## DEMO MANUAL EVAL-LT8355-1-AZ

# LT8355-1 $60 \mathrm{~V}_{\text {IN }} / 120 \mathrm{~V}_{\text {OUt }}$ Dual LED Controller with SSFM 

## DESCRIPTIOn

Evaluation board EVAL-LT8355-1-AZ is a high voltage dual LED controller featuring the LT®8355-1. Channel 1 is assembled as a boost LED driver and channel 2 as a buck-boost mode LED driver. Either channel can be altered to a boost LED driver or buck-boost mode LED driver by adjusting the FB network and LED connection. EVAL-LT8355-1-AZ drives a single string of LEDs per channel when the input is between 8 V and 18 V . Channel 1 drives up to 72 V of LEDs at 450 mA and channel 2 drives up to 30 V of LEDs at 1A. EVAL-LT8355-1-AZ has an undervoltage lockout (UVLO) set at 6.2 V falling and 7.5 V rising. EVAL-LT8355-1-AZ features PWM dimming, analog dimming, shutdown, open LED and short LED fault protection and reporting.
EVAL-LT8355-1-AZ runs at 250 kHz switching frequency and features spread spectrum frequency modulation (SSFM) modulating its switching frequency from 250 kHz to 310 kHz to reduce EMI emissions. Small ceramic input and output capacitors are used to save space and cost. A high voltage 100 V external power switch and 100 V catch diode are used on each channel for up to 32 W boost output for channel 1 and up to 30W buck-boost mode output for channel 2 as assembled. The open LED overvoltage protection (OVP) uses the IC's constant voltage regulation loop to limit the LED+ to LED- voltage if the LED string is opened to approximately 81 V for channel 1 and 36V for channel 2.

The input and output filters on EVAL-LT8355-1-AZ help further reduce its EMI. These filters consist of a small ferrite bead or inductor and high frequency ceramic capacitors. A small resistor on the gate pin of the power MOSFET is used to reduce high frequency EMI. These filters, combined with proper board layout and SSFM, are very effective in reducing EMI to comply with CISPR25 class 5 limits. Please follow the recommended layout and the four-layer PCB thickness of EVAL-LT8355-1-AZ. For best efficiency and PWM dimming performance, the EMI filters can be removed.

The LT8355-1's integrated PWMTG high-side PMOS drivers assist with PWM dimming of the connected LEDs. The LED strings can be PWM-dimmed for accurate brightness control with externally generated PWM signals for highest achievable dimming ratios. They can also utilize LT83551's internally generated PWM feature for up to $128: 1$ exponential dimming. When running PWM dimming, the SSFM aligns itself with the PWM signal for flicker-free operation of each channel's LED string. This applies to both internal and external PWM dimming. The LT8355-1 uses CTRL1 analog dimming for channel 1, and CTRL2 and IADJ2 pins for two-pin analog dimming for channel 2.

The input undervoltage lockout (UVLO), LED current, output overvoltage protection (OVP), and switching frequency, can all be easy adjusted with simple resistor changes to EVAL-LT8355-1-AZ. Modifications can be made to convert the channels to boost, buck-boost mode and buck mode LED drivers, and maintain low EMI, PWM dimming and fault diagnostic features. Buck mode, buck-boost mode and boost LED driver schematics are provided in the data sheet. Please consult the data sheet or the applications team regarding how to customize EVAL-LT8355-1-AZ.

The LT8355-1 data sheet gives a complete description of the part, operation, and applications information. The data sheet must be read in conjunction with this demo manual for evaluation board EVAL-LT8355-1-AZ. The LT8355IUFDM-1 is assembled in a 28 -lead side solderable plastic QFN package with a thermally enhanced exposed ground pad and is AEC-Q100 qualified for automotive applications. Proper board layout is essential for maximum performance. See the data sheet section "Designing the Printed Circuit Board".

