8-bit Microcontrollers

CMOS

F²MC-8FX MB95130MB Series

MB95136MB/F133MBS/F133NBS/F133JBS/F134MBS/F134NBS/F134JBS/ MB95F136MBS/F136NBS/F136JBS/F133MBW/F133NBW/F133JBW/F134MBW/ MB95F134NBW/F134JBW/F136MBW/F136NBW/F136JBW/FV100D-103

DESCRIPTION

The MB95130MB series is general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions.

Note: : F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

FEATURES

• F²MC-8FX CPU core

Instruction set optimized for controllers

- · Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instruction
- Bit manipulation instructions etc.
- Clock
 - Main clock
 - Main PLL clock
 - Sub clock (for dual clock product)
 - Sub PLL clock (for dual clock product)

(Continued)

For the information for microcontroller supports, see the following web site.

http://edevice.fujitsu.com/micom/en-support/

- Timer
 - 8/16-bit compound timer \times 1 channel
 - 8/16-bit PPG \times 1 channel
 - 16-bit PPG × 1 channel
 - Timebase timer \times 1 channel
 - Watch prescaler (for dual clock product) \times 1 channel
- LIN-UART × 1 channel
 - LIN function, Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable
 - Full duplex double buffer
- UART/SIO × 1 channel
 - Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable
 - Full duplex double buffer
- External interrupt × 8 channels
 - Interrupt by edge detection (rising, falling, or both edges can be selected)
 - Can be used to recover from low-power consumption (standby) modes.
- 8/10-bit A/D converter \times 8 channels
 - 8-bit or 10-bit resolution can be selected.
- Low-power consumption (standby) mode
 - Stop mode
 - Sleep mode
 - Watch mode (for dual clock product)
 - Timebase timer mode
- I/O port
 - The number of maximum ports
 - Single clock product : 19 ports
 - Dual clock product : 17 ports
 - Configuration
 - General-purpose I/O ports (COMS) : Single clock product : 19 ports
 - Dual clock product : 17 ports
- Programmable input voltage levels of port Automotive input level / CMOS input level / hysteresis input level
- Flash memory security function
 - Protects the content of Flash memory (Flash memory device only)

■ MEMORY LINEUP

	Flash memory	RAM
MB95F133MBS/F133NBS/F133JBS	8 Kbytes	256 bytes
MB95F133MBW/F133NBW/F133JBW	o Royles	230 Dytes
MB95F134MBS/F134NBS/F134JBS	16 Khytoo	E12 bytes
MB95F134MBW/F134NBW/F134JBW	16 Kbytes	512 bytes
MB95F136MBS/F136NBS/F136JBS	22 Khytaa	1 Khyta
MB95F136MBW/F136NBW/F136JBW	32 Kbytes	1 Kbyte

■ PRODUCT LINEUP

Pa	Part number rameter	MB95136MB	MB95 F133MBS/ F134MBS/ F136MBS	MB95 F133NBS/ F134NBS/ F136NBS	MB95 F133MBW/ F134MBW/ F136MBW	MB95 F133NBW/ F134NBW/ F136NBW	MB95 F133JBS/ F134JBS/ F136JBS	MB95 F133JBW/ F134JBW/ F136JBW
Ту	ре	MASK ROM product			Flash memo	ory product		
RC	OM capacity*1			3	2 Kbytes (Max	z)		
R٨	AM capacity*1				1 Kbyte (Max)			
Re	eset output			Yes			N	0
2	Clock system	Selectable single/dual clock*3	Single	e clock	Dual	clock	Single clock	Dual clock
Option*2	Low voltage detection reset	Yes/No	No	Yes	No		Yes	
	Clock supervisor	Yes/No		N	lo		Ye	es
CF	PU functions	Instruction bit Instruction le Data bit lengt Minimum inst Interrupt proc	ngth th truction execu	:1, tion time :61	bits to 3 bytes 8, and 16 bits .5 ns (at mach 6 μs (at machin			
	I - ONOral-	 Dual clock Programmab 		orts e levels of por	t : ut level / hyster	esis input leve	91	
	Timebase timer (1 channel)	Interrupt cycl	e : 0.5 ms, 2.1	ms, 8.2 ms, 3	2.8 ms (at mai	n oscillation c	lock 4 MHz)	
nctions			lation clock 10		ual clock produ	: Min 105 ict) : Min 250		
nct	•	•		es of ROM data	a			
Peripheral fu	UART/SIO (1 channel)	Full duplex de NRZ type trai LSB-first or N	nsfer format, e ISB-first can b	ariable data le error detected f be selected.	ngth (5/6/7/8-b function chronous (SIC		-	
	LIN-UART (1 channel)	Full duplex de Clock asynch	ouble buffer. Ironous (UAR	-	nge of commu chronous (SIC or LIN slave.	-		е
	8/10-bit A/D converter (8 channels)	8-bit or 10-bit	t resolution ca	n be selected.				

(Continued)
Continucu)

Part number Parameter	MB95136MB	MB95 F133MBS/ F134MBS/ F136MBS	MB95 F133NBS/ F134NBS/ F136NBS	MB95 F133MBW/ F134MBW/ F136MBW	MB95 F133NBW/ F134NBW/ F136NBW	MB95 F133JBS/ F134JBS/ F136JBS	MB95 F133JBW/ F134JBW/ F136JBW
8/16-bit compound timer (1 channel)	Built-in timer fu	Inction, PWC fu	nction, PWM fur	B-bit timer x 2 ch nction, capture fu lock can be sele	Inction and squa		
16-bit PPG (1 channel)	Counter oper Support for e	external trigger	ght selectable start	clock sources			
(1 obonnol)				bit PPG x 2 ch clock sources		bit PPG x 1 ch	annel".
Watch counter (for dual clock product) (1 channel)	Counter valu		om 0 to 63. (C	es (125 ms, 25 Capable of cour le to 60)			ecting clock
Watch prescaler (for dual clock product) (1 channel)	Four selectal	ole interval tim	es (125 ms, 2	50 ms, 500 ms	, or 1 s)		
External interrupt (8 channels)		edge detection to recover fro		, or both edges des.	s can be selec	ted.)	
-lash memory	Write/Erase/I A flag indicat Number of w Data retentio Erase can be Block protect Flash Securit	Erase-Suspen ing completior rite/erase cycl n time : 20 yea performed or ion with exterr ty Feature for	d/Resume con of the algorithes (Minimum) ars each block nal programmi protecting the	nm : 10000 times	Flash	/)	
Standby mode	Sleep, stop,	watch (for dua	I clock product	t), and timebas	e timer		

*1 : For ROM capacity and RAM capacity, refer to "■ MEMORY LINEUP".

*2 : For details of option, refer to "■ MASK OPTION".

*3 : Specify clock mode when ordering MASK ROM.

Note: Part number of evaluation product in MB95130MB series is MB95FV100D-103. When using it, the MCU board (MB2146-303A-E) is required.

■ OSCILLATION STABILIZATION WAIT TIME

The initial value of the main clock oscillation stabilization wait time is fixed to the maximum value. The maximum value is shown below.

Oscillation stabilization wait time	Remarks
(2 ¹⁴ -2) /Fсн	Approx. 4.10 ms (at main oscillation clock 4 MHz)

■ PACKAGES AND CORRESPONDING PRODUCTS

Part number Package	MB95136MB	MB95F133MBS MB95F133NBS MB95F134MBS MB95F134NBS MB95F136MBS MB95F136NBS MB95F133JBS MB95F134JBS MB95F136JBS	MB95F133MBW MB95F133NBW MB95F134MBW MB95F134NBW MB95F136MBW MB95F136NBW MB95F133JBW MB95F134JBW MB95F136JBW	MB95FV100D-103
FPT-28P-M17	\bigcirc	0	\bigcirc	×
FPT-30P-M02	0	0	0	×
BGA-224P-M08	×	×	×	0

 \bigcirc : Available

 \times : Unavailable

■ DIFFERENCES AMONG PRODUCTS AND NOTES ON SELECTING PRODUCTS

Notes on using evaluation products

The Evaluation product has not only the functions of the MB95130MB series but also those of other products to support software development for multiple series and models of the F²MC-8FX. The I/O addresses for peripheral resources not used by the MB95130MB series are therefore access-barred. Read/write access to those access-barred addresses may cause peripheral resources supposed to be unused to operate, resulting in unexpected malfunctions of hardware or software.

Particularly, do not use word access to an odd-numbered-byte address in the prohibited areas (If such access is used, the address may be read or written unexpectedly).

Also, as the read values of prohibited addresses on the evaluation product are different to the values on the flash memory and mask ROM products, do not use these values in the software processing.

The Evaluation product does not support the functions of some bits in single-byte registers. Read/write access to these bits does not cause hardware malfunctions. No particular precautions are required to the flash memory and mask ROM products, as they have the identical read/write operation to the evaluation products.

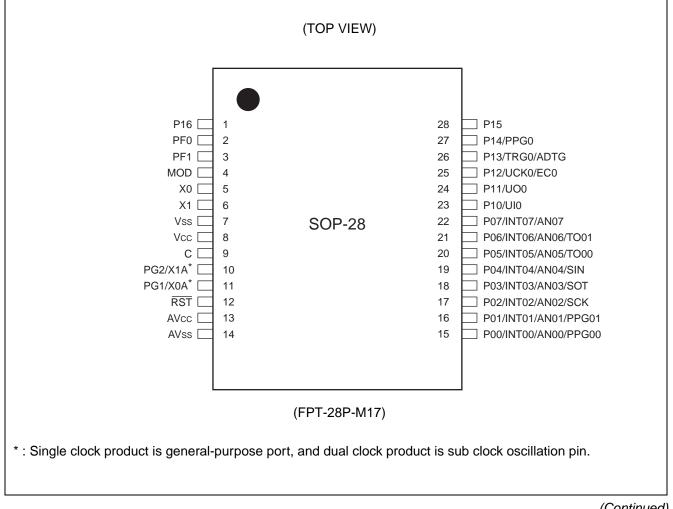
• Difference of memory spaces

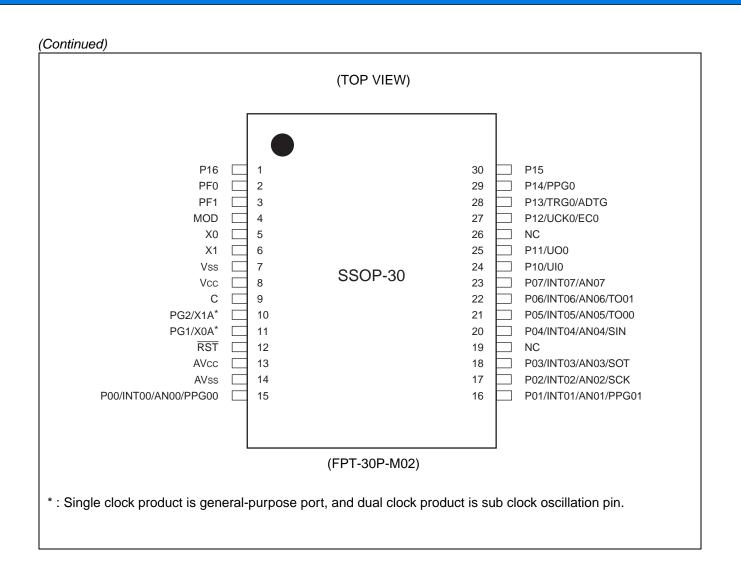
If the amount of memory on the Evaluation product is different from that of the Flash memory or MASK ROM product, carefully check the difference in the amount of memory from the model to be actually used when developing software.

For details of memory space, refer to "■ CPU CORE".

- Current consumption
 - The current consumption of Flash memory product is greater than for MASK ROM product.
 - For details of current consumption, refer to "■ ELECTRICAL CHARACTERISTICS".
- Package

For details of information on each package, refer to "■ PACKAGES AND CORRESPONDING PRODUCTS" and "■ PACKAGE DIMENSION".


Operating voltage


The operating voltage is different among the Evaluation, Flash memory, and MASK ROM products. For details of the operating voltage, refer to "■ ELECTRICAL CHARACTERISTICS".

