
TestStand
Semiconductor
Module

2023-08-18

Contents
TestStand Semiconductor Module. 7

Licensing Options. 8
TestStand Semiconductor Module Evaluation Package. 8
TestStand Semiconductor Module Development License (783522-35). 9
TestStand Semiconductor Module Debug Deployment Environment License
(779991-35). 9
TestStand Semiconductor Base Deployment Engine License (784608-35). 9

What's New. 10
2023 Q1. 10
2022 Q2. 10
2021 Q4. 11
2020. 12
2019. 17
2017. 25
2016 SP1. 32
2016. 40
2014 SP1. 44
2014. 48
2013. 56
2012 R2. 66

Getting Started. 70
Overview of Test Program Components. 73
Tutorial: Exploring a Basic Semiconductor Test Program. 87
Tutorial: Importing Test Limits from a File. 99

Example Programs. 106
Accelerometer. 106
Asynchronous Analysis. 120
Custom Instruments. 123
Grading. 132
Multisite Programming Scenarios. 133
Parametric I/V Instrument Panel. 145
Switching. 146
Part Average Testing. 152

ni.com2

TestStand Semiconductor Module

Test Steps and Flow. 160
Test Settings Relationships. 162
Execution Timing Overview. 165
Test Program Structure and Filenames. 167
Pin Map. 169

Natively Supported and Custom Instruments. 170
Model-Based Instruments. 171
Pin Map File XML Structure. 173
Connecting Shared Resources in the Pin Map. 188
Specifying Multiplexers and Multiplexed Connections in a Pin Map. 189

Binning. 190
Bin Definitions File XML Structure. 192
Grading Passed DUTs. 195

Specifications Files. 196
Specifications File XML Structure. 200

Digital Patterns. 201
Multisite Testing. 202

Subsystem Considerations. 205
Subsystems and Pin Maps. 207
Multisite Programming with Switches. 208

Data Management. 209
Code Module Development. 216

Pin and Session Queries. 218
Parallel For Loops. 221
Grouping Instruments. 223
Input Parameters. 225
Getting Values for Specifications. 226
Organization of Measurement Data. 227
Sharing Data between Code Modules. 228
Publishing Results. 231
Sharing Natively Supported Instrument Sessions between LabVIEW and .NET
Code Modules. 234
Using LabVIEW VI Analyzer. 235
Using LabVIEW Classes. 236

© National Instruments 3

TestStand Semiconductor Module

TSM Code Module API. 236
Programming with the TSM APIs in C#. 237

Exporting and Importing Test Limits. 240
Exporting Test Limits from Sequence Files. 240
Test Limits Text File Structure. 244
Opening Test Limit Text Files in Microsoft Excel. 250
Editing Test Limits Text Files. 251
Importing Test Limits from Text Files. 252
Exporting a Correlation Offsets Template File. 254

Debugging. 255
Debugging TestStand Test Programs. 255
Debugging TSM Test Programs. 260
Debugging RF Sessions. 262
Custom Instrument Panels. 262
Viewing Multisite Data in Code Modules (TSM). 265

Using Environments in TSM. 267
Offline Mode. 267

Requirements. 268
Workflow. 269
Offline Mode System Configuration File XML Structure. 276

TSM Sequence Analyzer Rules. 285
Test Time Reduction and Test System Performance Improvements. 290

Disable Unnecessary Result Processors. 292
Use Reentrant VIs. 293
Execute Test Code Modules Using the LabVIEW Run-Time Engine. 293
Configure Semiconductor Multi Test Steps to Use Only Needed Pins. 294
Enable Parallel For Loop Iterations in VIs. 295
Reduce Settling Times in Test Code Modules. 296
Disable Tracing in TestStand. 296
Use Inline Expansion for Sequence Call Steps. 296
Thread Settings for Maximum Parallelism. 298
Adjust BIOS CPU Settings. 300
Measuring Performance. 301
Perform Analysis in Parallel with Measurements. 322

ni.com4

TestStand Semiconductor Module

Inline Quality Assurance Testing. 322
Creating an Inline QA Algorithm Sequence File. 324
Enabling Inline QA on the Test Station. 326

Part Average Testing. 326
Plug-In Architecture. 328

Station Settings. 338
Customizing the Behavior for Obtaining Station Settings. 339
Accessing Station Settings from a Test Program. 345
NI_SemiconductorModule_StationSettings Data Types. 348

Lot Settings. 348
Customizing the Behavior for Obtaining Lot Settings. 349
Accessing Lot Settings from a Test Program. 357
NI_SemiconductorModule_LotSettings Data Types. 361

Reports and Data Logs. 361
Enabling and Configuring TSM Result Processing Plug-ins. 364
Specifying Report and Data Log Filenames. 365
Standard Test Data Format (STDF) Log. 368
Lot Summary Reports. 386
Debug Test Results Logs. 388
CSV Test Results Logs. 391

Handler and Prober Support. 393
Creating a Handler/Prober Driver Sequence File. 394
NI Simulated Handler Driver. 405
Handler/Prober Modes (TSM). 406

Performing Tasks when Lot Testing Completes. 407
Customizing the LotTestingComplete Callback. 407

Retesting DUTs. 408
Deployment. 409

Installer Settings for Deploying TSM Test Programs. 411
Deploying LabVIEW Code Modules with TSM Test Programs. 411
Deploying .NET Code Modules with TSM Test Programs. 412
Protecting Test Programs and Test Limits from Editing and Viewing. 413

Operator Interfaces. 413
Running a Test from the Default TSM Operator Interface. 415

© National Instruments 5

TestStand Semiconductor Module

Customizing Operator Interfaces. 417
Handling Errors in Operator Interfaces. 425
LabVIEW Architecture. 426

Environment Reference. 430
Sequence Editor UI Configuration. 430
Test Program Editor. 439
Bin Definitions Editor. 451
Pin Map Editor. 453
Step Types. 470
Dialog Boxes and Windows. 538

TSM Application API. 555
Creating or Obtaining the Semiconductor Module Manager Object. 556
Using the Semiconductor Module Manager Object. 557
Structure of the TestResultsPropertyObject. 560
TestStand Semiconductor Module Application .NET API. 565

Glossary. 565

ni.com6

TestStand Semiconductor Module

TestStand Semiconductor Module
Use this help file, the getting started content, and the example programs to learn
more about the following features and functionality the TestStand Semiconductor
Module™ (TSM) adds to TestStand for developing semiconductor test system
software:

■ Multisite pin map file, TSM Code Module APIs, and Semiconductor Multi Test
step type for developing a semiconductor test program that runs on multiple
test system hardware configurations with a variable number of test sites at a
high parallel test efficiency.
■ Support for binning devices under test (DUTs) based on test results.
■ Support for exporting and importing test limits with text files.
■ Data types, configurable callbacks, and dialog boxes for specifying test
program settings, test station settings, and test lot information.
■ Plug-in architecture for handler and prober communication using TSM
handler/prober drivers.
■ Result processing plug-ins for generating report and data log files for the
test lot, such as Standard Test Data Format (STDF) log file.
■ Plug-in architecture for performing part average testing.
■ Customizable operator interface for executing test programs, enabling or
disabling test sites, displaying statistics, and configuring test lot information
and test station settings.
■ Customizable pin- and site-aware instrument panel VIs for debugging
instruments during test program execution at a breakpoint.

Note If you open help files directly from the <T
estStand>/Doc/Help directory, NI
recommends that you open TSHelp.chm first
because this file is a collection of all the
TestStand help files and provides a complete
table of contents and index.

© National Instruments 7

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

To navigate this help file, use the Contents, Index, and Search tabs to the left of
this window.

© 2013–2023 National Instruments Corporation. All rights reserved.

TestStand Semiconductor Module Licensing Options
After you install TSM, you must use the NI Activation Wizard to activate the software
or initiate the evaluation period for the software. When you activate TSM, you need
the serial number and the name of the software kit. You can find both of these items
on the Certificate of Ownership card included in your software kit.

NI offers a variety of licenses for the different ways you can use TSM in development
and deployment applications. You can select from the following types of licenses:
TestStand Semiconductor Module Development License and TestStand
Semiconductor Module Debug Deployment Environment License.

Use the following descriptions only as a reference for the licensing options. Refer to
ni.com/activate for more information about activating TestStand licenses. Contact a
local NI representative for more information or for questions about specific
licensing needs.

Note This document does not replace the NI
Software License Agreement installed in the <N
ational Instruments>\Shared\MDF\L
egal\license\NIReleased directory.

■ TestStand Semiconductor Module Evaluation Package
■ TestStand Semiconductor Module Development License (783522-35)
■ TestStand Semiconductor Module Debug Deployment Environment License
(779991-35)
■ TestStand Semiconductor Module Base Deployment License (784608-35)

TestStand Semiconductor Module Evaluation Package

When you run TSM in Evaluation Mode, the software expires after 7 days. The
software runs as a fully functional Development System during the evaluation
period.

ni.com8

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tshelp/nitopics/nilm.html

You can use an ni.com User Profile to extend the evaluation period for an
additional 45 days. You can activate a license at any point during or after the
evaluation period.

TestStand Semiconductor Module Development License (783522-35)

Activate the TestStand Semiconductor Module Development System License to
develop and edit test programs within the TestStand Sequence Editor. You must
have an ni.com User Profile to activate an TestStand Semiconductor Module
Development System License.

TestStand Semiconductor Module Debug Deployment Environment License
(779991-35)

The TestStand Semiconductor Module Debug Deployment Environment License
offers the most flexibility for deploying TestStand, LabVIEW-based, Measurement
Studio-based systems.

Activate this license to install the development versions of TestStand, LabVIEW,
Measurement Studio, Switch Executive, TSM, and any corresponding add-on toolkits
on a single test station so you can debug deployed test applications on the test
station. This license grants the ability to make minor edits to fix bugs in deployed
test applications but does not grant the ability to perform any development tasks
using TestStand, LabVIEW, or Measurement Studio on the test station.

You cannot activate and deactivate the TestStand Semiconductor Module Debug
Deployment Environment License and reuse it on multiple computers. If you need
to use a single debug license across multiple computers, contact NI for more
information about the Concurrent TestStand Semiconductor Module Debug
Deployment Environment License.

TestStand Semiconductor Module Base Deployment License (784608-35)

The TestStand Semiconductor Module Base Deployment License is the minimum
license required for all deployed TSM-based applications. Activate this license to
deploy the TSM Runtime, the TestStand Runtime, and the Switch Executive Runtime.
The Base Deployment License enables you to run a TSM operator interface and test
programs on the single test station to which the license applies. This license does

© National Instruments 9

TestStand Semiconductor Module

not grant the ability to perform any development tasks using the TestStand
Sequence Editor, a TestStand custom sequence editor, or the TestStand API.

What's New in TSM
Each new version of TSM includes new features, API additions and changes, and
compatibility and known issues.

What's New in the TestStand 2021 Semiconductor Module 2023 Q1

The TestStand 2021 Semiconductor Module 2023 Q1 introduces new features.

TestStand 2021 Semiconductor Module 2023 Q1 New Features

Learn what's new in TestStand 2021 Semiconductor Module 2023 Q1.

■ Use the TSM Runtime Data Viewer to see test results and debug issues at
runtime.
■ See which alarms were raised during the execution of a test program in the
Lot Summary Report.
■ When used with STS Software 23.0 and later, TSM uses the STS blind-mate
port names for RF instruments instead of the instrument driver port names.
TSM displays the blind-mate port names in the Pin Map Editor and returns the
blind-mate port names as the channel names for RF pin queries.

What's New in the TestStand 2021 Semiconductor Module 2022 Q2

The TestStand 2021 Semiconductor Module 2022 Q2 introduces new features. Some
compatibility issues might exist as a result of changes in the TestStand 2021
Semiconductor Module 2022 Q2.

TestStand 2021 Semiconductor Module 2022 Q2 New Features

Learn what's new in TestStand 2021 Semiconductor Module 2022 Q2.

■ Run TSM with TestStand 2021.

ni.com10

TestStand Semiconductor Module

■ Use LabVIEW 2021 to run TSM examples and tutorials and develop TSM code
modules.
■ Quickly debug Semiconductor Sequence Call steps by reviewing test results
on the Tests tab at runtime.
■ Get and set sessions through the Model-Based Instruments API.
■ Write code modules with the Mixed-Signal TSM Python API.

TestStand 2021 Semiconductor Module 2022 Q2 Compatibility

Refer to the TestStand 2021 Semiconductor Module 2022 Q2 Release Notes on the NI
website for a list of known issues in TestStand 2021 Semiconductor Module 2022 Q2.

The TestStand 2021 Semiconductor Module 2022 Q2 introduces the following
behavior changes between version 2021 Q4 and version 2022 Q2:

■ TSM no longer includes step type templates. TSM continues to provide the
mechanism for other add-ons to install step type templates.
■ TSM drops support for LabVIEW 2017. TSM examples and tutorials that use
LabVIEW are no longer located within year-specific folders. For example, the
Accelerometer with LabVIEW 2018 example is now located in <TestStand P
ublic>\Examples\NI_SemiconductorModule\Accelerometer\L
abVIEW\Accelerometer.seq instead of in <TestStand Public>\E
xamples\NI_SemiconductorModule\Accelerometer\LabVIEW\2
018\Accelerometer.seq.

What's New in the TestStand 2020 Semiconductor Module 2021 Q4

The TestStand 2020 Semiconductor Module 2021 Q4 introduces new features. Some
compatibility issues might exist as a result of changes in the TestStand 2020
Semiconductor Module 2021 Q4.

TestStand 2020 Semiconductor Module 2021 Q4 New Features

Learn what's new in TestStand 2020 Semiconductor Module 2021 Q4.

■ Use the Perform Part Average Testing step to perform part average testing
for any tests with part average testing enabled that have already been
performed for the current part. Use the Perform Part Average Testing step to

© National Instruments 11

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

determine whether to perform part average testing before or after inline QA
and other steps.
■ Call larger and more complex test sequences with the Semiconductor
Sequence Call step. Use the Semiconductor Sequence Call step's Step
Name.Published Data Id field to assign tests to Semiconductor Multi Test
steps, even if multiple Semiconductor Multi Test steps in the called sequence
publish the same data ID.
■ Analyze sequences that include the Semiconductor Sequence Call step in
the TestStand Sequence Analyzer to resolve errors and warnings before
deploying your test program.
■ Customize the MIR EXEC_TYPE field in your STDF records to simplify
downstream STDF tools and scripts.

TestStand 2020 Semiconductor Module 2021 Q4 Compatibility and Known Issues

Refer to the TestStand 2020 Semiconductor Module 2021 Q4 Release Notes on the NI
website for a list of known issues in TestStand 2020 Semiconductor Module 2021 Q4.

The TestStand 2020 Semiconductor Module 2021 Q4 introduces the following
behavior changes between version 2020 and version 2021 Q4:

■ The default value of the Master Information Record (MIR) EXEC_TYPE field
has changed to NI STS Software and is no longer dependent on the
version of the STS Software you have installed. You can also customize the EX
EC_TYPE field value.

TestStand 2020 Semiconductor Module 2021 Q4 Bug Fixes

Refer to the TestStand 2020 Semiconductor Module 2021 Q4 Release Notes on the NI
website for a list of bugs fixed in TestStand 2020 Semiconductor Module 2021 Q4.

This is not an exhaustive list of issues fixed in TestStand 2020 Semiconductor
Module 2021 Q4.

ni.com12

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/sequence_analyzer_overview.htm

What's New in the NI TestStand 2020 Semiconductor Module

The NI TestStand 2020 Semiconductor Module introduces new features. Some
compatibility issues might exist as a result of changes in the NI TestStand 2020
Semiconductor Module.

NI TestStand 2020 Semiconductor Module New Features

The following list describes the new features in the NI TestStand 2020
Semiconductor Module (TSM) and other changes since the NI TestStand 2019
Semiconductor Module.

 Use this Toggle Expansion button to expand or collapse all the following
sections at once. Use the black arrows next to each heading to expand or collapse
sections individually. You must expand each section you want to print or search.

 Alarms

The alarms feature allows NI instrument drivers to report error conditions for an
instrument at run-time. TSM checks for alarms after each test step and allows you to
specify how alarms are handled on a per-alarm and per-pin basis.

Note NI TestStand 2020 Semiconductor Module
supports the ComplianceAlarm for NI-
DCPower 20.1 and later. The ComplianceAla
rm indicates that the instrument state was not
at its programmed value or exceeded
programmed limits when a measurement was
made, which invalidates the measurement.

 Grouping NI-DCPower Instrument Channels for Use in Multi-Channel Sessions

You can group multiple NI-DCPower instrument channels and treat them as a single
logical instrument and control them in one session. When all NI-DCPower
instrument channels belong to a single group you can avoid using session loops in
code modules. The instrument driver performs most operations on multiple
channels in a single function call in parallel to achieve improved multisite efficiency.
Refer to the instrument driver help for information about hardware limitations that
prevent certain instruments from operating together as a single instrument.

By default, when you create a new NI-DCPower instrument in the pin map file, TSM

© National Instruments 13

TestStand Semiconductor Module

javascript:toggleexpansion()
javascript:expand('alarms_section','alarms_arrow')
javascript:expand('dcpowerchannels_section','dcpowerchannels_arrow')

creates a single channel group containing all instrument channels. TSM creates a
single session for each channel group of NI-DCPower instruments in the pin map
file. TSM 2019 and earlier do not allow for channel grouping and pin maps created
with older versions of TSM do not contain channel group information. You must
convert all NI-DCPower instruments in these pin maps to use channel groups.

 Offline Mode

The default main menu now displays an Offline Mode indicator to the right of the
Help menu when you enable Offline Mode. When you disable Offline Mode, the
default main menu no longer displays the Offline Mode indicator.

 Semiconductor Sequence Call Step

Use the Semiconductor Sequence Call step to call a sequence and pass tests to
Semiconductor Multi Test steps in the called sequence.

 Set Relays Step

Use the Set Relays step to control relays and to apply relay configurations.

 Test Program Performance Analyzer

■ You can add notes and additional metadata to Test Program Performance
Measurement Data Logs for improved record keeping during performance
optimization.
■ Use the Log Browser Window to specify a directory of performance log files,
view log files and their metadata, and select log files to open and/or compare.

■ For improved performance while loading data in the in the Test Program
Performance Analyzer, you can load only a sample of log files within a
directory by specifying the Log Data Sample Rate.

 Additional Improvements

The NI TestStand 2020 Semiconductor Module includes the following additional
enhancements:

■ Use Semiconductor Multi Test steps and Semiconductor Action steps in
most types of loops without the possibility of incorrect results. There remain

ni.com14

TestStand Semiconductor Module

javascript:expand('offlinemode_section','offlinemode_arrow')
javascript:expand('semisequencecallstep_section','semisequencecallstep_arrow')
javascript:expand('setrelaysstep_section','setrelaysstep_arrow')
javascript:expand('tppa_section','tppa_arrow')
javascript:expand('additional_section','additional_arrow')

some limitations to using TSM steps in loops but the steps report run-time
errors in those situations instead of producing incorrect results.
■ Specify the relays you use in your code module on the Options tab of a
Semiconductor Multi Test or Semiconductor Action step that uses the code
module.
■ New TSM sequence analyzer rules return errors in the following situations:

■ When instruments defined in the pin map are missing from Measurement
& Automation Explorer (MAX)
■ When the Specify DUT Pins or Specify Site Relays option on the
Options tab of a Semiconductor Multi Test step or a Semiconductor Action
step is enabled, but some of the included DUT pins or relays are not in the
pin map file.

■ Create a basic TSM test program from a digital pattern project. Select
Semiconductor Module»Create Test Program from Digital Pattern
Project to launch the Create Test Program from Digital Pattern Project dialog
box.
■ Use an expression to determine the software bin at run time. The
Result.Evaluations property of the Semiconductor Multi Test step type
includes a new FailBinExpr property, which is an expression that
determines the software bin at run time. If the test fails and this expression is
not empty, the Semiconductor Multi Test step evaluates the expression and
copies the evaluated value to the FailBin property.
■ Support for logging failed cycle information from NI-Digital Pattern Drivers
in .NET applications.
■ The Create Multisite Data for Analog Output VI and corresponding .NET
method have been updated. The Create Multisite Data for Analog Output VI for
DAQmx now supports multiple task pin queries and the Site Pin Data
indicator for the Per Site Data instance of this VI has improved data
representation.
Outputs from the TSM .NET API more closely match the DAQmx API and the sa
mplesPerSitePerPin parameter of the CreatePerSiteMultisiteD
ataForDAQmxAnalogOutput .NET method, which supplants the Create

© National Instruments 15

TestStand Semiconductor Module

PerSiteMultisiteDataForAnalogOutput .NET method, has
improved data representation.

NI TestStand 2020 Semiconductor Module Compatibility and Known Issues

Refer to the List of Known Issues in NI TestStand 2020 Semiconductor Module on the
NI website for a list of known issues in NI TestStand 2020 Semiconductor Module
(TSM).

The NI TestStand 2020 Semiconductor Module introduces the following behavior
changes between version 2019 and version 2020:

■ You cannot use multiple Semiconductor Multi Test steps or Semiconductor
Action steps configured to use multiple threads in While loops, in Do While
loops or in For loops that use the Custom Loop option when performing
multisite testing. The steps report a run-time error in these situations. Use
other types of loops instead, such as For loops that use the Fixed Number of
Iterations option.

Previously, NI recommended not to use Semiconductor Multi Test steps or
Semiconductor Action steps in loop blocks that the TestStand For step and For
Each step create because using multiple Semiconductor Multi Test steps or
Semiconductor Action steps in a loop can result in incorrect step results in
certain multisite situations. NI previously recommended making the last step
in the loop block a Semiconductor Multi Test step or a Semiconductor Action
step with the Multisite Option set to One thread only to avoid
incorrect behavior of Semiconductor Multi Test steps or Semiconductor Action
steps in a loop.
■ For code modules that use relays, you must specify the relays on the
Options tab of the Semiconductor Multi Test step or Semiconductor Action
step that uses the code module.

Previously, TSM included all relays in the SemiconductorModuleContex
t for all steps. As a result, a test step that uses relays and executes
successfully in previous versions of TSM might generate a run-time error in

ni.com16

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_while.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_do_while.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_for.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_forloop.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_forloop.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_forloop.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_for.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_for_each.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_for_each.htm

version 2020. To prevent the run-time error, specify the relays that the code
module uses on the Options tab.

NI TestStand 2020 Semiconductor Module Bug Fixes

Refer to the List of Bugs Fixed in NI TestStand 2020 Semiconductor Module on the NI
website for a list of bugs fixed in NI TestStand 2020 Semiconductor Module.

This is not an exhaustive list of issues fixed in NI TestStand 2020 Semiconductor
Module.

What's New in the NI TestStand 2019 Semiconductor Module

The NI TestStand 2019 Semiconductor Module introduces new features. Some
compatibility issues might exist as a result of changes in the NI TestStand 2019
Semiconductor Module.

NI TestStand 2019 Semiconductor Module New Features

The following list describes the new features in the NI TestStand 2019
Semiconductor Module (TSM) and other changes since the NI TestStand 2017
Semiconductor Module.

 Use this Toggle Expansion button to expand or collapse all the following
sections at once. Use the black arrows next to each heading to expand or collapse
sections individually. You must expand each section you want to print or search.

 Offline Mode

Use Offline Mode in TSM to develop, run, and debug test programs only on a
computer without access to NI instruments. Ensure you meet the requirements on
the computer on which you want to use Offline Mode.

 Grouping Instruments for Use in Multi-Instrument Sessions

You can group multiple NI-Digital Pattern instruments or multiple NI-SCOPE
instruments together and treat them as a single instrument. When all the
instruments of the same type belong to a single group or when the instruments of
the same type in a subsystem belong to a single group, you do not need to use
parallel For Loops to iterate over the instrument driver sessions. The instrument
driver specific to the grouped instruments performs most operations on all channels

© National Instruments 17

TestStand Semiconductor Module

javascript:toggleexpansion()
javascript:expand('offlinemode_section','offlinemode_arrow')
javascript:expand('channelexpansion_section','channelexpansion_arrow')

in parallel to achieve improved multisite efficiency. Refer to the instrument driver
help for information about hardware limitations that prevent certain instruments
from operating together as a single instrument.

By default, when you create a new NI-Digital Pattern instrument or a new NI-SCOPE
instrument in the pin map file, TSM sets the group attribute to Digital or to Sco
pe so that all newly created NI-Digital Pattern instruments or NI-SCOPE instruments
belong to the same group. TSM creates a single session for each group of NI-Digital
Pattern instruments in the pin map file. TSM 2017 and earlier do not automatically
group NI-Digital Pattern instruments or NI-SCOPE instruments together in pin map
files. Use the Pin Map Editor to modify existing pin map files to change the value of
the Group option for each instrument to assign the instrument to the same group.

 Instrument Model Library

The Instrument Model Library is a collection of XML files that describe instruments.
Instrument model description files include general information, details for
connection components (channels, ports, resources), and configuration properties
of the instrument and its resources. The instrument model description file does not
include session information.

Use the Instruments tab of the Pin Map Editor to add and modify instances of
model-based instruments in the pin map.

Use the following new TSM Code Module API VIs to return the names, properties,
and values of model-based instruments:

■ Get All Model-Based Instrument Names—Use this VI to return the
instrument names and models for all model-based instruments in the
Semiconductor Module context. You can use instrument names to query the
model properties for the information needed to create the appropriate
sessions to drive the instrument.
■ Get Model-Based Instrument Property List—Use this VI to return an
object containing the name of the model and an array of
ModelBasedInstrumentProperty objects that contain the names and values of
the instrument properties.
■ Get Model-Based Instrument Resource Property List—Use this VI to
return an array of IModelBasedInstrumentResourcePropertyList objects where

ni.com18

TestStand Semiconductor Module

javascript:expand('pinmapimprovements_section','pinmapimprovements_arrow')

each element contains the name of a resource as well as an array of
ModelBasedInstrumentProperty objects that contain the names and values of
the instrument resource properties.
■ Get Model-Based Instrument Property Value—Use this VI to return the
value of a named property and a Boolean value indicating whether or not the
named property was found in the property list supplied.
■ Get Model-Based Instrument Resource Property Value—Use this VI
to return the value of a named property from a named resource and a Boolean
value indicating whether or not the named property was found in the array of
resource property lists supplied.

 Connecting Shared Resources in a Pin Map

■ Use the Connections table to connect shared resources in a pin map. A
shared resource is a device on the tester or DIB that is connected to an
instrument or relay driver module and shared by multiple sites. You can
connect shared resources using system pins and system relays, or by using
DUT pins and site relays.

 Relay Configurations

■ In the Pin Map Editor, you can now create relay configurations to set
multiple relays to a state defined in the pin map.
■ Use the Apply Relay Configuration VI or the ApplyRelayConfiguratio
n .NET method to perform relay actions on the relays in the relay
configuration.

 CSV Test Results Log

You can now enable and configure the new CSV Test Results Log to store data in a
comma-separated values text file, which provides better performance than the
Debug Test Results Log result processor in a production environment. The CSV Test
Results Log result processor generates a single file for all sites in the test program.
You can open the .csv file directly in a spreadsheet application for analysis or to
correlate test results.

The Test Results Log is now the Debug Test Results Log.

© National Instruments 19

TestStand Semiconductor Module

javascript:expand('sharedpins_section','sharedpins_arrow')
javascript:expand('relayconfigurations_section','relayconfigurations_arrow')
javascript:expand('csvlog_section','csvlog_arrow')

 InstrumentStudio Integration

■ Use the InstrumentStudio toolbar button to launch InstrumentStudio, which
is a pin- and site-aware, software-based front panel application you can use to
monitor, control, and record measurements from supported devices.
■ You can also use the InstrumentStudio Project Panel in the Test Program
Editor to launch InstrumentStudio, or to specify an InstrumentStudio
configuration file to use in a test program.

Note If you launch InstrumentStudio in any
other way, such as from the Microsoft Windows
Start menu, InstrumentStudio is not pin and site
aware.

 Multisite Scaling Improvements

TSM 2019 includes extensive optimizations for multisite testing with improved
parallel test efficiency (PTE). These performance improvements can significantly
increase throughput for systems, depending heavily on the specifications of the
system.

 Test Program Development and Debugging Improvements

■ You can now configure TSM-specific environments. TSM is enabled by
default in custom TSM environments you create. You can disable and re-
enable TSM in a custom TSM environment. Use the Configure Environment
dialog box to create, load, and edit an environment.
■ You can now use the Site Data Exists and the Global Data Exists TSM Code
Module API to check for the existence of per-site or global data.
■ Switching settings for TSM Step Types are disabled. Use relays in the pin
map to perform switching operations.
■ The Test Program Performance Analyzer graphs include the following
changes:

■ The Average Step Times graph is now the Step Time Statistics graph with
options to show average step times, PTE%, and a distribution box plot.
■ You can now view statistical distribution of test times as a scatter
distribution.

ni.com20

TestStand Semiconductor Module

javascript:expand('instrumentstudiointegration_section','instrumentstudiointegration_arrow')
javascript:expand('msperfimprove_section','msperfimprove_arrow')
javascript:expand('developmentdebuggingimprovements_section','developmentdebuggingimprovements_arrow')
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/tsenv_defining.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/tsenv.html
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_config_env.html

■ You can log failed cycle information from the NI-Digital Pattern Driver to
STDF Log files.
■ Use the Per-Instrument to Per-Site Pattern Results VI to convert Pass/Fail
pattern burst results from a call to the NI-Digital Pattern driver into per-site
results that you can use in per-site loops in code modules.
■ Use the Per-Instrument to Per-Site Data VI or PerInstrumentToPerSit
eData .NET method to transform data that is arranged by instruments and
channels into data arranged by sites and pins.
■ The LabVIEW VI Analyzer now verifies that VIs use the High Resolution
Polling Waiting VI instead of other wait functions to improve wait time
precision.
■ TSM now supports pin-based per-site publishing. Use the optional Pin and
Published Data Id parameters of the Publish Data VI or PublishPerSit
e .NET method to publish data for each site to tests that have non-empty Pin
and Published Data Id fields.
■ You can now use the Publish Data VI to publish data for a single value from a
single site.
■ In LabVIEW, you can now use the TSM controls instead of string controls to
select from the pins, relays, relay configurations, specifications, published
data IDs, and input data IDs of a linked sequence file. To use this feature, you
must link a LabVIEW project file to a TSM sequence file.
■ Updated step templates better conform to suggested NI code style
guidelines and test program structure. The step templates include the
following major changes:

Type of Change Details
Source File/Directory Structure

■ LabVIEW version-specific directories
■ Template-specific directories
■ Template_ prefix changed to Templa
te - .

Behavior of Adding to Test Program
■ Template-specific default location
■ Instantiating a .NET template contained
within a .NET assembly with the same na

© National Instruments 21

TestStand Semiconductor Module

me as a template that has already been in
stantiated automatically references the ex
isting assembly

Significant Coding Style Changes
■ Use of the High Resolution Polling Wait
VI for increased precision in wait times
■ Use of re-entrant VIs
■ Disabled automatic error handling
■ VIs no longer contain compiled code
■ Changed connector panes
■ Eliminated coercion dots by explicitly c
onverting data
■ Renamed error and TSM context control
s and indicators

Additional Enhancements

 Additional Improvements

The NI TestStand 2019 Semiconductor Module includes the following additional
enhancements:

■ The STDF Log now includes the correlation offsets file path you specify in
the Load Correlation Offsets step as a DTR.
■ In the Pin Map Editor, you can now change the type of an instrument and
maintain the relevant property values and existing connections among pins,
relays, instruments, and channels. Right-click the instrument and select
Change to in the context menu or use the Instrument Type drop-down
menu to select the new instrument type.
■ The TSM Operator interface now displays the active STS Software installed
on the system.
■ The Pin(s) to NI-Digital Pattern Session(s) VI and the GetNIDigitalPatt
ernSession(s) .NET methods now support pin queries for single or
multiple pins that return a single NI-Digital instrument.
■ The Set Site Data VI is now a polymorphic VI that allows the use of 2D arrays,
in which each row of the array contains data corresponding to one site.

ni.com22

TestStand Semiconductor Module

javascript:expand('additional_section','additional_arrow')

■ You can now use the generic versions of the GetSiteData and GetGloba
lData .NET methods to specify a data type to cast the retrieved data to
before returning it.
■ If you configure the LabVIEW Adapter to use the LabVIEW Development
System, the window title of the VI clone displays a comma-separated list of
the site numbers executing on that VI clone. For example, the window title for
a VI clone that executes sites 1 and 2 for the Continuity VI will read:
Continuity.vi: Site(s) 1,2.
■ The Lot Summary Report now includes a Test Results section that contains a
table of test evaluation results by site for all the tests that executed at least
once in the lot, sorted by execution order. You can use this data to compare
the results of lots, which can be helpful during debugging. You can
programmatically obtain the same data with the Test Results Statistics TSM
Application API.
■ The Test Results Log is now the Debug Test Results Log. With the new
performance improvements to the Debug Test Results Log, you can now leave
the Debug Test Results Log enabled during production. Enabling the Debug
Test Results Log might affect the performance of a test program. Perform a
benchmark to ensure no performance loss exists when you enable the Debug
Test Results Log.

NI TestStand 2019 Semiconductor Module Compatibility and Known Issues

Refer to the List of Known Issues in NI TestStand 2019 Semiconductor Module on the
NI website for a list of known issues in NI TestStand 2019 Semiconductor Module
(TSM).

The NI TestStand 2019 Semiconductor Module introduces the following behavior
changes between version 2017 and version 2019:

■ TSM 2019 modifies the behavior of the Control Relay VI Multiple Relays -
Multiple Actions polymorphic instance and the ControlRelay .NET
method. Final relay state positions are now determined sequentially, based
on the order of the input relays or relay groups. The following table
demonstrates the change in relay behavior between TSM 2017 and TSM 2019:

© National Instruments 23

TestStand Semiconductor Module

javascript:reflink('/infotopics/db_lvadapterconfig.htm')

Relays/Relay Groups
(Input)

States (Input) Final States (TSM 2017) Final States (TSM 2019)

Rly1, Rly2, Rly3, Rly1 Open Relay, Close Rel
ay, Open Relay, Close
Relay

Rly1:Closed, Rly2:Clo
sed, Rly3:Open

Rly1:Closed, Rly2:Clo
sed, Rly3:Open

Rly1, Rly2, Rly3, Rly1 Close Relay, Close Rel
ay, Open Relay, Open
Relay

Rly1:Closed, Rly2:Clo
sed, Rly3:Open

Rly1:Open, Rly2:Close
d, Rly3:Open

Grp1 (Rly1, Rly2, Rly3)
, Rly1

Close Relay, Open Rel
ay

Rly1: Closed, Rly2: Cl
osed, Rly3: Closed

Rly1: Open, Rly2: Clos
ed, Rly3: Closed

Rly1, Grp1 (Rly1, Rly2,
Rly3)

Close Relay, Open Rel
ay

Rly1: Closed, Rly2: Op
en, Rly3: Open

Rly1: Open, Rly2: Ope
n, Rly3: Open

■ You can group multiple NI-Digital Pattern instruments or multiple NI-SCOPE
instruments together and treat them as a single instrument. When all the
instruments of the same type belong to a single group or when the
instruments of the same type in a subsystem belong to a single group, you do
not need to use parallel For Loops to iterate over the instrument driver
sessions. The instrument driver specific to the grouped instruments performs
most operations on all channels in parallel to achieve improved multisite
efficiency. Refer to the instrument driver help for information about hardware
limitations that prevent certain instruments from operating together as a
single instrument.

By default, when you create a new NI-Digital Pattern instrument or a new NI-
SCOPE instrument in the pin map file, TSM sets the group attribute to Digit
al or to Scope so that all newly created NI-Digital Pattern instruments or NI-
SCOPE instruments belong to the same group. TSM creates a single session for
each group of NI-Digital Pattern instruments in the pin map file. TSM 2017 and
earlier do not automatically group NI-Digital Pattern instruments or NI-SCOPE
instruments together in pin map files. Use the Pin Map Editor to modify
existing pin map files to change the value of the Group option for each
instrument to assign the instrument to the same group.
■ The Test Results Log is now the Debug Test Results Log.
■ The following table lists how TSM 2019 changes the error reporting behavior
when you enable or disable the STDF Log.

ni.com24

TestStand Semiconductor Module

Conditions STDF Log Enabled STDF Log Disabled
Multiple tests with 0 as a test
number or blank test number
s and different test names or
evaluation types

Error in TSM 2017
No error in TSM 2019

No error in TSM 2017
No error in TSM 2019

Multiple tests with non-zero t
est numbers and different tes
t names or evaluation types

Error in TSM 2017
Error in TSM 2019

No error in TSM 2017
Error in TSM 2019

■ The Get Site Data VI and the GetSiteData .NET method now return an
error if the site data does not exist for all the sites in the Semiconductor
Module Context.
■ TSM 2019 stores the path of the simulated handler driver in the HandlerDr
iverSequenceFilePath station setting property when you enable the NI
built-in simulated handler driver. TSM 2017 or earlier leaves that property
unchanged when you enable the simulated handler driver.
■ Names for NI instruments in the pin map file are no longer case sensitive.
Names for custom instruments in the pin map file remain case sensitive.
■ TSM 2019 renames the Limit Number of Results Reported option in the
Debug Test Results Log Options dialog box to Limit Number of Results
Displayed in Report View. The option no longer applies to the Debug Test
Results Log file and now applies only to the Report View.
■ TSM 2019 updates the directories for some LabVIEW examples and tutorials.
Verify the example and tutorial directories before using them.
■ If you modified any TSM step templates, compare the modified versions to
the updated versions of the step templates in NI TestStand 2019
Semiconductor Module.

NI TestStand 2019 Semiconductor Module Bug Fixes

Refer to the List of Bugs Fixed in NI TestStand 2019 Semiconductor Module on the NI
website for a list of bugs fixed in NI TestStand 2019 Semiconductor Module.

This list is not exhaustive. If you reported an issue to NI and received a CAR ID to
track the issue, you can search for the CAR ID in the ID or Legacy ID column to
determine whether the issue has been fixed.

© National Instruments 25

TestStand Semiconductor Module

What's New in the NI TestStand 2017 Semiconductor Module

The NI TestStand 2017 Semiconductor Module introduces new features. Some
compatibility issues might exist as a result of changes in the NI TestStand 2017
Semiconductor Module.

NI TestStand 2017 Semiconductor Module New Features

The following list describes the new features in the NI TestStand 2017
Semiconductor Module (TSM) and other changes since the NI TestStand 2016 SP1
Semiconductor Module.

 Use this Toggle Expansion button to expand or collapse all the following
sections at once. Use the black arrows next to each heading to expand or collapse
sections individually. You must expand each section you want to print or search.

Improved Test Program Development

 Step Templates

TSM includes the following new step types with template code:

■ NI-DAQmx Create AI Voltage Tasks
■ NI-DAQmx Acquire AI Voltage Waveforms
■ NI-DAQmx Clear Tasks

 Additional Instrument Support

The TSM Code Module API now includes support for the PXI-2567 relay driver
module. Install NI-SWITCH 17.0 or later to use the built-in support for the PXI-2567
relay driver module in TSM.

Use the Relay Driver Module section of the System View in the Digital Pattern Editor
18.0 to control and monitor relays.

 TSM Sequence Editor UI Configuration

The default TSM UI Configuration of the TestStand Sequence Editor includes the
following changes to streamline semiconductor test program development.

■ Simplified toolbar, including the following changes:

ni.com26

TestStand Semiconductor Module

javascript:toggleexpansion()
javascript:expand('steptemplates_section','steptemplates_arrow')
javascript:expand('instsupport_section','instsupport_arrow')
javascript:expand('seconfig_section','seconfig_arrow')
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditor.htm

Toolbar Change
Standard No change
Debug Removed
Environment The following items have been removed:

■ Selected Adapter
■ User Manager
■ Find Previous
■ Find Next

The Lock/Unlock UI Configuration toggle but
ton is set to Lock.

Navigation No change
Help The following items have been removed:

■ Guide to Documentation
■ Getting Started
■ Web Resources
■ Discussion Forum

Sequence Hierarchy Removed
Sequence Analyzer No change
Semiconductor Module The following debug items have been added

:

■ Step Into
■ Step Over
■ Step Out

The following button has been added:

■ Launch InstrumentStudio

■ Altered Execute menu that replaces the Test UUTs and Single Pass items
with the Start Lot and Single Test items
■ Modified Insertion Palette pane that displays the Semiconductor Module
folder and the Action Step at the top of the Step Types list

© National Instruments 27

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/insertion_pane.htm

■ More detailed Steps pane, including the following changes:

■ The Steps pane of the Sequence File window expands the Description
column to include the VI name or ClassName:MethodName for the
associated code module. The pane also includes new Num Tests, Pins,
and Multisite Option columns.
■ The Steps pane of the Execution window includes a new Module Time
column.

When you launch TSM for the first time or enable TSM, it loads the TSM UI
Configuration, named NI_SemiconductorModule, and saves the most recently
active UI configuration as NI_SemiconductorModule_SavedLayout. When
you disable TSM, TestStand loads the NI_SemiconductorModule_SavedLayo
ut UI configuration. You can modify the TSM UI Configuration and restore it to the
default state.

 Test Program Performance Analysis

During the test program development phase, you can now use built-in TSM tools to
measure test program performance and then analyze the resulting data with the
Test Program Performance Analyzer. Some common use cases include identifying
the slowest test times, identifying low parallel test efficiency (PTE) values, and
displaying the overall socket time and the calculated PTE value for each site
configuration.

 Static Code Analysis

TSM now includes general, performance, best practices, and statistics rules to use in
the TestStand Sequence Analyzer. The TSM rules are enabled by default.

TSM now installs the following test, enabled by default, to the LabVIEW VI Analyzer
in the TestStand Semiconductor Module section:

■ TSM Context Closing—Verifies that a VI properly closes Semiconductor
Module Context references. Detects cases where the output of a
Semiconductor Module Context reference is not wired or not wired to a Close
Reference function. Closing references in LabVIEW frees up memory that
LabVIEW allocates for the references. Failure to close references causes

ni.com28

TestStand Semiconductor Module

javascript:expand('pte_section','pte_arrow')
javascript:expand('rules_section','rules_arrow')
https://www.ni.com/docs/csh?topicname=tsref/infotopics/sequence_analyzer_overview.htm

reference leaks, which can negatively affect the performance of the VI over
time.

Refer to the LabVIEW Help for more information about the LabVIEW VI Analyzer. In
LabVIEW, select Help»LabVIEW Help to launch the LabVIEW Help.

 Enabling Sites

The default Configure Lot Settings dialog box now sets the number of sites to the
number of sites in the test program pin map. You can use the Enabled Sites control
in the dialog box to enable or disable specific sites. You can no longer use the
Configure Station Settings dialog box to specify the number of sites to test.

 Examples, Tutorials, and Step Templates Support LabVIEW 2018 Features

The TSM examples, tutorials, and step templates incorporate LabVIEW 2018 support
for Parallel For Loops with error registers and the High Resolution Polling Wait VI.
Refer to the LabVIEW Help for more information about these LabVIEW features. In
LabVIEW, select Help»LabVIEW Help to launch the LabVIEW Help.

The examples and tutorials include LabVIEW 2017 and earlier and LabVIE
W 2018 and later directories for support files based on the version of LabVIEW
you want to use.

When you use TSM step templates, TSM selects the version of the VI template that
corresponds to the active version of LabVIEW on the computer. You can save
version-specific or version-neutral custom templates in the <TestStand Public
> directory.

Correlation Offsets Support

 Support for Correlation Offsets

You can generate a tab-delimited correlation offsets template file based on the
numerical limit tests in a sequence file by selecting Semiconductor
Module»Export Correlation Offset Template file based on <filename>. You
can use the template file as a starting point for a custom correlation offsets file.

Use the Load Correlation Offsets Step and associated edit tab to load and apply
correlation offset values to test results on a per-site basis at run time before

© National Instruments 29

TestStand Semiconductor Module

javascript:expand('enablesites_section','enablesites_arrow')
javascript:expand('lv18_section','lv18_arrow')
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
javascript:expand('correlation_section','correlation_arrow')

evaluating the test result data against limits. The Test Results Log includes the
correlation offset values.

STS Test Head Integration

 Get Test Information Step

The Get Test Settings step was redesigned and renamed to Get Test Information. Use
the step and the associated edit tab to more easily obtain the values for lot settings,
station settings, STS state, execution data, and custom test conditions.

 Control STS Test Head Step

Use the Control STS Test Head step and associated edit tab to control properties of
the STS. The step requires STS Maintenance Software 17.1 or later and must be run
on an STS. Use the Get Test Information step to obtain the TestHead.TestHeadA
vailable property at run time to determine whether you can access the STS
properties.

Additional Enhancements

 Additional Improvements

The NI TestStand 2017 Semiconductor Module includes the following additional
enhancements:

■ Custom execution captions—The Windows pane and the Execution
window now display the site number and part ID in addition to the sequence
filename and testing state.
■ Pin Group and Relay Group API—Use the Get Pins in Pin Group(s) API to
obtain a list of pins contained in the pin group or list of pin groups you specify.
Use the Get Relays in Relay Group(s) API to obtain a list of relays contained in
the relay group or list of relay groups you specify.
■ Numerical order of site numbers—The Get Site Numbers VI and the Sit
eNumbers .NET property now return site numbers in numerical order instead
of in a random order determined by the order in which sites execute.
■ OnSiteTestingComplete—Use the OnSiteTestingComplete
callback sequence to perform actions on a DUT or on instruments after all

ni.com30

TestStand Semiconductor Module

javascript:expand('gtistep_section','gtistep_arrow')
javascript:expand('cthstep_section','cthstep_arrow')
javascript:expand('additional_section','additional_arrow')
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_windows.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_exe_window.htm

DUT tests have completed and TSM has assigned a bin to the DUT. TSM calls
the sequence after the MainSequence sequence, after all PAT tests
complete, and after TSM assigns a bin to the DUT.
■ Report Orientation of Test Results Log—You can now specify the
orientation of the Test Results Log. The default is portrait orientation.
Landscape orientation uses wider columns for tests with long test numbers or
test names.
■ SemiconductorModuleManager parameter in handler/prober
driver entry points—The handler/prober driver entry points now include a
SemiconductorModuleManager parameter, which is an object reference
to an instance of a Semiconductor Module Manager that you can use in
applications that use the TSM Application API. Use this object reference to get
information about test execution, obtain test statistics, monitor the state of
the test system, and so on.
■ Menu and Toolbar Improvements—You can now use the Semiconductor
Module menu or the TSM toolbar to launch InstrumentStudio.
■ Operator Interface Improvements—The default TSM operator interfaces
now include an Open STS Maintenance Software button to launch STS
Maintenance Software 17.1 or later. The operator interfaces also display the
status of an STS running STS Maintenance Software 18.0 or later. The operator
interfaces disable the Start Lot and Single Test buttons when STS
Maintenance Software 18.0 or later is using the tester.
■ Adding text data to Test Results Log—You can now add data that is not
a measurement or test limit to the Test Results Log.

See Also
NI TestStand 2017 Semiconductor Module Compatibility Issues

NI TestStand 2017 Semiconductor Module Compatibility and Known Issues

Refer to the List of Known Issues in NI TestStand 2017 Semiconductor Module on the
NI website for a list of known issues in NI TestStand 2017 Semiconductor Module
(TSM).

© National Instruments 31

TestStand Semiconductor Module

The NI TestStand 2017 Semiconductor Module introduces the following behavior
changes between version 2016 SP1 and version 2017:

■ TSM removed support for custom operator interfaces based on the default
NI TestStand 2013 Semiconductor Module LabVIEW operator interface. Those
operator interfaces might not function correctly in NI TestStand 2017
Semiconductor Module. NI TestStand 2014 Semiconductor Module introduced
the TSM Application API and significant changes to the default operator
interfaces to simplify operator interface implementation. You must upgrade
custom operator interfaces to use this new technology.
■ TSM removed many custom properties from the NI.SemiconductorMod
ule container in the attributes of the ModelData container passed to
process model plug-ins. Previous versions of TSM used these properties to
communicate information among TSM process model plug-ins. This
information is now available only in the TSM Application API and the Get Test
Information step.
■ TSM 2017 installs SeqEdit.exe.config in the <TestStand>\Bin
directory and overwrites any existing file with the same filename in that
directory. If you have created a custom SeqEdit.exe.config file,
complete the following steps to preserve the custom file.

1. Move the existing SeqEdit.exe.config file to a location outside
the <TestStand> directory.

2. Install TSM 2017.
3. Compare the SeqEdit.exe.config file TSM 2017 installed to the

custom version of the file and merge the custom changes into the file
TSM 2017 installed.

NI TestStand 2017 Semiconductor Module Bug Fixes
Refer to the List of Bugs Fixed in NI TestStand 2017 Semiconductor Module on the NI
website for a list of bugs fixed in NI TestStand 2017 Semiconductor Module.

This list is not exhaustive. If you reported an issue to NI and received a CAR ID to
track the issue, you can search for the CAR ID in the ID or Legacy ID column to
determine whether the issue has been fixed.

ni.com32

TestStand Semiconductor Module

What's New in the NI TestStand 2016 SP1 Semiconductor Module

The NI TestStand 2016 SP1 Semiconductor Module introduces new features. Some
compatibility issues might exist as a result of changes in the NI TestStand 2016 SP1
Semiconductor Module.

NI TestStand 2016 SP1 Semiconductor Module New Features

The following list describes the new features in the NI TestStand 2016 SP1
Semiconductor Module (TSM) and other changes since the NI TestStand 2016
Semiconductor Module.

 Use this Toggle Expansion button to expand or collapse all the following
sections at once. Use the black arrows next to each heading to expand or collapse
sections individually. You must expand each section you want to print or search.

Improved Test Program Development

 Step Templates

Use the TSM step types with template code to perform common operations, such as
setting up and closing instruments, powering up a DUT, or executing common tests.
You can modify the code to customize the behavior of the step within a test
program.

TSM provides template code for the following step types:

■ Setup and Close

■ NI-DCPower Close
■ NI-DCPower Initialize
■ NI-Digital Pattern Close
■ NI-Digital Pattern Initialize

■ DUT Power Up
■ DUT Power Down
■ Burst Pattern
■ Continuity Test

© National Instruments 33

TestStand Semiconductor Module

javascript:toggleexpansion()
javascript:expand('steptemplates_section','steptemplates_arrow')

■ Leakage Test

 Additional Instrument Support

The TSM Code Module API now includes implementations for NI-DAQmx, NI-DMM,
NI-FGEN, and NI-SCOPE.

 Custom Instrument Panels

You can now create custom pin- and site-aware instrument panel VIs to debug
instruments during test program execution at a breakpoint, which can be useful
during test program development and troubleshooting. Custom instrument panels
obtain active instrument sessions stored in Semiconductor Module context objects
using the Set Session VIs or .NET methods in the TSM Code Module API. During
active test program execution, TSM disables the custom instrument panel to avoid
conflicts.

The custom instrument panel components must reside in the <TestStand Publ
ic>\Components\Modules\NI_SemiconductorModule\InstrumentPa
nels directory for the panels to appear in the Semiconductor Module menu.

Refer to the Parametric I/V Instrument Panel example and the following resources
that you can use as starting points for custom instrument panels you create:

■ Examples located in the <TestStand Public>\Examples\NI_Semi
conductorModule\Custom Instrument Panels directory
■ A template for the required custom instrument panel callback sequence file
named CustomInstrumentPanel.seq located in the <TestStand>\Compon
ents\Modules\NI_SemiconductorModule\Templates directory
■ A template for the required corresponding custom instrument panel
LabVIEW project files located in the <TestStand>\Components\Module
s\NI_SemiconductorModule\Templates\CustomInstrumentPan
elTemplate directory

Note To modify the installed examples or
templates, copy the files from the existing
locations to the <TestStand Public>
directory and make changes to the copies of the
files.

ni.com34

TestStand Semiconductor Module

javascript:expand('instsupport_section','instsupport_arrow')
javascript:expand('custinstpanels_section','custinstpanels_arrow')
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/readonly_modify.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

 Toolbar Improvements

You can now use the TSM toolbar buttons instead of the default TestStand toolbar
buttons to resume sequence execution from a breakpoint for lot or part testing.

 LabVIEW VI Analyzer Test

TSM now installs the following test, enabled by default, to the LabVIEW VI Analyzer
in the TestStand Semiconductor Module section:

■ For Loop Error Handling—Verifies error handling in VIs that use For
Loops. Confirms that errors from the For Loop are merged with any errors that
occurred before the loop executed to ensure that errors that occur before the
loop executes are propagated correctly.

Refer to the LabVIEW Help for more information about the LabVIEW VI Analyzer. In
LabVIEW, select Help»LabVIEW Help to launch the LabVIEW Help.

 Part Average Testing Support

Part average testing (PAT) is a method based on statistical analysis to identify and
fail parts that have characteristics significantly outside the normal distribution of
other parts in the same lot. TSM does not install a default implementation of part
average testing. You must use the TSM PAT plug-in architecture to customize and
perform part average testing with TSM. The TSM PAT plug-ins include a required PAT
callback sequence file and corresponding code modules. The PAT callback sequence
file contains PAT entry point sequences that TSM calls during execution to
accomplish part average testing. Use the example PAT plug-in, located in the <Test
Stand Public>\Examples\NI_SemiconductorModule\Part Average
Testing\Example Part Average Testing Plug-In directory, as a
starting point for custom PAT plug-ins you create.

Refer to the Part Average Testing Examples for information about enabling and
performing part average testing (PAT) in a test program.

Additional Enhancements

 Additional Improvements

© National Instruments 35

TestStand Semiconductor Module

javascript:expand('toolbar_section','toolbar_arrow')
javascript:expand('vianalyzer_section','vianalyzer_arrow')
javascript:expand('patsupport_section','patsupport_arrow')
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
javascript:expand('additional_section','additional_arrow')

The NI TestStand 2016 SP1 Semiconductor Module includes the following additional
enhancements:

■ The Standard Test Data Format (STDF) Log result processing plug-in now
generates summary records for the Hardware Bin Record (HBR), Software Bin
Record (SBR), Test Synopsis Record (TSR), and Part Count Record (PCR)
records. The records are included at the end of the STDF log file and have a
HEAD_NUM value of 255 to indicate that they are summary records. Visit ni.c
om/info and enter the Info Code exr3v6 for information about disabling
these summary records.
■ TSM now uses the EXEC_TYPE and EXEC_VER fields in the Master
Information Record (MIR) of the STDF log file to record whether STS Software
is installed and which version is installed.
■ You can now log results only when a DUT fails. Use the Log Results Only
for DUT Failures option in the Test Results Logs Options dialog box during
debugging to record only failures instead of all test results.
■ You can now use the AvailableSiteNumbers property on the
NI_SemiconductorModule_StationSettings data type to specify which site
numbers from a pin map for a test program to use when running the test
program. For example, you can set this property to disable specific sites or to
use the particular connections of a pin map that match the DIB for the test
station. The default TSM operator interfaces and the Lot Statistics Viewer
display only the sites you specify. Update existing custom LabVIEW or C#
operator interfaces to display the configured site numbers when you use the
AvailableSites station setting. Additionally, you can modify the
ConfigureStationSettings callback to provide a custom operator interface to
set the AvailableSites station setting.

Ensure that any custom handler driver you created reads the Boolean values
from the RequestedSiteState parameter in the StartOfTest callback to
determine which sites to test. If you use the AvailableSiteNumbers
property to specify the set of site numbers for the test program to use, the
RequestedSiteState array contains True values for each site number the
test uses and False values for each site number the test does not use.

ni.com36

TestStand Semiconductor Module

■ In the Pin Map Editor, you can now manually enter relative file paths or
manually modify existing file paths to be relative. Browsing to a file using the
Select Pin Map File dialog box always uses an absolute path.

The Get All FPGA Instrument Names, Get All NI-RFPM Instrument Names, Get
All NI-RFPM De-embedding Data, Get All NI-5530 RF Port Module Names, and
Pin(s) To NI-RFPM Sessions TSM Code Module API VIs and the
GetFpgaInstrumentNames, GetNIRfpmInstrumentNames,
GetNIRfpmSessions, and GetAllNIRfpmDeembeddingData TSM Code Module
API .NET class library methods now resolve file paths differently. If the path is
an absolute path, the VI or method returns the absolute path whether the file
exists or not. If the path is a relative path and the file exists relative to the path
of the pin map file, the VI or method returns the absolute path of the existing
file. Otherwise, the VI or method returns a string without error. This change in
behavior breaks any test programs that use the previous versions of these VIs
or methods that expect relative file paths to remain unresolved.
■ You can now specify and obtain the orientation of data in S2P files that
characterize the de-embedding network for each port.

The pin map XML schema now includes a deembeddingOrientation
attribute on the Connection, SystemConnection, and MultiplexedD
UTPinRoute elements that you can use with the deembeddingFilePath
attribute to specify the orientation of the data in the S2P file relative to the
port the channel attribute specifies. Valid values are Port1TowardDUT or
Port2TowardDUT.

The Get All NI-RFPM De-embedding Data VI and the Pin(s) To NI-RFPM
Sessions VI now include a De-embedding Files indicator that returns the
path and orientation of the data in the S2P file relative to the port you specify.
The connector pane for these VIs have changed, which will not break existing
code. However, if you want to use the new De-embedding Files indicator,
you must replace existing VIs with the new versions of the VIs on the NI-RFPM
VIs palette.

© National Instruments 37

TestStand Semiconductor Module

■ You can now use the Select All checkboxes on the DUT Pins, System Pins,
or Pin Groups tabs of the Pin Map tab of the Pin Map Editor to add or remove
pins from the pin group.
■ Refer to the Query Pin/Site Measurement for Unsupported Measurement
Type example in the Multisite Programming Scenarios example for
information about how to query for measurement data for a pin and site
combination if the Extract Pin Data VI does not support the measurement
type.

See Also
NI TestStand 2016 SP1 Semiconductor Module Compatibility Issues

NI TestStand 2016 SP1 Semiconductor Module Compatibility and Known Issues

Refer to the List of Known Issues in NI TestStand 2016 SP1 Semiconductor Module
on the NI website for a list of known issues in NI TestStand 2016 SP1 Semiconductor
Module (TSM).

The NI TestStand 2016 SP1 Semiconductor Module introduces the following
behavior changes between version 2016 and version 2016 SP1:

■ The default TSM operator interfaces display only the sites you specify when
you use the AvailableSiteNumbers property on the
NI_SemiconductorModule_StationSettings data type to specify which site
numbers from a pin map for a test program to use when running the test
program. The TSM 2016 and earlier default operator interfaces and custom
operator interfaces based on those versions display site numbers starting at 0
and increasing by 1, up to the number of sites. You must update existing
custom LabVIEW or C# operator interfaces to display the configured site
numbers when you use the AvailableSites station setting.
■ In previous versions of TSM, the RequestedSiteState array in the
StartOfTest callback contained only True values. Ensure that any custom
handler driver you created reads the Boolean values from the
RequestedSiteState parameter in the StartOfTest callback to determine
which sites to test. If you use the AvailableSiteNumbers property to
specify the set of site numbers for the test program to use, the

ni.com38

TestStand Semiconductor Module

RequestedSiteState array contains True values for each site number the
test uses and False values for each site number the test does not use.
■ The version number of the pin map XML schema changed from 1.2 to 1.3.
The schema is not backward compatible with NI TestStand 2016
Semiconductor Module.
■ The Get All FPGA Instrument Names, Get All NI-RFPM Instrument Names, Get
All NI-RFPM De-embedding Data, Get All NI-5530 RF Port Module Names, and
Pin(s) To NI-RFPM Sessions TSM Code Module API VIs and the
GetFpgaInstrumentNames, GetNIRfpmInstrumentNames,
GetNIRfpmSessions, and GetAllNIRfpmDeembeddingData TSM Code Module
API .NET class library methods now resolve file paths differently. If the path is
an absolute path, the VI or method returns the absolute path whether the file
exists or not. If the path is a relative path and the file exists relative to the path
of the pin map file, the VI or method returns the absolute path of the existing
file. Otherwise, the VI or method returns a string without error. This change in
behavior breaks any test programs that use the previous versions of these VIs
or methods that expect relative file paths to remain unresolved.
■ The Get All NI-RFPM De-embedding Data VI and the Pin(s) To NI-RFPM
Sessions VI now include a De-embedding Files indicator that returns the
path and orientation of the data in the S2P file relative to the port you specify.
The connector pane for these VIs have changed, which will not break existing
code. However, if you want to use the new De-embedding Files indicator,
you must replace existing VIs with the new versions of the VIs on the NI-RFPM
VIs palette.
■ TSM now uses the EXEC_TYPE and EXEC_VER fields in the Master
Information Record (MIR) of the STDF log file to record whether STS Software
is installed and which version is installed.

NI TestStand 2016 SP1 Semiconductor Module Bug Fixes
Refer to the List of Bugs Fixed in NI TestStand 2016 SP1 Semiconductor Module on
the NI website for a list of bugs fixed in NI TestStand 2016 SP1 Semiconductor
Module.

© National Instruments 39

TestStand Semiconductor Module

This list is not exhaustive. If you reported an issue to NI and received a CAR ID to
track the issue, you can search for the CAR ID in the ID or Legacy ID column to
determine whether the issue has been fixed.

What's New in the NI TestStand 2016 Semiconductor Module

The NI TestStand 2016 Semiconductor Module introduces new features. Some
compatibility issues might exist as a result of changes in the NI TestStand 2016
Semiconductor Module.

NI TestStand 2016 Semiconductor Module New Features

The following list describes the new features in the NI TestStand 2016
Semiconductor Module (TSM) and other changes since the NI TestStand 2014
Semiconductor Module SP1.

 Use this Toggle Expansion button to expand or collapse all the following
sections at once. Use the black arrows next to each heading to expand or collapse
sections individually. You must expand each section you want to print or search.

Improved Test Program Development

 Semiconductor Action Step

Use the Semiconductor Action step to perform an action, such as instrument
configuration, with access to the pin map and per-site inputs. You can configure
multisite and per-site input options directly on the step.

