
TinyML with Wio Terminal

Course Description

Learn how to train and deploy deep neural network models on Cortex-M core microcontroller

devices from Seeed studio. Course content features seven detailed step-by-step projects, that

will allow students to grasp basic ideas about modern Machine Learning and how it can be used

in low-power and footprint microcontrollers to create intelligent and connected systems. After

completing the course, the students will be able to design and implement their own Machine

Learning enabled projects on Cortex-M core microcontrollers, starting from defining a problem

to gathering data and training the neural network model and finally deploying it to the device to

display inference results or control other hardware appliances based on inference data.

Course content is based on using Edge Impulse platform, that simplifies data collection/

model training/ conversion pipeline.

Additionally, two of the course projects use Python with tf.keras to demonstrate the usage of

industry standard open-source software.

The specific content includes:

Machine Learning, TinyML overview

Recognizing gestures with light sensor

Classifying hand gestures with accelerometer

Audio scene recognition with microphone

People counting with Ultrasonic sensor

Intelligent meteostation with DHT11/pressure sensor

Student project

Course Overview
Course name：TinyML with Wio Terminal

Course introduction

Learn how to train and deploy deep neural network models on Cortex-M core microcontroller

devices from Seeed studio. Course content features seven detailed step-by-step projects, that

will allow students to grasp basic ideas about modern Machine Learning and how it can be used in

low-power and footprint microcontrollers to create intelligent and connected systems.

Course category

Minimum age of students: 12+

Planned number of classes: 16

Duration of a single lesson: 45 mins

Curriculum requirements: Basic knowledge of Arduino IDE and C++

Media required for the course: (final delivered document content)

• Teaching content PDF: Yes

• Teaching content PPT slides: No

• Source code: Yes

• Publish on M2L: Possibly

• Other: None

Basic Course Information

Course Product Requirements

Hardware requirements (boards, modules):

Software requirements (possible platform or language): Arduino IDE, Edge Impulse

• Grove - Ultrasonic Sensor x1

• Grove - Temp&Humi&Barometer
Sensor (BME280)

• Grove cables x4

• Wio Terminal x1

Lesson 01 Introduction to TinyML with Wio Terminal

Lesson 02 Project I: Recognizing gestures with light sensor: theory and data collection

Lesson 03 Project I: Recognizing gestures with light sensor: model training and deployment

Lesson 04 Project II: Classifying hand gestures with accelerometer: theory and data collection

Lesson 05 Project II: Classifying hand gestures with accelerometer: model training and

deployment

Lesson 06 Project III: Audio scene recognition with microphone: theory and data collection

Lesson 07 Project III: Audio scene recognition with microphone: model training and

deployment

Lesson 08 Project IV: People counting with Ultrasonic sensor: theory and data collection

Lesson 09 Project IV: People counting with Ultrasonic sensor: model training and deployment

Lesson 10 Project V: Intelligent meteostation with BME280: theory and data collection

Lesson 11 Project V: Intelligent meteostation with BME280: model training and deployment

(tf.keras)

Lesson 12 Student project

 Curriculum outline

1Lesson 01 introduction to tinyml with wio terminal

Lesson 01

Introduction to TinyML with Wio
Terminal

2 3TinyML with Wio Terminal Lesson 01 introduction to tinyml with wio terminal

Machine Learning and Deep Learning

Machine learning is a branch of artificial

intelligence (AI) focused on building applications

that learn from data and improve their accuracy

over time without being programmed to do

so. The foundation of machine learning is

that rather than have to be taught to do

everything step by step, machines, if they

can be programmed to think like us, can

learn to work by observing, classifying and

learning from its mistakes, just like we do. A

Deep Learning is a subset of machine learning,

that utilizes Deep (hence the name) artificial

neural networks for learning from large amounts of

data.

An artificial neural network is an attempt to simulate the

network of neurons that make up a human brain. ANNs are created by programming regular

computers to behave as though they are interconnected brain cells.

In order for ANNs to learn, they need to have a tremendous amount of information thrown at

them called a training set. When you are trying to teach an ANN how to differentiate a cat from

dog, the training set would provide thousands of images tagged as a dog so the network would

begin to learn. Once it has been trained with the significant amount of data, it will try to classify

future data based on what it thinks it’s seeing (or hearing, depending on the data set) throughout

the different units. During the training period, the machine’s output is compared to the human-

provided description of what should be observed. If they are the same, the machine is validated.

If it’s incorrect, it uses back propagation to adjust its learning—going back through the layers to

tweak the mathematical equation. Known as deep learning, this is what makes a network intelligent.

Normally Deep Neural Networks require rather powerful compute resources to be trained

and deployed. However recently, a branch of ML on the Edge or Embedded Machine Learning

called TinyMl have appeared - it represents a technique or field of study in machine learning and

embedded systems that explores which machine-learning applications (once reduced, optimized

and integrated) can be run on devices as small as microcontrollers.

What is TinyMl and why is TinyML important?

In TinyML, ML as you might have guessed stands for

Machine Learning and in most of cases (not always though)

nowadays refers to Deep Learning. Tiny in TinyML means that the

ML models are optimized to run on very low-power and small

footprint devices, such as various MCUs.

Embedded devices come in all sorts of shapes and sizes, starting from “embedded

supercomputer” Nvidia Jetson Xavier AGX to the tiniest of microcontrollers, for example ESP32 or

Cortex M0.

Why embedded ML on microcontrollers is

put in a special category and even given its own

cool name?

Because it comes with it’s own set of

advantages and limitations. The attraction of

TinyML is in fact that MCUs are ubiquitous,

small, consume small amounts of energy and

comparatively cheap. Take ARM Cortex M0+ and the little Seeeduino XIAO board which is built

around it – the board is as small as a thumb(20×17.5mm), consumes only 1.33 mAh of power

(which means it can work ~112 hours on a 150 mA battery, much more if put in deep sleep) and

cost as little as 4.3 USD.

Thanks to recent improvements in model optimization and emergence of frameworks

specifically created for running machine learning model inference on microcontrollers, it has

became possible to give more intelligence to these tiny devices. We now can deploy neural

networks on microcontrollers for audio scene recognition (for example elephant activity or sound

of breaking glass), hot-word detection(to activate device with a specific phrase) or even for

simple image recognition tasks. The devices with embedded microcontrollers can be used to give

new life and meaning to old sensors, such as using an accelerometer installed on a mechanism

for anomaly detection and predictive maintenance – or to distinguish various kinds of liqueurs as

in this demo! The possibilities of TinyML are truly huge.

What about limitations? The main limiting factor is RAM/FLASH size of MCUs – no matter

how you well optimize, you wouldn’t be able to fit that YOLO9999 into a tiny microcontroller.

Same goes for automatic speech recognition – while simple hot word (or voice command

detection) is possible, open domain speech recognition is out of reach of MCUs. For now.

Theory

4 5TinyML with Wio Terminal Lesson 01 introduction to tinyml with wio terminal

Software-wise we will be using Arduino IDE for programming the devices and a mix of

Edge Impulse and Tensorflow Lite for Microcontrollers for model training and inference. Edge

Impulse is a user-friendly development platform for machine learning on edge devices, providing

beginner friendly (yet powerful) web interface and toolkit for whole TinyMl pipeline, from data

collection all the way to model deployment. In later lessons of the course we will also demonstrate

how you can use pure Tensorflow Lite for Microcontrollers to implement your own model training

and inference pipeline.

Before we set on our journey to explore the possibilities of TinyML, we will need to set up the

working environment, namely Arduino IDE, Edge Impulse CLI and (optionally) Tensorflow.

Installing Arduino IDE

Get the latest version from the download page. You can choose between the Installer (.exe)

and the Zip packages. We suggest you use the first one that installs directly everything you need

to use the Arduino Software (IDE), including the drivers.

When the download finishes, proceed with the installation and please allow the driver

installation process when you get a warning from the operating system.

Practice

In this course we’ll mainly be using ARM Cortex M4F core inside Wio Terminal development

board.

Wio Terminal is a perfect tool to get started with IoT and TinyML – it is built around

ATSAMD51P19 chip with ARM Cortex-M4F core running at 120MHz, which is very well supported

by various frameworks for ML inference on microcontrollers.

The board also has

• built-in light sensor

• microphone

• programmable buttons

• 2.4 inch LCD display

• accelerometer

• 2 Grove ports for easy connection of more than 300 various Grove ecosystem sensors

Preparation

https://www.arduino.cc/en/Main/Software

6 7TinyML with Wio Terminal Lesson 01 introduction to tinyml with wio terminal

To compile and upload code for Wio Terminal you will need to install Wio Terminal-specific

tools in Arduino IDE:

Step 1. Add Additional Boards Manager URLs

Open your Arduino IDE, click on File > Preferences, and copy below url to Additional Boards

Manager URLs:

The process will extract and install all the required files to execute properly the Arduino

Software (IDE).

Step 2. Install Wio Terminal Tools

Click on Tools > Board > Board Manager and Search Wio Terminal in the Boards Manager.

Press on Install and wait until installation process finishes.

https://files.seeedstudio.com/arduino/package_seeeduino_boards_index.json1

Choose the installation directory (we suggest to keep the default one)

Choose the components to install

8 9TinyML with Wio Terminal Lesson 01 introduction to tinyml with wio terminal

Step 3. Select your board and port

You'll need to select the entry in the Tools > Board menu that corresponds to your Arduino.

Selecting the Wio Terminal.

Installing Edge Impulse CLI

This Edge Impulse CLI is used to control local devices, act as a proxy to synchronize data for

devices that don't have an internet connection, and to upload and convert local files.

1. Install Node.js v10 or higher on your host computer.

For Windows users, install the Additional Node.js tools when prompted. You may skip this

setup if you have Visual Studio 2015 or more.

2. Install the CLI tools via:

npm install -g edge-impulse-cli

Afterwards you should have the tools available in your PATH.

(Optional) Installing Tensorflow

We will use Python and Tensorflow for more in-depth lessons later in the course. Local

installation of Tensorflow is optional though, if you can get access to Google Colab, an online

environment where you can execute Python code and train your models.

To install tensorflow on Windows:

1. Install Miniconda (Python virtual environment manager), which you can download from the

official website.

2. Create a new virtual environment with

conda create -n ml python=3.8

3. Install Tensorflow in pip in that environment

pip install tensorflow

4. Next time you need to use TensorFlow, simply open Miniconda prompt and activate the

virtual environment you created with

conda activate ml

Explore ready-to-use demos of Edge Impulse and Tensorflow by uploading sample codes

1) Magic wand with TF

2) Voice command detection with EI

Expansion tasks

https://nodejs.org/en/

10 11TinyML with Wio Terminal Lesson 02 project i: recognizing gestures with light sensor: theory and data collection

Lesson 02

Project I: Recognizing gestures
with light sensor: theory and
data collection

12 13TinyML with Wio Terminal Lesson 02 project i: recognizing gestures with light sensor: theory and data collection

Make sure you have Arduino IDE installed and working with Wio Terminal. Create an account

on Edge Impulse website and make a new project there.

You can forward any type of sensor data to Edge Impulse platform with data forwarder –

here is a pseudo code for forwarding arbitrary sensor data from device:

There is high variance in speed and amplitude of the values from sensor, which makes a great

case for using machine learning model and not hand-crafted algorithm for the task.

Rock

Scissors

Preparation

Practice

In this lesson we are going to train and deploy

a simple neural network for classifying rock-paper-

scissors gestures with just a single light sensor.

If you think about it, the working principle of this project is actually quite trivial - different

gestures being moved above the light sensor will block certain amount of light for certain periods

of time. For example, for rock we will have high values first (nothing above sensor), then low

values for the time "rock" passes above the sensor and then high values again. For paper we will

have high-low-high-low-high-low-high-low values, when each of the fingers in "paper" passes

above the sensor.

Paper

Theory

#define FREQUENCY_HZ 50

#define INTERVAL_MS (1000 / (FREQUENCY_HZ))

void setup() {

 Serial.begin(115200);

 initialize_sensor();

 Serial.println("Started");

 }

}

void loop() {

 static unsigned long last_interval_ms = 0;

1

2

3

4

5

6

7

8

9

10

11

14 15TinyML with Wio Terminal Lesson 02 project i: recognizing gestures with light sensor: theory and data collection

Once you uploaded the code to Wio Terminal, run

edge-impulse-data-forwarder

in Command prompt and log in with your Edge Impulse credentials.