• Difference MOD Pins

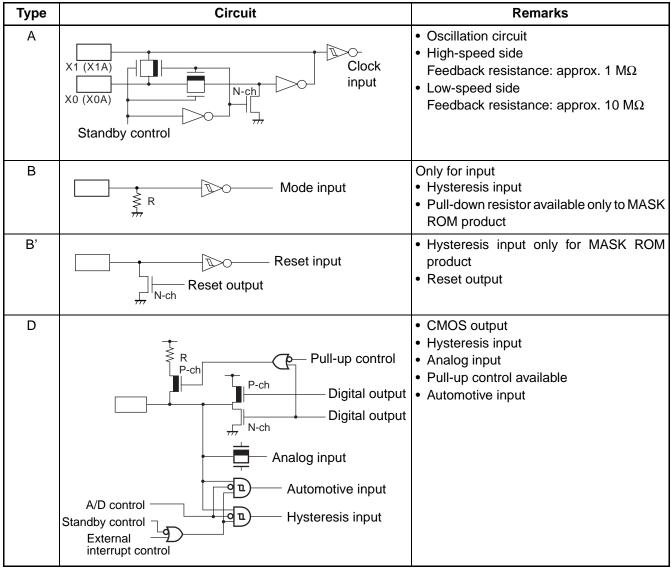
A pull-down resistor is provided for the MOD pin of the MASK ROM product.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin	no.		I/O	
SSOP*1	SOP*2	Pin name	circuit type* ³	Function
1	1	P16	Н	General-purpose I/O port
2	2	PF0	К	Conoral numaria I/O part for large current
3	3	PF1	ĸ	General-purpose I/O port for large current
4	4	MOD	В	Operating mode designation pin
5	5	X0	A	Main clock oscillation input pin
6	6	X1	A	Main clock oscillation input/output pin
7	7	Vss	_	Power supply pin (GND)
8	8	Vcc		Power supply pin
9	9	С	_	Capacity connection pin
10	10	PG2/X1A	H/A	Single clock product is general-purpose port (PG2) . Dual clock product is sub clock input/output oscillation pin (32 kHz) .
11	11	PG1/X0A	1/7	Single clock product is general-purpose port (PG1) . Dual clock product is sub clock input oscillation pin (32 kHz) .
12	12	RST	B'	Reset pin
13	13	AVcc	_	A/D converter power supply pin
14	14	AVss	_	A/D converter power supply pin (GND)
15	15	P00/INT00/ AN00/ PPG00		General-purpose I/O port Shared with external interrupt input (INT00), A/D converter analog input (AN00) and 8/16-bit PPG ch.0 output (PPG00).
16	16	P01/INT01/ AN01/ PPG01	5	General-purpose I/O port Shared with external interrupt input (INT01), A/D converter analog input (AN01) and 8/16-bit PPG ch.0 output (PPG01).
17	17	P02/INT02/ AN02/SCK	D	General-purpose I/O port Shared with external interrupt input (INT02), A/D converter analog input (AN02) and LIN-UART clock I/O (SCK).
18	18	P03/INT03/ AN03/SOT		General-purpose I/O port Shared with external interrupt input (INT03), A/D converter analog input (AN03) and LIN-UART data output (SOT).
20	19	P04/INT04/ AN04/SIN	Е	General-purpose I/O port Shared with external interrupt input (INT04), A/D converter analog input (AN04) and LIN-UART data input (SIN).
21	20	P05/INT05/ AN05/TO00		General-purpose I/O port Shared with external interrupt input (INT05 & INT06), A/D converter
22	21	P06/INT06/ AN06/TO01	D	analog input (AN05 & AN06) and 8/16-bit compound timer ch.0 output (TO00 & TO01).
23	22	P07/INT07/ AN07		General-purpose I/O port Shared with external interrupt input (INT07) and A/D converter analog input (AN07).

(Continued)


Continue	·u)			
Pin	no.		I/O	
SSOP*1	SOP*2	Pin name	circuit type* ³	Function
24	23	P10/UIO	G	General-purpose I/O port Shared with UART/SIO ch.0 data input (UI0)
25	24	P11/UO0		General-purpose I/O port Shared with UART/SIO ch.0 data output (UO0)
27	25	P12/UCK0/ EC0		General-purpose I/O port Shared with UART/SIO ch.0 clock I/O (UCK0) and 8/16-bit compound timer ch.0 clock input (EC0)
28	26	P13/TRG0/ ADTG	Н	General-purpose I/O port Shared with 16-bit PPG ch.0 trigger input (TRG0) and A/D converter trigger input (ADTG)
29	27	P14/PPG0		General-purpose I/O port Shared with 16-bit PPG ch.0 output (PPG0)
30	28	P15		General-purpose I/O port
19,26		NC		Internally connected pins. Be sure to leave it open.

*1 : FPT-30P-M02

*2 : FPT-28P-M17

*3 : For the I/O circuit type, refer to "■ I/O CIRCUIT TYPE".

■ I/O CIRCUIT TYPE

(Continue	·	- ·
Туре	Circuit	Remarks
E	A/D control	 CMOS output CMOS input Hysteresis input Analog input Pull-up control available Automotive input
G	Pull-up control Digital output Digital output Digital output Digital output Digital output Hysteresis input Standby control	 CMOS output CMOS input Hysteresis input Pull-up control available Automotive input
H	P-ch P-ch P-ch P-ch P-ch Digital output Digital output M-ch Hysteresis input Standby Control	 CMOS output Hysteresis input Pull-up control available Automotive input
К	P-ch Digital output Digital output M-ch Hysteresis input	 CMOS output Hysteresis input Automotive input
	Standby Automotive input	

HANDLING DEVICES

• Preventing latch-up

Care must be taken to ensure that maximum voltage ratings are not exceeded when the devices are used. Latch-up may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- and high-withstand voltage pins or if voltage higher than the rating voltage is applied between Vcc pin and Vss pin.

When latch-up occurs, power supply current increases rapidly and might thermally damage elements. Also, take care to prevent the analog power supply voltage (AVcc) and analog input voltage from exceeding the digital power supply voltage (Vcc) when the analog system power supply is turned on or off.

• Stable supply voltage

Supply voltage should be stabilized.

A sudden change in power supply voltage may cause a malfunction even within the guaranteed operating range of the Vcc power supply voltage.

For stabilization, in principle, keep the variation in V_{CC} ripple (p-p value) in a commercial frequency range (50 / 60 Hz) not to exceed 10% of the standard V_{CC} value and suppress the voltage variation so that the transient variation rate does not exceed 0.1 V/ms during a momentary change such as when the power supply is switched.

• Precautions for use of external clock

Even when an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from the sub clock mode or stop mode.

PIN CONNECTION

• Treatment of unused pins

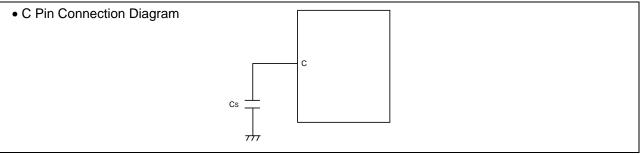
Leaving unused input pins unconnected can cause abnormal operation or latch-up, leading to permanent damage. Unused input pins should always be pulled up or down through resistance of at least 2 k Ω . Any unused input/output pins may be set to the output mode and left open, or set to the input mode and treated the same as unused input pins. If there is any unused output pin, make it open.

• Treatment of power supply pins on A/D converter

Connect to be $AV_{cc} = V_{cc}$ and $AV_{ss} = V_{ss}$ even if the A/D converter is not in use. Noise riding on the AV_{cc} pin may cause accuracy degradation. So, connect approx. 0.1 μ F ceramic capacitor as a bypass capacitor between AV_{cc} and AV_{ss} pins in the vicinity of this device.

• Power Supply Pins

In products with multiple V_{cc} or V_{ss} pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, all the pins must be connected to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with the V_{cc} and V_{ss} pins of this device at the low impedance.


It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 μ F between V_{cc} and V_{ss} pins near this device.

• Mode pin (MOD)

Connect the mode pin directly to $V_{\mbox{\scriptsize CC}}$ or $V_{\mbox{\scriptsize SS}}$ pins.

To prevent the device unintentionally entering the test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pins to Vcc or Vss pins and to provide a low-impedance connection.

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. A bypass capacitor of V_{CC} pin must have a capacitance value higher than Cs. For connection of smoothing capacitor Cs, refer to the diagram below.

• Analog power supply

Always set the same potential to AV_{CC} pin and V_{CC} pin. When $V_{CC} > AV_{CC}$, the current may flow through the AN00 to AN07 pins.

• NC pins

Any pins marked "NC" (not connected) must be left open.

■ PROGRAMMING FLASH MEMORY MICROCONTROLLERS USING PARALLEL PROGRAMMER

• Supported parallel programmers and adapters

The following table lists supported parallel programmers and adapters.

Package	Applicable adapter model	Parallel programmers
FPT-28P-M17	TEF110-95F136HSPF	AF9708 (Since Rev 02.43E)
FPT-30P-M02	TEF110-95F136MB	AF9709/B (Since Rev 02.43E)

Note: : For information about applicable adapter models and parallel programmers, contact the following: Flash Support Group, Inc. TEL: +81-53-428-8380

Sector configuration

The following table shows sector-specific addresses for data access by CPU and by the parallel programmer.

MB95F136MBS/F136NBS/F136MBW/F136NBW/F136JBS/F136JBW (32 Kbytes)

Flash memory	CPU address	Programmer address*
32 Kbytes	<u>80</u> 00н	18000н
	F <u>F</u> F <u>F</u> +	1FFFF _H

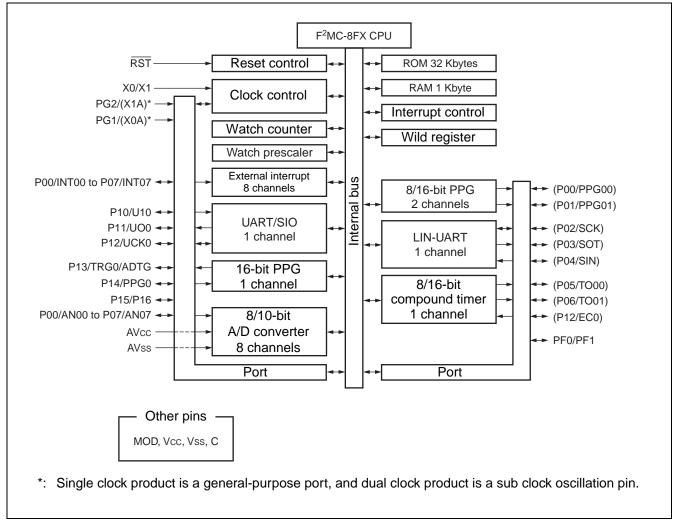
*: Programmer addresses are corresponding to CPU addresses, used when the parallel programmer programs data into Flash memory. These programmer addresses are used for the parallel programmer to program or erase data in Flash memory.

• Programming method

- 1) Set the type code of the parallel programmer to "17237".
- 2) Load program data to programmer addresses 18000H to 1FFFFH.
- 3) Write data with the parallel programmer.

Flash memory	CPU address	Programmer address*
16 Kbytes	Сооон	— — <u>1</u> <u>соо</u> н — – –
To hoytoo	FFFFH	1FFFF _H
programs data into	ses are correspondi Flash memory.	ing to CPU addresses, used when the parallel progra

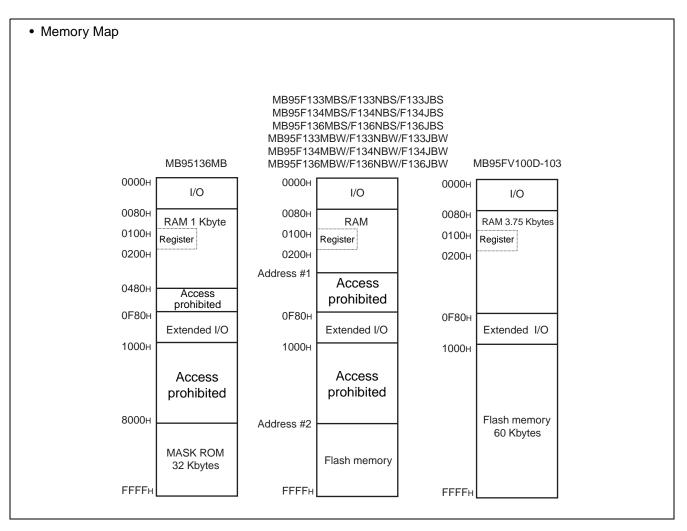
Programming method


- 1) Set the type code of the parallel programmer to "17237".
- 2) Load program data to programmer addresses 1C000 μ to 1FFFF.
- 3) Write data with the parallel programmer.

-lash memory	CPU address	Programmer address*
8 Kbytes	— — <u>Е</u> ОООн — —	1E000 _H
	FFFFH	1FFFF _H
programs data into	Flash memory.	ling to CPU addresses, used when the parallel programmed for the parallel programmer to program or erase data in

• Programming method

- 1) Set the type code of the parallel programmer to "17237".
- 2) Load program data to programmer addresses 1E000H to 1FFFFH.
- 3) Write data with the parallel programmer.


BLOCK DIAGRAM

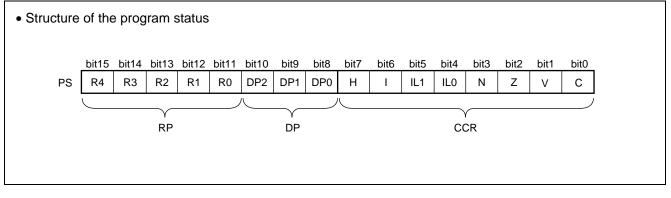
CPU CORE

1. Memory Space

Memory space of the MB95130MB series is 64 Kbytes and consists of I/O area, data area, and program area. The memory space includes special-purpose areas such as the general-purpose registers and vector table. Memory map of the MB95130MB series is shown below.