 Support for the Digital Pattern Editor and the NI-Digital Pattern Driver

■ Select Semiconductor Module»Launch Digital Pattern Editor or click
the Launch Digital Pattern Editor button on the TSM toolbar to open
digital pattern project files in the Digital Pattern Editor.
■ Use the Digital Pattern Project panel of the Test Program Editor to specify
the pathname of the digital pattern project file to use in the test program. You
can use the Specifications Files panel of the Test Program Editor to view the
specifications files in a digital pattern project.

ni.com40

TestStand Semiconductor Module

javascript:toggleexpansion()
javascript:expand('action_section','action_arrow')
javascript:expand('digipat_section','digipat_arrow')

■ The Pin Map schema now includes native support for Digital Pattern
instruments with the NIDigitalPatternInstrument element.
■ The NI TestStand 2016 Semiconductor Module natively supports digital
pattern instruments that use the NI-Digital Pattern Driver, such as the
PXIe-6570, and legacy digital waveform instruments that use the NI-HSDIO
driver, such as the PXIe-6556. Use the TSM Code Module API that corresponds
to the type of digital instrument the test system includes. For example, use the
NI-Digital Pattern VIs to manage digital pattern instruments and sessions, to
manage digital pattern waveform data, and to access digital pattern project
files.

Note The VIs on this palette are available
only in 64-bit LabVIEW.

■ The Accelerometer and Multisite Programming Scenarios examples now use
the NI-Digital Pattern driver. Versions of these examples that use the NI-HSDIO
driver remain available.

 Customizing Operator Interface Run-Time Error Behavior

The default operator interfaces now write a message to an error log file and
continue testing when the MainSequence sequence returns a run-time error from
a source other than TSM, such as a code module or an instrument driver. You can
change the operator interface run-time error behavior by using the two new TSM
Application API properties EndLotOnCodeModuleRuntimeError and
DisplayDialogOnCodeModuleRuntimeError to specify whether to end the lot and
display error dialog boxes when the MainSequence sequence returns a run-time
error from a source other than TSM.

 C# NI-RFmx and NI-RFPM TSM Code Module API Support

The TSM Code Module API now includes C# implementations for NI-RFmx and NI-
RFPM.

Additional Enhancements

 Additional Improvements

The NI TestStand 2016 Semiconductor Module includes the following additional
enhancements:

© National Instruments 41

TestStand Semiconductor Module

javascript:expand('oierrors_section','oierrors_arrow')
javascript:expand('rfmxrfpmnet_section','rfmxrfpmnet_arrow')
javascript:expand('additional_section','additional_arrow')

■ Expression to Determine Test Number at Run Time—The Result.E
valuations property of the Semiconductor Multi Test step type includes a
new TestNumberExpr field, which is an expression that determines the test
number at run time. If this expression is not empty, the Semiconductor Multi
Test step evaluates the expression and copies the evaluated value to the Test
Number property.
■ Indicating End of Wafer using Batch Process Model—Prober drivers
no longer need to set the EndOfWafer parameter of the EndOfTest handler/
prober driver entry point to indicate the end of each wafer when using the
Batch process model. The NI TestStand 2016 Semiconductor Module
determines the end of the wafer from the
WaferRuntimeData.StartOfWafer parameter in the StartOfTest handler/
prober driver entry point. When using the Batch process model, omitting the
wait for an end-of-wafer status message to set the EndOfWafer parameter in
the EndOfTest entry point might improve performance of the test system.

Prober drivers must set the EndOfWafer parameter at the end of each wafer
when using the Sequential process model.
■ Bin Types Passed to Handler—TSM passes an array of bin types to the
EndOfTest handler/prober driver entry point. Each element in the array
indicates the type of bin (Pass, Fail, and so on) of the corresponding element
in the SoftwareBinData and HardwareBinData parameter arrays.
■ Temporary STDF File—During testing, the STDF Log result processor
writes data to a temporary file with an extension of .stdtemp in the
destination directory you specify in the STDF Log Options dialog box. When
the file completes, the STDF Log result processor renames the file to the final
report filename you specify.

See Also
NI TestStand 2016 Semiconductor Module Compatibility Issues

ni.com42

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/sequential.html

NI TestStand 2016 Semiconductor Module Compatibility and Known Issues

Refer to the List of Known Issues in TestStand NI 2016 Semiconductor Module on the
NI website for a list of known issues in NI TestStand 2016 Semiconductor Module
(TSM).

The NI TestStand 2016 Semiconductor Module introduces the following behavior
changes between version 2014 SP1 and version 2016:

■ The default TSM operator interfaces no longer display an error message and
end testing when the MainSequence sequence returns a run-time error
from a source other than TSM, such as a code module or an instrument driver.
Instead, the default operator interfaces now write the error message to an
error log file and continue testing the lot. The change in behavior does not
affect operator interfaces based on source code from previous versions of
TSM. You can change the operator interface run-time error behavior by setting
TSM Application API properties on or by handling events from the
SemiconductorModuleManager object in the operator interface source code.
By default, when any run-time error occurs, TSM assigns the current part to
the Default Error bin the bin definitions file specifies.
■ The file extensions for pin map files and bin definitions files have changed
from .xml to .pinmap and .bins, respectively. You can continue to load
pin map files and bin definitions files with .xml file extensions without error
or warning.
■ The Accelerometer examples, located in the <TestStand Public>\Exa
mples\NI_SemiconductorModule\Accelerometer directory, now
use the NI-Digital Pattern driver. Refer to the examples in the <TestStand P
ublic>\Examples\NI_SemiconductorModule\Accelerometer -
Legacy Digital directory for Accelerometer examples that use the NI-
HSDIO driver.
■ TSM detects a retested part by comparing the part IDs or die coordinates
that the handler or prober provides for the part to the part IDs and die
coordinates that the handler or prober provided for previously tested parts.
TSM determines the number of passing and failing parts and the number of
parts per bin based on the test results of the last time it tested the part.

© National Instruments 43

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

In the STDF log file, TSM sets the PART_FLG field of the Part Result Records
(PRR) that represent results of retested parts and sets the RTST_CNT field of
the Wafer Result Record (WRR) and the Part Count Record (PCR) to the
number of parts retested one or more times.

Previous versions of TSM did not distinguish between the first test of a part
and subsequent tests of the same part except when you clicked the Retest
toolbar button in the sequence editor. As a result, the part counts that
previous versions of TSM generate differ from the part counts that the NI
TestStand 2016 Semiconductor Module generates if the handler or prober
retests one or more parts. The affected STDF fields include the following:

■ PRR.PART_FLG
■ WCR.GOOD_CNT
■ WCR.PART_CNT
■ WCR.RTST_CNT
■ PCR.GOOD_CNT
■ PCR.PART_CNT
■ PCR.RTST_CNT
■ HBR.HBIN_CNT
■ SBR.SBIN_CNT

■ The name of the NamespacedSymbol(s)ToValue(s) VI on the Specifications
palette has changed to Get Specification(s) Value(s). The name change does
not require changes to VIs that use the old name.

NI TestStand 2016 Semiconductor Module Bug Fixes
Refer to the List of Bugs Fixed in NI TestStand 2016 Semiconductor Module on the NI
website for a list of bugs fixed in NI TestStand 2016 Semiconductor Module.

This list is not exhaustive. If you reported an issue to NI and received a CAR ID to
track the issue, you can search for the CAR ID in the ID or Legacy ID column to
determine whether the issue has been fixed.

ni.com44

TestStand Semiconductor Module

What's New in the NI TestStand 2014 Semiconductor Module SP1

The NI TestStand 2014 Semiconductor Module SP1 introduces new features. Some
compatibility issues might exist as a result of changes in the NI TestStand 2014
Semiconductor Module SP1.

NI TestStand 2014 Semiconductor Module SP1 New Features

The following list describes the new features in the NI TestStand 2014
Semiconductor Module SP1 (TSM) and other changes since the NI TestStand 2014
Semiconductor Module.

 Use this Toggle Expansion button to expand or collapse all the following
sections at once. Use the black arrows next to each heading to expand or collapse
sections individually. You must expand each section you want to print or search.

Improved Test Program Development

 RFmx Pin Map API

The Pin Map API now supports the RFmx Instrument Sessions.

 NI-RFPM Pin Map API

The Pin Map API now supports the RF Port Module (NI-RFPM) API. This API serves as
a replacement for the NI-5530 Port Module API. It provides several usability
enhancements for developing multi-port RF measurements.

 Custom Model Plug-in API

TSM now has an easier way to access lot statistics, start times, end times, wafer
information, and handler/prober information in a custom result processor so you
can create custom reports and log files.

Performance Improvements

 Execution Profiler

Use the Execution Profiler window to view and record duration of steps, code
modules, and other resources a multithreaded TestStand system uses over a period
of time. You can review the recorded data in graphs and sortable tables to identify

© National Instruments 45

TestStand Semiconductor Module

javascript:toggleexpansion()
javascript:expand('rfmx_pinmap_section','rfmx_pinmap_arrow')
javascript:expand('nirfpm_section','nirfpm_arrow')
javascript:expand('custom_section','custom_arrow')
javascript:expand('profiler_section','profiler_arrow')

performance bottlenecks and design flaws and to gain insight into the behavior and
timing of complex multithreaded systems. You can copy the information to external
applications, such as Microsoft Word or Excel.

Additional Enhancements

 Additional Improvements

NI TestStand 2014 Semiconductor Module SP1 includes the following additional
enhancements:

■ Base Deployment License—The NI TestStand Semiconductor Module
Base Deployment License is the minimum license required for all deployed
TSM-based applications. Activate this license to deploy the NI TestStand
Semiconductor Module Runtime, the TestStand Runtime, and the Switch
Executive Runtime. The Base Deployment License enables you to run a TSM
operator interface and test programs on the single test station to which the
license applies. This license does not grant the ability to perform any
development tasks using the TestStand Sequence Editor, a TestStand custom
sequence editor, or the TestStand API.
■ Improved Getting Started Content—The getting started content now
includes a brief tour of TSM, an overview of test program components, and a
new example that demonstrates several features of TSM in a test program that
makes common measurements to test an imagined accelerometer part.
■ Start Lot Without Configuring—You can customize the operator
interface to run without requiring a Configure Lot button by implementing
the ConfigureLotSettings callback to programmatically set the LotSettings
instead of using a dialog box.
■ End of Test dialog box—This dialog box launches at the end of each test
and displays hardware and software bin information on a per test or per lot
basis when you use the Batch or Sequential process model with the NI
Simulated Handler Driver.
■ Toolbar Enhancements—You can now use the Selected Configuration
control on the TSM toolbar to select the test program configuration to use
when testing. The available items correspond to the configurations in the

ni.com46

TestStand Semiconductor Module

javascript:expand('additional_section','additional_arrow')
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/sequential.html

active sequence file. The value initially corresponds to the value of the LotSe
ttings.Standard.ActiveConfigurationName property in the lot
settings. If the active sequence file does not contain a configuration that
corresponds to the ActiveConfigurationName lot setting, the control
displays one of the configurations in the sequence file. Changing the selected
configuration with this control does not modify the ActiveConfiguratio
nName lot setting. You can also use the Configure Lot Settings dialog box to
change the test program configuration.
■ .NET (C#) Example Code—Code module development topics
include .NET example code.

See Also
NI TestStand 2014 Semiconductor Module SP1 Compatibility Issues

NI TestStand 2014 Semiconductor Module SP1 Compatibility and Known Issues

Refer to the List of Known Issues in NI TestStand 2014 Semiconductor Module SP1
on the NI website for a list of known issues in NI TestStand 2014 Semiconductor SP1
(TSM).

The NI TestStand 2014 Semiconductor Module SP1 introduces the following
behavior changes between version 2014 and version 2014 SP1:

■ The method for creating custom DTRs has changed when you enable the
Generate One File per Wafer option.
■ The EndOfTest handler/prober driver entry point includes a new
EndOfWafer parameter, which must be set to True at the end of each wafer
for the Generate One File per Wafer option to function correctly and to
generate Wafer Result Records (WRR).
■ To better comply with STDF standards, the START_T field of the Master
Information Record (MIR) is recorded at the time the handler or prober sends
the initial start-of-test (SOT) signal. In NI TestStand 2014 Semiconductor
Module, the START_T field contains the time that the operator clicked the
Start Test button.

© National Instruments 47

TestStand Semiconductor Module

■ The SemiconductorModuleContext object on any instance of a
Semiconductor Multi Test step includes only the pins specified on the Options
tab unless you call the step from a process model callback sequence, such as
ProcessSetup and ProcessCleanup, in which case the Semiconduct
orModuleContext object includes all pins in the pin map.

In previous versions of TSM, when executing with the Sequential or Parallel
process models, SemiconductorModuleContext objects included all the
pins in the pin map regardless of the settings on the Options tab.
Semiconductor Multi Test steps that execute without errors using the
Sequential or Parallel process models in NI TestStand 2014 Semiconductor
Module might generate run-time errors in NI TestStand 2014 Semiconductor
Module SP1 if the code module for the step attempts to use pins that you did
not specify on the Options tab. To correct the error, specify all necessary pins
on the Options tab of the Semiconductor Multi Test step.

NI TestStand 2014 Semiconductor Module SP1 Bug Fixes
Refer to the List of Bugs Fixed in NI TestStand 2014 Semiconductor Module SP1 on
the NI website for a list of bugs fixed in NI TestStand 2014 Semiconductor Module
SP1.

This list is not exhaustive. If you reported an issue to NI and received a CAR ID to
track the issue, you can search for the CAR ID in the ID or Legacy ID column to
determine whether the issue has been fixed.

What's New in the NI TestStand 2014 Semiconductor Module

The NI TestStand 2014 Semiconductor Module introduces new features. Some
compatibility issues might exist as a result of changes in the NI TestStand 2014
Semiconductor Module.

NI TestStand 2014 Semiconductor Module New Features

The following list describes the new features in the NI TestStand 2014
Semiconductor Module (TSM) and other changes since the NI TestStand 2013
Semiconductor Module.

ni.com48

TestStand Semiconductor Module

 Use this Toggle Expansion button to expand or collapse all the following
sections at once. Use the black arrows next to each heading to expand or collapse
sections individually. You must expand each section you want to print or search.

Improved Test Program Development

 Pin Map Editor

Use the Pin Map Editor to view, create, modify, and save pin map files instead of
editing the XML files directly. Use the Pin Map panel in the Edit Test Program dialog
box to specify a pin map file for a test program.

Select Semiconductor Module»Edit Pin Map File or click the Edit Pin Map
File button on the TSM toolbar to launch the Pin Map Editor. Alternatively, you can
select Semiconductor Module»Edit Test Program and then select Pin Map in
the Edit Test Program dialog box to launch the Pin Map panel. Click the Open file
for edit button to launch the Pin Map Editor.

 Bin Definitions Editor

Use the Bin Definitions Editor to view, create, modify, and save bin definitions files
instead of editing the XML files directly. Use the Bin Definitions panel in the Edit Test
Program dialog box to specify a bin definitions file for a test program.

Select Semiconductor Module»Edit Bin Definitions File or click the Edit Bin
Definitions File button on the TSM toolbar to launch the Bin Definitions Editor.
Alternatively, you can select Semiconductor Module»Edit Test Program and
then select Bin Definitions in the Edit Test Program dialog box to launch the Bin
Definitions panel. Click the Open file for edit button to launch the Bin
Definitions Editor.

 Pin Groups

You can now create and use pin groups in the pin map file, the Pin Map Editor, the
Semiconductor Multi Test step, and code modules.

 Per-Site and Instrument Session Data Support

Use the following new TSM Code Module API VIs or .NET methods to associate or
return data for a site or instrument session:

© National Instruments 49

TestStand Semiconductor Module

javascript:toggleexpansion()
javascript:expand('pinmaped_section','pinmaped_arrow')
javascript:expand('bindefed_section','bindefed_arrow')
javascript:expand('pingroups_section','pingroups_arrow')
javascript:expand('persession_section','persession_arrow')

■ Set Site Data—Associates a data item with each site. You can associate
data with all sites or with the subset of sites in the Semiconductor Module
context. You can use this VI or .NET method to store instrument sessions or
other per-site data you initialize in a central location but access within each
site.
■ Get Site Data—Returns per-site data that a previous call to the Set Site
Data VI or .NET method stores. The returned array contains the data the
Semiconductor Module context stores for each site in the same order as
the sites the Get Site Numbers VI or .NET method returns.
■ Set Global Data—Associates a data item with a data ID. You can use this VI
or .NET method to store an instrument session or other data you initialize in a
central location but access from multiple sites. The data item is accessible
from a process model controller execution and all of its test socket executions.
■ Get Global Data—Returns a global data item that a previous call to the Set
Global Data VI or .NET method stores.

 External Specifications

Use a specifications file to define a set of symbols and associated numeric values
that you can reference in test programs and code modules to set limits and testing
specifications. You can specify the values directly in the specifications file or
calculate the values from other symbols in the file using formulas you write with
simple arithmetic functions.

Use the NamespacedSymbol(s)ToValue(s) TSM Code Module API VI or the
GetSpecificationsValue or GetSpecificationsValues TSM Code Module API .NET
methods to query one symbol or an array of symbols and return the calculated
value or values.

The specifications XML schema, located at <TestStand>\Components\Schem
as\NI_SemiconductorModule\Specifications.xsd, defines the
structure for a specifications XML file. Use the Specifications File Path control on
the Specifications Files panel of the Edit Test Program dialog box to specify one or
more specifications files to use with the test program.

 Multisite Programming Scenarios

ni.com50

TestStand Semiconductor Module

javascript:expand('specifications_section','specifications_arrow')
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
javascript:expand('msscenarioexample_section','msscenarioexample_arrow')

The new Multisite Programming Scenarios example, located in <TestStand Pub
lic>\Examples\NI_SemiconductorModule\Multisite Programming
Scenarios\MultisiteScenarios.seq demonstrates how to address several
multisite use cases.

 Protecting Test Limits

To protect test limits files from modification or viewing, use the Embed Test
Limits File option on the Test limits Files panel of the Edit Test Program dialog box
to embed the external test limits files in the test program sequence file before you
password-protect the test program sequence file. Use the Extract Test Limits File
option on the Test limits Files panel to extract an embedded test limits file from the
test program sequence file to view or change the contents of the test limits file.

Note NI does not recommend using passwords
as the only way of protecting intellectual
property.

 Dragging and Dropping Variables

You can now drag and drop TestStand variables into the expression controls on the
Tests tab and the Per-Site Inputs tab of the Semiconductor Multi Test step and the
Get Test Settings tab of the Get Test Settings step.

Improved Debugging

 Debugging Sequences

Use the TSM toolbar buttons instead of the default TestStand toolbar buttons to
control execution and view lot statistics while debugging a sequence. The TSM
toolbar includes new Lot Execution Control buttons for starting a single test, starting
or resuming a lot, pausing a lot, retesting a single DUT, ending a lot, and launching a
Lot Statistics Viewer.

You can also select Semiconductor Module»Show Lot Statistics Viewer to
launch the Lot Statistics Viewer, in which you can control execution and view lot
statistics while debugging a sequence. The Lot Statistics Viewer displays a new tab
for each test program sequence file you execute. The tab includes a table of the

© National Instruments 51

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
javascript:expand('limitsprotection_section','limitsprotection_arrow')
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_seq_file_prop_adv_tab.htm
javascript:expand('dragdropvariables_section','dragdropvariables_arrow')
javascript:expand('debugsequences_section','debugsequences_arrow')

software bin statistics for each site and highlights the cell for each updated DUT
result. When execution completes, the table dims.

 New Run-Time Error Option

The Semiconductor Module Run-Time Error dialog box contains a new run-time
error handling option. Select the End lot after running cleanup option to end lot
testing after the execution proceeds to the Cleanup step group for the sequence.

Improved Wafer Testing Support

 Additional STDF Wafer Records

You can now update fields in the Wafer Configuration Record (WCR), Wafer
Information Record (WIR), and Wafer Result Record (WRR) of an STDF log file. The
Setup and the StartOfTest handler/prober driver entry points include wafer-related
parameters and the NI_SemiconductorModule_LotSettings data type includes
wafer-related properties to support wafer testing.

Operator Interface Improvements

 Operator Interface Enhancements

The NI TestStand 2014 Semiconductor Module operator interface includes the
following enhancements

■ Easier customization—The redesigned default operator interface uses an
enhanced TSM Application API to simplify the customization process. You can
continue to use NI TestStand 2013 Semiconductor Module operator interfaces
in NI TestStand 2014 Semiconductor Module.
■ Settings table improvements—The settings table on the right side of the
default operator interface displays common lot and station settings. You can
configure the list of settings to display in the table by editing the OISetting
sTable.cfg file located in the <TestStand Application Data>\Cf
g\NI_SemiconductorModule directory. The <TestStand>\Compone
nts\Schemas\NI_SemiconductorModule\OISettingsTable.xsd
schema file describes the format of the configuration file.

ni.com52

TestStand Semiconductor Module

javascript:expand('rteerroroptions_section','rteerroroptions_arrow')
javascript:expand('wafer_section','wafer_arrow')
javascript:expand('oiimprove_section','oiimprove_arrow')
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ Mid-Lot Summary report—You can now refresh the Mid-Lot Summary
text report during execution.

C# Support

 C# Operator Interface

The NI TestStand 2014 Semiconductor Module includes a C# implementation of the
default operator interface. The source code is located in the <TestStand>\User
Interfaces\NI_SemiconductorModule\CSharp directory.

 C# API

The TSM Code Module API and TSM Application API include C# implementations.

 C# Examples

The Multisite Simple Flow example now includes a C# implementation.

Other Enhancements

 64-Bit TestStand Support

TSM now supports 64-bit TestStand. Refer to the 64-bit TestStand and Migrating
from 32-bit TestStand book of the TestStand Help for more information about the
differences between 32-bit TestStand and 64-bit TestStand.

Note You must use 32-bit TestStand and 32-bit
LabVIEW with the Switch Executive.

 Multiple Versions of LabVIEW

TSM now supports LabVIEW 2014 SP1 in addition to supporting LabVIEW 2013 and
LabVIEW 2013 SP1.

 Additional STDF Support

TSM includes support for the following additional STDF fields:

■ Part Results Record—The STDF Log result processing plug-in sets the
PART_ID, PART_TXT, X_COORD, and Y_COORD fields in the Part Results Record
of the STDF version 4 specification by using the values of properties on the
UUT data type. The handler/prober driver StartOfTest entry point can set any

© National Instruments 53

TestStand Semiconductor Module

javascript:expand('csharpoi_section','csharpoi_arrow')
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
javascript:expand('csharpapi_section','csharpapi_arrow')
javascript:expand('csharpex_section','csharpex_arrow')
javascript:expand('sixtyfourbit_section','sixtyfourbit_arrow')
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/64bitteststand.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/64bitteststand.html
javascript:expand('multiplelv_section','multiplelv_arrow')
javascript:expand('stdf_section','stdf_arrow')

of these fields by setting the values of the output parameters to the
StartOfTest entry point.
■ Additional NI_SemiconductorModule_LotSettings Data Type
Properties—The NI_SemiconductorModule_LotSettings data type includes
new properties to support Master Information Record (MIR) and Wafer
Configuration Record (WCR) fields.
■ Datalog Text Records (DTR)—You can insert DTR in various locations in
the STDF log file. The method for creating DTRs differs depending on the
locations at which you insert the DTR.

You can now use the Limit Number of Test Data Records option in the STDF Log
Options dialog box to limit the number of individual part test records in the STDF log
to one out of every N DUTs you specify per site. Individual test records include PTR,
FTR, and DTR. The summary test result records include the test result records of the
parts for which you omitted individual test records.

 Additional Handler/Prober Support

TSM now passes software bin numbers to the handler/prober driver in addition to
hardware bin numbers.

 VI and Palettes

The TestStand Semiconductor Module»Pin Map Functions palette in LabVIEW
has been renamed to the TestStand Semiconductor Module»Code Module
Development Functions palette.

Use the following new VI on the TestStand Semiconductor Module»Code
Module Development»Specifications subpalette to work with specifications
files:

■ NamespacedSymbol(s)ToValue(s)—Returns the value or values
calculated for the namespaced symbol or symbols in the Semiconductor
Module context specifications file. Adapts automatically to a single symbol or
an array of symbols.

 Missing Tests or Steps Return Error when Importing Limits File

ni.com54

TestStand Semiconductor Module

javascript:expand('swbinhandler_section','swbinhandler_arrow')
javascript:expand('vichanges_section','vichanges_arrow')
javascript:expand('limitserror_section','limitserror_arrow')

Enable the Require every step to be in test limits file option in the Import Test
Limits into Sequence File dialog box or the Configuration panel of the Edit Test
Program dialog box for the Import/Export Test Limits tool to return an error and not
import the file if a test or step exists in the sequence but does not exist in the limits
file. If you do not enable this option, the Import/Export Test Limits tool imports only
matching tests or steps in the limits file.

 Launching Examples from the Help

You can now launch an example directly from the corresponding help topic by
clicking the Open Example button in the help topic.

See Also
NI TestStand 2014 Semiconductor Module Compatibility Issues

NI TestStand 2014 Semiconductor Module Compatibility Issues

The NI TestStand 2014 Semiconductor Module (TSM) introduces the following
behavior changes between version 2013 and version 2014:

■ The version number of the pin map XML schema and the bin definitions XML
schema both changed from 1.0 to 1.1. The schemas are not backward
compatible with NI TestStand 2013 Semiconductor Module.
■ Pin and pin group names must begin with a letter or underscore (_) and are
limited to A-Z, a-z, 0-9, or _ characters.
■ The following filenames and directory locations changed to more accurately
reflect that the TSM handler/prober driver communicates with handlers and
probers:

Previous Filename/Location Current Filename/Location
<TestStand>\Components\Modules
\NI_SemiconductorModule\Handle
rs

<TestStand>\Components\Modules
\NI_SemiconductorModule\Handle
rsAndProbers

<TestStand>\Components\Modules
\NI_SemiconductorModule\Templa
tes\HandlerDriver.seq

<TestStand>\Components\Modules
\NI_SemiconductorModule\Templa
tes\HandlerProberDriver.seq

© National Instruments 55

TestStand Semiconductor Module

javascript:expand('docs_section','docs_arrow')
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

<TestStand Public>\Components\
Modules\NI_SemiconductorModule
\Handlers

<TestStand Public>\Components\
Modules\NI_SemiconductorModule
\HandlersAndProbers

■ You no longer use the SemiOIOptions.ini file to specify settings to
display in the operator interface. Use the OISettingsTable.cfg file
instead.
■ When you use reentrant VIs and subVIs, NI recommends using only the
Shared clone reentrant execution reentrancy execution option. Selecting
the Preallocated clone reentrant execution option might negatively
affect performance.
■ When you pause a lot, TSM 2013 or earlier pauses execution of the lot after
sending the bin results to the handler or prober with the end-of-test (EOT)
signal. In TSM 2014 or later, pausing a lot pauses execution after testing of the
current batch of DUTs is complete but before sending the bin results to the
handler or prober with the EOT signal. Operator interfaces built using TSM
2013 or earlier pause execution after sending the bin results to the handler or
prober and do not include the ability to retest a DUT.

What's New in the NI TestStand 2013 Semiconductor Module

The NI TestStand 2013 Semiconductor Module introduces new features. Some
compatibility issues might exist as a result of changes in the NI TestStand 2013
Semiconductor Module.

NI TestStand 2013 Semiconductor Module New Features

The following list describes the new features in the NI TestStand 2013
Semiconductor Module (TSM) and other changes since the NI TestStand 2012 R2
Semiconductor Module.

 Use this Toggle Expansion button to expand or collapse all the following
sections at once. Use the black arrows next to each heading to expand or collapse
sections individually. You must expand each section you want to print or search.

 Test Program Enhancements

ni.com56

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
javascript:toggleexpansion()
javascript:expand('testprogram_section','testprogram_arrow')

In addition to specifying pin map and bin definitions files, the test program now
includes test program configurations, which you use to specify test conditions and
an external test limits file for the test program to load when executed.

You can now use the Edit Test Program dialog box to specify the pin map and bin
definitions files, create and edit test program configurations, and configure other
settings for the test program.

Select Semiconductor Module»Edit Test Program: <filename> or click the
Edit Test Program: <filename> button on the TSM toolbar to launch the Edit
Test Program dialog box for the sequence file.

 Exporting and Importing Test Limits with Text Files

You can use a tab-delimited text file to export and import test limits from and to a
Semiconductor Multi Test step in a single sequence file at edit time or run time. For
example, during development, you can export all the tests in a test program to
review and edit and then import the changes back into the test program. At run
time, you can load and execute a different set of test limits from separate text files
based on the test program configuration you select by exporting the test limits and
creating multiple copies of the file to edit for each unique set of test limits you want
to use.

Select Semiconductor Module»Export Test Limits from <filename> or
Import Test Limits into <filename> or click the Export Test Limits from
<filename> button or the Import Test Limits into <filename> button on
the TSM toolbar to export test limits from a sequence file into a tab-delimited test
limits text file or to import test limits from a tab-delimited test limits text file into a
sequence file. When you import test limits from a text file, you can update limits in
matching tests or replace all tests in matching steps.

Refer to the Importing Test Limits from a File tutorial for more information about
importing test limits from and to a Semiconductor Multi Test step.

 Scaling Measurement and Limit Data

You can specify a scaling factor to select the units you want to use to display and
specify limit values and to display measurement values. Use the Scaling Factor
column in the Tests table on the Tests tab of the Semiconductor Multi Test step to

© National Instruments 57

TestStand Semiconductor Module

javascript:expand('exportimport_section','exportimport_arrow')
javascript:expand('scaling_section','scaling_arrow')

specify the scaling factor for the limits and measurements for each test. TSM
assumes that all measurement values that code modules publish use base units.

By default, the limits and the measurement use the same scaling factor. Changing
the scaling factor in the Scaling Factor column in the Tests table sets the scaling
factor for the limits and for the measurement. Use the Property Browser panel on
the Properties tab of the Step Settings pane to set the appropriate properties to
specify different scaling factors for each limit and the measurement.

 Semiconductor Multi Test Step Edit Tabs Enhancements

The Semiconductor Multi Test step edit tabs include the following enhancements:

■ Use the Per-Site Inputs tab to configure the per-site inputs for the step. Each
per-site input specifies a data value that you access in a code module using
the TSM pin map VIs.
■ You can copy and paste data in the Tests table on the Tests tab in the
following ways:

■ Press <Ctrl-C> to copy the contents of selected table rows, columns, or
cells to the clipboard.
■ Press <Ctrl-V> to insert data from the clipboard into the table starting from
the top left selected cell. If the number of rows of data on the clipboard is
greater than the number of tests in the Tests table, the paste command adds
new tests to the step to match the clipboard data.
■ You can copy data to tests on the same Semiconductor Multi Test step, to
tests on other Semiconductor Multi Test steps, or to a Microsoft Excel
spreadsheet.
■ When you modify the data in Excel and paste it back to a Semiconductor
Multi Test step, TSM returns an error if the modified data is invalid for a test.

■ The Options tab includes the following enhancements:

■ Use the Test Numeric Display Format control to specify the TestStand
numeric format associated with the limits and measurement data. The
numeric format determines how the Tests tab displays numeric values and
how the TestStand report generators display numeric values in reports. Click

ni.com58

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_step_settings_prop_browser.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_step_settings_prop.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_step_settings_pane.htm
javascript:expand('multiteststep_section','multiteststep_arrow')

the Edit button to launch the Numeric Format dialog box, in which you can
specify the numeric format.
■ When you associate a pin map file with the sequence file, the Multisite
Execution Diagram section shows the threads the step uses to execute
code modules when executing with the Batch process model using multiple
sites. Each rectangle represents a single thread. The numbers within the
rectangle represent the sites tested in the same thread. Each thread
corresponds to one of the test socket threads. The step determines which
test socket thread executes the code module at run time.
■ The SemiconductorModuleContext Pins option shows the list of pins
the SemiconductorModuleContext object contains at run time. By
default, the SemiconductorModuleContext contains all pins in the pin
map file. You can improve performance in some situations by specifying
only the pins you access in the code module. Use the Include System Pins
and Specify DUT Pins options to specify individual pins in the pin map file
to include in the SemiconductorModuleContext object.

 Get Test Settings Step

Use the Get Test Settings step to obtain the values for lot settings, station settings, or
custom test settings. Store the values of the settings in TestStand local variables so
that any step in the sequence can access the setting values.

Use the Get Test Settings edit tab in the TestStand Sequence Editor to specify the list
of lot settings, station settings, and custom test settings and the locations to store
the values.

 Pin Map VIs and Palettes

TSM adds the following new subpalettes:

■ RF subpalette—Use the NI-RFSA, NI-RFSG, FPGA, and NI-5530 RF Port
Module VIs to manage NI-RFSA, NI-RFSG, FPGA, and NI-5530 RF Port Module
instruments and sessions.

TSM VIs include the following changes:

© National Instruments 59

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_numeric_format.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpmodelthreadtypes.html
javascript:expand('gettestconditionsstep_section','gettestconditionsstep_arrow')
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_seq_local_variables.html
javascript:expand('pinmapvis_section','pinmapvis_arrow')

■ Get Pin Names VI and Filter Pins VI—Use the Capability control to limit
the filtered pins to those connected to a channel that defines the capability
you specify. Use Capability to differentiate between pins in the same
instrument with different capabilities, such as NI-HSDIO Dynamic DIO
channels and PFI lines. If a pin is connected to channels in which the
capability is define only for a subset of sites, the VI returns an error. Pass an
empty string to return all elements in Pins that match Instrument Type Id.
■ Publish Data VIs—Redesigned Publish Data VI polymorphic instances use
a Pin Query Context object that tracks the sessions and channels associated
with a pin query. TSM uses this object to publish measurements, extract data
from a set of measurements, and create or rearrange waveforms.

TSM adds the following new VIs:

Use the Advanced:Per-Site:Boolean, Advanced:Per-Site:Double, and Advanced:Per-
Site:String polymorphic instances of the Publish Data VI to publish Boolean
measurement data, double-precision, floating-point measurement data, or strings
for all sites in the Semiconductor Module context.

Use the Get Input Data VI to return per-site input data as defined in the
Semiconductor Multi Test step.

Deprecated VIs
The following VIs are now deprecated. NI supports these VIs but recommends that
you update files to reflect these changes to ensure compatibility with future
versions of TSM.

Deprecated VI Preferred VI
Create Multisite Digital Waveforms (Deprecated) Create Multisite Digital Waveforms
Get Session And Channel Index (Deprecated) Get Session And Channel Index
Pins to NI-HSDIO Channel Masks (Deprecated) Get NI-HSDIO Channel Masks
Publish Data (Deprecated) Publish Data
Rearrange Multisite Digital Waveforms (Depreca
ted)

Rearrange Multisite Digital Waveforms

The preferred replacement VIs use a Pin Query Context object that tracks the
sessions and channels associated with a pin query. TSM uses this object to publish

ni.com60

TestStand Semiconductor Module

measurements, extract data from a set of measurements, and create or rearrange
waveforms.

 Pin Map File XML Structure

The pin map file XML structure includes the following new elements and attributes:

New Element or Attribute Description
PFILines attribute of existing <NIHSDIOIns
trument> element

(Optional) Defines the PFI lines available in the
NI-HSDIO instrument in a comma-separated list
of numbers or ranges of numbers separated by
a hyphen. PFI number ranges are inclusive and
must be in ascending order. Example: PFILine
s=2,3,4-8

<NIRFSAInstrument> element and name at
tribute

Defines an NI-RFSA instrument.

<NIRFSGInstrument> element and name at
tribute

Defines an NI-RFSG instrument.

<NIVSTInstrument> element and name an
d fpgaFilePath attributes

Defines an NI-VST instrument that can hold RFS
A, RFSG, and FPGA sessions.

<NI5530RFPortModule> element and nam
e and calibrationFilePath attributes

Defines an NI-5530 RF Port Module instrument.
You can use the NI-5530 RF Port Module to multi
plex one RF instrument across multiple test site
s or multiple RF instruments across multiple tes
t sites.

multiplexerTypeId attribute of existing <M
ultiplexer> element

String that identifies the switch type, family, cla
ss, or product group. You cannot specify a value
that begins with ni. This value is a string that y
ou define in the pin map and is not a predefined
value from some other source, such as a name i
n MAX, that you select. Use this value to identify
all instances of a particular switch type. Switche
s of the same type typically have the same sessi
on data type and same driver API.

 TSM 2013 Examples

TSM includes the following new examples:

© National Instruments 61

TestStand Semiconductor Module

javascript:expand('pinmapxml_section','pinmapxml_arrow')
javascript:expand('tsmexamples_section','tsmexamples_arrow')

■ Asynchronous Analysis—Demonstrates a test program that must perform
lengthy analysis on data acquired from an instrument. The test program
performs the analysis in an asynchronous thread.
■ Grading—Demonstrates how to use the Set and Lock Bin step to grade
DUTs based on different test criteria.
■ Multisite Simple Flow - No Hardware—Demonstrates a multisite test
program that uses LabVIEW code modules with simulated test results.
■ Switching—Demonstrates how to use switching tools in the pin map to
share an instrument across multiple sites.

 Additional Enhancements in TSM 2013

TSM includes the following features and enhancements:

■ Semiconductor Module Menu and Toolbar—Use this menu and related
toolbar to edit test program and related files, to configure station settings and
lot settings, to import or export test limits, and to disable TSM.
■ Semiconductor Module Run-Time Error dialog box—Use this improved
dialog box to specify how to handle run-time errors that occur in an execution
that uses a process model if TSM is enabled. The dialog box contains a
description of the error and the step, sequence, and sequence file where the
error occurred. The dialog box includes an error code only for TestStand errors
unrelated to TSM.
■ Deploying TSM test systems—Use the TestStand Deployment Utility to
deploy a test system. Launch the deployment utility and click Drivers and
Components on the Installer Options tab to launch the Drivers and
Components dialog box, in which you can include the TSM components as
part of the installer you build.
■ Station options specify number of sites—Use the Require at Least N
Sites in Pin Map and the Require at Most N Sites in Pin Map options on
the General tab of the Configure Station Settings dialog box to specify that a
pin map must have at least N sites or at most N sites to run. Use the AllowMo
rePinMapSitesThanTestSockets and the AllowFewerPinMapSite
sThanTestSockets properties of the
NI_SemiconductorModule_StationSettings data type to specify whether TSM

ni.com62

TestStand Semiconductor Module

javascript:expand('additionalenhancements_section','additionalenhancements_arrow')
https://www.ni.com/docs/csh?topicname=tsdeploysystem/infotopics/tsdudefault.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/deploymentutility.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/deploymentutility_installopttab.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_drivers_and_components.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_drivers_and_components.htm

runs a sequence file with a pin map with more or fewer sites than the number
of test sockets configured in the model options.

 TSM Licensing Options

After you install TSM, you must use the NI Activation Wizard to activate the software
or initiate the evaluation period for the software. NI offers a variety of licenses for
the different ways you can use TSM in development and deployment applications.
You can select from the following types of licenses:

■ NI TestStand Semiconductor Module Evaluation Package
■ NI TestStand Semiconductor Module Development License (783522-35)
■ NI TestStand Semiconductor Module Debug Deployment Environment
License (779991-35)

 TSM Operator Interface Improvements

The TSM operator interface includes general cosmetic improvements and the
following functional improvements:

■ Displays information about the lot and station settings.
■ Displays generated report at execution completion or during test execution.
■ Generates a mid-lot summary report.
■ Automatically sorts bin table by highest count.

 Documentation Updates

This help file now includes content on the following topics:

■ Multisite Programming Techniques
■ Improving Test System Performance

NI TestStand 2013 Semiconductor Module Compatibility Issues

The NI TestStand 2013 Semiconductor Module (TSM) introduces the following
behavior changes between version 2012/2012 R2 and version 2013:

■ TSM now installs the pin map VIs into <vi.lib>/NI_TestStand_Semi
conductorModule instead of <vi.lib>/addons/NI_TestStand_Se

© National Instruments 63

TestStand Semiconductor Module

javascript:expand('licensing_section','licensing_arrow')
https://www.ni.com/docs/csh?topicname=tshelp/nitopics/nilm.html
javascript:expand('oiimprovements_section','oiimprovements_arrow')
javascript:expand('docupdates_section','docupdates_arrow')

miconductorModule. The VIs now appear on the TestStand
Semiconductor Module»Pin Map Functions palette instead of on the
Addons»Pin Map Functions palette.

When you open test code VIs in LabVIEW, LabVIEW searches for the new
location and updates the test code VIs automatically. To avoid this delay,
mass compile the test code VIs by selecting Tools»Advanced»Mass
Compile in LabVIEW.
■ The following VIs are now deprecated. NI supports these VIs but
recommends that you update files to reflect these changes to ensure
compatibility with future versions of TSM.

Deprecated VI Preferred VI
Create Multisite Digital Waveforms (Deprecat
ed)

Create Multisite Digital Waveforms

Get Session And Channel Index (Deprecated) Get Session And Channel Index
Pins to NI-HSDIO Channel Masks (Deprecate
d)

Pins to NI-HSDIO Channel Masks

Publish Data (Deprecated) Publish Data
Rearrange Multisite Digital Waveforms (Depr
ecated)

Rearrange Multisite Digital Waveforms

■ The NI TestStand 2013 Semiconductor Module changes the structure of the
data types that represent lot settings and station settings. The new data types
are not compatible with the types from the NI TestStand 2012/2012 R2
Semiconductor Module. You must update test programs in the following ways
to account for the new data types:

■ When you open a sequence file saved with the NI TestStand 2012/2012 R2
Semiconductor Module data types for lot settings or station settings,
variables that use those data types are automatically updated, and existing
property values are lost. To retrieve the property values from a sequence file
after you install the NI TestStand 2013 Semiconductor Module, select
Semiconductor Module»Disable Semiconductor Module in the
TestStand Sequence Editor before you open the sequence file. After you
copy the values from station settings and lot settings variables, close the
sequence file and re-enable TSM.

ni.com64

TestStand Semiconductor Module

■ You must update expressions that refer to properties in the
NI_SemiconductorModule_LotSettings or
NI_SemiconductorModule_StationSettings data types to avoid run-time
errors, as the following table describes:

Property Type How to Update
Standard properties Change Settings.PropertyName to Se

ttings.Standard.PropertyName
Custom properties Add the properties to the NI_Semiconducto

rModule_CustomLotSettings or NI_Semico
nductorModule_CustomStationSettings da
ta types and remove any steps in sequence
s that use the TestStand API to create custo
m properties.

■ TSM introduces a new template sequence file for you to use to create TSM
callback sequences. Instead of copying callback sequences from the Semico
nductorModuleCallbacks.seq sequence file in the <TestStand>\Co
mponents\Callbacks\NI_SemiconductorModule directory as
recommended in previous versions of TSM, you must now copy the callback
sequences from the SemiconductorModuleCallbacks.seq sequence
file in the <TestStand>\Components\Modules\NI_Semiconductor
Module\Templates directory. Do not copy sequences from any sequence
files other than the sequence files in the <TestStand>\Components\Mod
ules\NI_SemiconductorModule\Templates directory because only
those sequence files use the current NI_SemiconductorModule_LotSettings or
NI_SemiconductorModule_StationSettings data types.
■ Some NI TestStand 2013 Semiconductor Module filenames and file paths
have changed from the NI TestStand 2012/2012 R2 Semiconductor Module, as
the following table describes:

2012/2012 R2 Name 2012/2012 R2 Path 2013 Name 2013 Path
NI_Semiconducto
rModuleHandlerD
river_Template.
seq

<TestStand>\Com
ponents\Modules
\NI_Semiconduct
orModule

HandlerDriver.s
eq

<TestStand>\Com
ponents\Modules
\NI_Semiconduct

© National Instruments 65

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

orModule\Templa
tes

NI_Semiconducto
rModuleInlineQA
Algorithm_Templ
ate.seq

<TestStand>\Com
ponents\Modules
\NI_Semiconduct
orModule

InlineQAAlgorit
hm.seq

<TestStand>\Com
ponents\Modules
\NI_Semiconduct
orModule\Templa
tes

■ The Semiconductor Multi Test step Options tab no longer includes options
for specifying or editing pin map or bin definitions files. The Set and Lock Bin
step tab no longer includes options for specifying or editing the bin definitions
file. Use the Edit Test Program dialog box to specify and edit the pin map and
bin definitions files.

What's New in the NI TestStand 2012 R2 Semiconductor Module

The NI TestStand 2012 R2 Semiconductor Module introduces new features. Some
compatibility issues might exist as a result of changes in the NI TestStand 2012 R2
Semiconductor Module.

NI TestStand 2012 R2 Semiconductor Module New Features

The following list describes the new features in the NI TestStand 2012 R2
Semiconductor Module (TSM) and other changes since the NI TestStand 2012
Semiconductor Module.

 Use this Toggle Expansion button to expand or collapse all the following
sections at once. Use the black arrows next to each heading to expand or collapse
sections individually. You must expand each section you want to print or search.

 LabVIEW VIs and Palettes

TSM adds the following new VIs:

■ Create Multisite Digital Waveforms—Creates multisite digital
waveforms based on the pin map.
■ Rearrange Multisite Digital Waveforms—Rearranges multisite
waveforms read from NI-HSDIO instruments into per-site digital waveforms.
■ Get Pin Names—Returns all DUT and system pins.

ni.com66

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
javascript:toggleexpansion()
javascript:expand('vi_section','vi_arrow')

■ Get Session And Channel Index VI—Returns the index of the channel
group and channel that corresponds to a pin query. Use this VI to access an
individual pin when you take a measurement across multiple instruments and
pins. When you call a pin query VI, such as the Pins to NI-HSDIO Sessions VI,
the VI returns an array of sessions and a channel list. Use the Get Session and
Channel Index VI to identify which session and which channel refers to a pin
and site number you specify.

TSM adds the following new subpalettes:

■ NI-HSDIO subpalette—Use this subpalette to access the NI-HSDIO VIs and
the Multisite Digital Waveform VIs.
■ NI-DCPower subpalette—Use this subpalette to access the NI-DCPower
VIs.

 New Reports and Data Logs

You can generate the following new types of TSM reports and data logs. Enable and
configure the corresponding TSM result processing plug-in to generate the report or
data log.

■ Lot Summary Report—Text file that contains a summary of the
semiconductor test results for the current lot of DUTs (test lot).
■ Test Results Log—Human-readable text file that contains the measurement
values and test limits for each test that executes on each site.

You can customize the filenames and locations in which the TSM result processing
plug-ins create report and data log files by modifying a copy of the
GetReportFileName callback.

 Customizing the STDF PRR PartID Field Value

The STDF result processing plug-in sets the PartID field in the Part Results Record
(PRR) of the STDF version 4 specification by using the value of the SerialNumber
property on the UUT data type. By default, TSM automatically assigns sequential
numeric values to the SerialNumber property, which results in unique PartID
field values for each PRR.

The NI_SemiconductorModule_StationSettings data type now includes a Generat
eUniquePartIds property that specifies whether TSM generates unique values

© National Instruments 67

TestStand Semiconductor Module

javascript:expand('reports_section','reports_arrow')
javascript:expand('prr_section','prr_arrow')

for the PartId field of PRRs in the STDF log file. Set this value to False to generate
unique PartID values using a custom algorithm you implement.

 LotTestingComplete Callback

TSM calls the LotTestingComplete callback sequence to perform tasks when a
lot completes testing, such as sending generated reports to a central server or
displaying a message on the tester to indicate that the tester is idle.

The default implementation of the LotTestingComplete callback sequence is
empty. You can override this callback to customize the tasks to perform when a lot
completes testing. TSM calls the LotTestingComplete callback after all other process
model plug-ins complete execution.

 Improved Lot and Station Settings Configuration Dialog Boxes

The default Configure Lot Settings dialog box includes the following new fields:

■ Device Name
■ Lot Number
■ Estimated Lot Size
■ Test Flow
■ Test Temp
■ Operator ID

The Configure Station Settings dialog box includes the following new fields:

■ Test Failure Mode
■ Number of Sites
■ Additional buttons that launch the standard TestStand Station Options,
Search Directories, LabVIEW Adapter, and Result Processing dialog boxes

 Operator Interface Enhancements

The TSM default operator interface now displays the following new information:

■ Average test times, such as Socket Time and Cycle Time, calculated by
averaging the last 10 runs of a DUT.

ni.com68

TestStand Semiconductor Module

javascript:expand('lottestingcomplete_section','lottestingcomplete_arrow')
javascript:expand('lotstationsettings_section','lotstationsettings_arrow')
javascript:expand('oienhance_section','oienhance_arrow')

■ Status of the tester with information for operators about how to proceed
when testing a lot.
■ Sites that are actively testing DUTs, DUTs that have recently failed on a given
site, or sites that are waiting for DUTs to test.
■ Inline QA data, when enabled, such as the number of DUTs that passed and
failed during inline QA testing.
■ Errors that occur during execution and that appear in an error log file.

NI TestStand 2012 R2 Semiconductor Module Compatibility Issues

The NI TestStand 2012 R2 Semiconductor Module introduces the following behavior
changes between version 2012 and version 2012 R2:

Changes to Pin Map XML Structure

The InstrumentTypeId attribute of the <Instrument> element must now
contain at least one character. If you previously used an empty string for Instrume
ntTypeId, the XML file no longer validates. Enter at least one character for the
attribute and update any code modules that refer to the InstrumentTypeId
attribute.

GetSTDFFileName Callback Removed

The STDF Log result processor model plug-in no longer uses the GetSTDFFileNa
me callback sequence to determine the name of the STDF log file. Use the
GetReportFileName callback sequence instead.

Customizing the Configure Lot Settings and Configure Station Settings
Dialog Boxes

You must now complete the following additional steps to customize the behavior for
obtaining lot settings and station settings.

■ Copy the <TestStand>\Components\Callbacks\NI_Semiconduc
torModule\LotSettingsDialogs.lvlibp and StationSettings
Dialogs.lvlibp LabVIEW packed project library files to the corresponding
<TestStand Public>\Components\Callbacks\NI_Semiconduct

© National Instruments 69

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

orModule\LotSettingsDialogs.lvlibp and StationSettingsD
ialogs.lvlibp.
■ Copy the contents of <TestStand>\Components\Callbacks\NI_Se
miconductorModule\Source\LotSettingsDialogs and Station
SettingsDialogs directories to the corresponding <TestStand Publi
c>\Components\Callbacks\NI_SemiconductorModule\Source\
LotSettingsDialogs and StationSettingsDialogs directories and
make changes to the copy of the LabVIEW projects.
■ Rebuild the packed project library build specifications in the projects to
update the copies of the LabVIEW packed project libraries.

Getting Started with TSM
Use TestStand and TSM with other NI development tools to build, debug, customize,
and deploy semiconductor characterization and production test systems.

 Use this Toggle Expansion button to expand or collapse all the following
sections at once. Use the black arrows next to each heading to expand or collapse
sections individually. You must expand each section you want to print or search.

 Brief Tour of TSM

Note You must have the LabVIEW Development
System installed to use this example.

1. From the TestStand Sequence Editor, open Getting Started with Sem
iconductor Module.seq. Open the file from the <TestStand Publi
c>\Examples\NI_SemiconductorModule\Getting Started wit
h Semiconductor Module\LabVIEW directory.

<TestStand Public>\Examples\NI_SemiconductorModule\Get
ting Started with Semiconductor Module\LabVIEW\Getting
Started with Semiconductor Module.seq

The Getting Started with Semiconductor Module.seq
sequence file is a simple example semiconductor test program that

ni.com70

TestStand Semiconductor Module

javascript:toggleexpansion()
javascript:expand('tour_section','tour_arrow')
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditor.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

demonstrates a multisite test program that uses LabVIEW code modules with
simulated test results. The example is configured to test up to four DUTs in
parallel, each on a separate test site.

2. Review the following TSM toolbar buttons to use to control execution and
view lot statistics while executing and debugging a sequence.

1. Edit Test Program
2. Edit Pin Map File
3. Edit Bin Definitions File
4. Configure Station
5. Configure Lot
6. Active Configuration
7. Import Test Limits into

8. Export Test Limits from
9. Single Test
10. Start/Resume Lot
11. Pause
12. Retest
13. End Lot
14. Step Into

15. Step Over
16. Step Out
17. Show Lot Statistics Viewe
r
18. Launch Digital Pattern Edi
tor
19. Launch InstrumentStudio
20. Enable/Disable Offline Mo
de

3. Click the Start/Resume Lot button to begin testing. Each Execution
window represents a test site. The sequence editor traces each step during
execution.

Note Depending on the current sequence
editor settings, when you click the
Start/Resume Lot button, TestStand might
display the Found Analysis Errors dialog
box to indicate that errors exist in the
sequence file. Click the
Continue Execution button to ignore
these errors because the sequence file
adjusts certain settings at run time to fix
these errors.

4. Click the Show Lot Statistics Viewer button to view per-site binning
information. The Lot Statistics Viewer window includes the same buttons as
on the TSM toolbar for controlling execution.

5. Click the End Lot button to stop testing.

© National Instruments 71

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_exe_window.htm

6. Close the Lot Statistics Viewer window.
7. Press <Ctrl-D> to close the Execution windows.

Debugging LabVIEW Steps
1. In the Getting Started with Semiconductor Module.seq, click

in the blank column to the left of the Leakage step to set a breakpoint .

2. Click the Start/Resume Lot button to begin testing. Each Execution window
pauses when it reaches the breakpoint at the Leakage step. The background
color of the Execution window changes to yellow to indicate that the
execution is paused.

3. Click the Step Into button on the TSM toolbar to transfer execution to the
LabVIEW Development System, which suspends within the Leakage VI the
Leakage step calls.

You can now use the built-in LabVIEW debugging tools.

4. In LabVIEW, click the Run button and then click the Return to Caller
button to return execution to the sequence editor.

5. Click the End Lot button to stop testing.

 Where to Go Next

■ Explore the components of a test program.
■ Complete the Exploring a Basic Semiconductor Test Program tutorial.
■ Review the Accelerometer example, located in the <TestStand Public
>\Examples\NI_SemiconductorModule\Accelerometer directory.
■ Use the TestStand and TSM example programs, located in the <TestStand
Public>\Examples directory, as a starting point for applications you
create.
■ Refer to the NI STS Technical Support Community on ni.com for
information about TSM custom instruments for instrument drivers, custom
debug panels, and custom handler/prober drivers. You can work directly with
NI services personnel contracted on your project or contact stssupport@n
i.com to request to be added to the NI STS Technical Support Community.

ni.com72

TestStand Semiconductor Module

javascript:expand('next_section','next_arrow')
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

 Related TestStand Resources

Familiarize yourself with TestStand in the following ways:

■ Complete the tutorials in the Getting Started with TestStand manual.
■ Review the following information in the TestStand help and familiarize
yourself with the organization of the help file

■ Guide to TestStand Documentation
■ TestStand Components
■ General Test Executive Concepts
■ TestStand Building Blocks

Overview of Test Program Components (TSM)

A semiconductor test program can include a pin map file, a main sequence file,
subordinate sequence files, code modules, specifications, timing files, levels files,
pattern files, source and capture waveforms, test limits files, a bin definitions file,
and configurations. Use the Test Program Editor to complete the following tasks:

■ Specify the pin map, bin definitions, specifications, digital pattern project,
and test limits files
■ Create and edit test program configurations
■ Configure other settings for the test program

Select Semiconductor Module»Edit Test Program: <filename> or click the
Edit Test Program: <filename> button on the TSM toolbar to launch the Test
Program Editor for the sequence file.

Use the TestStand Sequence Editor to complete test program development,
configuration, debugging, and execution tasks.

Click the items in the following figure for more information about the
components of test programs and test stations.

© National Instruments 73

TestStand Semiconductor Module

javascript:expand('resources_section','resources_arrow')
https://www.ni.com/docs/csh?topicname=tshelp/infotopics/guidetodoc.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/majorcomponents.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/generaltestexecconcepts.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/buildingblocks.html

ni.com74

TestStand Semiconductor Module

TestStand Sequence Editor

The TestStand Sequence Editor is the development environment in which you
create, edit, execute, and debug sequences and the tests sequences call.

Complete the following steps to launch the sequence editor.

1. (Windows 8.1/8) Click the NI Launcher tile on the Start screen and select
TestStand»TestStand Sequence Editor.

(Windows 7) Select Start»All Programs»National
Instruments»TestStand»TestStand Sequence Editor.

(Windows 10) Select Start» NI TestStand.

The sequence editor launches the main window and the Login dialog box.
2. Use the default user name, administrator, in the User Name ring control.

Leave the Password field empty. You can use the TestStand User Manager to
customize user settings and permissions.

3. Click OK.

Back to Overview

Pin Map

A pin map defines the instrumentation on the tester, defines the pins on the DUT,
and defines how the DUT pins are connected to the tester instrumentation for each
test site. Use the Pin Map Editor to view, create, modify, and save pin map files. The
pin map file also serves as the channel map file.

Select Semiconductor Module»Edit Pin Map File or click the Edit Pin Map
File button on the TSM toolbar to launch the Pin Map Editor. Alternatively, you can
select Semiconductor Module»Edit Test Program and then select Pin Map in
the Test Program Editor to launch the Pin Map panel. Click the Open file for edit
button to launch the Pin Map Editor.

Back to Overview

© National Instruments 75

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditor.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/user.html

Bin Definitions File

A bin definitions file defines the hardware bins and software bins, defines how the
software bins relate to hardware bins, and defines the default software bins for the
test program main sequence file. Use the Bin Definitions Editor to view, create,
modify, and save bin definitions files.

Select Semiconductor Module»Edit Bin Definitions File or click the Edit Bin
Definitions File button on the TSM toolbar to launch the Bin Definitions Editor.
Alternatively, you can select Semiconductor Module»Edit Test Program and
then select Bin Definitions in the Test Program Editor to launch the Bin Definitions
panel. Click the Open file for edit button to launch the Bin Definitions Editor.

Back to Overview

Specifications Files

Specifications files define a set of symbols, or variables, and associated numeric
values of DUT attributes that you can reference in test program code modules
instead of using constants to set testing specifications. You can modify
specifications files to set new values without changing test program files.

Select Semiconductor Module»Edit Test Program and select Specifications
Files in the Test Program Editor to specify one or more specifications files to load in
the test program.

Back to Overview

Digital Pattern Project

Use the Digital Pattern Editor with a Digital Pattern Instrument and the NI-Digital
Pattern Driver software for digital testing of semiconductors, or devices under test
(DUTs). Use digital pattern project files to organize and access pattern files and the
following types of digital configuration files:

■ Pin and channel maps (.pinmap)
■ Specifications (.specs)

ni.com76

TestStand Semiconductor Module

■ Digital timing (.digitiming)
■ Digital levels (.digilevels)
■ Digital patterns (.digipat)
■ Source waveforms (.tdms)
■ Capture waveform configurations (.digicapture)

Back to Overview

Timing Files

Timing files contain configuration components of digital pattern time sets, which
define the behavior of a digital signal on a pin for a particular cycle. Timing files also
include the format and edge placement that shape the digital waveform on a per-
pin basis for a digital pattern instrument. Edit timing files in the Digital Pattern
Editor.

Back to Overview

Levels Files

Levels files contain voltage and current levels to drive and compare for digital pins
and pin groups connected to an NI digital pattern instrument and for pins and pin
groups connected to an NI-DCPower instrument. Edit levels files in the Digital
Pattern Editor.

Back to Overview

Pattern Files

Pattern files contain a collection of vectors, or instructions, to execute on an NI
digital pattern instrument. Components of the binary pattern file include time sets,
labels, opcodes, vector numbers, pin state data that indicates drives and compares,
and comments for each vector. Edit pattern files in the Digital Pattern Editor.

Back to Overview

© National Instruments 77

TestStand Semiconductor Module

Source and Capture Waveforms

You can source or capture a variable waveform that is not defined at compile time
on an NI digital pattern instrument. Edit source waveform and capture waveform
configuration files in the Digital Pattern Editor.

Back to Overview

Correlation Offsets File

You can apply correlation offset values to test results on a per-site basis at run time
before evaluating the test result data against limits. Use the Load Correlation Offsets
Step and associated edit tab to load and apply a correlation offset file.

Back to Overview

Test Program Configurations

Test program configurations define values for conditions that a test program can
reference at run time and the test limits file that loads before running a test lot. A
test program can use multiple configurations to implement multiple test flows using
the same sequences and code modules. For example, you can create configurations
for Hot and Cold flows or for QA and Production lots.

Select Semiconductor Module»Edit Test Program and then select
Configuration Definition in the Test Program Editor to define configuration
settings.

Back to Overview

Test Limits Files

Test limits files define test limits the test program loads before running a test lot.
The test program replaces test limits in test steps in the sequence file with those
specified in the test limits file. You can embed test limits in the sequence file to
prevent viewing or tampering with the limits.

ni.com78

TestStand Semiconductor Module

Select Semiconductor Module»Edit Test Program and select Test Limits
Files in the Test Program Editor to specify one or more test limits files to make
available to the test program configurations. The test program configuration
specifies the test limits file that loads before running a test lot.

You can create a test limits file by selecting Semiconductor Module»Export Test
Limits from or by clicking the Export Test Limits from button on the TSM
toolbar to export test limits from a sequence file into a tab-delimited test limits text
file. You can import a test limits file by selecting Semiconductor Module»Import
Test Limits to or by clicking the Import Test Limits to button on the TSM
toolbar to import test limits from a tab-delimited test limits text file into a sequence
file. When you import test limits from a text file, you can update limits in matching
tests or replace all tests in matching steps.

Back to Overview

Test Conditions

Test conditions specify historical information, descriptive information, such as DUT
numbers or package types, and conditions under which to test the DUTs, such as
temperature or voltage. The test program can use test conditions to determine how
to execute tests. For example, test conditions might dictate which steps execute,
what temperature to apply to a DUT, what voltage to use, and so on.

Select Semiconductor Module»Edit Test Program and select an option in the
Configurations list of the Test Program Editor to edit configuration settings.

Back to Overview

Main Sequence File

The main sequence file contains the sequences that define the test flow by
specifying the test steps to execute and the order in which to execute them. The
sequence file contains one main sequence named MainSequence and can
optionally include one or more subsequences with corresponding test steps. You
can use multiple sequences in a test program to keep the test code modular and
organized.