Now you are ready to receive data in Edge Impulse dashboard. Go to Data acquisition tab

and you should see your device there.

In this project we just have one sensor that sends one value in each packet.

#define FREQUENCY_HZ 40

#define INTERVAL_MS (1000 / (FREQUENCY_HZ))

void setup() {

 Serial.begin(115200);

 Serial.println("Started");

 }

void loop() {

 static unsigned long last_interval_ms = 0;

 float light;

 if (millis() > last_interval_ms + INTERVAL_MS) {

 last_interval_ms = millis();

 light = analogRead(WIO_LIGHT);

 Serial.println(light);

 //Serial.print('\t');

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
If you have multiple sensor values in one packet, each sensor value should be separated with

a comma or tab character.

The end of the packet is denoted by a new line character, so you can just use Serial.println

for last value in a packet or send the newline character separately as in above example Serial.

print("\n").

For example, this is data from a 3-axis accelerometer:

 float sensor_data_1, sensor_data_2, sensordata_3;

 if (millis() > last_interval_ms + INTERVAL_MS) {

 last_interval_ms = millis();

 sensor.readdata(sensor_data_1, sensor_data_2, sensor_data_);

 Serial.print(sensor_data_1);

 Serial.print('\t');

 Serial.print(sensor_data_2);

 Serial.print('\t');

 Serial.print(sensor_data_3);

 Serial.print("\n");

 }

}

12

13

14

15

16

17

18

19

20

21

22

23

24

16 17TinyML with Wio Terminal Lesson 02 project i: recognizing gestures with light sensor: theory and data collection

This is a small dataset, but we also have a tiny neural network, so underfitting is more likely

than overfitting in this particular case.

When collecting samples it is important to provide diversity for model to be able to generalize

better, for example have samples with different direction, speed and distance from sensor. In

general, the network only can learn from data present in the dataset – so if the only samples you

have are gestures being moved from left to right above the sensor, you shouldn’t expect trained

model to be able to recognize gestures being moved right to left or up and down.

Underfitting:

A statistical model or a machine learning algorithm is said to have underfitting when it

cannot capture the underlying trend of the data, that happens (among other cases) when model

size is too small to develop a general rule for data that has large variety and amount of noise.

Overfitting:

A statistical model is said to be overfitted, when it starts learning from the noise and

inaccurate data entries in our data set. That happens when you have large model and relatively

small dataset - the model can just learn "by heart" all the data points without generalizing.

Collect more data samples in different light conditions.

Expansion tasks

You will be able to preview the data collected after sample collection is finished. Make sure

that the data is valid before proceeding to collect next sample.

Paper

Scissors

Set sample length to 10000 ms or 10 seconds and create 10 samples for each gesture,

waving the hand in vicinity of Wio terminal.

Rock

18 19TinyML with Wio Terminal Lesson 03 project i: recognizing gestures with light sensor: model training and deployment

Lesson 03

Project I: Recognizing gestures
with light sensor: model training
and deployment

20 21TinyML with Wio Terminal Lesson 03 project i: recognizing gestures with light sensor: model training and deployment

Make sure you have Arduino IDE installed and working with Wio Terminal.

After you collected the samples it is time to design an “impulse”. Impulse here is the word

Edge Impulse used to denote data processing – training pipeline. Press on Create Impulse and set

Window length to 1000 ms. and Window length increase to 50 ms.

These settings mean that each time an inference is performed we're going to take sensor

measurements for 1000 ms. - how many measurements your device is going to take depends

on the frequency. During data collection you set sampling frequency to 40 Hz, or 40 times per 1

second. So, to sum it up, your device is going to gather 40 data samples within 1000 ms. time

window and then take these values, preprocess them and feed them to neural network to get

inference result. Of course we use the same window size during the training.

For this proof-of-concept project, we are going to try three different prepossessing blocks

with default parameters(except for adding scaling) –

Flatten block, which takes computes Average, Min, Max and other functions of raw data

within time window.

In this lesson we will learn more about preprocessing functions available in Edge Impulse and

train simple Fully Connected network.

Preparation

Practice

In the last lesson we collected the data samples necessary to train the model. Before being

fed to neural network, data needs to be preprocessed. Sometimes we just re-scale the data, for

example turning values in range from 0 to 1000 into range of 0 to 1 - because neural networks

work with smaller numbers better than with large ones. Neural networks used in TinyML are very

small in size and number of parameters (connections between digital neurons), so oftentimes we

also apply more sophisticated preprocessing techniques to extract so-called features from Raw

data, which speeds up the training process.

Theory

22 23TinyML with Wio Terminal Lesson 03 project i: recognizing gestures with light sensor: model training and deployment

Feature visualization is particularity useful tool in Edge Impulse web interface, as it allows

users to get graphical insights into how the data looks after prepossessing. For example this is

data after Flatten processing block:

Spectral Features block, which extracts the frequency and power characteristics of a signal

over time.

and Raw data block, which as you might have guessed just feeds raw data to NN learning

block (optionally normalizing the data).

We'll start with Flatten block. Add this block and then add Neural Network (Keras) as learning

block, check Flatten as input features and click on Save Impulse. Go to the next tab, which has a

name of the processing block you have chosen - Flatten. There enter 0.001 in scaling and leave

other parameters the same. Press on Save parameters and then Generate features.

We can see that the data points for different classes are roughly divided, but there is a lot of

overlap between rock and other classes, which will cause issues and low accuracy for these two

classes. After you generated and inspected the features, go to NN CLassifier tab.

Train a simple fully-connected network with 2 hidden layers, 20 and 10 neurons in each

hidden layer for 500 epochs with 1e-4 learning rate. After the training is done you're going to see

test results in confusion matrix, similar to this:

24 25TinyML with Wio Terminal Lesson 03 project i: recognizing gestures with light sensor: model training and deployment

The final results after training were

• Flatten FC 69.9 % accuracy

• Spectral Features FC 70.4 % accuracy

• Raw Data Conv1D 92.4 % accuracy

We will discuss Convolutions and how useful they are in later articles about sound processing.

For now we're going to use simple fully-connected model and Spectral Features processing.Both Flatten and Spectral Features blocks are actually not the best processing methods for

rock-paper-scissors gesture recognition task. If we think about it, for classifying rock-paper-

scissors gestures we just need to count how many times and for how long the light sensor

has received “lower-than-normal” values. If it is one relatively long time – then it is rock (fist

passing above the sensors). If it is two times, then it is scissors. Anything more than that is

paper. Sounds easy, but preserving time series data is really important for neural network to be

able to learn this relationship in data points.

Both Flatten and Spectral Features processing blocks remove the time relationship within

each window – Flatten block simply turns the raw values, that are initially in sequence to

Average, Min, Max, etc. values calculated on all values in time window, irrespective of their order.

Spectral Features block extracts the frequency and power characteristics and the reason it didn’t

work that well for this particular task is probably, that the duration of each gesture is too short.

So, the way to achieve best performance is to use Raw data block, which will preserve the

time series data. Have a look at sample project where we used Raw data and Convolutional 1D

network, a more specialized type of network, compared to fully-connected. We were able to

achieve 92.4% accuracy on the same data!

Go back to Create Impulse tab, delete Flatten block and choose Spectral Features block,

generate the features (remember to set scaling to 0.001!) and train Neural network on Spectral

features data. You should see slight improvement.

After the training you can test the model using Live classification tab, which will gather a

data sample from device and classify it with model hosted on Edge Impulse. We test with three

different gestures and see the accuracy is satisfactory as far as proof of concept goes.

26 27TinyML with Wio Terminal Lesson 03 project i: recognizing gestures with light sensor: model training and deployment

Extract the archive and place it in your Arduino libraries folder. Open Arduino IDE and choose

static buffer sketch (located in File -> Examples -> name of your project -> static_buffer) , which

already has all the boilerplate code for classification with your model in place. Neat!

The only thing for use to fill in is the data acquisition on-device. We’ll use a simple for loop

with delay to account for frequency (if you remember we had 25 ms delay when gathering data

for training dataset).

int raw_feature_get_data(size_t offset, size_t length, float *out_ptr) {

float features[40];

for (byte i = 0; i < 40; i = i + 1)

 {

 features[i]=analogRead(WIO_LIGHT);

 delay(25);

 }

 memcpy(out_ptr, features + offset, length * sizeof(float));

 return 0;

}

1

2

3

4

5

6

7

8

9

10

The next step is deployment on device. After clicking on Deployment tab, choose Arduino

library and download it.

28 29TinyML with Wio Terminal Lesson 03 project i: recognizing gestures with light sensor: model training and deployment

Try increasing/decreasing number of neurons in first and second hidden layers and see how

that affects the accuracy and inference time.

Expansion tasks

While it was just a proof of concept demonstration, it really shows TinyML is up to

something big. You probably knew it is possible to recognize gestures with a camera sensor,

even if image is down-scaled a lot. But recognizing gestures with just 1 pixel is entirely different

level!

Certainly there are better ways to implement this, for example a sensor data buffer, which

would allow us to perform inference more often. But we’ll get to that in later lessons of the

course.

After you added sensor data acquisition part to sample code upload it to Wio Terminal and

open Serial monitor. Move your hand while performing a gesture and see the probability results

printed out on Serial monitor.

Rock：

Paper：

Scissors：

30 31TinyML with Wio Terminal Lesson 04 project ii: classifying hand gestures with accelerometer: theory and data collection

Lesson 04

Project II: Classifying hand
gestures with accelerometer:
theory and data collection

32 33TinyML with Wio Terminal Lesson 04 project ii: classifying hand gestures with accelerometer: theory and data collection

Open Arduino IDE, make sure you have accelerometer libraries installed. To install 3-Axis

Digital Accelerometer(LIS3DHTR) libraries:

1. Visit the Seeed_Arduino_LIS3DHTR repositories and download the entire repository to your

local drive.

2. Now, the LIS3DHTR can be installed to the Arduino IDE. Open the Arduino IDE, and click

sketch -> Include Library -> Add .ZIP Library, and choose the Seeed_Arduino_LIS3DHTR file that

you've have just downloaded.

Make a new project on Edge Impulse dashboard. Accelerometer data has three data samples

in each data packet and we need to sample it faster, than we did before with light sensor,

increasing the frequency to 62.5 Hz. It means that we cannot use data forwarder tool for data

collection and will need to use specilized firmware for data collection. To do that, connect Wio

Terminal to your computer. Entering the bootloader mode by sliding the power switch twice

quickly.The accelerometer in your phone and in Wio Terminal is a MEMS (Microelectromechanical)

accelerometer . The exact module used in Wio Terminal is cal led 3-Axis Digita l

Accelerometer(LIS3DHTR). Generally, accelerometers contain capacitive plates internally. Some of

these are fixed, while others are attached to minuscule springs that move internally as acceleration

forces act upon the sensor.

Preparation

Practice

In this lesson, we'll take on the similar task, gesture

recognition, but will use a different sensor for that - 3-axis

accelerometer. This is a hard task to solve using rule based

programming, as people don't perform gestures in the exact

same way every time. But machine learning can handle these

variations with ease.

As you might guess from the name, accelerometers are

devices that measure acceleration, which is the rate of change

of the velocity of an object. They measure in meters per second

squared (m/s2) or in G-forces (g). A single G-force for us here

on planet Earth is equivalent to 9.8 m/s2. As with other sensors,

there are different kinds of accelerometers and the first ones

invented were mechanical ones.

The first accelerometer was called the Atwood machine and was invented by the English

physicist George Atwood.

Theory

https://github.com/Seeed-Studio/Seeed_Arduino_LIS3DHTR/tree/master

34 35TinyML with Wio Terminal Lesson 04 project ii: classifying hand gestures with accelerometer: theory and data collection

Machine learning works best with lots of data, so a single sample won't cut it. Now is the

time to start building your own dataset. For example, use the following four classes, and record

around 3 minutes of data per class:

• Idle - just sitting on your desk while you're working.

• Turn - turn device, similar how you would turn a valve

• Wave - waving the device from left to right.

• Shake - moving the device up and down.

After you click Start sampling shake your device up and down and side to side in a

continuous motion. In about twelve seconds the device should complete sampling and upload the

file back to Edge Impulse. You see a new line appear under 'Collected data' in the studio. When

you click it you now see the raw data graphed out. As the accelerometer on the development

board has three axes you'll notice three different lines, one for each axis.