	Flash memory	RAM	Address #1	Address #2	
MB95F133MBS/F133NBS/F133JBS	8 Kbytes	256 bytes	0180 _H	Е000 н	
MB95F133MBW/F133NBW/F133JBW	0 NDytes	200 bytes	0100H	LOOOH	
MB95F134MBS/F134NBS/F134JBS	16 Kbytoo	512 bytee	0280 _H	С000н	
MB95F134MBW/F134NBW/F134JBW	16 Kbytes	512 bytes	0200H	COOOH	
MB95F136MBS/F136NBS/F136JBS	22 Kbytoo	1 Khyta	0480 _H	8000H	
MB95F136MBW/F136NBW/F136JBW	32 Kbytes	1 Kbyte	04008	OUUUH	


2. Register

The MB95130MB series has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The dedicated registers are as include:

Program counter (PC)	: A 16-bit register to indicate locations where instructions are stored.
Accumulator (A)	: A 16-bit register for temporary storage of arithmetic operations. In the case of an 8-bit data processing instruction, the lower 1-byte is used.
Temporary accumulator (T)	: A 16-bit register which performs arithmetic operations with the accumulator. In the case of an 8-bit data processing instruction, the lower 1-byte is used.
Index register (IX)	: A 16-bit register for index modification
Extra pointer (EP)	: A 16-bit pointer to point to a memory address.
Stack pointer (SP)	: A 16-bit register to indicate a stack area.
Program status (PS)	: A 16-bit register for storing a register bank pointer, a direct bank pointer, and a condition code register

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and a direct bank pointer (DP) and the lower 8 bits for use as a condition code register (CCR). (Refer to the diagram below.)

The RP indicates the address of the register bank currently being used. The relationship between the content of RP and the real address conforms to the conversion rule illustrated below:

 Rule for Conversion of Actual Addresses in the General-purpose Register Area 																
										RP	upp	er		OP c	ode	lower
	"0"	"0"	"0"	"0"	"0"	"0"	"0"	"1"	R4	R3	R2	R1	R0	b2	b1	b0
	+	¥	¥	¥	¥	¥	¥	¥	+	¥	¥	¥	¥	¥	ŧ	+
Generated address	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0

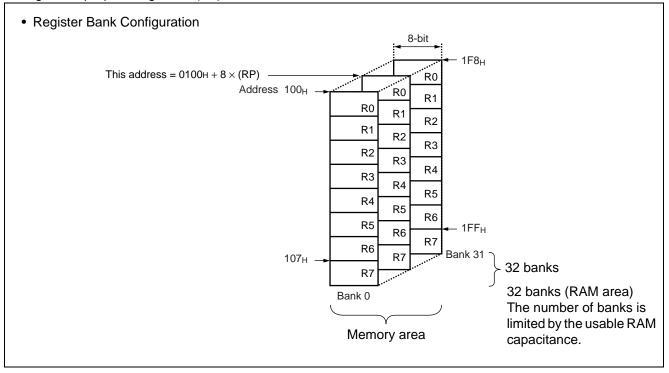
The DP specifies the area for mapping instructions (16 different types of instructions such as MOV A and dir) using direct addresses to 0080H to 00FFH.

Direct bank pointer (DP2 to DP0)	Specified address area	Mapping area
XXX _B (no effect to mapping)	0000н to 007Fн	0000н to 007Fн (without mapping)
000₀ (initial value)		0080н to 00FFн (without mapping)
001в		0100н to 017Fн
010в		0180н to 01FFн
011в	0080н to 00FFн	0200н to 027Fн
100в		0280н to 02FFн
101в		0300н to 037Fн
110в		0380н to 03FFн
111в]	0400н to 047Fн

The CCR consists of the bits indicating arithmetic operation results or transfer data content and the bits that control CPU operations at interrupt.

- H flag : Set to "1" when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. This flag is for decimal adjustment instructions.
- I flag : Interrupt is enabled when this flag is set to "1". Interrupt is disabled when this flag is set to "0". The flag is cleared to "0" when reset.
- IL1, IL0 : Indicates the level of the interrupt currently enabled. Processes an interrupt only if its request level is higher than the value indicated by these bits.

IL1	IL0	Interrupt level	Priority
0	0	0	High
0	1	1	≜
1	0	2	ļ
1	1	3	Low (no interruption)


- N flag : Set to "1" if the MSB is set to "1" as the result of an arithmetic operation. Cleared to "0" when the bit is set to "0".
- Z flag : Set to "1" when an arithmetic operation results in "0". Cleared to "0" otherwise.
- V flag : Set to "1" if the complement on 2 overflows as a result of an arithmetic operation. Cleared to "0" otherwise.
- C flag : Set to "1" when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: 8-bit data storage registers

The general-purpose registers are 8 bits and located in the register banks on the memory. 1-bank contains 8 registers. Up to a total of 32 banks can be used on the MB95130MB series. The bank currently in use is specified by the register bank pointer (RP), and the lower 3 bits of OP code indicates the general-purpose register 0 (R0) to general-purpose register 7 (R7).

■ I/O MAP

Address	Register abbreviation	Register name	R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	0000000в
0001н	DDR0	Port 0 direction register	R/W	0000000в
0002н	PDR1	Port 1 data register	R/W	0000000в
0003н	DDR1	Port 1 direction register	R/W	0000000в
0004н	_	(Disabled)		
0005н	WATR	Oscillation stabilization wait time setting register	R/W	11111111в
0006н	PLLC	PLL control register	R/W	0000000в
0007н	SYCC	System clock control register	R/W	1010X011в
0008н	STBC	Standby control register	R/W	0000000в
0009н	RSRR	Reset source register	R/W	XXXXXXXX
000Ан	TBTC	Timebase timer control register	R/W	0000000в
000Вн	WPCR	Watch prescaler control register	R/W	0000000в
000Сн	WDTC	Watchdog timer control register	R/W	0000000в
000Dн to 0027н		(Disabled)	_	_
0028н	PDRF	Port F data register	R/W	0000000в
0029н	DDRF	Port F direction register	R/W	0000000в
002Ан	PDRG	Port G data register	R/W	0000000в
002Вн	DDRG	Port G direction register	R/W	0000000в
002Сн	PUL0	Port 0 pull-up register	R/W	0000000в
002Dн	PUL1	Port 1 pull-up register	R/W	0000000в
002Ен to 0034н		(Disabled)	_	_
0035н	PULG	Port G pull-up register	R/W	0000000в
0036н	T01CR1	8/16-bit compound timer 01 control status register 1 ch.0	R/W	0000000в
0037н	T00CR1	8/16-bit compound timer 00 control status register 1 ch.0	R/W	0000000в
0038н, 0039н		(Disabled)		_
003Ан	PC01	8/16-bit PPG1 control register ch.0		0000000в
003Вн	PC00	8/16-bit PPG0 control register ch.0	R/W	0000000в
003Cн to 0041н		(Disabled)		_
0042н	PCNTH0	16-bit PPG control status register (Upper byte) ch.0	R/W	0000000в
0043н	PCNTL0	16-bit PPG control status register (Lower byte) ch.0	R/W	0000000в

Address	Register abbreviation	Register Register name				
0044н to 0047н		(Disabled)	_	_		
0048н	EIC00	External interrupt circuit control register ch.0,ch.1	R/W	0000000в		
0049н	EIC10	External interrupt circuit control register ch.2,ch.3	R/W	0000000в		
004Ан	EIC20	External interrupt circuit control register ch.4,ch.5	R/W	0000000в		
004Bн	EIC30	External interrupt circuit control register ch.6,ch.7	R/W	0000000в		
004Сн to 004Fн		(Disabled)	_	_		
0050н	SCR	LIN-UART serial control register	R/W	0000000в		
0051 н	SMR	LIN-UART serial mode register	R/W	0000000в		
0052н	SSR	LIN-UART serial status register	R/W	00001000в		
0053н	RDR/TDR	LIN-UART reception/transmission data register	R/W	0000000в		
0054н	ESCR	LIN-UART extended status control register	R/W	00000100в		
0055н	ECCR	LIN-UART extended communication control register	R/W	000000XXв		
0056н	SMC10	UART/SIO serial mode control register 1 ch.0	R/W	0000000в		
0057н	SMC20	UART/SIO serial mode control register 2 ch.0	R/W	0010000в		
0058н	SSR0	UART/SIO serial status register ch.0	R/W	0000001в		
0059н	TDR0	UART/SIO serial output data register ch.0	R/W	0000000в		
005Ан	RDR0	UART/SIO serial input data register ch.0	R	0000000в		
005Вн to 006Вн		(Disabled)	_	_		
006Сн	ADC1	8/10-bit A/D converter control register 1	R/W	0000000в		
006Dн	ADC2	8/10-bit A/D converter control register 2	R/W	0000000в		
006Е н	ADDH	8/10-bit A/D converter data register (Upper byte)	R/W	0000000в		
006F н	ADDL	8/10-bit A/D converter data register (Lower byte)	R/W	0000000в		
0070н	WCSR	Watch counter status register	R/W	0000000в		
0071н	—	(Disabled)		—		
0072н	FSR	Flash memory status register		000Х0000в		
0073н		(Disabled)		_		
0074н		(Disabled)	—	_		
0075н		(Disabled)				
0076н	WREN	Wild register address compare enable register	R/W	0000000в		
0077н	WROR	Wild register data test setting register	R/W	0000000₀ (Continued		

Address	Register abbreviation	Register name	R/W	Initial value
0078н		(Register bank pointer (RP) Mirror of direct bank pointer (DP)	_	
0079н	ILR0	Interrupt level setting register 0	R/W	11111111в
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в
007Вн	ILR2	Interrupt level setting register 2	R/W	11111111в
007Сн	ILR3	Interrupt level setting register 3	R/W	11111111в
007Dн	ILR4	Interrupt level setting register 4	R/W	11111111в
007Е н	ILR5	Interrupt level setting register 5	R/W	11111111в
007Fн		(Disabled)		
0F80н	WRARH0	Wild register address setting register (Upper byte) ch.0	R/W	0000000в
0F81н	WRARL0	Wild register address setting register (Lower byte) ch.0	R/W	0000000в
0F82н	WRDR0	Wild register data setting register ch.0	R/W	0000000в
0F83н	WRARH1	Wild register address setting register (Upper byte) ch.1	R/W	0000000в
0F84н	WRARL1	Wild register address setting register (Lower byte) ch.1	R/W	0000000в
0F85н	WRDR1	Wild register data setting register ch.1	R/W	0000000в
0F86н	WRARH2	Wild register address setting register (Upper byte) ch.2	R/W	0000000в
0F87н	WRARL2	Wild register address setting register (Lower byte) ch.2	R/W	0000000в
0F88н	WRDR2	Wild register data setting register ch.2	R/W	0000000в
0F89н to 0F91н		(Disabled)		_
0F92н	T01CR0	8/16-bit compound timer 01 control status register 0 ch.0	R/W	0000000в
0F93н	T00CR0	8/16-bit compound timer 00 control status register 0 ch.0	R/W	0000000в
0F94н	T01DR	8/16-bit compound timer 01 data register ch.0	R/W	0000000в
0F95н	T00DR	8/16-bit compound timer 00 data register ch.0	R/W	0000000в
0F96н	TMCR0	8/16-bit compound timer 00/01 timer mode control register ch.0	R/W	0000000в
0F97н to 0F9Bн		(Disabled)		_
0F9Cн	PPS01	8/16-bit PPG1 cycle setting buffer register ch.0		11111111в
0F9Dн	PPS00	8/16-bit PPG0 cycle setting buffer register ch.0	R/W	11111111в
0 F 9Eн	PDS01	8/16-bit PPG1 duty setting buffer register ch.0	R/W	11111111в
0F9Fн	PDS00	8/16-bit PPG0 duty setting buffer register ch.0	R/W	11111111в
0FA0н to 0FA3н		(Disabled)		—

Address	Register abbreviation	Register name	R/W	Initial value
0FA4н	PPGS	8/16-bit PPG start register	R/W	0000000в
0FA5н	REVC	8/16-bit PPG output inversion register	R/W	0000000в
0FA6н to 0FA9н		(Disabled)		_
0FAA _H	PDCRH0	16-bit PPG down counter register (Upper byte) ch.0	R	0000000в
0FABH	PDCRL0	16-bit PPG down counter register (Lower byte) ch.0	R	0000000в
0FACH	PCSRH0	16-bit PPG cycle setting buffer register (Upper byte) ch.0	R/W	11111111в
0FADH	PCSRL0	16-bit PPG cycle setting buffer register (Lower byte) ch.0	R/W	11111111в
0FAEH	PDUTH0	16-bit PPG duty setting buffer register (Upper byte) ch.0	R/W	11111111в
0FAFH	PDUTL0	16-bit PPG duty setting buffer register (Lower byte) ch.0	R/W	11111111в
0FB0н to 0FBBн		(Disabled)		_
0FBCH	BGR1	LIN-UART baud rate generator register 1	R/W	0000000в
0FBDH	BGR0	LIN-UART baud rate generator register 0	R/W	0000000в
0FBEH	PSSR0	UART/SIO dedicated baud rate generator prescaler selection register ch.0	R/W	0000000в
0FBFн	BRSR0	UART/SIO dedicated baud rate generator baud rate setting register ch.0	R/W	0000000в
0FC0н to 0FC2н		(Disabled)		_
0FC3н	AIDRL	A/D input disable register (Lower byte)	R/W	0000000в
0FC4н to 0FE2н		(Disabled)		_
0FE3н	WCDR	Watch counter data register	R/W	00111111в
0FE4н to 0FE6н		(Disabled)		_
0FE7н	ILSR2	Input level select register 2 (option)	R/W	0000000в
0FE8н, 0FE9н		(Disabled)		
0FEAн	CSVCR	Clock supervisor control register	R/W	00011100в
0FEBн to 0FEDн		(Disabled)		_
0FEEH	ILSR	Input level select register	R/W	0000000в
0FEFH	WICR	Interrupt pin control register	R/W	0100000в
0FF0н to 0FFFн	_	(Disabled)		_

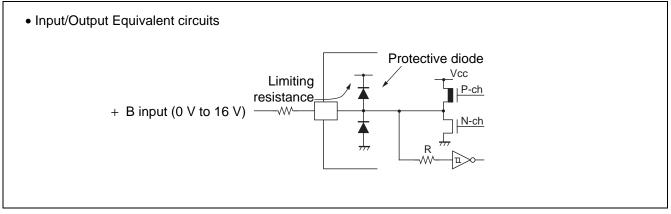
- R/W access symbols
 - R/W : Readable / Writable
 - R : Read only
 - W : Write only
- Initial value symbols
 - 0 : The initial value of this bit is "0".
 - 1 : The initial value of this bit is "1".
 - X : The initial value of this bit is undefined.