© National Instruments 79

TestStand Semiconductor Module

The ProcessSetup and ProcessCleanup sequences are special sequences
that TestStand calls at certain times. TestStand calls ProcessSetup once before
starting execution and calls ProcessCleanup after execution completes.
Initialization and cleanup of instrumentation typically occurs within these
sequences.

Back to Overview

Test Steps

Test steps call test code in code modules that control the instrumentation on the
tester. The test steps perform tests by comparing measurement values obtained by
the code modules to test limits stored on the step and assign a bin to the DUT if the
comparison fails. You can also assign a bin to the DUT when the comparison fails.
Test steps are instances of the Semiconductor Multi Test step type, in which you also
define test numbers and names.

Back to Overview

OnSiteTestingComplete

Use the OnSiteTestingComplete callback sequence to perform actions on a
DUT or on instruments after all DUT tests have completed and TSM has assigned a
bin to the DUT.

To use the OnSiteTestingComplete callback, add a sequence with no
parameters to the test program sequence file and name the new sequence OnSite
TestingComplete. TSM calls the sequence after the MainSequence sequence,
after all PAT tests complete, and after TSM assigns a bin to the DUT. Use the Get Test
Information step in the callback sequence to determine the bin assigned to the DUT.

You cannot use Semiconductor Multi Test steps in the OnSiteTestingComplete
callback because all tests must execute before TSM assigns a bin to the DUT and
before TSM calls the callback. Use the Semiconductor Action step to perform
operations with the instruments and DUT.

ni.com80

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_codemodules.html

You cannot change the bin assigned to a DUT in the OnSiteTestingComplete
callback. You cannot use the Set and Lock Bin step in the OnSiteTestingCompl
ete callback.

You can use the Cleanup step group of the MainSequence sequence to perform
similar actions as the OnSiteTestingComplete callback if you do not need to
know the bin assigned to the DUT to perform the actions. If your test program uses
part average testing, you should precede the actions in the Cleanup step group with
a Perform Part Average Testing step, to ensure that they run after all part average
testing is completed. If you don't use a Perform Part Average Testing step, TSM
performs part average testing after executing all step groups of the MainSequence
sequence.

Back to Overview

Code Modules

Use LabVIEW or .NET to create, edit, and debug test code in code modules to control
the instrumentation on the tester, take measurements from the DUT, and pass the
measurement values back to the test step. Code modules are program modules,
such as a LabVIEW VI or a Microsoft Windows DLL, that contain one or more
functions that perform a specific test or other action.

Back to Overview

Station Settings

You can specify test station configuration options for the tester, such as handler
configuration or data logging preferences, that apply to all test lots and that persist
during restart and shutdown operations. The test program can use station
information to determine how to execute tests. For example, station settings might
specify the type of handler to use with the test program, which reports to generate,
or whether the test station performs inline quality assurance testing. When a test
station is reconfigured, such as to specify a different handler or to change the
functionality of the tester, the station settings must be updated to account for the
changes. You can customize how TSM obtains and processes the settings.

© National Instruments 81

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_codemodules.html

Select Semiconductor Module»Configure Station in the TestStand Sequence
Editor or click the Configure Station button in the default TSM operator interface
to launch the Configure Station Settings dialog box.

Back to Overview

Lot Settings

The test program can use lot information to determine how to execute tests. For
example, lot settings might dictate which steps execute, what temperature to apply
to a DUT, what voltage to use, and so on. You can customize how TSM obtains the
settings.

Select Semiconductor Module»Configure Lot in the TestStand Sequence Editor
or click the Configure Lot button in the default TSM operator interface to launch
the Configure Lot Settings dialog box.

Back to Overview

Reporting and Data Logging

You can generate TSM reports and data logs, such as Standard Test Data Format
(STDF) log files, Lot Summary Reports, and Test Results Logs. Enable and configure
the corresponding TSM result processing plug-in to generate the report or data log.
You can customize the destination directory and filename of the report or data log
file.

Back to Overview

Lot Statistics Viewer

The Lot Statistics Viewer window provides a way to view lot statistics, including per-
site bin counts, while running or debugging a sequence in the sequence editor. You
can also control test program execution in the Lot Statistics Viewer.

ni.com82

TestStand Semiconductor Module

Select Semiconductor Module»Show Lot Statistics Viewer or click the Show
Lot Statistics Viewer button on the TSM toolbar to launch the Lot Statistics Viewer
window.

Back to Overview

Test Code Debugging Tools

TestStand includes several tools for debugging sequences and related components
in a TestStand test program and in TSM test programs. Additionally, the TestStand
Sequence Editor integrates with supported application development environments
to debug code modules.

Back to Overview

TestStand Execution Profiler

Use the Execution Profiler to view and record duration of steps, code modules, and
other resources a multithreaded TestStand system uses over a period of time.

In an effort to improve test time performance, you can optimize test time by
identifying parts of the test program that take longest to execute or by identifying
what shared tester resources cause throughput bottlenecks.

Back to Overview

Test Program Performance Analyzer

Use the Test Program Performance Analyzer to view data TSM generates when you
measure the performance of a test program. You can filter, graph, compare, and
save the data in various ways to identify performance issues in a test program.

Back to Overview

© National Instruments 83

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/ui_debug_menu.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/resource_usage_profiler.htm

Operator Interfaces

Use TSM default operator interface applications to execute test sequences on a test
station. The operator interface source code is available in LabVIEW and C#. You can
fully customize them to meet specific needs.

Back to Overview

Instrument Drivers

NI provides instrument drivers to configure, customize, and implement your
instrument control applications. TSM has native support for multiple NI instrument
drivers. You can integrate other NI or third-party drivers into the multisite pin map
by using custom instruments. You can download TSM custom instruments for more
drivers from the NI STS Technical Support Community on ni.com. You can work
directly with NI services personnel contracted on your project or contact stssuppo
rt@ni.com to request to be added to the NI STS Technical Support Community.

Note The NI TestStand 2016 Semiconductor
Module natively supports NI digital pattern
instruments that use the NI-Digital Pattern
Driver and legacy digital waveform instruments
that use the NI-HSDIO driver, such as the
PXIe-6556. Use the TSM Code Module API that
corresponds to the type of digital instrument
the test system includes.

Back to Overview

Soft Front Panels

Most NI modular instruments include soft front panels (SFP) to allow you to quickly
configure, troubleshoot, or debug your instrument or DUT. Launch the soft front
panels from MAX by selecting Tools»Soft Front Panels. TSM also provides tools to
create custom debug panels in LabVIEW or C#. You can launch custom debug panels
when debugging a test program, and you can use them to configure and control
multiple instrument drivers.

ni.com84

TestStand Semiconductor Module

You can also use InstrumentStudio, a software-based front panel application, to
monitor, control, and record measurements from supported devices.

Before you create a custom debug panel, search the NI STS Technical Support
Community on ni.com for an existing one. You can work directly with NI services
personnel contracted on your project or contact stssupport@ni.com to request
to be added to the NI STS Technical Support Community.

Back to Overview

Offline Mode System Configuration File

The Offline Mode system configuration file defines the instruments on a specific STS.

Back to Overview

Instrument Model Library

The Instrument Model Library is a collection of XML files that describe instruments.
Instrument model description files include general information, details for
connection components (channels, ports, resources), and configuration properties
of the instrument and its resources.

Back to Overview

Measurement & Automation Explorer

The TSM pin map defines the instruments required for a test. Measurement &
Automation Explorer (MAX) helps you configure the instrument connected to the
system. For a test program to execute properly, the instrument names in the pin
map must correspond with instrument names configured in the system.

MAX helps you complete the following tasks:

■ Configure NI hardware and software and third-party IVI hardware and
software
■ View and edit instruments names in the system
■ Create and edit channels, tasks, interfaces, scales, and virtual instruments

© National Instruments 85

TestStand Semiconductor Module

■ Execute system diagnostics and run soft front panels
■ Update NI software

(Windows 8.1/8) Click the NI Launcher tile on the Start screen and select NI MAX
to launch MAX. (Windows 7) Select Start»NI MAX to launch MAX.

Back to Overview

Handler or Prober Integration

The TSM handler/prober driver plug-in architecture enables you to write and enable
handler/prober drivers. A handler/prober driver contains entry point sequences that
TSM calls during execution to accomplish handler-related or prober-related tasks.

Use the NI Built-in Simulated Handler Driver to simulate handler functionality
without requiring access to a real handler.

Custom handler/prober drivers are available from the NI STS Technical Support
Community on ni.com. You can work directly with NI services personnel
contracted on your project or contact stssupport@ni.com to request to be
added to the NI STS Technical Support Community.

Back to Overview

Part Average Testing Support

Part average testing (PAT) is a method based on statistical analysis to identify and
fail parts that have characteristics significantly outside the normal distribution of
other parts in the same lot. TSM does not install a default implementation of part
average testing. You must use the TSM PAT plug-in architecture to customize and
perform part average testing with TSM. TSM PAT plug-ins include a required PAT
callback sequence file and corresponding code modules. The PAT callback sequence
file contains PAT entry point sequences that TSM calls during execution to
accomplish part average testing.

Back to Overview

ni.com86

TestStand Semiconductor Module

See Also
Getting Started with TSM

Tutorial: Exploring a Basic Semiconductor Test Program

Use this LabVIEW or .NET tutorial to explore and configure components of a test
program after you tour the features available in TSM.

Tutorial: Exploring a Basic Semiconductor Test Program with LabVIEW

Complete the following steps to open an existing sequence file and configure it to
create a basic semiconductor test program.

Note Completed solution files are located in
the <TestStand Public>\Tutorial\NI
_SemiconductorModule\Basic Test P
rogram\LabVIEW\Solution directory.

1. Open <TestStand Public>\Tutorial\NI_SemiconductorModule
\Basic Test Program\LabVIEW\Basic Test Program.seq. This
sequence file contains the following sequences:

■ MainSequence—Contains a single test step that performs a continuity
test on all pins.
■ ProcessSetup—Simulates instrument initialization.
■ ProcessCleanup—Simulates instrument clean up.

2. Complete the following steps to specify a pin map file to define the
instrumentation on the tester, define the pins on the DUT, and define how the
DUT pins are connected to the tester instrumentation for each test site.

a. Select Semiconductor Module»Edit Test Program: Basic Test
Program.seq or click the Edit Test Program: Basic Test
Program.seq button on the TSM toolbar to launch the Test Program
Editor for the sequence file.

b. Select the Pin Map panel and enter Basic Test Program.pinmap
in the Pin Map File Path control. The filename you enter is a relative

© National Instruments 87

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

path from the sequence file to the pin map file, Basic Test Progra
m.pinmap, which is located in the same directory as the sequence file.
Click the Open file for edit button located to the right of the Pin
Map File Path display to open the Basic Test Program.pinmap
file in the Pin Map Editor. Review the pin map and click OK to close the
pin map editor.

c. Click OK to close the Test Program Editor.

After you specify a pin map file, select the MainSequence sequence in the
sequence file. This sequence contains the Continuity Test step, which is an
instance of the Semiconductor Multi Test step type and uses the LabVIEW
Adapter. Select the Continuity Test step and select the Tests tab of the Step
Settings pane. You can use the Tests tab to define tests for individual pins or
pin groups, and you can write code modules that refer to pin or pin group
names without needing to know how each pin is connected to an instrument.

3. Complete the following steps to specify a bin definitions file to define the
hardware bins and software bins, define how the software bins relate to
hardware bins, and define the default software bins in the test program.

a. Select Semiconductor Module»Edit Test Program: Basic Test
Program.seq.

b. Select the Bin Definitions panel and enter Basic Test Program.b
ins in the Bin Definitions File Path control. The filename you enter is a
relative path from the sequence file to the bin definitions file, Basic T
est Program.bins, which is located in the same directory as the
sequence file. Click the Open file for edit button located to the right
of the Bin Definitions File Path display to open the Basic Test Prog
ram.bins file in the Bin Definitions Editor. Review the bin definitions
and click OK to close the Bin Definitions Editor.

c. Click OK to close the Test Program Editor.

After you specify a bin definitions file, you can use the Tests tab of the Step
Settings pane to define a software bin for each test.

ni.com88

TestStand Semiconductor Module

4. Complete the following steps to create a test program configuration and
specify a test limits file to load limits values into Semiconductor Multi Test
step tests at run time. When you use this technique, you can use the same test
program with multiple configurations that each specify different limits for the
tests.

a. Select Semiconductor Module»Edit Test Program: Basic Test
Program.seq.

b. Select the Test Limits Files panel and click the Add Test Limits File
button to add a new file reference to the test program.

c. Enter Production Limits as the name to identify the new test
limits file in the test program.

d. Enter ProductionLimits.txt in the Test Limits File Path
control. The filename you enter is a relative path from the sequence file
to the test limits file, ProductionLimits.txt, which is located in
the same directory as the sequence file.

e. Select the Configurations panel and click the Add Configuration
button to add a new configuration to the test program.

f. Enter Production as the name of the configuration.

g. Select the newly created Production panel. Each configuration you
specify uses a corresponding Configuration panel that contains a table
of the test conditions in the test program and fields for configuring the
test limits file for the configuration.

h. Select Production Limits in the Test Limits File control.

5. Complete the following steps to add a test condition to the test program and
specify a value for the test condition in the Production configuration.

a. Select the Configuration Definition panel and click the Add
Condition button to add a new test condition to the test program.

b. Select TestFlowId from the Standard Condition option and click the
Add button to add a new test condition for which each configuration
can provide a unique value.

© National Instruments 89

TestStand Semiconductor Module

c. Select the Production panel and enter Production for the value of
the TestFlowId test condition in the table.

d. Click OK to close the Test Program Editor.

6. Complete the following steps to obtain the value of the TestFlowId test
condition in the test program.

a. Select the ProcessSetup sequence.
b. Add a Get Test Information step after the Open Sessions step.

c. On the Step Settings pane, click the Get Test Information tab.

d. Enter TestFlowId for the Name in the first row of the table.

e. Set the Destination Expression to Locals.Flow.

f. Highlight and right-click Locals.Flow and select Create
"Locals.Flow"»String from the context menu to create a new local
variable.

g. Add a Message Popup step after the Get Test Information step in the
Setup step group.

h. On the Step Settings pane, click the Text and Buttons tab.
i. Set the Message Expression to "Starting test flow: " + Loc
als.Flow.

7. Complete the following steps to specify a code module for the Continuity Test
step.

a. Select the MainSequence sequence and the Continuity Test step.

b. On the Step Settings pane, click the Module tab.

c. Click the Browse for VI button located to the right of the VI Path
control.

d. Browse to <TestStand Public>\Tutorial\NI_Semiconduct
orModule\Basic Test Program\LabVIEW\Code Modules\
Continuity Test.vi and click Open. Select the Use a relative
path for the file you selected option when prompted and click OK.

e. In the VI Parameter Table, configure the following parameter values:

ni.com90

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Parameter Value
Semiconductor Module Context Step.SemiconductorModuleCont

ext
Pins {"AllPins"}

8. Save the sequence file.
9. Complete the following steps to configure the Built-in Simulated Handler

Driver.

a. Select Semiconductor Module»Configure Station or click the
Configure Station button on the TSM toolbar to launch the
Configure Station Settings dialog box.

b. On the General tab of the Configure Station Settings dialog box, place a
checkmark in the Enable Handler/Prober Driver (Real or
Simulated) checkbox.

c. Select Built-in Simulated Handler Driver from the Handler/
Prober Driver drop-down menu.

d. Click the Configure Handler/Prober Driver button to launch the
Configure Built-in Simulated Handler dialog box.

e. Set the Number of DUTs to Test option to 10 to specify how many
DUTs the simulated lot contains and click OK to close the Configure
Built-in Simulated Handler dialog box.

f. Select the Advanced tab in the Configure Station Settings dialog box
and click the Result Processing button to launch the Result
Processing dialog box.

g. Enable the Debug Test Results Log result processing plug-in.

h. Disable the TestStand Report result processing plug-in.

i. Enable the Display option for the Lot Summary Report result
processing plug-in.

j. Click OK to close the Result Processing dialog box, and click OK to close
the Configure Station Settings dialog box.

10. Complete the following steps to configure a lot to run.

© National Instruments 91

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_result_processing.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_result_processing.htm

a. Select Semiconductor Module»Configure Lot or click the
Configure Lot button on the TSM toolbar to launch the Configure
Lot Settings dialog box.

b. Select Production in the Test Program Configuration option.

c. Click OK to close the Configure Lot Settings dialog box.

Note You can also use the
Active Configuration drop-down menu on
the TSM toolbar to set the configuration.
TSM uses previously set values for the other
lot settings that appear in the Configure Lot
Settings dialog box.

11. Click the Show Lot Statistics Viewer button on the TSM toolbar to
launch a floating window that shows the binning results of the test program
execution. The execution control buttons, such as Start/Resume Lot and
End Lot and the Configuration drop-down menu are also available in the
Lot Statistics Viewer for convenience.

12. Click the Start Lot button on the TSM toolbar or in the Lot Statistics Viewer
to execute the test program. The test program launches a dialog box that
shows the value of the TestFlowId test condition. Click OK to close the dialog
box. TestStand generates and displays the Lot Summary Report on the Report
pane of the Execution window. Review the results of the lot.

13. Click the Active Report button to switch to the Debug Test Results Log and
review the results of each test.

Note The Production configuration
overrides the test limits the sequence
specifies. The ProductionLimits.txt
test limits file provides the test limits values
to use for each test instead of the values
entered in the Semiconductor Multi Test
step.

14. Close the Execution and Sequence File windows.

ni.com92

TestStand Semiconductor Module

See Also
Getting Started with TSM

Glossary

Tutorial: Importing Test Limits from a File

Tutorial: Exploring a Basic Semiconductor Test Program with .NET

Complete the following steps to open an existing sequence file and configure it to
create a basic semiconductor test program.

Notes

■ You must have NI-DCPower 15.1 or later
installed, and you must have .NET 4.0
support for the NI-DCPower .NET Class
Libraries 1.1 or later installed. If you do
not have these components installed,
refer to the Exploring a Basic
Semiconductor Test Program with
LabVIEW tutorial, which follows the same
procedure but does not require these
installations.
■ Completed solution files are located in
the <TestStand Public>\Tutoria
l\NI_SemiconductorModule\Basi
c Test Program\DotNET\Solutio
n directory.

1. Open <TestStand Public>\Tutorial\NI_SemiconductorModule
\Basic Test Program\DotNET\Basic Test Program.seq. This
sequence file contains the following sequences:

■ MainSequence—Contains a single test step that performs a continuity
test on all pins.
■ ProcessSetup—Simulates instrument initialization.
■ ProcessCleanup—Simulates instrument clean up.

© National Instruments 93

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

2. Complete the following steps to specify a pin map file to define the
instrumentation on the tester, define the pins on the DUT, and define how the
DUT pins are connected to the tester instrumentation for each test site.

a. Select Semiconductor Module»Edit Test Program: Basic Test
Program.seq or click the Edit Test Program: Basic Test
Program.seq button on the TSM toolbar to launch the Test Program
Editor for the sequence file.

b. Select the Pin Map panel and enter Basic Test Program.pinmap
in the Pin Map File Path control. The filename you enter is a relative
path from the sequence file to the pin map file, Basic Test Progra
m.pinmap, which is located in the same directory as the sequence file.
Click the Open file for edit button located to the right of the Pin
Map File Path display to open the Basic Test Program.pinmap
file in the Pin Map Editor. Review the pin map and click OK to close the
pin map editor.

c. Click OK to close the Test Program Editor.

After you specify a pin map file, select the MainSequence sequence in the
sequence file. This sequence contains the Continuity Test step, which is an
instance of the Semiconductor Multi Test step type and uses the .NET Adapter.
Select the Continuity Test step and select the Tests tab of the Step Settings
pane. You can use the Tests tab to define tests for individual pins or pin
groups, and you can write code modules that refer to pin or pin group names
without needing to know how each pin is connected to an instrument.

3. Complete the following steps to specify a bin definitions file to define the
hardware bins and software bins, define how the software bins relate to
hardware bins, and define the default software bins in the test program.

a. Select Semiconductor Module»Edit Test Program: Basic Test
Program.seq.

b. Select the Bin Definitions panel and enter Basic Test Program.b
ins in the Bin Definitions File Path control. The filename you enter is a
relative path from the sequence file to the bin definitions file, Basic T

ni.com94

TestStand Semiconductor Module

est Program.bins, which is located in the same directory as the
sequence file. Click the Open file for edit button located to the right
of the Bin Definitions File Path display to open the Basic Test Prog
ram.bins file in the Bin Definitions Editor. Review the bin definitions
and click OK to close the Bin Definitions Editor.

c. Click OK to close the Test Program Editor.

After you specify a bin definitions file, you can use the Tests tab of the Step
Settings pane to define a software bin for each test.

4. Complete the following steps to create a test program configuration and
specify a test limits file to load limits values into Semiconductor Multi Test
step tests at run time. When you use this technique, you can use the same test
program with multiple configurations that each specify different limits for the
tests.

a. Select Semiconductor Module»Edit Test Program: Basic Test
Program.seq.

b. Select the Test Limits Files panel and click the Add Test Limits File
button to add a new file reference to the test program.

c. Enter Production Limits as the name to identify the new test
limits file in the test program.

d. Enter ProductionLimits.txt in the Test Limits File Path
control. The filename you enter is a relative path from the sequence file
to the test limits file, ProductionLimits.txt, which is located in
the same directory as the sequence file.

e. Select the Configurations panel and click the Add Configuration
button to add a new configuration to the test program.

f. Enter Production as the name of the configuration.

g. Select the newly created Production panel. Each configuration you
specify uses a corresponding Configuration panel that contains a table
of the test conditions in the test program and fields for configuring the
test limits file for the configuration.

h. Select Production Limits in the Test Limits File control.

© National Instruments 95

TestStand Semiconductor Module

5. Complete the following steps to add a test condition to the test program and
specify a value for the test condition in the Production configuration.

a. Select the Configuration Definition panel and click the Add
Condition button to add a new test condition to the test program.

b. Select TestFlowId from the Standard Condition option and click the
Add button to add a new test condition for which each configuration
can provide a unique value.

c. Select the Production panel and enter Production for the value of
the TestFlowId test condition in the table.

d. Click OK to close the Test Program Editor.

6. Complete the following steps to obtain the value of the TestFlowId test
condition in the test program.

a. Select the ProcessSetup sequence.
b. Add a Get Test Information step after the Open Sessions step.

c. On the Step Settings pane, click the Get Test Information tab.

d. Enter TestFlowId for the Setting Name in the first row of the table.
e. Set the Destination Expression to Locals.Flow.

f. Highlight and right-click Locals.Flow and select Create
"Locals.Flow"»String from the context menu to create a new local
variable.

g. Add a Message Popup step after the Get Test Information step in the
Setup step group.

h. On the Step Settings pane, click the Text and Buttons tab.
i. Set the Message Expression to "Starting test flow: " + Loc
als.Flow.

7. Complete the following steps to specify a code module for the Continuity Test
step.

a. Select the MainSequence sequence and the Continuity Test step.

b. On the Step Settings pane, click the Module tab.

ni.com96

TestStand Semiconductor Module

c. Click the Browse for Assembly button located to the right of the
Assembly control.

d. Browse to <TestStand Public>\Tutorial\NI_Semiconduct
orModule\Basic Test Program\DotNET\Code Modules\B
asicTestProgramTutorial.dll and click Open. Select the Use
a relative path for the file you selected option when prompted and
click OK.

e. In the Root Class control, select the BasicTestProgramCodeModu
le class.

f. In the .NET Invocation control, select the TestContinuity
method.

g. In the Parameter Table, configure the following parameter values:

Parameter Value
semiconductorModuleContext Step.SemiconductorModuleCont

ext
pinsAndPinGroups {"AllPins"}

8. Save the sequence file.
9. Complete the following steps to configure the Built-in Simulated Handler

Driver.

a. Select Semiconductor Module»Configure Station or click the
Configure Station button on the TSM toolbar to launch the
Configure Station Settings dialog box.

b. On the General tab of the Configure Station Settings dialog box, place a
checkmark in the Enable Handler/Prober Driver (Real or
Simulated) checkbox.

c. Select Built-in Simulated Handler Driver from the Handler/
Prober Driver drop-down menu.

d. Click the Configure Handler/Prober Driver button to launch the
Configure Built-in Simulated Handler dialog box.

© National Instruments 97

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

e. Set the Number of DUTs to Test option to 10 to specify how many
DUTs the simulated lot contains and click OK to close the Configure
Built-in Simulated Handler dialog box.

f. Select the Advanced tab in the Configure Station Settings dialog box
and click the Result Processing button to launch the Result
Processing dialog box.

g. Enable the Debug Test Results Log result processing plug-in.

h. Disable the TestStand Report result processing plug-in.

i. Enable the Display option for the Lot Summary Report result
processing plug-in.

j. Click OK to close the Result Processing dialog box, and click OK to close
the Configure Station Settings dialog box.

10. Complete the following steps to configure a lot to run.

a. Select Semiconductor Module»Configure Lot or click the
Configure Lot button on the TSM toolbar to launch the Configure
Lot Settings dialog box.

b. Select Production in the Test Program Configuration option.

c. Click OK to close the Configure Lot Settings dialog box.

Note You can also use the
Active Configuration drop-down menu on
the TSM toolbar to set the configuration.
TSM uses previously set values for the other
lot settings that appear in the Configure Lot
Settings dialog box.

11. Click the Show Lot Statistics Viewer button on the TSM toolbar to
launch a floating window that shows the binning results of the test program
execution. The execution control buttons, such as Start/Resume Lot and
End Lot and the Configuration drop-down menu are also available in the
Lot Statistics Viewer for convenience.

12. Click the Start Lot button on the TSM toolbar or in the Lot Statistics Viewer
to execute the test program. The test program launches a dialog box that

ni.com98

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_result_processing.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_result_processing.htm

shows the value of the TestFlowId test condition. Click OK to close the dialog
box. TestStand generates and displays the Lot Summary Report on the Report
pane of the Execution window. Review the results of the lot.

13. Click the Active Report button to switch to the Debug Test Results Log and
review the results of each test.

Note The Production configuration
overrides the test limits the sequence
specifies. The ProductionLimits.txt
test limits file provides the test limits values
to use for each test instead of the values
entered in the Semiconductor Multi Test
step.

14. Close the Execution and Sequence File windows.

See Also
Getting Started with TSM

Glossary

Tutorial: Importing Test Limits from a File

Tutorial: Importing Test Limits from a File (TSM)

Complete the following steps to open an existing sequence file and create a test
limits file for importing modified test limits.

1. Open <TestStand Public>\Tutorial\NI_SemiconductorModule
\Importing Test Limits\LabVIEW\Importing Limits.seq.
This sequence file contains a sequence with Semiconductor Multi Test steps
for continuity, leakage, and functional tests. Each step has been configured
with test limits. Select each step and review the tests configured on the Tests
tab in the Step Settings pane.

2. Complete the following steps to export the current test limits from the
sequence file to a test limits file.

© National Instruments 99

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

a. Select Semiconductor Module»Export Test Limits from
Importing Limits.seq or click the Export Test Limits from
Importing Limits.seq button on the TSM toolbar.

b. Save the file as <TestStand Public>\Tutorial\NI_Semicond
uctorModule\Importing Test Limits\LabVIEW\Product
ionLimits.txt.

c. Click OK in the Export Complete dialog box to acknowledge that the
export succeeded.

3. Complete the following steps to create a new test limits file with stricter limits.

a. Open <TestStand Public>\Tutorial\NI_SemiconductorM
odule\Importing Test Limits\LabVIEW\ProductionLim
its.txt in a text editor or in Microsoft Excel.

b. Locate the columns for LowLimitExpression and HighLimitExpression
and make the changes to each test as shown in the following table.

Note The test limits file uses a tab-
delimited file format, and columns might
not be aligned in some text editors.
Count the number of tabs in a row to
match the values in a column to the
column header.

Step Name LowLimit Expression Value HighLimit Expression Value
Continuity Test 6 9
Leakage Test 35 90

c. Save the file as <TestStand Public>\Tutorial\NI_Semicond
uctorModule\Importing Test Limits\LabVIEW\QALimit
s.txt.

4. Complete the following steps to import limits from the QALimits.txt test
limits file.

a. In the TestStand Sequence Editor, select Semiconductor
Module»Import Test Limits into Importing Limits.seq or click the
Import Test Limits into Importing Limits.seq button on the TSM
toolbar.

ni.com100

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

b. Select the <TestStand Public>\Tutorial\NI_Semiconduct
orModule\Importing Test Limits\LabVIEW\QALimits.t
xt file and click Open.

c. Click OK in the Import Test Limits into Sequence File dialog box.

d. Click OK in the Import Complete dialog box.
e. Select the Continuity and Leakage Test steps and review the test limits

on the Tests tab of the Step Settings pane. The values in the Low Limit
and High Limit columns are now updated to the values from the QALim
its.txt test limits file.

5. Complete the following steps to remove information from the QALimits.tx
t test limits file that the Import/Export Test Limits tool does not update to
simplify the test limits file.

a. Open <TestStand Public>\Tutorial\NI_SemiconductorM
odule\Importing Test Limits\LabVIEW\QALimits.txt in
a text editor or in Microsoft Excel.

b. Delete the <SequenceName>, <StepName>, <StepId>, and <Test
Name> columns because the <TestNumber> column uniquely
identifies each test.

c. Delete the <Pin>, <ComparisonType>, <ScalingFactor>, <Uni
ts>, <EvalutationType>, and <FailBin> columns because you
will not be modifying those values in this tutorial.

d. Save the QALimits.txt file and import the test limits using the same
procedure as in Step 4.

e. Select the Continuity and Leakage Test steps and review the test limits
on the Tests tab of the Step Settings pane. The limits remain the same
even though the Import/Export Test Limits tool removed columns from
the test limits file.

f. Click the Undo button or press <Ctrl-Z> to undo the changes that
importing the limits file made.

6. Complete the following steps to update only specific test steps.

© National Instruments 101

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

a. Open <TestStand Public>\Tutorial\NI_SemiconductorM
odule\Importing Test Limits\LabVIEW\QALimits.txt in
a text editor or in Microsoft Excel.

b. Delete the rows in the limits file for the Leakage tests that use 0V. These
tests have test numbers 201, 203, 205, and 207.

c. Save the QALimits.txt file and import the test limits using the same
procedure as in Step 4.

In Step 4.c, the Import Tests Limits into Sequence File dialog box
enables the Update limits in matching tests option by default. This
setting specifies to import only the limits to tests that have matching
rows in the test limits file. A row matches a test if the row and test use
the same identifier columns: <SequenceName>, <StepName>, <Ste
pId>, <TestName>, and <TestNumber>. If any of the identifier
columns are missing, the row might match multiple tests in the
sequence file.

Note The Import Complete dialog box
warns you that some of the tests in the
sequence file were not found in the test
limits file. You can ignore this warning
because you intentionally removed
those tests from the test limits file so that
the Import/Export Test Limits tool would
not update them.

d. Select the Leakage Test step and review the test limits on the Tests tab
of the Step Settings pane. The values of the Low and High Limits are
now updated to the values from the QALimits.txt test limits file for
the 5V leakage tests but not for the 0V leakage tests.

e. Click the Undo button or press <Ctrl-Z> to undo the changes that
importing the limits file made.

7. Complete the following steps to delete the existing tests in the sequence file
and replace them with the tests from the test limits file.

ni.com102

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

a. Open <TestStand Public>\Tutorial\NI_SemiconductorM
odule\Importing Test Limits\LabVIEW\ProductionLim
its.txt in a text editor or in Microsoft Excel.

b. This tutorial uses the Replace all tests in matching steps import mode.
Because this mode requires more information in the test limits file to
identify which step the tests limits belong to, delete only the <StepId>
column. Do not delete any other columns because the Replace all tests
in matching steps mode leaves values for test settings columns as the
default value if the test limits file does not specify a value.

c. Delete the rows in the test limits file for tests 101, 102, 103, and 104.
d. Update the values for the <LowLimitExpression> and <HighLim

itExpression> columns for test 100 to 6 and 9, respectively.
e. Save the changes to the test limits file.

f. Select Semiconductor Module»Import Test Limits into
Importing Limits.seq or click the Import Test Limits into
Importing Limits.seq button on the TSM toolbar to launch the
Import Test Limits dialog box.

g. Select the <TestStand Public>\Tutorial\NI_Semiconduct
orModule\Importing Test Limits\LabVIEW\Production
Limits.txt file and click Open.

h. In the Import Test Limits into Sequence File dialog box, enable the
Replace all tests in matching steps option.

i. Click OK in the Import Test Limits into Sequence File dialog box.

j. Click OK in the Import Complete dialog box.
k. Select the Continuity Test and review the test limits on Tests tab of the

Step Settings pane. The tests are now updated to match the tests from
the limits file, and the Continuity Test contains only test 100.

l. Click the Undo button or press <Ctrl-Z> to undo the changes that
importing the limits file made.

8. Complete the following steps to create a test program configuration that loads
the limits file when the test program begins execution.

© National Instruments 103

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

a. In the TestStand Sequence Editor, select Semiconductor
Module»Edit Test Program: Importing Limits.seq or click the Edit
Test Program: Importing Limits.seq button on the TSM toolbar.

b. On the Test Limits Files panel, click the Add Test Limits File button to
add a new file reference to the test program.

c. Enter Production Limits as the name to identify the new limits file
in the test program.

d. Enter ProductionLimits.txt in the Test Limits File Path
control. The filename you enter is a relative path from the sequence file
to the test limits file, ProductionLimits.txt, which is located in
the same directory as the sequence file.

e. Select the Production panel to edit the Production configuration.
Select Production Limits in the Test Limits File control to configure
the Production configuration to load the test limits file when the lot
begins execution.

f. Click OK to close the Test Program Editor.

g. Select Configure»Result Processing to launch the Result Processing
dialog box.

h. Enable the Debug Test Results Log result processing plug-in and
select it as the Display report. Disable all other report types.

i. Click OK to close the Result Processing dialog box.

j. Select Semiconductor Module»Configure Lot or click the
Configure Lot button on the TSM toolbar to launch the Configure
Lot Settings dialog box.

k. Select Production for the Test Program Configuration.

l. Click OK to exit the Configure Lot Settings dialog box.

m. Click the Start Lot button on the TSM toolbar to execute the test
program. TestStand generates and displays a report on the Report pane
of the Execution window.

n. Review the Debug Test Results Log and review the limits of each test.
The Production configuration overrides the test limits the sequence

ni.com104

TestStand Semiconductor Module

specifies. The ProductionLimits.txt test limits file provides the
test limits values to use for each test instead of the values entered in the
Semiconductor Multi Test step.

9. Complete the following steps to import the same tests to multiple steps.

a. Add an If step below the Get Current Level step in the MainSequence
sequence.

b. Set the Conditional Expression of the If step to Locals.LowCurrent,
a local variable that stores the value of the LowCurrent test condition
obtained from the current configuration in the Get Current Level step.
This value is True for the Production configuration.

c. Add an Else step between the If and End steps.
d. Move the Continuity Test step between the If and Else steps.
e. Create a copy of the Continuity Test step and place it between the Else

and End steps. Rename the original version of the Continuity Test step
between the If and Else steps to Low Current Continuity Test.

f. In the Low Current Continuity Test step, set the Low Limits for test
number 101, 102, 103, and 104 to 2.

g. Click the Start Lot button on the TSM toolbar to execute the test
program. TestStand generates and displays a report on the Report pane
of the Execution window.

h. Review the Debug Test Results Log and review the limits of each test.
The Production configuration is still configured to override the test
limits the sequence specifies. The ProductionLimits.txt test
limits file provides the test limits values for test 100 of the Continuity
Test step but not for tests 102, 103, and 104. Because the test limits file
designates only a <TestNumber> and does not designate a <StepId
>, the test limits file overrides the test limits in every step that contains
test 100.

See Also
Explore a basic semiconductor test program

Glossary

© National Instruments 105

TestStand Semiconductor Module

Test Program Overview

TSM Example Programs
Use the TSM example programs, located in the <TestStand Public>\Exampl
es\NI_SemiconductorModule directory, to learn more about how to solve
specific issues in a semiconductor test program.

Accelerometer (TSM)

The <TestStand Public>\Examples\NI_SemiconductorModule\Acce
lerometer directory contains the following examples:

■ Accelerometer with LabVIEW
■ Accelerometer with .NET

Note The NI TestStand 2016 Semiconductor
Module and later natively support digital
pattern instruments that use the NI-Digital
Pattern Driver and legacy digital waveform
instruments that use the NI-HSDIO driver, such
as the PXIe-6556. Use the TSM Code Module API
that corresponds to the type of digital
instrument the test system includes.

Accelerometer with LabVIEW (TSM)

Purpose

This example demonstrates several features of TSM in a test program that makes
common measurements with the NI-Digital Pattern driver to test an imagined
accelerometer part. You can use this example as a starting point for your test
programs.

Example File Locations

<TestStand Public>\Examples\NI_SemiconductorModule\Acceler
ometer\LabVIEW\Accelerometer.seq

ni.com106

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Highlighted Features
■ Pin map
■ Multisite
■ Custom instruments
■ Binning
■ Specifications files
■ Limits files
■ Test program configurations
■ Virtual pins
■ Offline Mode

Major API

TSM Code Module API

Prerequisites
■ You must have the LabVIEW Development System installed, and you must
configure the LabVIEW Adapter to use the LabVIEW Development System.
■ You must have NI-Digital Pattern Driver 19.0 or later installed, and you must
have two NI-Digital Pattern instruments named HSD_6570_C1_S02 and HS
D_6570_C1_S04, respectively, as defined in Measurement & Automation
Explorer (MAX).
■ You must have NI-DCPower 20.6 or later installed, and you must have two
NI-DCPower instruments named SMU_4143_C1_S06 and SMU_4143_C1_S
07, respectively, as defined in MAX.
■ You must have NI-SCOPE 15.0 or later installed, and you must have an NI-
SCOPE instrument named SCOPE_5105_C1_S08 as defined in MAX.
■ You must have NI-SWITCH 17.0 or later installed, and you must have a
PXI-2567 relay driver module named RELAY_2567_C1_S09, as defined in
MAX.
■ (Offline Mode) You must meet the requirements to run the test program in
Offline Mode.

© National Instruments 107

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lvadapterconfig.htm

■ This example uses the Batch process model.

Notes
■ You can view the test program in the
TestStand Sequence Editor and partial
code modules in LabVIEW without the
required NI instrument drivers installed.
Install the drivers to view the full code
modules in LabVIEW. Visit ni.com/info
and enter the Info Code rddrau to access
the latest software drivers and updates.
■ (Offline Mode) The NI-Digital Pattern,
NI-DCPower, and NI-SCOPE instruments
and the PXI-2567 relay driver module are
not required to run this example in Offline
Mode, but you must install the required
instrument drivers.

How to Use This Example

Complete the steps in the following sections to learn about the test program
components. You can also use this example in offline mode.

Pin Map
Select Semiconductor Module»Edit Pin Map File or click the Edit Pin Map
File button on the TSM toolbar to open the Accelerometer pin map file in the Pin
Map Editor. The pin map file defines the following information:

■ Two NI-Digital Pattern instruments named HSD_6570_C1_S02 and HSD_
6570_C1_S04. Both instruments belong to the same group so that code
modules can access all digital pins on the tester using a single instrument
session.
■ Two NI-DCPower instruments named SMU_4143_C1_S06 and SMU_4143
_C1_S07.
■ One NI-SCOPE instrument named SCOPE_5105_C1_S08.
■ One PXI-2567 relay driver module named RELAY_2567_C1_S09.

ni.com108

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html

■ Ten DUT pins named Vcc, Gnd, SCLK, MOSI, MISO, CS, RST, MODE, Vref_
DIO, and Vref_OScope. The Vref_DIO and Vref_OScope pins are
virtual pins that refer to a single Vref DUT pin and are used to connect the
pin to two different types of instruments, NI-Digital Pattern and NI-SCOPE.
■ One relay named SCOPE_ENABLE_RELAY per site. The test program uses
the SCOPE_ENABLE_RELAY relay to control a physical relay that connects
the Vref DUT pin to the NI-Digital Pattern instrument or to the NI-SCOPE
instrument.
■ One relay named NOISE_ENABLE_RELAY per site. The test program uses
the NOISE_ENABLE_RELAY relay to control a physical relay that connects
the Vref DUT pin to a noise source, rather than to the NI-Digital Pattern or NI-
SCOPE instruments.
■ Three pin groups named SPI_Port, Digital, and AllDUTPins.
■ One system relay named POWER_RELAY. The test program uses the POWER
_RELAY relay to control a physical relay that controls a power source.
■ Four sites on the tester.
■ A series of connections for each site, in which each connection specifies a
DUT pin, a site number, an instrument, and an instrument channel.
■ Site relay connections that specify to which control line of a relay driver
module the SCOPE_ENABLE_RELAY relay is connected for a given site.
■ Site relay connections that specify to which control line of a relay driver
module the NOISE_ENABLE_RELAY relay is connected for a given site.
■ A system relay connection that specifies whether the power source
connected to the POWER_RELAY relay is enabled.

Test Program Configurations
Complete the following steps to review the Test Program Configurations that this
test program uses.

1. Select Semiconductor Module»Edit Test Program: Accelerometer.seq
or click the Edit Test Program: Accelerometer button on the TSM
toolbar.

© National Instruments 109

TestStand Semiconductor Module

2. Select the Configuration Definition panel. This test program specifies two
test conditions that each test program configuration must define:

■ TestFlowId—Defines an identifying name for the test flow.
■ TestTemperature—Defines the temperature at which to perform the
tests.

3. Select each of the individual Configuration panels to review the values each
test program configuration gives to the specified test conditions.

Bin Definitions
Use the TestStand Sequence Editor to review the bin definitions file associated with
the test program.

Select Semiconductor Module»Edit Bin Definitions File or click the Edit Bin
Definitions File button on the TSM toolbar. The bin definitions file defines
software bins that the test program uses and the hardware bins associated with the
software bins.

MainSequence, ProcessSetup, and ProcessCleanup Sequences
Complete the following steps to review the MainSequence, ProcessSetup, and
ProcessCleanup sequences that this test program uses.

1. On the Sequences pane, select the MainSequence sequence and review the
objectives each step performs and optionally review the LabVIEW code
associated with each step:

■ In the Setup section, if the current test program configuration uses the Ho
t test temperature setting, the test program waits until the temperature
controller reaches the specified temperature.
■ To prepare for digital tests, the test program configures the relay for the V
ref pin to the Digital Pattern instrument.
■ The test program tests continuity, leakage, and idle power consumption
on all digital pins.
■ The test program resets the DUT in preparation for SPI port
communication.

ni.com110

TestStand Semiconductor Module

■ The test program enables test mode on the DUT using the SPI port.
■ The test program checks the part number of the DUT by reading a register
through the SPI port.
■ If the current TestFlowId is set to Quality the test program checks the
part number at different Vcc levels.
■ To prepare for analog tests, the test program configures the relay for the V
ref pin to the NI-SCOPE instrument.
■ The test program checks the minimum, maximum, and RMS voltage value
on the Vref and uses the value to trim each DUT.
■ The test program sets and verifies the Vref register on the DUT based on
the previous Vref measurement.
■ In the Cleanup section, the test program turns off all instrument output to
the DUT in preparation for physical binning by the handler.

2. On the Sequences pane, select the ProcessSetup sequence. TestStand
calls this sequence once before starting testing. The steps in this sequence
initialize the instruments and store the instrument sessions in the
SemiconductorModuleContext. There are other steps in this sequence to
configure a temperature controller, and to toggle the power source.

3. On the Sequences pane, select the ProcessCleanup sequence. TestStand
calls this sequence once after testing completes. The steps in this sequence
close and reset the instruments.

Specifications, Time Sets, Pin Levels, Patterns, and Waveforms
Select Semiconductor Module»Launch Digital Pattern Editor or click the
Launch Digital Pattern Editor button on the TSM toolbar to open the Digital
Pattern Editor. Open the <TestStand Public>\Examples\NI_Semiconduc
torModule\Accelerometer\LabVIEW\Accelerometer.digiproj
digital pattern project file in the Digital Pattern Editor. Use the Digital Pattern Editor
to review the following files the Accelerometer test program uses:

■ Accelerometer.specs — Defines a set of variables and associated
numeric values that you can reference in pin levels, time sets, other
specifications files, and Shmoo operations.

© National Instruments 111

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ Accelerometer.digitiming — Defines configuration components of
the time sets, including the format and edge placement that shape the digital
waveform on a per-pin basis.
■ Accelerometer.digilevels — Defines voltage levels for digital pins
and pin groups connected to a Digital Pattern Instrument and for pins and pin
groups connected to an NI-DCPower instrument.
■ SPI - Read Part Number.digipat — Pattern that reads the part
number register from the DUT.
■ SPI - Set Test Mode.digipat — Pattern that sets the test mode by
setting a register on the DUT.
■ SPI - Set Vref Value.digipat — Pattern that sets the Vref register
on the DUT using a source waveform and reads it back using a capture
waveform.
■ Set Vref Value Waveform.tdms — Source waveform configuration
used to set the Vref register value.
■ Get Vref Value Waveform.digicapture — Capture waveform
configuration used to obtain the Vref register value.

External Limits Files
Use a text editor or spreadsheet software to open and review the <TestStand Pu
blic>\Examples\NI_SemiconductorModule\Accelerometer\LabVIE
W\Limits\Production Limits.txt file, which is the tests limits file for the
Production configuration of this test program. The test limits file is loaded at run
time based on the current test configuration. This file specifies the values to use to
evaluate whether a measurement passes or fails. The test program stores the limits
loaded from the file with the results.

Running the Test Program
You must meet all the prerequisites to run the test program. To run the test program,
click the Start/Resume Lot button on the TSM toolbar.

ni.com112

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Running the Test Program in Offline Mode

You must install the required instrument drivers and meet all the prerequisites to
run the test program on a computer without access to NI instruments. To simulate
the instruments the test program needs, click the Enable Offline Mode button
on the TSM toolbar. To run the test program, click the Start/Resume Lot button
on the TSM toolbar.

Launch the Test Program Editor and select the Offline Mode panel to view the path
to the Offline Mode system configuration file TSM uses to create simulated
instruments for Accelerometer.seq.

Click the Disable Offline Mode button to return to the default TSM behavior.

Accelerometer with .NET (TSM)

Purpose

This example demonstrates several features of TSM in a test program that makes
common measurements with the NI-Digital Pattern driver to test an imagined
accelerometer part. You can use this example as a starting point for your test
programs.

Example File Location

<TestStand Public>\Examples\NI_SemiconductorModule\Acceler
ometer\DotNET\Accelerometer.seq

Highlighted Features
■ Pin map
■ Multisite
■ Custom instruments
■ Binning
■ Specifications files
■ Limits files
■ Test program configurations

© National Instruments 113

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ Virtual pins
■ Offline Mode

Major API

TSM Code Module API

Prerequisites
■ You must have NI-Digital Pattern Driver 19.0 or later installed, and you must
have two NI-Digital Pattern instruments named HSD_6570_C1_S02 and HS
D_6570_C1_S04, respectively, as defined in Measurement & Automation
Explorer (MAX).
■ You must have NI-DCPower 20.6 or later installed, and you must have two
NI-DCPower instruments named SMU_4143_C1_S06 and SMU_4143_C1_S
07, respectively, as defined in MAX.
■ You must have NI-SCOPE 15.0 or later installed, and you must have an NI-
SCOPE instrument named SCOPE_5105_C1_S08 as defined in MAX.
■ You must have NI-SWITCH 17.0 or later installed, and you must have a
PXI-2567 relay driver module named RELAY_2567_C1_S09, as defined in
MAX.
■ (Offline Mode) You must meet the requirements to run the test program in
Offline Mode.
■ You must have .NET 4.0 support for the NI-DCPower .NET Class Libraries 1.1
or later installed.
■ You must have .NET 4.0 support for the NI-SCOPE .NET Class Libraries 2.0 or
later installed.
■ You must have .NET 4.0 support for the NI-SWITCH .NET Class Libraries 1.1
or later installed.
■ This example uses the Batch process model.

Notes
■ You can view the test program in the
TestStand Sequence Editor and code
modules in a C# source code editor

ni.com114

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html

without the required NI instrument
drivers installed. Visit ni.com/info and
enter the Info Code NETAPIdriversup
port for information about the available
NI .NET APIs and the versions of the NI
drivers each supports.
■ (Offline Mode) The NI-Digital Pattern,
NI-DCPower, and NI-SCOPE instruments
and the PXI-2567 relay driver module are
not required to run this example in Offline
Mode, but you must install the required
instrument drivers.

How to Use This Example

Complete the steps in the following sections to learn about the test program
components.

Pin Map
Select Semiconductor Module»Edit Pin Map File or click the Edit Pin Map
File button on the TSM toolbar to open the Accelerometer pin map file in the Pin
Map Editor. The pin map file defines the following information:

■ Two NI-Digital Pattern instruments named HSD_6570_C1_S02 and HSD_
6570_C1_S04. Both instruments belong to the same group so that code
modules can access all digital pins on the tester using a single instrument
session.
■ Two NI-DCPower instruments named SMU_4143_C1_S06 and SMU_4143
_C1_S07.
■ One NI-SCOPE instrument named SCOPE_5105_C1_S08.
■ One PXI-2567 relay driver module named RELAY_2567_C1_S09.
■ Ten DUT pins named Vcc, Gnd, SCLK, MOSI, MISO, CS, RST, MODE, Vref_
DIO, and Vref_OScope. The Vref_DIO and Vref_OScope pins are
virtual pins that refer to a single Vref DUT pin and are used to connect the
pin to two different types of instruments, NI-Digital Pattern and NI-SCOPE.

© National Instruments 115

TestStand Semiconductor Module

■ One relay named SCOPE_ENABLE_RELAY per site. The test program uses
the SCOPE_ENABLE_RELAY relay to control a physical relay that connects
the Vref DUT pin to the NI-Digital Pattern instrument or to the NI-SCOPE
instrument.
■ One relay named NOISE_ENABLE_RELAY per site. The test program uses
the NOISE_ENABLE_RELAY relay to control a physical relay that connects
the Vref DUT pin to a noise source, rather than to the NI-Digital Pattern or NI-
SCOPE instruments.
■ Three pin groups named SPI_Port, Digital, and AllDUTPins.
■ One system relay named POWER_RELAY. The test program uses the POWER
_RELAY relay to control a physical relay that controls a power source.
■ Four sites on the tester.
■ A series of connections for each site, in which each connection specifies a
DUT pin, a site number, an instrument, and an instrument channel.
■ Site relay connections that specify to which control line of a relay driver
module the SCOPE_ENABLE_RELAY relay is connected for a given site.
■ Site relay connections that specify to which control line of a relay driver
module the NOISE_ENABLE_RELAY relay is connected for a given site.
■ A system relay connection that specifies whether the power source
connected to the POWER_RELAY relay is enabled.

Test Program Configurations
Complete the following steps to review the Test Program Configurations that this
test program uses.

1. Select Semiconductor Module»Edit Test Program: Accelerometer.seq
or click the Edit Test Program: Accelerometer button on the TSM
toolbar.

2. Select the Configuration Definition panel. This test program specifies two
test conditions that each test program configuration must define:

■ TestFlowId—Defines an identifying name for the test flow.

ni.com116

TestStand Semiconductor Module

■ TestTemperature—Defines the temperature at which to perform the
tests.

3. Select each of the individual Configuration panels to review the values each
test program configuration gives to the specified test conditions.

Bin Definitions
Use the TestStand Sequence Editor to review the bin definitions file associated with
the test program.

Select Semiconductor Module»Edit Bin Definitions File or click the Edit Bin
Definitions File button on the TSM toolbar. The bin definitions file defines
software bins that the test program uses and the hardware bins associated with the
software bins.

MainSequence, ProcessSetup, and ProcessCleanup Sequences
Complete the following steps to review the MainSequence, ProcessSetup, and
ProcessCleanup sequences that this test program uses.

1. On the Sequences pane, select the MainSequence sequence and review the
objectives each step performs and optionally review the LabVIEW code
associated with each step:

■ In the Setup section, if the current test program configuration uses the Ho
t test temperature setting, the test program waits until the temperature
controller reaches the specified temperature.
■ To prepare for digital tests, the test program configures the relay for the V
ref pin to the Digital Pattern instrument.
■ The test program tests continuity, leakage, and idle power consumption
on all digital pins.
■ The test program resets the DUT in preparation for SPI port
communication.
■ The test program enables test mode on the DUT using the SPI port.
■ The test program checks the part number of the DUT by reading a register
through the SPI port.

© National Instruments 117

TestStand Semiconductor Module

■ If the current TestFlowId is set to Quality the test program checks the
part number at different Vcc levels.
■ To prepare for analog tests, the test program configures the relay for the V
ref pin to the NI-SCOPE instrument.
■ The test program checks the minimum, maximum, and RMS voltage value
on the Vref and uses the value to trim each DUT.
■ The test program sets and verifies the Vref register on the DUT based on
the previous Vref measurement.
■ In the Cleanup section, the test program turns off all instrument output to
the DUT in preparation for physical binning by the handler.

2. On the Sequences pane, select the ProcessSetup sequence. TestStand
calls this sequence once before starting testing. The steps in this sequence
initialize the instruments and store the instrument sessions in the
SemiconductorModuleContext. There are other steps in this sequence to
configure a temperature controller, and to toggle the power source.

3. On the Sequences pane, select the ProcessCleanup sequence. TestStand
calls this sequence once after testing completes. The steps in this sequence
close and reset the instruments.

Specifications, Time Sets, Pin Levels, Patterns, and Waveforms
Select Semiconductor Module»Launch Digital Pattern Editor or click the
Launch Digital Pattern Editor button on the TSM toolbar to open the Digital
Pattern Editor. Open the <TestStand Public>\Examples\NI_Semiconduc
torModule\Accelerometer\DotNET\Accelerometer.digiproj digital
pattern project file in the Digital Pattern Editor. Use the Digital Pattern Editor to
review the following files the Accelerometer test program uses:

■ Accelerometer.specs — Defines a set of variables and associated
numeric values that you can reference in pin levels, time sets, other
specifications files, and Shmoo operations.
■ Accelerometer.digitiming — Defines configuration components of
the time sets, including the format and edge placement that shape the digital
waveform on a per-pin basis.

ni.com118

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ Accelerometer.digilevels — Defines voltage levels for digital pins
and pin groups connected to a Digital Pattern Instrument and for pins and pin
groups connected to an NI-DCPower instrument.
■ SPI - Read Part Number.digipat — Pattern that reads the part
number register from the DUT.
■ SPI - Set Test Mode.digipat — Pattern that sets the test mode by
setting a register on the DUT.
■ SPI - Set Vref Value.digipat — Pattern that sets the Vref register
on the DUT using a source waveform and reads it back using a capture
waveform.
■ Set Vref Value Waveform.tdms — Source waveform configuration
used to set the Vref register value.
■ Get Vref Value Waveform.digicapture — Capture waveform
configuration used to obtain the Vref register value.

External Limits Files
Use a text editor or spreadsheet software to open and review the <TestStand Pu
blic>\Examples\NI_SemiconductorModule\Accelerometer\DotNET
\Limits\Production Limits.txt file, which is the tests limits file for the
Production configuration of this test program. The test limits file is loaded at run
time based on the current test configuration. This file specifies the values to use to
evaluate whether a measurement passes or fails. The test program stores the limits
loaded from the file with the results.

Running the Test Program
You must meet all the prerequisites to run the test program. To run the test program,
click the Start/Resume Lot button on the TSM toolbar.

Running the Test Program in Offline Mode

You must install the required instrument drivers and meet all the prerequisites to
run the test program on a computer without access to NI instruments. To simulate
the instruments the test program needs, click the Enable Offline Mode button

© National Instruments 119

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

on the TSM toolbar. To run the test program, click the Start/Resume Lot button
on the TSM toolbar.

Launch the Test Program Editor and select the Offline Mode panel to view the path
to the Offline Mode system configuration file TSM uses to create simulated
instruments for Accelerometer.seq.

Click the Disable Offline Mode button to return to the default TSM behavior.

Asynchronous Analysis (TSM)

Purpose

This example demonstrates a test program that must perform lengthy analysis on
data acquired from an instrument. The test program performs the analysis in an
asynchronous thread. The following two figures demonstrate how performing the
analysis asynchronously to the data acquisition reduces the overall duration of the
test program.

The following figure shows a test program thread usage without asynchronous
analysis.

The following figure shows a test program thread usage with asynchronous analysis.

Example File Locations

<TestStand Public>\Examples\NI_SemiconductorModule\Test Op
timizations\Asynchronous Analysis\LabVIEW\Asynchronous Ana
lysis.seq

ni.com120

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Highlighted Features
■ Multisite
■ Asynchronous code modules

Major API

None

Prerequisites
■ You must have the LabVIEW Development System installed, and you must
configure the LabVIEW Adapter to use the LabVIEW Development System.
■ This example uses the Batch process model.

How to Use This Example

Complete the following steps to use this example.

1. Complete the following steps to review the pin map file associated with the
test program.

a. Select Semiconductor Module»Edit Pin Map File, click the Edit
Pin Map File button on the TSM toolbar, or launch the Test Program
Editor and click the Open file for edit button located to the right of
the Pin Map File Path display on the Pin Map panel to launch the Pin
Map Editor. Open the <TestStand Public>\Examples\NI_Semi
conductorModule\Test Optimizations\Asynchronous A
nalysis\LabVIEW\Asynchronous Analysis.pinmap file in
the Pin Map Editor.

The pin map file defines the following information:

■ One DUT pin named A.
■ One custom instrument named Dev1 with an instrumentTypeI
d attribute value of CustomInstrument and one channel group
that contains four channels.
■ Four sites on the tester.

© National Instruments 121

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lvadapterconfig.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ A series of connections for each site, in which each connection
specifies DUT pin A, a site number, the custom instrument Dev1, and
an instrument channel.

2. Open <TestStand Public>\Examples\NI_SemiconductorModule
\Test Optimizations\Asynchronous Analysis\LabVIEW\Asyn
chronous Analysis.seq and review the steps in the sequence.

■ Each Acquire Test Data step is a Semiconductor Multi Test step that runs a
LabVIEW code module that acquires data for each site and exports a
reference to the data to a local variable. Because the pin map specifies a
channel for each site connected to pin A, the test runs one instance of the
code module that acquires data for all four sites.
■ Each Analyze Test Data step runs a VI asynchronously to perform analysis
on the data acquired in the preceding Acquire Test Data step. TestStand
passes to the VI the local variable that contains the reference to the test data
and stores the analysis result the VI returns in another local variable.
■ Each Wait for Analysis of Test Data step waits for the asynchronous thread
running the analysis VI to complete.
■ Each Evaluate Analysis Result step is a Semiconductor Multi Test step with
no code module. The step evaluates the value of the local variable that
contains the analysis result against a set of limits. The Tests tab in the Step
Settings pane shows the limits. If the value of the analysis result is within the
limits, the test passes. Otherwise, the test fails.

3. On the Sequences pane, select the ProcessSetup sequence. The Launch
Resource Usage Profile step launches the Execution Profiler to demonstrate
how the analysis threads run in parallel to the data acquisition threads. The
Open and Store Instrument Sessions step in this sequence initializes the
custom instrument.

4. On the Sequences pane, select the ProcessCleanup sequence. The Close
Instrument Sessions step in this sequence closes the custom instrument
session.

5. Open <TestStand Public>\Examples\NI_SemiconductorModule
\Test Optimization\Asynchronous Analysis\LabVIEW\Async

ni.com122

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqfilewin_seq_view.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/resource_usage_profiler.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

hronous Analysis.lvproj to review the code modules the test
program uses.

6. Complete the following steps to execute the test program.

a. Select Configure»Model Options to launch the Model Options dialog
box.

b. Set the Number of Test Sockets to 4 and click OK to close the Model
Options dialog box.

c. Click the Start Lot button on the TSM toolbar to run the test
program.

d. The Execution Profiler automatically launches when execution begins.
The profiler shows each thread running in the test program and
demonstrates that the analysis steps are running in parallel with the
acquisition steps.

Custom Instruments (TSM)

TSM provides built-in support for commonly used instruments, such as NI-DCPower
and NI-HSDIO. If you need to use an instrument TSM does not natively support,
complete the following steps to define a custom instrument.

1. Based on the instrument driver behavior in a multisite environment, complete
the following step:

■ If each channel operates independently and can be accessed in separate
threads with different timing, the instrument operates with one session per
channel, similar to NI-DCPower instruments. Copy the <TestStand Publ
ic>\Examples\NI_SemiconductorModule\Custom Instrumen
ts\Session per Channel\LabVIEW directory to a new location and
open the Session per Channel.seq file in the new location.
■ If all channels operate synchronously, such that they must all be accessed
together, the instrument operates with one session per instrument, similar
to NI-HSDIO instruments. Copy the <TestStand Public>\Examples\
NI_SemiconductorModule\Custom Instruments\Session pe
r Instrument\LabVIEW directory to a new location and open the Sess
ion per Instrument.seq file in the new location.

© National Instruments 123

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_model_options.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ If the instrument has groups of channels that must be accessed
synchronously, the instrument operates with one session per channel
group. Copy the <TestStand Public>\Examples\NI_Semiconduc
torModule\Custom Instruments\Session per Channel Gro
up\LabVIEW directory to a new location and open the Session per Ch
annel Group.seq in the new location.

2. Use the Pin Map Editor to specify instrument channels and IDs.
3. Modify the related VI code modules in the example project to create a

communication layer between the pin map and the instrument. Ensure that
you update the session data inputs and outputs to a datatype that matches
the expected data for the custom instrument.

Session per Channel (TSM)

Purpose

This example demonstrates how to define instruments that TSM does not natively
support, how to create API for the instruments, and how to use the API in a code
module for a TSM test program. Each instrument in this example has unique session
data for each channel, similar to an NI-DCPower instrument. The code module
opens one session per channel.

Example File Location

<TestStand Public>\Examples\NI_SemiconductorModule\Custom
Instruments\Session per Channel\LabVIEW\Session per Channe
l.seq

Highlighted Features
■ Custom instruments
■ Pin map

Major API

TSM Code Module API

ni.com124

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Prerequisites
■ You must have the LabVIEW Development System installed, and you must
configure the LabVIEW Adapter to use the LabVIEW Development System.
■ This example uses the Batch process model.