Design files for this circuit board are available.
All registered trademarks and trademarks are the property of their respective owners

## DEMO MANUAL EVAL-LT8355-1-AZ

## BOARD PHOTO



Figure 1. EVAL-LT8355-1-AZ Demo Board

## PGRFORMA

| PARAMETER | CONDITION | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Voltage PVIN Range | Operating | 8 |  | 18 | V |
| Switching Frequency ( $\mathrm{f}_{\text {SW }}$, 100\% to 125\% SSFM) | $\mathrm{R} 40=86.6 \mathrm{k}$ | 250 |  | 312 | kHz |
| ILED | $\begin{aligned} & \text { 8V < PVIN }<18 \mathrm{~V}, \mathrm{CTRL1}, \mathrm{CTRL2}, \text { ADJ2 Turrets }=\text { Float } \\ & \text { CH1: RS2 } \\ & \text { CH2: } \mathrm{RS} 4=0.56 \Omega, \mathrm{~V}_{\text {LED }} \leq 72 \mathrm{~V} \text { V } \\ & \text { LED } \end{aligned}$ |  | $\begin{gathered} 450 \\ 1 \end{gathered}$ |  | mA A |
| Open LED Protection (LED+ to LED-) | $\begin{aligned} & \text { CH1: R14 }=0, \text { R11 }=1 \mathrm{M}, \mathrm{R} 10=15 \mathrm{k} \\ & \text { CH2: } \mathrm{R} 52=287 \mathrm{k}, \text { R53 }=10 \mathrm{k}, \text { R47 }=10 \mathrm{k} \end{aligned}$ |  | $\begin{aligned} & 81 \\ & 36 \end{aligned}$ |  | V |
| Peak Efficiency (SSFM ON) | $\begin{aligned} & \text { PVIN }=12 \mathrm{~V}, \mathrm{CH} 1: \mathrm{V}_{\text {LED }}=72 \mathrm{~V}, \mathrm{I}_{\text {LED }}=450 \mathrm{~mA}, \mathrm{CH} 2: \mathrm{V}_{\text {LED }}=30 \mathrm{~V}, \mathrm{I}_{\text {LED }}=1 \mathrm{~A} \\ & \text { with Filters } \\ & \text { without Filters } \end{aligned}$ |  | $\begin{aligned} & 90 \\ & 91 \end{aligned}$ |  | \% |
| Peak Switch Current Limit | $\begin{aligned} & \text { CH1: RS1 }=0.013 \Omega \\ & \text { CH2: RS3 }=0.012 \Omega \end{aligned}$ |  | $\begin{aligned} & 7.7 \\ & 8.3 \end{aligned}$ |  | A |
| Internally-Generated PWM Dimming Range | $0.5 \mathrm{~V}<\mathrm{V}_{\text {PWM }}<1.5 \mathrm{~V}$ | 1/128 |  | 100 | \% |
| Internally-Generated PWM Dimming Frequency | $\mathrm{R} 40=86.6 \mathrm{k}$ |  | 250 |  | Hz |
| PV IN Undervoltage Lockout (UVLO) Falling | R33 $=499 \mathrm{k}, \mathrm{R} 34=127 \mathrm{k}$ |  | 6.2 |  | V |
| PVIN Enable Turn-On (EN) Rising |  |  | 7.5 |  | V |

## DEMO MANUAL EVAL-LT8355-1-AZ

## PUICK START PROCEDURE

Evaluation board EVAL-LT8355-1-AZ is easy to set up to evaluate the performance of the LT8355-1. Follow the procedure below.

1. With power off, connect a string of LEDs that will run with forward voltage less than or equal to 72 V (at 450 mA ) to the LED1 + and LED1- (boost) turrets and another string of LEDs that will run with forward voltage less than or equal to 30 V (at 1A) to the LED2+ and LED2- (buck-boost) turrets as shown in Figure 2.
2. With power off, connect the input power supply to the PVIN and GND turrets. Make sure that the DC input voltage will not exceed 18 V .
3. Turn the input power supply on and make sure the voltage is between 8 V and 18 V for proper operation at max LED current.
4. Observe the LED strings running at the programmed LED current.
5. To change the brightness with analog dimming, the CTRL1 pin is used for channel 1 and CTRL2 and IADJ2 pins are used for channel 2 . The product of the offset CTRL and IADJ pin voltages sets the current when the two voltages vary between 0.5 V and 1.5 V . Please refer to data sheet for more details.
6. To change the brightness with external PWM dimming, attach a rectangular waveform with varying duty cycle to the respective PWM turret for channel 1 and channel 2. The ON and OFF voltages should be above 1.6 V and below 0.4 V , respectively.
7. To change the brightness with internally-generated PWM dimming, adjust the voltage at the respective PWM pin for channel 1 and channel 2 between 0.5 V and 1.5 V to vary the duty ratio of the internal PWM generator.