Note: : Do not write to the " (Disabled) ". Reading the " (Disabled) " returns an undefined value.

■ INTERRUPT SOURCE TABLE

	Interrupt	Vector tab	le address	Bit name of	Same level	
Interrupt source	request number	Upper	Lower	interrupt level setting register	priority order (atsimultaneous occurrence)	
External interrupt ch.0	IRQ0	FFFAH			High	
External interrupt ch.4	IKQU	FFFAH	FFFB _H	L00 [1 : 0]	▲	
External interrupt ch.1						
External interrupt ch.5	IRQ1	FFF8⊦	FFF9⊦	L01 [1 : 0]		
External interrupt ch.2		FFF6H	FFF7H	1 02 [1 + 0]		
External interrupt ch.6	IRQ2	ГГГОН		L02 [1 : 0]		
External interrupt ch.3	IRQ3	FFF4 _H	FFF5H	1 02 [1 + 0]		
External interrupt ch.7	IRQ3		гггэн	L03 [1 : 0]		
UART/SIO ch.0	IRQ4	FFF2H	FFF3H	L04 [1 : 0]		
8/16-bit compound timer ch.0 (Lower)	IRQ5	FFF0H	FFF1н	L05 [1 : 0]		
8/16-bit compound timer ch.0 (Higher)	IRQ6	FFEEH	FFEFH	L06 [1 : 0]		
LIN-UART (reception)	IRQ7	FFECH	FFEDH	L07 [1 : 0]		
LIN-UART (transmission)	IRQ8	FFEAH	FFEBH	L08 [1 : 0]		
(Unused)	IRQ9	FFE8H	FFE9н	L09 [1 : 0]		
(Unused)	IRQ10	FFE6H	FFE7н	L10 [1 : 0]		
(Unused)	IRQ11	FFE4H	FFE5H	L11 [1 : 0]		
8/16-bit PPG ch.0 (Upper)	IRQ12	FFE2H	FFE3H	L12 [1 : 0]		
8/16-bit PPG ch.0 (Lower)	IRQ13	FFE0H	FFE1H	L13 [1 : 0]		
(Unused)	IRQ14	FFDEH	FFDFH	L14 [1 : 0]		
16-bit PPG ch.0	IRQ15	FFDCH	FFDDH	L15 [1 : 0]		
(Unused)	IRQ16	FFDAH	FFDB H	L16 [1 : 0]		
(Unused)	IRQ17	FFD8H	FFD9н	L17 [1 : 0]		
8/10-bit A/D converter	IRQ18	FFD6н	FFD7н	L18 [1 : 0]		
Timebase timer	IRQ19	FFD4H	FFD5H	L19 [1 : 0]		
Watch prescaler/Watch counter	IRQ20	FFD2H	FFD3H	L20 [1 : 0]		
(Unused)	IRQ21	FFD0H	FFD1н	L21 [1 : 0]		
(Unused)	IRQ22	FFCE H	FFCF H	L22 [1 : 0]	♥	
Flash memory	IRQ23	FFCC _H	FFCD _H	L23 [1 : 0]	Low	

■ ELECTRICAL CHARACTERISTICS


1. Absolute Maximum Ratings

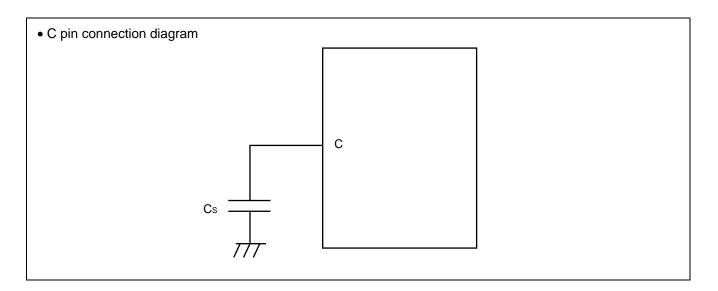
Deremeter	Symbol	Rat	ing	Unit	Domorko		
Parameter	Symbol	Min	Max	Unit	Remarks		
Power supply voltage*1	Vcc AVcc	Vss - 0.3	Vss + 6.0	V	*2		
Input voltage*1	Vı	Vss – 0.3	Vss + 6.0	V	*3		
Output voltage*1	Vo	Vss – 0.3	Vss + 6.0	V	*3		
Maximum clamp current	CLAMP	- 2.0	+ 2.0	mA	Applicable to pins*4		
Total maximum clamp current	Σ	—	20	mA	Applicable to pins*4		
"L" level maximum			15	mA	Other than PF0, PF1		
output current	OL2		15	mA	PF0, PF1		
"L" level average	IOLAV1		4	mA	Other than PF0, PF1 Average output current = operating current × operating ratio (1 pin)		
current	Iolav2		12	ША	PF0, PF1 Average output current = operating current × operating ratio (1 pin)		
"L" level total maximum output current	ΣΙοι		100	mA			
"L" level total average output current	ΣΙοιαν	_	50	mA	Total average output current = operating current × operating ratio (Total of pins)		
"H" level maximum	Он1		– 15	m۸	Other than PF0, PF1		
output current	Он2		– 15	mA	PF0, PF1		
"H" level average	Iohav1		- 4		Other than PF0, PF1 Average output current = operating current × operating ratio (1 pin)		
current	Іонау2		- 8	mA	PF0, PF1 Average output current = operating current × operating ratio (1 pin)		
"H" level total maximum output current	ΣІон	—	- 100	mA			
"H" level total average output current	ΣΙοήαν		- 50	mA	Total average output current = operating current × operating ratio (Total number of pins)		
Power consumption	Pd		320	mW			
Operating temperature	TA	- 40	+ 85	°C			
Storage temperature	Tstg	- 55	+ 150	°C			

(Continued)

- *1: The parameter is based on $AV_{SS} = V_{SS} = 0.0 V.$
- *2: Apply equal potential to AVcc and Vcc.
- *3: V_I and V_o should not exceed Vcc + 0.3 V. V_I must not exceed the rating voltage. However, if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.
- *4: Applicable pins: P10 to P15, PF0, PF1 (Inapplicable pins: PG1, PG2)
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - +B signal is an input signal that exceeds Vcc voltage. The + B signal should always be applied a limiting resistance placed between the + B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the + B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this affects other devices.
 - Note that if the + B signal is inputted when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the + B input is applied during power-on, the power supply is provided from the pins and the resulting power supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the + B input pin open.
 - •Note that analog system input/output pins other than the A/D input pins (LCD drive pins, etc.) cannot accept +B signal input.
 - Sample recommended circuits :

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

(AVss = Vss = 0.0 V)


Parameter	Symbol	Va	lue	Unit	Remarks	
Faldilletei	Symbol	Min	Max	Onit		
Power supply voltage	Vcc, AVcc	2.42* ²	5.5* ¹	V	At normal operation	
		2.3	5.5	v	Holds condition in stop mode	
Smoothing capacitor	Cs	0.1	1.0	μF	*3	
Operating temperature	TA	- 40	+ 105	°C		

2. Recommended Operating Conditions

*1: The value varies depending on the operating frequency.

*2: The value is 2.88 V when the low-voltage detection reset is used.

*3: Use ceramic capacitor or a capacitor with equivalent frequency characteristics. A bypass capacitor of V_{cc} pin must have a capacitance value higher than C_s. For connection of smoothing capacitor C_s, refer to the diagram below.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

r			= = AVcc = 5.0	V ± 10%, F	$\frac{1}{Value}$		V, IA =	– 40 °C to + 105 °C)	
Parameter	Symbol	Pin name	Condition					Remarks	
		D04 (coloctable		WIIN	Тур	Max			
"H" level input voltage	Vіні	P04 (selectable in SIN), P10 (selectable in UI0)	_	0.7 Vcc		Vcc + 0.3	V	Hysteresis input	
	Vihsi	P00 to P07, P10 to P16, PF0, PF1, PG1, PG2	_	0.8 Vcc		Vcc + 0.3	V	Hysteresis input	
	Viha	P00 to P07, P10 to P16, PF0, PF1, PG1, PG2	_	0.8 Vcc		Vcc + 0.3	V	Pin input at selecting of Automotive input level	
	Vihm	RST, MOD		0.7 Vcc		Vcc + 0.3	V	CMOS input (Flash memory product)	
	VIHM	K3T, MOD		0.8 Vcc		Vcc + 0.3	V	Hysteresis input (MASK ROM product)	
	Vil	P04 (selectable in SIN), P10 (selectable in UI0)	_	Vss – 0.3		0.3 Vcc	V	Hysteresis input	
<i>(</i> 1)) 1 1	Vils	P00 to P07, P10 to P16, PF0, PF1, PG1, PG2		Vss – 0.3		0.2 Vcc	V	Hysteresis input	
"L" level input voltage	Vila	P00 to P07, P10 to P16, PF0, PF1, PG1, PG2		Vss – 0.3		0.5 Vcc	V	Pin input at selecting of Automotive input level	
	Vilm	RST, MOD		Vss - 0.3		0.3 Vcc	V	CMOS input (Flash memory product)	
			_	Vss – 0.3		0.2 Vcc	V	Hysteresis input (MASK ROM product)	
"H" level output	Voh1	Output pins other than PF0, PF1	Іон = - 4.0 mA	Vcc - 0.5			V		
voltage	Vон2	PF0, PF1	$I_{OH} = -8.0 \text{ mA}$	Vcc-0.5			V		
"L" level output	Vol1	Output pins other than PF0 to PF7, RST*1	lo∟ = 4.0 mA	_		0.4	V		
voltage	Vol2	PF0, PF1	lo∟ = 12 mA			0.4	V		

 $(V_{CC} = AV_{CC} = 5.0 V \pm 10\%, AV_{SS} = V_{SS} = 0.0 V, T_{A} = -40 \text{ }^{\circ}C \text{ to } +105 \text{ }^{\circ}C)$

Demonstra		Pin name			Value			Remarks
Parameter	Symbol		Condition	Min	Тур	Max	Unit	
Input leakage current (Hi-Z out- put leakage current)	Lı	P00 to P07, P10 to P16, PF0, PF1, PG1, PG2	0.0 V < Vı < Vcc	- 5	_	+ 5	μА	When the pull-up prohibition setting
Pull-up resistor	Rpull	P00 to P07, P10 to P16, PG1, PG2	Vi = 0.0 V	25	50	100	kΩ	When the pull-up permission setting
Pull-down resistor	RMOD	MOD	VI = Vcc	50	100	200	kΩ	MASK ROM product only
Input capacity	CIN	Other than AVcc, AVss, C, Vcc and Vss	f = 1 MHz		5	15	pF	
	Icc	Vcc (External clock operation)	$V_{CC} = 5.5 V$ $F_{CH} = 20 MHz$ $F_{MP} = 10 MHz$ Main clock mode (divided by 2)		9.5	12.5	mA	Flash memory product (at other than Flash memory writing and erasing)
					30	35	mA	Flash memory product (at Flash memory writing and erasing)
Power					7.2	9.5	mA	MASK ROM product
supply current*2			F _{CH} = 32 MHz F _{MP} = 16 MHz Main clock mode (divided by 2)		15.2	20.0	mA	Flash memory product (at other than Flash memory writing and erasing)
					35.7	42.5	mA	Flash memory product (at Flash memory writing and erasing)
					11.6	15.2	mA	MASK ROM product

(Vcc = AVcc = 5.0 V \pm 10%, AVss = Vss = 0.0 V, TA = - 40 °C to + 105 °C)