How to Use This Example

Complete the following steps to use this example.

1. Complete the following steps to review the pin map file associated with the
test program.

a. Select Semiconductor Module»Edit Pin Map File or click the Edit
Pin Map File button on the TSM toolbar to open the <TestStand
Public>\Examples\NI_SemiconductorModule\Custom In
struments\Session per Channel\LabVIEW\Session per
Channel.pinmap file in the Pin Map Editor.

The pin map file defines the following information:

■ Two custom instruments named dev1 and dev2, respectively, each
with an instrumentTypeId attribute value of SessionPerChan
nelInst and eight available channels but no channel group
■ Four DUT pins named A, B, C, and D, respectively
■ Four sites on the tester
■ A series of connections for each site, in which each connection
specifies a DUT pin, a site number, an instrument, and an instrument
channel

2. Complete the following steps to review the code module that communicates
with the custom instruments.

a. Click the LabVIEW Module tab on the Step Settings pane. The Project
Path control specifies a file path to the <TestStand Public>\Exam
ples\NI_SemiconductorModule\Custom Instruments\Se
ssion per Channel\LabVIEW\Session per Channel.lvp
roj LabVIEW project file.

© National Instruments 125

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lvadapterconfig.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_module_lv.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

b. Click the Edit LabVIEW Project button, located to the right of the
Project Path control, to open Session per Channel.lvproj in
LabVIEW.

c. In the Project Explorer window, expand the Custom Instrument API
folder.

d. Open and review the following VIs that correspond to operations TSM
performs on the pin map:

■ Session per Channel - Get All Instrument Names.vi—Obtains
all instruments of the SessionPerChannelInst instrument type,
as defined in the pin map file, so that the initialization code module
can open sessions and store them in the SemiconductorModuleC
ontext object.
■ Session per Channel - Get All Sessions.vi—Obtains all stored
sessions so that the clean up code module can close the sessions that
were previously opened and stored in the SemiconductorModule
Context object.
■ Session per Channel - Pins To Sessions.vi—Queries the DUT
pins and returns the associated instruments and channel lists
associated with a SemiconductorModuleContext object.
■ Session per Channel - Store Instrument Session.vi—Stores
the sessions in the SemiconductorModuleContext object so
that other parts of the test program can access the sessions.

3. In TestStand, select the ProcessSetup sequence on the Sequences pane. The
step in this sequence initializes the instrument sessions.

4. On the Sequences pane, select the ProcessCleanup sequence. The step in
this sequence closes the instrument sessions.

5. Click the Start Lot button on the TSM toolbar to run the test program.

ni.com126

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqfilewin_seq_view.htm

Session per Channel Group (TSM)

Purpose

This example demonstrates how to define instruments that TSM does not natively
support, how to create API for the instruments, and how to use the API in a code
module for a TSM test program. Each instrument in this example has two unique
sessions, each with two channels that share a session. The code module opens one
session per channel group.

Example File Location

<TestStand Public>\Examples\NI_SemiconductorModule\Custom
Instruments\Session per Channel Group\LabVIEW\Session per
Channel Group.seq

Highlighted Features
■ Custom instruments
■ Pin map

Major API

TSM Code Module API

Prerequisites
■ You must have the LabVIEW Development System installed, and you must
configure the LabVIEW Adapter to use the LabVIEW Development System.
■ This example uses the Batch process model.

How to Use This Example

Complete the following steps to use this example.

1. Complete the following steps to review the pin map file associated with the
test program.

© National Instruments 127

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lvadapterconfig.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html

a. Select Semiconductor Module»Edit Pin Map File or click the Edit
Pin Map File button on the TSM toolbar to open the <TestStand
Public>\Examples\NI_SemiconductorModule\Custom In
struments\Session per Channel Group\LabVIEW\Sessi
on per Channel Group.pinmap file in the Pin Map Editor.

The pin map file defines the following information:

■ Two custom instruments named dev1 and dev2, respectively, each
with an instrumentTypeId attribute value of SessionPerChan
nelGroupInst, two channel groups, and four available channels
contained in each channel group
■ Four DUT pins named A, B, C, and D, respectively
■ Four sites on the tester
■ A series of connections for each site, in which each connection
specifies a DUT pin, a site number, an instrument, and an instrument
channel

2. Complete the following steps to review the code module that communicates
with the custom instruments.

a. Click the LabVIEW Module tab on the Step Settings pane. The Project
Path control specifies a file path to the <TestStand Public>\Exam
ples\NI_SemiconductorModule\Custom Instruments\Se
ssion per Channel Group\LabVIEW\Session per Chann
el Group.lvproj LabVIEW project file.

b. Click the Edit LabVIEW Project button, located to the right of the
Project Path control, to open Session per Channel Group.lvp
roj in LabVIEW.

c. In the Project Explorer window, expand the Session per Channel
Group API folder.

d. Open and review the following VIs that correspond to operations TSM
performs on the pin map:

■ Session per Channel Group - Get All Instrument Names.vi—
Obtains all instruments of the SessionPerChannelGroupInst

ni.com128

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_module_lv.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

instrument type, as defined in the pin map file, so that the
initialization code module can open sessions and store them in the Se
miconductorModuleContext object.
■ Session per Channel Group - Get All Sessions.vi—Obtains all
stored sessions so that the clean up code module can close the
sessions that were previously opened and stored in the Semiconduc
torModuleContext object.
■ Session per Channel Group - Pins To Sessions.vi—Queries the
DUT pins and returns the associated instruments and channel lists
associated with a SemiconductorModuleContext object.
■ Session per Channel Group - Store Instrument Session.vi—
Stores the sessions in the SemiconductorModuleContext object
so that other parts of the test program can access the sessions.

3. In TestStand, select the ProcessSetup sequence on the Sequences pane. The
step in this sequence initializes the instrument sessions.

4. On the Sequences pane, select the ProcessCleanup sequence. The step in
this sequence closes the instrument sessions.

5. Click the Start Lot button on the TSM toolbar to run the test program.

Session per Instrument (TSM)

Purpose

This example demonstrates how to define instruments that TSM does not natively
support, how to create API for the instruments, and how to use the API in a code
module for a TSM test program. Each instrument in this example shares session data
across the entire instrument, similar to an NI-HSDIO instrument. The code module
opens one session per instrument.

Example File Location

<TestStand Public>\Examples\NI_SemiconductorModule\Custom
Instruments\Session per Instrument\LabVIEW\Session per Ins
trument.seq

© National Instruments 129

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqfilewin_seq_view.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Highlighted Features
■ Custom instruments
■ Pin map

Major API

TSM Code Module API

Prerequisites
■ You must have the LabVIEW Development System installed, and you must
configure the LabVIEW Adapter to use the LabVIEW Development System.
■ This example uses the Batch process model.

How to Use This Example

Complete the following steps to use this example.

1. Complete the following steps to review the pin map file associated with the
test program.

a. Select Semiconductor Module»Edit Pin Map File or click the Edit
Pin Map File button on the TSM toolbar to open the <TestStand
Public>\Examples\NI_SemiconductorModule\Custom In
struments\Session per Instrument\LabVIEW\Session
per Instrument.pinmap file in the Pin Map Editor.

The pin map file defines the following information:

■ Two custom instruments named dev1 and dev2, respectively, each
with an instrumentTypeId attribute value of SessionPerInst
rument and eight available channels contained in a single channel
group
■ Four DUT pins named A, B, C, and D, respectively
■ Four sites on the tester

ni.com130

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lvadapterconfig.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ A series of connections for each site, in which each connection
specifies a DUT pin, a site number, an instrument, and an instrument
channel

2. Complete the following steps to review the code module that communicates
with the custom instruments.

a. Click the LabVIEW Module tab on the Step Settings pane. The Project
Path control specifies a file path to the <TestStand Public>\Exam
ples\NI_SemiconductorModule\Custom Instruments\Se
ssion per Instrument\LabVIEW\Session per Instrume
nt.lvproj LabVIEW project file.

b. Click the Edit LabVIEW Project button, located to the right of the
Project Path control, to open Session per Instrument.lvproj
in LabVIEW.

c. In the Project Explorer window, expand the API folder.
d. Open and review the following VIs that correspond to operations TSM

performs on the pin map:

■ Session per Instrument - Get All Instrument Names.vi—
Obtains all instruments of the SessionPerInstrument
instrument type, as defined in the pin map file, so that the
initialization code module can open sessions and store them in the Se
miconductorModuleContext object.
■ Session per Instrument - Get All Sessions.vi—Obtains all
stored sessions so that the clean up code module can close the
sessions that were previously opened and stored in the Semiconduc
torModuleContext object.
■ Session per Instrument - Pins To Sessions.vi—Queries the DUT
pins and returns the associated instruments and channel lists
associated with a SemiconductorModuleContext object.
■ Session per Instrument - Store Instrument Session.vi—Stores
the sessions in the SemiconductorModuleContext object so
that other parts of the test program can access the sessions.

© National Instruments 131

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_module_lv.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

3. In TestStand, select the ProcessSetup sequence on the Sequences pane. The
step in this sequence initializes the instrument sessions.

4. On the Sequences pane, select the ProcessCleanup sequence. The step in
this sequence closes the instrument sessions.

5. Click the Start Lot button on the TSM toolbar to run the test program.

Grading (TSM)

Purpose

This example demonstrates how to use the Set and Lock Bin step to grade DUTs
based on different test criteria.

Example File Location

<TestStand Public>\Examples\NI_SemiconductorModule\Grading
\LabVIEW\Grading.seq

Highlighted Features
■ Binning
■ Set and Lock Bin step

Major API

None

Prerequisites
■ You must have the LabVIEW Development System installed, and you must
configure the LabVIEW Adapter to use the LabVIEW Development System.
■ This example uses the Batch process model.

How to Use This Example

Complete the following steps to use this example.

1. Use the TestStand Sequence Editor to complete the following steps to review
the bin definitions file associated with the test program.

ni.com132

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqfilewin_seq_view.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lvadapterconfig.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html

a. Select Semiconductor Module»Edit Bin Definitions File or click
the Edit Bin Definitions File button on the TSM toolbar.

b. The bin definitions file defines one Fail bin, one Error bin, and three Pass
bins. The Pass bins correspond to the following three different grades:
Good, Better, and Best.

2. Review the three Semiconductor Multi Test steps in the MainSequence
sequence.

a. The first step takes and stores the measurement in a local variable (Loc
als.Measurement).

b. Each step compares the measurement against a different set of limits.
c. Preconditions on the lower grade tests prevent those tests from running

if the DUT passed a higher grade test.
d. The Step Failure Option on the higher grade tests ensure that the DUT

does not fail if the higher grade tests fail.

3. Review the If block at the end of the MainSequence sequence.

a. The steps in the block execute only if the DUT passed all tests.
b. The Set and Lock Bin steps assign a bin to the DUT based on the highest

grade test that passed.

4. Click the Start Lot button on the TSM toolbar to run the test program.

Multisite Programming Scenarios (TSM)

Purpose

This example demonstrates how to address several multisite use cases.

Example File Locations

<TestStand Public>\Examples\NI_SemiconductorModule\Multisi
te Programming Scenarios\LabVIEW\MultisiteScenarios.seq

© National Instruments 133

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Highlighted Features

Testing Multiple Sites in Parallel

Major API

TSM Code Module API

Prerequisites
■ You must have the LabVIEW Development System installed, and you must
configure the LabVIEW Adapter to use the LabVIEW Development System.
■ This example uses the Batch process model.

How to Use This Example

Complete the following steps to use this example.

1. Open <TestStand Public>\Examples\NI_SemiconductorModule
\Multisite Programming Scenarios\LabVIEW\MultisiteScen
arios.seq.

2. Review the following steps and corresponding code modules:

■ Simple Parametric Measurement
■ Query Pin/Site Measurement for Unsupported Measurement Type
■ Source-Wait-Measure Parametric Test
■ Source Power Supply Pins and Measure Digital Pins
■ Multiple Measurements on Multiple Pins
■ Source All Digital Pins, Source-Wait-Measure Each Digital Pin
■ Functional Test Using NI-Digital Pattern Driver
■ Functional Test for Multiple Registers Using NI-Digital Pattern Driver
■ Functional Test Using NI-HSDIO Hardware Compare
■ Functional Test for Multiple Registers
■ Instrument Multiplexed Across Sites
■ Instrument Multiplexed Across Sites, Multiple Measurements

ni.com134

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lvadapterconfig.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

See Also
Multisite Programming Techniques

Simple Parametric Measurement (TSM)

The following figure shows how to take a parametric measurement on one or
multiple pins.

This example includes the following main tasks:

1. Query for the sessions for the pin(s) you want to measure.
2. Use a parallel For Loop to iterate on every instrument you need to call to take

the multisite measurement.
3. Use the Pin Query Context with a pin-based instance of the Publish Data VI to

publish the measurement.
4. Query for a measurement value for a specific pin and site combination. The

source code for the query is in the Query Pin Site Data VI.

The Semiconductor Multi Test step that calls the code module shown above
contains the following tests, where each test evaluates one measurement for each
pin, as shown in the following figure:

Query Pin/Site Measurement for Unsupported Measurement Type (TSM)

The following figure shows how to query for measurement data for a pin and site
combination if the Extract Pin Data VI does not support the measurement type.

© National Instruments 135

TestStand Semiconductor Module

This example includes the following main tasks:

1. Query for the custom instrument sessions for the pin(s) connected to the NI-
DCPower instrument.

2. Use a parallel For Loop to iterate on every instrument to create simulated
data.

3. Query for measurement data for a specific pin and site combination.

Source-Wait-Measure Parametric Test (TSM)

The following figure shows how to source a voltage on the test pin(s), wait for the
voltage to settle, and take a measurement.

This example includes the following main tasks:

1. Query for the sessions for the pin(s) to source and measure.
2. Use a parallel For Loop to iterate on every instrument you need to call to

source a value on the test pin(s).
3. Wait for the voltage to settle on all pins and on all sites.
4. Use a parallel For Loop to iterate on every instrument you need to call to take

the multisite measurement.
5. Use the Pin Query Context with a pin-based instance of the Publish Data VI to

publish the measurement.

ni.com136

TestStand Semiconductor Module

The Semiconductor Multi Test step that calls the code module shown above
contains the following tests, where each test evaluates one measurement for each
pin, as shown in the following figure:

Source Power Supply Pins and Measure Digital Pins (TSM)

The following figure shows how to source a voltage on the power supply pin(s) and
take a measurement on digital I/O pins.

This example includes the following main tasks:

1. Query for the sessions for the power supply pin(s) to source a voltage.
2. Use a parallel For Loop to iterate on every instrument you need to call.
3. Query the sessions for the digital I/O pins on which you want to take a

measurement.
4. Use a parallel For Loop to iterate on every instrument you need to call to take

the measurement on all pins in all sites.
5. Use the Pin Query Context that the digital I/O pin query generates with a pin-

based instance of the Publish Data VI to publish the measurement.
6. Use a parallel For Loop to iterate on every instrument you need to call to

disable the power supply pins.

The Semiconductor Multi Test step that calls the code module shown above
contains the following tests, where each test evaluates one measurement for each
digital I/O pin, as shown in the following figure:

© National Instruments 137

TestStand Semiconductor Module

Multiple Measurements on Multiple Pins (TSM)

The following figure shows how to take multiple measurements on multiple pins.

This example includes the following main tasks:

1. Query for the sessions for the pins.
2. Use a For Loop to iterate on the different measurement conditions.
3. For each condition, use a parallel For Loop to iterate on every instrument you

need to call to take the measurement on all pins in all sites.
4. For each condition, use the original Pin Query Context and a unique Published

Data Id with a pin-based instance of the Publish Data VI to publish the
measurement for each condition. You do not need to query for sessions inside
the For Loop because multiple queries will return the same sessions. You can
use the same Pin Query Context to publish multiple times as long as the
Published Data Id is unique.

5. Probe the measurement value for every pin and site combination. The source
code for the probe is in the Probe Pin Site Data VI.

The Semiconductor Multi Test step that calls the code module shown above
contains the following tests, where each test evaluates one measurement for each
digital I/O pin and each unique Published Data Id, as shown in the following figure:

ni.com138

TestStand Semiconductor Module

Source All Digital Pins, Source-Wait-Measure Each Digital Pin (TSM)

The following figure shows how to source zero volts on all digital pins and then for
each digital pin, source a voltage, wait, and measure.

This example includes the following main tasks:

1. Query for the sessions for all test pins.
2. Use a parallel For Loop to iterate on every instrument you need to call to

source zero volts on all pins.
3. Use a For Loop to iterate on every digital I/O pin.
4. For each pin, query for the session for the pin under test.
5. Use a parallel For Loop to iterate on every instrument you need to call to

source a voltage, wait, and take a measurement on the pin under test.
6. Use the Pin Query Context for the pin under test with a pin-based instance of

the Publish Data VI to publish the data for each pin.

The Semiconductor Multi Test step that calls the code module shown above
contains the following tests, where each test evaluates one measurement for each
pin, as shown in the following figure:

Functional Test Using NI-Digital Pattern Driver (TSM)

The following figure shows how to use the Digital Pattern Instrument for a multisite
functional test.

© National Instruments 139

TestStand Semiconductor Module

This example includes the following main tasks:

1. Query for the sessions for the digital I/O pins under test.
2. Use a parallel For Loop to iterate on every required instrument to burst a

pattern.
3. Use the Publish Pattern Results VI to publish per-site Boolean results from the

pattern burst.

The Semiconductor Multi Test step that calls the code module shown above
contains the following test, which evaluates one Boolean result, as shown in the
following figure:

Functional Test for Multiple Registers Using NI-Digital Pattern Driver (TSM)

The following figure shows how to read multiple register values from captured
waveforms.

This example includes the following main tasks:

1. Query for the sessions for the digital I/O pins.
2. Use a parallel For Loop to burst patterns and fetch capture waveforms.
3. Convert the per-instrument waveform data to per-site waveforms.
4. Use a For Loop to scan each per-site waveform to obtain register values for

four addresses.

ni.com140

TestStand Semiconductor Module

5. Transpose the 2D array so that the first dimension corresponds to sites.
6. Use a site-based instance of the Publish Data VI to publish the register value

using the address as a hex string for the Published Data Id.

The Semiconductor Multi Test step that calls the code module shown above
contains the following tests, where each test evaluates one numeric value per
register, as shown in the following figure:

Functional Test Using NI-HSDIO Hardware Compare (TSM)

The following figure shows how to use the NI-HSDIO hardware compare engine for a
multisite functional test.

This example includes the following main tasks:

1. Query for the sessions for the digital I/O pins under test.
2. Use a parallel For Loop to iterate on every required instrument to start digital

hardware compare and to obtain the cumulative error masks.
3. Use the Pin Query Context to obtain the digital per-instrument, per-site

channel masks.
4. Compare the per-instrument error masks to the per-site, per-instruments

masks to identify sites that failed.
5. Query for measurement data for sites that failed. The source code for the

query is in the Failure Pin Site Data VI.
6. Use the Publish Data VI to publish per-site Boolean results.

© National Instruments 141

TestStand Semiconductor Module

The Semiconductor Multi Test step that calls the code module shown above
contains the following test, which evaluates one Boolean result, as shown in the
following figure:

Functional Test for Multiple Registers Using NI-HSDIO (TSM)

The following figure shows how to read multiple register values from a digital
waveform.

This example includes the following main tasks:

1. Query for the sessions for the digital I/O pins.
2. Use a parallel For Loop to fetch the digital waveforms.
3. Rearrange the digital waveforms from per-instrument waveforms to per-site

waveforms.
4. Use a For Loop to scan each per-site waveform to obtain register values for

four addresses.
5. Transpose the 2D array so that the first dimension corresponds to sites.
6. Use a site-based instance of the Publish Data VI to publish the register value

using the address as a hex string for the Published Data Id.

The Semiconductor Multi Test step that calls the code module shown above
contains the following tests, where each test evaluates one numeric value per
register, as shown in the following figure:

ni.com142

TestStand Semiconductor Module

Instrument Multiplexed Across Sites (TSM)

The following figure shows how to take a measurement using an instrument
connected to multiple sites through a multiplexer.

Note Run-time site order is not guaranteed to
be in any particular order. Site order depends
on the arrival order at the executing step.

This example includes the following main tasks:

1. Query the multiplexer sessions and routes for the multiplexed pin.
2. Use a For Loop to complete the following tasks for each multiplexed site:

a. Connect the required multiplexer route for the site under test.
b. Use the Semiconductor Module context created for each site to query

for the instrument session for the pin.
c. Take a measurement for a single site.
d. Use the Pin Query Context with a pin-based instance of the Publish Data

VI to publish the measurement.
e. Disconnect the multiplexer route.
f. Close the single site Semiconductor Module context.

The Semiconductor Multi Test step that calls the code module shown above
contains the following test, which evaluates one measurement for the multiplexed
pin, as shown in the following figure:

© National Instruments 143

TestStand Semiconductor Module

Instrument Multiplexed Across Sites, Multiple Measurements (TSM)

The following figure shows how to take multiple measurements using an instrument
multiplexed across multiple sites.

Note Run-time site order is not guaranteed to
be in any particular order. Site order depends
on the arrival order at the executing step.

This example includes the following main tasks:

1. Query the multiplexer sessions and routes for the multiplexed pin.
2. Use a For Loop to complete the following tasks for each multiplexed site:

a. Connect the required multiplexer route for the site under test.
b. Use the Semiconductor Module context created for each site to query

for the instrument session for the pin.
c. Use a For Loop to complete the following tasks for each measurement

condition:

a. Take a measurement for a single site and a single condition.
b. Use the Pin Query Context and the unique Published Data Id with

a pin-based instance of the Publish Data VI to publish the
measurement.

d. Disconnect the multiplexer route.
e. Close the single site Semiconductor Module context.

The Semiconductor Multi Test step that calls the code module shown above
contains the following tests, where each test evaluates one measurement for each
measurement condition, as shown in the following figure:

ni.com144

TestStand Semiconductor Module

Parametric I/V Instrument Panel (TSM)

Purpose

This example demonstrates how to use the custom instrument panel infrastructure
to provide pin-aware debugging and control of NI-DCPower and NI-Digital SMU,
power supply, and PPMU instruments during execution of a TSM test sequence.

Example File Location

<TestStand Public>\Examples\Custom Instrument Panels\LabVI
EW\Parametric I V Instrument Panel
Installed File Location

<TestStand Public>\Components\Modules\NI_SemiconductorModu
le\CustomInstrumentPanels\Parametric I V Instrument Panel
Highlighted Features

Custom instrument panels

Major API
■ NI-DCPower
■ NI-Digital Pattern Driver (PPMU only)

Prerequisites
■ NI-Digital Pattern Driver
■ NI-DCPower

How to Use This Example

Complete the following steps to use this example.

© National Instruments 145

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ Open <TestStand Public>\Examples\NI_SemiconductorModu
le\Accelerometer\LabVIEW\Accelerometer.seq and set a
breakpoint on a step in the Main section of the MainSequence sequence.
■ Click the Start Lot button on the TSM toolbar to run the test program.
■ When the execution stops at the breakpoint, select Semiconductor
Module»Custom Instrument Panels»Parametric I/V Instrument Panel
to launch the corresponding custom instrument panel VI.
■ In the Parametric I/V Instrument Panel VI, select Site number or System
pins to update the available pins list and then select a pin.
■ Update the hardware settings controls to change the state of the pin. The
custom instrument panel immediately commits the changes you make to the
pin you selected. The hardware settings controls display the current state of
the pin.

■ The custom instrument panel VI uses the configured settings to
continuously run a software-timed current (I) and voltage (V) measurement
on the selected pin, performing the measurement approximately once every
500ms.
■ The Current and Voltage charts display the measurement results and
provide a historical view of the state of the selected pin.

Note You can click the Pause button to
pause the continuous measurements.
Clicking the Pause button does not change
the state of the selected pin and pauses
only the measurements the custom
instrument panel VI performs on the
selected pin.

■ Click the Close (X) button in the title bar of the Parametric I/V Instrument
Panel VI to end the execution of the custom instrument panel VI.

ni.com146

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Switching (TSM)

Purpose

This example demonstrates a test program that uses four sites and three shared
instruments, as shown in the following figure. The test program shares the DMM1
instrument across all four sites and shares the DMM2 and DMM3 instruments across
two sites each. All three instruments contain only one channel routed to each site
using a switch (MUX).

Note Run-time site order is not guaranteed to
be in any particular order. Site order depends
on the arrival order at the executing step.

Example File Location

<TestStand Public>\Examples\NI_SemiconductorModule\Switchi
ng\LabVIEW\Switching.seq

Highlighted Features
■ Multisite
■ Pin map

© National Instruments 147

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ Switching

Major API

TSM Code Module API

Switch Executive API

Prerequisites
■ You must have the LabVIEW Development System installed, and you must
configure the LabVIEW Adapter to use the LabVIEW Development System.
■ You must have NI-Switch 15.0 or later installed.
■ You must have Switch Executive 2015 or later installed.
■ This example uses the Batch process model.

You must also configure the switch instruments and route in Measurement &
Automation Explorer (MAX) to be available through Switch Executive Virtual Devices.
This example includes the SwitchingConfiguration.nce NI Configuration
Export File to import an example configuration into MAX. To import the file, open
MAX, select File»Import, and browse to the SwitchingConfiguration.nce
file in the resulting dialog box.

How to Use This Example

Complete the following steps to use this example.

1. Complete the following steps to review the pin map file associated with the
test program.

a. Select Semiconductor Module»Edit Pin Map File, click the Edit
Pin Map File button on the TSM toolbar, or launch the Test Program
Editor and click the Open file for edit button located to the right of
the Pin Map File Path display on the Pin Map panel to open the <TestS
tand Public>\Examples\NI_SemiconductorModule\Swit
ching\LabVIEW\Switching.pinmap file in the Pin Map Editor.

The pin map file defines the following information:

ni.com148

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lvadapterconfig.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ Two DUT pins named A and B, respectively.
■ Three multiplexer switch instruments named Mux1, Mux2, and Mux
3, each with a multiplexerTypeId attribute value of NISimulat
edMultiplexer.
■ Three DMM instruments named DMM1, DMM2, and DMM3, each with
one channel.
■ Four sites on the tester.
■ A set of multiplexed connections, in which each connection specifies
an instrument and instrument channel and contains a list of
connection pin routes. Each route specifies a site, route name,
multiplexer, and pin to which it is connected.

2. Select each step in the MainSequence sequence and click the Tests tab on
the Step Settings pane to review the tests each step performs.

The Semiconductor Multi Test step type uses the information in the pin map
to determine which sites, instruments, and instrument channels to use for a
particular test. The first step uses DMM1, which is shared across all four sites,
to test pin A on each site. The second step uses DMM2 and DMM3, which are
each shared across two sites, to test pin B on each site.

3. Click the Options tab on the Step Settings pane to review the DUT pins
specified for each step and the multisite execution that the step uses.

The first step specifies only DUT pin A. The step uses the pin map to determine
that only one instrument is connected to pin A for each site and that a switch
routes the channel to each site. With this information, the step determines
that all four sites must run in a single thread and only one instance of the code
module executes, as shown in the Multisite Execution Diagram.

The second step specifies only DUT pin B. The step uses the pin map to
determine that two instruments are available and each connects to DUT pin B
on independent sites. With this information, the step determines that it is able
to run the code module in two independent threads, as shown in the Multisite
Execution Diagram.

© National Instruments 149

TestStand Semiconductor Module

4. On the Sequences pane, select the ProcessSetup sequence. The steps in
this sequence initialize the custom instruments and switches.

5. On the Sequences pane, select the ProcessCleanup sequence. The steps
in this sequence close instrument and switch sessions.

6. Open <TestStand Public>\Examples\NI_SemiconductorModule
\Switching\LabVIEW\Switching.lvproj to review the code
modules the test program uses. The Example Test Code VI demonstrates a test
code module that uses multiplexed routes. In the VI, each iteration of the For
Loop tests one site. The tests for each site execute serially in a For Loop
because the tests share an instrument. Do not enable loop iteration
parallelism in the For Loop.

Note The For Loop must also close each
reference in the array of Semiconductor
Module contexts because the references
were generated in LabVIEW instead of in
TestStand and will not be closed
automatically.

7. Click the Start Lot button on the TSM toolbar to run the test program.

Initializing Switch Sessions (TSM)

In the ProcessSetup callback sequence of a test program, you must initialize all
instrument sessions and switch sessions and store them in the Semiconductor
Module context. Refer to the Add Switch Sessions VI in the Switching example for an
example of how to initialize a set of switch sessions.

Pass NISimulatedMultiplexer for the Multiplexer Type ID parameter of the
Get All Switch Names VI to obtain an array of switch instrument names from the pin
map. In a For Loop, iterate through each name in the Switches Names array and
create a session for each switch instrument. In the same For Loop, use the Set
Switch Session VI to associate a switch name with a switch session in the
Semiconductor Module context.

Closing Switch Sessions (TSM)

In the ProcessSetup callback sequence of a test program, you must close all
instrument sessions and switch sessions stored in the Semiconductor Module

ni.com150

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

context. Refer to the Close Switch Sessions VI in the Switching example for an
example of how to clean up switch sessions.

Pass NISimulatedMultiplexer for the Multiplexer Type ID parameter of the
Get All Switch Sessions VI to obtain an array of switch sessions from the pin map. In
a For Loop, iterate through each session in the Session Data array and close the
session. Because the session data is an array of variant data types to allow for any
session type, use the Variant To Data function inside the For Loop to convert the
variant data type to the correct switch session type.

Configuring Switches with Switch Executive (TSM)

NI recommends using Switch Executive to configure complex switching routes.
Switch Executive provides a user interface to configure routes and route groups in
Measurement & Automation Explorer. Refer to the Switch Executive Help for more
information about configuring switch routes.

You can deploy the route configuration to production test systems by exporting the
virtual device as part of an NI Configuration Export File that Measurement &
Automation Explorer generates and then including the file in a TestStand
deployment.

Code Modules with Multiplexed Routes (TSM)

In a code module you call from a Semiconductor Multi Test step, you must connect
DUT pins connected to multiplexers to the corresponding switch route before you
can perform a test on that DUT pin. At the end of the test, disconnect the route.
Refer to the Switching Example Test Code VI in the Switching example for an
example of how to perform a measurement on multiplexed connections.

Note Do not use the TestStand IVI Switching
mode or Switch step properties with TSM test
programs because the mode and properties are
not multisite aware.

In the code module, pass NISimulatedMultiplexer for the Multiplexer Type
ID parameter of the Pin to Switch Sessions VI to obtain an array of switch sessions,
switch route names, and Semiconductor Module contexts for each site in the
subsystem. Each element in the Semiconductor Module contexts array represents a

© National Instruments 151

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsdeploysystem/infotopics/includingnihwconfig.htm

single site on which the test code must execute serially. Use the Semiconductor
Module context object to query the pin map and publish data for the site. In a For
Loop, use the switch session and the corresponding route name to connect the
switch route. Because the session data is an array of variant data types to allow for
any session type, use the Variant To Data function inside the For Loop to convert the
variant data type to the correct switch session type. Because auto-indexing is
enabled on the For Loop, it ensures that the switch session, switch route name, and
Semiconductor Module context correspond to each other for each iteration of the
For Loop.

Note Do not enable parallel iterations on a For
Loop to iterate through the elements of the
Semiconductor Module contexts array because
the sites share common instruments, and the
iterations must execute serially.

After you connect the route, call the Pin Query VI inside the For Loop to query the
pin map for the instrument session. Each iteration of the For Loop uses a separate
instance of the Semiconductor Module context from the array the Pin To Switch
Sessions VI returns. Use the instrument session to perform the measurement on the
pin. Use the Publish Data VI to publish the measurement by passing the Pin Query
Context the Pin Query VI returns to the Publish Data VI. After you publish the
measurement, you must close the Semiconductor Module context reference
because the reference was generated in LabVIEW, and the code module must
manage the reference. You do not need to close the reference for the Semiconductor
Module context that you pass as a parameter from TestStand.

Before exiting the For Loop, use the same switch session and switch route name to
disconnect the switch route.

Part Average Testing Examples (TSM)

The <TestStand Public>\Examples\NI_SemiconductorModule\Part
Average Testing directory contains the following examples:

■ Part Average Testing with LabVIEW
■ Part Average Testing with .NET

ni.com152

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Example Part Average Testing Plug-In

The <TestStand Public>\Examples\NI_SemiconductorModule\Part
Average Testing\Example Part Average Testing Plug-In
directory contains a part average testing (PAT) plug-in that you can use as a starting
point for custom PAT plug-ins you create.

Note By default, TSM uses data that cause all
tests to pass when you run in Offline Mode. The
PAT example is configured to override this
default behavior and use the published values
for tests. When creating a custom PAT plug-in
from the PAT example, modify the Numeric
Limit Test or Pass/Fail Test property settings to
specify which test values to use in Offline Mode.

The example PAT plug-in consists of the following files:

■ PartAverageTestingCallbacks.seq—PAT callback sequence file
■ PartAverageTestingAlgorithmExample.dll—.NET assembly that
contains code modules the callback sequence file calls

Opening the Part Average Testing Example.seq file in the TestStand
Sequence Editor automatically copies the example PAT plug-in files from the <Test
Stand Public>\Examples\NI_SemiconductorModule\Part Average
Testing\Example Part Average Testing Plug-In directory to the <T
estStand Public>\Components\Callbacks\NI_SemiconductorModu
le directory. Closing the Part Average Testing Example.seq file removes
the example PAT plug-in files from the <TestStand Public>\Components\C
allbacks\NI_SemiconductorModule directory.

See Also
Part Average Testing

© National Instruments 153

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Part Average Testing with LabVIEW (TSM)

Purpose

This example demonstrates how to enable and perform part average testing (PAT) in
a test program.

Example File Location

<TestStand Public>\Examples\NI_SemiconductorModule\Part Av
erage Testing\LabVIEW\Part Average Testing Example.seq

Highlighted Features
■ TSM PAT plug-in architecture
■ Test Program Editor PAT Algorithm Settings panel
■ Semiconductor Multi Test Part Average Testing tab
■ Perform Part Average Testing step
■ Static PAT limits file
■ OnSiteTestingComplete callback sequence

Major API

TSM Application API

Prerequisites

Note To perform part average testing, you must
place the PAT plug-in files in the <TestStand
Public>\Components\Callbacks\NI_S
emiconductorModule directory. Opening
the Part Average Testing Example.s
eq file in the TestStand Sequence Editor
automatically copies the example PAT plug-in
files from the <TestStand Public>\Exam
ples\NI_SemiconductorModule\Part
Average Testing\Example Part Aver
age Testing Plug-In directory to the <Te
stStand Public>\Components\Callba

ni.com154

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

cks\NI_SemiconductorModule directory.
Closing the Part Average Testing Exam
ple.seq file removes the example PAT plug-in
files from the <TestStand Public>\Comp
onents\Callbacks\NI_Semiconductor
Module directory.

■ You must have the LabVIEW Development System installed, and you must
configure the LabVIEW Adapter to use the LabVIEW Development System.
■ You must have NI-DCPower 15.1 or later installed. You do not need an NI-
DCPower instrument because this example uses simulated instrument
sessions.
■ This example uses the Batch process model.

Note You can view the test program in the
TestStand Sequence Editor and partial code
modules in LabVIEW without the required NI
instrument drivers installed. Install the drivers
to view the full code modules in LabVIEW. Visit n
i.com/info and enter the Info Code rddrau
to access the latest software drivers and
updates.

How to Use This Example

Complete the steps in the following sections to learn about TSM PAT plug-ins, to
access and modify the PAT settings, and to enable, disable, and configure part
average testing for individual tests.

1. Select Semiconductor Module»Edit Test Program: Part Average
Testing Example.seq or click the Edit Test Program: Part Average
Testing Example.seq button on the TSM toolbar to launch the Test Program
Editor for the sequence file.

2. Select the PAT Algorithm Settings panel and review the following settings the
test program specifies for the PAT plug-in to use.

■ Disable Static Part Average Testing—Disables all static part average
testing for the test program.

© National Instruments 155

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lvadapterconfig.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html

■ Disable Dynamic Part Average Testing—Disables all dynamic part
average testing for the test program.
■ Static PAT Limits File—Specifies a relative path to a file that contains
static limits for all tests enabled for static part average testing in the test
program. The example PAT algorithm uses the IPartAverageTestingS
taticLimitLoader.LoadStaticLimits method in the TSM
Application API to load a static limits file that uses the same structure as a
TSM test limits file. To read and use limits from a different file format, you
must implement a custom file reader and a custom data structure to store
the limits.
■ Statistics Type—Specifies the type of statistics to use to calculate
dynamic PAT limits.
■ Window Size—Specifies how many measurements of previously tested
DUTs to use to calculate the dynamic limits for the DUT currently being
tested.
■ Early Part Count—Specifies how many parts in a lot must complete
testing before considering the computed dynamic limits statistically valid.
DUTs that complete testing before this value are called early parts. This
example PAT algorithm sets the dynamic limits for early parts to the test
program limits.

3. Select the Continuity step in the MainSequence sequence. The example will
perform part average testing for the tests in this step when it executes the
Perform Part Average Testing step.

4. Click the Part Average Testing tab.
5. Add a checkmark to or remove a checkmark from the checkboxes in the

Enable Dynamic PAT and Enable Static PAT columns.
6. Set test numbers, test names, and software fail bins for the tests with dynamic

or static part average testing enabled. Bins must be defined in the bin
definitions file.

7. Enable and display the Debug Test Results Log by placing a checkmark in the
Enabled column and in the Display column of the Result Processing dialog
box.

ni.com156

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_result_processing.htm

8. Ensure that you meet the prerequisites, then click the Single Test button on
the TSM toolbar to test a single part on each site.

9. Click the End Lot button.

10. Click the Report pane of the Execution window and review the Debug Test
Results Log to see the PAT tests that executed during the MainSequence
sequence.

See Also
Part Average Testing

Part Average Testing with .NET (TSM)

Purpose

This example demonstrates how to enable and perform part average testing (PAT) in
a test program.

Example File Location

<TestStand Public>\Examples\NI_SemiconductorModule\Part Av
erage Testing\DotNET\Part Average Testing Example.seq

Highlighted Features
■ TSM PAT plug-in architecture
■ Test Program Editor PAT Algorithm Settings panel
■ Semiconductor Multi Test Part Average Testing tab
■ Perform Part Average Testing step
■ Static PAT limits file
■ OnSiteTestingComplete callback sequence

Major API

TSM Application API

© National Instruments 157

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Prerequisites

Note To perform part average testing, you must
place the PAT plug-in files in the <TestStand
Public>\Components\Callbacks\NI_S
emiconductorModule directory. Opening
the Part Average Testing Example.s
eq file in the TestStand Sequence Editor
automatically copies the example PAT plug-in
files from the <TestStand Public>\Exam
ples\NI_SemiconductorModule\Part
Average Testing\Example Part Aver
age Testing Plug-In directory to the <Te
stStand Public>\Components\Callba
cks\NI_SemiconductorModule directory.
Closing the Part Average Testing Exam
ple.seq file removes the example PAT plug-in
files from the <TestStand Public>\Comp
onents\Callbacks\NI_Semiconductor
Module directory.

■ You must have NI-DCPower 15.1 or later installed. You do not need an NI-
DCPower instrument because this example uses simulated instrument
sessions.
■ You must have .NET 4.0 support for the NI-DCPower .NET Class Libraries 1.1
or later installed.
■ This example uses the Batch process model.

Note You can view the test program in the
TestStand Sequence Editor and code modules in
a C# source code editor without the required NI
instrument drivers installed. Visit ni.com/inf
o and enter the Info Code NETAPIdriversup
port for information about the available
NI .NET APIs and the versions of the NI drivers
each supports.

ni.com158

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html

How to Use This Example

Complete the steps in the following sections to learn about TSM PAT plug-ins, to
access and modify the PAT settings, and to enable, disable, and configure part
average testing for individual tests.

1. Select Semiconductor Module»Edit Test Program: Part Average
Testing Example.seq or click the Edit Test Program: Part Average
Testing Example.seq button on the TSM toolbar to launch the Test Program
Editor for the sequence file.

2. Select the PAT Algorithm Settings panel and review the following settings the
test program specifies for the PAT plug-ins to use.

■ Disable Static Part Average Testing—Disables all static part average
testing for the test program.
■ Disable Dynamic Part Average Testing—Disables all dynamic part
average testing for the test program.
■ Static PAT Limits File—Specifies a relative path to a file that contains
static limits for all tests enabled for static part average testing in the test
program. This example PAT algorithm uses the IPartAverageTestingS
taticLimitLoader.LoadStaticLimits method in the TSM
Application API to load a static limits file that uses the same structure as a
TSM test limits file. To read and use limits from a different file format, you
must implement a custom file reader and a custom data structure to store
the limits.
■ Statistics Type—Specifies the type of statistics to use to calculate
dynamic PAT limits.
■ Window Size—Specifies how many measurements of previously tested
DUTs to use to calculate the dynamic limits for the DUT currently being
tested.
■ Early Part Count—Specifies how many parts in a lot must complete
testing before considering the computed dynamic limits statistically valid.
DUTs that complete testing before this value are called early parts. This
example PAT algorithm sets the dynamic limits for early parts to the test
program limits.

© National Instruments 159

TestStand Semiconductor Module

3. Select the Continuity step in the MainSequence sequence. The example will
perform part average testing for the tests in this step when it executes the
Perform Part Average Testing step.

4. Click the Part Average Testing tab.
5. Add a checkmark to or remove a checkmark from the checkboxes in the

Enable Dynamic PAT and Enable Static PAT columns.
6. Set test numbers, test names, and software fail bins for the tests with dynamic

or static part average testing enabled. Bins must be defined in the bin
definitions file.

7. Enable and display the Debug Test Results Log by placing a checkmark in the
Enabled column and in the Display column of the Result Processing dialog
box.

8. Ensure that you meet the prerequisites, then click the Single Test button on
the TSM toolbar to test a single part on each site.

9. Click the End Lot button.

10. Click the Report pane of the Execution window and review the Debug Test
Results Log to see the PAT tests that executed during the MainSequence
sequence.

See Also
Part Average Testing

Test Steps and Flow (TSM)
A test step is an instance of the Semiconductor Multi Test step type or a custom step
type based on the Semiconductor Multi Test step type that performs one or more
parametric or functional tests. A test step calls a code module implemented in
LabVIEW or .NET to control the instrumentation on the tester, take measurements
from the DUT, and pass measurement values back to the Semiconductor Multi Test
step. The step performs parametric and functional tests using the measurement
values obtained from the code module. The Main sequence of a test program
sequence file defines the test steps to execute and the order in which to execute

ni.com160

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_result_processing.htm

them. You can use standard TestStand control flow features, such as preconditions
and Flow Control step types, to control the test flow.

To skip subsequent tests when a test fails, enable the Stop Performing Tests
after First Failure option on the Options tab of the Semiconductor Multi Test step
in the sequence editor and also set the On Step Failure sequence option to Goto
Cleanup on the General tab in the Sequence Properties dialog box. To skip one or
more tests based on specific conditions, use the Get Test Information step to save
the condition in a local variable and use an expression that refers to the variable in a
precondition expression or in the condition expression of an If step. Skipping a test
step execution skips all tests associated with the test step.

Note You cannot use multiple Semiconductor
Multi Test steps or Semiconductor Action steps
configured to use multiple threads in While
loops, in Do While loops or in For loops that use
the Custom Loop option when performing
multisite testing. The steps report a run-time
error in these situations. Use other types of
loops instead, such as For loops that use the
Fixed Number of Iterations option.

Programming Multiple Test Flows in a Test Program

You can execute multiple test flows from a single test program. A test program can
contain multiple configurations to specify values for test conditions that can control
execution flow. Use the Test Program Editor to specify configurations and test
condition values for a test program.

TSM sets available test configurations when you configure a lot for execution. You
can use the values of test conditions to control the flow of the sequence when used
as inputs to TestStand Flow Control step types. Use the Get Test Information step
type to obtain the value of a test condition at run time. You can specify the
TestFlowId standard lot setting as a standard test condition that identifies the test
flow in an STDF log file.

© National Instruments 161

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_step_settings_precond.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_seq_prop_gen_tab.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_seq_prop.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_if.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_while.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_do_while.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_for.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_forloop.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_forloop.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types.htm

Performing Tasks after all Tests Complete

TSM assigns a bin to the DUT after the MainSequence sequence executes.
Therefore, if you need to perform tasks after TSM has assigned a bin to the DUT, you
must perform these tasks in the OnSiteTestingComplete callback sequence. If not,
you can perform them in the Cleanup step group of the MainSequence sequence.
If you do use the Cleanup step group for these tasks and your test program uses part
average testing, you should precede the tasks with a Perform Part Average Testing
step, so that you can ensure that they run after all part average testing is completed.
If you don't use a Perform Part Average Testing step, TSM performs part average
testing after executing all step groups of the MainSequence sequence.

In general, do not use the PostUUT Model callback because TestStand calls this
callback after TSM sends the end-of-test (EOT) notification to the handler or prober.
As a result, you cannot perform operations on a DUT in the PostUUT callback.

Test Settings Relationships (TSM)
TSM uses collections of settings to provide information about a test lot or test
station. Lot settings and test conditions provide information about a test lot, and
station settings provide information about the test station.

A semiconductor test program can provide values for some settings and can use
configurations to create new settings specific to the test program. The test program
can then use the Get Test Information step to access those values in a sequence.

You can use the Configure Lot Settings dialog box and the Configure Station Settings
dialog box to assign values for these settings. You can also use the GetLotSettings
and GetStationSettings callback sequences to programmatically assign the values.
You can customize both methods by modifying the ConfigureLotSettings,
GetLotSettings, ConfigureStationSettings, or GetStationSettings callback sequences
to provide routines for obtaining these values.

The following figure shows the relationship among the test program, test settings,
and the methods of initialization.

ni.com162

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch_model_callbacks.html

1. Standard Test Conditions—Specifies lot information that is standard for all
test programs for the current test program configuration. These properties
map to a subset of standard lot settings that correspond to some fields of the
Master Information Record (MIR) of the Standard Test Data Format (STDF)
version 4 specification. The standard test conditions also include other
properties specific to TSM. Standard test conditions defined in the test
program overwrite the value of the corresponding standard lot setting at run
time. Use the Configuration Definition panel in the Test Program Editor to add
standard and custom test conditions to a test program.

2. Custom Test Conditions—Specifies lot information that is specific to the
test program for the current test program configuration. Test engineers define
these properties, which are loaded into the lot settings at run time. Use the
Configuration Definition panel in the Test Program Editor to add standard and
custom test conditions to a test program.

3. Get Test Information Step—Use the Get Test Information step to obtain the
values for lot settings, station settings, STS state, execution data, and custom
test conditions. Store the value of the items in TestStand local variables so
that any step in the sequence can access the values.

© National Instruments 163

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_seq_local_variables.html

4. Standard Lot Settings—Specifies lot information for the current test lot.
These properties correspond to some fields of the Master Information Record
(MIR) of the Standard Test Data Format (STDF) version 4 specification. The
standard lot settings also include other properties specific to TSM. TSM
exposes the lot settings to the test program by attaching a copy of the lot
settings to the execution run-time variables (RunState.Execution.RunT
imeVariables.NI.SemiconductorModule.LotSettings). Use the
ConfigureLotSettings callback sequence to prompt an operator to manually
enter lot information in a dialog box or to use another mechanism that
requires user input. A subset of these properties are also available to test
engineers as standard test conditions.

5. Custom Lot Settings—Specifies lot information for the current test lot. Test
architects define these properties, which are available to all test programs on
the station. TSM exposes the lot settings to the test program by attaching a
copy of the lot settings to the execution run-time variables (RunState.Exec
ution.RunTimeVariables.NI.SemiconductorModule.LotSetti
ngs).

6. Custom Test Conditions—TSM copies custom test conditions, as described
in Item 2, into lot settings when execution begins.

7. Standard Station Settings—Specifies configuration options for the tester
that apply to all test lots and that persist during restart and shutdown
operations, such as handler or prober configuration or data logging
preferences. These properties correspond to some fields of the Master
Information Record (MIR) of the Standard Test Data Format (STDF) version 4
specification. The standard station settings also include other properties
specific to TSM. Use the ConfigureStationSettings callback sequence to
prompt a test engineer or technician to manually configure station settings in
a dialog box or to use another mechanism that requires user input.

8. Custom Station Settings—Specifies custom configuration options for the
tester that apply to all test lots and that persist during restart and shutdown
operations. The test architect defines these properties, which are available to
all test programs on the station. Use the ConfigureStationSettings callback
sequence to prompt a test engineer or technician to manually configure

ni.com164

TestStand Semiconductor Module

station settings in a dialog box or to use another mechanism that requires
user input.

9. ConfigureLotSettings Callback—The Semiconductor
Module»Configure Lot menu item, the Configure Lot button on the TSM
toolbar in the TestStand Sequence Editor, and the Configure Lot button in
the default TSM operator interface call the ConfigureLotSettings callback
sequence to obtain the settings for the current test lot. Use the ConfigureL
otSettings callback sequence to prompt an operator to manually enter lot
information in a dialog box or to use another mechanism that requires user
input.

10. GetLotSettings Callback—TSM calls the GetLotSettings callback sequence
to programmatically obtain lot settings without requiring much, if any,
operator interaction when execution begins. You can override this callback
sequence to customize the behavior when TSM attempts to determine lot
settings values at run time.

11. ConfigureStationSettings Callback—The Semiconductor
Module»Configure Station menu item, the Configure Station button on
the TSM toolbar in the TestStand Sequence Editor, and the Configure
Station button in the default TSM operator interface call the
ConfigureStationSettings callback sequence to obtain the settings for the
current test station. Use the ConfigureStationSettings callback
sequence to prompt a test engineer or technician to manually configure
station settings in a dialog box or to use another mechanism that requires
user input.

12. GetStationSettings Callback—TSM calls the GetStationSettings callback
sequence to programmatically obtain station settings without requiring much,
if any, test engineer or technician interaction when execution begins. You can
override this callback sequence to customize the behavior when TSM
attempts to determine station settings values at run time.

Execution Timing Overview (TSM)
The following diagram illustrates how TSM coordinates test program execution and
handler/prober actions.

© National Instruments 165

TestStand Semiconductor Module

Note Executing a test program in a TSM
operator interface is typically faster than
executing the test program in the TestStand
Sequence Editor development environment.

Batch Model

When you execute tests using the Batch process model, a controller thread controls
the core tester software functionality and sends notifications to and receives
notifications from a separate thread for each site execution.

ni.com166

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpmodelthreadtypes.html

Sequential Process Model

See Also
Handler/Prober Driver Entry Points

Performing Inline Quality Assurance Testing

Measuring Performance (TSM)

Recommended TSM Test Program Structure and Filenames
Use the following directory and file naming recommendations to organize test
programs and associated files. A consistent structure can make the test program
easier to maintain and deploy.

© National Instruments 167

TestStand Semiconductor Module

Directory

Create a separate directory that contains the following files and subdirectories for
each test program:

■ Test program sequence file
■ Code Modules—Contains tests and other necessary program-specific
code.
■ Supporting Materials—Contains the following files and subdirectories:

■ Digital pattern project file (if applicable)
■ Bin Definitions—Contains bin definitions file.
■ Pin Maps—Contains pin map file(s).
■ Calibration Data—Contains calibration configuration and/or data files (if
applicable). Place any program-specific code in the Code Modules directory.
■ Specifications—Contains specification files.
■ Digital—Contains data files for digital tests, including the following files:

■ Pattern files
■ Timing files
■ Levels files
■ Source and capture waveform files

■ Offline Mode Configurations—Contains Offline Mode system
configuration files.

■ Limits—Contains the limits files for each test program configuration.

Note Create only the files and directories you
need for the test program.

Filenames

For each test program, use a unique filename that identifies the part the test
program tests. For the corresponding pin map, bin definitions, and digital pattern
project files, use the same base filename as the test program sequence file. For

ni.com168

TestStand Semiconductor Module

example, use Part123.seq for a test program sequence file and Part123.pinm
ap, Part123.bins and Part123.digiproj for the associated pin map, bin
definitions, and digital pattern project files, respectively.

Mapping DUT Pins to Instrument Channels (TSM)
A semiconductor test program must communicate information from the tester
instrumentation to the DUT to which the instrumentation is connected. To handle
this communication in a test program, test engineers must consider the following
requirements for instrument sessions and channels for all resources in the test
system:

■ Develop test program code that uses the names of actual connections on
the DUT (DUT pins) to refer to channels on the instrument.
■ Manage a large number of instrument channels.
■ Scale test code to test multiple sites in parallel to improve tester efficiency.
■ Support multiple types of instruments because different instruments might
use channels and sessions in different ways.

Typically, instrument driver software provides test engineers with software tools for
communicating with the DUT in terms of the instrument channels and sessions.
However, instrument drivers have no information about the actual pins on the DUT.
To develop test code that uses DUT pin names, a test engineer must use a pin map
to associate each DUT pin name with the name, channel, and session of the
instrument connected to that particular DUT pin.

TSM Implementation

Use the Pin Map Editor to view, create, modify, and save pin map files. The pin map
XML schema, located at <TestStand>\Components\Schemas\NI_Semicon
ductorModule\PinMap.xsd, defines the structure for a pin map file. Use the
Pin Map File Path control on the Pin Map panel of the Test Program Editor to
specify the pin map file to use with the test program.

The pin map file can support multiple test sites and multiple instrument types.

© National Instruments 169

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

In addition, use the TSM Code Module API to query instrument names, obtain all
open sessions, and translate DUT pin names or pin groups to instrument channels
and sessions. The Semiconductor Multi Test and the Semiconductor Action steps
create the SemiconductorModuleContext object that you can pass to a
LabVIEW or .NET code module to use the TSM Code Module API. The Semiconduct
orModuleContext object describes a subset of pins, relays, sites, and
instruments on a test system.

Natively Supported and Custom Instruments (TSM)

The TSM natively supports the following types of instruments for LabVIEW and .NET:

NI Instrument Pin Map Instrument Type Instrument Driver and Pin
Map API Support

Preferred Method of
Interacting with
Instrument

Digital Pattern Instrum
ent

NIDigitalPatternInstru
ment

NI-Digital Pattern Digital Pattern Editor

DC Power Supply or So
urce-Measure Unit (SM
U)

NIDCPowerInstrument NI-DCPower Digital Pattern Editor

Data Acquisition and Si
gnal Conditioning (DAQ
)

NIDAQmxTask NI-DAQmx —

Digital Multimeter (DM
M)

NIDmmInstrument NI-DMM InstrumentStudio

Arbitrary Waveform an
d Function Generator

NIFGenInstrument NI-FGEN InstrumentStudio

High-Speed Digitizer NIScopeInstrument NI-SCOPE InstrumentStudio
High-Speed Digital I/O NIHSDIOInstrument NI-HSDIO —
RF Signal Analyzer NIRFSAInstrument NI-RFSA

NI-RFmx
RFmx SFP

RF Signal Generator NIRFSGInstrument NI-RFSG RFmx SFP
Vector Signal Transceiv
er

NIVSTInstrument NI-RFSA
NI-RFSG
NI-RFmx
FPGA (LabVIEW only)

RFmx SFP

ni.com170

TestStand Semiconductor Module

RF Port Module NIRFPMInstrument NI-RFPM RFmx SFP
Relay Driver Module NIRelayDriverModule NI-SWITCH Digital Pattern Editor

Notes

■ The NI TestStand 2016 Semiconductor
Module and later natively support digital
pattern instruments that use the NI-
Digital Pattern Driver and legacy digital
waveform instruments that use the NI-
HSDIO driver, such as the PXIe-6556. Use
the TSM Code Module API that
corresponds to the type of digital
instrument the test system includes.
■ Consider using the following
instrument naming convention for
semiconductor test programs:
InstrumentType_ModelNumber_PXICha
ssisLocation_SlotLocation, for example,
HSD_657x_C2_S03, where Instrume
ntType is an ASCII description of the
instrument, ModelNumber is the model
number as defined on ni.com, PXIChas
sisLocation uses a single digit to
identify the PXI chassis (Cx), and SlotLo
cation uses double digits to identify the
slot location (Sxx).

Custom Instruments

You can use other types of instruments in a pin map by using the generic <Instrum
ent> tag in the pin map file. Refer to the example sequence files, pin map files, and
LabVIEW code module VIs located in the <TestStand Public>\Examples\Cu
stom Instruments directory for examples of using TSM pin map files and VIs to
perform tests using instruments that TSM does not natively support.

You can create custom site and pin aware instrument panel VIs to control and
measure pins during test program execution at a breakpoint, which can be useful
during test program development and troubleshooting.

© National Instruments 171

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Model-Based Instruments (TSM)

Use a Model-Based Instrument to specify pin map channels and instrument
properties so you can connect TSM to a third-party instrument. Unlike Custom
Instruments, Model-Based Instruments can be reused across test programs and pin
maps.

A Model-Based Instrument is defined in an instrument model description file. The
instrument model description file is an XML file that follows the Automatic Test
Markup Language (ATML) schema, the standard for interfacing test system
components using XML. The instrument model description file includes general
information, details for connection components (channels, ports, resources), and
configuration properties of the instrument and its resources. Reuse an instrument
description file across multiple test programs and pin maps.

Instrument model description files installed by NI are saved in the Instrument Model
library, located in individual subdirectories under the <Program Files>\Natio
nal Instruments\Shared\InstrumentLibrary\SystemDescription
s\ModelDescriptions directory.

You can also define your own Model-Based Instrument. Create the following
directory and save your model description file in it: <Public>\Documents\Nat
ional Instruments\InstrumentLibrary\SystemDescriptions\Mod
elDescriptions.

The specific connection components of a Model-Based Instrument are defined in
the model description file for all instances of the model. However, in individual
systems, connection components can have different names, or aliases. These
aliases correspond one-to-one with the names in the model description file. This
mapping is defined in a system description file. When the mapping is defined in a
system description file, the Pin Map Editor displays the aliased resource names,
rather than the model description resource names.

If present, the system description file is located in the following path: <Program F
iles>\National Instruments\Shared\InstrumentLibrary\System
Descriptions\SystemDescription.xml. You can define your own system
description file and copy it to <Public>\Documents\National Instrumen
ts\InstrumentLibrary\SystemDescriptions\SystemDescription.
xml.

ni.com172

TestStand Semiconductor Module

Adding a Model-Based Instrument to Your Pin Map (TSM)

Use the Instruments tab of the Pin Map Editor to add and modify instances of Model-
Based Instruments in the pin map.

The Pin Map Editor reads the model description files for all Model-Based
Instruments in the pin map. If you modify an instrument model file, you must exit
and relaunch the Pin Map Editor to see the changes in the Pin Map.

1. Navigate to Semiconductor Module»Edit Pin Map File to launch the Pin
Map Editor.

2. In the Pin Map tab, select <Add Instruments Here>.
TSM displays the instrument types that you can add.

3. Click Model-Based Instrument to launch the configuration window.

4. In the Name field, specify the name of the instrument that will appear in the
pin map.

5. Select the instrument model description file from the Instrument Model
drop-down menu.
TSM will display the category and subcategory of the Model-Based Instrument
you select.

6. Specify any additional instrument or resource properties.

7. Click OK.

Pin Map File XML Structure (TSM)

The pin map XML schema, located at <TestStand>\Components\Schemas\N
I_SemiconductorModule\PinMap.xsd, defines the following structure for a
pin map XML file:

Legend

<Root element>
<Element>
Attribute

© National Instruments 173

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

 <PinMap>
■ schemaVersion—Specifies the version of the schema file.
■ <Instruments>—Specifies the type of instruments connected to the
tester, the name of each instrument, and the number of channels available for
each instrument.

Note Consider using the following
instrument naming convention for
semiconductor test programs: Instrumen
tType_ModelNumber_PXIChassisLoc
ation_SlotLocation, for example, HSD
_657x_C2_S03, where InstrumentTyp
e is an ASCII description of the instrument, M
odelNumber is the model number as
defined on ni.com, PXIChassisLocati
on uses a single digit to identify the PXI
chassis (Cx), and SlotLocation uses
double digits to identify the slot location (Sx
x).

■ <NIDigitalPatternInstrument>—Defines an NI-Digital Pattern
instrument.

■ name—Name of the instrument, as defined in Measurement &
Automation Explorer (MAX).
■ numberOfChannels—Number of channels available on the
instrument.
■ group—Name of the group that contains the instrument. Group
names are case sensitive. By default, the Pin Map Editor sets this
attribute to Digital when you add NI-Digital Pattern instruments to
the pin map file. By using the same group name for all NI-Digital Pattern
instruments, TSM combines all instruments into a single session so you
can avoid session loops in code modules. To create multiple NI-Digital
Pattern sessions, use a unique name for each set of instruments for
which you want to create a session. Refer to the Digital Pattern Help
for information about hardware limitations that prevent certain
instruments from operating together as a single instrument.

ni.com174

TestStand Semiconductor Module

■ <NIDCPowerInstrument>—Defines an NI-DCPower instrument.

■ name—Name of the instrument, as defined in MAX.
■ numberOfChannels—Number of channels available on the
instrument.
■ <ChannelGroup>—Defines a group of channels controlled by
one session. By grouping channels into a single session, you can avoid
using session loops in code modules. By default, the Pin Map Editor
creates one channel group containing all instrument channels. To
create multiple, custom groups, use a unique name for the set of
instrument channels for which you want to create a session. Note that
channels within a group do not have to be from the same NI-DCPower
instrument. Refer to the NI-DCPower Help for information about
independent channels.

■ name—Name of a group of channels. Group names are case
sensitive.
■ channels—Channel(s) that are assigned to a group. If not
defined, TSM will assign all channels from the instrument.
Channels can be defined as a comma-separated list (e.g., 0,1,3,..,n),
a continuous range (e.g., 0:3), or as a combination of the two (e.g.,
0:1,3). All channels from an instrument must be assigned to a
group and a channel cannot be in multiple groups.

■ <NIDAQmxTask>—Defines an NI-DAQmx task, not an instrument.

■ name—Name of the task, as defined in test program code modules.
■ taskType—Category of the task. Pin queries that return tasks of
more than one task type return an error.
■ channelList—List of physical channels associated with the task.