An external drive named Arduino should appear in your PC. Download the firmware for data

collection here :

Edge Impulse uf2 firmware files

Drag the the downloaded to the Arduino drive. Now, Edge Impulse data collection firmware is

loaded on Wio Terminal!

Once you uploaded the firmware to Wio Terminal, run

edge-impulse-daemon --clean

in Command prompt and log in with your Edge Impulse credentials. Clean command clean

your credentials and project name. Now you are ready to receive data in Edge Impulse dashboard.

Go to Data acquisition tab and you should see your device there.

Under Record new data, select your device, set the label to shake, the sample length to

10000, the sensor to Built-in accelerometer and the frequency to 62.5Hz. This indicates that

you want to record data for 10 seconds, and label the recorded data as shake. You can later edit

these labels if needed.

https://github.com/Seeed-Studio/Seeed_Arduino_edgeimpulse/releases/tag/1.4.0

36 37TinyML with Wio Terminal Lesson 04 project ii: classifying hand gestures with accelerometer: theory and data collection

Note

Make sure to perform variations on the motions. E.g. do both slow and fast movements and

vary the orientation of the board. You'll never know how your user will use the device. It's best

to collect samples of ~10 seconds each.

Gather data from 2 other people, except for yourself.

Expansion tasks

38 39TinyML with Wio Terminal Lesson 05 project ii: classifying hand gestures with accelerometer: model training and deployment

Lesson 05

Project II: Classifying hand
gestures with accelerometer:
model training and deployment

40 41TinyML with Wio Terminal Lesson 05 project ii: classifying hand gestures with accelerometer: model training and deployment

Make sure you are using Arduino IDE > 1.9.

Spectral analysis block is the most suitable for types of data, that contain periodically

repeating elements, for example accelerometer motion or (to some extent) audio signal, vibration,

etc. It does not generate useful features for signal that is devoid of repeating elements, that is the

reason that it didn't work well for data in the previous project.

To configure your signal processing block, click Spectral features in the menu on the left.

This will show you the raw data on top of the screen (you can select other files via the drop

• Peaks in frequency domain - you can specify the number of peaks, these are the most

prominent frequencies in that window of data

• Spectral power of peaks - the amplitude of frequency at the peaks, i.e. how powerful is the

signal

Preparation

Practice

In the last lesson we have already used Spectral Analysis block for data processing briefly.

Spectral analysis block slices your data into smaller windows and applies Butterworth filter, Fast

Fourier Transform and calculates power edges on each window of every data axis to output the

following features:

• Values after Butterworth filter - normally, depending on filter type applied (low-pass or

high-pass) it smoothens the signal

Theory

With the training set in place you can design an impulse. An impulse takes the raw data,

slices it up in smaller windows, uses signal processing blocks to extract features, and then uses

a learning block to classify new data. Signal processing blocks always return the same values for

the same input and are used to make raw data easier to process, while learning blocks learn from

past experiences.

For this tutorial we'll use the 'Spectral analysis' signal processing block. This block applies a

filter, performs spectral analysis on the signal, and extracts frequency and spectral power data.

Then we'll use a 'Neural Network' learning block, that takes these spectral features and learns to

distinguish between the three (idle, shake, turn and wave) classes.

In the studio go to Create impulse, set the window size to 2000 (you can click on the 2000

ms. text to enter an exact value), the window increase to 80, and add the 'Spectral Analysis' and

'Neural Network (Keras)' blocks. Then click Save impulse.

42 43TinyML with Wio Terminal Lesson 05 project ii: classifying hand gestures with accelerometer: model training and deployment

In here you'll:

1. Split all raw data up in windows (based on the window size and the window increase).

2. Apply the spectral features block on all these windows.

Click Generate features to start the process.

Afterwards the 'Feature explorer' will load. This is a plot of all the extracted features against

all the generated windows. You can use this graph to compare your complete data set. E.g. by

plotting the height of the first peak on the X-axis against the spectral power between 0.5 Hz

and 1 Hz on the Y-axis. A good rule of thumb is that if you can visually separate the data on a

number of axes, then the machine learning model will be able to do so as well.

Once you're happy with the result, click Save parameters. This will send you to the 'Feature

generation' screen.

One window of data after processing:

One window of data before processing:

down menu), and the results of the signal processing through graphs on the right. For the spectral

features block you'll see the following graphs:

• After filter - the signal after applying a low-pass filter. This will remove noise.

• Frequency domain - the frequency at which signal is repeating (e.g. making one wave

movement per second will show a peak at 1 Hz).

• Spectral power - the amount of power that went into the signal at each frequency.

A good signal processing block will yield similar results for similar data. If you move the

sliding window (on the raw data graph) around, the graphs should remain similar. Also, when you

switch to another file with the same label, you should see similar graphs, even if the orientation of

the device was different.

With all data processed it's time to start training a neural network. Neural networks are a set

of algorithms, modeled loosely after the human brain, that are designed to recognize patterns. The

network that we're training here will take the signal processing data as an input, and try to map

this to one of the three classes.

So how does a neural network know what to predict? A neural network consists of layers of

neurons, all interconnected, and each connection has a weight.

44 45TinyML with Wio Terminal Lesson 05 project ii: classifying hand gestures with accelerometer: model training and deployment

With the impulse designed, trained and verified you can deploy this model back to your

device. This makes the model run without an internet connection, minimizes latency, and runs with

minimum power consumption.

After clicking on Deployment tab, choose Arduino library and download it. Extract the

archive and place it in your Arduino libraries folder. Open Arduino IDE and choose Examples->

name of your project Inferencing Edge Impulse - > nano_ble33_sense_accelerometer sketch.

Our board is similar to Arduino Nano BLE33 Sense, but uses different accelerometer (LIS3DHTR

instead of LSM9DS1), so we will need to change the data acquisition section accordingly. Also,

since Wio Terminal has an LCD screen, we're going to display name of the detected class if this

class confidence value is above threshold.

First change the header

to

Now change 'Number of training cycles' to 2 and you'll see performance go up. Finally,

change 'Number of training cycles' to 100 or more and let training finish. You've just trained your

first neural network!

Note

You might end up with a 100% accuracy after training for 100 training cycles. This is

not necessarily a good thing, as it might be a sign that the neural network is too tuned for the

specific test set and might perform poorly on new data (overfitting). The best way to reduce this

is by adding more data, adding Dropout block or reducing the learning rate.

#include <Arduino_LSM9DS1.h>1

One such neuron in the input layer would be the height of the first peak of the X-axis (from

the signal processing block); and one such neuron in the output layer would be wave (one the

classes). When defining the neural network all these connections are initialized randomly, and thus

the neural network will make random predictions. During training we then take all the raw data,

ask the network to make a prediction, and then make tiny alterations to the weights depending on

the outcome (this is why labeling raw data is important).

This way, after a lot of iterations, the neural network learns; and will eventually become much

better at predicting new data. Let's try this out by clicking on NN Classifier in the menu.

Set 'Number of training cycles' to 1. This will limit training to a single iteration. And then click

Start training.

#include"LIS3DHTR.h"

#include"TFT_eSPI.h"

1

2

46 47TinyML with Wio Terminal Lesson 05 project ii: classifying hand gestures with accelerometer: model training and deployment

Then compile and upload - open the serial monitor and perform one the gestures! You will be

able to see the inference results displayed on the Serial monitor and also on LCD screen.

We do data collection and inference within loop function, here is where we need to change

data acquisition with LSM9DS1 to data acquisition function for LIS3DHTR

add the following code block, in which we check confidence values of every class and if one

of them is higher than threshold, change the color of the screen and display that classes name.

to

And then to display the class name on the LCD screen, after

IMU.readAcceleration(buffer[ix], buffer[ix + 1], buffer[ix + 2]);

lis.getAcceleration(&buffer[ix], &buffer[ix + 1], &buffer[ix + 2]);

#if EI_CLASSIFIER_HAS_ANOMALY == 1

 ei_printf(" anomaly score: %.3f\n", result.anomaly);

#endif

1

1

1

2

3

if (result.classification[1].value > 0.7) {

 tft.fillScreen(TFT_PURPLE);

 tft.setFreeFont(&FreeSansBoldOblique12pt7b);

 tft.drawString("Shake", 20, 80);

 delay(1000);

 tft.fillScreen(TFT_WHITE);

 }

 if (result.classification[2].value > 0.7) {

 tft.fillScreen(TFT_RED);

 tft.setFreeFont(&FreeSansBoldOblique12pt7b);

 tft.drawString("Turn", 20, 80);

 delay(1000);

 tft.fillScreen(TFT_WHITE);

 }

 if (result.classification[3].value > 0.7) {

 tft.fillScreen(TFT_GREEN);

 tft.setFreeFont(&FreeSansBoldOblique12pt7b);

 tft.drawString("Wave", 20, 80);

 delay(1000);

 tft.fillScreen(TFT_WHITE);

 }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

to

Then change initialization in setup function

if (!IMU.begin()) {

 ei_printf("Failed to initialize IMU!\r\n");

 }

 else {

 ei_printf("IMU initialized\r\n");

 }

 tft.begin();

 tft.setRotation(3);

 tft.fillScreen(TFT_WHITE);

 lis.begin(Wire1);

 if (!lis.available()) {

 Serial.println("Failed to initialize IMU!");

 while (1);

 }

 else {

 ei_printf("IMU initialized\r\n");

 }

 lis.setOutputDataRate(LIS3DHTR_DATARATE_100HZ); // Setting output data rage

to 25Hz, can be set up tp 5kHz

 lis.setFullScaleRange(LIS3DHTR_RANGE_16G); // Setting scale range to 2g,

select from 2,4,8,16g

1

2

3

4

5

6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

LIS3DHTR<TwoWire> lis;

TFT_eSPI tft;

3

4

5

48 49TinyML with Wio Terminal Lesson 05 project ii: classifying hand gestures with accelerometer: model training and deployment

Retrain model for other gestures.

Expansion tasks

50 51TinyML with Wio Terminal Lesson 06 project iii: audio scene recognition with microphone: theory and data collection

Lesson 06

Project III: Audio scene
recognition with microphone:
theory and data collection

52 53TinyML with Wio Terminal Lesson 06 project iii: audio scene recognition with microphone: theory and data collection

The source of sound pushes the surrounding medium molecules, they push the molecules

next to them and so on and so forth. When they reach other object it also vibrates slightly – we

use that principle in microphone. The microphone membrane gets pushed inward by the medium

molecules and then back to its original position.

In this project we will learn how to train and deploy an audio scene classifier with Wio

Terminal and Edge Impulse. Audio scene classification is a task, where machine learning model

needs to predict a class for audio segment, for example, "a crying baby", "a cough", "a dog

barking", etc. Let's learn more about sound processing in computers.

Sound is an a vibration that propagates (or travels) as an acoustic wave, through a

transmission medium such as a gas, liquid or solid.

example 8000 Hz sampling rate is taking measurement 8000 times per second. Sampling rate

obviously matters a lot for quality of the sound – if we sample too slow we might miss important

bits and pieces. The numbers used for recording sound digitally also matter – the larger range of

a number used, the more“nuances” we can preserve from the original sound. That is called audio

bit depth – you might have heard terms like 8-bit sound and 16-bit sound. Well, it is exactly what

is says on the tin – for 8-bit sound an unsigned 8-bit integers are used, which have range from 0

to 255. For 16-bit sound a signed 16-bit integers are used, so that’s -32768 to 32767. Alright,

so in the end we have a string of numbers, with larger numbers corresponding to loud parts of

the sound and we can visualize it like this - this is 1 second of gunshot sound recorded at 8000

Hz frequency in 8-bit depth (0-255).

That generates alternating current in the circuit, where voltage is proportional to sound

amplitude – the louder the sound, the more it pushes membrane, thus generating higher voltage.

We then read this voltage with analog-to-digital converter and record at equal intervals – the

number of times we take measurement of sound in one second is called a sampling rate, for

We can’t do much with this raw sound representation though – yes, we can cut and paste

the parts or make it quilter or louder, but for analyzing the sound, it is, well, too raw. Here is where

Fourier transform, Mel scale, spectrograms and cepstrum coefficients come in. For purpose of

this project, we’ll define Fourier transform as a mathematical transform, that that allows us to

decompose a signal into it’s individual frequencies and the frequency’s amplitude.