Denersiste	O week of				Value)	11	
Parameter	Symbol		Condition	Min	Тур	Max	Unit	Remarks
	lccs		$V_{CC} = 5.5 V$ $F_{CH} = 20 MHz$ $F_{MP} = 10 MHz$ Main Sleep mode (divided by 2)		4.5	7.5	mA	
			$\label{eq:Fch} \begin{array}{l} F_{CH} = 32 \mbox{ MHz} \\ F_{MP} = 16 \mbox{ MHz} \\ \mbox{ Main Sleep mode} \\ \mbox{(divided by 2)} \end{array}$	_	7.2	12.0	mA	
Power supply	lcc∟	Vcc (External clock operation)	$\label{eq:Vcc} \begin{array}{l} V_{Cc} = 5.5 \ V \\ F_{CL} = 32 \ kHz \\ F_{MPL} = 16 \ kHz \\ Sub \ clock \ mode \\ (divided \ by \ 2) \ , \\ T_{A} = \ + \ 25 \ ^{\circ}C \end{array}$		45	100	μΑ	Dual clock product only
	Iccls		$\label{eq:Vcc} \begin{array}{l} V_{CC} = 5.5 \ V \\ F_{CL} = 32 \ kHz \\ F_{MPL} = 16 \ kHz \\ Sub \ sleep \ mode \\ (divided \ by \ 2) \ , \\ T_{A} = \ + \ 25 \ ^{\circ}C \end{array}$		10	81	μΑ	Dual clock product only
current*2	Ісст		$V_{CC} = 5.5 V$ $F_{CL} = 32 \text{ kHz}$ Watch mode Main stop mode $T_A = +25 \text{ °C}$		4.6	27	μΑ	Dual clock product only
			$V_{CC} = 5.5 V$ $F_{CH} = 4 MHz$	_	9.3	12.5	mA	Flash memory product
			F _{MP} = 10 MHz Main PLL mode (multiplied by 2.5)	_	7	9.5	mA	MASK ROM product
			Fсн = 6.4 MHz FмP = 16 MHz	_	14.9	20.0	mA	Flash memory product
			Main PLL mode (multiplied by 2.5)		11.2	15.2	mA	MASK ROM product
			$\label{eq:Vcc} \begin{array}{l} V_{Cc} = 5.5 \ V \\ F_{CL} = 32 \ kHz \\ F_{MPL} = 128 \ kHz \\ Sub \ PLL \ mode \\ (multiplied \ by \ 4) \ , \\ T_A = \ + \ 25 \ ^\circ C \end{array}$		160	400	μΑ	Dual clock product only (Continued)

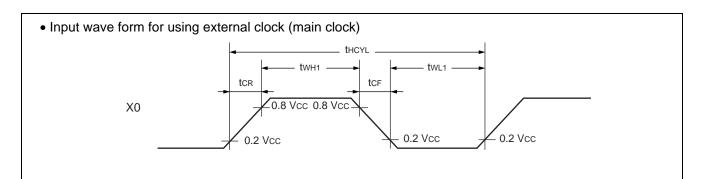
(Vcc = AVcc = 5.0 V \pm 10%, AVss = Vss = 0.0 V, TA = - 40 °C to + 105 °C)

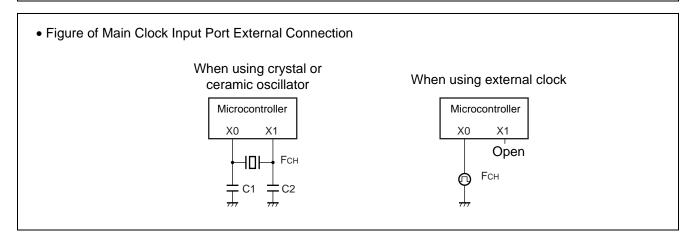
(Continued)

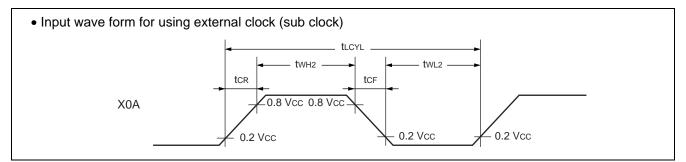
(Continued)	$(V_{cc} = AV_{cc} = 5.0 \text{ V} \pm 10\%, \text{ AV}_{ss} = V_{ss} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } +105 ^{\circ}\text{C})$										
Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks			
Falametei	Symbol		Condition	Min	Тур	Мах	Onit				
Power supply current*2	Істѕ	Vcc (External clock operation)	$V_{CC} = 5.5 V$ $F_{CH} = 10 MHz$ Timebase timer mode $T_A = + 25 \ ^{\circ}C$		0.15	1.1	mA				
	Іссн	operation	$V_{CC} = 5.5 V$ Sub stop mode $T_A = +25 \ ^{\circ}C$		3.5	20.0	μA	Main stop mode for single clock product			
	IA		$V_{CC} = 5.5 V$ $F_{CH} = 16 MHz$ When A/D conver- sion is in operation		2.4	4.7	mA				
	Іан	AVcc	$V_{CC} = 5.5 V$ $F_{CH} = 16 MHz$ When A/D conver- sion is stopped $T_A = +25 \ ^{\circ}C$		1	5	μΑ				

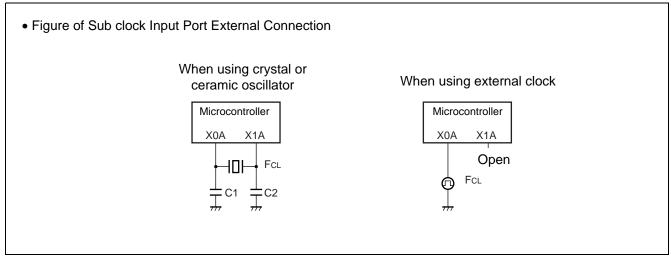
*1: Product without clock supervisor only

- *2: The power supply current is specified by the external clock. When the low-voltage detection and clock supervisor options are selected, the consumption current values of both the low-voltage detection circuit (ILVD) and the built-in CR oscillator (Icsv) must also be added to the power supply current value.
 - Refer to "4. AC Characteristics: (1) Clock Timing" for FCH and FCL.

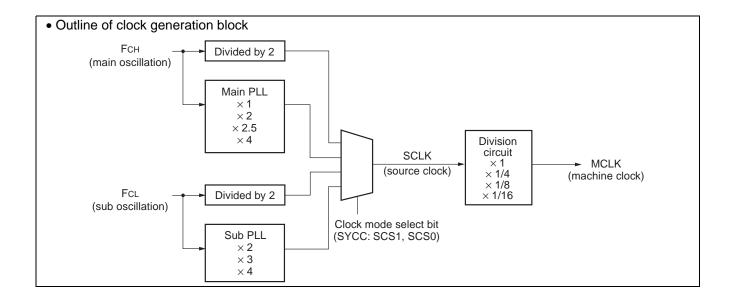

• Refer to "4. AC Characteristics: (2) Source Clock / Machine Clock" for FMP and FMPL.


4. AC Characteristics

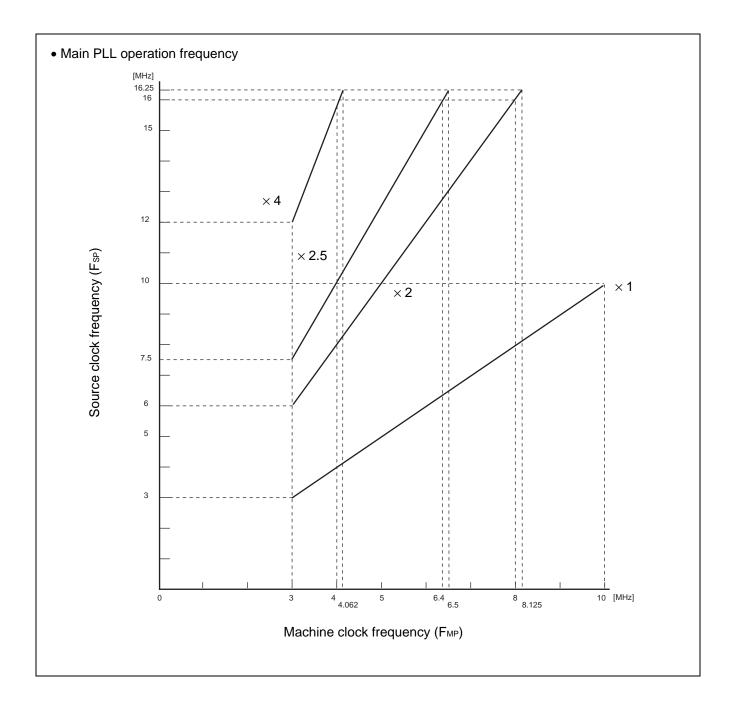

(1) Clock Timing


Parameter	Sym-	Din manua	Condi-	Value			Unit	Remarks	
Parameter	bol	Pin name	tion	Min	Тур	Max	Unit	Remarks	
				1.00		16.25	MHz	When using main oscillation circuit	
				1.00	_	32.50	MHz	When using external clock	
	Fсн	X0, X1		3.00		10.00	MHz	Main PLL multiplied by 1	
				3.00		8.13	MHz	Main PLL multiplied by 2	
Clock frequency				3.00	_	6.50	MHz	Main PLL multiplied by 2.5	
				3.00	_	4.06	MHz	Main PLL multiplied by 4	
	Fc∟	X0A, X1A			32.768		kHz	When using sub oscillation circuit	
					32.768		kHz	When using sub PLL $V_{CC} = 2.3 V$ to 3.6 V	
	t HCYL	X0, X1		61.5		1000	ns	When using main oscillation circuit	
Clock cycle time				30.8	_	1000	ns	When using external clock	
	t LCYL	X0A, X1A			30.5		μs	When using sub oscillation circuit	
Input clock pulse width	twнı tw∟ı	X0		61.5			ns	When using external clock	
	t wн2 t w∟2	X0A			15.2		μs	duty ratio is about 30% to 70%.	
Input clock rise/fall time	tcr tcf	X0, X0A				5	ns	When using external clock	

$(V_{CC} = 2.42 \text{ V to } 5.0 \text{ V}, \text{AV}_{SS} = \text{V}_{SS} = 0.0 \text{ V}, \text{T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$


FUĴITSU

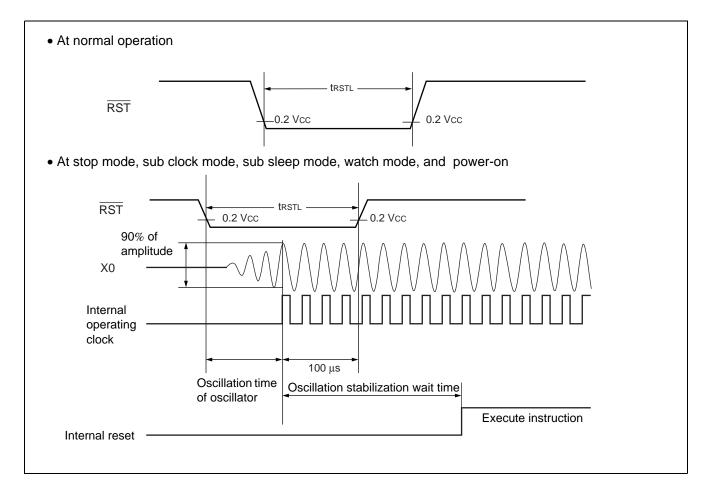
(2) Source Clock / Machine Clock


()	$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ AV}_{SS} = \text{V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } +105 ^{\circ}\text{C})$										
Parameter	Symbol	Pin		Value		Unit	Remarks				
Farameter	Symbol	name	Min	Тур	Max	Unit	Remarks				
Source clock cycle time*1	tsclk		61.5	_	2000	ns	When using main clock Min : $F_{CH} = 8.125$ MHz, PLL multiplied by 2 Max : $F_{CH} = 1$ MHz, divided by 2				
(Clock before setting division)	ISULK		7.6	_	61.0	μs	When using sub clock Min : $F_{CL} = 32$ kHz, PLL multiplied by 4 Max : $F_{CL} = 32$ kHz, divided by 2				
Source clock	Fsp		0.50	_	16.25	MHz	When using main clock				
frequency	FSPL		16.384	_	131.072	kHz	When using sub clock				
Machine clock cycle time* ² (Minimum	тмськ		61.5	_	32000	ns	When using main clock Min : $F_{SP} = 16.25$ MHz, no division Max : $F_{SP} = 0.5$ MHz, divided by 16				
instruction execution time)	UNCER		7.6	_	976.5	μs	When using sub clock Min : F _{SPL} = 131 kHz, no division Max : F _{SPL} = 16 kHz, divided by 16				
Machine clock	Fмp		0.031		16.250	MHz	When using main clock				
frequency	FMPL		1.024		131.072	kHz	When using sub clock				

*1 : Clock before setting division due to machine clock division ratio selection bit (SYCC : DIV1 and DIV0) . This source clock is divided by the machine clock division ratio selection bit (SYCC : DIV1 and DIV0) , and it becomes the machine clock. Further, the source clock can be selected as follows.