■ <NIDmmInstrument>—Defines an NI-DMM instrument. NI-DMM
instruments define a single channel, displayed within TSM as channel 0.

■ name—Name of the instrument, as defined in MAX.

■ <NIFGenInstrument>—Defines an NI-FGEN instrument.

© National Instruments 175

TestStand Semiconductor Module

■ name—Name of the instrument, as defined in MAX.
■ numberOfChannels—Number of channels available on the
instrument.

■ <NIScopeInstrument>—Defines an NI-SCOPE instrument.

■ name—Name of the instrument, as defined in MAX.
■ numberOfChannels—Number of channels available on the
instrument.
■ group—Name of the group that contains the instrument. Group
names are case sensitive. By default, the Pin Map Editor sets this
attribute to Scope when you add NI-SCOPE instruments to the pin map
file. Group names are case sensitive. By using the same group name for
all NI-SCOPE instruments, TSM combines all instruments into a single
session so you can avoid session loops in code modules. To create
multiple NI-SCOPE sessions, use a unique name for each set of
instruments for which you want to create a session. Refer to the NI-
SCOPE Help for information about hardware limitations that prevent
certain instruments from operating together as a single instrument.

■ <NIHSDIOInstrument>—Defines an NI-HSDIO instrument.

■ name—Name of the instrument, as defined in MAX.
■ numberOfChannels—Number of channels available on the
instrument.
■ PFILines—(Optional) Defines the PFI lines available in the NI-
HSDIO instrument in a comma-separated list of numbers or ranges of
numbers separated by a hyphen. PFI number ranges are inclusive and
must be in ascending order. Example: PFILines=2,3,4-8

■ <NIRFSAInstrument>—Defines an NI-RFSA instrument. NI-RFSA
instruments define a channel named In.

■ name—Name of the instrument, as defined in MAX.

■ <NIRFSGInstrument>—Defines an NI-RFSG instrument. NI-RFSG
instruments define a channel named Out.

ni.com176

TestStand Semiconductor Module

■ name—Name of the instrument, as defined in MAX.

■ <NIVSTInstrument>—Defines an NI-VST instrument that can hold
RFSA, RFSG, and FPGA sessions. NI-VST instruments define a channel named
In and another channel named Out.

■ name—Name of the instrument, as defined in MAX.
■ fpgaFilePath—(Optional) Path to the FPGA file relative to the
path of the pin map file. You can manually specify an absolute file path.

■ <NIRFPMInstrument>—Defines an RF Port Module instrument that
can hold RFPM, RFmx, RFSA, RFSG, and FPGA sessions.

■ name—Name of the VST instrument, as defined in MAX, that is part
of the RF port module subsystem.
■ portsList—Defines the ports available in the RF Port Module in
a comma-separated list of numbers or ranges of numbers separated by
a hyphen. Port number ranges are inclusive and must be in ascending
order, for example, channelList="2,3,4-8".
■ calibrationFilePath—Path, relative to the path of the pin
map file, to the TDMS files that contain the calibration data for the RF
Port Module instrument. You can manually specify an absolute file path.
■ iviSwitchName—IVI Switch resource name associated with the
port module, as defined in MAX.
■ fpgaFilePath—(Optional) Path to the FPGA file relative to the
path of the pin map file. You can manually specify an absolute file path.

■ <NI5530RFPortModule>—Defines an NI-5530 RF Port Module
instrument. You can use the NI-5530 RF Port Module to multiplex one RF
instrument across multiple test sites or multiple RF instruments across
multiple test sites. This element is replaced by the NIRFPMInstrument.

■ name—Name of the instrument, as defined in MAX.
■ calibrationFilePath—Path, relative to the path of the pin
map file, to the TDMS files that contain the calibration data for the RF
Port Module instrument. You can manually specify an absolute file path.

■ <NIRelayDriverModule>—Defines a PXI-2567 relay driver module.

© National Instruments 177

TestStand Semiconductor Module

■ name—Name of the relay driver module, as defined in MAX.
■ numberOfControlLines—Number of control lines available on
the relay driver module.

■ <Instrument>—Defines an instrument that TSM does not natively
support. Use the TSM Code Module API to set any type of session data on a
channel, group of channels, or instrument. Refer to the example sequence
files, pin map files, and LabVIEW code module VIs located in the <TestSta
nd Public>\Examples\NI_SemiconductorModule\Custom In
struments directory for examples of using TSM pin map files and VIs to
perform tests using instruments that TSM does not natively support.

■ name—String that identifies the instrument. For instruments that
NI provides but that TSM does not natively support, specify the name of
the instrument, as defined in MAX.
■ instrumentTypeId—String that identifies the instrument type,
family, class, or product group. You cannot specify a value that begins
with ni. This value is a string that you define in the pin map and is not a
predefined value from some other source, such as a name in MAX, that
you select. Use this value to identify all instances of a particular
instrument type. Instruments of the same type typically have the same
session data type and same driver API.
■ <ChannelGroup>—Defines a synchronized group of channels.
Specify individual <Channel> elements with unique IDs within the
channel group.

■ id—Unique ID for the channel group. An instrument cannot
contain more than one channel group with the same ID.
■ <Channel>—Channel within the channel group.

■ id—Unique ID for the channel. An instrument cannot
contain more than one channel with the same ID.

■ <Channel>—Channel on the instrument.

■ id—Unique ID for the channel. An instrument cannot contain
more than one channel with the same ID.

ni.com178

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ <NIModelBasedInstrument>—Defines a Model-Based Instrument.

■ name—Unique string that identifies the instance of the Model-
Based Instrument in the pin map.
■ instrumentModel—Installed model description files in the
model library.
■ category—String that specifies the category to which the
instrument belongs. The instrument model description defines the
category for the instrument model.
■ subcategory—(Optional) String that specifies the subcategory
to which the instrument belongs. The instrument model description
defines the subcategory for the instrument model.
■ <Resource>—(Optional) If required by the model description file,
specifies the instrument resource name in Measurement & Automation
Explorer (MAX).

■ owner—Specifies the instrument resource in the model
description file to which the attribute values of the <UserData>
element apply.
■ <UserData>—Contains the properties from the model
description file you can assign.

■ propertyName—Name of the property defined in the
model description file.
■ propertyValue—Value you assign to the property.

■ <Multiplexer>—Defines a switching instrument to use as a
multiplexer across multiple test sites. You can use one instrument
multiplexed across multiple test sites or multiple instruments multiplexed
across multiple test sites.

■ name—Name of the Switch Executive virtual device, as defined in
MAX.
■ multiplexerTypeId—(Optional) String that identifies the
switch type, family, class, or product group. You cannot specify a value
that begins with ni. This value is a string that you define in the pin map

© National Instruments 179

TestStand Semiconductor Module

and is not a predefined value from some other source, such as a name
in MAX, that you select. Use this value to identify all instances of a
particular switch type. Switches of the same type typically have the
same session data type and same driver API.

■ <Pins>—Specifies the pins on the DUT and the pins on the tester that the
test program associated with the pin map file references.

■ <DUTPin>—Defines a DUT pin, which is a pin on a DUT or a resource on
the tester or DIB that is associated with one or more sites.

■ name—String that identifies the DUT pin.

■ <SystemPin>—Defines a system pin, which is resource on the tester or
DIB that is connected to an instrument.

■ name—String that identifies the system pin.

■ <PinGroups>—Specifies named grouping of pins.

■ <PinGroup>—Defines a group of pins that you can reference with a
single name.

■ name—String that identifies the group of pins.
■ <PinReference>—Specifies a pin or a group of pins within the pin
group.

■ pin—String that specifies the name of an existing pin or pin
group.

■ <Relays>—Specifies the relays on the site and the relays on the tester
that the test program associated with the pin map file references.

■ <SiteRelay>—Defines a site relay, which is a relay on the tester or DIB
that is connected to a relay driver module and that is associated with one or
more sites.

■ name—String that identifies the site relay.
■ openStateDisplayLabel—(Optional) A description of the
connections when the relay is in the open state. This attribute is only for
informational and display purposes for the Digital Pattern Editor.

ni.com180

TestStand Semiconductor Module

■ closedStateDisplayLabel—(Optional) A description of the
connections when the relay is in the closed state. This attribute is only
for informational and display purposes for the Digital Pattern Editor.

■ <SystemRelay>—Defines a system relay, which is a relay on the tester
or DIB that is connected to a relay driver module and that is associated with
all sites.

■ name—String that identifies the system relay.
■ openStateDisplayLabel—(Optional) A description of the
connections when the relay is in the open state. This attribute is only for
informational and display purposes for the Digital Pattern Editor.
■ closedStateDisplayLabel—(Optional) A description of the
connections when the relay is in the closed state. This attribute is only
for informational and display purposes for the Digital Pattern Editor.

■ <RelayGroups>—Specifies named grouping of relays.

■ <RelayGroup>—Defines a group of relays that you can reference with
a single name.

■ name—String that identifies the group of relays.
■ <RelayReference>—Specifies a relay or a group of relays within
the relay group.

■ relay—String that specifies the name of an existing relay or
relay group.

■ <RelayConfigurations>—Specifies a grouping of relay configurations.

■ <RelayConfiguration>—Defines a relay configuration. A relay
configuration is the name assigned to a set of relays and their positions.

■ name—String that identifies the relay configuration.
■ <RelayPosition>—Specifies a relay and its position.

■ relay—String that specifies the name of an existing relay or
relay group.

© National Instruments 181

TestStand Semiconductor Module

■ position—String that specifies the position of the relay or
relay group. Valid values are Open or Closed.

■ <Sites>—Specifies the sites on the tester.

■ <Site>—Defines a site to test.

■ siteNumber—Number that identifies the site. Site numbers must
start at 0 and be consecutive without gaps.

■ <Connections>—Specifies mappings among pins, sites, instruments,
and instrument channels.

■ <Connection>—Defines a connection between a DUT pin and an
instrument channel.

■ pin—Name of the DUT pin to connect. The value must match the
value of the name attribute of a <DUTPin> element.
■ siteNumber—The site or group of sites associated with the
connection. The value must match the value of the siteNumber
attribute of one of the <Site> elements or it must be a comma-
separated list of site numbers.
■ instrument—Name of the instrument or DAQmx task to connect.
The value must match the value of the name attribute of an <Instrum
ent> element.
■ channel—ID of the instrument channel or physical channel ID of
the DAQmx task to connect.
■ deembeddingFilePath—Path, relative to the path of the pin
map file, to the S2P file for de-embedding an RF Port Module
connection. You can manually specify an absolute path.
■ deembeddingOrientation—(Optional) Used with the deembe
ddingFilePath attribute to specify the orientation of the data in the
S2P file relative to the port the channel attribute specifies. Valid
values are Port1TowardDUT or Port2TowardDUT.

■ <SystemConnection>—Defines a direct connection between a
system pin and an instrument channel.

ni.com182

TestStand Semiconductor Module

■ pin—Name of the system pin to connect. The value must match
the value of the name attribute of a <SystemPin> element.
■ instrument—Name of the instrument to connect. The value
must match the value of the name attribute of an <Instrument>
element.
■ channel—(Optional) ID of the instrument channel to connect.
■ deembeddingFilePath—Path, relative to the path of the pin
map file, to the S2P file for de-embedding an RF Port Module
connection. You can manually specify an absolute path.
■ deembeddingOrientation—(Optional) Used with the deembe
ddingFilePath attribute to specify the orientation of the data in the
S2P file relative to the port the channel attribute specifies. Valid
values are Port1TowardDUT or Port2TowardDUT.

■ <MultiplexedConnection>—Defines a multiplexed connection
between the same DUT pin on multiple sites and a single instrument
channel.

■ instrument—Name of the instrument to connect. The value
must match the value of the name attribute of an <Instrument>
element.
■ channel—ID of the instrument channel to connect.
■ <MultiplexedDUTPinRoute>—Specifies the route required to
connect a DUT pin on a specific site to the instrument channel.

■ pin—Name of the DUT pin to connect. The value must match
the value of the name attribute of a <DUTPin> element.
■ siteNumber—Site for the DUT pin in the system. The value
must match the value of the siteNumber attribute of a <Site>
element.
■ multiplexer—String that identifies the multiplexer
required to create the route. The value must match the value of the
name attribute of a <Multiplexer> element.
■ routeName—String that identifies the multiplexer route
required to connect the pin and site to the instrument and channel.

© National Instruments 183

TestStand Semiconductor Module

■ deembeddingFilePath—Path, relative to the path of the
pin map file, to the S2P file for de-embedding an RF Port Module
connection. You can manually specify an absolute path.
■ deembeddingOrientation—(Optional) Used with the de
embeddingFilePath attribute to specify the orientation of the
data in the S2P file relative to the port the channel attribute
specifies. Valid values are Port1TowardDUT or
Port2TowardDUT.

■ <RelayConnection>—Defines a connection between a site relay and
a control line of a relay driver module.

■ relay—Name of the site relay to connect. The value must match
the value of the name attribute of a <SiteRelay> element.
■ siteNumber—The site or group of sites associated with the
connection. The value must match the value of the siteNumber
attribute of one of the <Site> elements or it must be a comma-
separated list of site numbers.
■ relayDriverModule—Name of the relay driver module to
connect. The value must match the value of the name attribute of an <N
IRelayDriverModule> element.
■ controlLine—ID of the physical control line of the relay driver
module to connect.

■ <SystemRelayConnection>—Defines a direct connection between a
system relay and a control line of a relay driver module.

■ relay—Name of the system relay to connect. The value must
match the value of the name attribute of a <SystemRelay> element.
■ relayDriverModule—Name of the relay driver module to
connect. The value must match the value of the name attribute of an <N
IRelayDriverModule> element.
■ controlLine—ID of the physical control line of the relay driver
module to connect.

ni.com184

TestStand Semiconductor Module

Common XML Validation Error Messages (TSM)

If the contents of the pin map XML file do not satisfy the constraints the pin map
schema defines, TSM reports error messages. Some of the error messages are
generic XML validation errors and can be difficult to decipher. Refer to the following
tables to interpret certain error messages.

Error Message

The key sequence '<Item>' in 'http://www.ni.com/TestStand/
SemiconductorModule/PinMap.xsd:<Element>' Keyref fails to
refer to some key.

Meaning
The following table includes the exact meaning of the error message, which
depends on the value of the <Element> text.

Value of <Element> Meaning of Error Message
PinName The specified pin <Item> does not exist in the

pin map.
SystemPinName The specified system pin <Item> does not exist

in the pin map.
PinOrPinGroupName The specified pin or pin group name <Item> d

oes not exist in the pin map.
RelayName The specified relay <Item> does not exist in th

e pin map.
SystemRelayName The specified system relay <Item> does not exi

st in the pin map.
RelayOrRelayGroupName The specified relay or relay group name <Item

> does not exist in the pin map.

SiteNumber The specified site number <Item> does not exi
st in the pin map.

InstrumentName The specified instrument <Item> does not exis
t in the pin map.

MultiplexerName The specified multiplexer <Item> does not exis
t in the pin map.

© National Instruments 185

TestStand Semiconductor Module

RelayDriverModuleName The specified relay driver module <Item> does
not exist in the pin map.

Error Message

There is a duplicate key sequence '<Item1> [<Item2>]' for
the 'http://www.ni.com/TestStand/SemiconductorModule/PinMa
p.xsd:<Element>' key or unique identity constraint.

Meaning
The following table includes the exact meaning of the error message, which
depends on the value of the <Element> text.

Value of <Element> Meaning of Error Message
PinName, AllPinNames, AllPinOrPinGroupName
s, AllPinAndRelayNames

The specified pin, pin group name, relay, or rela
y group name <Item1> is defined multiple tim
es in the pin map.

SiteNumber The specified site number <Item1> is defined
multiple times the pin map.

InstrumentName The specified instrument <Item1> is defined
multiple times the pin map.

MultiplexerName The specified multiplexer <Item1> is defined
multiple times in the pin map.

RelayDriverModuleName The specified relay driver module <Item1> is d
efined multiple times in the pin map.

ConnectionDUTPin The pin <Item2> on site <Item1> is connecte
d to multiple instrument channels.

ConnectionSiteRelay The relay <Item2> on site <Item1> is connect
ed to multiple relay driver module control lines.

SystemConnectionDUTPin The system pin <Item1> is connected to multi
ple instrument channels.

SystemConnectionSiteRelay The system relay <Item1> is connected to mul
tiple relay driver module control lines.

ConnectionInstrumentChannel The channel <Item2> on instrument <Item1
> is connected to multiple pins.

ni.com186

TestStand Semiconductor Module

RelayConnectionModuleDriver The control line <Item2> on relay driver modu
le <Item1> is connected to multiple relays.

MultiplexedRouteName The multiplexer route <Item1> on multiplexer
<Item2> has duplicate connections.

UniqueChannelAndChannelGroup The specified channel or channel group name <
Item1> is defined multiple times in the pin ma
p.

Schema Version Policy (TSM)

The schema version uses a major.minor notation. The version of the schema
reflects changes to the schema, not changes to TSM.

Changes to the schema version indicate breaking changes to the schema. TSM does
not load files that use a later schema version than the version specified for that
version of TSM.

Use the following table to map schema versions and TSM versions.

Schema Version TSM Version
PinMap.xsd version 1.0
BinDefinitions.xsd version 1.0

NI TestStand 2013 Semiconductor Module

PinMap.xsd version 1.1
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0

NI TestStand 2014 Semiconductor Module

PinMap.xsd version 1.2
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0

NI TestStand 2014 Semiconductor Module SP1
NI TestStand 2016 Semiconductor Module

PinMap.xsd version 1.3
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0

NI TestStand 2016 SP1 Semiconductor Module

PinMap.xsd version 1.4
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0

NI TestStand 2017 Semiconductor Module

PinMap.xsd version 1.5
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0
SystemConfiguration.xsd version 1.0

NI TestStand 2019 Semiconductor Module

© National Instruments 187

TestStand Semiconductor Module

PinMap.xsd version 1.6
BinDefinitions.xsd version 1.2
Specifications.xsd version 1.0
SystemConfiguration.xsd version 1.1

NI TestStand 2020 Semiconductor Module
TestStand 2020 Semiconductor Module 2021 Q4

Connecting Shared Resources in the Pin Map (TSM)

A shared resource is a device on the tester or DIB that is connected to an instrument
or relay driver module and shared by multiple sites. To specify a connection
between a shared resource and an instrument channel or relay driver module
control line, use the following criteria to decide how to define a shared resource in
the pin map.

1. If the resource is a relay:

a. If there is a single relay shared by all sites, define a system relay.
b. If there are multiple relays in which each relay is associated with

multiple sites, define a site relay.

2. If the resource is not a relay:

a. If the resource is shared by all sites and you do not need to burst
patterns to the resource using an NI-Digital Pattern instrument, define a
system pin.

b. Otherwise, define a DUT pin.

Connecting a Shared Resource using System Pins and System Relays

For each system pin and system relay in the pin map, the Pin Map Editor displays a
row in the Connections table. Complete the following steps in the Pin Map Editor to
create a connection for a system pin or system relay that all sites share.

1. Select Connections on the Pin Map tab.

2. In the View Connections for drop-down menu, select All Pins and Relays.
3. In the Connections table, select the instrument and channel or relay driver

module and control line from the Instrument and Channel column cells of the
system pin or system relay for which you want to create a connection.

ni.com188

TestStand Semiconductor Module

Connecting a Shared Resource to One or More Sites using DUT Pins and Site
Relays

For each DUT pin and site relay, the Pin Map Editor assumes there is one connection
per site and displays a row for each site in the Connections table. Complete the
following steps in the Pin Map Editor to create a connection for a DUT Pin or site
relay that multiple sites share.

1. Select Connections on the Pin Map tab.

2. In the View Connections for drop-down menu, select All Pins and Relays.
3. In the Connections table, select the instrument and channel or relay driver

module and control line from the Instrument and Channel column cells for
one of the rows associated with the DUT pin or site relay.

4. Repeat step 3 for the remaining sites, using the same instrument channel or
relay driver module control line for the sites that share the resource. The Pin
Map Editor automatically combines the rows that use the same resource into
a single row. Alternatively, you can enter a comma-separated list of site
numbers in the Site column to specify which sites share the resource.

When you save the pin map file, the Pin Map Editor automatically removes any
duplicate site connections from the Connections table.

When you define a shared resource in the pin map, the results of your Pin Query VI
or .NET method and Publish Data VI or Publish .NET method will be affected as
follows:

■ Pin Query VI or .NET method—Only one entry is included for a shared
resource.
■ Publish Data VI or Publish .NET method—The result is duplicated for
each site that uses the shared resource.

Specifying Multiplexers and Multiplexed Connections in a Pin Map (TSM)

You must define the switch and route in the pin map for the test program to access a
switch route from the TSM Code Module API. Refer to the Switching.pinmap in

© National Instruments 189

TestStand Semiconductor Module

the Switching example for an example of a pin map that contains multiplexed
connections.

The pin map specifies switches as <Instruments>/<Multiplexer> elements.
Each connection between an instrument channel and a DUT pin that is routed
through a switch must specify a <Connections>/<MultiplexedConnection
> element, as shown in the following figure.

The <MultiplexedConnection> element defines a connection between a
single instrument channel and the same DUT pin on multiple sites. The <Multiple
xedConnection> element also contains a list of <MultiplexedDUTPinRoute
> elements that each specify the route required to connect an instrument channel
to a DUT pin on a specific site.

Binning DUTs Based on Test Results (TSM)
A handler moves each tested device under test (DUT) from its test site to an
appropriate physical bin (hardware bin), depending on the test results. The tester
software assigns each tested DUT to a hardware bin and communicates with the
handler to ensure that the handler places the DUT in the appropriate hardware bin.

Typically, the handler places passed DUTs in one or more hardware bins, depending
on the grade of the DUT, and places failed DUTs in multiple hardware bins,
depending on the type or condition of failure.

Because handlers have a limited quantity of hardware bins available, the tester
software also assigns each DUT to a virtual bin defined in software (software bin) to
provide a more detailed classification of test results. The tester software records the
software bin for each DUT in a Standard Test Data Format (STDF) log file for

ni.com190

TestStand Semiconductor Module

additional analysis after testing completes. When wafer testing, the prober assigns
hardware bins to individual die based on the test results. Because probers generally
do not have the same limitations as handlers on the number of hardware bins they
support, the set of software bins can be identical to the set of hardware bins when
testing wafers. Use the Bin Definitions Editor and enable the Software Bins Only
option to ensure that software bins and hardware bins are the same.

TSM Implementation

Use the Bin Definitions Editor to define the software bins and hardware bins for the
test program, define how the software bins relate to hardware bins, and define the
default software bins in the test program. The TSM installs a bin definitions XML
schema, located at <TestStand>\Components\Schemas\NI_Semiconduc
torModule\BinDefinitions.xsd, which you can use to create a valid bin
definitions file. Use the Bin Definitions File Path control on the Bin Definitions
panel of the Test Program Editor to specify the bin definitions file to use with the
test program.

The test program refers only to software bins. Because each software bin is
associated with a hardware bin, the tester assigns a hardware bin to a DUT when it
assigns the associated software bin to the DUT.

Each instance of the Semiconductor Multi Test step contains one or more tests for
which you can specify the software bin to assign to the DUT when a test fails. When
you specify a valid bin definitions file on the Bin Definitions panel of the Test
Program Editor, you can use the Software Bin column on the Tests tab to select a
software bin defined in the bin definitions file.

Note The first Semiconductor Multi Test step
test failure determines the software bin for the
DUT. Once a software bin has been assigned to
the DUT, subsequent Semiconductor Multi Test
step test failures do not change the bin
assignment.

In addition, you can use a Set and Lock Bin step to arbitrarily assign a software bin
to a DUT. Use the Bin Expression control on the Set and Lock Bin tab to specify an
expression that evaluates at run time to a valid software bin number defined in the
bin definitions file. The step assigns a software bin to the DUT and locks the bin by

© National Instruments 191

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_expressions.html

preventing tests on subsequent Semiconductor Multi Test steps from assigning a bin
to the DUT when the test fails. You can use the Set and Lock Bin step to implement
grading in the test program.

See Also
Reports and Data Logs

Retesting DUTs

Bin Definitions File XML Structure (TSM)

The bin definitions XML schema, located at <TestStand>\Components\Schem
as\NI_SemiconductorModule\BinDefinitions.xsd, defines the
following structure for a bin definitions XML file:

Legend

<Root element>
<Element>
Attribute

 <BinDefinitions>
■ schemaVersion—Specifies the version of the schema file.
■ softwareBinsOnlyMode—(Optional) Specifies whether the bin
definitions editor displays only software bins and no hardware bins. The bin
definitions editor sets this attribute when you enable the Software Bins
Only option. This option can be useful when you perform wafer testing using
software bins exclusively. When this attribute is True, the bin definitions
editor ensures that a unique hardware bin exists for each software bin.
■ <HardwareBins>—Specifies the hardware bins available to the handler
or prober.

■ <Bin>—Specifies an individual hardware bin.

■ name—(Optional) A short descriptive name for the hardware bin.
TSM stores the name in the Hardware Bin Record (HBR) of a Standard
Test Data Format (STDF) log file.

ni.com192

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ number—A unique number the handler or prober uses to place the
device under test (DUT). The number must be a valid 16-bit unsigned
integer.
■ type—Specifies a value of Pass, Fail, or Other.

■ <SoftwareBins>—Specifies the software bins to define for the test
program.

■ errorBin—The software bin number TSM assigns to a DUT when the
main test sequence errors. The software bin must be associated with a
hardware bin of the Fail or Other type.
■ defaultFailBin—(Optional) The software bin number TSM assigns
to a DUT when the main test sequence fails and a bin has not yet been
assigned to the DUT. The software bin must be associated with a hardware
bin of the Fail or Other type. You can omit the default fail bin from the
bin definitions file. In this case, TSM uses the errorBin for the defaultF
ailBin.
■ defaultPassBin—The software bin number TSM assigns to a DUT
when the main test sequence passes and a bin has not yet been assigned to
the DUT. The software bin must be associated with a hardware bin of the Pa
ss type.
■ <Bin>—Specifies an individual software bin.

■ name—(Optional) A short descriptive name for the software bin.
The Semiconductor Multi Test step displays this name in the Software
Bin column on the Tests tab when you select the software bin for a DUT.
TSM stores the name in the Software Bin Record (SBR) of an STDF log
file.
■ number—A unique number to identify the software bin. The
number must be a valid 16-bit unsigned integer.
■ hardwareBin—The hardware bin number to associate with the
software bin. The type of the software bin is inferred from the
associated hardware bin. The Software Bin column on the Tests tab of
the Semiconductor Multi Test step lists only software fail bins. TSM
ensures that the test status of a DUT corresponds to the type of

© National Instruments 193

TestStand Semiconductor Module

software bin assigned to the DUT. For example, TSM reports a run-time
error if a test program causes TSM to assign a software pass bin to a
failed DUT.

See Also
Bin Definitions Editor

Reports and Data Logs

Schema Version Policy (TSM)

The schema version uses a major.minor notation. The version of the schema
reflects changes to the schema, not changes to TSM.

Changes to the schema version indicate breaking changes to the schema. TSM does
not load files that use a later schema version than the version specified for that
version of TSM.

Use the following table to map schema versions and TSM versions.

Schema Version TSM Version
PinMap.xsd version 1.0
BinDefinitions.xsd version 1.0

NI TestStand 2013 Semiconductor Module

PinMap.xsd version 1.1
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0

NI TestStand 2014 Semiconductor Module

PinMap.xsd version 1.2
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0

NI TestStand 2014 Semiconductor Module SP1
NI TestStand 2016 Semiconductor Module

PinMap.xsd version 1.3
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0

NI TestStand 2016 SP1 Semiconductor Module

PinMap.xsd version 1.4
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0

NI TestStand 2017 Semiconductor Module

PinMap.xsd version 1.5
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0
SystemConfiguration.xsd version 1.0

NI TestStand 2019 Semiconductor Module

ni.com194

TestStand Semiconductor Module

PinMap.xsd version 1.6
BinDefinitions.xsd version 1.2
Specifications.xsd version 1.0
SystemConfiguration.xsd version 1.1

NI TestStand 2020 Semiconductor Module
TestStand 2020 Semiconductor Module 2021 Q4

Grading Passed DUTs (TSM)

You can use a Set and Lock Bin step to grade a passed DUT, in which the test
program evaluates the DUT with different test criteria and assigns a pass bin to the
DUT depending on the level of criteria the DUT met.

Complete the following steps to implement grading in a TSM test program.

1. Set the default pass bin in the bin definitions file to the software bin
associated with the lowest passing grade.

2. Insert a Semiconductor Multi Test step in the sequence and complete the
following steps to configure the step to test the highest grade.

a. On the Module tab of the Step Settings pane, specify a code module that
takes a measurement to use for determining the DUT grade.

b. On the Tests tab, add a single test and use the Export Measurement
To column to specify a local variable to use for storing the measurement
value, which you will use in subsequent steps.

c. Use the Low Limit and High Limit columns to specify the limit set
that determines the highest passing grade.

d. Leave the Software Bin column empty because a failure on a high-
grade test must not assign the DUT to a fail bin.

e. Disable the Step Failure Causes Sequence Failure option on the
Run Options panel of the Properties tab.

3. Insert another Semiconductor Multi Test step and complete the following
steps to configure the step to test the next lower grade.

a. On the Preconditions panel of the Properties tab, specify a precondition
expression so that the step executes only if the step for the next higher
grade fails. TSM does not need to perform this test if the DUT already
passed a higher grade test.

© National Instruments 195

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_module_lv.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_step_settings_pane.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_step_settings_run_opt.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_step_settings_prop.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_step_settings_precond.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_expressions.html

b. On the Tests tab, add a single test and use the Test Data Source
column to specify the local variable in which you stored the
measurement value in step 2b.

c. Use the Low Limit and High Limit columns to specify the limit set
that determines the passing grade.

d. If this step does not test the lowest passing grade, leave the Software
Bin column empty. Otherwise, specify the software bin to assign if the
DUT fails the lowest passing grade.

e. If this step does not test the lowest passing grade, disable the Step
Failure Causes Sequence Failure option on the Run Options panel.
If the step tests the lowest passing grade, enable the Step Failure
Causes Sequence Failure option.

4. Repeat step 3 to add additional Semiconductor Multi Test steps and configure
the steps to test each of the next lower grades until the lowest passing grade.

5. At the end of the sequence, insert a Set and Lock Bin step for each grade,
starting from the second lowest to the highest, and complete the following
steps to configure each Set and Lock Bin step.

a. On the Set and Lock Bin tab, use the Bin Expression control to specify
the software pass bin you want to associate with the grade.

b. On the Preconditions panel of the Properties tab, specify a precondition
expression so that the step executes only if the sequence passed (!Run
State.SequenceFailed) and all the tests for the grade passed.

See Also
Grading Example

Specifications Files (TSM)
Use an XML-based specifications file (.specs) to define a set of variables and
associated numeric values that you can reference in test program code modules
instead of using constants to set testing specifications. You can modify
specifications files to set new values without changing test program files. You can

ni.com196

TestStand Semiconductor Module

specify the values directly or calculate the values from other variables using
formulas you write with simple arithmetic expressions.

Select Semiconductor Module»Edit Test Program and select Specifications
Files in the Test Program Editor to launch the Specifications Files panel. Use the
Specifications File Path control on the Specifications Files panel to specify one or
more specifications files to use with the test program.

Note You can use the Digital Pattern Editor (if
installed) to view, create, modify, and save
specifications files. Any changes to specification
values you make using the NI-Digital Pattern
Driver API do not affect the value of the
specifications the TSM Code Module API returns.

Use the Get Specification(s) Value(s) TSM Code Module API VI or the GetSpecific
ationsValue or GetSpecificationsValues TSM Code Module API .NET
methods to query one variable or an array of variables and return the calculated
value or values. The VI and methods return an error or exception when you reference
a variable that does not exist in the specifications file, which can result in a run-time
error when the sequence executes.

The specifications XML schema, located at <TestStand>\Components\Schem
as\NI_SemiconductorModule\Specifications.xsd, defines the
structure for a specifications XML file.

Configuring Specifications

Each variable must include a section name you designate by the text you type
before the period (.) in the Section.Variable column. For example, the section name
for the variable DC.vcc is DC. Variables must be unique within each section of a
specifications file and among all specifications files associated with the test
program, including specifications files defined in the digital pattern project you
associate with the test program.

You can specify the following components of each specification:

■ Section.Variable—Name of the variable to use when querying the value in
test code. Variable names are case sensitive and must begin with a letter or

© National Instruments 197

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

underscore (_), are limited to A-Z, a-z, 0-9, or _ characters, and must
include a period (.) to separate the section name from the variable name. Do
not use math function names as variable names.
■ Formula —Numeric value or formula definition for the variable. When you
reference other variables to calculate a value, ensure that you use consistent
units. Use the following options to specify a formula definition:

Option Valid Values Example(s)
Numeric values — 5.0

-115.003

3.4E-15

150 ns

3.4 mV
Simple math operators +, -, /, *, () 5.0 + (3.14 * 2)

Math functions abs, ceil, floor, fmod, s
in, cos, tan, asin, acos,
atan, atan2, sinh, cosh,
tanh, deg, rad, pi, exp, p
ow, log, log10, sqrt, min,
max

abs(-15) * 2

Variable references — AC.Variable1 * 15 whe
re Variable1 is another sp
ecification within the AC secti
on

Units Units: (take precedence o
ver SI prefixes)

■ V, volts, Volts, volt, Volt
■ A, amps, Amps, amp, Am
p, amperes, Amperes, amp
ere, Ampere
■ s, sec, Sec, secs, Secs, se
cond, Second, seconds, Se
conds

10 ns + 15 ns

ni.com198

TestStand Semiconductor Module

■ dB, db, decibel, Decibel,
decibels, Decibels
■ dBm, dbm
■ F, farad, Farad, farads, F
arads
■ H, henries, Henries, henr
y, Henry
■ Hz, hertz, Hertz
■ Ω, ohms, Ohms, ohm, O
hm
■ W, watts, Watts, watt, Wa
tt

SI Prefixes:
■ d, deci (scaling factor of
1E-1)
■ c, centi (scaling factor of
1E-2)
■ m, milli (scaling factor of
1E-3)
■ µ, u, micro (scaling facto
r of 1E-6)
■ n, nano (scaling factor of
1E-9)
■ p, pico (scaling factor of
1E-12)
■ f, femto (scaling factor of
1E-15)
■ da, deca (scaling factor o
f 1E+1)
■ h, hecto (scaling factor o
f 1E+2)
■ k, kilo (scaling factor of 1
E+3)
■ M, mega (scaling factor o
f 1E+6)

© National Instruments 199

TestStand Semiconductor Module

■ G, giga (scaling factor of
1E+9)
■ T, tera (scaling factor of 1
E+12)
■ P, peta (scaling factor of
1E+15)

■ Comment—Describes what the formula represents. TSM does not display
the description.

Specifications File XML Structure (TSM)

The specifications XML schema, located at <TestStand>\Components\Schem
as\NI_SemiconductorModule\Specifications.xsd, defines the
following structure for a specifications XML file.

Legend

<Root element>
<Element>
Attribute

 <Specifications>
■ schemaVersion—Specifies the version of the schema file.
■ <Section>—You can use multiple <Section> elements in a
specifications file.

■ name—Name of the section of the specifications file.
■ <f:Formula>—Defines and describes an association of a symbol to its
value specification.

■ symbol—Name of the formula to use when querying the value in
test code. Symbol names must begin with a letter or underscore (_) and
are limited to A-Z, a-z, 0-9, or _ characters. Symbol names are case
sensitive. Do not use math function names as symbol names.
■ <f:Definition>—Value specification for the formula that TSM
interprets to calculate a numeric value when you query the symbol.

ni.com200

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

When you reference other formulas to calculate a value, ensure that you
use consistent units.
■ <f:Description>—Describes what the formula represents. TSM
does not display the description.

Schema Version Policy (TSM)

The schema version uses a major.minor notation. The version of the schema
reflects changes to the schema, not changes to TSM.

Changes to the schema version indicate breaking changes to the schema. TSM does
not load files that use a later schema version than the version specified for that
version of TSM.

Use the following table to map schema versions and TSM versions.

Schema Version TSM Version
PinMap.xsd version 1.0
BinDefinitions.xsd version 1.0

NI TestStand 2013 Semiconductor Module

PinMap.xsd version 1.1
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0

NI TestStand 2014 Semiconductor Module

PinMap.xsd version 1.2
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0

NI TestStand 2014 Semiconductor Module SP1
NI TestStand 2016 Semiconductor Module

PinMap.xsd version 1.3
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0

NI TestStand 2016 SP1 Semiconductor Module

PinMap.xsd version 1.4
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0

NI TestStand 2017 Semiconductor Module

PinMap.xsd version 1.5
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0
SystemConfiguration.xsd version 1.0

NI TestStand 2019 Semiconductor Module

PinMap.xsd version 1.6
BinDefinitions.xsd version 1.2
Specifications.xsd version 1.0
SystemConfiguration.xsd version 1.1

NI TestStand 2020 Semiconductor Module
TestStand 2020 Semiconductor Module 2021 Q4

© National Instruments 201

TestStand Semiconductor Module

Digital Patterns (TSM)
Digital pattern files contain a collection of vectors, or instructions, to execute on an
NI-Digital Pattern instrument. Components of the binary pattern file include time
sets, labels, opcodes, vector numbers, pin state data that indicates drives and
compares, and comments for each vector. You can edit pattern files in the Digital
Pattern Editor.

TSM Implementation

Select Semiconductor Module»Launch Digital Pattern Editor or click the
Launch Digital Pattern Editor button on the TSM toolbar to open digital
pattern project files in the Digital Pattern Editor. Additionally, you can use the Digital
Pattern Project panel of the Test Program Editor to specify the pathname of the
digital pattern project file to use in the test program.

The TSM Pin Map Editor and pin map schema natively support NI-Digital Pattern
instruments.

Use the TSM Code Module API for the NI-Digital Pattern instruments to manage
digital pattern instruments and sessions, to manage digital pattern waveform data,
and to access digital pattern project files.

Note The NI-Digital Pattern VIs are available
only in 64-bit LabVIEW.

You can create a basic test program from a digital pattern project. Select
Semiconductor Module»Create Test Program from Digital Pattern Project
to launch the Create Test Program from Digital Pattern Project dialog box.

Testing Multiple Sites in Parallel (TSM)
A semiconductor test program might need to test multiple DUTs at the same time in
parallel to improve tester efficiency. A semiconductor test program can test one DUT
at a time on a single test site or test multiple DUTs at a time on multiple test sites.

To implement multisite testing in a test program, the test engineer must consider
the following requirements:

ni.com202

TestStand Semiconductor Module

■ The test program must be able to evaluate limits on multiple DUTs.
■ The test program might execute individual test sites differently depending
on previous test results specific to the individual test sites. For example,
different sites might become disabled before a test begins depending on
whether a handler can actually place DUTs in those sites, or different sites
might become disabled during a test.
■ The test program must be able to test DUTs on multiple sites
simultaneously, even when multiple sites must simultaneously communicate
with the same instrument.

TSM Implementation

The TestStand Batch and Parallel process models support multisite testing by
creating a test socket for running a copy of the TestStand sequence in a new
execution thread. However, the default TestStand behavior does not account for
difficulties that a test engineer might encounter when programming for hardware
shared among multiple test sites, such as NI-HSDIO instruments.

Use the TSM Code Module API to translate DUT pin names to instrument channels
and sessions for the active sites and to publish test results to the active sites. The
Semiconductor Multi Test step or the Semiconductor Action step creates the object
reference SemiconductorModuleContext that you pass to a LabVIEW or .NET
code module to use the TSM Code Module API. The SemiconductorModuleCon
text object describes a subset of pins, relays, sites, and instruments on a test
system.

When you execute tests using the Batch process model, use the Multisite Option
control on the Options tab of the Semiconductor Multi Test or the Semiconductor
Action step to configure the following multisite execution options for the test:

■ One thread per subsystem—Execute tests for each subsystem in a
separate thread. A subsystem is a set of sites and system resources on the
tester that operate independently of other sites and resources, typically
because the sites share the same instrument, which requires the test program
to test the sites together in a single thread. The Semiconductor Multi Test step
or the Semiconductor Action step identifies subsystems by using the pin map

© National Instruments 203

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/parallel.html

and the pins and relays shown in the SemiconductorModuleContext Pins
and Relays control.
■ One thread only—Execute tests for all sites in a single thread.
■ One thread per site—Execute tests for each site in a separate thread. Use
this option only when the code module does not use hardware shared among
multiple sites.

The multisite option you select determines how many copies of a code module to
execute. The more code modules that execute, the fewer sites TSM tests in any one
code module.

Multisite Programming Techniques

When you create test programs to run on multiple sites, you must account for
certain subsystem considerations, such as instrumentation resources, the
relationship between the subsystem and the pin map, and using switches to share a
channel between the same DUT pin on multiple sites. Consider the following issues
during code module development:

■ Pin and session queries
■ Parallel For Loops
■ Input parameters
■ Specifications values
■ Sharing data between code modules
■ Publishing results
■ Sharing instrument sessions between LabVIEW and .NET code modules

Note You cannot use multiple Semiconductor
Multi Test steps or Semiconductor Action steps
configured to use multiple threads in While
loops, in Do While loops or in For loops that use
the Custom Loop option when performing
multisite testing. The steps report a run-time
error in these situations. Use other types of
loops instead, such as For loops that use the
Fixed Number of Iterations option.

ni.com204

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_while.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_do_while.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_for.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_forloop.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_forloop.htm

See Also
Multisite Scenarios Example

TSM Example Programs

Subsystem Considerations (TSM)

By default, the TestStand Batch process model executes a copy of the test program
for each site simultaneously without changing any code by creating a test socket for
each site. Each test socket runs in parallel and synchronizes at the beginning and
end of the batch. However, each copy of the test program executes independently
on each test socket and does not synchronize over each step within the test program
execution shown in the following figure.

TSM site numbers do not always directly correspond to test socket indexes. Use the
Get Site Runtime Data VI or the GetSiteRuntimeData .NET method of the TSM
Application API or use the Get Test Information step to obtain specific site numbers.

Sharing Instrumentation Resources

Executing a copy of the test program for each socket works well when you use
dedicated hardware for each DUT. In reality, however, it is more likely that multiple
DUTs share the same instrumentation, which requires you to write test code to
account for instrumentation sharing. In the following example, Test 1 and Test 3
share instrumentation resources.

© National Instruments 205

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html

Test 1 uses instrumentation shared between Sites 0 and 1 and between Sites 2 and
3. Test 3 uses instrumentation shared among all four sites. In this example, Sites 0
and 1 must synchronize at the first step, and Sites 2 and 3 must also synchronize at
the first step. Because Sites 0 and 1 do not have to wait on Sites 2 and 3, each site
group can continue testing after the first test is done. However, all sites must
synchronize for Test 3 because of the dependency on instrumentation resources.
After Test 3 completes, all sites can execute in parallel. At the end of the test
program, all sites synchronize at the end of the batch to communicate with the
handler or prober.

Using instrumentation multiplexed across sites or instruments that access multiple
sites simultaneously introduce the following synchronization challenges

■ Multiplexed sharing—You can use a multiplexer to connect a single
instrument to multiple pins on the same DUT or on multiple DUTs. In this case,
each site or pin must wait until an instrument is free.
■ Simultaneously sharing instruments—You can connect a single
instrument that supports simultaneous access to its resources to multiple pins
on the same DUT or multiple DUTs, but for optimal performance you must
synchronize the operations to occur at the same time. In this case, one code
module can take measurements for multiple sites and report the

ni.com206

TestStand Semiconductor Module

measurements back to each test socket. Code modules must account for
taking measurements for multiple sites.
■ Relay sharing—Run any sites that share relays in the same subsystem.

See Also
Grouping Instruments

Subsystems and Pin Maps (TSM)

The Semiconductor Multi Test and the Semiconductor Action steps examine the pin
map to determine which sites to synchronize. Steps can also specify required pins or
pin groups and relays, relay groups, or relay configurations for a code module. For
example, if you connect a pin to a shared instrument but a code module does not
require the pin, you might be able to execute the code in parallel. After determining
the sites to synchronize, the Semiconductor Multi Test and the Semiconductor
Action steps wait until those sites reach the synchronization point or become
disabled. The step then calls a LabVIEW or .NET code module and passes a Semico
nductorModuleContext object that contains the information about the sites
for the code module.

A subsystem is a part of the test system that can operate independently. TSM
defines subsystems dynamically based on the active sites, the flow of each test
socket, and the instrumentation required to conduct a test.

The following figure illustrates the connections between four DUTs/sites, two NI-
HSDIO instruments, and one power supply. Each NI-HSDIO instrument requires that
the channels for that instrument operate together but the power supply can operate
four independent channels. Each DUT has an A, B, and C pin. Each pin A and pin B
connects to an NI-HSDIO instrument, and each pin C connects to the power supply.

The two subsystems illustrated in the figure can operate independently. If a test
uses pin A or B, you can break the test up into two subsystems. If a test uses only pin
C, you can break the test setup into four subsystems—one for each site.

By default, the Semiconductor Multi Test and Semiconductor Action steps assume
that a code module uses every DUT pin and no site relays. Improve the performance
of the tester by specifying only the pins that the code module uses.

© National Instruments 207

TestStand Semiconductor Module

The following figure illustrates a similar situation as the previous figure but replaces
the two NI-HSDIO instruments with two NI-Digital Pattern instruments that are
grouped together. By default, TSM groups all NI-Digital Pattern instruments
together.

The figure shows a single subsystem for test steps that use only pins A or B. TSM
executes the test code module in a single TestStand test socket because all NI-
Digital Pattern channels must operate together. The NI-Digital Pattern driver
performs some operations on the channels in parallel to achieve improved
performance. As in the previous example, if a test uses only pin C, you can break the
test setup into four subsystems.

ni.com208

TestStand Semiconductor Module

Multisite Programming with Switches (TSM)

When you must share a channel between the same DUT pin on multiple sites, use a
switch to control which pin the device is connected to when executing a test. The
Switching example demonstrates how to write a test program that uses multiplexed
routes in a multisite test program. The example uses an Switch Executive Virtual
Device, but you can use the same programming methods with any switch
instrument.

Data Management Recommendations (TSM)
The following table summarizes available data mechanisms in TestStand, in the
TestStand Semiconductor Module (TSM), and in the programming environment you
use. Refer to the following Data Mechanisms Selection section for more information
about issues to resolve before selecting a data mechanism.

 Use this Toggle Expansion button to expand or collapse all the following
sections at once. Use the black arrows next to each heading to expand or collapse
sections individually. You must expand each section you want to print or search.

Type of Data Used Only in TestStand Used Only in Code
Modules

Used in TestStand and in
Code Modules

Per-site Sequence local variabl
es and parameters

 Details

TSM executes a unique
run-time sequence for
each site. Use the TestS
tand sequence local var
iables and parameters t
o create per-site variabl
es in TestStand.

Site Data API (TSM Cod
e Module API)

 Details

Because TSM can execu
te a code module on m
ultiple sites in parallel,
managing per-site data
in a code module can b
e complex. Use the use
the Set Site Data VI or S
etSiteData .NET me
thod and the Get Site D
ata VI or GetSiteDat
a .NET method in the
TSM Code Module API t
o get and set arbitrary
per-site data in a code

■ TestStand—Se
miconductor Acti
on step paramete
r
■ Code Module—
TSM Site Data API

 Details

Because TestStand and
TSM code modules use
different data mechani
sms for storing per-site
data, you must pass the
data between TestStan

© National Instruments 209

TestStand Semiconductor Module

javascript:toggleexpansion()
javascript:expand('persiteteststand_section','persiteteststand_arrow')
javascript:expand('persitecodemodule_section','persitecodemodule_arrow')
javascript:expand('persitecodemoduleteststand_section','persitecodemoduleteststand_arrow')

module. With the site d
ata API, you associate e
ach per-site data value
with a data ID at run ti
me to uniquely identify
the data with a name.

d and each code modul
e to share data.

To pass per-site data st
ored in a TestStand vari
able into a code modul
e, use the Set Site Data
VI or SetSiteData .N
ET method and the Get
Site Data VI or GetSit
eData .NET method in
the TSM Code Module
API to create a separate
code module to store t
he data and call the co
de module from a Semi
conductor Action step c
onfigured to use the O
ne thread per site val
ue in the Multisite Op
tion control. Pass the u
nique data ID and the T
estStand variable as an
array of one element in
to the code module to s
tore the variable value i
n per-site data for code
modules to use.

To pass per-site data st
ored in a code module i
nto TestStand, use the
Set Site Data VI or Set
SiteData .NET meth
od and the Get Site Dat
a VI or GetSiteData .
NET method in the TSM
Code Module API to cre
ate a separate code mo
dule to get the data an
d call the code module
from a Semiconductor
Action step configured

ni.com210

TestStand Semiconductor Module

to use the One thread
per site value in the M
ultisite Option
control. The code mod
ule must extract the dat
a from the first element
of the array the set dat
a API in the TSM Code
Module API returns. Pas
s the unique data ID an
d the TestStand variabl
e to receive the data in
the code module.

Global Sequence file global va
riable (after changing S
equence File Globals
option to All Executio
ns Share the Same F
ile Globals)

 Details

You can use sequence fi
le global variables to m
anage global data in Te
stStand, but you must c
hange the default value
of the Sequence File
Globals option on the
General tab of the
Sequence File
Properties dialog box fr
om Separate File Glo
bals for Each Executi
on to All Executions
Share the Same File
Globals to ensure that
the sequence file globa
l variables are shared f
or all sites. If you do no
t change the value of th
is option in the Sequen

Language specific data,
Global Data API (TSM C
ode Module API)

 Details

For global data used on
ly in code modules, use
the data mechanism th
at the language the cod
e module uses to achie
ve the best performanc
e. For example, use Lab
VIEW global variables o
r functional global vari
ables to share global d
ata among LabVIEW co
de modules. You can al
so use the Set Global D
ata VI or SetGlobalD
ata .NET method and t
he Get Global Data VI or
GetGlobalData .NE
T method in the TSM
Code Module API.

■ TestStand—Se
quence file globa
l variable (after c
hanging Sequen
ce File Globals
option to All Exe
cutions Share t
he Same File Gl
obals)
■ Code Module—
Step module par
ameter

 Details

To use global data in co
de modules and in Test
Stand, use sequence fil
e global variables to m
anage the data in TestS
tand. You must change
the default value of the
Sequence File Globa
ls option on the
General tab of the
Sequence File
Properties dialog box fr

© National Instruments 211

TestStand Semiconductor Module

javascript:expand('globalteststand_section','globalteststand_arrow')
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_seq_file_prop_gen_tab.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_seq_file_prop_gen_tab.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_seq_file_prop_gen_tab.htm
javascript:expand('globalcodemodule_section','globalcodemodule_arrow')
javascript:expand('globalcodemoduleteststand_section','globalcodemoduleteststand_arrow')
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_seq_file_prop_gen_tab.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_seq_file_prop_gen_tab.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_seq_file_prop_gen_tab.htm

ce File Properties dialo
g box, the sequence file
global variables store p
er-site data only.

om Separate File Glo
bals for Each Executi
on to All Executions
Share the Same File
Globals to ensure that
the sequence file globa
l variables are shared fo
r all sites. If you do not
change the value of this
option in the Sequence
File Properties dialog b
ox, the sequence file gl
obal variables store per
-site data only.

Within the code modul
es, use the data mecha
nism that the language
the code module uses t
o achieve the best perf
ormance. For example,
use LabVIEW global vari
ables or functional glob
al variables to share glo
bal data among LabVIE
W code modules. You c
an also use the Set Glo
bal Data VI or SetGlo
balData .NET metho
d and the Get Global Da
ta VI or GetGlobalDa
ta .NET method in the
TSM Code Module API.
Pass the global data int
o and out of code mod
ules using parameters t
o the code modules.

Global constants Test conditions
 Details

You can use the same
mechanism described i

Specifications
 Details

You can use the same d
ata mechanism describ

■ TestStand—Tes
t conditions

ni.com212

TestStand Semiconductor Module

javascript:expand('globalconstantteststand_section','globalconstantteststand_arrow')
javascript:expand('globalconstantcodemodule_section','globalconstantcodemodule_arrow')

n the Global data – Use
d Only in TestStand tab
le cell. Alternatively, yo
u can define test condit
ions in the Test
Program Editor. You ca
n use the Get Test
Information step to ref
erence the test conditio
ns in a sequence. You c
an create multiple test
program configurations
that use different value
s for each test conditio
n that you define. Test
conditions support onl
y numbers, strings, and
Boolean values.

ed in the Global data –
Used Only in Code Mod
ules table cell. Alternati
vely, you can use a
specifications file to de
fine named expressions
that evaluate to consta
nts at run time. Use the
Digital Pattern Editor to
edit specifications files.
Use the TSM Code Mod
ule API to get the value
of a specification. Speci
fications support only
numbers.

■ Code Module—
Step module par
ameter

 Details

To use global constants
in code modules and in
TestStand, use test con
ditions or a sequence fi
le global variable to def
ine and access the cons
tant in TestStand. Pass
the global constant int
o a code module using
parameters to the code
modules.

TSM site numbers do not always directly correspond to test socket indexes. Use the
Get Site Runtime Data VI or the GetSiteRuntimeData .NET method of the TSM
Application API or use the Get Test Information step to obtain specific site numbers.

Data Mechanisms Selection

Before selecting a data mechanism to use, you must understand how and where the
test program uses the data. Consider the following questions as you select a data
mechanism:

■ How should the test program access the data? Some data mechanisms work
best in code modules, and others work best in TestStand. Sharing data
between code modules and TestStand is more complicated than using the
data in only one environment or the other. Refer to the Accessible Locations
column in the following table.
■ Where should the test program define the data? Some data mechanisms
define the data in an external file that you access from TestStand or from code
modules. Some data mechanisms define the data while editing the test
program, and others create the data at run time. Refer to the Defined Location
column in the following table.

© National Instruments 213

TestStand Semiconductor Module

javascript:expand('globalconstantcodemoduleteststand_section','globalconstantcodemoduleteststand_arrow')

■ What type of data does the test program use? Some data mechanisms are
limited to specific types of data, such as numbers, strings, and Boolean
values. Refer to the Data Types column in the following table.
■ Does the data remain constant throughout testing or does the test program
modify the data? Refer to the Constant or Dynamic column in the following
table.
■ Does each site use unique data values or do all sites share the same data
values? Refer to the Per-Site or Global column in the following table.

 Data Mechanisms Table

The following table outlines the different mechanisms for managing data in
TestStand, in TSM, and in the programming environment you use.

Data
Mechanism

Purpose Accessible
Locations

Defined
Location

Data Types Constant or
Dynamic

Per-Site or
Global

Limitations

Language s
pecific dat
a (LabVIEW
global vari
ables or .N
ET variable
s)

Manage pe
r-site or glo
bal data in
code modu
les

Code mod
ules

Code mod
ule

Any langua
ge-specific
type

Dynamic Per-site or
global

Difficult to
manage pe
r-site data
efficiently

Site Data A
PI (TSM Co
de Module
API)

Manage pe
r-site data i
n code mo
dules

Code mod
ules

Code mod
ule

Any langua
ge-specific
type, excep
t LabVIEW
classes

Dynamic Per-site Does not s
upport Lab
VIEW class
es

Global Dat
a API (TSM
Code Modu
le API)

Manage gl
obal data i
n code mo
dules

Code mod
ules

Code mod
ule

Any langua
ge-specific
type, excep
t LabVIEW
classes

Dynamic Global Does not s
upport Lab
VIEW class
es; potenti
ally slower
than langu
age-specifi
c data

Step Input
Data API (T

Pass per-si
te data fro
m TestStan

TSM steps,
code modu
les

TestStand
variable

Numbers, s
trings, and

Dynamic Per-site Supports o
nly numbe
rs, strings,

ni.com214

TestStand Semiconductor Module

javascript:expand('datamatrix_section','datamatrix_arrow')

SM Code M
odule API)

d into a co
de module

Boolean va
lues

and Boolea
n values

Step modu
le paramet
ers

Pass global
data from
TestStand i
nto a code
module

TSM steps,
code modu
les

TestStand
variable

Any TestSt
and type

Dynamic Global —

Sequence l
ocal variab
les and par
ameters

Manage pe
r-site data i
n TestStan
d

TestStand TestStand
variable

Any TestSt
and type

Dynamic Per-site —

Sequence f
ile global v
ariables

Manage pe
r-site data
or global d
ata in Test
Stand

TestStand TestStand
variable

Any TestSt
and type

Dynamic Per-site or
global, dep
ending on
a sequence
file setting

Supports p
er-site or gl
obal data b
ut not both
; requires c
hanging a s
equence fil
e setting to
support gl
obal data i
nstead of p
er-site data

Specificati
ons

Specify co
nstant expr
essions tha
t code mod
ules and di
gital timing
and levels
sheets use

Digital Patt
ern Editor,
code modu
les

Specificati
ons file

Numbers Constant Global Supports o
nly numbe
rs

Test Condit
ions

Specify co
nstant test
conditions
associated
with curre
nt test conf
iguration

Test Progra
m Editor, T
SM Operat
or Interfac
e

Test Progra
m Editor

Numbers, s
trings, and
Boolean va
lues

Constant Global Supports o
nly numbe
rs, strings,
and Boolea
n values

© National Instruments 215

TestStand Semiconductor Module

Station an
d Lot Setti
ngs

Specifies s
ettings ass
ociated wit
h station or
current lot

TSM Opera
tor Interfac
e

TestStand t
ype

Any TestSt
and type

Constant Global —

Code Module Development (TSM)
The Semiconductor Multi Test and the Semiconductor Action steps call a single code
module for all the sites that synchronize at a certain location, which means the code
module executes on multiple sites at the same time. The Semiconductor Multi Test
or Semiconductor Action step creates a SemiconductorModuleContext object
that contains the information about the sites on which the code module executes.
Pass the Step.SemiconductorModuleContext property to the code module
to use the TSM Code Module API.

Code Module Development Guidance

As you develop each part of the test program, consider the functionality that
belongs in code modules and the functionality that belongs in test sequences. In
general, use the following guidelines:

■ Code Modules—Use code modules written in LabVIEW or in .NET for
instrument driver calls to configure instruments and acquire data.
Additionally, use code modules for other code necessary to perform a specific
DUT test or other specific actions so you can reuse the code modules in other
test programs.
■ Test Sequences—Use test sequences to call code modules and evaluate
results the code modules generate.

Use Test Sequence for Test Flow
Use the TSM test sequence instead of code modules to determine test flow. For
example, if the test program requires you to execute a certain test only if a previous
test fails, ensure that the test sequence contains the logic for executing tests in a
specific order. Use this development strategy to make the flow of the test program

ni.com216

TestStand Semiconductor Module

more apparent to other test engineers and to help generalize code modules for
potential reuse in other test programs.

Evaluate Results in TSM
Use code modules to execute specific tests, but do not use code modules to
evaluate numeric results of tests. Use the Publish Data TSM Code Module API to
transfer test measurement data to the Semiconductor Multi Test step. Configure the
Semiconductor Multi Test step to evaluate the measurement against a set of limits
or a specific value. Because test limits might change throughout the life cycle of a
DUT, evaluating the measurements in TSM rather than in code modules enables you
to more easily adjust the test limits as needed. Additionally, using this technique
helps to generalize code modules for potential reuse in other test programs.

You might need to perform calculations on the test measurements before evaluating
the data because TSM does not offer the functionality you need or because you
need to attain maximum performance for a processor-intensive calculation. For
example, use a code module to calculate the FFT of a waveform, and use a
Semiconductor Multi Test step in TSM to perform the final test evaluation.

Implement Loops in Code Modules for High Performance
Implement loops in code modules when execution speed is critical. For example, if a
test needs to sweep an instrument parameter over a range of values as quickly as
possible, use a For loop in a code module rather than executing the loop in TSM.
Additionally, using parallel For Loops in LabVIEW code modules to apply the same
settings to multiple instruments at once is much faster than implementing loops in
TSM.

Use Per-Site Data to Store Data within Code Modules
Use the Set Site Data VI or SetSiteData .NET method and the Get Site Data VI or
GetSiteData .NET method in the TSM Code Module API to store data that you
need to access in another code module later. Using this development strategy
provides an advantage over storing data in TSM variables because the API maintains
unique data for each site. Additionally, you can access the data directly within code
modules instead of passing the data from TSM as a parameter.

© National Instruments 217

TestStand Semiconductor Module

Specify Pin Names as Parameters to Code Modules
Use parameters to pass pin names into code modules from TSM instead of hard
coding pin names within the code modules. Using this technique improves the
readability of the test program by making the use of each pin in the code module
more apparent to test engineers. It also generalizes code modules for potential
reuse in other test programs.

Other Suggestions
Additionally, consider the following issues during code module development:

■ Querying pins and sessions
■ Using parallel For Loops
■ Grouping Instruments
■ Specifying input parameters
■ Obtaining values from specifications files
■ Sharing data between code modules
■ Publishing results
■ Sharing instrument sessions between LabVIEW and .NET code modules
■ Using LabVIEW VI Analyzer
■ Using LabVIEW Classes

See Also
TSM Code Module API

Pin and Session Queries (TSM)

NI instrument drivers refer to sessions and channel lists rather than to sites and
pins. When you take a measurement using an NI instrument driver, you must first
perform a pin query to look up the associated instrument sessions and channel lists.

To conduct a pin query, you must first know the type of instrument to which the pins
are connected. Each instrument type has a corresponding pin query VI or .NET
method.

ni.com218

TestStand Semiconductor Module

The following figure and code snippet shows how to use the Pin(s) To NI-DCPower
Session(s) polymorphic VI or the GetNIDCPowerSessions .NET method to
obtain the associated sessions and channel lists for a set of pins using an NI-
DCPower instrument.