Theory

54 55TinyML with Wio Terminal Lesson 06 project iii: audio scene recognition with microphone: theory and data collection

Or, if you'd like to use a metaphor – given the smoothie, it outputs the recipe. That is how

our sound looks like after applying Fourier transform – the higher bars correspond to larger

amplitude frequencies.
Here x-axis is the time,

y-axis is frequency and the

amplitude of a frequency is

expressed through a color,

brighter colors correspond to

larger amplitude.

Very well! Can we do sound recognition now? No! Yes! Maybe!

Normal spectrogram contains too much information if we only care about recognizing

There are more steps involved for recognizing speech – for example cepstrum coefficients,

that we mentioned above – we will discuss them in later lessons of the course. It is time to finally

start with practical implementation.

sounds that human ear can hear. Studies have shown that

humans do not perceive frequencies on a linear scale. We

are better at detecting differences in lower frequencies

than higher frequencies. For example, we can easily tell the

difference between 500 and 1000 Hz, but we will hardly be

able to tell a difference between 10000 and 10500 Hz, even

though the distance between the two pairs are the same.

In 1937, Stevens, Volkmann, and Newmann proposed a

unit of pitch such that equal distances in pitch sounded equally

distant to the listener. This is called the mel scale.

That’s great! Now we can

do more interesting things with

audio signal – for example

eliminate the least important

frequencies to compress the

audio file or remove the noise

or maybe the sound of voice,

etc. But it is still not good

enough for audio and speech

recognition – by doing Fourier

transform we lose all the time

domain information, which

is not good for non-periodic

signals, such as human speech.

We are smart cookies though

and just take Fourier transform

multiple times on the signal

sample, essentially slicing it and

then stitching the data from

multiple Fourier transforms

back togethe r i n fo rm of

spectrogram.

A mel spectrogram is

a spectrogram where the

frequencies are converted to

the mel scale.

56 57TinyML with Wio Terminal Lesson 06 project iii: audio scene recognition with microphone: theory and data collection

Audio signal needs to be sampled at very high sampling rate, 8000 Hz or, ideally, 16000 Hz.

Edge Impulse Data Forwarder tool is too slow to handle this sampling rate, so we will need to use

dedicated data collection firmware to get the data for this project. Download a new version of Wio

Terminal Edge Impulse firmware with microphone support and flash it to your device, as described

in Lesson 4. After that create a new project on Edge Impulse platform, launch edge-impulse

ingestion service

If you used edge-impulse-daemon before, you will need to add --clean to the command

above to clean project data.

Then log in with your credentials and choose a project you have just created. Go to Data

Acquisition tab and you can start getting data samples.

We will have three classes of data:

Preparation

Practice

Install Anaconda environment manager if you didn't install it in the first lesson - see Lesson

Lesson 1 Introduction to TinyML with Wio Terminal for information on how to install Anaconda

and create a virtual environment. Then, in a virtual environment install librosa with

pip install librosa

and

conda install -c conda-forge ffmpeg

edge-impulse-daemon1

• background

• coughing

• crying

Record 10 samples for each class, 5000 milliseconds duration each. You can recording the

sounds played from the computer speakers (except for background class), but if you have the

opportunity to record real sounds, that would be even better.

For background class record sounds that should not be classified as coughing or crying, e.g.

people talking, no sounds, air conditioning/fan and so on and so forth.

https://github.com/Seeed-Studio/Seeed_Arduino_edgeimpulse/releases/tag/1.4.0
https://github.com/Seeed-Studio/Seeed_Arduino_edgeimpulse/releases/tag/1.4.0

58 59TinyML with Wio Terminal Lesson 06 project iii: audio scene recognition with microphone: theory and data collection

Record in different environments (outside on the street, inside of the classroom, etc).

After the data collection is done, it is time to choose processing blocks and define our neural

network model.

Expansion tasks

30 samples is abysmally small, so we’re also going to upload some more data. Simply

download the sounds from the Internet, resample them to 16000 Hz and save them to .wav format

with this converter script

Copy the code and paste it in a text document (use Notepad++, IDLE IDE or other suitable

IDE. Do not use Windows default Notepad).

Save document as converter.py and then from Anaconda environment run

python converter.py name-of-the-downloaded-file class_name.number.wav

You can find example sound files already converted to right format in materials for this

course.

Then split all the sound samples to leave only “interesting” pieces – do that for every class,

except for background.

import librosa

import sys

import soundfile as sf

input_filename = sys.argv[1]

output_filename = sys.argv[2]

data, samplerate = librosa.load(input_filename, sr=16000)

print(data.shape, samplerate)

sf.write(output_filename, data, samplerate, subtype='PCM_16')

1

2

3

4

5

6

7

8

9

60 61TinyML with Wio Terminal Lesson 07 project iii: audio scene recognition with microphone: model training and deployment

Lesson 07

Project III: Audio scene
recognition with microphone:
model training and deployment

62 63TinyML with Wio Terminal Lesson 07 project iii: audio scene recognition with microphone: model training and deployment

For expansion task, make sure that Wio Terminal has latest WiFi firmware and WiFi libraries -

you can check it by uploading the following code

“1D versus 2D CNN” by Nils Ackermann is licensed under Creative Commons CC BY-ND 4.0

The innovation of convolutional neural networks is the ability to automatically learn a large

number of filters in parallel specific to a training dataset under the constraints of a specific

predictive modeling problem, such as image classification. The result is highly specific features

that can be detected anywhere on input data.

A CNN works well for identifying simple patterns within your data which will then be used to

form more complex patterns within higher layers. A 1D CNN is very effective when you expect to

derive interesting features from shorter (fixed-length) segments of the overall data set and where

the location of the feature within the segment is not of high relevance.

Preparation

Convolutional layers are the major building blocks used in convolutional neural networks.

A convolution is the simple application of a filter to an input that results in an activation.

Repeated application of the same filter to an input results in a map of activations called a feature

map, indicating the locations and strength of a detected feature in an input, such as a sequence

of data (1D), an image(2d) or a point cloud(3D).

Theory

Then open Serial monitor and you should see firmware version displayed as output on the

screen. If there is no output, install latest WiFi library.

STEP 1: Open the Arduino IDE, and click Sketch -> Include Library -> Manage Libraries...

STEP 2: Type the name of the library that we need and select the latest version from the

drop-down menu (if available)

STEP 3: Click Install

#include "rpcWiFi.h"

void setup() {

 Serial.begin(115200);

 while(!Serial); // Wait to open Serial Monitor

 Serial.printf("RTL8720 Firmware Version: %s", rpc_system_version());

}

void loop() {

}

1

2

3

4

5

6

7

8

9

10

Also install the following libraries -y ou can search for these libraries by typing the library

name in the search box of Arduino Library Manager.

• Seeed_Arduino_rpcWiFi - search for “seeed rpcwifi"

• Seeed_Arduino_rpcUnified - search for “seeed rpcunified"

• Seeed_Arduino_mbedtls - search for “seeed mbedtls"

• Seeed_Arduino_FS - search for “seeed fs"

• Seeed_Arduino_SFUD - search for “seeed sfud"

https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/Seeed-Studio/Seeed_Arduino_rpcWiFi
https://github.com/Seeed-Studio/Seeed_Arduino_rpcUnified
https://github.com/Seeed-Studio/Seeed_Arduino_mbedtls
https://github.com/Seeed-Studio/Seeed_Arduino_FS
https://github.com/Seeed-Studio/Seeed_Arduino_SFUD

64 65TinyML with Wio Terminal Lesson 07 project iii: audio scene recognition with microphone: model training and deployment

If you like experimenting, you can try using all of them on your data, except for maybe Raw,

which will have too much data for our small-ish neural network. For the purpose of this lesson we

will just go with the best option for this task, which is MFE or Mel-Frequency Energy banks. After

computing the features, go to NN classifier tab and choose a suitable model architecture. The

two choices we have are using 1D Conv and 2D Conv. Both will work, but If possible, we should

always go for smaller model, since we will want to deploy it to embedded device. When writing the

materials for this course we ran 4 different experiments, 1D Conv/2D Conv with MFE and MFCC

features and the results for them are in this table.

The best model was 1D Conv network with MFE processing block. By tweaking MFE

parameters (namely increasing stride to 0.02 and decreasing low frequency to 0) we have

achieved accuracy of 89.4% on validation dataset.

You can find the trained model in the course materials and test it out yourself. While it is

good at distinguishing crying sounds from background, coughing sound detection accuracy is a

bit low low and might require obtaining more samples.

After we have our model and satisfied with its accuracy in training, we can test it on new

data in Live classification tab and then Deploy it to Wio terminal. We’ll download it as Arduino

library, put it in Arduino libraries folder and open Examples -> name of your project -> nano_33_

ble_sense_microphone_continuous. The demo is based on Arduino Nano 33 BLE and uses PDM

library. For Wio Terminal we will rely on DMA or Direct Memory Access controller to obtain

samples from ADC (Analog to Digital Converter) and save them to inference buffer without

involvement of MCU.

Practice

Among the processing blocks we see three familiar options – namely Raw, Spectral

Analysis, which is essentially Fourier transform of the signal, Spectrogram and MFE (Mel-Frequency

Energy banks) – which correspond to four stages of audio processing we described earlier!

https://speechpy.readthedocs.io/en/latest/content/features.html#mel-frequency-energy

66 67TinyML with Wio Terminal Lesson 07 project iii: audio scene recognition with microphone: model training and deployment

Then right before setup function create variables for buffer arrays, volatile variables for

passing the values between ISR callback and the main code and also High pass Butterworth filter,

which we will apply to signal to eliminate most of DC component in microphone signal.

Add three blocks of code after that - the first one is a callback function, called by ISR (Interrupt

Service Routine) every time one of the two buffers filled. Inside that function we read elements

from recording buffer (the one that was filled just now), process them and put into an inference

buffer.

That will allow us to collect the sound samples and perform inference at the same time. There

is quite a few changes we need to make in order to change sound data collection from PDM

library to DMA, if you feel a bit lost during the explanation, have a look at the full sample code,

which you can find in the course materials.

Delete PDM library from the sketch

#include <PDM.h>

Add DMA descriptor structure, and other settings constants right after last include statement

// Settings

#define DEBUG 1 // Enable pin pulse during ISR

enum {ADC_BUF_LEN = 4096}; // Size of one of the DMA double buffers

static const int debug_pin = 1; // Toggles each DAC ISR (if DEBUG is set to 1)

// DMAC descriptor structure

typedef struct {

 uint16_t btctrl;

 uint16_t btcnt;

 uint32_t srcaddr;

 uint32_t dstaddr;

 uint32_t descaddr;

} dmacdescriptor;

1

2

3

4

5

6

7

8

9

10

11

12

13

// Globals - DMA and ADC

volatile uint8_t recording = 0;

volatile boolean results0Ready = false;

volatile boolean results1Ready = false;

uint16_t adc_buf_0[ADC_BUF_LEN]; // ADC results array 0

uint16_t adc_buf_1[ADC_BUF_LEN]; // ADC results array 1

volatile dmacdescriptor wrb[DMAC_CH_NUM] __attribute__ ((aligned (16))); //

Write-back DMAC descriptors

dmacdescriptor descriptor_section[DMAC_CH_NUM] __attribute__ ((aligned (16)));

// DMAC channel descriptors

dmacdescriptor descriptor __attribute__ ((aligned (16))); // Place

holder descriptor

//High pass butterworth filter order=1 alpha1=0.0125

class FilterBuHp1

{

 public:

 FilterBuHp1()

 {

 v[0]=0.0;

 }

 private:

 float v[2];

 public:

 float step(float x) //class II

 {

 v[0] = v[1];

 v[1] = (9.621952458291035404e-1f * x)

 + (0.92439049165820696974f * v[0]);

 return

 (v[1] - v[0]);

 }

};

FilterBuHp1 filter;

1

2

3

4

5

6

7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

68 69TinyML with Wio Terminal Lesson 07 project iii: audio scene recognition with microphone: model training and deployment

/***

 * Interrupt Service Routines (ISRs)

 */

/**

 * @brief Copy sample data in selected buf and signal ready when buffer is full

 *

 * @param[in] *buf Pointer to source buffer

 * @param[in] buf_len Number of samples to copy from buffer

 */

static void audio_rec_callback(uint16_t *buf, uint32_t buf_len) {

 static uint32_t idx = 0;