- Main clock divided by 2
- PLL multiplication of main clock (select from 1, 2, 2.5, 4 multiplication)
- Sub clock divided by 2
- PLL multiplication of sub clock (select from 2, 3, 4 multiplication)
- *2 : Operation clock of the microcontroller. Machine clock can be selected as follows.
 - Source clock (no division)
 - Source clock divided by 4
 - Source clock divided by 8
 - Source clock divided by 16

• Operating voltage - Operating frequency (When $T_A = -40 \text{ °C to } + 85 \text{ °C}$) • MB95F133MBS/F133NBS/F133JBS/F134MBS/F134NBS/F134JBS/F136MBS/F136NBS/F136JBS/ MB95F133MBW/F133NBW/F133JBW/F134MBW/F134NBW/F134JBW/F136MBW/F136NBW/ MB95F136JBW Sub PLL, sub clock mode and Main clock mode and main PLL mode watch mode operation guarantee range operation guarantee range 5.5 5.5 Operating voltage (V) Operating voltage (V) 3.5 2.42 2.42 16.25 MHz 0.5 MHz 3 MHz 10 MHz 16.384 kHz 32 kHz 131.072 kHz PLL operation guarantee range PLL operation guarantee range Main clock operation guarantee range Source clock frequency (FSPL) Source clock frequency (Fsp) • Operating voltage - Operating frequency (When $T_A = +5 \degree C$ to $+35 \degree C$) • MB95FV100D-103 Sub PLL, sub clock mode and Main clock mode and main PLL mode watch mode operation guarantee range operation guarantee range 5.5 5.5 22 Operating voltage (V) Operating voltage (V) 3.5 2.7 2.7 0.5 MHz 3 MHz 10 MHz 16.25 MHz 16.384 kHz 32 kHz 131.072 kHz PLL operation guarantee range PLL operation guarantee range Main clock operation guarantee range Source clock frequency (FSPL) Source clock frequency (Fsp)

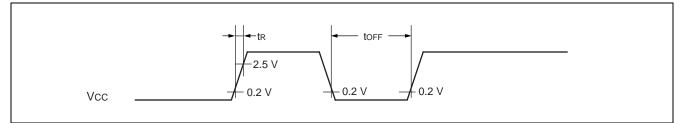


(3) External Reset

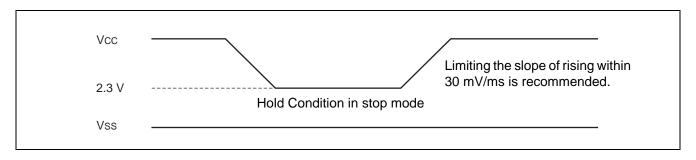
	$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ AV}_{SS} = \text{V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } +105 ^{\circ}\text{C})$										
Parameter	Symbol	Pin	Value			Remarks					
Farameter	nameter Symbol name		Min	Max	Unit	Rellidik5					
	IDETI RSI		2 tmclk*1 —		ns	At normal operation					
RST "L" level pulse width			Oscillation time of oscillator*2 + 100	_	μs	At stop mode, sub clock mode, sub sleep mode & watch mode					
			100		μs	At timebase timer mode					

*1 : Refer to " (2) Source Clock / Machine Clock" for tMCLK.

*2 : Oscillation start time of oscillator is the time that the amplitude reaches 90 %. In the crystal oscillator, the oscillation time is between several ms and tens of ms. In ceramic oscillators, the oscillation time is between hundreds of μs and several ms. In the external clock, the oscillation time is 0 ms.

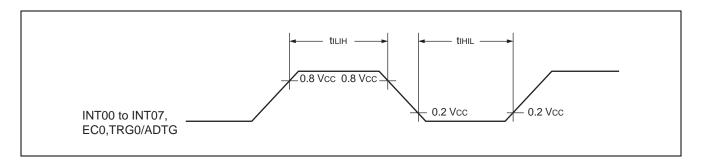


(4) Power-on Reset


 $(AV_{SS} = V_{SS} = 0.0 \text{ V}, T_A = -40 \text{ }^{\circ}\text{C to} + 105 \text{ }^{\circ}\text{C})$

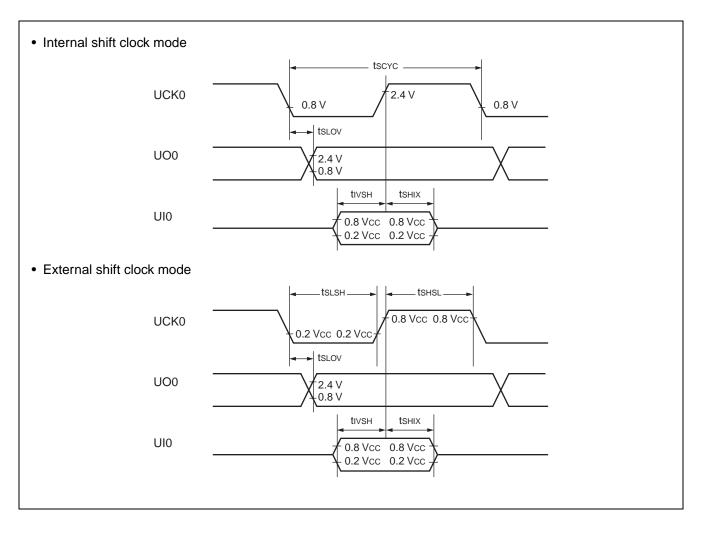
Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks	
Faidilletei	Symbol	name	Condition	Min	Max	Unit		
Power supply rising time	tR		_	—	50	ms		
Power supply cutoff time	toff	Vcc	_	1		ms	Waiting time until power-on	

Note: Complete the power-on process within the selected oscillation stabilization wait time.


Note: Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, set the slope of rising within 30 mV/ms as shown below.

(5) Peripheral Input Timing

		$(Vcc = 5.0 V \pm 10\%, AVss = Vss)$	= 0.0 V, T _A =	– 40 °C to +	- 105 °C)
Parameter	Symbol	Pin name	Va	Unit	
Falameter	Symbol	Fininanie	Min	Мах	Onic
Peripheral input "H" pulse	tılıн	INT00 to INT07,	2 t мськ*	_	ns
Peripheral input "L" pulse	tıнıL	EC0, TRG0/ADTG	2 t MCLK*		ns

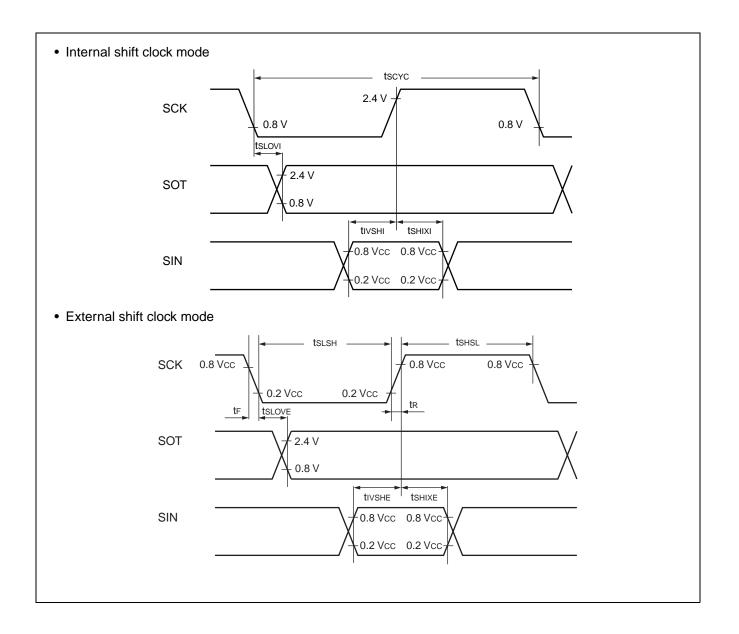

*: Refer to " (2) Source Clock / Machine Clock" for tmclk.

(6) UART/SIO Serial I/O Timing

	5	(Vcc = 5.0)	$0 V \pm 10\%$, $AV_{SS} = V_{SS} = 0.0 V$, $T_A = -40 \ ^{\circ}C to + 105 \ ^{\circ}C$)					
Parameter	Symbol	Pin name	Condition	Va	Unit			
Farameter	Symbol	Fin name	Condition	Min	Max	Omt		
Serial clock cycle time	tscyc	UCK0		4 t MCLK*	—	ns		
$UCK \downarrow \to UO$ time	t slov	UCK0, UO0	Internal clock operation output pin :	- 190	+190	ns		
Valid UI \rightarrow UCK \uparrow	t i∨sн	UCK0, UI0	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}.$	2 t MCLK*	—	ns		
UCK $\uparrow \rightarrow $ valid UI hold time	tsнix	UCK0, UI0		2 t MCLK*	—	ns		
Serial clock "H" pulse width	t s∺s∟	UCK0		4 t MCLK*	—	ns		
Serial clock "L" pulse width	t slsh	UCK0	External clock	4 t MCLK*	—	ns		
$UCK \downarrow \to UO$ time	t slov	UCK0, UO0	operation output pin :		190	ns		
Valid UI \rightarrow UCK \uparrow	t i∨sн	UCK0, UI0	C∟ = 80 pF + 1 TTL.	2 t MCLK*	—	ns		
UCK $\uparrow \rightarrow$ valid UI hold time	tsнix	UCK0, UI0		2 tmclk*		ns		

*: Refer to " (2) Source Clock / Machine Clock" for tmcLK.

(7) LIN-UART Timing

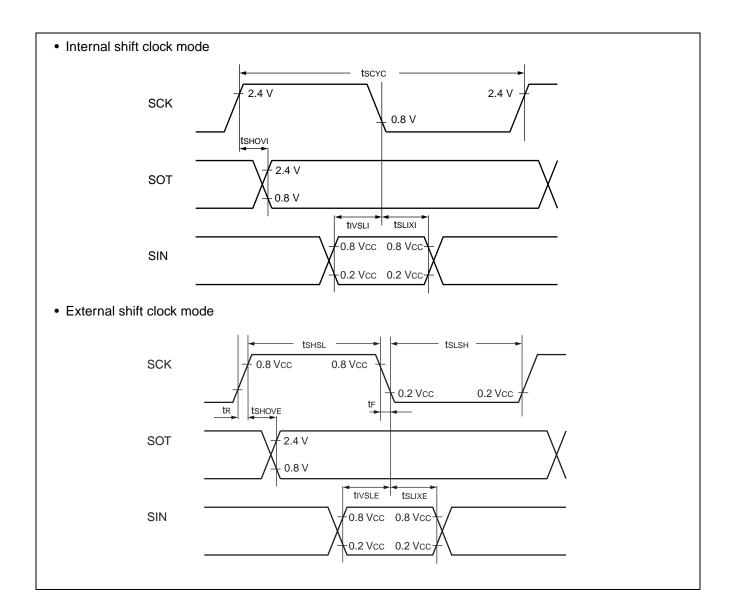

Sampling at the rising edge of sampling $clock^{*1}$ and prohibited serial $clock delay^{*2}$ (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 0)

		(Vcc	= 5.0 V ± 10%, AVss =	$Vss = 0.0 V, T_A$	= -40 °C to +	105 °C)	
Parameter	Sym-	Pin name	Condition	Va	Unit		
Faidilielei	bol		Condition	Min	Max		
Serial clock cycle time	t scyc	SCK		5 t мськ* ³	—	ns	
$SCK \downarrow \to SOT$ delay time	t slovi	SCK, SOT	Internal clock operation output pin :	- 95	+95	ns	
Valid SIN \rightarrow SCK \uparrow	t ivshi	SCK, SIN	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}.$	t мськ*3 + 190		ns	
$SCK \uparrow \to valid SIN hold time$	tshixi	SCK, SIN		0		ns	
Serial clock "L" pulse width	t slsh	SCK		$3 t$ MCLK $^{*3} - t$ R	_	ns	
Serial clock "H" pulse width	t shsl	SCK		t мськ*3 + 95		ns	
$SCK \downarrow \to SOT$ delay time	t slove	SCK, SOT	External clock		2 tмськ*3 + 95	ns	
Valid SIN \rightarrow SCK \uparrow	tivshe	SCK, SIN	operation output pin:	190		ns	
$SCK \uparrow \to valid SIN hold time$	t shixe	SCK, SIN	C∟ = 80 pF + 1 TTL.	t мськ*3 + 95		ns	
SCK fall time	t⊧	SCK			10	ns	
SCK rise time	tR	SCK			10	ns	

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.

*3 : Refer to " (2) Source Clock / Machine Clock" for tmclk.


Sampling at the falling edge of sampling $clock^{*1}$ and prohibited serial $clock delay^{*2}$ (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0)

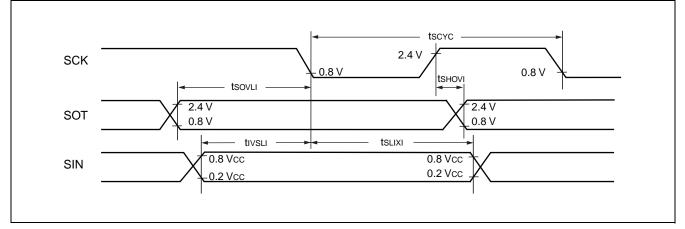
$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ AV}_{SS} = \text{V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } +105 ^{\circ}\text{C})$											
Parameter	Sym-	Pin name	Condition	Va	Unit						
Falameter	bol	Finnanie	Condition	Min	Max	Onic					
Serial clock cycle time	t scyc	SCK		5 t MCLK* ³		ns					
$SCK \uparrow o SOT$ delay time	t shovi	SCK, SOT	Internal clock operation output pin :	- 95	+95	ns					
$Valid\:SIN\toSCK\downarrow$	tivsli	SCK, SIN	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}.$	t мськ*3 + 190		ns					
$SCK \mathop{\downarrow} \rightarrow validSINholdtime$	t sLIXI	SCK, SIN		0		ns					
Serial clock "H" pulse width	t s∺s∟	SCK		$3 t$ MCLK $^{*3} - t$ R		ns					
Serial clock "L" pulse width	t s∟sн	SCK		t мськ* ³ + 95		ns					
$SCK \uparrow \to SOT$ delay time	t shove	SCK, SOT	External clock	_	2 t мськ* ³ + 95	ns					
$Valid\:SIN\toSCK\downarrow$	tivsle	SCK, SIN	operation output pin :	190		ns					
$SCK \mathop{\downarrow} \rightarrow validSINholdtime$	t SLIXE	SCK, SIN	C∟ = 80 pF + 1 TTL.	tмськ*3 + 95		ns					
SCK fall time	t⊧	SCK			10	ns					
SCK rise time	tR	SCK			10	ns					

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.