LabVIEW

.NET (C#)

public static void ExampleCodeModule(ISemiconductorModuleContext
semiconductorModuleContext, string dcPowerPins)
{

NIDCPower[] dcPowerSessions;
string[] dcPowerChannelStrings;
semiconductorModuleContext.GetNIDCPowerSessions(dcPowerPins, out
dcPowerSessions, out dcPowerChannelStrings);

}

The Semiconductor Module context provides information to the VI about which sites
the subsystem includes. The pin query returns an array of instrument sessions and
channel lists. Each element with the same index in each array is associated. The pin
query returns the order of the sessions and channels in a deterministic manner
based on the active sites and pins.

Different instrument types might return different outputs depending on the
information required to control the instrument. For example, some instruments do
not have channels and thus do not return a channel list. Other instruments might
return multiple session arrays.

© National Instruments 219

TestStand Semiconductor Module

LabVIEW Polymorphic Instances of Pin(s) to Session(s) VIs

The Pin(s) to Session(s) VIs offer a subset of the following polymorphic instances:

■ Multiple Pins - Multiple Instruments or Sessions
■ Single Pin - Multiple Instruments or Sessions
■ Multiple Pins - Single Instrument or Session
■ Single Pin - Single Instrument or Session

Depending on the instrument type, some of these options might not be available. If
you operate on multiple pins, you must select the Multiple Pins options. If you
operate on a single pin, select the Single Pin options. You can build the pin name
into an array of strings and use the Multiple Pin options if a Single Pin option is not
available for an instrument type.

You can use different instances of the same VI in multiple locations of a code
module. For example, if you want to set the voltage of all pins to 0, you can use the
Multiple Pins - Multiple Sessions instance to access the instrumentation. If you then
want to force a current on a single pin, use the Single Pin - Multiple Sessions
instance of the VI.

Note NI does not recommend deconstructing
the outputs of the VI to obtain information
about each site or pin. Instead, use the Get
Session and Channel Index VI to obtain the
sessions and channel lists.

.NET Method Overloads

The .NET API provides overloads for the pin query methods. The overloaded
parameters allow you to specify a single pin or an array of pins and output a single
instrument session or an array of instrument sessions. The type of the return value
depends on which overload you use and provides a publish method that matches
the pin query method overload. Depending on the instrument type, some method
overloads might not be available.

You can use different method overloads in multiple locations of a code module. For
example, if you want to set the voltage of all pins to 0, you can use the overload that
takes an array of pins and outputs an array of sessions to access the

ni.com220

TestStand Semiconductor Module

instrumentation. If you then want to force a current on a single pin, use the overload
that takes a single pin and outputs an array of sessions.

Note NI does not recommend deconstructing
the outputs of the method to obtain
information about each site or pin. Instead, use
the GetSessionAndChannelIndex .NET
method on the pin query context object
returned from the pin query method to obtain
the sessions and channel lists.

Single Sessions or Multiple Sessions

Select a Single Session VI instance or the .NET method overload that outputs a
single session only under the following conditions:

■ You are using a NI-Digital Pattern pin query and all NI-Digital Pattern
instruments belong to the same group in the pin map file. By default, TSM
groups all NI-Digital Pattern instruments together.
■ You are using a NI-SCOPE pin query and all NI-SCOPE instruments belong to
the same group in the pin map file. By default, TSM groups all NI-SCOPE
instruments together.
■ You are using a NI-DCPower pin query and all NI-DCPower channels belong
to the same group in the pin map file. By default, TSM groups all NI-DCPower
channels together.
■ You use only a single session of a given type for the tester.
■ You know that the instruments of that type are and will always be the
limiting factor when creating a subsystem.

Select a Multiple Sessions VI instance or use the .NET method overload that outputs
an array of sessions if you are not sure whether to return multiple sessions or a
single session. Using this technique helps you avoid having to modify code modules
if a pin map changes or if you convert a test program to run on other testers or with
other pin maps. Using a Single Session VI instance or the .NET method overload that
outputs a single session with a set of pins and sites that returns multiple sessions
results in a run-time error.

© National Instruments 221

TestStand Semiconductor Module

Parallel For Loops (TSM)

When you obtain multiple sessions, you will usually use a parallel For Loop to
control the instruments in parallel to increase multisite efficiency. You do not need
to use a parallel For Loop for NI-Digital Pattern, NI-SCOPE, or NI-DCPower pin
queries if all instruments or channels belong to the same group in the pin map file.
By default, TSM groups all NI-Digital Pattern instruments into the same NI-Digital
Pattern instrument group, all NI-SCOPE instruments into the same NI-SCOPE
instrument group, and all NI-DCPower channels into the same NI-DCPower channel
group. You can edit instrument or channel groups in the Pin Map Editor.

LabVIEW

Right-click a For Loop and select Configure Iteration Parallelism from the
context menu to create a parallel For Loop. Index the session and channel list arrays
in the For Loop to access each instrument in parallel.

Error Handling with Parallel For Loops

If you enable parallelism in a For Loop, any shift registers on error wires
automatically become error registers, which allow for errors to be merged across all
iterations of the For Loop, as illustrated in the previous graphic.

Because you cannot use shift registers in parallel For Loops, you must build error
clusters into an array and then merge the errors. Complete the following steps to
structure error wires so that you can handle all potential errors.

1. If no iterations of the parallel For Loop execute, which can occur when a
previous error exists, the loop does not record any errors you pass into the
loop. To avoid this situation, branch the error wire before it enters the parallel
For Loop and connect the new segment around the loop to the top input
terminal of the Merge Errors node. Using this wire connection strategy ensures

ni.com222

TestStand Semiconductor Module

that you can track errors that occurred earlier during execution outside of the
loop.

2. Enable indexing for the error output tunnel exiting the loop. If you do not
enable indexing, only the error information from the final iteration of the loop
is maintained.

3. Use the Merge Errors node to capture error information from the code that
executed before the loop execution and also each of the loop iterations.

.NET (C#)

One option for parallel For Loops in .NET is the System.Threading.Tasks.Parallel.For
method. The following example demonstrates how to use this method to perform a
measurement with each instrument session in parallel.

public static void ExampleCodeModule(ISemiconductorModuleContext
semiconductorModuleContext, string dcPowerPins)
{

NIDCPower[] dcPowerSessions;
string[] dcPowerChannelStrings;
semiconductorModuleContext.GetNIDCPowerSessions(dcPowerPins, out
dcPowerSessions, out dcPowerChannelStrings);
var measurements = new double[dcPowerSessions.Length];
Parallel.For(0, dcPowerSessions.Length, i =>
{

measurements[i] = PerformMeasurement(dcPowerSessions[i],
dcPowerChannelStrings[i]);

});

}

See Also
Enable Parallel For Loop Iterations in VIs

© National Instruments 223

TestStand Semiconductor Module

Grouping Instruments or Channels (TSM)

You can group certain instruments or channels together and treat them as a single
entity. When all the instruments of the same type belong to a single group or when
the instruments of the same type in a subsystem belong to a single group, you can
use the versions of the pin query VIs and .NET methods that return a single session
and you do not need to use parallel For Loops to iterate over the instrument driver
sessions. The instrument driver specific to the grouped instruments performs most
operations on all channels in parallel to achieve improved multisite efficiency. Refer
to the instrument driver help for information about hardware limitations that
prevent certain instruments from operating together as a single instrument.

Grouping Instruments with NI-Digital Pattern Driver

By default, when you create a new NI-Digital Pattern instrument in the pin map file,
the NI TestStand 2019 Semiconductor Module (TSM) and later set the group
attribute to Digital so that all newly created NI-Digital Pattern instruments
belong to the same group. TSM creates a single session for each group of NI-Digital
Pattern instruments in the pin map file. TSM 2017 and earlier do not automatically
group NI-Digital Pattern instruments together in pin map files. Use the Pin Map
Editor to modify existing pin map files to change the value of the Group option for
each instrument to assign the instrument to the same group.

Grouping Instruments with NI-SCOPE Driver

By default, when you create a new NI-SCOPE instrument in the pin map file, the TSM
2019 and later set the group attribute to Scope so that all newly created NI-SCOPE
instruments belong to the same group. TSM creates a single session for each group
of NI-SCOPE instruments in the pin map file. TSM 2017 and earlier do not
automatically group NI-SCOPE instruments together in pin map files. Use the Pin
Map Editor to modify existing pin map files to change the value of the Group option
for each instrument to assign the instrument to the same group.

Grouping Channels with the NI-DCPower Driver

By default, when you create a new NI-DCPower instrument in the pin map file, TSM
2020 and later will create a single channel group containing all instrument channels.

ni.com224

TestStand Semiconductor Module

TSM creates a single session for each channel group of NI-DCPower instruments in
the pin map file. TSM 2019 and earlier do not allow for channel grouping and pin
maps created with older versions of TSM do not contain channel group information.
Complete the following steps to convert all NI-DCPower instruments in the pin map
to use channel groups:

1. Open the Pin Map Editor.

2. Select the NI-DCPower instrument in the Instruments section on the Pin Map
tab.

3. Click the Convert NI-DCPower Instruments button.

4. Click Yes in the Convert all NI-DCPower Instruments dialog box to complete
the conversion.

Notes

■ To use NI-DCPower channel groups you
will need the correct combination of TSM
2020 and NI-DCPower Driver 2020. Both
the driver and TSM are fully backwards
compatible but the methods used and VI
calls made by TSM and the driver must be
changed when channel groups are used.
■ TSM does not allow a combination of
NI-DCPower instruments with channel
groups and NI-DCPower instruments
without channel groups.

Input Parameters (TSM)

Use the Parameter Table of the Module tab to pass the same parameter values for all
sites from the sequence file directly into a code module.

In some cases, you might want to use different values for each site, such as setting
different register values when trimming or using different calibration values for each
site. Use the Per-Site Inputs tab of the Semiconductor Multi Test or the
Semiconductor Action step to specify different parameter values within each test
sequence for each site. Use the Get Input Data VI or the GetInputDataAsBoolea
ns, GetInputDataAsDoubles, or GetInputDataAsStrings .NET methods

© National Instruments 225

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_module_lv.htm

in a code module to obtain the appropriate values for each site. These VIs and .NET
methods return an array of values—one for each site that is part of the subsystem
calling the code module.

LabVIEW

.NET (C#)

public static void ExampleCodeModule (ISemiconductorModuleContext
semiconductorModuleContext)
{

var serialNumbers =
semiconductorModuleContext.GetInputDataAsStrings(inputDataId: "DUT Serial
Number");
Parallel.For(0, waveformInputData.Length, i =>
{

WriteSerialNumber(serialNumbers[i]);

});

}

Getting Values for Specifications (TSM)

Specification files (.specs) define a set of variables and associated numeric values
that you reference in code modules to configure hardware or provide input to tests
procedures. Use the Get Specification(s) Value(s) VI or the GetSpecificationsV
alue or GetSpecificationsValues .NET methods to query one variable or an
array of variables and return the calculated value or values. The VI and methods

ni.com226

TestStand Semiconductor Module

return an error or exception when you reference a variable that does not exist in the
specifications file, which can result in a run-time error when the sequence executes.

LabVIEW

.NET (C#)

public static void ExampleCodeModule(ISemiconductorModuleContext
semiconductorModuleContext, string[] pins)
{

NIDCPower[] dcPowerSessions;
string[] channelStrings;
var pinQuery = semiconductorModuleContext.GetNIDCPowerSessions(pins, out
dcPowerSessions, out channelStrings);
double vccMax =
semiconductorModuleContext.GetSpecificationsValue("DC.vcc_max");
SetupMeasurement(dcPowerSessions, channelStrings, vccMax);
var results = PerformMeasurement(dcPowerSessions, channelStrings);
pinQuery.Publish(results);

}

Organization of Measurement Data (TSM)

Sometimes test code needs to process, make calculations with, or otherwise
manipulate measurement data on a per-site basis before publishing it to TestStand
tests for evaluation. However, typical TSM test code modules produce data
organized in an array indexed by instrument session instead of by site. Use the
following TSM VIs and .NET methods to convert per-instrument data to per-site data.
TSM always orders per-site data in the same order as the sites returned by the Get
Site Numbers VI or SiteNumbers .NET property.

© National Instruments 227

TestStand Semiconductor Module

■ Extract Pin Data VI and ExtractPinData .NET method—Extract
measurement data for a single pin in the pin query from per-instrument
measurement data and return per-site data. If you are using pin groups in a
pin query and want to extract pin data for each pin in the group, you can use
the Get Pins in Pin Group VI or GetPinsInPinGroup .NET method to
convert a pin group into an array of pin names.
■ Per-Instrument to Per-Site Data VI and
PerInstrumentToPerSiteData .NET method—Convert per-instrument
measurement data to per-site data in an array organized by site and pin.
■ Per-Instrument to Per-Site Pattern Results VI and
PerInstrumentToPerSitePatternResults .NET method—Convert per-
instrument digital pattern results obtained from the NI-Digital Pattern Driver
into per-site data.
■ Per-Instrument to Per-Site Waveforms VI and
PerInstrumentToPerSiteWaveforms .NET method—Convert per-
instrument digital pattern waveforms captured by the NI-Digital Pattern Driver
into waveforms organized by site.
■ Per-Site to Per-Instrument Waveforms VI and
PerSiteToPerInstrumentWaveforms .NET method—Convert per-site
waveforms into waveforms organized by instrument that you can use as
source waveforms with the NI-Digital Pattern Driver.

To publish per-site data to TestStand tests for evaluation, use the site-based
polymorphic instances of the Publish Data VI and the PublishPerSite .NET
method on the ISemiconductorModuleContext interface. These VIs and .NET
methods expect per-site data as inputs. Like the other Publish Data VIs and Publis
h .NET methods, these VIs and .NET methods attach the per-site data to the
appropriate test on the TestStand steps for evaluation.

See Also
Publishing Results

Sharing Data between Code Modules

ni.com228

TestStand Semiconductor Module

Sharing Data between Code Modules (TSM)

Data can be stored in the SemiconductorModuleContext in one code module and
retrieved later in another code module using an ID string. The data can be stored as
a single data value available globally to all sites or as a data value per site. Use the
Set Global Data VI or SetGlobalData .NET method and the Get Global Data VI or
GetGlobalData .NET method to store and retrieve data shared by all sites. Or use
the Set Site Data VI or SetSiteData .NET method and the Get Site Data VI or Get
SiteData .NET method to store and retrieve site specific data.

Note When setting site specific data with the
Set Site Data VI or the SetSiteData .NET
method, the data should be ordered to match
the order of sites in the Semiconductor Module
context. This order might not be sequential. If
the data you are storing was acquired from
instruments using a pin query, use the Extract
Pin Data VI or the ExtractPinData method
on the PinQueryContext .NET object to
extract the data from the measurements array
into the correct order for the Set Site Data VI or
SetSiteData .NET method. Otherwise, use
the Get Site Numbers VI or the SiteNumbers
property on the
SemiconductorModuleContext .NET object to
determine the order of the sites in the
Semiconductor Module context and arrange the
data manually.

The following example shows how to store a per-site measurement data for
comparison in a later test step:

© National Instruments 229

TestStand Semiconductor Module

LabVIEW

.NET (C#)

public static void FirstCodeModule(ISemiconductorModuleContext
semiconductorModuleContext, string pin)
{

NIDCPower[] dcPowerSessions;
string[] channelStrings;
var pinQuery = semiconductorModuleContext.GetNIDCPowerSessions(pin, out
dcPowerSessions, out channelStrings);
var results = PerformComparisonMeasurement(dcPowerSessions, channelStrings);
var perSiteData = pinQuery.ExtractPinData(results);
semiconductorModuleContext.SetSiteData("ComparisonData", perSiteData);

}
public static void SecondCodeModule(ISemiconductorModuleContext
semiconductorModuleContext, string pin)
{

var siteDataObjects =
semiconductorModuleContext.GetSiteData("ComparisonData");
var perSiteComparisonData = siteDataObjects.Cast<double>().ToArray();
NIDCPower[] dcPowerSessions;
string[] channelStrings;
var pinQuery = semiconductorModuleContext.GetNIDCPowerSessions(pin, out
dcPowerSessions, out channelStrings);

ni.com230

TestStand Semiconductor Module

var results = PerformComparisonMeasurement(dcPowerSessions, channelStrings);
var perSiteData = pinQuery.ExtractPinData(results);
double[] comparisonResult = new double[perSiteData.Length];
for (int dataIndex = 0; dataIndex < perSiteData.Length; dataIndex++)
{

comparisonResult[dataIndex] = perSiteData[dataIndex] -
perSiteComparisonData[dataIndex];

}
semiconductorModuleContext.PublishPerSite(comparisonResult);

}

Publishing Results (TSM)

After you take measurements, you typically publish the results to the test sockets to
evaluate and log. It might become difficult to know which piece of data to associate
with each site and pin because you typically take measurement using multiple
instruments connected to multiple DUTs and return arrays with the measurements
mixed among each site. Use the appropriate Pin Query VI or .NET method with the
Publish Data VI or Publish .NET method to return data to the correct site. Because
the Publish Data VI and Publish .NET method manage arrays of different
dimensions and extract the required data in the required order, you do not need to
manage arrays before publishing measurements. The Pin Query VI or .NET method
returns a Pin Query Context to associate a pin query operation with a matching
instance of the publish operation.

Note The Publish Data VI and Publish .NET
method have no effect in code modules you call
from the Semiconductor Action step because no
test locations exist for publishing data.

The following figure shows how to publish pin-based data from a measurement
taken with an NI-DCPower instrument.

© National Instruments 231

TestStand Semiconductor Module

LabVIEW

.NET (C#)

public static void ExampleCodeModule(ISemiconductorModuleContext
semiconductorModuleContext, string[] pins)
{

NIDCPower[] dcPowerSessions;
string[] dcPowerChannelStrings;
var pinQuery = semiconductorModuleContext.GetNIDCPowerSessions(pins, out
dcPowerSessions, out dcPowerChannelStrings);
var measurementResults = new double[dcPowerSessions.Length];
Parallel.For(0, dcPowerSessions.Length, i =>
{

measurementResults[i] = PerformMeasurement(dcPowerSessions[i],
dcPowerChannelStrings[i]);

});
pinQuery.Publish(measurementResults);

}

In C# use the var keyword to declare the variable to store the Pin Query Context
return value of the Pin Query method with a dynamic type. Using this technique can
make it easier to select the correct Pin Query Context type based on which overload
of the Pin Query method you select.

Per-Site Publishing

You can also use a site-based instance of the Publish Data VI or the Publish
method on the SemiconductorModuleContext .NET object to publish values for each
site. Use the optional Pin and Published Data Id parameters of the Publish Data VI

ni.com232

TestStand Semiconductor Module

or PublishPerSite .NET method to publish data for each site to tests that have
non-empty Pin and Published Data Id fields.

LabVIEW

.NET (C#)

public static void ExampleCodeModule(ISemiconductorModuleContext
semiconductorModuleContext, string comparisonPin1, string comparisonPin2,
double comparisonTolerance)
{

NIDCPower[] dcPowerSessions;
string[] channelStrings;
string[] pins = {comparisonPin1, comparisonPin2};
var pinQuery = semiconductorModuleContext.GetNIDCPowerSessions(pins, out
dcPowerSessions, out channelStrings);

var results = PerformComparisonMeasurement(dcPowerSessions, channelStrings);

var perSiteDataForPin1 = pinQuery.ExtractPinData(results, comparisonPin1);
var perSiteDataForPin2 = pinQuery.ExtractPinData(results, comparisonPin2);

int numSites = semiconductorModuleContext.SiteNumbers.Count;
bool[] comparisonResult = new bool[numSites];
for (int siteIndex = 0; siteIndex < numSites; siteIndex++)
{

© National Instruments 233

TestStand Semiconductor Module

comparisonResult[siteIndex] = Math.Abs(perSiteDataForPin1[siteIndex] -
perSiteDataForPin2[siteIndex]) < comparisonTolerance;

}

semiconductorModuleContext.PublishPerSite(comparisonResult);

}

Sharing Natively Supported Instrument Sessions between LabVIEW
and .NET Code Modules (TSM)

Note This topic applies to instruments that
TSM natively supports. Sharing custom
instrument sessions between LabVIEW and .NET
code modules requires a custom solution.

When you write a test program that uses the same instrument session in LabVIEW
and in .NET code modules, use the TSM Code Module API methods for storing and
accessing instrument sessions from the pin map associated with the test program
because the TSM Code Module API methods properly store and retrieve the
instrument sessions so you can access the sessions by LabVIEW and .NET code
modules.

Execute Code Modules in the Same Process that Creates Instrument
Sessions

Code modules that access instrument sessions must execute in the same process as
the code module that created the session. .NET code modules execute in the
process that executes the test program. LabVIEW code modules execute in the
process that executes the test program or in the LabVIEW Development System
process, depending on the LabVIEW Adapter settings. .NET code modules cannot
use instrument sessions created by LabVIEW code modules running in the LabVIEW
Development System process. LabVIEW code modules running in the LabVIEW
Development System cannot use instrument sessions created by .NET code
modules.

ni.com234

TestStand Semiconductor Module

LabVIEW Adapter Configuration

When you share instrument sessions between LabVIEW and .NET code modules, you
must select the LabVIEW Runtime option in the LabVIEW Adapter Configuration
dialog box so LabVIEW code modules execute in the same process as the TestStand
Engine and the .NET code modules, which allows LabVIEW and .NET code modules
to access the instrument sessions.

Debugging Considerations

Because you must use the LabVIEW Runtime option in the LabVIEW Adapter to
share instrument sessions with .NET code modules, you cannot use the
Development System option in the LabVIEW Adapter for debugging purposes in a
system that shares instrument sessions between LabVIEW and .NET code modules.

If you use LabVIEW 2015 or later, you can attach the LabVIEW Development System
to the TestStand Sequence Editor to debug LabVIEW VIs executing in the LabVIEW
Run-Time Engine.

Using LabVIEW VI Analyzer (TSM)

Use the LabVIEW VI Analyzer tool to run tests that check VIs interactively for style,
efficiency, and other aspects of LabVIEW programming, including the following
tests, enabled by default, specific to TSM.

■ TSM Context Closing—Verifies that a VI properly closes Semiconductor
Module Context references. Detects cases where the output of a
Semiconductor Module Context reference is not wired or not wired to a Close
Reference function. Closing references in LabVIEW frees up memory that
LabVIEW allocates for the references. Failure to close references causes
reference leaks, which can negatively affect the performance of the VI over
time.
■ Use High Resolution Polling Wait—Verifies that VIs use the High
Resolution Polling Wait VI instead of other wait functions, such as Wait (ms),
Wait Until Next ms Multiple, or Time Delay. The High Resolution Polling Wait VI
always waits for at least as long as the number of milliseconds specified,
which makes it more precise than other wait functions.

© National Instruments 235

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lvadapterconfig.htm
https://www.ni.com/docs/csh?topicname=tslabview/infotopics/debug_trace.html
https://www.ni.com/docs/csh?topicname=tslabview/infotopics/debug_trace.html

Refer to the LabVIEW Help for more information about the LabVIEW VI Analyzer. In
LabVIEW, select Help»LabVIEW Help to launch the LabVIEW Help.

Using LabVIEW Classes (TSM)

You cannot pass LabVIEW class references from LabVIEW code modules directly to
TSM or from TSM to LabVIEW code modules. Use LabVIEW functional global
variables instead of LabVIEW classes to share data between TSM and LabVIEW.

TSM Code Module API

Use the TSM Code Module API to develop code modules to perform tests using DUT
pin or pin group names. You can use this API to manage pins, instruments, sessions,
sites, data, switching, specifications, and to publish measurement data. The
Semiconductor Multi Test and the Semiconductor Action steps create a Semicondu
ctorModuleContext object that contains information about the pins and sites
for the code module to test and stores the information on the Step.Semiconduc
torModuleContext property. Pass the Step.SemiconductorModuleConte
xt property to the code modules to use the TSM Code Module API.

Using the TSM Code Module API in LabVIEW Applications

Use the TSM Code Module API VIs located on the TestStand Semiconductor
Module»Code Module Development Functions palette.

Refer to the TestStand Semiconductor Module Code Module API VIs Help, located
at <LabVIEW>\help\lvtssemiconductor.chm, for more information about
the TSM Code Module API VIs. In LabVIEW, select Help»LabVIEW Help and
navigate to the VI and Function Reference»TestStand Semiconductor
Module Code Module API VIs Help book in the table of contents of the LabVIEW
Help to launch the TestStand Semiconductor Module Code Module API VIs Help.

Using the TSM Code Module API in .NET Applications

Use the TSM Code Module API .NET class library to access the TSM Code Module API.
Add a reference to the <TestStand>\API\DotNET\Assemblies\CurrentV

ni.com236

TestStand Semiconductor Module

ersion\NationalInstruments.TestStand.SemiconductorModule.C
odeModuleAPI.dll assembly to your Visual Studio project.

TestStand Semiconductor Module Code Module .NET API

April 2022, 375356J-01

This help file contains detailed information about the TestStand Semiconductor
Module™ (TSM) Code Module .NET API.

Note If you open help files directly from the <T
estStand>/Doc/Help directory, NI
recommends that you open TSHelp.chm first
because this file is a collection of all the
TestStand help files and provides a complete
table of contents and index.

To navigate this help file, use the Contents, Index, and Search tabs to the left of
this window.

© 2015–2022 National Instruments Corporation. All rights reserved.

Programming with TSM APIs in C#

In C#, you can access TSM APIs by adding the corresponding component as a
reference in a project.

API Component
TSM Code Module API NationalInstruments.TestStand.Semiconductor

Module.CodeModuleAPI
TSM Application API NationalInstruments.TestStand.Semiconductor

Module.ApplicationAPI

TSM installs .NET assemblies for the TSM Code Module and Application APIs in the <
TestStand>\API\DotNet\Assemblies\CurrentVersion directory and
in the Global Assembly Cache (GAC). The assemblies support .NET 4.0 and later.

To add a reference to TSM API assemblies in Visual Studio, select the project in the
Solution Explorer and select Project»Add Reference. If the assemblies do not
appear in the corresponding dialog box, exit all running copies of Visual Studio,

© National Instruments 237

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsmcodemoduleapi/annotated.html
javascript:tsfundlink('/infotopics/directories.html')
javascript:tsfundlink('/infotopics/directories.html')

launch the TestStand Version Selector, select the current version of TestStand, and
click the Make Active button.

Note If you have both 32-bit and 64-bit
TestStand installed but only 32-bit TSM
installed, TSM API assemblies do not appear in
the Add References dialog box. Click the Browse
tab and select the assembly from the <TestSt
and>\API\DotNet\Assemblies\Curren
tVersion directory.

After you add one of the TSM API components as a reference in a project, add the
following directive at the top of the source file:

using NationalInstruments.TestStand.SemiconductorModule;
or

using NationalInstruments.TestStand.SemiconductorModule.Co
deModuleAPI;
All TSM classes, methods, and properties are available in the Microsoft Visual Studio
object browser and are accessible from the C# source code. Help text for classes,
methods, and properties appears in Microsoft IntelliSense.

To control NI instruments from a .NET assembly, you must also complete the
following tasks:

■ Install the appropriate NI driver for the instrument you want to control.
Ensure you install the correct NI .NET API for the version of the NI driver you
installed. For some NI drivers, you must manually select .NET support options
in the installer.
■ Add a reference to the corresponding NI driver .NET API assembly to the
project. The Accelerometer with .NET and the Part Average Testing with .NET
examples include Visual Studio projects that reference the TSM Code Module
API and some NI .NET APIs and demonstrate how to invoke those APIs.

Visit ni.com/info and enter the Info Code NETAPIdriversupport for
information about the available NI .NET APIs and the versions of the NI drivers each
supports.

ni.com238

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/versionselector.htm

Upgrading TSM

(TSM 2019 or later) When you upgrade to TSM 2019 or later, you do not need to
update .NET assembly references to the TSM Application API or TSM Code Module
API assemblies in Visual Studio projects. The TSM installer ensures that references to
earlier versions of the API assemblies are automatically redirected to the current
version of the assembly.

(TSM 2017 or earlier) When you upgrade to a full, non-service pack version of TSM
and you want to continue to use existing code modules and applications in the later
version, you must update the .NET assembly references in Visual Studio projects.
The assemblies you build using TSM APIs are compatible only with the version of
TSM, including service packs, you reference in Visual Studio projects.

Upgrading Instrument Drivers

When you upgrade to a later version of an instrument driver .NET API, you do not
need to update the .NET assembly references in Visual Studio projects. NI
instrument driver .NET API installers ensure that references to earlier versions of the
instrument driver .NET API assembly are automatically redirected to the current
version of the assembly if the earlier version assembly does not exist.

The following table lists the minimum version of instrument driver .NET APIs TSM
supports.

NI Driver Assembly Name Minimum Version
NI-DAQmx NationalInstruments.DAQmx.dl

l
16.1

NI-DCPower NationalInstruments.ModularIn
struments.NIDCPower.Fx40.dll

1.1

NI-Digital Pattern NationalInstruments.ModularIn
struments.NIDigital.Fx40.dll

16.0

NI-DMM NationalInstruments.ModularIn
struments.NIDmm.Fx40.dll

15.2

NI-FGEN NationalInstruments.ModularIn
struments.NIFgen.Fx40.dll

16.0

NI-RFmx NationalInstruments.RFmx.Inst
rMX.Fx40.dll

19.0

© National Instruments 239

TestStand Semiconductor Module

NI-RFPM NationalInstruments.ModularIn
struments.NIRfpm.Fx40.dll

14.5

NI-RFSA NationalInstruments.ModularIn
struments.NIRfsa.Fx40.dll

19.0

NI-RFSG NationalInstruments.ModularIn
struments.NIRfsg.Fx40.dll

19.0

NI-SCOPE NationalInstruments.ModularIn
struments.NIScope.Fx40.dll

2.0

NI-SWITCH NationalInstruments.ModularIn
struments.NISwitch.Fx40.dll

1.1

Exporting and Importing Test Limits with Text Files (TSM)
Use a tab-delimited text file to export and import test limits from and to
Semiconductor Multi Test steps and Semiconductor Sequence Call steps in a single
sequence file at edit time or run time. During development, export all the tests in a
test program to review and edit and then import the changes back into the test
program. At run time, load and execute a different set of test limits from separate
text files based on the test program configuration you select by exporting the test
limits and creating multiple copies of the file to edit for each unique set of test limits
you want to use. To protect the test limits files from viewing or editing when
deploying a test program, embed the test limits in the test program sequence file
and use the TestStand password protection option to lock the sequence file.

Select Semiconductor Module»Edit Test Program and select Test Limits
Files in the Test Program Editor to specify one or more test limits files to make
available to the test program configurations. The test program configuration
specifies the test limits file that loads before running a test lot.

Create a test limits file by selecting Semiconductor Module»Export Test Limits
from or by clicking the Export Test Limits from button on the TSM toolbar to
export test limits from a sequence file into a tab-delimited test limits text file. Import
a test limits file by selecting Semiconductor Module»Import Test Limits to or
by clicking the Import Test Limits to button on the TSM toolbar to import test
limits from a tab-delimited test limits text file into a sequence file. When you import
test limits from a text file, you can update limits in matching tests or replace all tests
in matching steps.

ni.com240

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_seq_file_prop_adv_tab.htm

Exporting Test Limits from Sequence Files (TSM)

Select Semiconductor Module»Export Test Limits from <filename> to export
test limits from all test steps in a sequence file to a new or existing tab-delimited test
limits text file at edit time. Selecting an existing file overwrites the content of the
file.

When you export test limits, the text file includes the following test data for every
sequence in the sequence file:

■ Sequence name, Step name, UniqueStepId, Test name— Always
included.
■ Test number— If a step does not contain any tests, this field displays No
Tests.

Note Use the Semiconductor Action step
instead of the Semiconductor Multi Test step
if the step does not contain any tests.

■ Pin or pin group—TSM does not export the test data associated with the
generated tests for the pins in the pin group.
■ Low limit expression, High limit expression—For Pass/Fail tests, these
fields are blank.
■ Scaling factor—Included only when non-empty scaling factors exist for
any test in the sequence file and scaling factors are the same within each test.
The Units Prefix column of the Supported Scaling factors table lists values for
exported scaling factors.
■ Low limit scaling factor, High limit scaling factor, Data limit scaling
factor—Included only when non-empty for any test in the sequence file and
the data and limits scaling factors differ in at least one test in the sequence
file. The Units Prefix column of the Supported Scaling Factors table lists
values for exported scaling factors.
■ Evaluation comparison mode—Included only when at least one step
contains non-default value. For Pass/Fail tests, this field is blank.
■ Base units—For Pass/Fail tests, this field is blank.
■ Evaluation type, Software bin— Always included.

© National Instruments 241

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsapiref/reftopics/step_uniquestepid_p.htm

■ Test name expression, Test number expression, Software bin
expression, Published data ID, Test data source expression, Export
data to expression—Included only when non-empty values exist for any
tests in the sequence file.
■ Test numeric display format—Included only when non-default test
numeric display formats exist for any tests in the sequence file.
■ PAT base test number—Included only when non-empty PAT base test
numbers exist for any tests in the sequence file. A blank value is exported for a
test when the Enable Dynamic PAT and Enable Static PAT columns on the
Semiconductor Multi Test Part Average Testing (PAT) tab do not include a
checkmark for the test.
■ Enable dynamic PAT—Included only when the Enable Dynamic PAT
column on the Semiconductor Multi Test Part Average Testing tab includes a
checkmark in the sequence file.
■ Dynamic PAT test number, Dynamic PAT test name, Dynamic PAT
software bin, Dynamic PAT low limit, Dynamic PAT high limit—
Included only when non-empty values exist for any tests in the sequence file.
A blank value is exported for a test when the Enable Dynamic PAT column
on the Semiconductor Multi Test Part Average Testing tab does not include a
checkmark for the test.
■ Enable static PAT—Included only when the Enable Static PAT column
on the Semiconductor Multi Test Part Average Testing tab includes a
checkmark in the sequence file.
■ Static PAT test number, Static PAT test name, Static PAT software
bin—Included only when non-empty values exist for any tests in the sequence
file. A blank value is exported for a test when the Enable Static PAT column
on the Semiconductor Multi Test Part Average Testing tab does not include a
checkmark for the test.

The file does not contain test data for external sequence files referenced in the
sequence file from which you export the test limits.

Notes

ni.com242

TestStand Semiconductor Module

■ For Semiconductor Multi Test steps in
the sequence that have no tests, the file
contains a row with the step information
and the value No Tests for the Test
Name. All other columns are blank. Use
the Semiconductor Action step instead of
the Semiconductor Multi Test step if the
step does not contain any tests.
■ For Semiconductor Sequence Call steps
in the sequence that have no tests, the file
contains a row with the step information
and the value No Tests for the Test
Name. All other columns are blank. Use
the TestStand Sequence Call step instead
of the Semiconductor Sequence Call step
if the step does not contain any tests.
■ If a field name begins with a
mathematical sign, Microsoft Excel might
interpret the contents of the cell as a
formula and return an error for the cell. To
work around this issue, format the cell in
Excel as text data.
■ In some cases when a limit has a large
number of digits, Microsoft Excel might
truncate the decimal portion of the
number. To work around this issue,
format the columns that contain the limit
numbers in Excel as text data.
■ Exporting PAT limits does not honor
settings you specify in the StepSetting
sPaneUI property of the FileGlobals
.PartAverageTestingAlgorithmD
escription.EnvironmentSetting
s container of the PartAverageTesti
ngCallbacks.seq file.

See Also
Editing Test Limits Text Files

© National Instruments 243

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/built_in_step_types_sequence_call.htm

Opening Test Limits Text Files in Microsoft Excel

Test Limits Text File Structure (TSM)

Each row in the test limits file corresponds to a test. The import mode and the
columns in the test limits file define how the Import/Export Test Limits tool matches
rows to the sequence file.

Tags enclosed in angle brackets denote the properties recognized during import or
export. The Import/Export Test Limits tool ignores any column with an unknown tag
and any text above or on the same line as the opening <SemiconductorModule
Tests> tag or below or on the same line as the required closing </Semiconduct
orModuleTests> tag. You can place comments above the <SemiconductorMo
duleTests> tag, below the </SemiconductorModuleTests> tag, or to the
right of the recognized data columns, as shown in the following table:

Column Tag Description Format
<SequenceName> Name of the sequence. The tool

uses this column, if present, to
match each row in the test limit
s file to locations in the sequen
ce file.

String

<StepName> Name of the step. The tool uses
this column, if present, to matc
h each row in the test limits file
to locations in the sequence file
.

String

<StepId> Unique ID of the step automatic
ally generated by TestStand. Th
e tool uses this column, if prese
nt, to match each row in the tes
t limits file to locations in the se
quence file.

String

<TestName> Name of the test. String
<TestNumber> Number of the test. Importing a

n empty string indicates the lac
k of a test number. When you e
nable the Update limits in m
atching tests option, the tool

Number

ni.com244

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsapiref/reftopics/step_uniquestepid_p.htm

uses this column, if present, to
match each row in the test limit
s file to locations in the sequen
ce file. If a step does not contai
n any tests, this field displays N
o Tests.

Note Use the
Semiconducto
r Action step in
stead of the Se
miconductor
Multi Test step
if the step doe
s not contain a
ny tests.

<Pin> Name of the pin or pin group. F
or a pin group, test data for indi
vidual pins in the pin group are
not included in the file.

String

<LowLimitExpression> Lower limit expression. Blank f
or Pass/Fail tests.

String

<HighLimitExpression> Upper limit expression. Blank f
or Pass/Fail tests.

String

<ScalingFactor> Scaling factor used to display t
he data, high limit, and low limi
t fields. The Units Prefix colu
mn of the Supported Scaling Fa
ctors table lists valid values for
scaling factors.

Note If you us
e the <Scaling
Factor> colum
n, you cannot
use the individ
ual field <LowL
imitScalingFac
tor>, <HighLim
itScalingFactor

String

© National Instruments 245

TestStand Semiconductor Module

>, and <DataSc
alingFactor> c
olumns.

<LowLimitScalingFactor
>

Scaling factor used to display t
he low limit field. The Units Pr
efix column of the Supported S
caling Factors table lists valid v
alues for scaling factors.

String

<HighLimitScalingFacto
r>

Scaling factor used to display t
he high limit field. The Units P
refix column of the Supported
Scaling Factors table lists valid
values for scaling factors.

String

<DataScalingFactor> Scaling factor used to display t
he data field. The Units Prefix
column of the Supported Scalin
g Factors table lists valid values
for scaling factors.

String

<ComparisonType> Evaluation Comparison Mode. I
ncluded in file only when prope
rty contains non-default value.
Blank for Pass/Fail tests.

String

<Units> Base units of the limits. Blank f
or Pass/Fail tests.

String

<EvaluationType> Evaluation type. Valid values ar
e Pass/Fail or Numeric Limit.

String

<FailBin> Software Bin. Number
<TestNameExpression> Test name expression. Included

in file only when non-empty tes
t name expressions exist in the
sequence file.

String

<TestNumberExpression> Test number expression. Includ
ed in file only when non-empty
test number expressions exist i
n sequence file.

String

<FailBinExpression> Software bin expression. Includ
ed in file only when non-empty

String

ni.com246

TestStand Semiconductor Module

software bin expressions exist i
n sequence file.

<PublishedDataId> Published data ID. Included in fi
le only when non-empty publis
hed data IDs exist in the sequen
ce file.

String

<TestDataSource> Test data source expression. Inc
luded in file only when non-em
pty test data source expression
s exist in the sequence file.

String

<ExportLocation> Expression for location to whic
h to export data (Export Data To
column in the Tests table). Inclu
ded in file only when non-empt
y export data to expressions exi
st in the sequence file.

String

<NumericFormat> Test numeric display format tha
t applies to the high limit, low li
mit, and data. During export, TS
M retrieves the value from the D
ata property of the test. Includ
ed in file only when non-default
numeric formats exist for any te
sts in the sequence file.

String

<PAT_BaseTestNumber> Base test number for PAT tests.
Included in file only when non-
empty PAT base test numbers e
xist in the sequence file. A blank
value is exported for a test whe
n the Enable Dynamic PAT a
nd Enable Static PAT column
s on the Semiconductor Multi T
est Part Average Testing (PAT) ta
b do not include a checkmark f
or the test.

Number

<DynamicPAT_Enabled> Enables dynamic PAT. Included
in file only when the Enable D
ynamic PAT column on the Se
miconductor Multi Test Part Ave

Boolean

© National Instruments 247

TestStand Semiconductor Module

rage Testing tab includes a chec
kmark in the sequence file.

<DynamicPAT_TestNumber
>

Number of the dynamic PAT tes
t. Included in file only when no
n-empty dynamic PAT test num
bers exist in the sequence file. A
blank value is exported for a tes
t when the Enable Dynamic P
AT column on the Semiconduct
or Multi Test Part Average Testin
g tab does not include a check
mark for the test.

Number

<DynamicPAT_TestName> Name of the dynamic PAT test. I
ncluded in file only when non-e
mpty dynamic PAT test names e
xist in the sequence file. A blank
value is exported for a test whe
n the Enable Dynamic PAT co
lumn on the Semiconductor Mu
lti Test Part Average Testing tab
does not include a checkmark f
or the test.

String

<DynamicPAT_FailBin> Dynamic PAT software bin. Incl
uded in file only when non-emp
ty dynamic PAT software bins e
xist in the sequence file. A blank
value is exported for a test whe
n the Enable Dynamic PAT co
lumn on the Semiconductor Mu
lti Test Part Average Testing tab
does not include a checkmark f
or the test.

Number

<DynamicPAT_LowLimit> Dynamic PAT lower limit. Includ
ed in file only when non-empty
dynamic PAT low limits exist in
the sequence file. A blank value
is exported for a test when the
Enable Dynamic PAT column
on the Semiconductor Multi Tes
t Part Average Testing tab does

Number

ni.com248

TestStand Semiconductor Module

not include a checkmark for the
test.

<DynamicPAT_HighLimit> Dynamic PAT higher limit. Inclu
ded in file only when non-empt
y dynamic PAT high limits exist i
n the sequence file. A blank val
ue is exported for a test when t
he Enable Dynamic PAT colu
mn on the Semiconductor Multi
Test Part Average Testing tab do
es not include a checkmark for
the test.

Number

<StaticPAT_Enabled> Enables static PAT. Included in f
ile only when the Enable Stati
c PAT column on the Semicond
uctor Multi Test Part Average Te
sting tab includes a checkmark
in the sequence file.

Boolean

<StaticPAT_TestNumber> Number of the static PAT test. I
ncluded in file only when non-e
mpty static PAT test numbers in
the sequence file. A blank value
is exported for a test when the
Enable Static PAT column on
the Semiconductor Multi Test P
art Average Testing tab does no
t include a checkmark for the te
st.

Number

<StaticPAT_TestName> Name of the static PAT test. Incl
uded in file only when non-emp
ty static PAT test names exist in
the sequence file. A blank value
is exported for a test when the
Enable Static PAT column on
the Semiconductor Multi Test P
art Average Testing tab does no
t include a checkmark for the te
st.

String

<StaticPAT_FailBin> Static PAT software bin. Include
d in file only when non-empty s

Number

© National Instruments 249

TestStand Semiconductor Module

tatic PAT software bins exist in t
he sequence file. A blank value i
s exported for a test when the E
nable Static PAT column on t
he Semiconductor Multi Test Pa
rt Average Testing tab does not
include a checkmark for the tes
t.

Note Exporting PAT limits does not honor
settings you specify in the StepSettingsPan
eUI property of the FileGlobals.PartAve
rageTestingAlgorithmDescription.E
nvironmentSettings container of the Par
tAverageTestingCallbacks.seq file.

See Also
Editing Test Limits Text Files

Opening Test Limits Text Files in Microsoft Excel

Opening Test Limits Text Files in Microsoft Excel (TSM)

Complete the following steps to open a test limits text file in Microsoft Excel.

1. In Excel, select Open. Select All Files in the drop-down menu of file types.

2. Select the test limits file you want to open and click the Open button.

3. In the Text Import Wizard, select Delimited in the Original data type option
and click Next.

4. Select Tab in the Delimiters option and click Next.

5. Select General in the Column data format option and click Finish.

Alternatively, you can drag and drop a test limits text file into Excel to open the file.

When you save a modified test limits file that you opened or edited in Excel, Excel
might return a message that the Excel file contains features that are not compatible
with the tab-delimited text format. Click Yes in the prompt to save the workbook in

ni.com250

TestStand Semiconductor Module

text format. The Import/Export Test Limits tool is unable to parse any additional
formatting information Excel adds to the file.

Notes

■ If a field name begins with a
mathematical sign, Microsoft Excel might
interpret the contents of the cell as a
formula and return an error for the cell. To
work around this issue, format the cell in
Excel as text data.
■ In some cases when a limit has a large
number of digits, Microsoft Excel might
truncate the decimal portion of the
number. To work around this issue,
format the columns that contain the limit
numbers in Excel as text data.

Editing Test Limits Text Files (TSM)

You can delete columns in the test limits text file to simplify the external limits file,
but if you delete an identifier column, such as SequenceName, StepName, StepId, or
TestName, the text file might then contain rows that use the same identifier string.
When this situation occurs, you must consolidate duplicate rows or include another
identifier to distinguish among tests. You must repeat the customizations you make
to the text file each time you export the test limits.

For example, if you have several steps or tests in a sequence file with the same name
or test number but you want to use the same limits for each step, you can delete the
StepId column and possibly the SequenceName column to simplify the resulting
text file. However, if you want to use different limits for steps or tests with the same
name or test number, the StepId column and possibly the SequenceName column
must remain in the text file to distinguish the tests.

Notes

■ If a field name begins with a
mathematical sign, Microsoft Excel might
interpret the contents of the cell as a
formula and return an error for the cell. To

© National Instruments 251

TestStand Semiconductor Module

work around this issue, format the cell in
Excel as text data.
■ In some cases when a limit has a large
number of digits, Microsoft Excel might
truncate the decimal portion of the
number. To work around this issue,
format the columns that contain the limit
numbers in Excel as text data.

See Also
Opening Test Limits Text Files in Microsoft Excel

Test Limits Text File Structure

Importing Test Limits from Text Files (TSM)

Select Semiconductor Module»Import Test Limits into <filename> to import
test limits from a tab-delimited test limits text file into all test steps in a sequence
file at edit time. When you import test limits from a text file, you can replace only the
tests defined in the test limits file or you can delete all the tests in the sequence file
and recreate each test from the contents of the test limits file.

The Import/Export Test Limits tool uses the SequenceName, StepName, and StepId
columns in the test limits file to match tests in the sequence file. When you update
the limits in matching tests from the test limits file, the tool also uses the
TestNumber column to identify the test. If one of these identifier columns does not
exist in the test limits file, the tool imports data into any step or test that matches
the remaining identifiers and a row in the test limits file might update multiple
locations in the sequence file. If more than one location in the sequence file
matches the identifiers in a row in the test limits file, TSM imports data from that
row into all the matching locations.

The Import/Export Test Limits tool returns an error and fails to import a test limits
file if:

■ A row in the test limits file does not match any location in the sequence file.
■ A single test in the sequence file matches more than one row in the test
limits file.

ni.com252

TestStand Semiconductor Module

■ A location in the sequence file does not match any row in the test limits file
and the Require every step to be in test limits file option is enabled.
■ A row in the test limits file matches a Semiconductor Sequence Call step in
the sequence file and the Test Data Source column contains a value.

The Import Test Limits into Sequence File dialog box contains the following options:

■ Update limits in matching tests—Finds any test in the sequence file that
matches the SequenceName, StepName, StepId, and TestNumber identifier
columns in the test limits file and sets the property values in the sequence file
to the corresponding values in the test limits file. If one of these identifier
columns other than TestNumber does not exist in the test limits file, the tool
sets the corresponding property values for any step that matches the
remaining identifiers.

Note You cannot change the test number
for tests in the sequence file when you select
this mode. You must use the
Replace all tests in matching steps
option if you want to change the test
number.

The tool modifies only the tests and properties that exist in the test limits file.
Tests and properties defined in the sequence file but not in the test limits file
remain in the sequence file unchanged.

Select this option when you want to set only certain test properties at run
time.
■ Replace all tests in matching steps—Deletes all the tests that
correspond to steps in the test limits file and recreates each test from the
contents of the test limits file by adding tests to any step that matches the
SequenceName, StepName, and StepId identifier columns in the test limits
file. If one of these identifier columns does not exist in the test limits file, the
tool adds a test to any step that matches the remaining identifiers. For
columns that do not exist in the test limits file, the tool sets the corresponding
property to the default value in the sequence file. The test limits file must
include the columns in which you use non-default values; otherwise, the tool

© National Instruments 253

TestStand Semiconductor Module

uses default values for those properties in the sequence file. If any step in the
test limits file has a value of No Tests for the Test Number, the tool deletes
all tests for any matching steps.

Note Use the Semiconductor Action step
instead of the Semiconductor Multi Test step
if the step does not contain any tests.

Select this option when you want to use limit files with different numbers of
tests. For example, you might want to include more tests in a normal testing
mode than you include in a QA testing mode.
■ Require every step to be in test limits file—Returns an error and does
not import the file if a test or step exists in the sequence but does not exist in
the limits file. If you do not enable this option, the Import/Export Test Limits
tool returns a warning and imports only matching tests or steps in the limits
file.

See Also
Tutorial: Importing Test Limits from a File

Exporting a Correlation Offsets Template File (TSM)

You can apply correlation offset values to test results on a per-site basis at run time
before evaluating the test result data against limits. Use the Load Correlation Offsets
Step and associated edit tab to load and apply a correlation offset file.

Select Semiconductor Module»Export Correlation Offset Template file
based on <filename> to generate a tab-delimited correlation offsets template file (
.txt) based on the numerical limit tests in the selected sequence file. If you make
changes, export the file again, and select an existing file, the content of the existing
file is overwritten, including any custom correlation offset values you set.

The correlation offsets template file contains entries (0.0) for all numerical limits
tests for all defined sites in the sequence file. You can use the template file as a
starting point for a custom correlation offsets file.

ni.com254

TestStand Semiconductor Module

The file does not contain correlation offsets entries for external sequence files
referenced in the sequence file from which you export the correlation offsets
template file.

The correlation offsets template file contains the following test data for every
sequence in the sequence file:

Data Item Description
SequenceName Always included in the file.
StepName Always included in the file.
StepId Always included in the file.
TestNumber Always included in the file. If a step does not co

ntain any tests, this field displays "No Tests"
.

Site_0_Offset to Site_n_Offset n is the number of sites defined for the station. I
f no sites are defined, only Site_0_Offset wi
ll exist. The default value is 0.0. You do not hav
e to assign a custom correlation offset value to e
very test in the file.

Debugging TestStand Test Programs

Consider the following common approaches to debug the following components of
a TestStand test program.

Sequence Execution Code Modules and Related Files Analysis and Rule
Configuration Modules Memory Management Deployments

Sequence Execution

Sequences can be in a running or suspended testing state. Testing is running when
continuously testing DUTs. When testing is running, each test socket is executing
tests for one DUT. Testing is suspended when one or more TestStand test socket
executions are suspended at a breakpoint. One test socket can be suspended while
other test sockets are running. The background of the Execution window changes to
yellow to indicate that the execution is suspended. You can examine sequence
variables only in executions that are suspended.

Use the following techniques to debug sequence execution:

© National Instruments 255

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/debugging_executions.html

■ Set Sequence Breakpoints—To suspend testing at a specific step, set a
breakpoint on the step by clicking in the column to the left of the step name in
the Steps Pane of the Sequence File window or in the Execution window. You
can right-click the breakpoint stop sign icon and select
Breakpoint»Breakpoint Settings to launch the Breakpoint Settings dialog
box, in which you can specify an expression to set a conditional breakpoint.
Testing suspends when the execution reaches the step breakpoint. A yellow
arrow icon, called the execution pointer, to the left of the step indicates the
next step to execute when testing resumes. Click the breakpoint icon to
remove the breakpoint.
■ Set Data Breakpoints—To suspend testing when the value of a variable
changes or when it has a specific value, use the Watch View pane to enter an
expression for the variable and edit the watch expression to specify a break
condition. TestStand evaluates these break conditions when each step
executes and suspends the testing if the break conditions are met.

Note Delete watch expressions when you
no longer need them because they can
negatively affect execution performance.

■ Control Test Program and Step Execution—When testing is suspended,
use the following options in the Debug menu or toolbar or in the Steps pane
context menu of the Execution window to control test program and step
execution:

■ Debug Menu/Toolbar
■ Step Into—Enters and suspends inside the code module associated
with the step to which the execution pointer points.
■ Step Over —Executes the step to which the execution pointer points
and suspends execution on the next step in the sequence.
■ Step Out—Resumes execution through the end of the current
sequence and suspends execution on the next step in the calling
sequence.

■ Steps Pane Context Menu

ni.com256

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_watch_pane.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_watch_expr_set.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/menu_debug.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/toolbarbuttons.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_steps_tabcm.htm

■ Run Mode»Skip (temporarily skips step)—Select Skip to prevent
the step from executing in the current execution. Changing the step run
mode in an execution does not persist the setting to the step in the
sequence file. As a result, once execution ends, the setting reverts to
the original run mode before you made the change. Change the run
mode on the step in the Sequence File window to persist the setting in
the sequence file.
■ Set Next Step to Cursor —Moves the execution pointer to point to
a different step to change which step executes next.
■ Run Selected Steps—Select one or more arbitrary steps in the
sequence that you want to execute before resuming normal execution.
TestStand executes the selected steps in the order they appear in the
sequence. If a breakpoint suspends execution of the selected steps, the
Steps pane displays the interactive execution pointer, which differs
from the normal execution pointer.

■ View and Modify Variable and Expression Values —Use the following
techniques to view or modify variable values and to monitor expression
values:

■ When testing is suspended, use the Variables pane to view and modify the
values of any of the variables and properties accessible in the current
execution.
■ To monitor the value of an expression while testing, enter the expression
in the Watch View pane when testing is suspended. You can also use the Edit
Breakpoints/Watch Expression dialog box to enter expressions when testing
is not in progress. When you enable tracing, the sequence editor updates
the values after each step executes.

■ Display Debug Messages—To display messages to the Output pane while
testing, use the OutputMessage expression function in a Statement step.
■ Use Execution Profiler—The Execution Profiler records event, operation,
item, thread, and execution data, such as the duration of steps, code modules,
and other resources a multithreaded TestStand system uses over a period of
time.

© National Instruments 257

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_context_tab.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_watch_pane.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_break_watch.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_break_watch.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_output_pane.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/outputmessage.html
https://www.ni.com/docs/csh?topicname=tsref/infotopics/built_in_step_types_statement.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/resource_usage_profiler.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/resource_usage_profiler_recording_info.html
https://www.ni.com/docs/csh?topicname=tsref/infotopics/resource_usage_profiler_recording_info.html

Code Modules and Related Files

The TestStand Sequence Editor integrates with common code module development
environments to help streamline debugging tasks.

LabVIEW
When executing VIs in the LabVIEW Development System, you can debug the VI code
modules loaded in memory using the same version of LabVIEW in which the VIs are
executing by setting breakpoints and probes in the VIs. Once the TestStand
execution reaches the VI, the first breakpoint is triggered in a new instance of the VI.
To add additional breakpoints or probes, add them to this instance of the VI. To
make changes to the VI after debugging, right-click the front panel of the debugging
instance of the VI and select Remote Debugging»Quit Debug Session.

The LabVIEW Development System can also debug applications that execute VIs
using the LabVIEW Runtime, such as VIs executed using the TestStand LabVIEW
Adapter and LabVIEW-built DLLs executed using the TestStand C/C++ DLL Adapter.

When the TestStand LabVIEW Adapter loads a VI code module, it reserves the VI in
LabVIEW to prevent edits to the VI. To edit a reserved VI, you must first unload the
step code module. Click the Unload and Open VI button on the LabVIEW Module tab
to unload a LabVIEW step code module and open the VI for editing. The button is
enabled only if all executions are suspended. If the button tooltip indicates that it is
not enabled because there are executions that are actively running, use the Break
All button on the Debug toolbar to suspend all executions.

You can also use the LabVIEW Desktop Execution Trace Toolkit to collect various
types of trace data from LabVIEW applications.

Packed Libraries

LabVIEW packed libraries, or .lvlibp files, contain compiled LabVIEW code that
you can execute from TestStand. By default, VIs in packed libraries do not contain
any source code and cannot be debugged. To create a packed library that you can
debug, select the Enable Debugging option in the Advanced page of the Packed
Library Properties dialog box. You can debug VIs in a debuggable packed library the
same way you debug stand-alone VIs when you execute the VIs using the

ni.com258

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tslabview/infotopics/debuggingwithlv.html
https://www.ni.com/docs/csh?topicname=tslabview/infotopics/debuggingwithlv.html
https://www.ni.com/docs/csh?topicname=tslabview/infotopics/debug_trace.html
https://www.ni.com/docs/csh?topicname=tslabview/infotopics/reserve.htm
https://www.ni.com/docs/csh?topicname=tslabview/infotopics/tracingwithdett.html

Development System option in the TestStand LabVIEW Adapter Configuration
dialog box.

LabVIEW, LabWindows/CVI, and .NET DLLs
To debug a DLL TestStand calls, first create the DLL with debugging enabled in the
application development environment (ADE). Then, launch the TestStand Sequence
Editor or TestStand User Interface executable from the ADE or attach to the
sequence editor or user interface process from the ADE, when supported.

.NET
To debug a .NET assembly, first create the assembly with debugging enabled in the
ADE. Then, launch the sequence editor or user interface from Microsoft Visual Studio
or attach to the sequence editor or user interface process from Visual Studio.

You cannot view any TestStand sequence variables while suspended at a breakpoint
in Visual Studio.

You cannot modify .NET assemblies while TestStand has the assemblies loaded.
Before you can successfully rebuild a .NET assembly loaded by TestStand, you must
unload the assembly and all other assemblies the .NET Adapter is using in TestStand
by completing the following steps:

1. End all executions.
2. Clear any references to .NET objects stored in station globals.

3. Select File»Unload All Modules.

To unload .NET code modules, TestStand must unload the .NET appdomain that it
uses with the .NET Adapter and can do so safely only when the .NET appdomain is
no longer in use.

Analysis and Rule Configuration Modules

If you use the TestStand Sequence Analyzer, you can debug custom analysis
modules and rule configuration modules by setting a breakpoint in the module and
then calling the module from the TestStand Sequence Analyzer.

© National Instruments 259

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/debugging_dlls.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/debugging_net_assemblies.html
https://www.ni.com/docs/csh?topicname=tsref/infotopics/sequence_analyzer_overview.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/sa_debugging_modules.htm

Memory Management

Visit ni.com/info and enter the Info Code tsmemory to access the NI tutorial,
Troubleshooting Memory Growth Issues in TestStand Systems, for information
about efficiently managing memory in test sequences and code modules.

Deployments

Ensure that you have followed the suggested deployment process to plan, design,
implement, execute, and validate a full or patch deployment for a TestStand-based
test system.

The TestStand Deployment Utility generates several errors and warnings specifically
related to debugging patch deployments. Additionally, you can use the Build Status
tab of the deployment utility to view information about the patch deployment.

Debugging TSM Test Programs

In addition to following common approaches to debug components of a TestStand
test program, consider the following additional approaches to debug components
of a TSM test program

Sequence Execution Lot Statistics Viewer Simulated Handler or Prober

Sequence Execution

Sequences can be in a running or suspended testing state. Testing is running when
continuously testing DUTs. When testing is running, each test socket is executing
tests for one DUT. Testing is suspended when one or more TestStand test socket
executions are suspended at a breakpoint. One test socket can be suspended while
other test sockets are running. The background of the Execution window changes to
yellow to indicate that the execution is suspended. You can examine sequence
variables only in executions that are suspended.

Pausing a lot does not suspend executions the way using the default TestStand
Sequence Editor Debug»Break or Break All menu items do. When you pause a lot
with the Pause button, testing continues until each site completes testing its
current DUT. The executions then wait for operator input before sending the End of
Test signal to the handler or prober and proceeding with testing the next batch of

ni.com260

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsdeploysystem/infotopics/tsduprocessoverview.htm
https://www.ni.com/docs/csh?topicname=tsdeploysystem/infotopics/tsduconcepts.htm
https://www.ni.com/docs/csh?topicname=tsdeploysystem/infotopics/tsdudefault.htm
https://www.ni.com/docs/csh?topicname=tsdeploysystem/infotopics/createpatch.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/deploymentutility.htm
https://www.ni.com/docs/csh?topicname=tserrors/reftopics/overviewtopic.html
https://www.ni.com/docs/csh?topicname=tsdeploysystem/infotopics/debuggingpatch.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/deploymentutility_buildstattab.htm

DUTs. To suspend test socket executions to examine variables or to step into code
modules, set a breakpoint on the step where you want to suspend. You cannot
examine variables in the sequence editor for executions that are not suspended,
even if they are paused between DUTs.

Use the following techniques to debug TSM sequence execution:

■ Use TSM Toolbar —Use the TSM toolbar buttons to control execution and
view lot statistics while debugging a sequence. Avoid using the default
TestStand Sequence Editor Debug»Terminate, Terminate All, Abort, and
Abort All menu items because they might not clean up and close instrument
sessions correctly.
■ Step Into TSM Steps—For Semiconductor Multi Test and Semiconductor
Action steps that execute test code for multiple sites, the test sockets for all
the sites that the step is testing must be suspended at the same step before
you can use the Step Into Debug menu item or toolbar button.

For LabVIEW 2020 and newer, when you step into a VI from TestStand and click
Run, TSM opens the block diagram, suspends execution on the first node, and
automatically enables Retain Wire Values. You can also edit the executing VI
in LabVIEW and continue execution of the lot in TestStand.

Lot Statistics Viewer

To monitor the bin counts for each site while testing in the sequence editor, use the
Lot Statistics Viewer, in which you can view lot statistics while running or debugging
a sequence in the sequence editor. You can also control test program execution in
the Lot Statistics Viewer.

Simulated Handler or Prober

When developing, testing, or debugging a semiconductor test program, the test
developer might not have access to a real handler or prober. In such cases, the test
developer can use the NI Built-in Simulated Handler Driver to verify that the test
program behaves correctly without a handler or prober.