## DEMO MANUAL EVAL-LT8355-1-AZ

## PUICK START PROCEDURE



Figure 2. Setup Drawing for EVAL-LT8355-1-AZ: Channel 1 as Boost LED Driver, and Channel 2 as Buck-Boost Mode LED Driver (See Boost LED Driver Setup Section for More Information on Boost Topology)

## DEMO MANUAL EVAL-LT8355-1-AZ

## START-UP WITH LOW VISP TO VISn

Full-scale LED current sense threshold voltage ( $\mathrm{V}_{\text {ISP }}$ to $\mathrm{V}_{\text {ISN }}$ ) for LT8355-1 is 250 mV , which sets fullscale LED current according to Equation 1.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{LED}}=\frac{250 \mathrm{mV}}{\mathrm{R}_{\text {SENSE }}} \tag{1}
\end{equation*}
$$

The LED current sense threshold voltage can be trimmed to be lower than 250 mV when analog dimming is desired. This includes but is not limited to, when a single sense resistor is used for multiple designs with different current levels needed for each design, and when low current level is required at start-up and increases at steady state, etc.

For configurations where the LED current sense threshold ( $\mathrm{V}_{\text {ISP }}$ to $\mathrm{V}_{\text {ISN }}$ ) is configured for 75 mV or lower via CTRL or IADJ pin, an additional resistor connecting $V_{\text {REF }}$ to $F B$ is needed to allow for proper start-up of the LT8355-1 (see Figure 3). Refer to data sheet for more information. See Equation 2 and Equation 3 to set resistor values for boost and buck-boost mode topologies.


Figure 3. Proper Star-Up Configuration
Boost: Calculate R1 and R2 to set desired $\mathrm{V}_{\text {OUT_OVP }}$ voltage and $V_{\text {FB }}$ to 400 mV at $\mathrm{V}_{\text {IN_min. }}$.

$$
\begin{align*}
& V_{\text {IN_MIN }}=400 \mathrm{mV}+\left(40 \mu \mathrm{~A}-\frac{1.6 \mathrm{~V}}{\mathrm{R} 1}\right) \mathrm{R} 2 \\
& \mathrm{~V}_{\text {OUT_OVP }}=1.2 \mathrm{~V}+\left(120 \mu \mathrm{~A}-\frac{800 \mathrm{mV}}{\mathrm{R} 1}\right) \mathrm{R} 2 \tag{2}
\end{align*}
$$

Buck-Boost: Calculate R1 to set $\mathrm{V}_{\text {LED_OVP }}\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}\right)$ to desired OVP voltage.

$$
\begin{equation*}
V_{\text {LED_OVP }}=V_{\text {BE }}+120 \mu A \cdot R 1 \tag{3}
\end{equation*}
$$

## BOOST LED DRIVER SETUP

EVAL-LT8355-1-AZ has channel 1 assembled as a boost LED driver and channel 2 as a buck-boost mode LED driver. With minor adjustments channel 2 can be reconfigured as a boost LED driver. In buck-boost mode, the LEDconnection is at $\mathrm{V}_{\mathrm{IN}}$, and a level shifter is used for the FB network. In a boost LED driver, the LED- connection is at GND and a resistor divider is used for the FB network.

To configure EVAL-LT8355-1-AZ channel 2 as a boost LED driver, remove R53, R52, Q2, FB10, C38 and C49. Install $0 \Omega$ for R46 and 1 M for R48. Consult the data sheet for OVP calculations and details about the FB pin. Connect the LED string from LED+ to LED- (GND boost).
Note that when EVAL-LT8355-1-AZ is reconfigured as a boost LED driver, other components may need to be adjusted depending on their voltage rating and power capabilities.