 // Copy samples from DMA buffer to inference buffer

 if (recording) {

 for (uint32_t i = 0; i < buf_len; i++) {

 // Convert 12-bit unsigned ADC value to 16-bit PCM (signed) audio value

 inference.buffers[inference.buf_select][inference.buf_count++] = filter.step(((int16_t)

buf[i] - 1024) * 16);

 // Swap double buffer if necessary

 if (inference.buf_count >= inference.n_samples) {

 inference.buf_select ^= 1;

 inference.buf_count = 0;

 inference.buf_ready = 1;

 }

 }

 }

}

 static uint8_t count = 0;

 // Check if DMAC channel 1 has been suspended (SUSP)

 if (DMAC->Channel[1].CHINTFLAG.bit.SUSP) {

 // Debug: make pin high before copying buffer

#if DEBUG

 digitalWrite(debug_pin, HIGH);

#endif

 // Restart DMAC on channel 1 and clear SUSP interrupt flag

 DMAC->Channel[1].CHCTRLB.reg = DMAC_CHCTRLB_CMD_RESUME;

 DMAC->Channel[1].CHINTFLAG.bit.SUSP = 1;

 // See which buffer has filled up, and dump results into large buffer

 if (count) {

 audio_rec_callback(adc_buf_0, ADC_BUF_LEN);

 } else {

 audio_rec_callback(adc_buf_1, ADC_BUF_LEN);

 }

 // Flip to next buffer

 count = (count + 1) % 2;

 // Debug: make pin low after copying buffer

#if DEBUG

 digitalWrite(debug_pin, LOW);

#endif

 }

}

/**

 * Interrupt Service Routine (ISR) for DMAC 1

 */

void DMAC_1_Handler() {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

1

2

3

4

Next block contains the ISR itself - it is executed by a timer at certain period of time, inside

of that function we check if DMAC channel 1 has been suspended - if it has been suspended it

means that one of the buffers for microphone data has filled and we need to copy the data from

it, switch to another buffer and restart DMAC ADC.

Next block contains configuration data for ADC DMAC and timer controlling ISR (interrupt

Service Routine)

// Configure DMA to sample from ADC at regular interval

void config_dma_adc() {

 // Configure DMA to sample from ADC at a regular interval (triggered by timer/

1

2

3

4

70 71TinyML with Wio Terminal Lesson 07 project iii: audio scene recognition with microphone: model training and deployment

counter)

 DMAC->BASEADDR.reg = (uint32_t)descriptor_section; // Specify

the location of the descriptors

 DMAC->WRBADDR.reg = (uint32_t)wrb; // Specify the

location of the write back descriptors

 DMAC->CTRL.reg = DMAC_CTRL_DMAENABLE | DMAC_CTRL_LVLEN(0xf);

// Enable the DMAC peripheral

 DMAC->Channel[1].CHCTRLA.reg = DMAC_CHCTRLA_TRIGSRC(TC5_DMAC_ID_OVF)

| // Set DMAC to trigger on TC5 timer overflow

 DMAC_CHCTRLA_TRIGACT_BURST; // DMAC

burst transfer

 descriptor.descaddr = (uint32_t)&descriptor_section[1]; // Set up a

circular descriptor

 descriptor.srcaddr = (uint32_t)&ADC1->RESULT.reg; // Take the

result from the ADC0 RESULT register

 descriptor.dstaddr = (uint32_t)adc_buf_0 + sizeof(uint16_t) * ADC_BUF_LEN; // Place

it in the adc_buf_0 array

 descriptor.btcnt = ADC_BUF_LEN; // Beat count

 descriptor.btctrl = DMAC_BTCTRL_BEATSIZE_HWORD | // Beat

size is HWORD (16-bits)

 DMAC_BTCTRL_DSTINC | // Increment the

destination address

 DMAC_BTCTRL_VALID | // Descriptor is valid

 DMAC_BTCTRL_BLOCKACT_SUSPEND; // Suspend

DMAC channel 0 after block transfer

 memcpy(&descriptor_section[0], &descriptor, sizeof(descriptor)); // Copy the

descriptor to the descriptor section

 descriptor.descaddr = (uint32_t)&descriptor_section[0]; // Set up a

circular descriptor

 descriptor.srcaddr = (uint32_t)&ADC1->RESULT.reg; // Take the

result from the ADC0 RESULT register

 descriptor.dstaddr = (uint32_t)adc_buf_1 + sizeof(uint16_t) * ADC_BUF_LEN; // Place

it in the adc_buf_1 array

 descriptor.btcnt = ADC_BUF_LEN; // Beat count

 descriptor.btctrl = DMAC_BTCTRL_BEATSIZE_HWORD | // Beat

size is HWORD (16-bits)

 DMAC_BTCTRL_DSTINC | // Increment the

destination address

 DMAC_BTCTRL_VALID | // Descriptor is valid

 DMAC_BTCTRL_BLOCKACT_SUSPEND; // Suspend

DMAC channel 0 after block transfer

 memcpy(&descriptor_section[1], &descriptor, sizeof(descriptor)); // Copy the

descriptor to the descriptor section

 // Configure NVIC

 NVIC_SetPriority(DMAC_1_IRQn, 0); // Set the Nested Vector Interrupt Controller

(NVIC) priority for DMAC1 to 0 (highest)

 NVIC_EnableIRQ(DMAC_1_IRQn); // Connect DMAC1 to Nested Vector Interrupt

Controller (NVIC)

 // Activate the suspend (SUSP) interrupt on DMAC channel 1

 DMAC->Channel[1].CHINTENSET.reg = DMAC_CHINTENSET_SUSP;

 // Configure ADC

 ADC1->INPUTCTRL.bit.MUXPOS = ADC_INPUTCTRL_MUXPOS_AIN12_Val; // Set the

analog input to ADC0/AIN2 (PB08 - A4 on Metro M4)

 while(ADC1->SYNCBUSY.bit.INPUTCTRL); // Wait for synchronization

 ADC1->SAMPCTRL.bit.SAMPLEN = 0x00; // Set max Sampling Time

Length to half divided ADC clock pulse (2.66us)

 while(ADC1->SYNCBUSY.bit.SAMPCTRL); // Wait for synchronization

 ADC1->CTRLA.reg = ADC_CTRLA_PRESCALER_DIV128; // Divide Clock ADC

GCLK by 128 (48MHz/128 = 375kHz)

 ADC1->CTRLB.reg = ADC_CTRLB_RESSEL_12BIT | // Set ADC resolution to

12 bits

 ADC_CTRLB_FREERUN; // Set ADC to free run mode

 while(ADC1->SYNCBUSY.bit.CTRLB); // Wait for synchronization

 ADC1->CTRLA.bit.ENABLE = 1; // Enable the ADC

 while(ADC1->SYNCBUSY.bit.ENABLE); // Wait for synchronization

 ADC1->SWTRIG.bit.START = 1; // Initiate a software trigger to start

an ADC conversion

 while(ADC1->SYNCBUSY.bit.SWTRIG); // Wait for synchronization

 // Enable DMA channel 1

 DMAC->Channel[1].CHCTRLA.bit.ENABLE = 1;

 // Configure Timer/Counter 5

 GCLK->PCHCTRL[TC5_GCLK_ID].reg = GCLK_PCHCTRL_CHEN | // Enable

perhipheral channel for TC5

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

72 73TinyML with Wio Terminal Lesson 07 project iii: audio scene recognition with microphone: model training and deployment

 GCLK_PCHCTRL_GEN_GCLK1; // Connect generic clock 0

at 48MHz

 TC5->COUNT16.WAVE.reg = TC_WAVE_WAVEGEN_MFRQ; // Set TC5 to

Match Frequency (MFRQ) mode

 TC5->COUNT16.CC[0].reg = 3000 - 1; // Set the trigger to 16

kHz: (4Mhz / 16000) - 1

 while (TC5->COUNT16.SYNCBUSY.bit.CC0); // Wait for

synchronization

 // Start Timer/Counter 5

 TC5->COUNT16.CTRLA.bit.ENABLE = 1; // Enable the TC5 timer

 while (TC5->COUNT16.SYNCBUSY.bit.ENABLE); // Wait for

synchronization

}

// Create double buffer for inference

 inference.buffers[0] = (int16_t *)malloc(EI_CLASSIFIER_SLICE_SIZE * sizeof(int16_t));

 if (inference.buffers[0] == NULL) {

 ei_printf(“ERROR: Failed to create inference buffer 0");

 return;

 }

 inference.buffers[1] = (int16_t *)malloc(EI_CLASSIFIER_SLICE_SIZE *

 sizeof(int16_t));

 if (inference.buffers[1] == NULL) {

 ei_printf(“ERROR: Failed to create inference buffer 1");

 free(inference.buffers[0]);

 return;

 }

 // Set inference parameters

 inference.buf_select = 0;

 inference.buf_count = 0;

 inference.n_samples = EI_CLASSIFIER_SLICE_SIZE;

 inference.buf_ready = 0;

 // Configure DMA to sample from ADC at 16kHz (start sampling immediately)

 config_dma_adc();

 // Start recording to inference buffers

 recording = 1;

}

57

58

59

60

61

62

63

64

65

66

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Add the debug condition on top of the setup function:

Then in the setup function, after run_classifier_init(); add the following code that creates

inference buffers, configures DMA and starts the recording by setting volatile global variable

recording to 1.

// Configure pin to toggle on DMA interrupt

#if DEBUG

 pinMode(debug_pin, OUTPUT);

#endif

1

2

3

4

Delete PDM.end(); and free(sampleBuffer); from microphone_inference_end(void) function

and also microphone_inference_start(uint32_t n_samples) and pdm_data_ready_inference_

callback(void) functions, since we're not using them.

After compiling and uploading the code, open the Serial monitor and you will see probabilities

for every classes printed out. Play some sounds or cough at Wio Terminal to check the accuracy!

Since WioTerminal can connect to the Internet, we can take this simple demo and make it

into a real IoT application with Blynk.

Expansion tasks

74 75TinyML with Wio Terminal Lesson 07 project iii: audio scene recognition with microphone: model training and deployment

Then test your setup by compiling and uploading simple push button example – make sure

you change WiFi SSID, password and your Blynk API token, which you can get in the app.

If code compiles and the test

is successful (pressing top left

button on Wio Terminal causes a

push notification to appear on your

phone), then you can move to the

next stage.

Blynk is a platform that allows you to quickly build interfaces for controlling and monitoring

your hardware projects from your iOS and Android devices. In this case we will use Blink to push

notification to our smartphone if Wio Terminal detects any sounds we should worry about.

To get started with Blink, download the app, register a new account and create a new project.

Add a push notification element to it and press play button.

#define BLYNK_PRINT Serial

#include <rpcWiFi.h>

#include <WiFiClient.h>

#include <BlynkSimpleWioTerminal.h>

char auth[] = "token";

char ssid[] = "ssid";

char pass[] = "password";

void checkPin()

{

 int isButtonPressed = !digitalRead(WIO_KEY_A);

 if (isButtonPressed) {

 Serial.println("Button is pressed.");

 Blynk.notify("Yaaay... button is pressed!");

 }

}

void setup()

{

 Serial.begin(115200);

 Blynk.begin(auth, ssid, pass);

 pinMode(WIO_KEY_A, INPUT_PULLUP);

}

void loop()

{

 Blynk.run();

 checkPin();

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

We’re going to move all the neural network inference code in a separate function and call

it in the loop() function right after Blynk.run(). Similar to what we did before, we check the neural

network prediction probabilities and if they are higher than threshold for a certain class, we

call Blynk.notify() function, which as you might have guessed pushes a notification to your mobile

device.

Find the full code for NN inference + Blynk notification in course materials.

https://wiki.seeedstudio.com/Wio-Terminal-Blynk/

76 77TinyML with Wio Terminal Lesson 08 project iv: people counting with ultrasonic sensor: theory and data collection

Lesson 08

Project IV: People counting with
Ultrasonic sensor: theory and
data collection

52

78 79TinyML with Wio Terminal Lesson 08 project iv: people counting with ultrasonic sensor: theory and data collection

First, let’s understand the data we can get from Ultrasonic sensor and how we can utilize it

for determining the direction of objects.

This Grove - Ultrasonic ranger is a non-contact distance measurement module which works

at 40KHz. When we provide a pulse trigger signal with more than 10uS through signal pin, the

Grove_Ultrasonic_Ranger will issue 8 cycles of 40kHz cycle level and detect the echo. The pulse

width of the echo signal is proportional to the measured distance. Here is the formula: Distance =

echo signal high time * Sound speed (340M/S)/2.