*3 : Refer to "(2) Source Clock / Machine Clock" for tmclk.

Sampling at the rising edge of sampling $clock^{*1}$ and enabled serial $clock delay^{*2}$ (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)

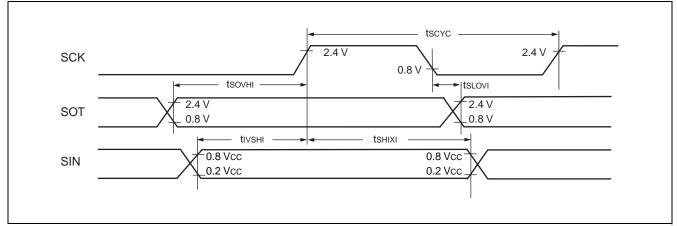

Parameter	Sym-	Pin name	Condition	Valu	Unit		
Farameter	bol	Fin name	Condition	Min	Max	Onit	
Serial clock cycle time	tscyc	SCK		5 t MCLK* ³		ns	
$SCK \uparrow \to SOT$ delay time	t shovi	SCK, SOT		- 95	+95	ns	
Valid SIN $ ightarrow$ SCK \downarrow	tivsli	SCK, SIN	Internal clock operation output pin :	tмськ*3 + 190		ns	
SCK $\downarrow \rightarrow$ valid SIN hold time	tslixi	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}.$	0	_	ns	
$SOT \to SCK \downarrow delay time$	t sovli	SCK, SOT			4 t MCLK* ³	ns	

 $(V_{cc} = 5.0 \text{ V} \pm 10\%, \text{ AV}_{ss} = \text{V}_{ss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.

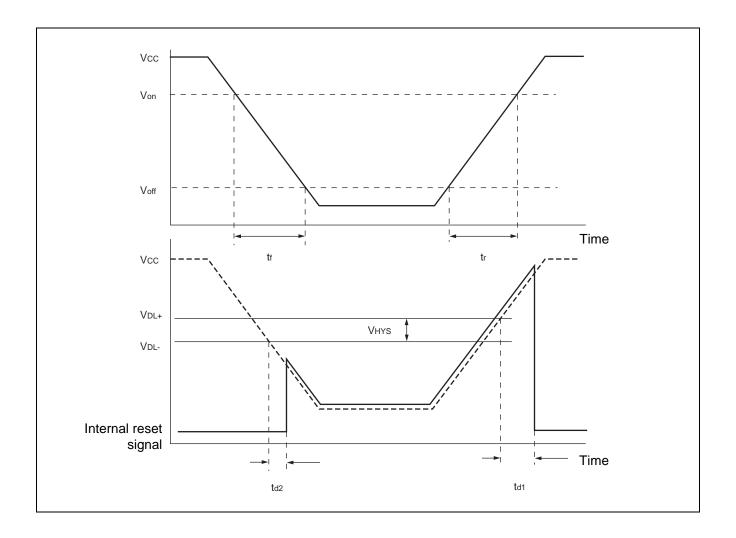
*3 : Refer to " (2) Source Clock / Machine Clock" for tmclk.


Sampling at the falling edge of sampling $clock^{*1}$ and enabled serial $clock delay^{*2}$ (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)

		(Vcc	= 5.0 V± 10%, AVss = \	/ss = 0.0 V, TA =	= − 40 °C to	+ 105 °C)	
Parameter	Sym-	Pin name	Condition	Valu	110:4		
Farameter	bol	Fin hame	Condition	Min	Max	Unit	
Serial clock cycle time	t scyc	SCK		5 t MCLK* ³		ns	
$SCK \downarrow \to SOT \text{ delay time}$	t slovi	SCK, SOT	Internal clock	- 95	+95	ns	
Valid SIN \rightarrow SCK \uparrow	t ivshi	SCK, SIN	operating output pin :	tмськ*3 + 190		ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	t shixi	SCK, SIN	C∟ = 80 pF + 1 TTL.	0		ns	
$SOT \to SCK \uparrow delay time$	t sovнi	SCK, SOT			4 t мськ* ³	ns	

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.


*3: Refer to "(2) Source Clock / Machine Clock" for tmclk.

(8) Low voltage Detection

(AVss = Vss = 0.0 V, $T_A = -40 \ ^{\circ}C$ to $+105 \ ^{\circ}C$)

Parameter	Sym-		Value		Unit	Remarks
Falameter	bol	Min	Тур	Max	Unit	Remarks
Release voltage	V_{DL^+}	2.52	2.70	2.88	V	At power-supply rise
Detection voltage	Vdl-	2.42	2.60	2.78	V	At power-supply fall
Hysteresis width	VHYS	70	100		mV	
Power-supply start voltage	Voff			2.3	V	
Power-supply end voltage	Von	4.9			V	
Power-supply voltage		0.3			μs	Slope of power supply that reset re- lease signal generates
change time (at power supply rise)	tr		3000		μs	Slope of power supply that reset re- lease signal generates within rating (V _{DL+})
Power-supply voltage		300			μs	Slope of power supply that reset detection signal generates
change time (at power supply fall)	tr	_	300		μs	Slope of power supply that reset detection signal generates within rating (V_{DL-})
Reset release delay time	t d1		—	400	μs	
Reset detection delay time	t _{d2}			30	μs	
Consumption current	Ilvd		38	50	μA	Consumption current of low voltage detection circuit only

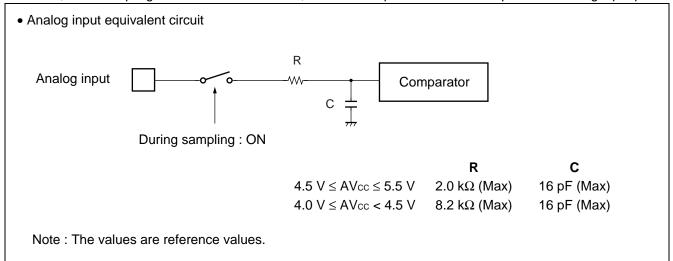
(9) Clock Supervisor Clock

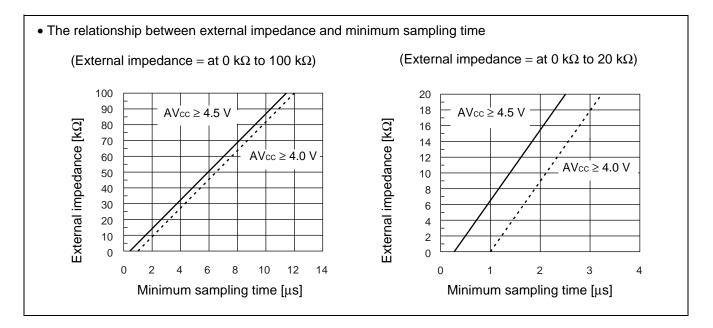
		(Vcc =	$AVcc = 5 V \pm$	± 10%, AVss	= Vss = 0	0.0 V, $T_A = -40 ^{\circ}C$ to $+105 ^{\circ}C$)	
Parameter	Sym-		Value		Unit	Remarks	
	bol	Min	Тур	Max	Onit		
Oscillation frequency	fouт	50	100	200	kHz		
Oscillation start time	t _{wk}		_	10	μs		
Current consumption	lcsv		20	36	μΑ	Current consumption of built-in CR oscillator at 100 kHz oscillation	

$$V_{cc} = AV_{cc} = 5 V \pm 10\%$$
, $AV_{ss} = V_{ss} = 0.0 V$, $T_{A} = -40 \text{ °C to } +105 \text{ °C}$)

5. A/D Converter

(1) A/D Converter Electrical Characteristics


 $(AV_{CC} = V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ } T_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$

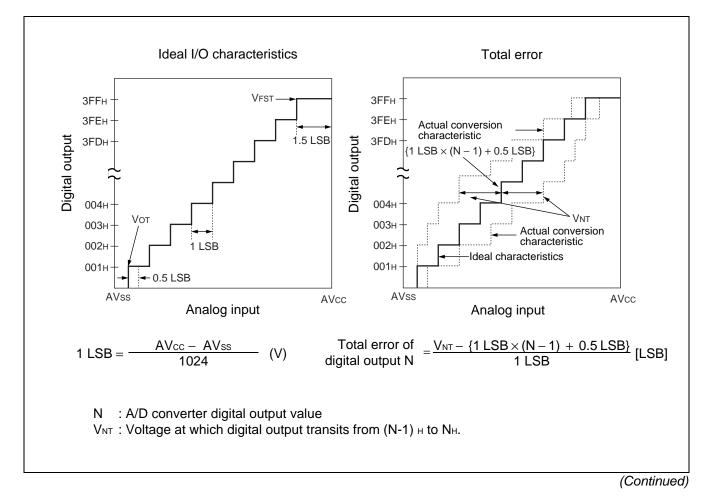

Baramatar	Symbol		Value		Unit	Bomorko
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Resolution				10	bit	
Total error		- 3.0		+ 3.0	LSB	
Linearity error		- 2.5		+ 2.5	LSB	
Differential linear error		- 1.9		+ 1.9	LSB	
Zero transition voltage	Vот	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	
Full-scale transition voltage	VFST	AVcc – 4.5 LSB	AVcc – 1.5 LSB	AVcc + 0.5 LSB	V	
Compare time		0.9		16500	μs	$4.5 \text{ V} \le \text{AV}_{\text{CC}} \le 5.5 \text{ V}$
		1.8		16500	μs	$4.0 \text{ V} \le \text{AV}_{\text{CC}} < 4.5 \text{ V}$
Sampling time		0.6		8	μs	$4.5 V \le AVcc \le 5.5 V$, At external impedance < at 5.4 k Ω
Sampling time		1.2		∞	μs	$4.0 V \le AVcc \le 4.5 V$, At external impedance < at 2.4 k Ω
Analog input current	lain	- 0.3		+ 0.3	μA	
Analog input voltage	VAIN	AVss		AVcc	V	

(2) Notes on Using A/D Converter

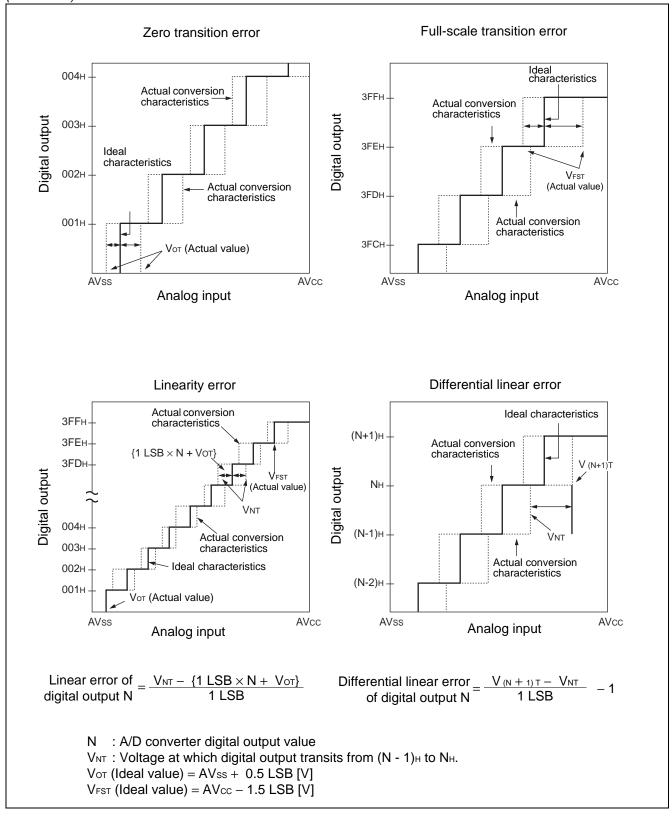
• External impedance of analog input and its sampling time

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also, if the sampling time cannot be sufficient, connect a capacitor of about 0.1 µF to the analog input pin.

• Errors


As |AVcc - AVss| becomes smaller, values of relative errors grow larger.

(3) Definition of A/D Converter Terms


- Resolution The level of analog variation that can be distinguished by the A/D converter. When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$.
- Linearity error (unit : LSB)
 The deviation between the value along a straight line connecting the zero transition point
 ("00 0000 0000" ← → "00 0000 0001") of a device and the full-scale transition point
 ("11 1111 1111" ← → "11 1111 1110") compared with the actual conversion values obtained.
- Differential linear error (Unit : LSB) Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

• Total error (unit: LSB)

Difference between actual and theoretical values, caused by a zero transition error, full-scale transition error, linearity error, quantum error, and noise.