## DEMO MANUAL EVAL-LT8355-1-AZ

## TEST RESULTS



Figure 4. EVAL-LT8355-1-AZ, Efficiency vs Input Voltage: Channel 1, 72V Led 450mA, Channel 2, 30V LED 1 A


Figure 5. EVAL-LT8355-1-AZ, Internal 250Hz 10\% PWM Dimming with EMI Filters: $12 V_{I N}$, Channel 1, $\mathbf{7 2 V}_{\text {LED }} 450 \mathrm{~mA}$, Channel 2, 30V 1 LED $1 A$


Figure 6. EVAL-LT8355-1-AZ, External 150Hz PWM Dimming with EMI Filters: $12 \mathrm{~V}_{\mathrm{IN}}$, Channel 1, $\mathbf{7 2 V _ { \text { LED } }} \mathbf{4 5 0 m A}$, Channel 2, 30V LED 1 A

## TEST RESULTS



Figure 7. EVAL-LT8355-1-AZ: 50\% to 100\% to 50\% Load Step Transient Response, 12V ${ }_{\text {IN }}$


Figure 8. EVAL-LT8355-1-AZ, Thermal Image with EMI Filters: $12 V_{\text {IN }}$, Channel $1,72 V_{\text {LED }} 450 \mathrm{~mA}$, Channel $2,30 V_{\text {LED }} 1 \mathrm{~A}$

## DEMO MANUAL EVAL-LT8355-1-AZ

## test results


(a) CISPR25 Peak

(b) CISPR25 Average

Figure 9. Conducted Emissions (Voltage Method): 12V $V_{I N}$, Channel 1, 72V ${ }_{\text {LED }} 450 \mathrm{~mA}$, Channel 2, 30V $\mathrm{V}_{\text {LED }} 1 \mathrm{~A}$


Figure 10. Conducted Emissions (Current Method): 12V $\mathrm{V}_{\mathrm{N}}$, Channel 1, 72V LEDD 450mA, Channel 2, 30V $\mathrm{LEDD}^{1 \mathrm{~A}}$


Figure 11. Radiated Emissions: $12 \mathrm{~V}_{\mathrm{IN}}$, Channel $1,72 \mathrm{~V}_{\text {LED }} 450 \mathrm{~mA}$, Channel $2,30 \mathrm{~V}_{\text {LED }} 1 \mathrm{~A}$

## DEMO MANUAL EVAL-LT8355-1-AZ

## EMISSIONS SHIELD (OPTION)

For the lowest emissions, an EMI shield can be attached to EVAL-LT8355-1-AZ. The PCB was fabricated with placeholders for six shield clips that can hold a $61.5 \mathrm{~mm} \times$ 61.5 mm metal shield. Part number for an example shield can be found in the Parts List section in the Optional EMI

Filter Components section. The top silkscreen (Figure 12) shows the placeholders for the six-surface mount shield clips. Emissions can be tested with and without the removable clip shield.


Figure 12. EVAL-LT8355-1-AZ Top Silkscreen Outlining Placement of Shield Clips and EMI Shield on PCB