In this article we will create a people counting system by using Wio Terminal, an ordinary

Ultrasonic ranger and special Deep Learning sauce to top it off and actually make it work.

We will also utilize Microsoft Azure IoT Central service to store the room occupancy data in

the cloud and visualize it on PC.

Theory Warning

Do not hot plug Grove-Ultrasonic-Ranger, otherwise it will damage the sensor. The

measured area must be no less than 0.5 square meters and smooth.

After installing Grove - Ultrasonic Ranger library for Arduino IDE and connecting Ultrasonic

Ranger to Wio Terminal D1/D2 port, we can upload this simple script to Wio Terminal connected

to Grove Ultrasonic Ranger and then walk in and walk out of the room.

We can immediately see that for walking it, we get relatively high values(corresponding

to distance from the object) first, which then decrease. And for walking out, we get completely

opposite signal.

#include "Ultrasonic.h"

#define INTERVAL_MS 50

Ultrasonic ultrasonic(0);

void setup() {

 Serial.begin(115200);

 }

void loop() {

 static unsigned long last_interval_ms = 0;

 float distance;

 if (millis() > last_interval_ms + INTERVAL_MS) {

 last_interval_ms = millis();

 distance = ultrasonic.MeasureInCentimeters();

 if (distance < 200.0) {

 Serial.println(distance);

 }

 else

 Serial.println(-1);

 //Serial.print('\t');

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

80 81TinyML with Wio Terminal Lesson 08 project iv: people counting with ultrasonic sensor: theory and data collection

For your application you might need to set this value lower or higher, depending on the set

up. Then start walking.

Theoretically we could write an algorithm ourselves by hand, that can determine the

direction. Unfortunately, real life situations are complicated – we have people, that walk fast

(shorter curve length) and slow (longer curve length), we have thinner people and people who

are... not so thin and so on. So our hand-written algorithm needs to take all of these into account,

which will inevitably make it complicated and convoluted. We have a task involving inference

signal processing and lots of noisy data with significant variations… And the solution is — Deep

Learning.

Install Grove - Ultrasonic Ranger library to Arduino IDE.

Step 1. Download the UltrasonicRanger Library from Github.

Step 2. Extract the archive and place it inside your libraries folder.

Attach Wio terminal and Ultrasonic sensor with screws to wooden or 3D printed frame,

example below:

Let’s create a new project in Edge Impulse Dashboard and prepare to get the data. For

gathering the data, since we don’t need very high sampling frequency, we can use data forwarder

tool from edge-impulse-cli. Upload the ei_people_counter_data_collection.ino script (exactly the

same script as pasted above) to Wio Terminal – the following steps assume that you have already

installed Edge Impulse CLI as described in Lesson 1.

In this particular script we filter out all the values above 200 cm, setting them to -1.

To put the frame on the wall, 3M velcro strips were used.

Additional options include using foam tape, screws or nails.

Preparation

Practice

if (distance < 200.0) {

 Serial.println(distance);

}

else {

 Serial.println(-1);

}

1

2

3

4

5

6

Walking in

Walking out

https://github.com/Seeed-Studio/Seeed_Arduino_UltrasonicRanger/archive/master.zip
https://www.edgeimpulse.com/

82 83TinyML with Wio Terminal Lesson 08 project iv: people counting with ultrasonic sensor: theory and data collection

Change the position of Ultrasonic sensor, installing it lower or higher, or possibly near another

door frame.

Expansion tasks

Walking in

Walking out

None

For none category apart from samples that have nobody in front of the device, it is a good

idea to include samples that have a person just standing close to the device and walking beside

it, to avoid any movement being falsely classified as in or out.

For this lesson we recorded 1 minute 30 seconds of data for every class, each time recording

5000 ms samples and then cropping them to get 1500 ms samples – remember that variety is

very important in the dataset, so make sure you have samples where you (or other people) walk

fast, slow, run, etc.

None(walking near the device, not getting closer or futher away from it)

84 85TinyML with Wio Terminal Lesson 09 project iv: people counting with ultrasonic sensor: model training and deployment

Lesson 09

Project IV: People counting with
Ultrasonic sensor: model training
and deployment

52

86 87TinyML with Wio Terminal Lesson 09 project iv: people counting with ultrasonic sensor: model training and deployment

For expansion task, make sure you have WiFi libraries installed and RTL Fimrware is the latest

version of Wio Terminal. You will also need to download the following libraries from Github:

https://github.com/Seeed-Studio/Seeed_Arduino_rpcWiF

https://github.com/Seeed-Studio/Seeed_Arduino_rpcUnified

https://github.com/Seeed-Studio/Seeed_Arduino_mbedtls#dev

https://github.com/Seeed-Studio/Seeed_Arduino_FS

https://github.com/Seeed-Studio/Seeed_Arduino_SFUD

https://github.com/sstaub/NTP

https://github.com/ciniml/ExtFlashLoader

https://github.com/Seeed-Studio/Seeed_Arduino_LIS3DHTR

https://github.com/bxparks/AceButton

And then install the following libraries using Arduino libraries manger:

PubSubClient

MsgPack

When using Convolutional layers in Edge Impulse, a MaxPooling layer is automatically applied

after Convolutional layer - you can delete it or change its parameters if switching to expert mode,

when training a model.

Preparation

Pooling involves selecting a pooling operation, much like a filter to be applied to feature

maps. The size of the pooling operation or filter is smaller than the size of the feature map;

specifically, it is almost always 2×2 pixels applied with a stride of 2 pixels.

This means that the pooling layer will always reduce the size of each feature map by a factor

of 2, e.g. each dimension is halved, reducing the number of pixels or values in each feature map

to one quarter the size. For example, a pooling layer applied to a feature map of 4×4 (16 pixels)

will result in an output pooled feature map of 2×2 (4 pixels). See the result of Average Pooling

operation applied to 4x4 matrix below:

Convolutional layers significantly reduce computational cost, as compared to fully connected

layers. However when amount of data becomes larger, for example when we perform inference

on higher resolution images or longer periods of time-series data, training a deep convolutional

neural network still requires a lot of compute. Another problem with models consisting of purely

Convolutional layers is that during training it also learns the locations of features, which is not a

desired effect - a cat is still a cat, doesn't matter if it's in the upper or lower part of the image.

We can apply down sampling operation during model training to solve both problems at once,

reducing number of connections and thus size of the model and allowing model to learn the

featurs irrespective of their location in the data, we can add Pooling layers between Convolutional

layers: MaxPooling, MinPooling and AveragePooling.

Theory

https://github.com/Seeed-Studio/Seeed_Arduino_rpcWiF
https://github.com/Seeed-Studio/Seeed_Arduino_rpcUnified
https://github.com/Seeed-Studio/Seeed_Arduino_mbedtls#dev
https://github.com/Seeed-Studio/Seeed_Arduino_FS
https://github.com/Seeed-Studio/Seeed_Arduino_SFUD
https://github.com/sstaub/NTP
https://github.com/ciniml/ExtFlashLoader
https://github.com/Seeed-Studio/Seeed_Arduino_LIS3DHTR
https://github.com/bxparks/AceButton

88 89TinyML with Wio Terminal Lesson 09 project iv: people counting with ultrasonic sensor: model training and deployment

actually also doesn’t matter that much, since we cannot judge if person is coming in or going out

of the room based on frequency. If you look at the data visualization after Spectral analysis block,

it is clear that it’s hard to separate in and out data samples.

Changing processing block to Spectrogram doesn’t really alleviate the problem and resulting

accuracy still stays fairly low – the highest we could get was 79.6 %, with a lot of confusion

between in and out classes. And the winner, once again is Raw data (with scaling) + 1D

Convolutional network. The best results were achieved by tweaking network architecture a bit to

obtain 92% accuracy, for that you will need to switch to “expert” mode and change MaxPool1D

strides to 1 and pool size to 4.

1500 ms is more than enough

to cover time duration person

takes, when walking in the door

or walking out, except if moving

extremely slow. For processing

blocks, we only have two blocks

this time to experiment with –

Raw data or Spectral analysis.

Flatten block will erase all the

time-domain information from

the data, making it completely

useless in determining direction,

so we won’t use it.

Spec t ra l ana l y s i s b l ock

applies Fast Fourier transform to

data samples, converting signal

from time domain to frequency

domain. While FFT can work for

other types of signals, such as

sounds or accelerometer data, in

our case the frequency of signal

Practice

When you are done with data collection, create your impulse – set window length to 1500 ms

and windows size increase to 500 ms.

How good is 92% accuracy and what can be done to improve it?

92% is fairly good as proof of concept or prototype, but horrible as a production model. For

production, mileage may vary – if your application is critical and somehow used in automated

control and decision making, you don’t really want to have anything below 98 – 99 percent and

even that might be low, think about something like a face recognition system for payment or

authentication. Are there ways to improve the accuracy of this system?

• Ultrasonic sensor is cheap and ubiquitous sensor, but it is relatively slow and not very

precise. We can get better data by using Grove TF Mini LiDAR Module.

https://www.seeedstudio.com/Seeedstudio-Grove-TF-Mini-LiDAR.html

90 91TinyML with Wio Terminal Lesson 09 project iv: people counting with ultrasonic sensor: model training and deployment

Wio Terminal MCU (Cortex M4F core) only has one core, so multiprocessing is not an option

– so in this case we will use FreeRTOS and threads. What is going to happen is that during the

inference process, FreeRTOS will pause inference for a brief moment, collect the data sample and

then go back to inference.

This way the actual inference will take a little longer, but the difference is negligible for

this particular use case. We perform inference every 500 ms, so every 500 ms slice of the time

window will be performed inference on for 3 times. Then we take the result that has the highest

confidence across 3 inferences – for example we have highest confidence for “out” label 2

times and for “none” label one time, thus the result should be classified as “out”. To simplify the

testing we will add the lines that turn on Wio Terminal screen when person is entering the room

and turns it off when a person exits.

That is not optimal and we can use either DMA (Direct Memory Access), threading or

multiprocessing to fix this issue.

• Get more data and possibly place the sensor lower, at normal human waist level to make

sure it can detect shorter than normal height people and children.

• Two are better than one – having two sensors taking measurements at slightly different

places will not add too much data (we only have 31 data point in each sample), but might increase

the accuracy. To explore more interesting ideas, a built-in light sensor can be used if Wio

Terminal is appropriately located.

Once the model is trained we can perform live classification with data from device – here

we found that window size increase of 500 ms actually doesn’t work that well and produces

more false positives, so at the next step, when deploying to the device, it is better to increase

the value to 750 ms. To deploy the model to Wio Terminal go to deployment tab, choose Arduino

library, download it, extract the archive and put it inside of your Arduino libraries folder.

This time we will be using continuous inference example to make sure we are not missing any

important data.

If you remember, in the first lesson of the course, for the inference, we would collect all the

data points in the sample, perform the inference and then go back to sampling – that means that

when feeding the data to neural network we would pause the data collection and lose some of

the data.

92 93TinyML with Wio Terminal Lesson 09 project iv: people counting with ultrasonic sensor: model training and deployment

/* Includes -- */

#include <people_counter_raw_inference.h>

#include <Seeed_Arduino_FreeRTOS.h>

#include "Ultrasonic.h"

#include "TFT_eSPI.h"

#define ERROR_LED_LIGHTUP_STATE HIGH

/* Private variables --- */

static bool debug_nn = false; // Set this to true to see e.g. features generated from the

raw signal

static uint32_t run_inference_every_ms = 500;

static float buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE] = {0};

static float inference_buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE];

float distance;

uint8_t axis_num = 1;

TaskHandle_t Handle_aTask;

TaskHandle_t Handle_bTask;

Ultrasonic ultrasonic(0);

TFT_eSPI tft;

vSetErrorLed(LED_BUILTIN, ERROR_LED_LIGHTUP_STATE);

 // Create the threads that will be managed by the rtos

 // Sets the stack size and priority of each task

 // Also initializes a handler pointer to each task, which are important to communicate

with and retrieve info from tasks

 xTaskCreate(run_inference_background,"Inference", 512, NULL, tskIDLE_PRIORITY +

1, &Handle_aTask);

 xTaskCreate(read_data, "Data collection", 256, NULL, tskIDLE_PRIORITY + 2,

&Handle_bTask);

 // Start the RTOS, this function will never return and will schedule the tasks.

 vTaskStartScheduler();

 tft.begin();

 tft.setRotation(3);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

1

2

3

4

5

6

7

8

9

10

11

12

1

2

In setup function, initialize LCD screen

and delete all the lines that are related to accelerometer. Then in place of inference_thread.

start(mbed::callback(&run_inference_background)); paste the following code block - the reason

we need to replace this line is because Thread initialization is done differently in Arduino BLE33

Sense and Wio Terminal.

run_inference_continuous function is largely unchanged, the only two things that need to be

changed here are

• void run_inference_background() to static void run_inference_background(void*

pvParameters)

• ei_classifier_smooth_init(&smooth, 10 /* no. of readings */, 7 /* min. readings the same

/, 0.8 / min. confidence */, 0.3 /* max anomaly */); to

 ei_classifier_smooth_init(&smooth, 3 /* no. of readings */, 2 /* min. readings the same */,

0.6 /* min. confidence */, 0.3 /* max anomaly */);

The line above controls averaging (or smoothing) parameters, that we apply to output of the

model. You can experiment with the values to see what values allow for best performance in terms

of true positives/false positives rate.