© National Instruments 261

TestStand Semiconductor Module

See Also
Semiconductor Module Run-Time Error Dialog Box

Editing an Executing VI in LabVIEW

For LabVIEW 2020 and newer, when you step into a VI from a TestStand step,
LabVIEW displays the Edit VI and reset step execution button on both the
front panel and block diagram toolbars. Use this button to stop executing the VI and
to open it for editing. When you click Edit VI and reset step execution, TestStand
resets the step execution to the step that you stepped into. Continuing execution of
the lot in TestStand will execute the VI with the modifications you made.

Debugging RF Sessions (TSM)

You can enable debugging for RF instruments so that you can use an NI-RFmx soft
front panel to debug opened sessions for the instruments. Because enabling
debugging for RF instruments might incur a performance penalty, TSM
automatically disables debugging for VST and RFSA instruments on the system
when you run a test program in an operator interface. TSM automatically enables
debugging for those instruments when you run a test program in the sequence
editor so you can use a soft front panel to debug NI-RFmx sessions while running in
the sequence editor.

To prevent TSM from automatically changing the debugging option for RF
instruments, change the file extension on the <TestStand>\Components\Mod
els\ModelPlugins\Addons\NI_SemiconductorModule_RFmxDebugTo
ggle.seq file to something other than .seq.

Custom Instrument Panels (TSM)

You can use custom pin- and site-aware instrument panel VIs to control and
measure pins during test program execution at a breakpoint, which can be useful
during test program development and troubleshooting. Custom instrument panels
obtain active instrument sessions stored in Semiconductor Module context objects
using the Set Session VIs or .NET methods in TSM Code Module API. During active
test program execution, TSM disables the custom instrument panel to avoid
conflicts.

ni.com262

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Creating Custom Instrument Panels

You must create the following components to implement a custom instrument panel
you can launch from the Semiconductor Module menu:

■ A custom instrument panel callback sequence file that meets the following
requirements:

■ The file must reside in the <TestStand Public>\Components\Mod
ules\NI_SemiconductorModule\CustomInstrumentPanels
directory.

Note After you add custom instrument
panel components to this directory, you
must restart TestStand to register the
custom instrument panel and update the
Semiconductor Module»Custom
Instrument Panels menu.

■ The file must contain a LaunchCustomInstrumentPanel callback
sequence that includes a TestStand Action step to launch the custom
instrument panel VI. Ensure that you enable the Show VI Front Panel
option on the Module tab of the step. The LaunchCustomInstrumentP
anel callback sequence must also include a Parameters variable of type
Object Reference named SemiconductorModuleManager.
■ The file must include a file global variable named CustomInstrumentP
anelDisplayName. This variable must include a unique value to display
in the Semiconductor Module»Custom Instrument Panels menu.
■ The file can include an optional file global variable named CustomInstr
umentPanelIcon to specify the filename of an icon to display in the
Semiconductor Module»Custom Instrument Panels menu. The icon
must be located in the C:\Users\Public\Documents\National In
struments\<TestStand>\Components\Icons directory.

■ A custom instrument panel VI, for example, TopLevel.vi, that
implements debugging tasks for the instrument and that meets the following
requirements:

© National Instruments 263

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ You must call the VI from a TestStand Action step in the
LaunchCustomInstrumentPanel callback sequence.
■ You must use the Parameters.SemiconductorModuleManager
string to pass the Semiconductor Module Manager object reference to the VI.

Note NI recommends that custom
instrument panel VI source code resides in
the <TestStand Public>\Componen
ts\Modules\NI_SemiconductorMod
ule\CustomInstrumentPanels
directory along with the required custom
instrument panel callback sequence file.

Refer to the following resources that you can use as starting points for custom
instrument panels you create:

■ Examples located in the <TestStand Public>\Examples\NI_Semi
conductorModule\Custom Instrument Panels directory
■ A template for the required custom instrument panel callback sequence file
named CustomInstrumentPanel.seq located in the <TestStand>\Compon
ents\Modules\NI_SemiconductorModule\Templates directory
■ A template for the required corresponding custom instrument panel
LabVIEW project files located in the <TestStand>\Components\Module
s\NI_SemiconductorModule\Templates\CustomInstrumentPan
elTemplate directory

Note To modify the installed examples or
templates, copy the files from the existing
locations to the <TestStand Public>
directory and make changes to the copies of the
files.

Launching Custom Instrument Panels

Select Semiconductor Module»Custom Instrument Panels and select from
the available options to launch the corresponding custom instrument panel VI. Click
the Close (X) button on the custom instrument panel VI titlebar to end the
execution of the VI.

ni.com264

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/readonly_modify.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Although you can launch a custom instrument panel at any time, the VI will not have
access to a valid Semiconductor Module context object reference for pin- and site-
aware instrument sessions until all test program executions are at a breakpoint.
Additionally, the Semiconductor Module context object reference is not available to
custom instrument panel VIs when any test program execution is at a breakpoint in
the ProcessCleanup callback.

Viewing Multisite Data in Code Modules (TSM)

Often you cannot directly examine multisite data by probing a LabVIEW wire or
viewing the value of a .NET variable because typical TSM test code modules produce
data organized in an array indexed by instrument session instead of by site.

To view multisite data in code modules while debugging, use the following TSM VIs
or .NET methods in your code module to convert per-instrument data to per-site
data:

■ Extract Pin Data VI and ExtractPinData .NET method—Extract
measurement data for a single pin in the pin query from per-instrument
measurement data and return per-site data.
■ Per-Instrument to Per-Site Data VI and
PerInstrumentToPerSiteData .NET method—Convert per-instrument
measurement data to per-site data for all pins in the pin query.

Note TSM orders per-site data in the same
order as the sites returned by the Get Site
Numbers VI or SiteNumbers .NET property.

Extracting Per-Site Data for A Single Pin

LabVIEW

The code inside the diagram disable structure obtains per-site data for pin A.

© National Instruments 265

TestStand Semiconductor Module

.NET (C#)
public static void ExampleCodeModule(ISemiconductorModuleContext
semiconductorModuleContext, string[] pins)
{

var pinQueryContext =
semiconductorModuleContext.GetNIDigitalPatternSessionsForPpmu(pins, out var
digitalSessions, out var pinSetStrings);
double[][] measurements = PerformMeasurement(digitalSessions, pinSetStrings);

#if DEBUG

var siteNumbers = semiconductorModuleContext.SiteNumbers;

// Extract per-site data for a single pin for viewing in the debugger. The
perSiteMeasurementsForAllPins variable is
// an array of measurements. Each element is the measurement for pin A on a
specific site. For example,
// perSiteMeasurementsForPinA[1] contains the measurement for pin A on the site
specified by siteNumbers[1].

var perSiteMeasurementsForPinA =
pinQueryContext.ExtractPinData(measurements, "A");

#endif

pinQueryContext.Publish(measurements);

}

Extracting Per-Site Data for All Pins

LabVIEW

The code inside the diagram disable structure obtains per-site data for or all pins.

ni.com266

TestStand Semiconductor Module

.NET (C#)
public static void ExampleCodeModule(ISemiconductorModuleContext
semiconductorModuleContext, string[] pins)
{

var pinQueryContext =
semiconductorModuleContext.GetNIDigitalPatternSessionsForPpmu(pins, out var
digitalSessions, out var pinSetStrings);
double[][] measurements = PerformMeasurement(digitalSessions, pinSetStrings);

#if DEBUG

var siteNumbers = semiconductorModuleContext.SiteNumbers;

// Convert per-instrument data to per-site data for viewing in the debugger. The
perSiteMeasurementsForAllPins variable is
// an array of arrays. Each element is an array of measurements for all pins on a
specific site. For example,
// perSiteMeasurements[1][0] contains the measurement for the pin specified by
pins[0] on the site specified by siteNumbers[1].

var perSiteMeasurementsForAllPins =
pinQueryContext.PerInstrumentToPerSiteData(measurements);

#endif

pinQueryContext.Publish(measurements);

}

See Also
Organization of Measurement Data

Using Environments in TSM
You can configure TSM-specific environments. TSM is enabled by default in custom
TSM environments you create. You can disable and re-enable TSM in a custom TSM
environment. Use the Configure Environment dialog box to create, load, and edit an
environment.

© National Instruments 267

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/tsenv_defining.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/tsenv.html
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_config_env.html

Offline Mode (TSM)
Use Offline Mode to develop, run, and debug test programs only on a computer
without access to NI instruments. Offline Mode simulates the NI instruments the test
program needs. Using Offline Mode does not require changes to the test program.
Use the Accelerometer example to explore Offline Mode.

Using Offline Mode can be helpful when multiple people are developing a test
program at the same time and must share access to a tester, when you do not have
access to a tester, or when you want to explore different test program approaches
that require different instruments.

See Also
Offline Mode Requirements

Offline Mode Workflow

Offline Mode Requirements (TSM)

Notes

■ You must have a valid TSM license to
use Offline Mode.
■ STS Software 19.0 or later includes the
required software versions to use Offline
Mode.

Offline Mode requires NI DAQmx 19.1 or later and PXI Platform Services 19.1 or later.
Additionally, you must install the following instrument drivers to simulate the
corresponding instruments:

■ NI-DCPower 19.1 or later
■ NI-Digital Pattern Driver 19.0 or later
■ NI-DMM 19.1 or later
■ NI-FGEN 19.1 or later
■ NI-HSDIO 19.0 or later

ni.com268

TestStand Semiconductor Module

■ NI-RFPM 19.0 or later, including IVI shared components
■ NI-RFSA 19.1 or later
■ NI-RFSG 19.1 or later
■ NI-SCOPE 19.1 or later
■ NI-SWITCH 19.1 or later
■ NI-Sync 19.0 or later

See Also
Offline Mode Workflow

Offline Mode Workflow (TSM)

Complete the following steps to develop, run, and debug test programs only on a
computer without access to NI instruments.

1. Install STS Software 19.0 or later or ensure you meet the requirements on the
computer on which you want to use Offline Mode.

2. If necessary, copy the test program and supporting files from the STS you
want to simulate in Offline Mode to the computer on which you want to use
Offline Mode.

3. Obtain an Offline Mode system configuration file.
4. Copy the Offline Mode system configuration file to a Supporting Materia

ls\Offline Mode Configurations\subdirectory located in the
same directory as the test program on the computer on which you want to use
Offline Mode.

5. On the computer on which you want to use Offline Mode, open the test
program you want to execute in Offline Mode.

6. Launch the Test Program Editor, navigate to the Offline Mode panel, and
specify the Offline Mode system configuration file to associate with the test
program.

7. Enable Offline Mode.
8. Execute the test program.
9. Debug the test program.

© National Instruments 269

TestStand Semiconductor Module

10. Disable Offline Mode.
11. If necessary, copy the test program and supporting files from the computer on

which you are using Offline Mode to the STS.

Obtaining an Offline Mode System Configuration File (TSM)

The Offline Mode system configuration file defines the instruments on a specific STS.

On the STS you want to simulate in Offline Mode, complete the following steps to
export the Offline Mode system configuration file.

1. Launch STS Maintenance Software.

2. Select File»Export Offline Mode System Configuration.
3. Save the Offline Mode system configuration file in a Supporting Materia

ls\Offline Mode Configurations\subdirectory located in the
same directory as the test program.

If you do not have access to the STS you want to simulate in Offline Mode, use one of
the following methods to obtain the Offline Mode system configuration file.

■ Copy the TSM Accelerometer example Offline Mode system configuration file
(OfflineModeSystemConfigurationForAccelerometerExample
.offlinecfg) and modify the file to include the instruments on the STS you
want to simulate in Offline Mode.
■ Copy and modify an existing Offline Mode system configuration file to
include the instruments on the STS you want to simulate in Offline Mode.
■ Use the Offline Mode system configuration file XML structure to manually
create the file.
■ Contact NI to obtain the Offline Mode system configuration file for the
specific STS you want to simulate in Offline Mode.

See Also
Offline Mode Workflow

ni.com270

TestStand Semiconductor Module

Enabling Offline Mode (TSM)

Complete the following steps to enable Offline Mode on a computer without access
to NI instruments. Offline Mode remains enabled, including after you exit and
relaunch TSM, until you disable it.

Note You cannot enable Offline Mode on an
STS or from a TSM Operator Interface.

1. Install STS Software 19.0 or later or ensure you meet the requirements on the
computer on which you want to use Offline Mode.

2. Obtain an Offline Mode system configuration file and associate it with the test
program you want to execute in Offline Mode. If you do not associate an
Offline Mode system configuration file with the test program, TSM prompts
you for an Offline Mode system configuration file when you enable Offline
Mode, but the TSM Operator Interface does not.

3. Select Semiconductor Module»Enable Offline Mode or click the Enable
Offline Mode button on the TSM toolbar to enable Offline Mode. The
Enable Offline Mode button icon changes to indicate the current state of
Offline Mode and the main menu bar displays an Offline Mode indicator to
the right of the Help menu. Additionally, the OfflineMode property of the
NI_SemiconductorModule_StandardStationSettings data type indicates the
current state of Offline Mode. You can also use the Get Offline Mode VI or the I
sSemiconductorModuleInOfflineMode .NET method to check the
current status of the Offline Mode setting.

When you enable Offline Mode, TSM creates simulated versions of all instruments
defined in the Offline Mode system configuration file. The simulated instruments
persist until you disable Offline Mode or execute a test program with a different
Offline Mode system configuration file. TSM also renames all physical instruments
that conflict with the instruments defined in the Offline Mode system configuration
file with an NI_Offline_ prefix to avoid conflicts with simulated instruments and
to prevent accidental damage to real instruments. Disabling Offline Mode restores
the instrument configuration.

© National Instruments 271

TestStand Semiconductor Module

Note To avoid damage to real instruments, do
not use simulated instruments and real
instruments at the same time.

Enabling Offline Mode might fail when the computer on which you want to use
Offline Mode does not include a required instrument driver, an instrument driver
does not support simulation for an instrument, or an error exists in the Offline Mode
system configuration file. Use the following techniques to resolve the issue:

■ Install any missing drivers.
■ Modify the test program to remove dependencies on unsupported
instruments.
■ Fix any errors in the Offline Mode system configuration file.

See Also
Offline Mode Workflow

Executing Test Programs in Offline Mode (TSM)

Note Although simulated instruments behave
as closely as possible to real instruments,
measurements and data differ in Offline Mode.
Additionally, custom code that processes
results, test time performance, instrument
functionality, and error reporting might differ in
Offline Mode and can result in different
behavior of the test program.

Complete the following steps to execute a test program in Offline Mode on a
computer without access to NI instruments.

1. Confirm that Offline Mode is enabled.

2. Click the Start Lot button or the Single Test button on the TSM toolbar.

Note TSM and the TSM Operator Interface
update the simulated instruments to match
the Offline Mode system configuration file
associated with the test program before the
test program begins execution. TSM does

ni.com272

TestStand Semiconductor Module

not automatically update the simulated
instruments when you run test programs
any other way.

3. Review the results.

See Also
Offline Mode Workflow

Measuring and Publishing Values in Offline Mode
(TSM)

Note Although simulated instruments behave
as closely as possible to real instruments,
measurements and data differ in Offline Mode.
Additionally, custom code that processes
results, test time performance, instrument
functionality, and error reporting might differ in
Offline Mode and can result in different
behavior of the test program.

By default, TSM always uses data that cause all tests to pass when you run in Offline
Mode. For Numeric Limit tests with limits, TSM uses the average of the limits. For
Numeric Limit tests without limits, TSM logs 0. For Pass/Fail tests, TSM uses the
value True.

You can also use the published value for the tests or specify a value for tests you run
in Offline Mode.

Set the following properties to use the published value for the tests.

■ Numeric Limit Test—Set the Step.Result.Evaluations[i].Nume
ricLimit.SimulatedData.SimulatedDataUsageType property to
UsePublishedValue.
■ Pass/Fail Test—Set the Step.Result.Evaluations[i].PassFail
.SimulatedData.SimulatedDataUsageType property to
UsePublishedValue.

© National Instruments 273

TestStand Semiconductor Module

The following table outlines how to specify a single value for all sites and how to
specify values per site for a test.

Type of Test Single Value for All Sites Specific Value Per Site
Numeric Limit

1. Set the Step.Result.
Evaluations[i].Nu
mericLimit.Simula
tedData.Simulated
DataUsageType prope
rty to AllSites.

2. Specify the value you wa
nt to use in the Step.Re
sult.Evaluations[
i].NumericLimit.S
imulatedData.AllS
ites property.

1. Set the Step.Result.
Evaluations[i].Nu
mericLimit.Simula
tedData.Simulated
DataUsageType prope
rty to PerSite.

2. Specify the values you wa
nt to use in the Step.Re
sult.Evaluations[
i].NumericLimit.S
imulatedData.PerS
ite property.

Pass/Fail
1. Set the Step.Result.

Evaluations[i].Pa
ssFail.SimulatedD
ata.SimulatedData
UsageType property to
AllSites.

2. Specify the value you wa
nt to use in the Step.Re
sult.Evaluations[
i].PassFail.Simul
atedData.AllSites
property.

1. Set the Result.Evalu
ations[i].PassFai
l.SimulatedData.S
imulatedDataUsage
Type property to PerSit
e.

2. Specify the values you wa
nt to use in the Result.
Evaluations[i].Pa
ssFail.SimulatedD
ata.PerSite property.

Data Logs and Reports in Offline Mode

The following table lists how data logs and reports include the state of Offline Mode
to indicate that the file includes real or simulated data.

File Implementation
STDF log file NIDTR:<OfflineMode>Disabled</Offl

ineMode>

ni.com274

TestStand Semiconductor Module

NIDTR:<OfflineMode>Enabled</Offli
neMode>

Lot Summary Report Offline Mode entry in lot description header
Debug Test Results Log Offline Mode entry in header
Test Program Performance Analyzer summary lo
g file

Offline Mode entry

Note The CSV Test Results Log does not include
the state of Offline Mode.

See Also
Offline Mode Workflow

Debugging Test Programs in Offline Mode (TSM)

Note Although simulated instruments behave
as closely as possible to real instruments,
measurements and data differ in Offline Mode.
Additionally, custom code that processes
results, test time performance, instrument
functionality, and error reporting might differ in
Offline Mode and can result in different
behavior of the test program.

You can use standard debugging techniques and tools, such as InstrumentStudio,
the Digital Pattern Editor, and standard or custom soft front panels to interact with
simulated instruments and data in Offline Mode. You can also use LabVIEW and .NET
debugging tools to debug applications.

See Also
Offline Mode Workflow

Debugging TestStand Test Programs

Debugging TSM Test Programs

© National Instruments 275

TestStand Semiconductor Module

Disabling Offline Mode (TSM)

Select Semiconductor Module»Disable Offline Mode or click the Disable
Offline Mode button on the TSM toolbar to disable Offline Mode and return to
the default behavior of TSM. The Disable Offline Mode button icon changes to
indicate the current state of Offline Mode and the main menu bar no longer displays
the Offline Mode indicator. The OfflineMode property of the
NI_SemiconductorModule_StandardStationSettings data type also indicates the
current state of Offline Mode.

When you disable Offline Mode, TSM deletes simulated versions of all the
instruments defined in the Offline Mode system configuration file.

See Also
Offline Mode Workflow

Offline Mode System Configuration File XML Structure (TSM)

The Offline Mode system configuration XML schema, located at <Program Files
>\National Instruments\Shared\OfflineMode\SystemConfigurat
ion.xsd, defines the following structure for an Offline Mode system configuration
XML file:

Legend

<Root element>
<Element>
Attribute

 <SystemConfiguration>
■ schemaVersion—Specifies the version of the schema file.
■ <PartNumber>—Specifies the part number of the system configuration if
the system configuration is based on an STS.

■ Value—Specifies the part number of the STS.

■ <PXIChassis>—Defines a PXI chassis and the PXI instruments it contains.

ni.com276

TestStand Semiconductor Module

■ Number—Specifies the number of the PXI chassis.
■ Model—Specifies the model of the PXI chassis.
■ <PXI>—Defines a PXI instrument and all components of the PXI
instrument.

Note Consider using the following
instrument naming convention for
semiconductor test programs:
InstrumentType_ModelNumber_PXIChas
sisLocation_SlotLocation, for example, HS
D_6570_C2_S03, where InstrumentT
ype is an ASCII description of the
instrument, ModelNumber is the model
number as defined on ni.com, PXIChas
sisLocation uses a single digit to
identify the PXI chassis (Cx), and SlotLoc
ation uses double digits to identify the
slot location (Sxx).

■ Name—Specifies the name of the PXI instrument.
■ Model—Specifies the model of the PXI instrument, for example, NI
PXIe-6570.
■ Slot—Specifies the slot number of the PXI instrument.
■ NeedsIvi—(Optional) Specifies whether the PXI instrument
requires IVI logical names and IVI driver sessions. Set the attribute value
to True to create IVI logical names and IVI driver sessions for the PXI
instrument.
■ <PortControlModule>—Defines a port control module and the
port modules the port control module controls. A PXI instrument can
contain only one port control module.

Note Consider using the following
instrument naming convention for
semiconductor test programs:
InstrumentType_ModelNumber_PXICh
assisLocation_SlotLocation_PCM, for
example, VST_5840_C3_S10_PCM,
where InstrumentType is an ASCII

© National Instruments 277

TestStand Semiconductor Module

description of the instrument, ModelNu
mber is the model number as defined on
ni.com, PXIChassisLocation uses
a single digit to identify the PXI chassis (
Cx), and SlotLocation uses double
digits to identify the slot location (Sxx).

■ Name—(Optional) Specifies the name of the port control
module. If you do not specify a name, Offline Mode uses the
instrument naming convention to provide a name.
■ Model—Specifies the model of the port control module, for
example, NI STS-5532.
■ <PortModule>—Defines a port module, cascaded port
modules, and port configurations.

Note Consider using the following
instrument naming convention for
semiconductor test programs:
InstrumentType_ModelNumber_PXI
ChassisLocation_SlotLocation_PCM
_PortModule, for example, VST_584
0_C3_S10_PCM_PM1, where Instr
umentType is an ASCII description of
the instrument, ModelNumber is the
model number as defined on ni.co
m, PXIChassisLocation uses a
single digit to identify the PXI chassis (
Cx), SlotLocation uses double
digits to identify the slot location (Sx
x), and PortModule uses a single
digit to identify the port module
under the port control module (PMx).

■ Name—(Optional) Specifies the name of the port module.
If you do not specify a name, Offline Mode uses the instrument
naming convention to provide a name.
■ Model—Specifies the model of the port module, for
example, NI STS-5531.

ni.com278

TestStand Semiconductor Module

■ DigitalSlot—Specifies the digital slot number of the
port module.
■ AnalogChannel—Specifies the analog channel of the
port module.
■ <Port>—(Optional) Defines a port configuration. If you do
not specify a port configuration, STS Maintenance Software
uses the default port type (for STS-5531) or not connected (for
STS-5533 and STS-5534).

■ Number—Specifies the number of the port. Port
numbering starts at 0.
■ Type—Specifies the type of the port.

Model Number Supported Types
NI STS-5531 0, 1, 2, 3 NI5531 (Optional)

NI STS-5533 0, 1, 2, 3 NI5533_DRA
NI STS-5534 0, 1, 2, 3 NI5534_RX

NI5534_TX

■ <PortModule>—Defines a cascaded port module and
port configurations. A port module can contain only one
cascaded port module.

Note Consider using the following
instrument naming convention for
semiconductor test programs:
InstrumentType_ModelNumber_
PXIChassisLocation_SlotLocation
_PCM_PortModule, for example, V
ST_5840_C3_S10_PCM_PM2,
where InstrumentType is an
ASCII description of the instrument,
ModelNumber is the model
number as defined on ni.com, PX
IChassisLocation uses a
single digit to identify the PXI
chassis (Cx), SlotLocation uses
double digits to identify the slot
location (Sxx), and PortModule

© National Instruments 279

TestStand Semiconductor Module

uses a single digit to identify the
port module under the port control
module (PMx).

■ Name—(Optional) Specifies the name of the port
module. If you do not specify a name, Offline Mode uses
the instrument naming convention to provide a name.
■ Model—Specifies the model of the port module, for
example, NI STS-5531.
■ DigitalSlot—Specifies the digital slot number of
the port module.
■ <Port>—(Optional) Defines a port configuration. If
you do not specify a port configuration, STS Maintenance
Software uses the default port type (for STS-5531) or not
connected (for STS-5533 and STS-5534).

■ Number—Specifies the number of the port. Port
numbering starts at 0.
■ Type—Specifies the type of the port.

Model Number Supported Types
NI STS-5531 0, 1, 2, 3 NI5531 (Optional)

NI STS-5533 0, 1, 2, 3 NI5533_DRA
NI STS-5534 0, 1, 2, 3 NI5534_RX

NI5534_TX

■ <MmRadioHead>—Defines a mmWave Radio Head and the mmWave
Switches the mmWave Radio Head contains. A PXI instrument can contain
up to two mmWave Radio Heads.

Note Consider using the following
instrument naming convention for
semiconductor test programs:
InstrumentType_ModelNumber_PXIChas
sisLocation_SlotLocation_MMRadioHead
, for example, IF_3622_C2_S04_RH1,
where InstrumentType is an ASCII
description of the instrument, ModelNumb

ni.com280

TestStand Semiconductor Module

er is the model number as defined on ni.
com, PXIChassisLocation uses a
single digit to identify the PXI chassis (Cx),
SlotLocation uses double digits to
identify the slot location (Sxx), and MMRad
ioHead uses a single digit to identify the
mmWave Radio Head (RHx).

■ Name—(Optional) Specifies the name of the mmWave Radio Head.
If you do not specify a name, Offline Mode uses the instrument naming
convention to provide a name.
■ Model—Specifies the model of the mmWave Radio Head, for
example, NI mmRH-5581.
■ Number—Specifies the number of the mmWave Radio Head.
mmWave Radio Head numbering starts at 0.
■ <MmSwitch>—Defines a mmWave Switch. A mmWave Radio Head
can contain up to two mmWave Switches.

Note Consider using the following
instrument naming convention for
semiconductor test programs:
InstrumentType_ModelNumber_PXICh
assisLocation_SlotLocation_MMRadio
Head_MMSwitch, for example, IF_362
2_C2_S04_RH1_SW1, where Instrum
entType is an ASCII description of the
instrument, ModelNumber is the model
number as defined on ni.com, PXICha
ssisLocation uses a single digit to
identify the PXI chassis (Cx), SlotLoca
tion uses double digits to identify the
slot location (Sxx), MMRadioHead uses
a single digit to identify the mmWave
Radio Head (RHx), and MMSwitch uses
a single digit to identify the mmWave
Switch (SWx).

© National Instruments 281

TestStand Semiconductor Module

■ Name—(Optional) Specifies the name of the mmWave Switch.
If you do not specify a name, Offline Mode uses the instrument
naming convention to provide a name.
■ Model—Specifies the model of the mmWave Switch, for
example, NI mmSW-2795.
■ Number—Specifies the number of the mmWave Switch.
mmWave Switch numbering starts at 0.

■ <Devices>—Specifies instruments not contained in a PXI chassis.

■ <USB>—Defines a USB instrument.

Note Consider using the following
instrument naming convention for
semiconductor test programs:
InstrumentType_ModelNumber_USB, for
example, DIO_6509_USB, where Instru
mentType is an ASCII description of the
instrument and ModelNumber is the
model number as defined on ni.com.

■ Name—Specifies the name of the USB instrument.
■ Model—Specifies the model of the USB instrument, for example, N
I USB-6509.

■ <PCI>—Defines a PCI instrument.

Note Consider using the following
instrument naming convention for
semiconductor test programs:
InstrumentType_ModelNumber_PCI, for
example, MIO_6221_PCI, where Instru
mentType is an ASCII description of the
instrument and ModelNumber is the
model number as defined on ni.com.

■ Name—Specifies the name of the PCI instrument.
■ Model—Specifies the model of the PCI instrument, for example, N
I PCI-6221.

ni.com282

TestStand Semiconductor Module

■ <DeviceAssociations>—Specifies associations between previously
defined instruments.

■ <DeviceAssociation>—Defines an association between a parent
instrument and a child instrument for a specific purpose.

■ ParentDeviceName—Specifies the name of the parent
instrument. The value must match the value of the Name attribute of a
<PXI>, <USB>, or <PCI> element.
■ ChildDeviceName—Specifies the name of the child instrument.
The value must match the value of the Name attribute of a <PXI>, <US
B>, or <PCI> element.
■ Purpose—Specifies the purpose of the association. The value
must be Digitizer, Baseband, LO, RFConditioner, RFInLO, or
RFOutLO.

Example

<SystemConfiguration>

<PXIChassis Number="3" Model="NI PXIe-1095">

<PXI Name="VST_5820_C3_S02" Model="NI PXIe-5820" Slot="2"
/>

<PXI Name="IF_3622_C3_S04" Model="NI PXIe-3622" Slot="4">

<MmRadioHead Model="NI mmRH-5581" Number="0">

<MmSwitch Model="NI mmSW-2795" Number="0"/>

<MmSwitch Model="NI mmSW-2795" Number="1"/>

</MmRadioHead>

<MmRadioHead Model="NI mmRH-5581" Number="1">

<MmSwitch Model="NI mmSW-2795" Number="0"/>

</MmRadioHead>

</PXI>

© National Instruments 283

TestStand Semiconductor Module

<PXI Name="LO_5653_C3_S06" Model="NI PXIe-5653" Slot="6" /
>

</PXIChassis>

<DeviceAssociations>

<DeviceAssociation ParentDeviceName="IF_3622_C3_S04" Child
DeviceName="VST_5820_C3_S02" Purpose="Baseband" />

<DeviceAssociation ParentDeviceName="IF_3622_C3_S04" Child
DeviceName="LO_5653_C3_S06" Purpose="LO" />

</DeviceAssociations>

</SystemConfiguration>

Schema Version Policy (TSM)

The schema version uses a major.minor notation. The version of the schema
reflects changes to the schema, not changes to TSM.

Changes to the schema version indicate breaking changes to the schema. TSM does
not load files that use a later schema version than the version specified for that
version of TSM.

Use the following table to map schema versions and TSM versions.

Schema Version TSM Version
PinMap.xsd version 1.0
BinDefinitions.xsd version 1.0

NI TestStand 2013 Semiconductor Module

PinMap.xsd version 1.1
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0

NI TestStand 2014 Semiconductor Module

PinMap.xsd version 1.2
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0

NI TestStand 2014 Semiconductor Module SP1
NI TestStand 2016 Semiconductor Module

PinMap.xsd version 1.3
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0

NI TestStand 2016 SP1 Semiconductor Module

ni.com284

TestStand Semiconductor Module

PinMap.xsd version 1.4
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0

NI TestStand 2017 Semiconductor Module

PinMap.xsd version 1.5
BinDefinitions.xsd version 1.1
Specifications.xsd version 1.0
SystemConfiguration.xsd version 1.0

NI TestStand 2019 Semiconductor Module

PinMap.xsd version 1.6
BinDefinitions.xsd version 1.2
Specifications.xsd version 1.0
SystemConfiguration.xsd version 1.1

NI TestStand 2020 Semiconductor Module
TestStand 2020 Semiconductor Module 2021 Q4

TSM Sequence Analyzer Rules Descriptions
TSM includes the following general, performance, best practices, and statistics rules
to use in the TestStand Sequence Analyzer in the TestStand Sequence Editor or the
stand-alone sequence analyzer application. The built-in TSM rules are enabled by
default. You can also create and deploy custom rules and analysis modules.

The following sections describe the built-in TSM rules, listed in order of severity.

■ General
■ Performance
■ Best Practices
■ Statistics
■ Semiconductor Sequence Call Step

General

Rule Severity Description
No DUT pins have been specifie
d

Error The Specify DUT Pins checkb
ox is enabled, but no DUT pin h
as been specified in the Specif
y DUT Pins section on the Opti
ons tab of the Step Settings pan
e of a Semiconductor Multi Test
step.

© National Instruments 285

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/sequence_analyzer_overview.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/sequence_analyzer.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/sa_creating_custom_rules.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/sa_deploying_custom_rules.htm

Step specifies invalid DUT pins Error The Specify DUT Pins option
on the Options tab of a Semico
nductor Multi Test step or a Se
miconductor Action step is ena
bled, but some of the included
DUT pins are not in the pin map
file.

Single limit missing Error A limit is missing on a Numeric
Limit test in a Semiconductor M
ulti Test step.

PAT (Part Average Testing) setti
ngs invalid

Error One or more PAT algorithm setti
ngs for the test program are inv
alid. Correct the settings on the
PAT Algorithm Settings panel of
the Test Program Editor.

Pin name is invalid Error A pin specified by the test in a S
emiconductor Multi Test is not
present in the pin map the test
program specifies.

Test step properties are not assi
gnable

Error A step in the test program is set
ting the values of properties (su
ch as TestNumber, FailBin, and
so on) of a Semiconductor Multi
Test step. Setting a property on
a Semiconductor Multi Test ste
p at run time does not change it
s behavior because the step do
es not access step properties aft
er the first time it executes.

Instruments defined in pin map
are missing from MAX

Error Some of the instruments define
d in the pin map are missing fro
m Measurement & Automation
Explorer (MAX), which can prev
ent the test program from runni
ng. Correct instrument names i
n the pin map or add the correc
t instruments in MAX.

Alarms settings are invalid Error The alarms settings do not mat
ch the pin configuration specifi
ed in the pin map. This can occ

ni.com286

TestStand Semiconductor Module

ur when the pin map is modifie
d after the alarms settings have
been configured. It can also occ
ur if the configured alarms for t
his sequence file are not suppor
ted in the current system. Use t
he Alarms panel of the Test Pro
gram Editor to update the alar
ms settings.

Test number missing Warning A test in a Semiconductor Multi
Test step does not specify a test
number.

Pin map invalid Warning The specified pin map is invalid
or the pin map has not been sp
ecified. Use the Pin Map panel o
f the Test Program Editor to spe
cify the pin map file to use in th
e test program.

Software bin missing Warning A test in a Semiconductor Multi
Test step does not specify a soft
ware bin.

Bin definitions invalid Warning The specified bin definitions is i
nvalid or the bin definitions has
not been specified. Use the Bin
Definitions panel of the Test Pro
gram Editor to specify the bin d
efinitions file to use in the test p
rogram.

Sessions created with LabVIEW
steps used in .NET steps or vice-
versa

Warning A Semiconductor Multi Test or S
emiconductor Action .NET step
uses an instrument driver sessi
on that a Semiconductor Multi
Test or Semiconductor Action L
abVIEW step created or vice-ver
sa.

Both limits missing Information A test in a Semiconductor Multi
Test step does not specify any li
mits. For tests that have no limi
ts, the Semiconductor Multi Tes

© National Instruments 287

TestStand Semiconductor Module

t step only logs the data and do
es not pass or fail the test.

Performance

Rule Severity Description
LabVIEW Adapter in Developme
nt System mode

Warning Configuring the LabVIEW Adapt
er to use the LabVIEW Develo
pment System can negatively
affect performance. Configure t
he LabVIEW Adapter to use the
LabVIEW Runtime if the LabV
IEW Development System mod
e is not required.

Minimal use of system pins Warning A Semiconductor Multi Test ste
p includes system pins. Includin
g system pins forces the step co
de module to execute in a singl
e thread and can negatively affe
ct performance. Ignore this war
ning for steps that need to acce
ss system pins.

Non-reentrant code module Warning A Semiconductor Multi Test ste
p or Semiconductor Action step
calls a VI with the Reentrancy
option on the Execution page of
the VI Properties dialog box set
to Non-reentrant execution
or Preallocated clone re-ent
rant execution. Using these re
-entrancy options can negativel
y affect performance because L
abVIEW might clone the VI each
time it executes.

Disable result recording option Information Enabling the Result Recordin
g Option for steps that do not i
nclude defined tests can negati
vely affect performance. Enable
result recording while you meas
ure performance but disable it t

ni.com288

TestStand Semiconductor Module

o attain optimal performance. T
his option is located on the Run
Options panel of the Properties
tab of the Step Settings pane of
a step.

Best Practices

Rule Severity Description
Avoid overriding PreUUT, PreM
ainSequence, PostMainSequen
ce callbacks

Error If a run-time error occurs in one
of these callbacks, the end-of-t
est (EOT) signal is not sent to th
e handler driver.

Statistics

Rule Severity Description
Count tests Information The total number of tests in all t

he analyzed files, including cou
nt per sequence, count per seq
uence file, and count per analys
is.

Semiconductor Sequence Call Step

Rule Severity Description
Published data IDs should not b
e duplicated on tests in the call
ed sequence

Warning The 'Published Data Id' field on
tests on Semiconductor Multi T
est steps in sequences called by
Semiconductor Sequence Call s
teps should not be duplicated.
The duplicate tests will be omit
ted at run time.

Published data IDs should matc
h a test in the called sequence

Warning Simple IDs specified in the 'Ste
p Name.Published Data Id' field
on Semiconductor Sequence C
all tests should match the 'Publ
ished Data Id' field of a test on a
Semiconductor Multi Test step i
n the called sequence. Specify a
value for the 'Step Name.Publis

© National Instruments 289

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_step_settings_run_opt.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_step_settings_run_opt.htm

hed Data Id' field that matches
the 'Published Data Id' field of a
test on a Semiconductor Multi T
est step in the called sequence.

'Step Name.Published Data Id'
should not be empty

Warning The 'Step Name.Published Data
Id' field on Semiconductor Seq
uence Call tests should not be e
mpty. Specify a value for the 'St
ep Name.Published Data Id' fiel
d that matches the 'Published
Data Id' field of a test on a Semi
conductor Multi Test step in the
called sequence.

'Step Name.Published Data Id'
must match a test on the specifi
ed step in the called sequence

Error Values that include step names
for the 'Step Name.Published D
ata Id' field on Semiconductor S
equence Call tests must match t
he 'Published Data Id' field of a
test on the specified Semicond
uctor Multi Test step in the calle
d sequence. Specify a value for
the 'Step Name.Published Data
Id' field that matches the 'Publi
shed Data Id' field of a test on a
Semiconductor Multi Test step i
n the called sequence.

Step Name.Published Data Id m
ust not match multiple tests in t
he called sequence

Error The 'Step Name.Published Data
Id' field on Semiconductor Seq
uence Call tests must not match
the 'Published Data Id' field of
more than one test on Semicon
ductor Multi Test steps in the ca
lled sequence. Rename one of t
he steps in the called sequence
or include the step name in the
'Step Name.Published Data Id'
column to match a single test.

ni.com290

TestStand Semiconductor Module

Test Time Reduction and Test System Performance
Improvements (TSM)
Before you make test time reduction (TTR) improvements, accurately measure the
performance of the test program to evaluate how the changes you make affect the
performance of the test program. Select Semiconductor Module»Measure
Performance of <filename> to run the test program in an operator interface with
one or more site configurations and collect performance data. To obtain the most
accurate results, execute the test program in the LabVIEW Run-Time Engine (RTE).
Use the Test Program Performance Analyzer to view the performance data TSM
generates.

Note Executing a test program in a TSM
operator interface is typically faster than
executing the test program in the TestStand
Sequence Editor development environment.

Use the following test time reduction techniques to improve the performance of any
test program.

■ Disable unnecessary result processors
■ Use reentrant VIs
■ Execute VIs with the LabVIEW Run-Time Engine
■ Use only needed pins
■ Enable parallel For Loop iterations in VIs
■ Reduce settling times in test code modules
■ Disable tracing in TestStand
■ Use inline expansion for sequence call steps to reduce overhead of
sequence calls

Advanced Techniques

Use the following advanced techniques to further improve performance.

Note Some of these techniques might have a
negative impact on performance for some test

© National Instruments 291

TestStand Semiconductor Module

programs. Measure the test program
performance before and after each change to
determine how the change affects performance.

■ Use the Execution Profiler to identify which shared tester resources cause
throughput bottlenecks
■ Perform analysis in parallel with measurements
■ Adjust thread settings to maximize parallelism
■ Adjust computer BIOS CPU settings

Disable Unnecessary Result Processors (TSM)

For each result processor enabled in the Result Processing dialog box, TestStand
calls sequences associated with the result processor to process test results during
testing, which can add time to test execution. Although the TestStand
Semiconductor Module (TSM) STDF Log generator, Lot Summary Report generator,
and CSV Test Results Log generator do not contribute significantly to test execution
time, the TestStand Report generator and TSM Debug Test Results Log generator can
cause performance and memory usage issues. To limit the effect of the Debug Test
Results Log generator, enable the Limit Number of Results Displayed in
Report View option or the Log Results Only for DUT Failures option in the
Debug Test Results Log Options dialog box. Disable any result processors you do not
need during production testing.

Complete the following steps to disable result processors from the TestStand
Sequence Editor.

1. Select Configure»Result Processing to launch the Result Processing dialog
box.

2. Remove the checkmark from the Enabled option for the result processor you
want to disable.

Complete the following steps to disable result processors from the TSM operator
interface.

1. Click the Configure Station button to launch the Configure Station Settings
dialog box.

ni.com292

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/resource_usage_profiler.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_result_processing.htm

2. On the Advanced tab, click the Result Processing button to launch the
Result Processing dialog box.

3. Remove the checkmark from the Enabled option for the result processor you
want to disable.

See Also
TSM Reports and Data Logs

TestStand Result Collection

Use Reentrant VIs (TSM)

When you perform multisite testing, you can improve performance by
simultaneously testing multiple sites using multiple execution threads. When you
use the TestStand Batch process model to test multiple sites, TestStand executes the
test program in separate threads automatically. LabVIEW, however, by default does
not allow multiple instances of a VI to execute simultaneously. Each call to a VI must
wait until other calls to the VI finish executing. To maximize parallel execution of test
code, use reentrant VIs and subVIs.

Complete the following steps to configure a VI to set the execution properties for a
VI.

1. From the front panel or block diagram of a VI, select File»VI Properties and
select Execution from the Category drop-down menu to launch the
Execution page.

2. Set the Reentrancy option to Shared clone reentrant execution. Do not
use the Preallocated clone reentrant execution option because that
option might cause LabVIEW to allocate significantly more resources to
execute VIs and can result in high memory usage and long delays when
unloading the test program.

Refer to the LabVIEW Help for more information about reentrant VIs. In LabVIEW,
select Help»LabVIEW Help to launch the LabVIEW Help.

© National Instruments 293

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/result_collection.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html

Execute Test Code Modules Using the LabVIEW Run-Time Engine (TSM)

The TestStand LabVIEW Adapter can execute VI code modules in the LabVIEW
Development System process or in the TestStand process using the LabVIEW Run-
Time Engine (RTE). Executing test code in the LabVIEW Development System process
is useful for debugging but adds significant performance overhead to the execution
of test programs. To reduce this overhead, execute VIs in the TestStand process
using the LabVIEW RTE.

Complete the following steps to configure the LabVIEW Adapter to use the LabVIEW
RTE from the TestStand Sequence Editor.

1. Select Configure»Adapters.
2. Select the LabVIEW Adapter in the list control and click Configure to launch

the LabVIEW Adapter Configuration dialog box.

3. Enable the LabVIEW Run-Time Engine option.

Complete the following steps to configure the LabVIEW Adapter to use the LabVIEW
RTE from the TestStand Semiconductor Module operator interface.

1. Click the Configure Station button to launch the Configure Station Settings
dialog box.

2. On the Advanced tab, click the LabVIEW Adapter button to launch the
LabVIEW Adapter Configuration dialog box.

3. Enable the LabVIEW Run-Time Engine option.

Configure Semiconductor Steps to Use Only Needed Pins

Typically, you use the TestStand Batch process model to perform multisite testing in
parallel. However, when you connect a DUT pin to an instrument shared by multiple
sites, and the instrument does not permit independent operations on its channels,
the Semiconductor Multi Test or Semiconductor Action step executes in one test
socket to test multiple sites. In this situation, the step determines if it can execute
tests in parallel by checking that the pins the test code module uses are connected
to instruments that are not shared across multiple sites.

ni.com294

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lvadapterconfig.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html

By default, the Semiconductor Multi Test and Semiconductor Action steps assume a
code module uses every DUT pin. To improve performance, specify the DUT pins
that the test code module uses.

1. In the sequence editor, click the step you want to edit.
2. Click on the Options tab in the Step Settings pane.

3. Select Specify Manually in the Specify Pins and Relays drop-down
menu.

4. To specify the DUT pins, enable the Specify DUT Pins option.
5. Enable the DUT pins and pin groups the step uses.

6. Review the Multisite Execution Diagram to determine how many threads
TSM uses to execute the step.

If the test uses any system pins, enable the Include System Pins option. When you
enable the Include System Pins option, the step executes in one thread for all
sites.

Note Specifying DUT and system pins on steps
in the ProcessSetup and ProcessCleanu
p sequences has no effect. Steps in those
sequences execute as if you selected
One thread only in the Multisite Option
drop-down menu and included all DUT and
system pins in the SemiconductorModuleC
ontext object.

See Also
Multisite Programming Techniques

Subsystems and Pin Maps

Enable Parallel For Loop Iterations in VIs (TSM)

In many cases, VIs that test multiple sites or pins contain For Loop structures that
perform computationally expensive or time consuming operations for multiple
instruments. Often, you can improve execution speed by enabling parallel iterations

© National Instruments 295

TestStand Semiconductor Module

on the For Loop structure. Not all For Loops can run with parallel iterations, and in
some cases, a For Loop does not benefit from parallelization. Additionally, you can
adjust thread settings for parallel For Loops to improve performance.

Refer to the Parallel Iterations: Improving For Loop Execution Speed topic in the
LabVIEW Help to determine whether you can improve performance by enabling
parallel For Loop iterations in VI test code modules. In LabVIEW, select
Help»LabVIEW Help to launch the LabVIEW Help.

See Also
Thread Settings for Maximum Parallelism

Parallel For Loops

Reduce Settling Times in Test Code Modules (TSM)

It is common to add a settling time before taking measurements to achieve the
required precision. Once a test program is running well, evaluate the settling times
to reduce them to the minimum settling time required for an accurate
measurement.

Disable Tracing in TestStand (TSM)

Enabling tracing to display each step as it executes is useful for debugging but adds
significant performance overhead to the execution of test programs in the TestStand
Sequence Editor and in the TestStand Semiconductor Module (TSM) operator
interface. TSM automatically disables tracing for operator interfaces. Typically, you
do not need to disable tracing unless a custom operator interface enables tracing.

Complete the following steps to disable tracing from the sequence editor.

1. Select Configure»Station Options to launch the Station Options dialog
box.

2. On the Execution tab, disable the Enable Tracing option.

ni.com296

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_station_opt.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_station_opt_exe_tab.htm

Use Inline Expansion for Sequence Call Steps

TestStand Sequence Call and Semiconductor Sequence Call steps allow you to
simplify editing and maintaining test programs by placing common test steps into
sequences. However, these Sequence Call steps incur a performance penalty that
affects the overall test time. You can eliminate this performance penalty at the
expense of a more complex test program by using inline expansion. Inline expansion
is the process of replacing Sequence Call steps with the contents of the sequences
they call.

Follow these steps to use inline expansion with a TestStand or Semiconductor
Sequence Call step in the MainSequence sequence:

1. Replace the Sequence Call step in the MainSequence sequence with the
contents of the sequence that the Sequence Call step calls.

2. Rename the steps you inserted in the MainSequence sequence, if
necessary, to avoid duplicate step names.

3. For each parameter in the called sequence, replace all references to the
parameter in the step expressions of the steps you copied with the value that
the Sequence Call step used for the parameter.
For example, replace the expression Parameters.Frequency with 3000 if
the Sequence Call step passes 3000 for the Frequency parameter.

4. Copy local variables from the called sequence into the MainSequence
sequence.

5. Rename the local variables you copied, if necessary, to avoid duplicate
variable names. Update references to the local variables with the new names.

6. Complete the following actions for each Semiconductor Action and
Semiconductor Multi Test step you copied to the MainSequence sequence:

a. Click on the Options tab for the step.
b. Check if the step uses an expression to specify the pins.

c. If the step uses an expression to specify the pins, choose Select
Manually from the Specify Pins and Relays drop-down menu and
specify the pins explicitly using the check boxes.

© National Instruments 297

TestStand Semiconductor Module

7. Complete the following actions for each Semiconductor Multi Test step you
copied to the MainSequence sequence:

a. Click on the Tests tab for the Semiconductor Multi Test step.
b. Identify tests that require additional configuration and note their

published data IDs.
c. Click on the Tests tab of the Semiconductor Sequence Call step.
d. Find the tests with the same published data IDs you noted in step 7b.
e. Copy the tests from the Semiconductor Sequence Call to the

Semiconductor Multi Test step.

Thread Settings for Maximum Parallelism (TSM)

Depending on the number of sites a test program tests, the number of pins in the pin
map, the number of independent instrument resources on the tester, and the
number of logical processors on the tester, you might need to adjust several thread-
related settings to achieve greater execution parallelism and better performance.
Because using the suggested setting values does not guarantee optimal
performance, measure test program performance each time you change these
settings to determine how the change affects performance.

LabVIEW Parallel For Loops

LabVIEW creates multiple instances of the contents of parallel For Loops and
executes them in parallel. The number of instances that execute in parallel is
determined by the value wired to the P terminal and the value of the Number of
generated parallel loop instances option in the For Loop Iteration Parallelism
dialog box in LabVIEW. By default, LabVIEW uses the minimum of the number of
logical processors on the tester and the number of logical processors on the
computer used to save the VI. To ensure maximum parallelism, use the following
parallel For Loop settings:

■ Number of generated parallel loop instances—The best value for this
setting depends on the purpose of the loop. Do not use an arbitrarily large
number for this setting because it can add to execution time and can cause
high memory usage and long delays when unloading the test program.

ni.com298

TestStand Semiconductor Module

■ For the For Loops that iterate over instrument sessions, set the Number
of generated parallel loop instances option to the maximum number of
instrument sessions the loop can use. The maximum number of instrument
sessions used depends on the type of instrument, the number of pins, and
the number of sites and settings on the Options tab of the Semiconductor
Multi Test or Semiconductor Action step. For channel-based sessions, such
as NI-DCPower sessions, use the following equation to determine the
maximum number of sessions the loop can use:

(number of pins used by loop)*(maximum number of sit
es in a single block in the Multisite Execution Diag
ram on Options tab)

For NI-Digital Pattern instruments and other instrument-based sessions, use
the number of instruments of that type in the pin map.
■ For the For Loops that process data, you often can achieve the best
performance by disabling loop parallelism. If the data processing is
relatively slow and CPU intensive (such as the computation of large FFTs),
first set the Number of generated parallel loop instances option to the
number of logical processors on the target tester. If the loop has more
iterations than the number of logical processors, try larger values for the
Number of generated parallel loop instances option and measure
performance to determine the best value to use.

■ P terminal—Wire the P terminal to the size of the array that the For Loop
uses for indexing. Leaving the P terminal unconnected causes LabVIEW to use
the lesser of the Number of generated parallel loop instances option
and the number of logical processors on the tester.

LabVIEW Adapter Settings

For VIs that TestStand steps call using the LabVIEW Run-Time Engine, the LabVIEW
Adapter allocates threads to execute the VIs that use the same as caller execution
system. Change the Number of Threads option on the LabVIEW Adapter
Configuration dialog box to the maximum number of parallel loop instances that all
VIs in the test program require.

© National Instruments 299

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lvadapterconfig.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lvadapterconfig.htm

Note In TestStand 2016 and earlier, you can use
the LabVIEW Adapter Configuration dialog box
to set the number of LabVIEW execution threads
to a maximum value of 2 x the number of logical
processors. If you need more threads than that
for all VIs running in parallel, configure the VIs to
use an execution system other than the
same as caller execution system on the
Execution page of the VI Properties dialog box in
LabVIEW and configure the number of execution
threads assigned to a LabVIEW execution
system.

The following versions of TestStand prevent you
from setting the Number of Threads option in
the LabVIEW Adapter Configuration dialog box
greater than a maximum value:

Version Maximum Value
TestStand 2016 SP1 an
d earlier

12

TestStand 2017 36

TestStand 2017 SP1 an
d later

96

If you need more threads than the maximum
number permitted, you must edit the <TestSt
and Application Data>\Cfg\Adapter
s.cfg file and change the value of the _FlexG
Adp_NumofThreadsUsedinRTE setting. A
limitation in LabVIEW 2018 SP1 and earlier
might prevent you from setting a large number
of threads.

Adjust BIOS CPU Settings (TSM)

Some configuration options can lead to slower than expected test times when using
the TestStand Semiconductor Module. You might be able to improve performance of
a test program by disabling hyper-threading or by reducing the number of cores the

ni.com300

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tslabview/infotopics/tokens.htm
https://www.ni.com/docs/csh?topicname=tslabview/infotopics/tokens.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

CPU uses. Always measure performance before and after making any changes to
determine how the change affects performance.

Use the BIOS settings on the computer to disable hyper-threading or to change the
number of CPU cores. Typically, you enter the BIOS settings screen by pressing the
<Delete> (DEL) key after you restart the computer.

Measuring Performance (TSM)

You can use TSM, LabVIEW, and TestStand tools to measure execution times so you
can determine how changes you make affect performance.

TSM

During the test program development phase, you can use built-in TSM tools to
measure test program performance and then analyze the resulting data with the
Test Program Performance Analyzer. Some common use cases include identifying
the slowest test times, identifying low parallel test efficiency (PTE) values, and
displaying the overall socket time and the calculated PTE value for each site
configuration.

One way to measure overall performance of the test system is to test a number of
DUTs using the TSM operator interface and study the values of the Socket Time and
Cycle Time controls. The socket time primarily corresponds to the time it takes to
perform test code. The cycle time includes the socket time and the time required to
perform other tasks, such as binning, placing DUTs, and generating reports.

When you measure performance, test enough DUTs to obtain consistent results and
minimize the number of processes running simultaneously that could affect the
performance of the TSM operator interface. The first batch in a lot typically takes
longer to load than the following batches because you must also load resources.

Note Executing a test program in a TSM
operator interface is typically faster than
executing the test program in the TestStand
Sequence Editor development environment.

© National Instruments 301

TestStand Semiconductor Module

LabVIEW

Use the following tools to help analyze the performance of VIs:

■ LabVIEW VI Analyzer—A static code analyzer that identifies potential
performance problems.
■ LabVIEW Desktop Execution Trace Toolkit—Performs dynamic code
analysis to identify problems that might negatively affect performance, such
as memory leaks and reference leaks.
■ Profile Performance and Memory window—Built-in LabVIEW tool that
determines how an individual VI spends time and how the VI uses memory.

Complete the following steps to use the Profile Performance and Memory
window:

1. Configure the TestStand LabVIEW Adapter to execute VIs in the
LabVIEW Development System process.

2. Open the LabVIEW project that contains the VIs you want to analyze.

3. Select Tools»Profile»Performance and Memory to launch the
Profile Performance and Memory window.

4. Click the Start button to begin collecting performance data.
5. Use the TSM operator interface to test a number of DUTs to execute VIs

you want to profile multiple times.

6. Click the Snapshot button in the Profile Performance and Memory
window to acquire execution time data for the VIs.

TestStand

During test program development, use the Execution Profiler to view and record
duration the of steps, code modules, and other resources a multithreaded TestStand
system uses over a period of time. For example, you can identify parts of the test
program that take longest to execute or identify what shared tester resources cause
throughput bottlenecks.

ni.com302

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/resource_usage_profiler.htm

You can also use the Model Plug-in - Basic Step Time Report example tool to
measure step execution times. The example includes a sample report generator that
generates a report in Microsoft Excel format that includes time data for individual
steps. Use the TestStand Execution Profiler to measure execution times of steps and
code modules.

Test Program Performance Analyzer (TSM)

Use the Test Program Performance Analyzer to view data TSM generates when you
measure the performance of a test program. You can filter, graph, compare, and
save the data in various ways to identify performance issues in a test program.

The Test Program Performance Analyzer automatically launches after you complete
a test program performance measurement and loads the data TSM generates. You
can also select Semiconductor Module»Launch Test Program Performance
Analyzer to open a new instance of the Test Program Performance Analyzer without
preloaded data.

Mode

The Test Program Performance Analyzer graph displays data in the following modes:

■ Single Data Set (default)—Analyzes a single data log file. A single data log
file can contain data from multiple test program performance measurement
operations using different multisite configurations. A test program
performance measurement can contain a single execution on a particular site
configuration or it can contain multiple executions with varying site
configurations.
■ Compare Data Sets—Analyzes two log files to compare performance.
Select this option when you want to analyze how modifications to a test
program affect performance.

The Plot Legend in the upper right corner of the analyzer displays a description of
each plot the graph displays.

© National Instruments 303

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsexamples/infotopics/basic_step_time_report.htm

See Also
Common Use Cases for Measuring Test Program Performance

Measuring Test Program Performance (TSM)
During the test program development phase, you can run a series of executions with
varying site configurations to characterize the performance of a test program as the
site configuration changes.

Complete the following steps to measure test program performance using a
consistent environment.

1. Open the test program you want to measure. The test program must use the
Batch or Sequential process model.

2. Verify that the test program specifies a pin map.

3. Select Semiconductor Module»Measure Performance of <filename>.
4. Set the options in the Test Program Performance Measurement Configuration

dialog box that launches.

5. Click the Configure Lot Settings button to launch the Configure Lot
Settings dialog box. Configure the settings and click OK.

Note The Configure Lot Settings dialog box
does not display the Enabled Sites list
because you use the Test Program
Performance Measurement Configuration
dialog box to specify site configurations.

6. Click OK in the Test Program Performance Measurement Configuration dialog
box.

7. The test program executes in the operator interface that launches. TSM logs
the test program performance data during execution. TSM automatically
discards performance data from the first batch in a lot.

8. When the test program execution completes, the operator interface
automatically closes, and TSM launches the Test Program Performance
Analyzer for you to view and analyze the resulting data.

ni.com304

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/sequential.html

See Also
Common Use Cases for Measuring Test Program Performance

Common Use Cases for Measuring Test Program
Performance (TSM)
Use the Test Program Performance Analyzer to complete the following common
tasks.

Identify Slow Test Times

1. Load a data set log file.

2. Select Test Time in the Sorting Method section of the analyzer.
3. The analyzer sorts the steps by the highest average test time of the maximum

number of sites configuration.

4. Select Code Module Time in the Timing Method section of the analyzer to
view times for changes you make to code modules in the test program.

5. Click a bar in the graph to display a graph of the single step times for that step
name and the number of sites, which can be helpful to determine if
unexpected poor performance is related to particular cycles or sites.

Identify Low Parallel Test Efficiency (PTE) Values

1. Load a data set log file.

2. Select PTE in the Sorting Method section of the analyzer.
3. The analyzer sorts the steps by the worst calculated PTE values.
4. The bars on the graph display the test time, and the diamonds on the graph

display the calculated PTE of the test time relative to the site configuration
test time.

Display Socket Time and Calculated PTE Values

1. Load a data set log file.

2. Select Socket Times/PTE in the Graph Type control of the analyzer.

© National Instruments 305

TestStand Semiconductor Module

3. The analyzer displays the overall socket time and the calculated PTE value for
each site configuration.

4. Use the Target Test Time section of the analyzer to enter the target PTE%
you want to reach and to specify the single site test time to use to calculate
the target test time.

5. The graph displays the target times that each site configuration would need to
meet to achieve the PTE% you set.

Test Program Performance Measurement Testing
Environment (TSM)
To ensure that the testing environment is consistent while you measure test
program performance, the NI_SemiconductorModule_PerformanceMeasu
rement.seq file configures the environment in the following ways when TSM
launches the operator interface you specify to simulate a production environment.
The sequence file is located in the <TestStand>\Components\Modules\NI_
SemiconductorModule directory.

■ Configures the LabVIEW Adapter to use the LabVIEW Run-Time Engine. After
testing completes, restores the original setting for the adapter.
■ Enables or disables result processors. After testing completes, restores the
original settings for the result processors.

■ Enables the following result processors:
■ NI_SemiconductorModule_LotSummaryReportGenerator
.seq
■ NI_SemiconductorModule_StdfGenerator.seq

■ Disables the following result processors:
■ NI_DatabaseLogger.seq
■ NI_OfflineResultsGenerator.seq
■ NI_ReportGenerator.seq
■ NI_SemiconductorModule_LotTestingComplete.seq

ni.com306

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ NI_SemiconductorModule_TestResultsLogGenerator.s
eq

■ The Test Program Performance Analyzer uses its own simulated handler
driver and does not support the NI Built-in Simulated Handler Driver or any
custom handler drivers.

Modifying the Testing Environment

Complete the following steps to modify the testing environment to simulate a
specific production environment.

■ Copy the NI_SemiconductorModule_ PerformanceMeasurement
.seq file from the <TestStand>\Components\Modules\NI_Semicon
ductorModule directory and make changes to the copy.
■ Modify the steps in the Setup and Cleanup step groups to meet the needs of
the environment you want to simulate. For example, the Configure Result
Processors step contains arrays of result processor names and enabled states.
You can modify the step to include additional result processors or remove
existing ones.
■ Save the changes to the sequence file.
■ In the Test Program Performance Measurement Configuration dialog box,
modify the Operator Interface Command Line option in the Advanced
section by replacing the path to the NI_SemiconductorModule_Perfor
manceMeasurement.seq file with the path to the new sequence file you
just created and modified.

Test Program Performance Measurement
Configuration Dialog Box (TSM)
Select Semiconductor Module»Measure Performance of <filename> in the
TestStand Sequence Editor to launch the Test Program Performance Measurement
Configuration dialog box, in which you can specify settings for measuring test
program performance. The changes you make persist in the dialog box.

© National Instruments 307

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

The Test Program Performance Measurement Configuration dialog box contains the
following options:

■ Test Program—Displays the test program on which to measure
performance.
■ Process Model—Displays the process model the test program uses.
■ Operator Interface Path—By default, specifies the absolute path to the
default LabVIEW operator interface TSM installs. Use the browse button to
navigate to a custom operator interface to use instead of the default TSM
LabVIEW operator interface or paste the path to the executable into the
control. This control cannot be empty.
■ Output File Directory—Specifies the directory in which to write the log
files. Use the browse button to navigate to a custom output directory or paste
the path to the directory into the control. The path must be an absolute path.
■ Number of Parts Per Site—Specifies the number of parts to run on each
site.
■ Site Configurations—Each row corresponds to a lot and contains a
comma-separated list of integers or integer ranges that specifies the sites the
lot contains, for example: 0, 1, 2-7. The sites must exist in the pin map. Use the
Add Site Configuration and Delete Site Configuration buttons to add
and delete rows. TSM ignores empty rows at run time.