## DEMO MANUAL EVAL-LT8355-1-AZ

## PARTS LIST

| ITEM | QTY | REFERENCE | PART DESCRIPTION | MANUFACTURER/PART NUMBER |
| :---: | :---: | :---: | :---: | :---: |
| Required Circuit Components |  |  |  |  |
| 1 | 2 | C3, C29 | CAP., $100 \mu \mathrm{~F}$, ALUM ELECT, $25 \mathrm{~V}, 20 \%, 6.3 \mathrm{~mm} \times 7.7 \mathrm{~mm}$, D8, SMD, RADIAL, EEEHA, AEC-Q200 | PANASONIC, EEEHAE101XAP |
| 2 | 1 | C7 | CAP., $1 \mu \mathrm{~F}, \mathrm{X} 7 \mathrm{R}, 25 \mathrm{~V}, 10 \%$, 0805, AEC-Q200 | TDK, CGA4J3X7R1E105K125AB |
| 3 | 1 | C8 | CAP., 1000pF, X7R, 50V, 10\%, 0402, AEC-Q200 | MURATA, GCM155R71H102KA37D |
| 4 | 4 | C9-C11, C36 | CAP., 4.7 $\mu \mathrm{F}, \mathrm{X} 7 \mathrm{~S}, 100 \mathrm{~V}, 10 \%$, 1210, AEC-Q200 | MURATA, GCM32DC72A475KE02L |
| 5 | 2 | C14, C42 | CAP., $2.2 \mu \mathrm{~F}, \mathrm{X} 5 \mathrm{R}, 25 \mathrm{~V}, 10 \%, 0603$, AEC-Q200 | TAIYO YUDEN, TMK107BBJ225KAHT |
| 6 | 4 | C22, C23, C31, C32 | CAP., 4.7 $\mu \mathrm{F}, \mathrm{X} 7 \mathrm{R}, 25 \mathrm{~V}, 10 \%$, 1210, AEC-Q200 | TAIYO YUDEN, TMF325B7475KMHP |
| 7 | 1 | C33 | CAP., $2.2 \mu \mathrm{~F}, \mathrm{X} 5 \mathrm{R}, 10 \mathrm{~V}, 10 \%, 0603$, AEC-Q200 | TAIYO YUDEN, LMK107BJ225KAHT |
| 8 | 1 | C34 | CAP., 680pF, X7R, 50V, 10\%, 0402, AEC-Q200 | TDK, CGA2B2X7R1H681K050BA |
| 9 | 1 | C35 | CAP., 4.7 $7 \mathrm{~F}, \mathrm{X} 5 \mathrm{R}, 10 \mathrm{~V}, 10 \%$, 0603, AEC-Q200 | TAIYO YUDEN, LMK107BJ475KAHT |
| 10 | 1 | C38 | CAP., $10 \mu \mathrm{~F}, \mathrm{X} 7 \mathrm{~S}, 50 \mathrm{~V}, 10 \%, 1210$, AEC-Q200, NO SUBS ALLOWED | MURATA, GCM32EC71H106KA03L |
| 11 | 2 | D1, D4 | DIODE, SCHOTTKY, 100V, 3A, POWERDI5, AEC-Q101 | DIODES INC., PDS3100Q-13 |
| 12 | 1 | L2 | IND., $15 \mu \mathrm{H}, \mathrm{PWR}, \mathrm{SHIELDED}, 20 \%, 7.7 \mathrm{~A}, 50.29 \mathrm{~m} \Omega$, 4040DD, IHLE-5A, AEC-Q200 | VISHAY, IHLE4040DDER150M5A |
| 13 | 1 | L4 | IND., 10 $\mu \mathrm{H}, \mathrm{PWR}, \mathrm{SHIELDED}, 20 \%, 8.5 \mathrm{~A}, 33.06 \mathrm{~m} \Omega$, 4040DD, IHLE-5A SERIES, AEC-Q200 | VISHAY, IHLE4040DDER100M5A |