While in the original code, data collection happens in loop function, for Wio Terminal

FreeRTOS port, it is better to implement data collection in a thread and leave the loop function

empty. Delete the loop function in original code and replace it with the following code block

Open Examples -> name of your project - > nano_ble33_sense_accelerometer_continuous

sketch and replace everything (including run_inference_background function declaration) above

setup function with the following code block:

94 95TinyML with Wio Terminal Lesson 09 project iv: people counting with ultrasonic sensor: model training and deployment

Here we wait until it is time to get the data, then take distance measurement with ultrasonic

sensor and copy it to inference buffer. Remember that since it is a thread, having delay here

doesn't affect the whole system and just temporarily "stops" the thread - until it is time to take

next reading. FreeRTOS can perform tasks in other threads while data collection thread is inactive.

Okay, the model works, but again all in by itself it is not suitable for actually applying it in

the real world. Let’s add two elements to make it into a full-fledged application – a simple

GUI and data upload to cloud with pretty graphs. We will use LVGL library for creating graphical

user interface and Microsoft Azure IoT Central service for sending data to and visualization. The

resulting sketch is 693 lines long and has 3 concurrent threads running in RTOS. Here is a quick

recap of steps you need to make it work with IoT central.

Find the project in course materials, under name WioTerminal_Azure_Central.ino and open it

in Arduino IDE. After the sketch is uploaded, enter configuration mode by pressing three buttons

on top of Wio Terminal and resetting the device.

Expansion tasks

/**

* @brief Get data and run inferencing

*

* @param[in] debug Get debug info if true

*/

static void read_data(void* pvParameters)

{

 while (1) {

 // Determine the next tick (and then sleep later)

 uint64_t next_tick = micros() + (EI_CLASSIFIER_INTERVAL_MS * 1000);

 // roll the buffer -axis_num points so we can overwrite the last one

 numpy::roll(buffer, EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, -axis_num);

 distance = ultrasonic.MeasureInCentimeters();

 if (distance > 200.0) { distance = -1;}

 buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 1] = distance;

 // and wait for next tick

 uint64_t time_to_wait = next_tick - micros();

 delay((int)floor((float)time_to_wait / 1000.0f));

 delayMicroseconds(time_to_wait % 1000);

 }

}

void loop()

{

 //nothing, all the work is done in two threads

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

“In configuration mode” will be displayed on device screen. Connect to device with Serial

monitor (baud rate 115200, carriage return) and set WiFi SSID, password and Azure IoT Central

credentials (in the following format set_az_iotcyour_ID_scopeyour_primary_keyyour_device_ID),

which you can get by following these steps:

• Go to https://apps.azureiotcentral.com/

https://wiki.seeedstudio.com/Wio-Terminal-LVGL/
https://apps.azureiotcentral.com/
https://apps.azureiotcentral.com/

96 97TinyML with Wio Terminal Lesson 09 project iv: people counting with ultrasonic sensor: model training and deployment

We then add the parts responsible for Edge Impulse model inference, threading and modify

send telemetry function to send values for number of people entered, people left and total number

of people in the room. We also add simple GUI consisting of three buttons and a text field, which

displays information updates – you can see the resulting sketch by opening WioTerminal_EI_

People_Counting_Azure_Central_LVGL.ino from the course materials.

The hardest part was really making sure everything works normally in each separate thread

and does not influence other threads. Sacrifices were made in order to accommodate that

without over-complicating the code too much, for example placing LVGL task update function

right after interface updates and not letting it run periodically.

After configuration is successful, restart Wio Terminal and it will start connecting to Azure

IoT Central, you can watch the detailed progress feedback on the Serial Terminal. You will then be

able to see a) Device status on dashboard has changed to Provisioned b) Telemetry data from

Accelerometer sensor in Device -> Raw data.

• If you don’t have a Microsoft account yet, register one.

• Go to Build -> Custom app. Enter the app name and unique URL (can be similar to app

name). Choose Free plan.

• After an app is created, go to Device Templates. Make a new template of IoT device type.

Choose custom model, add three capabilities as in the below screenshot and two interfaces (press

on Views -> Visualizing the device). After finishing that and making sure everything is correct,

publish the template.

• Create a new device from template by going to Devices and pressing on New, remember

to choose the Template you just created and published!

• Get the ID scope from Administration -> Device connection, Primary key from

Administration -> Device connection -> SAS-IoT-Devices and device ID from Devices tab,

where you created your device on Step 5.

98 99TinyML with Wio Terminal Lesson 10 project v: intelligent meteostation with bme280: theory and data collection

Lesson 10

Project V: Intelligent
meteostation with BME280:
theory and data collection

100 101TinyML with Wio Terminal Lesson 10 project v: intelligent meteostation with bme280: theory and data collection

If you are making this project on Windows, first thing you’ll need to do is to download nightly

version of Arduino IDE, since current stable version 1.18.3 will not compile sketches with a lot

of library dependencies (the issue is that linker command during compilation exceeds maximum

length on Windows).

Second, you need to make sure you have 1.8.2 version of Seeed SAMD board definitions in

Arduino IDE.

Finally, since we’re using a Convolutional neural network and build it with Keras API, it

contains an operation not supported by current stable version of Tensorflow Micro. Browsing

Tensorflow issues on Github I found that there is a pull request for adding this op (EXPAND_

DIMS) to list of available ops, but it was not merged into master at the time of making this video.

we're going to predict the average weather type for next 24 hours, additionally we will predict a

precipitation chance for next 24 hours, with the same model. In order to do that we will utilize

Keras Functional API and multi-output model.

Within multi-output model there is going to be "a stem", common for both outputs, which

going to "branch out" to two different outputs. Main benefit of using multi-output model as

compared to two independent models here is that the data and learned features used for

predicting weather type and precipitation chance are highly related.

Preparation

You will learn how to apply model optimization techniques, that will allow not only to run

medium-sized Convolutional neural network, but also to have this sleeky GUI and WiFi connection

all running at the same time for days and month at the time!

This is the end result, you can see there are current temperature, humidity and atmospheric

pressure values displayed on the screen, together with city name, predicted weather type and

predicted precipitation chance – and in the bottom of the screen there is a log output field,

which you can easily re-purpose for displaying extreme weather information or other relevant

information. While it looks good and useful as it is, there is a lot of things you can add yourself

– for example above mentioned news/tweets output on the screen or using deep sleep mode to

conserve energy and make it battery powered and so on.

In this project we will be dealing with time series data, as we did multiple times before - the

only big difference this time is that the time period is much larger for weather prediction. We are

going to take a measurement every hour and perform prediction on 24 hours of data. Also since

In this lesson we’re going to use Wio Terminal and Tensorflow Lite for Microcontrollers to

create an intelligent meteostation, able to predict the weather and precipitation for next 24 hours

based on local data from BME280 environmental sensor.

Theory

https://github.com/tensorflow/tensorflow/pull/47385
https://github.com/tensorflow/tensorflow/pull/47385

102 103TinyML with Wio Terminal Lesson 10 project v: intelligent meteostation with bme280: theory and data collection

You’ll need to pick a city that at least resembles the climate where you live – it goes without

saying that the model trained on data from Miami and then deployed in Chicago in winter is not

going to output correct predictions.

For data processing and model training step, let’s open Jupyter Notebook you can find in

course materials. The easiest way to run this notebook is to upload it to Google Colab, since it

already has all the packages installed and ready to run.

Practice

It all starts with data of course. For this tutorial we will use a readily available weather dataset

from Kaggle, Historical Hourly Weather Data 2012-2017. Seeed EDU headquarters are located in

Shenzhen, a city in Southern China – and that city is absent from the dataset, so we picked a city

that is located on the similar latitude and also has a subtropical climate – Miami.

You can git clone the Tensorflow repository, switch to PR branch and compile Arduino library by

executing./tensorflow/lite/micro/tools/ci_build/test_arduino.sh on Linux machine – the resulting

library can be found in tensorflow/lite/micro/tools/make/gen/arduino_x86_64/prj/tensorflow_

lite.zip. Alternatively, you can download already compiled library from this project Github

repository and place it into your Arduino sketches libraries folder – just make sure you only have

one Tensorflow lite library at the time!

Experiment with different length time window in the notebook to see how it affects model

accuracy.

Expansion tasks

Alternatively you can execute the notebook locally - to do that first install all the required

dependencies in the virtual environment by running

pip install -r requirements.txt

with ml virtual environment you have created before activated. Then run jupyter notebook

command in the same environment, which will open notebook server in your default browser.

Jupyter Notebooks are great way to explore and present data, since they allow having both

text and executable code in the same environment. The general workflow is explained in the

Notebook text sections.

https://www.kaggle.com/selfishgene/historical-hourly-weather-data
https://www.tensorflow.org/lite/microcontrollers/library#generate_the_arduino_library

104 105TinyML with Wio Terminal Lesson 11 project v: intelligent meteostation with bme280: model training and deployment (tf.Keras)

Lesson 11

Project V: Intelligent
meteostation with BME280:
model training and deployment
(tf.keras)

106 107TinyML with Wio Terminal Lesson 11 project v: intelligent meteostation with bme280: model training and deployment (tf.Keras)

• Use micro_mutable_op_resolver and specify operations that we have in neural network, to

compile our code only with the operations needed to run the model, as opposed to using all_ops_

resolver, which includes all operations supported by current Tensorflow Lite for Microcontrollers

interpreter.

Tensorflow Lite for Microcontrollers includes model Interpreter, which is designed to be

lean and fast. The interpreter uses a static graph ordering and a custom (less-dynamic) memory

allocator to ensure minimal load, initialization, and execution latency. The data placed in input

buffers is fed to the model graph and then after inference is finished results are placed in the

output buffer.

In order to reduce the size of the model and decrease inference time, we perform two

important optimizations:

• Perform full-integer quantization, changing model weights, inputs and outputs from floating

point 32 numbers (each one occupying 32 bits of memory) to integer 8 numbers (each occupying

only 8 bits), thus reducing size by factor of 4.

The model you have trained in the last step was converted to a byte array, which contains

model structure and wights and can now be loaded to Wio Terminal together with C++ code.

Theory

Make sure you have libraries for WiFi and LVGL installed - we will need them for expansion task.

Preparation

Practice

Once the model training is finished, create an empty sketch and save it. Then copy the model

you trained to the sketch folder and re-open the sketch. Change the variable name of model

and model length to something shorter. Then use the code from wio_terminal_tfmicro_weather_

prediction_static.ino, which you can find in course materials for testing.