(Continued)

Parameter	Value			Unit	Remarks	
Faiailletei	Min	Тур	Max	Unit	Remarks	
Chip erase time	—	1.0* ¹	15.0* ²	S	Excludes 00H programming prior erasure.	
Byte programming time	_	32	3600	μs	Excludes system-level overhead.	
Erase/program cycle	10000			cycle		
Power supply voltage at erase/ program	4.5	_	5.5	V		
Flash memory data retention time	20* ³			year	Average T _A = +85 °C	

6. Flash Memory Program/Erase Characteristics

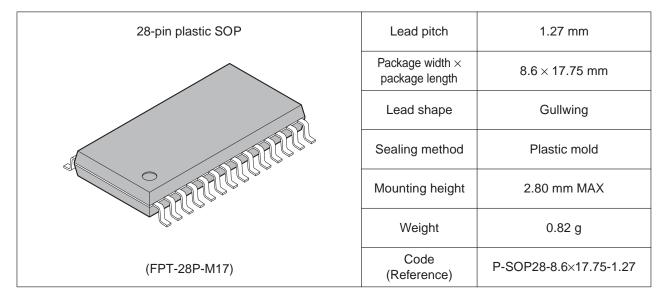
*1 : $T_{\text{A}}=$ + 25 °C, Vcc = 5.0 V, 10000 cycles

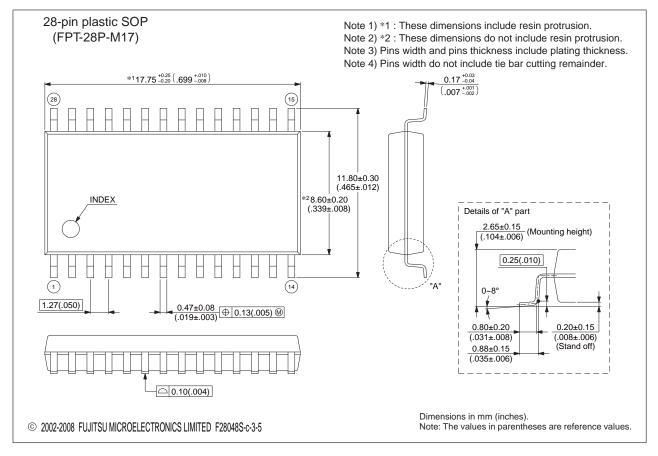
*2 : $T_{\text{A}}=$ + 85 °C, Vcc = 4.5 V, 10000 cycles

*3 : This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at +85 °C) .

■ MASK OPTION

No.	Part number	MB95136MB	MB95F133MBS MB95F133NBS MB95F133JBS MB95F134MBS MB95F134NBS MB95F134JBS MB95F136MBS MB95F136NBS MB95F136JBS	MB95F133MBW MB95F133NBW MB95F133JBW MB95F134MBW MB95F134NBW MB95F134JBW MB95F136MBW MB95F136NBW MB95F136JBW	MB95FV100D-103
	Specifying procedure	Specify when ordering MASK	Setting disabled	Setting disabled	Setting disabled
1	Clock mode select • Single-system clock mode • Dual-system clock mode	selectable	Single-system clock mode	Dual-system clock mode	Changing by the switch on MCU board
2	 Low voltage detection reset* With low voltage detection reset Without low voltage detection reset 	Specify when ordering MASK	Specified by part number	Specified by part number	Change by the switch on MCU board
3	Clock supervisor* • With clock supervisor • Without clock supervisor	Specify when ordering MASK	Specified by part number	Specified by part number	Change by the switch on MCU board
4	Reset output* • With reset output • Without reset output	Specify when ordering MASK	Specified by part number	Specified by part number	 MCU board switch set as following ; With supervisor : Without reset output Without supervisor : Without reset output
5	Oscillation stabilization wait time	oscillation		Fixed to oscillation stabilization wait time of (2 ¹⁴ – 2) /Гсн	Fixed to oscillation stabilization wait time of (2 ¹⁴ – 2) /Fсн

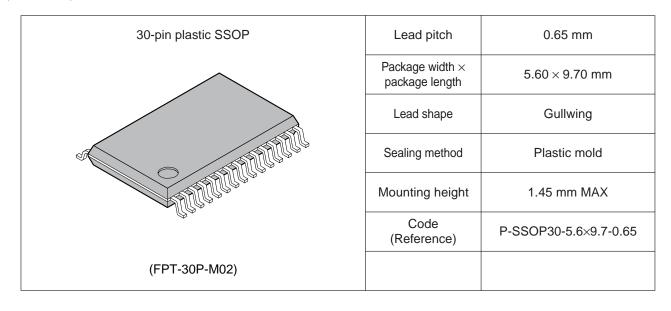

*: Refer to table below about clock mode select, low voltage detection reset, clock supervisor select and reset output.

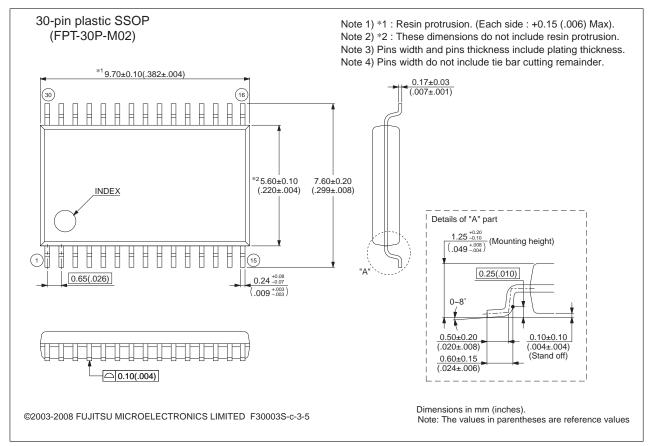

Part number	Clock mode select	Low-voltage detection reset	Clock supervisor	Reset output
	Single - system	No	No	Yes
		Yes	No	Yes
MB95136MB		Yes	Yes	No
	Dual - system	No	No	Yes
		Yes	No	Yes
		Yes	Yes	No
MB95F133MBS		No	No	Yes
MB95F133NBS		Yes	No	Yes
MB95F133JBS		Yes	Yes	No
MB95F134MBS		No	No	Yes
MB95F134NBS	Single - system	Yes	No	Yes
MB95F134JBS		Yes	Yes	No
MB95F136MBS		No	No	Yes
MB95F136NBS		Yes	No	Yes
MB95F136JBS	-	Yes	Yes	No
MB95F133MBW		No	No	Yes
MB95F133NBW		Yes	No	Yes
MB95F133JBW		Yes	Yes	No
MB95F134MBW	Dual - system	No	No	Yes
MB95F134NBW		Yes	No	Yes
MB95F134JBW		Yes	Yes	No
MB95F136MBW		No	No	Yes
MB95F136NBW		Yes	No	Yes
MB95F136JBW		Yes	Yes	No
	Single - system	No	No	Yes
		Yes	No	Yes
		Yes	Yes	No
MB95FV100D-103	Dual - system	No	No	Yes
		Yes	No	Yes
		Yes	Yes	No

■ ORDERING INFORMATION

Part number	Package
MB95136MBPF MB95F133MBSPF MB95F133JBSPF MB95F133JBSPF MB95F134MBSPF MB95F134NBSPF MB95F136MBSPF MB95F136NBSPF MB95F136JBSPF MB95F133MBWPF MB95F133JBWPF MB95F133JBWPF MB95F134MBWPF MB95F134MBWPF MB95F136MBWPF MB95F136MBWPF MB95F136JBWPF	28-pin plastic SOP (FPT-28P-M17)
MB95136MBPFV MB95F133MBSPFV MB95F133JBSPFV MB95F133JBSPFV MB95F134MBSPFV MB95F134NBSPFV MB95F134JBSPFV MB95F136MBSPFV MB95F136NBSPFV MB95F133JBWPFV MB95F133JBWPFV MB95F133JBWPFV MB95F134MBWPFV MB95F134MBWPFV MB95F136MBWPFV MB95F136MBWPFV MB95F136JBWPFV	30-pin plastic SSOP (FPT-30P-M02)
MB2146-303A-E (MB95FV100D-103PBT)	MCU board (224-pin plastic PFBGA (BGA-224P-M08)

PACKAGE DIMENSION

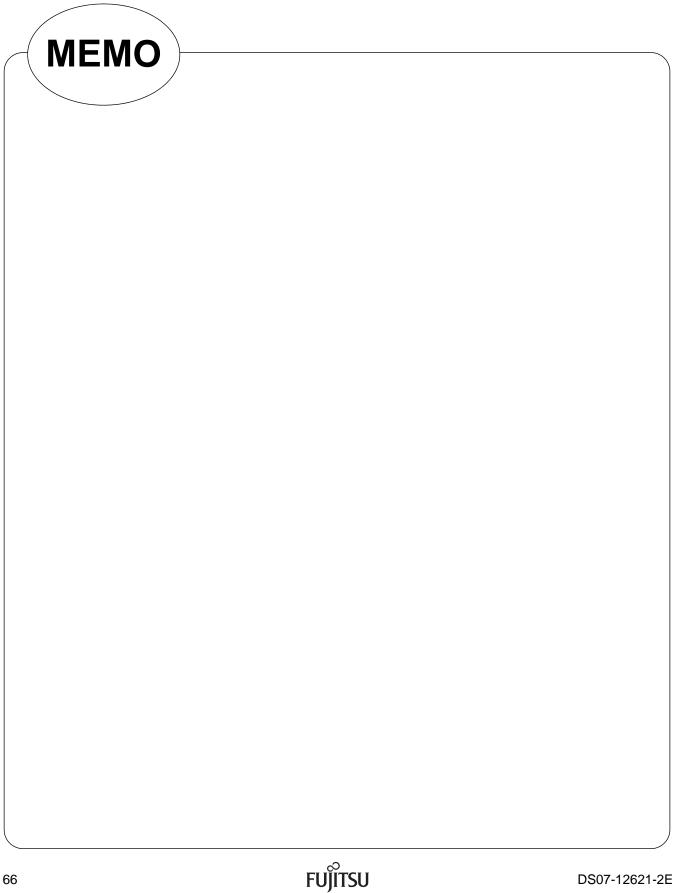


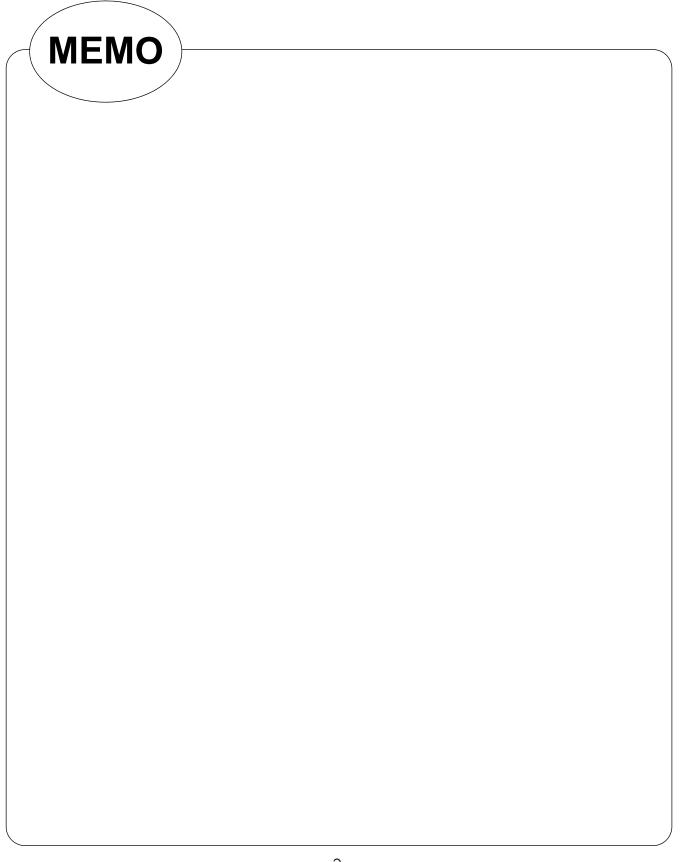


Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

(Continued)

(Continued)




Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
2	■ FEATURES	Changed the "I/O port: The number of maximum ports". Single clock product: 20 ports \rightarrow Single clock product: 19 ports Dual clock product: 18 ports \rightarrow Dual clock product: 17 ports
		Changed the "I/O port: Configuration". Single clock product: 20 ports \rightarrow Single clock product: 19 ports Dual clock product: 18 ports \rightarrow Dual clock product: 17 ports
4	■ PRODUCT LINEUP	Changed the "General-purpose I/O port". Single clock product: 20 ports \rightarrow Single clock product: 19 ports Dual clock product: 18 ports \rightarrow Dual clock product: 17 ports
5		Changed the Note. (MB2146-303A \rightarrow MB2146-303A-E)
24	■ I/O MAP	Changed the Address 0073H, 0074H to (Disabled).
31	 ELECTRICAL CHARACTERISTICS Recommended Operating Conditions 	Changed the maximum value of "Operating temperature". $(+85 \rightarrow +105)$
62	ORDERING INFORMATION	Changed the Part number. (MB2146-303A \rightarrow MB2146-303A-E)

The vertical lines marked in the left side of the page show the changes.

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3387 http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel : +65-6281-0770 Fax : +65-6281-0220 http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel : +86-21-6146-3688 Fax : +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel : +852-2377-0226 Fax : +852-2376-3269 http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.