| 14 | 2 | M1, M9 | XSTR., MOSFET, N-CH, 100V, 37A, POWERPAK S0-8L, AEC-Q101 | VISHAY, SQJA72EP-T1_GE3 |
| 15 | 2 | M4, M10 | XSTR., MOSFET, P-CH, 100V, 33.6A, POWERPAK SO-8L, AEC-Q101 | VISHAY, SQJ211ELP-T1_GE3 |
| 16 | 1 | Q2 | XSTR., PNP, 100V, 1A, SOT-23-3, AEC-Q101 | DIODES INC., FMMT593QTA |
| 17 | 3 | R1, R35, R36 | RES., 100k, 1\%, 1/16W, 0402, AEC-Q200 | VISHAY, CRCW0402100KFKED |
| 18 | 4 | R5, R13, R39, R43 | RES., 100k, 5\%, 1/16W, 0402, AEC-Q200 | VISHAY, CRCW0402100KJNED |
| 19 | 1 | R8 | RES., 39k, 1\%, 1/16W, 0402, AEC-Q200 | YAGEO, AC0402FR-0739KL |
| 20 | 2 | R9, R49 | RES., $10 \Omega, 5 \%, 1 / 16 \mathrm{~W}, 0402$, AEC-Q200 | VISHAY, CRCW040210ROJNED |
| 21 | 1 | R10 | RES., 15k, 1\%, 1/16W, 0402, AEC-Q200 | YAGEO, AC0402FR-0715KL |
| 22 | 1 | R11 | RES., 1M, 1\%, 1/10W, 0603 | VISHAY, CRCW06031M00FKEA |
| 23 | 1 | R14 | RES., $0 \Omega, 1 / 10 \mathrm{~W}, 0402$, AEC-Q200 | PANASONIC, ERJ2GEOROOX |
| 24 | 1 | R33 | RES., 499k, 1\%, 1/10W, 0603, AEC-Q200 | VISHAY, CRCW0603499KFKEA |
| 25 | 1 | R34 | RES., 127k, 1\%, 1/16W, 0402, AEC-Q200 | VISHAY, CRCW0402127KFKED |
| 26 | 1 | R40 | RES., 86.6k, 1\%, 1/10W, 0603, AEC-Q200 | VISHAY, CRCW060386K6FKEA |
| 27 | 1 | R42 | RES., 30k, 1\%, 1/16W, 0402, AEC-Q200 | VISHAY, CRCW040230KOFKED |
| 28 | 1 | R47 | RES., 10k, 1\%, 1/10W, 0402, AEC-Q200 | PANASONIC, ERJ2RKF1002X |
| 29 | 1 | R52 | RES., 287k, 1\%, 1/16W, 0402, AEC-Q200 | VISHAY, CRCW0402287KFKED |
| 30 | 1 | R53 | RES., 10k, 5\%, 1/16W, 0402, AEC-Q200 | VISHAY, CRCW040210KOJNED |
| 31 | 1 | RS1 | RES., $0.013 \Omega$, $1 \%, 1$ W, 1206, LONG-SIDE TERM, SENSE, AEC-Q200 | ROHM, LTR18EZPFSR013 |
| 32 | 1 | RS2 | RES., $0.56 \Omega, 1 \%, 1 / 2 \mathrm{~W}, 1206$, SENSE, AEC-Q200 | PANASONIC, ERJ8BQFR56V |
| 33 | 1 | RS3 | RES., 0.012 $\Omega, 1 \%, 1.5 W, 1206$, LONG-SIDE TERM, METAL, SENSE, AEC-Q200 | K0A SPEER, WU732B15TTD12L0F |
| 34 | 1 | RS4 | RES., $0.25 \Omega, 1 \%, 1 / 2 \mathrm{~W}, 1206$, SENSE, AEC-Q200 | YAGEO, PT1206FR-7W0R25L |
| 35 | 1 | U1 | IC, DUAL LED CONTROLLER, QFN-28, AEC-Q100 | ANALOG DEVICES, LT8355IUFDM-1\#WPBF |