Let’s go over the main steps we have in C++ code

We include the headers for Tensorflow library and the file with model flatbuffer

#include <TensorFlowLite.h>

//#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"

#include "tensorflow/lite/micro/all_ops_resolver.h"

#include "tensorflow/lite/micro/micro_error_reporter.h"

#include "tensorflow/lite/micro/system_setup.h"

#include "tensorflow/lite/micro/micro_interpreter.h"

#include "tensorflow/lite/schema/schema_generated.h"

#include "model_Conv1D.h"

1

2

3

4

5

6

7

8

108 109TinyML with Wio Terminal Lesson 11 project v: intelligent meteostation with bme280: model training and deployment (tf.Keras)

// Globals, used for compatibility with Arduino-style sketches.

namespace {

tflite::ErrorReporter* error_reporter = nullptr;

const tflite::Model* model = nullptr;

tflite::MicroInterpreter* interpreter = nullptr;

TfLiteTensor* input = nullptr;

TfLiteTensor* output_type = nullptr;

TfLiteTensor* output_precip = nullptr;

constexpr int kTensorArenaSize = 1024*25;

uint8_t tensor_arena[kTensorArenaSize];

} // namespace

void setup() {

 Serial.begin(115200);

 while (!Serial) {delay(10);}

 // Set up logging. Google style is to avoid globals or statics because of

 // lifetime uncertainty, but since this has a trivial destructor it's okay.

 // NOLINTNEXTLINE(runtime-global-variables)

 static tflite::MicroErrorReporter micro_error_reporter;

 error_reporter = µ_error_reporter;

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

Notice how I have micro_mutable_op_resolver.h commented out and all_ops_resolver.h

enabled – all_ops_resolver.h header compiles all the operations currently present in Tensorflow

Micro and convenient for testing, but once you finished testing it is much better to switch to

micro_mutable_op_resolver.h to save devices memory – it does make a big difference.

Next we define the pointers for error reporter, model, input and output tensors and

interpreter. Notice how our model has two outputs – one for precipitation amount and another

one for weather type. We also define tensor arena, which you can think of as a scratch board,

holding input, output, and intermediate arrays – size required will depend on the model you are

using, and may need to be determined by experimentation.

Then in setup function, there is more boilerplate stuff, such as instantiating error reporter,

op resolver, interpreter, mapping the model, allocating tensors and finally checking the tensor

shapes after allocation. Here is when code might throw an error during runtime, if some of model

operations are not supported by current version of Tensorflow Micro library. In case you have

unsupported operations, you can either changed the model architecture or add the support for

the operator yourself, usually by porting it from Tensorflow Lite.

 // Map the model into a usable data structure. This doesn't involve any

 // copying or parsing, it's a very lightweight operation.

 model = tflite::GetModel(Conv1D_tflite);

 if (model->version() != TFLITE_SCHEMA_VERSION) {

 TF_LITE_REPORT_ERROR(error_reporter,

 "Model provided is schema version %d not equal "

 "to supported version %d.",

 model->version(), TFLITE_SCHEMA_VERSION);

 return;

 }

 // This pulls in all the operation implementations we need.

 // NOLINTNEXTLINE(runtime-global-variables)

 //static tflite::MicroMutableOpResolver<1> resolver;

 static tflite::AllOpsResolver resolver;

 // Build an interpreter to run the model with.

 static tflite::MicroInterpreter static_interpreter(model, resolver, tensor_arena,

kTensorArenaSize, error_reporter);

 interpreter = &static_interpreter;

 // Allocate memory from the tensor_arena for the model's tensors.

 TfLiteStatus allocate_status = interpreter->AllocateTensors();

 if (allocate_status != kTfLiteOk) {

 TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");

 return;

 }

 // Obtain pointers to the model's input and output tensors.

 input = interpreter->input(0);

 output_type = interpreter->output(1);

 output_precip = interpreter->output(0);

 Serial.println(input->dims->size);

 Serial.println(input->dims->data[1]);

 Serial.println(input->dims->data[2]);

 Serial.println(input->type);

 Serial.println(output_type->dims->size);

 Serial.println(output_type->dims->data[1]);

 Serial.println(output_type->type);

 Serial.println(output_precip->dims->size);

 Serial.println(output_precip->dims->data[1]);

 Serial.println(output_precip->type);

}

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

110 111TinyML with Wio Terminal Lesson 11 project v: intelligent meteostation with bme280: model training and deployment (tf.Keras)

void loop() {

 int8_t x_quantized[72];

 float x[72] = {0, 0,

 0,

 0,

 0, 0, 0, 0, 0, 0};

// Run inference, and report any error

 TfLiteStatus invoke_status = interpreter->Invoke();

 if (invoke_status != kTfLiteOk) {

 TF_LITE_REPORT_ERROR(error_reporter, "Invoke failed");

 return;

 }

for (byte i = 0; i < 72; i = i + 1) {

 input->data.int8[i] = x[i] / input->params.scale + input->params.zero_point;

 }

1

2

3

4

5

6

1

2

3

4

5

6

7

1

2

3

Finally in the loop function we define a placeholder for quantized INT8 values and an array

with float values, which you can copy paste from Colab notebook for comparison of model

inference on device vs. in Colab.

We quantize the float values to INT8 in for loop and place them in the input tensor one by

one:

Then inference is performed by Tensorflow Micro interpreter and if no errors are reported,

values are placed in the output tensors.

Check and compare the values for the same data point, they should be the same for

quantized Tensorflow Lite model in Colab notebook and Tensorflow Micro model running on your

Wio Terminal.

Similar to input, the output of the model is also quantized, so we need to perform the reverse

operation and convert it from INT8 to float.

// Obtain the quantized output from model's output tensor

 float y_type[4];

 // Dequantize the output from integer to floating-point

 int8_t y_precip_q = output_precip->data.int8[0];

 Serial.println(y_precip_q);

 float y_precip = (y_precip_q - output_precip->params.zero_point) * output_precip-

>params.scale;

 Serial.print("Precip: ");

 Serial.print(y_precip);

 Serial.print("\t");

 Serial.print("Type: ");

 for (byte i = 0; i < 4; i = i + 1) {

 y_type[i] = (output_type->data.int8[i] - output_type->params.zero_point) * output_

type->params.scale;

 Serial.print(y_type[i]);

 Serial.print(" ");

 }

 Serial.print("\n");

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

112 113TinyML with Wio Terminal Lesson 11 project v: intelligent meteostation with bme280: model training and deployment (tf.Keras)

The code is divided into main sketch, get_historical_data and GUI parts. Since our model

requires the data for past 24 hours we would need to wait 24 hours to perform the first

inference, which is a lot – to solve this problem we get the weather for past 24 hours from

openweathermap.com API and can perform the first inference immediately after device boots up

and then replace the values in the circular buffer with temperature, humidity and pressure from

BME280 sensor connected to Wio Terminal I2C Grove socket. For GUI we used LVGL, a Little

and Versatile Graphics Library.

Compile and upload the code, make sure you change WiFi credentials, your location and

openweathermap.com API key in sketch before uploading. After upload the device will connect to

the Internet, get the data for last 24 hours for your location and perform the first inference. Then

it will wait for 1 hour before getting the values from BME280 sensor connected to Wio Terminal -

if no sensor connected, the program will not initialize.

Now the next step is to make it from a demo into actually useful project. Open the sketch

wio_terminal_tfmicro_weather_prediction_static.ino from course materials and have a look at its

content.

Expansion tasks

114 115TinyML with Wio Terminal Lesson 12 student project

Lesson 12

Student project

116 117TinyML with Wio Terminal Lesson 12 student project

In this course so far we have learned how to use Edge Impulse and Tensorflow Lite for

Microcontrollers to train and deploy highly-optimized models for inference with Wio Terminal. You

also should have an understanding of how to combine model inference with integration to Cloud

services and/or graphical user interface.

But of course learning and making doesn't stop here - for the last lesson of the coruse, we

encourage you to think outside of the box and create a project of your own. Number of projects

with TinyML are growing by day and below are some of the most interesting ones our team found

on the Internet.

TinyML Water Sensor - Based on Edge Impulse & Arduino Sense

https://www.hackster.io/enzo2/tinyml-water-sensor-based-on-edge-impulse-arduino-

sense-f8b133

TinyML implementation to identify running water tap sound and once heard one, a buzzer +

LED timer is triggered.

The device is listening continuously for any sound, and once a running tape is identified a

timer is

triggered to produce 20 seconds buzzing sound and a flashing LED.

The project is based on the two components an Arduino Nano 33 BLE Sense and the Edge

Impulse Studio as developing platform.

TinyML Keyword Detection for Controlling RGB Lights

https://www.hackster.io/gatoninja236/tinyml-keyword-detection-for-controlling-rgb-lights-

9f51e9

Train a TensorFlow model to recognize certain keywords and control an RGB light strip using

an Arduino Nano 33 BLE Sense.

ECG Analyzer Powered by Edge Impulse

 https://www.hackster.io/manivannan/ecg-analyzer-powered-by-edge-impulse-24a6c2

 A TinyML based Medical device powered by Edge Impulse to predict Atrial fibrillation, AV

Block 1 and Normal ECG with >90%.

TinyML application powered by Edge Impulse to develop a mini-Diagnosis ECG analyzer

device which can fit in a pocket and it can diagnose heart diseases independently without a cloud

connectivity.

Community projects

https://www.hackster.io/enzo2/tinyml-water-sensor-based-on-edge-impulse-arduino-sense-f8b133
https://www.hackster.io/enzo2/tinyml-water-sensor-based-on-edge-impulse-arduino-sense-f8b133
https://www.hackster.io/gatoninja236/tinyml-keyword-detection-for-controlling-rgb-lights-9f51e9
https://www.hackster.io/gatoninja236/tinyml-keyword-detection-for-controlling-rgb-lights-9f51e9
https://www.hackster.io/manivannan/ecg-analyzer-powered-by-edge-impulse-24a6c2

118 119TinyML with Wio Terminal Lesson 12 student project

Fall Detection and Heart Rate Monitoring Using AVR-IoT

https://www.hackster.io/naveenbskumar/fall-detection-and-heart-rate-monitoring-using-

avr-iot-75fb16

A wearable low-powered device detects falls using machine learning at the edge. It also

monitors the heart rate.

Falls can result in physical and psychological trauma, especially for the elderly. In order

to improve the quality of life of these patients this project presents the development of a fall

detection and heart rate monitoring system. The wearable device obtains information from

accelerometer and heart rate sensor and sends them to the AWS IoT Core. The fall detection is

done offline on the chip using a machine learning algorithm.

Build a Smart Dumbbell with the SAMD21 Machine Learning EVK

https://www.hackster.io/alex-jagger/build-a-smart-dumbbell-with-the-samd21-machine-

learning-evk-c86cae

Turn your dumbbell into a smartbell with the Microchip SAMD21 ML EVK and

 an embedded ML classifier built in the Edge Impulse Studio.

Pet sounds translator

Use Wio Terminal internal microphone to

record the dataset of sounds of your pet being

hungry, angry, lonely, happy, excited, etc and

then train the model that would help you (and

other people) to understand it better!

Robot control with EMG detector

Utilize Grove - EMG Detector module to

analyze arm musucle activity and control your

own robot with arm gestures.

Intelligent plant care

Employ BME280 Temperature & Humidity &

Pressure, Wio Terminal Internal Light sensor and

possibly Grove Moisture Senor to monitor and

control plant environment for optimal growth.

Wio Terminal on Bittle

Install Wio Terminal on Bionic robotic

dog from Petoi LLC. and Seeed Edu - both

Bittle and Wio Terminal have Raspberry Pi pin

connectors, which makes interfacing them easy.

Ideas from Seeed EDU team

https://www.hackster.io/alex-jagger/build-a-smart-dumbbell-with-the-samd21-machine-learning-evk-c86c
https://www.hackster.io/alex-jagger/build-a-smart-dumbbell-with-the-samd21-machine-learning-evk-c86c

120 TinyML with Wio Terminal

	TinyML with Wio Terminal
	Basic Course Information
	Course Overview
	Curriculum outline
	Lesson 01 Introduction to TinyML with WioTerminal
	Lesson 02 Project I: Recognizing gestureswith light sensor: theory anddata collection
	Lesson 03 Project I: Recognizing gestureswith light sensor: model trainingand deployment
	Lesson 04 Project II: Classifying handgestures with accelerometer:theory and data collection
	Lesson 05 Project II: Classifying handgestures with accelerometer:model training and deployment
	Lesson 06 Project III: Audio scenerecognition with microphone:theory and data collection
	Lesson 07 Project III: Audio scenerecognition with microphone:model training and deployment
	Lesson 08 Project IV: People counting withUltrasonic sensor: theory anddata collection
	Lesson 09 Project IV: People counting withUltrasonic sensor: model trainingand deployment
	Lesson 10 Project V: Intelligentmeteostation with BME280:theory and data collection
	Lesson 11 Project V: Intelligentmeteostation with BME280:model training and deployment(tf.keras)
	Lesson 12 Student project

