otherwise mentioned, the following models are affected by these safety notes:

J-Link (https://www.segger.com/products/debug-probes/j-link/models/model-overview/):

J-Link BASE
J-Link PLUS
J-Link ULTRA+
J-Link WiFi
J-Link PRO
J-Link BASE Compact
J-Link PLUS Compact

Flasher (https://www.segger.com/products/production/flasher/):

Flasher ARM
Flasher PRO
Flasher Portable
Flasher Portable PLUS
Flasher Secure

J-Trace (https://www.segger.com/products/debug-probes/j-trace/models/model-overview/):

J-Trace PRO Cortex-M
J-Trace PRO Cortex

Before contacting support, make sure you tried to solve the problem by following the steps outlined in

the J-Link troubleshooting guide.

Please also try your J-Link / J-Trace with another PC and if possible with another target system to see

if it works there.

If the device functions correctly, the USB setup on the original machine or your target hardware is the

source of the problem, not J-Link / J-Trace.

If you require support and your poduct is still within valid support period, or you encountered a bug,

Affected models

Contacting support

https://www.segger.com/products/debug-probes/j-link/models/model-overview/
https://www.segger.com/products/production/flasher/
https://www.segger.com/products/debug-probes/j-trace/models/model-overview/
https://wiki.segger.com/J-Link_cannot_connect_to_the_CPU

please contact us via the contact form on the SEGGER homepage (https://www.segger.com/support/te

chnical-support/).

Otherwise, feel free to ask your questions in the SEGGER community forum (https://forum.segger.co

m/).

Please make sure to provide:

A detailed description of the problem.
J-Link/J-Trace serial number.
A screenshot of the entire J-Link Commander output.
Your findings of the signal analysis.
Information about your target hardware (processor, board, etc.).

J-Link / J-Trace is sold directly by SEGGER or as OEM-product by other vendors. Please note that

SEGGER can only support official SEGGER products.

Retrieved from "https://wiki.segger.com/index.php?title=UM08001_J-Link_/_J-
Trace_User_Guide&oldid=13340"

This page was last edited on 11 November 2022, at 13:49.

https://www.segger.com/support/technical-support/
https://forum.segger.com/
https://wiki.segger.com/J-Link_Commander
https://wiki.segger.com/index.php?title=UM08001_J-Link_/_J-Trace_User_Guide&oldid=13340