## DEMO MANUAL EVAL-LT8355-1-AZ

## PARTS LIST

| ITEM | QTY | REFERENCE | PART DESCRIPTION | MANUFACTURER/PART NUMBER |
| :---: | :--- | :--- | :--- | :--- |

Optional EMI Filter Components

| 36 | 0 | C1, C27 | CAP., OPTION, 0402 |  |
| :---: | :---: | :---: | :---: | :---: |
| 37 | 0 | C2, C28 | CAP., OPTION, 1206 |  |
| 38 | 4 | C5, C6, C30, C45 | CAP., 10رF, X7R, 25V, 10\%, 1210, AEC-Q200 | TDK, CGA6P1X7R1E106K250AC |
| 39 | 2 | C15, C43 | CAP., $0.1 \mu \mathrm{~F}, \mathrm{X} 7 \mathrm{~S}, 100 \mathrm{~V}, 10 \%, 0603, ~ A E C-Q 200$ | TDK, CGA3E3X7S2A104K080AB |
| 40 | 0 | C19-C21, C47, C48 | CAP., OPTION, 0603 |  |
| 41 | 1 | C49 | CAP., $0.1 \mu \mathrm{~F}, \mathrm{X7R}, 50 \mathrm{~V}, 10 \%$, 0603, AEC-Q200 | TDK, CGA3E2X7R1H104K080AA |
| 42 | 3 | FB4, FB9, FB10 | IND., $330 \Omega$ AT 100MHz, FERRITE BEAD, 25\%, 1.8A, $80 \mathrm{~m} \Omega$, 0805, 1LN | TAIYO YUDEN, FBMH2012HM331-T |
| 43 | 0 | FB5 | IND., FERRITE BEAD, OPT, 0805 |  |
| 44 | 2 | L1, L3 | IND., $8.2 \mu \mathrm{H}, \mathrm{PWR}$, SHIELDED, $20 \%, 8 \mathrm{~A}, 26.4 \mathrm{~m} \Omega$, $6.56 \mathrm{~mm} \times 6.36 \mathrm{~mm}$, XAL6060, AEC-Q200 | COILCRAFT, XAL6060-822MEC |
| 45 | 2 | R7, R41 | RES., $10 \Omega, 5 \%, 1 / 10 \mathrm{~W}, 0603$, AEC-Q200 | VISHAY, CRCW060310ROJNEA |
| 46 | 0 | CL1-CL6 | OPTION, WE-SHC CABINET CLIP $6.5 \mathrm{~mm} \times 0.8 \mathrm{~mm} \times 1.27 \mathrm{~mm}$ | WURTH, 36900000 |
| 47 | 0 | SH1 | OPTION, WE-SHC SHIELDIY $61.5 \mathrm{~mm} \times 61.5 \mathrm{~mm}$ | WURTH, 360002 |

Optional Electrical Components

| 48 | 0 | C17, C18, C25, C41, <br> C46, C50, C51 | CAP., OPTION, 0402 |  |
| :---: | :---: | :--- | :--- | :--- |
| 49 | 0 | C12, C13, C16, C37, <br> C39, C40, C44 | CAP., OPTION, 1210 |  |
| 50 | 0 | C24 | CAP., OPTION, ALUM. ELECT., SMD |  |
| 51 | 0 | D2, D3, D5, D6 | DIODE, OPTION, SOD-323F |  |
| 52 | 0 | FB1-FB3, FB6-FB8 | IND., OPTION, FERRITE BEAD, 1210 |  |
| 53 | 0 | Q1 | XSTR., OPTION, PNP, SOT-23 |  |
| 54 | 0 | R3, R6, R12, R19- <br> R22, R25, R32, <br> R37, R38, R44-R46, <br> R50, R51, R59 | RES., OPTION, 0402 |  |
| 55 | 0 | R48 | RES., OPTION, 0603 |  |

Hardware: For Demo Board Only

| 56 | 10 | E1-E4, E8-E13 | TEST POINT, TURRET, 0.094" MTG. HOLE, PCB 0.062" THK | MILL-MAX, 2501-2-00-80-00-00-07-0 |
| :---: | :---: | :--- | :--- | :--- |
| 57 | 5 | E14-E18 | TEST POINT, TURRET, 0.064" MTG. HOLE, PCB 0.062" THK | MILL-MAX, 2308-2-00-80-00-00-07-0 |
| 58 | 2 | J1, J2 | CONN., BANANA JACK, FEMALE, THT, NON-INSULATED, <br> SWAGE, 0.218" | KEYSTONE, 575-4 |
| 59 | 4 | MP1-MP4 | STANDOFF, NYLON, SNAP-ON, 0.50" | KEYSTONE, 8833 |

## DEMO MANUAL EVAL-LT8355-1-AZ

SCHEMATIC DIAGRAM


[^0]
## DEMO MANUAL EVAL-LT8355-1-AZ

## SCHEMATIC DIAGRAM



[^1]ESD Caution
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection
circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

## Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ( $\$ 100.00$ ). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.


[^0]:    NOTES: UNLESS OTHERWISE SPECIFIED.

[^1]:    NOTES: UNLESS OTHERWISE SPECIFIED.

    1. ALL RESISTORS $5 \%, 0402$.
    2. ALL CAPACITORS 0603.