Note If you are using the Sequential
process model, Site Configurations
displays a single configuration that contains
a single site (0). If you switch back to using
the Batch process model,
Site Configurations displays the previous
set of configurations.

■ Configure Lot Settings—Launches the Configure Lot Settings dialog box.
If you have not configured lot settings for the active test program, TSM
disables the OK button and displays a warning to prompt you to configure the
lot settings.

ni.com308

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/sequential.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html

Click the expand/collapse button to view or hide the Advanced section of the
dialog box, which includes the following option that configures the testing
environment to simulate a production environment:

■ Operator Interface Command Line—The default command line is /NoC
ompatibilityIssuesDialog /run "Measure Test Program Pe
rformance" "<TestStand>\Components\Modules\NI_Semicond
uctorModule\NI_SemiconductorModule_PerformanceMeasurem
ent.seq" /quit, which configures the execution environment. If you use
a custom sequence file instead of the default NI_SemiconductorModule
_PerformanceMeasurement.seq file to configure the environment for
performance testing, modify the command line to call the custom sequence
file.

Note If you use an operator interface with a
custom command-line parser, modify the
command-line arguments to ensure that the
operator interface calls the Measure Test
Program Performance sequence of the
NI_SemiconductorModule_ Perform
anceMeasurement.seq file located in
the <TestStand>\Components\Modul
es\NI_SemiconductorModule
directory.

■ Reset to Default—Reverts the value of the Operator Interface
Command Line option to use the default command-line value.
■ Allow execution with LabVIEW Development Environment Adapter
—By default, when you select the LabVIEW Development Environment
adapter in TestStand, the adapter temporarily switches to use the LabVIEW
Run-Time Engine to simulate production performance. Enabling this option
disables the switch to the LabVIEW Run-Time Engine, allowing performance
measurement with the LabVIEW Development Environment adapter. This
increases test time. This option is disabled if the LabVIEW adapter is already
set to use the LabVIEW Run-Time Engine.

Note Changing any option under
Advanced causes the section to remain

© National Instruments 309

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

expanded until the next time the dialog box
is opened.

Loading Data in the Test Program Performance
Analyzer (TSM)
The Test Program Performance Analyzer automatically launches after you complete
a test program performance measurement and loads the data TSM generates.

If an instance of the Test Program Performance Analyzer is already running when
you complete a test program performance measurement, the most recently
launched instance of the analyzer handles the data TSM generates in the following
ways:

■ If the analyzer is not displaying any data, displays the newly generated data
set.
■ If the analyzer is displaying a single data set, prompts you to compare the
newly generated data set to the previous data set displayed in the analyzer or
to replace the previous data set displayed in the analyzer with the newly
generated data set.
■ If the analyzer is already comparing two data sets, prompts you to compare
the newly generated data set to the previous base data set displayed in the
analyzer or to the previous modified data set displayed in the analyzer.

■ When you click the Compare with Base Data button, TSM replaces the
previous modified data set displayed in the analyzer with the newly
generated data set.
■ When you click the Compare with Modified Data button, TSM
completes the following actions:

■ Discards the previous base data set displayed in the analyzer.
■ Converts the previous modified data set displayed in the analyzer to
the current base data set to display in the analyzer.
■ Replaces the previous modified data set displayed in the analyzer
with the newly generated data set.

ni.com310

TestStand Semiconductor Module

You can also use the Log File Path control and Load button near the upper right
corner of the Test Program Performance Analyzer to manually specify and load a log
file for a single data set to display in the analyzer. When you select the Compare
Data Sets mode, you can use the Base Log File Path and the Modified Log File
Path controls and Load buttons to manually specify and load log files for two data
sets to display and compare in the analyzer.

Loading large log files can cause performance and memory usage issues. To
improve performance and avoid memory usage issues, load a sample of the batches
in a log file by enabling the Log Data Sample Rate checkbox and specifying the
sample rate. When the Log Data Sample Rate checkbox is enabled, one out of
every N batches in a log file will be loaded when you click the Load button, where N
is the specified sample rate.

To view the metadata of log files, including notes, click the Log Browser button to
open the Log Browser Window.

See Also
Log Browser Window

Test Program Performance Analyzer Graphs
(TSM)
Use the Test Program Performance Analyzer to visualize performance log data.
Graph types include step times statistics, single step times, scatter distribution, and
parallel test efficiency (PTE). Use the Graph Type control to select the type of graph
to display. Use the Timing Method section of the analyzer to specify timing
options for the graph.

Step Times Statistics Graph

Select Step Times Statistics in the Graph Type control to display a graph you
can use to analyze performance bottlenecks by visualizing statistical information on

© National Instruments 311

TestStand Semiconductor Module

a step’s test times. Use the Sorting Method section of the analyzer to specify
sorting options for the graph. By default, TSM enables the following options:

■ Show Average Step Times—Displays a colored bar indicating the average
time it takes for a step to run. To hide this plot, remove the checkmark from
the Show Average Step Times checkbox.
■ Show PTE%—The top x-axis of the graph displays the PTE percentage of
the step. The bottom x-axis of the graph displays the step time in milliseconds.
A diamond point over the bars in the graph displays the calculated PTE for
each step and number of sites. To hide this plot, remove the checkmark from
the Show PTE% checkbox.
■ Show Distribution Box Plot—Displays the statistical distribution of step
times as a box plot. To hide this plot, remove the checkmark from the Show
Distribution Box Plot checkbox.

Hover over a bar or box plot in the graph to display a tooltip with the following
information:

■ Step name
■ Number of Sites (in the multisite configuration)
■ Average (if Show Average Step Times is enabled)

When you select Compare Data Sets in the Mode section of the analyzer, the
value in the tooltip includes the value of the bar the mouse is hovering over, the
matching value in the other log file, and the difference between the two values.

The Show Distribution Box Plot option displays the following additional
statistical distribution information at the bottom of the tooltip:

■ Minimum
■ Lower Quartile
■ Median
■ Upper Quartile
■ Maximum

ni.com312

TestStand Semiconductor Module

Click a bar in the graph to display a graph of the Single Step Times for that step
name and the number of sites. To return to the Step Times Statistics graph, click the
back button next to the title in the upper left corner of the graph.

Click a plot name to the left of the graph area to display a scatter graph of the step
times for that step name. To return to the Step Times Statistics graph, click the back
button next to the title in the upper left corner of the graph.

When you right-click the step name, a context menu opens. Click Go to Step in
Sequence Editor to navigate to the step's location in the sequence editor. If the
sequence file cannot be found, or if the step or sequence have been deleted, the
sequence editor displays an error message.

Single Step Times Graph

Select Single Step Times in the Graph Type control to display a graph you can
use to view the time it takes for one step to run. Use the corresponding options in
the Graph Type section of the analyzer to specify the step name and number of
sites to display in the graph for the step. You can also click a step in the Step Times
Statistics graph to display the graph for the step.

The upper x-axis of the graph displays the site. It also displays the data set log data
file when you select Compare Data Sets in the Mode section of the analyzer,
using the letter B to indicate the base data set log file and M to indicate the modified
data set log file. The lower x-axis of the graph displays the batch index number.

The graph groups sites by subsystem and overlays a code module bar on sites that
run a code module on that subsystem.

Hover over a bar in the graph to display a tooltip with the following information:

■ Plot Name
■ Step Name
■ Number of Sites
■ Batch Index
■ Site
■ Subsystem

© National Instruments 313

TestStand Semiconductor Module

■ Code Module Time or Value (When you select Compare Data Sets in the
Mode section of the analyzer, the value in the tooltip includes the value of the
bar the mouse is hovering over, the matching value in the other log file, and
the difference between the two values.)

Click the back button next to the title in the upper left corner of the graph to view
the Step Times Statistics graph.

Scatter Distribution Graph

Select Scatter Distribution in the Graph Type control to display a graph you can
use to view the statistical distribution of test times. Use this view to identify outliers
in test time distribution. Select Socket Time to view the distribution of your entire
test program. Alternatively, select Code Module Time in the Timing Method
section, and then select MainSequence Time to view the distribution of the entire
test program. Select Single Step Time and specify a step name to view the
distribution of a single step’s test times.

Each plot represents a given number of sites. Each point represents the average test
time over all sites in the configuration on the given batch index. Click a point on the
Scatter Distribution graph to go to that batch index in the Single Step graph to view
more detail on individual sites. Click the back button next to the title in the upper
left corner of the graph to return to the Scatter Distribution graph.

Hover over a point in the graph to display a tooltip with the following information:

■ Plot Name
■ Batch Index
■ Number of Sites
■ Value

Click the back button next to the title in the upper left corner of the graph to return
to the Step Times Statistics graph.

ni.com314

TestStand Semiconductor Module

Socket Times/PTE (Parallel Test Efficiency) Graph

Select Socket Times/PTE in the Graph Type control to display a graph you can
use to view the overall socket time or MainSequence time of the test program for
different multisite configurations.

The bars on the graph display the test time, and the diamonds on the graph display
the calculated PTE of the test time relative to the single site configuration test time.
TSM uses the following formula to calculate the PTE:

Use the following options in the Target Socket or MainSequence Time section
of the analyzer to configure an optional plot that displays the target test time plot
for each multisite configuration. The graph displays a horizontal line on each bar to
indicate the time under which the target PTE percentage has been met.

■ Target PTE(%)—Specify the target PTE value.
■ Benchmark Single Site Socket or MainSequence Time (ms)—Specify
the single site socket or MainSequence time in milliseconds to use to calculate
the target test time.

Hover over a bar in the graph to display a tooltip with the following information:

■ Plot Name
■ Value (When you select Compare Data Sets in the Mode section of the
analyzer, the value in the tooltip includes the value of the bar the mouse is
hovering over, the matching value in the other log file, and the difference
between the two values.)

Timing Method

The Timing Method section of the analyzer includes the following options:

■ Total Time—Total time to run the step, including any TestStand overhead
and the time it takes to run any code modules.

© National Instruments 315

TestStand Semiconductor Module

■ Code Module Time—Only the time it takes to run the code module, if any,
for the step.

When you select Socket Times/PTE in the Graph Type control of the analyzer,
the Timing Method section includes the following options:

■ Socket Time—Total time to run the MainSequence sequence, including
any TestStand overhead. Socket time is different from cycle time, which
includes the socket time and the time required to perform other tasks, such as
binning, placing DUTs, and generating reports.
■ MainSequence—Only the time it takes to run the MainSequence
sequence.

Sorting Method

The Sorting Method section of the analyzer for the Step Times Statistics Graph
includes the following options based on whether you select Single Data Set or
Compare Data Sets in the Mode section:

■ Execution Order—Sorts the steps in execution order. This is the default
setting for the Sorting Method option.

Note If you are comparing data sets and the
execution order differs between the two
sets, the analyzer uses the execution order
of the base log file data. If the execution
order changes after the first time you take a
test program performance measurement,
the analyzer reflects the execution order
used in the first run.

■ Step Name—Sorts the steps alphabetically by step name.
■ Test Time (Base, Modified, Difference)—Sorts steps by the selected test
time statistic, highest to lowest. You can sort steps by the average, minimum,
lower quartile, median, upper quartile, or maximum of their test times. For
multiple sites, the analyzer sorts by the time of the highest number of sites. If
you are comparing data sets, you can sort by the test times in the base log file
data, the modified log file data, or the difference between the two.

ni.com316

TestStand Semiconductor Module

■ Show Top X Test Times—Specifies the number of steps with the highest
test times to display on the graph.
■ Show All Test Times—Displays all the steps with the highest test times.

■ Sort by PTE (Base, Modified)—Sorts steps by the worst PTE value. If you
are comparing data sets, you can sort by the PTE values in the base log file
data or the modified log file data.

Show Single Site Data

The analyzer displays this option only when performance data contains only data
for single site and one other multisite configuration. In this situation, the analyzer
hides the single site data by default because it typically is being included only for
the purpose of calculating PTE. Enabling this option overrides this behavior and
displays the single site data in the graph.

Test Program Performance Analyzer Filters (TSM)
Click the Filters tab at the bottom of the Test Program Performance Analyzer to
expand or collapse the tab, which contains the following data items to display or
hide on the analyzer graph. By default, the analyzer graph displays all the data
items.

■ Number of sites—The number of sites in the site configuration on which the
step was run.
■ Site—The site on which the step was run.
■ Status
■ Batch #
■ Sequence file
■ Sequence
■ Step type
■ Step group
■ Step name
■ Step ID

© National Instruments 317

TestStand Semiconductor Module

To exclude items, select one or more the items in the Included section of the Filters
tab and click the single left arrow. Click the double left arrow to exclude all items in
the currently selected filter.

To include items, select one or more items in the Excluded section of the Filters tab
and click the single right arrow. Click the double right arrow to include all items in
the currently selected filter.

Use the search box below the Included section and the Excluded section to search
for items the filter category contains.

Each filter displays only the items that exist in the currently filtered data set.
Excluding items in one filter might also hide the items in another filter, which allows
you to narrow down the data set using multiple criteria.

Use the following buttons to complete the corresponding actions:

■ Reset All Filters—Restores the default filter settings for the data sets the
graph displays. By default, the analyzer graph displays all the data items.
■ Load—Loads filter settings from a previously saved filter setting file (.filt
ersettings).
■ Save—Saves the current filter settings to a filter setting file (.filtersett
ings).

Comparing Data in the Test Program
Performance Analyzer (TSM)
Select Compare Data Sets in the Mode section of the Test Program Performance
Analyzer to display two data set log files in the analyzer graph. Use the Base Log
File Path and Modified Log File Path controls to select the data set log files to
compare. If the Modified Log File Path control is empty when you change display
modes, the analyzer launches a browse dialog box for you to select the file you want
to use as the modified log file to compare against the existing base log file.

The analyzer graph displays the data in the following colors to indicate differences:

■ Gray—Base data values.

ni.com318

TestStand Semiconductor Module

■ Green—A modified data value that is less than the base data value indicates
a performance increase.
■ Red—A modified data value that is greater than the base data value
indicates a performance decrease.
■ Blue—A modified data value that has a difference in performance from the
base data value that is less than the percentage value specified in the
Highlight Differences Above control in the Mode section of the analyzer.

By default, the analyzer highlights differences only when the difference between the
modified data value and the base data value is greater than 1%. Use the Highlight
Differences Above control in the Mode section of the analyzer to change this
threshold.

When you complete a test program performance measurement while the analyzer is
already comparing two data sets, TSM prompts you to compare the newly generated
data set to the current base data set displayed in the analyzer or to the current
modified data set displayed in the analyzer.

Log Browser Window
Click the Log Browser button near the upper right corner of the Test Program
Performance Analyzer to open the Log Browser window, which you can use to view
or compare multiple log files that represent different modifications of a test
program.

Complete the following steps to view or compare log files.

1. In the Log Directory path control, select the top-level directory that contains
the log files you want to view to compare. The column on the left displays
relative subdirectories.

2. Complete the following steps to view file(s) in Single Data Set mode or
Compare Data Sets mode.

a. Single Data Set – Double-click the row of the file you want to load. The
background row color turns blue.

© National Instruments 319

TestStand Semiconductor Module

b. Compare Data Sets – Right-click the row of the base log file you want
to load and chose Select Base Log File from the context menu. The
background row color of the base log file you selected turns gray. Right-
click the row of the modified log file you want to load and chose Select
Modified Log File from the context menu. The background row color
of the modified log file you selected turns blue.

Test Program Performance Measurement Data
Logs (TSM)
When you measure test program performance, TSM generates a performance log file
with the data gathered during the series of test executions and a summary log file
that describes the testing environment.

The Test Program Performance Analyzer uses the performance log file to analyze
and display the performance measurement data.

Performance Log File

The performance log file contains measurement data for each execution in the
performance measurement operation. The performance log file stores data in a
comma-separated values (.csv) format and includes the following information
about each step in the test program execution.

Column Name Notes
NumberOfSites Use this information to distinguish among the si

te configurations the log file includes.
Site
SequenceFile Blank for entries in the log file that correspond t

o the steps in the process model, such as the Ma
inSequence Callback step.

Sequence Blank for entries in the log file that correspond t
o the steps in the process model, such as the Ma
inSequence Callback step.

StepGroup Setup, Main, or Cleanup
StepName

ni.com320

TestStand Semiconductor Module

StepId
StepType
SitesTested String that contains a comma-separated list of si

tes on which the code module executed. This va
lue corresponds to the subsystem information o
n the Options tab of a Semiconductor Action or
Multi Test step.

LoopIndex 1-indexed number of the batches tested during t
he execution.

ModuleTime Execution time for the code module associated
with the step. This value is 0 if the step does not
call a code module.

TotalTime Total execution time for the step, including the
module time if the step calls a code module. For
Sequence Call steps, includes the execution tim
e of the entire sequence called from the step.

Status Result.Status for each step, such as Pass
ed, Failed, Done, or Error.

SocketTime Total execution time of the main sequence. This
value is logged only once for each loop of the m
ain sequence and is left blank for rows that corr
espond to individual steps.

Summary Log File

The summary log file contains information about the testing environment. The
summary log file stores data in a plain text (.txt) format and includes the following
information:

■ Test Program
■ Active Configuration
■ Offline Mode
■ Process Model Path
■ Operator Interface
■ Operator Interface Arguments
■ LabVIEW Adapter Server

© National Instruments 321

TestStand Semiconductor Module

■ Enabled Result Processors
■ Notes
■ TestStand Version
■ Number of Sites

Saving Data in the Test Program Performance
Analyzer (TSM)
You can export the data set(s) the Test Program Performance Analyzer displays as an
image or as a comma-separated values file.

Click the Export Graph to .PNG button to export the current graph display as a .p
ng file.

Click the Export Log Files(s) button to export the filtered data set the current
graph displays to a new .csv file. If you are comparing data sets in the analyzer,
TSM creates two .csv files of the filtered data the graph displays.

Perform Analysis in Parallel with Measurements (TSM)

If a test program spends significant time analyzing measurement data, you might be
able to improve performance by executing the analysis portion of the test in parallel
with the measurement portion of the test.

See Also
Asynchronous Analysis Example

Performing Inline Quality Assurance Testing (TSM)
A tester might need to perform periodic or random quality assurance (QA) tests to
identify errors or unintended behavior in some component of the test system.
Typically, a QA test specifies limits that are wider than those of a normal test.
Because an actual test might pass with a value that is very close to a limit, wider

ni.com322

TestStand Semiconductor Module

limits ensure that an inline QA failure occurs only when a problem exists with the
tester.

A technician or operator might run a dedicated QA test—separate from a standard
test sequence—on a tester as part of the manufacturing process or to perform an
audit on the test system. However, in some cases, the test engineer might want to
perform inline QA testing, in which one or more QA tests exists within a standard test
sequence.

TSM Implementation

Use a station setting TSM provides to enable or disable inline QA testing
functionality for the test station. When you enable inline QA testing for the test
station, you must specify an inline QA algorithm that specifies the inline QA testing
behavior. In the test program main sequence file, insert an Inline QA Test Block step
to specify a block of steps that perform inline QA testing only under certain
conditions. TSM maintains a queue of inline QA states, where each state is a Boolean
value that indicates whether to perform inline QA for a DUT.

The steps within the inline QA test block execute only when all of the following
conditions are true:

■ The StationSettings.Standard.InlineQAEnabled Boolean property is True.
■ The Step.ConditionExpr property of the Inline QA Test Block step
specifies an expression that evaluates to True.
■ The next inline QA state, which is the next Boolean value removed from the
TSM queue of inline QA states, is True.

Note If multiple inline QA test blocks exist
in the sequence, only the first one that
executes dequeues the inline QA state for
the DUT. Subsequent inline QA test blocks
use the inline QA state that the first inline QA
test block dequeued.

Complete the following steps to implement inline QA testing functionality for a test
program.

© National Instruments 323

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_expressions.html

1. Create an inline QA algorithm sequence file and edit the
GetNextInlineQAStateQueueItems callback sequence.

2. Enable inline QA on the test station and specify the inline QA algorithm
sequence file you created in step 1 as the inline QA algorithm sequence file to
use for the test station.

3. Insert a single Inline QA Test Block step instance in the MainSequence
sequence of the test program main sequence file.

4. Insert additional steps within the Inline QA Test Block that call code modules
that perform the inline QA tests.

Notes
■ The default expression for the Step.C
onditionExpr property evaluates to T
rue when the MainSequence sequence
has not yet encountered a sequence
failure. You can modify the expression the
Step.ConditionExpr property
specifies to customize the condition for
which the inline QA test block executes.
■ You can place multiple Inline QA Test
Block step type instances at any location
in any test sequence, but NI recommends
that you place only a single instance after
all standard test steps in the MainSeque
nce sequence of the test program main
sequence file.

Creating an Inline QA Algorithm Sequence File (TSM)

Complete the following steps to use the InlineQAAlgorithm.seq file, located
in the <TestStand>\Components\Modules\NI_SemiconductorModule
\Templates directory, as a starting point for an inline QA algorithm sequence file
you create.

1. Copy the InlineQAAlgorithm.seq file from the <TestStand>\Compo
nents\Modules\NI_SemiconductorModule\Templates directory

ni.com324

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

to the <TestStand Public>\Components\Modules\NI_Semicond
uctorModule\InlineQA directory.

2. Rename the <TestStand Public>\Components\Modules\NI_Semi
conductorModule\InlineQA\InlineQAAlgorithm.seq file using
the <CompanyName>_<InlineQAAlgorithmName>.seq convention.

3. Open the inline QA algorithm sequence file.
4. Add steps to the GetNextInlineQAStateQueueItems callback sequence to

populate the NextInlineQAStateQueueItems sequence parameter with a
queue of inline QA states.

5. Save the inline QA algorithm sequence file.

See Also
Enabling Inline QA on the Test Station

GetNextInlineQAStateQueueItems Callback (TSM)

TSM calls the GetNextInlineQAStateQueueItems callback sequence in the
inline QA algorithm sequence file specified for the test station.

The GetNextInlineQAStateQueueItems callback sequence specifies a
queue of inline QA states, where each state represents an enabled or disabled state
that indicates whether to perform inline QA for a particular DUT. When the queue
does not contain enough inline QA states for the next set of DUTs to test, TSM calls
the GetNextInlineQAStateQueueItems callback sequence to obtain
additional inline QA states.

The GetNextInlineQAStateQueueItems callback sequence accepts the
following parameters:

■ MinimumInlineQAStateQueueItemsRequired [In]—The minimum
number of inline QA states the GetNextInlineQAStateQueueItems
callback sequence must return for TSM to successfully perform inline QA
testing. To improve performance, return more than the minimum number of
required states this parameter specifies to limit the number of times TSM calls
the GetNextInlineQAStateQueueItems callback sequence.

© National Instruments 325

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ LotSettings [In]—An instance of the NI_SemiconductorModule_LotSettings
data type.
■ StationSettings [In]—An instance of the
NI_SemiconductorModule_StationSettings data type.
■ NextInlineQAStateQueueItems [Out]—Array of Boolean values, where
each Boolean value corresponds to an inline QA state. The GetNextInline
QAStateQueueItems callback sequence must resize this array and
populate it with the next inline QA state for the TSM queue of inline QA states.
The number of inline QA states populated must be greater than or equal to the
number of required inline QA states the
MinimumInlineQAStateQueueItemsRequired parameter specifies.

Enabling Inline QA on the Test Station (TSM)

Use the ConfigureStationSettings or GetStationSettings callback sequences to set
the StationSettings.Standard.InlineQAEnabled Boolean property to True or False
to enable or disable inline QA on the test station.

The General tab of the default Configure Station Settings dialog box contains an
Enable Inline QA option that also sets the value of the StationSettings.Sta
ndard.InlineQAEnabled property.

When you enable inline QA on the test station, you must set the value of the
StationSettings.Standard.InlineQAAlgorithmSequenceFilePath property to the
absolute path of the inline QA algorithm sequence file you want to use on the test
station. You can also use the Inline QA Algorithm control in the default Configure
Station Settings dialog box to specify the inline QA algorithm sequence file.

Part Average Testing (TSM)
Part average testing (PAT) is a method based on statistical analysis to identify and
fail parts that have characteristics significantly outside the normal distribution of
other parts in the same lot. The substantial difference of these parts, which might
still fall within the test program limits, could indicate the potential for early part
failure.

ni.com326

TestStand Semiconductor Module

Generally, part average testing collects data from previously tested parts and
compares each measurement for the current part to the mean of the previous
measurements. If the measurements for the current part are outside a certain
number of standard deviations from the mean, the part fails.

Refer to the Guidelines for Part Average Testing document (AEC - Q001 Rev-D
version) published by the Automotive Electronics Council for more information
about part average testing.

TSM Implementation

TSM does not install a default implementation of part average testing. You must use
the TSM PAT plug-in architecture to customize and perform part average testing with
TSM. TSM PAT plug-ins include a required PAT callback sequence file and
corresponding code modules. The PAT callback sequence file contains PAT entry
point sequences that TSM calls during execution to accomplish part average testing.
Use the example PAT plug-in, located in the <TestStand Public>\Examples\
NI_SemiconductorModule\Part Average Testing\Example Part A
verage Testing Plug-In directory, as a starting point for custom PAT plug-
ins you create.

Use the PAT Algorithm Settings panel of the Test Program Editor to edit settings the
PAT callback sequence file defines to customize the behavior of the algorithm
execution for each test program.

Use the Part Average Testing tab of the Semiconductor Multi Test step to enable and
configure part average testing for individual tests in a test program. The PAT
environment settings determine which settings to display in the Part Average
Testing tab.

Refer to the Part Average Testing Examples for information about enabling and
performing part average testing (PAT) in a test program.

Execution
The first time a PAT-enabled test executes, TSM automatically generates one or more
additional PAT tests associated with the original test. After executing all tests in the
MainSequence sequence of the test program, TSM calls the PAT entry point
sequences to customize and perform the PAT tests. TSM appends PAT test results to

© National Instruments 327

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

the MainSequence sequence test results so that PAT test results appear in the
data logs and reports.

Alternatively, you can insert one or more Perform Part Average Testing steps in your
test program to perform the PAT tests at specific points during program execution.
Use the result from PAT tests performed by these steps to control the execution flow
of the program. Tests that are performed by a Perform Part Average Testing step are
not performed after the MainSequence sequence of the test program.

Static Limits File
Use the IPartAverageTestingStaticLimitLoader.LoadStaticLimit
s method in the TSM Application API to load a static limits file that uses the same
structure as a TSM test limits file. To read and use limits from a different file format,
you must implement a custom file reader and a custom data structure to store the
limits.

See Also
Part Average Testing Examples

Part Average Testing Plug-In Architecture (TSM)

Use the example PAT plug-in, located in the <TestStand Public>\Examples\
NI_SemiconductorModule\Part Average Testing\Example Part A
verage Testing Plug-In directory, as a starting point for custom PAT plug-
ins you create. Refer to the Part Average Testing Examples for information about
enabling and performing part average testing (PAT) in a test program.

You must create and deploy the following plug-in files to implement custom part
average testing (PAT) for a test program:

■ A PAT callback sequence file that meets the following requirements:

■ The filename must be PartAverageTestingCallbacks.seq.
■ The file must reside in the <TestStand Public>\Components\Cal
lbacks\NI_SemiconductorModule directory.

ni.com328

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsmapplicationapi/interface_national_instruments_1_1_test_stand_1_1_semiconductor_module_1_1_i_part_average_testing_static_limit_loader.html
https://www.ni.com/docs/csh?topicname=tsmapplicationapi/interface_national_instruments_1_1_test_stand_1_1_semiconductor_module_1_1_i_part_average_testing_static_limit_loader.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ The file must include a sequence file global variable named PartAverag
eTestingAlgorithmDescription that is an instance of the
NI_SemiconductorModule_PATAlgorithmDescription data type to describe
the environment settings and algorithm settings.
■ The file must implement each of the PAT entry point sequences TSM calls
at specific points during test program execution.

■ Code modules that implement specific PAT algorithm tasks and settings.

The following graphic illustrates the PAT plug-in architecture

© National Instruments 329

TestStand Semiconductor Module

See Also
Part Average Testing Examples

Part Average Testing Environment Settings (TSM)

The part average testing (PAT) environment settings define characteristics of the PAT
algorithm TSM uses to customize the TSM environment for the PAT algorithm.
Specify these settings in the following properties in the FileGlobals.PartAve
rageTestingAlgorithmDescription.EnvironmentSettings container
property:

■ TestNumberOffsetForPinGroupTests—Specifies the offset that the
Semiconductor Multi Test step adds to the Dynamic PAT Test Number, to
the Static PAT Test Number, and to the Base PAT Test Number when the
step creates additional tests for pins in a pin group. When a test specifies a pin
group in the Pin column in the Tests table on the Tests tab, the Tests table
inserts a test for each pin in the pin group. The Test Number column is
computed by adding the test number specified for the pin group test to the
zero-based index of the pin in the pin group. Although the Part Average
Testing tab does not display the inserted tests for pin group tests, if part
average testing is enabled for a test that specifies a pin group, the step creates
PAT tests for each inserted test. The values for the Dynamic PAT Test Number,
Static PAT Test Number, and Base PAT Test Number are computed by adding
the test number specified by the pin group test to the product of the zero-
based index of the pin in the pin group and the value of TestNumberOffse
tForPinGroupTests.
■ AllowExecutionWithDefaultSettingValues—Indicates whether
TSM executes a test program that does not include any PAT algorithm settings.
TSM uses this setting only when no PAT algorithm settings exist in the test
program. When this setting is True, TSM uses the default values for PAT
algorithm settings stored in the FileGlobals.PartAverageTestingAl
gorithmDescription.AlgorithmSettings property in the PAT
callback sequence file. When this setting is False, TSM reports a run-time
error.

ni.com330

TestStand Semiconductor Module

■ EnablePerformPartAverageTestingStep—Enables the Perform
Part Average Testing step in the PAT algorithm. By default, this setting is Fals
e and the Perform Part Average Testing step is disabled.
■ StepSettingsPaneUI—Contains Boolean properties that specify which
of the following columns to display on the Part Average Testing tab of the
Semiconductor Multi Test step.

■ EnableBaseTestNumberColumn—Specifies whether the PAT Base
Test Number column is visible.
■ EnableDynamicEnableColumn—Specifies whether the Enable
Dynamic PAT column is visible.
■ EnableDynamicTestNumberColumn—Specifies whether the
Dynamic PAT Test Number column is visible.
■ EnableDynamicTestNameColumn—Specifies whether the Dynamic
PAT Test Name column is visible.
■ EnableDynamicSoftwareBinColumn—Specifies whether the
Dynamic PAT Software Bin column is visible.
■ EnableDynamicLowLimitColumn—Specifies whether the Dynamic
PAT Low Limit column is visible.
■ EnableDynamicHighLimitColumn—Specifies whether the
Dynamic PAT High Limit column is visible.
■ EnableStaticEnableColumn—Specifies whether the Enable Static
PAT column is visible.
■ EnableStaticTestNumberColumn—Specifies whether the Static
PAT Test Number column is visible.
■ EnableStaticTestNameColumn—Specifies whether the Static PAT
Test Name column is visible.
■ EnableStaticSoftwareBinColumn—Specifies whether the Static
PAT Software Bin column is visible.

© National Instruments 331

TestStand Semiconductor Module

See Also
Part Average Testing Examples

Part Average Testing Algorithm Settings

Part Average Testing Algorithm Settings (TSM)

The part average testing (PAT) algorithm settings are custom settings that define the
behavior of a specific PAT algorithm. By default, a PAT algorithm does not include
algorithm settings. You must create each setting for a PAT algorithm, and you must
assign default values to each setting.

Creating PAT Algorithm Settings

To create a PAT algorithm setting, add string, number, Boolean, and enumeration
properties to the FileGlobals.PartAverageTestingDescription.Algo
rithmSettings container property. To further refine how TSM displays the
setting in the PAT Algorithm Settings panel of the Test Program Editor, add an
attribute to the setting property that is an instance of the
NI_SemiconductorModule_PATAlgorithmSettingUIAttribute data type and name the
attribute UI. Set the following properties in the UI container to control how TSM
treats the setting:

■ DisplayName—Specifies the text to display in the Name column for the
setting. If this property is an empty string, TSM uses the algorithm setting
property name.
■ Description—Specifies an additional description of the setting that the
PAT Algorithm Settings panel displays as a tooltip for the setting.
■ BrowseButtonOption—Specifies whether TSM displays a browse button
in the Value column for finding files or directories. Use this property to
indicate whether the setting is a file or a directory.
■ RequireAbsolutePath—Specifies whether TSM inserts absolute paths
by default when browsing for a file or directory. TSM uses this property only if
the BrowseButtonOption is set to Display file browse button or
Display directory file browse button.

ni.com332

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/propertyobject_attributes.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/propertyobject_attributes.htm

■ MinimumNumberValue—Specifies the minimum value for a Number
setting. This property has a default value of -Inf.
■ MaximumNumberValue—Specifies the maximum value for a Number
setting. This property has a default value of +Inf.
■ DisplaySoftwareBinComboBox—Specifies that the Number setting
corresponds to a bin number. TSM displays a combobox with the list of
software bins for the current test program in the Value column. Bins must be
defined in the bin definitions file.

Note If you change the PAT algorithm settings
in the PartAverageTestingAlgorithmDe
scription file global variable of the PAT
callback sequence file (PartAverageTestin
gCallbacks.seq), you must update existing
test programs that contain PAT algorithm
settings to use the latest settings. Click the
Update Test Program Settings button in the
PAT Algorithm Settings panel of the Test
Program Editor to update the PAT algorithm
settings in a test program to match the current
PAT algorithm settings. TSM reports a run-time
error when you execute a test program that
includes PAT algorithm settings that do not
match the settings in the PAT callback sequence
file.

Assigning Values to PAT Algorithm Settings

Use the PAT Algorithm Settings panel of the Test Program Editor to set values for the
PAT algorithm setting so that each test program can use unique values.

Obtaining PAT Algorithm Settings at Run Time

Use the PartAverageTestingAlgorithmSettings property on the
SetupPartAverageTestingCallbackArgs parameter of the PAT Setup entry point
sequence to obtain the values of PAT algorithm settings at run time. Refer to the IP
artAverageTestingAlgorithmSettings interface in the TSM Application
API for more information.

© National Instruments 333

TestStand Semiconductor Module

See Also
Part Average Testing Examples

Part Average Testing Environment Settings

Part Average Testing Entry Points (TSM)

At specific points during test program execution, TSM calls the following set of
required part average testing (PAT) entry point sequences in the <TestStand Pu
blic>\Components\Callbacks\NI_SemiconductorModule\PartAver
ageTestingCallbacks.seq file. TSM calls the entry point sequences for each
site independently.

■ Setup—Initializes the PAT algorithm for the site.
■ Customize—Customizes all the PAT tests for the site.
■ Perform—Performs part average testing for the site by setting limits and
evaluating PAT tests.
■ Cleanup—Performs finalization tasks.

See Also
Part Average Testing Examples

Part Average Testing Setup Entry Point (TSM)
Use the part average testing (PAT) Setup entry point to perform initialization tasks
for a single site. TSM calls the entry point for each site when starting a new lot. The
Setup entry point typically obtains values of PAT algorithm settings from the test
program, obtains limits for static PAT tests, and initializes data structures for
computing limits for dynamic PAT tests.

Parameters

The Setup entry point accepts the following parameters:

ni.com334

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ ModelPluginConfiguration [In]—An instance of the
NI_ModelPluginConfiguration data type that contains the configuration and
run-time variables for the set of all active process model plug-in instances.
Use this parameter to extract information, such as report paths and
directories.
■ ModelData [In]—Contains information about the process model used for
the lot testing.
■ SetupPartAverageTestingCallbackArgs [In]—A reference to an object
that implements the ISetupPartAverageTestingCallbackArgs
interface in the TSM Application API. This interface provides properties to
obtain values of PAT algorithm settings, the site index, and other information.
■ PartAverageTestingRuntimeData [Out]—An object reference that stores
run-time data, such as test statistics, to access in the other entry points. TSM
passes a reference to this object to each of the other PAT entry points.

See Also
Part Average Testing Examples

Part Average Testing Customize Entry Point
(TSM)
Use the part average testing (PAT) Customize entry point to customize PAT tests
before the PAT tests execute on a site. TSM calls this entry point if a PAT-enabled test
is executed for the first time while testing the current DUT. TSM calls this entry point
after executing the MainSequence sequence or when executing a Perform Part
Average Testing step. TSM passes the PAT-enabled tests and their associated PAT
tests to the entry point sequence.

Some typical customizations the entry point performs include setting limits on
static PAT tests, setting PAT test numbers and test names, and creating PAT tests
associated with a PAT-enabled test.

© National Instruments 335

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsmapplicationapi/interface_national_instruments_1_1_test_stand_1_1_semiconductor_module_1_1_i_setup_part_average_testing_callback_args.html

Parameters

The Customize entry point accepts the following parameters:

■ ModelPluginConfiguration [In]—An instance of the
NI_ModelPluginConfiguration data type that contains the configuration and
run-time variables for the set of all active process model plug-in instances.
Use this parameter to extract information, such as report paths and
directories.
■ ModelData [In]—Contains information about the process model used for
the lot testing.
■ PartAverageTestingRuntimeData [In]—The object reference created in
the Setup entry point that stores run-time data, such as test statistics.
■ CustomizePartAverageTestingCallbackArgs [In]—A reference to an
object that implements the ICustomizePartAverageTestingCallba
ckArgs interface in the TSM Application API. This interface provides the list of
PAT-enabled tests and associated PAT tests to customize. The tests this object
references include only the tests that executed for the first time while testing
the current DUT.

See Also
Part Average Testing Examples

Part Average Testing Perform Entry Point (TSM)
Use the part average testing (PAT) Perform entry point to perform the PAT tests after
all the tests in the MainSequence sequence have executed on a site or during the
execution of a Perform Part Average Testing step. TSM calls this entry point if any
PAT-enabled tests executed while testing the current DUT. The Perform entry point
sets the limits on dynamic PAT tests and executes each dynamic and static PAT test.

Parameters

The Perform entry point accepts the following parameters:

ni.com336

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsmapplicationapi/interface_national_instruments_1_1_test_stand_1_1_semiconductor_module_1_1_i_customize_part_average_testing_callback_args.html
https://www.ni.com/docs/csh?topicname=tsmapplicationapi/interface_national_instruments_1_1_test_stand_1_1_semiconductor_module_1_1_i_customize_part_average_testing_callback_args.html

■ ModelPluginConfiguration [In]—An instance of the
NI_ModelPluginConfiguration data type that contains the configuration and
run-time variables for the set of all active process model plug-in instances.
Use this parameter to extract information, such as report paths and
directories.
■ ModelData [In]—Contains information about the process model used for
the lot testing.
■ PartAverageTestingRuntimeData [In]—The object reference created in
the Setup entry point that stores run-time data, such as test statistics.
■ CustomizePartAverageTestingCallbackArgs [In]—A reference to an
object that implements the ICustomizePartAverageTestingCallba
ckArgs interface in the TSM Application API. This interface provides the list of
PAT tests to execute.

See Also
Part Average Testing Examples

Part Average Testing Cleanup Entry Point (TSM)
Use the part average testing (PAT) Cleanup entry point to perform finalization tasks
and to dispose of data structures.

Parameters

The Cleanup entry point accepts the following parameters:

■ ModelPluginConfiguration [In]—An instance of the
NI_ModelPluginConfiguration data type that contains the configuration and
run-time variables for the set of all active process model plug-in instances.
Use this parameter to extract information, such as report paths and
directories.
■ ModelData [In]—Contains information about the process model used for
the lot testing.

© National Instruments 337

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsmapplicationapi/interface_national_instruments_1_1_test_stand_1_1_semiconductor_module_1_1_i_customize_part_average_testing_callback_args.html
https://www.ni.com/docs/csh?topicname=tsmapplicationapi/interface_national_instruments_1_1_test_stand_1_1_semiconductor_module_1_1_i_customize_part_average_testing_callback_args.html

■ PartAverageTestingRuntimeData [In]—The object reference created in
the Setup entry point that stores run-time data, such as test statistics.

See Also
Part Average Testing Examples

Specifying Settings for the Current Test Station (TSM)
You can specify test station configuration options for the tester, such as handler
configuration or data logging preferences, that apply to all test lots and that persist
during restart and shutdown operations. The test engineer or technician usually
configures station settings when initially setting up or later reconfiguring a tester.
Generally, an operator has only restricted access to station settings to ensure that
critical configuration options do not change.

The test program can use station information to determine how to execute tests. For
example, station settings might specify the type of handler to use with the test
program, or whether the test station performs inline quality assurance testing. When
a test station is reconfigured, such as to specify a different handler or to change the
functionality of the tester, the station settings must be updated to account for the
changes.

TSM Implementation

The NI_SemiconductorModule_StationSettings data type includes properties that
correspond to some fields of the Master Information Record (MIR) and Site
Description Record (SDR) of version 4 of the Standard Test Data Format (STDF) and
includes other properties specific to TSM. You can access the station settings from
the test program, and you can modify the default TSM station settings callbacks to
customize how TSM obtains the settings.

The Configure Station button in the default TSM operator interface, the
Semiconductor Module»Configure Station menu item in the TestStand
Sequence Editor, and the Configure Station button on the TSM toolbar call the
ConfigureStationSettings callback sequence to obtain the settings for the current
test station. Use the ConfigureStationSettings callback sequence to

ni.com338

TestStand Semiconductor Module

prompt a test engineer or technician to manually configure station settings in the
Configure Station Settings dialog box or to use another mechanism that requires
user input.

Note The default TSM operator interface
restricts access to the Configure Station
button to users with the ConfigApp privilege.

Customizing the Behavior for Obtaining Station Settings (TSM)

TSM obtains station settings by calling the following callback sequences, located in
the <TestStand>\Components\Callbacks\NI_SemiconductorModule
\SemiconductorModuleCallbacks.seq file:

■ ConfigureStationSettings—The Configure Station button in the default
TSM operator interface or the Semiconductor Module»Configure Station
menu item in the TestStand Sequence Editor calls the ConfigureStation
Settings callback sequence to obtain the settings for the current test
station. Use the ConfigureStationSettings callback sequence to
prompt a test engineer or technician to manually configure station settings in
a dialog box or to use another mechanism that requires user input. The
default implementation of the ConfigureStationSettings callback
sequence launches the default Configure Station Settings dialog box.
■ GetStationSettings—Use the GetStationSettings callback sequence
to programmatically obtain station settings when the test program begins
executing without requiring much, if any, test engineer or technician
interaction. For example, you can specify that the callback sequence queries a
database for the station information related to a barcode or DUT type. The
default implementation of the GetStationSettings callback sequence
does not perform any operations.

Complete the following steps to override the default ConfigureStationSetti
ngs or GetStationSettings callback sequence and customize the behavior for
obtaining station settings.

1. Determine whether a sequence file named SemiconductorModuleCallb
acks.seq exists in the <TestStand Public>\Components\Callbac

© National Instruments 339

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/privileges.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

ks\NI_SemiconductorModule directory. If the sequence file does not
exist, create it and ensure that it does not contain any sequences.

2. Copy the ConfigureStationSettings or GetStationSettings callback sequences
from the <TestStand>\Components\Modules\NI_Semiconductor
Module\Templates\SemiconductorModuleCallbacks.seq file to
the <TestStand Public>\Components\Callbacks\NI_Semicond
uctorModule\SemiconductorModuleCallbacks.seq file, and make
changes to the copy.

3. To customize the default Configure Station Settings dialog box in the Config
ureStationSettings callback sequence, complete the following
additional steps.

a. Copy the Display Configure Station Settings Dialog step from the Confi
gureStationSettings callback sequence of the <TestStand>\C
omponents\Callbacks\NI_SemiconductorModule\Semico
nductorModuleCallbacks.seq file to the ConfigureStation
Settings callback sequence of the <TestStand Public>\Compo
nents\Callbacks\NI_SemiconductorModule\Semiconduc
torModuleCallbacks.seq file.

b. Copy the contents of <TestStand>\Components\Callbacks\NI
_SemiconductorModule\StationSettingsDialogs to <Tes
tStand Public>\Components\Callbacks\NI_Semiconduc
torModule\StationSettingsDialogs and make changes to the
copy of the LabVIEW project. If you are making extensive customizations
to the LabVIEW project, use the Debugging the Station Settings dialog
box to enable automatic testing when you makes changes to the station
settings.

c. Rebuild the packed project library build specification in the project to
update the copy of the LabVIEW packed project library.

See Also
Customizing the Behavior for Obtaining Lot Settings

ni.com340

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Debugging the Station Settings Dialog Box (TSM)

If you customize the Station Settings dialog box, you can use the following steps to
automatically test new changes you make to the station settings. With these settings
configured, TestStand Semiconductor Module (TSM) calls the VIs directly when
configuring the station settings so any changes you make are reflected immediately.
You do not have to rebuild the packed project library.

1. Complete the following steps to configure TSM to call the Station Settings
dialog box source VIs instead of a packed project library.

a. In the TestStand Sequence Editor, select Configure»Adapters and
select LabVIEW.

b. Click Configure and select LabVIEW Development System.

c. Click OK in the LabVIEW Adapter Configuration dialog box.

d. Click Done to close the Adapter Configuration dialog box.
e. Open the <TestStand Public>\Components\Callbacks\NI_

SemiconductorModule\SemiconductorModuleCallbacks.
seq file.

f. In the Display Configure Station Settings Dialog step of the Configure
StationSettings sequence, click the Module tab.

g. Click Advanced Settings and remove the checkmark from the Always
Run VI in LabVIEW Run-Time Engine checkbox.

h. Click Close to close the LabVIEW Advanced Settings dialog box.

i. On the Module tab, change the VI path from the default value of Stati
onSettingsDialogs.lvlibp\Configure Station Settin
gs.vi to Configure Station Settings.vi.

j. Save the sequence file.

2. Complete the following steps to configure the Station Settings dialog box VIs
for debugging.

a. Open the Configure Station Settings VI.

b. Select File»VI Properties to open the VI Properties dialog box.

© National Instruments 341

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

c. In the Category drop-down menu, select Window Appearance.

d. Click Customize to open the Customize Window Appearance dialog
box. View and record the current custom settings so you can restore
these settings when you finish debugging.

e. Close the Customize Window Appearance dialog box.

f. In the VI Properties dialog box, select Default.

g. Click OK to close the VI Properties dialog box.
h. Save the VI.

3. Debug the Station Settings dialog box VIs.
4. When you finish debugging the VIs, complete the following steps to restore the

settings to the previous state.

a. Open the Configure Station Settings VI.

b. Select File»VI Properties to open the VI Properties dialog box.

c. In the Category drop-down menu, select Window Appearance.

d. Select Custom and then click Customize to launch the Customize
Window Appearance dialog box.

e. Restore the custom settings you recorded in step 2d.

f. Click OK to close the Customize Window Appearance dialog box.

g. Click OK to close the VI Properties dialog box.
h. Save the VI.

5. Rebuild the packed project library specification as instructed in the
Customizing the Behavior for Obtaining Station Settings topic to use the
modified version of the dialog box with the restored settings.

6. Complete the following steps to restore TSM to call a packed project library
instead of calling the VIs directly.

a. In the Display Configure Station Settings Dialog step of the Configure
StationSettings sequence, click the Module tab.

b. Click Advanced settings and select the Always Run VI in LabVIEW
Run-Time Engine checkbox.

ni.com342

TestStand Semiconductor Module

c. On the Module tab, set the VI path to the StationSettingsDialog
s.lvlibp\Configure Station Settings.vi.

d. Save the sequence file.

ConfigureStationSettings Callback (TSM)

The default implementation of the ConfigureStationSettings callback
sequence launches the default Configure Station Settings dialog box, in which the
test engineer or technician can configure the station settings. You can override this
callback sequence to customize the behavior. You can also use the
GetStationSettings callback sequence to programmatically obtain station settings
when the test program begins executing without requiring much, if any, test
engineer or technician interaction.

The ConfigureStationSettings callback sequence accepts the following
parameters:

■ StationSettings [In/Out]—An instance of the
NI_SemiconductorModule_StationSettings data type. Configure the Configu
reStationSettings callback sequence to assign values for all the
properties that you require.

If you implement a dialog box for users to manually configure station
information, ensure that the dialog box obtains values for all the properties of
the StationSettings parameter that you require. If the default properties of
the StationSettings parameter do not meet your requirements, you can add
properties to the NI_SemiconductorModule_CustomStationSettings data
type. The properties you add to the data type appear in the Custom container
of the StationSettings parameter.

TSM saves station settings to disk when the ConfigureStationSetting
s callback sequence sets the Canceled parameter to False.
■ Canceled [Out]—Configure the ConfigureStationSettings callback
sequence to set this parameter to True if the test engineer or technician
cancels edits in the Configure Station Settings dialog box. TSM saves the

© National Instruments 343

TestStand Semiconductor Module

values of the StationSettings parameter to disk only when the Canceled
parameter is False.
■ SemiconductorModuleManager [In]—A reference to the Semiconductor
Module Manager object that you use to call utility methods in the TSM
Application API.

See Also
Station Settings from a Test Program

GetStationSettings Callback (TSM)

TSM calls the GetStationSettings callback sequence to programmatically
obtain station settings without requiring much, if any, test engineer or technician
interaction when execution begins.

The default implementation of the GetStationSettings callback sequence
sets some standard station settings, such as Standard.HandlerType, Standa
rd.NodeName, and Standard.TesterType. You can override this callback
sequence to customize the behavior for when TSM attempts to determine station
settings values at run time. You can also use the ConfigureStationSettings callback
sequence to prompt a test engineer or technician to manually configure station
settings in a dialog box or to use another mechanism that requires user input.

The GetStationSettings callback sequence accepts the following parameters:

■ StationSettings [In/Out]—An instance of the
NI_SemiconductorModule_StationSettings data type. Enter values for all the
properties that you require.

If you implement a mechanism for programmatically obtaining station
information, ensure that the mechanism obtains values for all the properties
of the StationSettings parameter that you require. If the default properties
of the StationSettings parameter do not meet your requirements, you can
add properties to the NI_SemiconductorModule_CustomStationSettings data
type. The properties you add to the data type appear in the Custom container
of the StationSettings parameter.

ni.com344

TestStand Semiconductor Module

See Also
Accessing Station Settings from a Test Program

Accessing Station Settings from a Test Program (TSM)

Use the Get Test Information step to access standard and custom station settings in
a test program sequence file.

Standard Station Settings

The following table lists the properties of the
NI_SemiconductorModule_StandardStationSettings data type, the fields of the
Master Information Record (MIR) or Site Description Record (SDR) of the Standard
Test Data Format (STDF) version 4 specification that the STDF Log result processing
plug-in sets using the properties, or other purpose of each property.

Note Use the Types window in the TestStand
Sequence Editor to review properties on the
standard type or to add properties to the
custom type.

Property Name Corresponding STDF Record Field or Other Purpose
AllowMorePinMapSitesThanTestSockets Specifies whether TSM runs a test program with

a pin map with more sites than the number of te
st sockets configured in the model options. If yo
u disable this option, TSM reports a run-time err
or if the pin map has more sites than test socket
s.

AllowFewerPinMapSitesThanTestSockets Specifies whether TSM runs a test program with
a pin map with fewer sites than the number of t
est sockets configured in the model options. If y
ou disable this option, TSM reports a run-time er
ror if the pin map has fewer sites than test socke
ts.

AvailableSiteNumbers Specifies which site numbers from a pin map for
a test program to use when running the test pro
gram. Other sites in the pin map are ignored. Fo

© National Instruments 345

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/typepalwin.htm

r example, you can set this property to disable s
pecific sites or to use the particular connections
of a pin map that match the DIB for the test stati
on. If you leave this array empty, TSM uses the fi
rst N sites in the pin map, where N is the numbe
r of available test sockets in the station model u
p to the total number of sites in the pin map. Th
e default Configure Lot Settings dialog box sets t
his property based on the Enabled Sites control.

DIBBoardId SDR: DIB_ID
DIBBoardType SDR: DIB_TYP
ExtraEquipmentId SDR: EXTR_ID
ExtraEquipmentType SDR: EXTR_TYP
GenerateUniquePartIds Specifies whether TSM generates unique values

for the PartId field of Part Results Records (PRRs
) of the STDF log file. Set this value to False to
generate unique PartId values using a custom al
gorithm you implement.
When the GenerateUniquePartIds proper
ty is True, TSM reassigns the same unique Part
ID to the part when it is retested. Complete the f
ollowing steps to assign a new unique Part ID to
a part when it is retested:

1. Using a text editor, open the RuntimeSe
ttings.ini.example file located in t
he <TestStand Application Data
>\Cfg\NI_SemiconductorModule
directory.

2. Set the value of the GenerateUniquePartI
dsForRetestedParts key to true.

3. Go to File»Save as and rename the modi
fed file to RuntimeSettings.ini.

HandlerContactorId SDR: CONT_ID
HandlerContactorType SDR: CONT_TYP
HandlerDriverSequenceFilePath Stores the absolute path and sequence filename

of the real or simulated handler/prober driver.

ni.com346

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

When the value of the HandlerMode property
is 0, TSM does not use this property.

HandlerId SDR: HAND_ID
HandlerMode Stores the current handler/prober mode.
HandlerType SDR: HAND_TYP (Default value depends on the

handler/prober mode. It is the handler/prober d
river sequence filename or "No Handler" or "Si
mulated Handler".)

InlineQAEnabled Specifies whether you enabled inline QA.
InlineQAAlgorithmSequenceFilePath Stores the absolute path of the inline QA algorit

hm sequence file.
InterfaceCableId SDR: CABL_ID
InterfaceCableType SDR: CABL_TYP
LaserId SDR: LASR_ID
LaserType SDR: LASR_TYP
LoadBoardId SDR: LOAD_ID
LoadBoardType SDR: LOAD_TYP
NodeName MIR: NODE_NAM (Default value is the TestStand

Station ID.)
PartCountWindowSize Specifies the number of part test results tracked

per site. The site status indicators in the default
operator interface display the results of the last
n parts, where this option specifies n.

TimeStatisticsWindowSize Specifies the number of parts used to compute t
he average cycle time displayed in the default o
perator interface. Use a negative value to use th
e default, which is 10 *n, where n is the number
of sites. Use a value of 0 to use the cycle time of
all tested parts. Regardless of the setting value,
TSM never includes the cycle time of the first pa
rt in the average.

OfflineMode Specifies whether Offline Mode is enabled, whic
h allows you to develop, run, and debug test pro
grams only on a computer without access to NI i
nstruments.

ProbeCardId SDR: CARD_ID
ProbeCardType SDR: CARD_TYP

© National Instruments 347

TestStand Semiconductor Module

StationNumber MIR: STAT_NUM
TesterSerialNumber MIR: SERL_NUM
TesterType MIR: TSTR_TYP (Default value is "National Instru

ments".)
TestFacilityId MIR: FACIL_ID
TestFloorId MIR: FLOOR_ID

See Also
Configuring Handler or Prober Support for a Test Program

NI_SemiconductorModule_StationSettings Data Type

The NI_SemiconductorModule_StationSettings data type defines the properties for
each instance of the StationSettings sequence parameter, which the test program
can access.

TSM obtains most of the values for the NI_SemiconductorModule_StationSettings
data type from the ConfigureStationSettings callback sequence. The
NI_SemiconductorModule_StationSettings data type contains the following
properties:

■ Standard—An instance of the
NI_SemiconductorModule_StandardStationSettings data type. This property
contains the standard station settings TSM recognizes.
■ Custom—An instance of the
NI_SemiconductorModule_CustomStationSettings data type. By default, this
property is an empty container. You can add properties to the
NI_SemiconductorModule_CustomStationSettings data type to add custom
station settings that appear in this container.

See Also
GetStationSettings Callback

Accessing Station Settings from a Test Program

Get Test Information Step

ni.com348

TestStand Semiconductor Module

Specifying Settings for the Current Lot under Test (TSM)
The production operator can specify the following information for the current lot of
DUTs (test lot):

■ Historical information, such as the wafer lot from which the DUTs came
■ Descriptive information, such as DUT numbers or package types
■ Conditions under which to test the DUTs, such as temperature, voltage, and
so on

The test program can use lot information to determine how to execute tests. For
example, lot settings might dictate which steps execute, what temperature to apply
to a DUT, what voltage to use, and so on.

TSM Implementation

The NI_SemiconductorModule_LotSettings data type includes properties that
correspond to some fields of the Master Information Record (MIR) of version 4 of the
Standard Test Data Format (STDF) and includes other properties specific to TSM. You
can access the lot settings from the test program, and you can modify the default
TSM lot settings callbacks to customize how TSM obtains the settings.

The Configure Lot button in the default TSM operator interface, the
Semiconductor Module»Configure Lot menu item in the TestStand Sequence
Editor, and the Configure Lot button on the TSM toolbar call the
ConfigureLotSettings callback sequence to obtain the settings for the current test
lot. Use the ConfigureLotSettings callback sequence to prompt an operator
to manually enter lot information in the Configure Lot Settings dialog box or to use
another mechanism that requires user input.

Note The default TSM operator interface
restricts access to the Configure Lot button to
users with the Execute privilege.

See Also
Reports and Data Logs

© National Instruments 349

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/privileges.html

Customizing the Behavior for Obtaining Lot Settings (TSM)

Use the following mechanisms to customize how TSM obtains lot settings for a test
program.

■ ConfigureLotSettings callback sequence—TSM calls the ConfigureLotSe
ttings callback sequence when you trigger the ConfigureLotSettings
command in the TSM operator interface or the TestStand Sequence Editor. If
you set the ConfigureLotWhenStartingLot property on the
SemiconductorModuleManager object using the TSM Application API to true,
TSM also calls this callback sequence just before execution begins, when an
operator initiates the start of a lot using the Start Lot or Perform Single Part
Test button. Use this callback sequence to launch a dialog box to prompt an
operator to enter lot information or to retrieve lot information
programmatically, such as from a database. The default implementation of
the ConfigureLotSettings callback sequence launches the default
Configure Lot Settings dialog box.
■ ConfigureLotWhenStartingLot option—Set this property on the
SemiconductorModuleManager object using the TSM Application API to true
when you want to customize an operator interface to automatically retrieve
lot settings at the beginning of the execution of each lot. When you start the
execution of a lot, TSM calls the ConfigureLotSettings callback
sequence, which you can configure to retrieve lot information
programmatically, such as from a database. The default setting for the Confi
gureLotWhenStartingLot property is False.
■ GetLotSettings callback—TSM calls the GetLotSettings callback
sequence as execution begins. Use this callback if you want to
programmatically override a lot setting that might have been set in the Conf
igureLotSettings callback sequence and you want to always do so at
run time. The default implementation of the GetLotSettings callback
sequence sets the LotSettings.Standard.JobName and LotSetting
s.Standard.JobRevision values based on the value of
LotSettings.Standard.MainSequenceFilePath.

ni.com350

TestStand Semiconductor Module

Complete the following steps to override the default ConfigureLotSettings or
GetLotSettings callback sequence and customize the behavior for obtaining lot
settings.

1. Determine whether a sequence file named SemiconductorModuleCallb
acks.seq exists in the <TestStand Public>\Components\Callbac
ks\NI_SemiconductorModule directory. If the sequence file does not
exist, create it and ensure that it does not contain any sequences.

2. Copy the ConfigureLotSettings or GetLotSettings callback sequences from the
<TestStand>\Components\Modules\NI_SemiconductorModule\
Templates\SemiconductorModuleCallbacks.seq file to the <Tes
tStand Public>\Components\Callbacks\NI_SemiconductorMo
dule\SemiconductorModuleCallbacks.seq file and make changes
to the copy.

3. To customize the default Configure Lot Settings dialog box in the
ConfigureLotSettings callback sequence, complete the following additional
steps.

a. Copy the Display Configure Lot Settings Dialog step from the Configu
reLotSettings callback sequence of the <TestStand>\Compone
nts\Callbacks\NI_SemiconductorModule\Semiconducto
rModuleCallbacks.seq file to the ConfigureLotSettings
callback sequence of the <TestStand><Public>\Components\C
allbacks\NI_SemiconductorModule\SemiconductorModu
leCallbacks.seq file.

b. Copy the contents of <TestStand>\Components\Callbacks\NI
_SemiconductorModule\Source\LotSettingsDialogs to <
TestStand Public>\Components\Callbacks\NI_Semicon
ductorModule\Source\LotSettingsDialogs and make
changes to the copy of the LabVIEW project. If you are making extensive
customizations to the LabVIEW project, use the Debugging the Lot
Settings dialog box to enable automatic testing when you makes
changes to the lot settings.

c. Rebuild the packed project library build specification in the project to
update the copy of the LabVIEW packed project library.

© National Instruments 351

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Complete the following steps to change the value of the ConfigureLotWhenSta
rtingLot property in the default operator interface.

1. Copy the contents of the <TestStand>\UserInterfaces\NI_Semico
nductorModule\<LabVIEW or CSharp> directory to the <TestStan
d Public>\UserInterfaces\NI_SemiconductorModule\<LabVI
EW or CSharp> directory.

Note You must manually create the <Test
Stand Public>\UserInterfaces\NI
_SemiconductorModule\<LabVIEW o
r CSharp> directory if it does not already
exist.

2. Modify the files in the <TestStand Public>\UserInterfaces\NI_S
emiconductorModule\<LabVIEW or CSharp> directory to find a
reference to the SemiconductorModuleManager object and set the Configu
reLotWhenStartingLot property to True.

See Also
Customizing the Behavior for Obtaining Station Settings

TSM Application API

Debugging the Lot Settings Dialog Box (TSM)

If you customize the Lot Settings dialog box, you can use the following steps to
automatically test new changes you make to the lot settings. With these settings
configured, TestStand Semiconductor Module (TSM) calls the VIs directly when
configuring the lot settings so any changes you make are reflected immediately. You
do not have to rebuild the packed project library.

1. Complete the following steps to configure TSM to call the Lot Settings dialog
box source VIs instead of a packed project library.

a. In the TestStand Sequence Editor, select Configure»Adapters and
select LabVIEW.

b. Click Configure and select LabVIEW Development System.

ni.com352

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

c. Click OK in the LabVIEW Adapter Configuration dialog box.

d. Click Done to close the Adapter Configuration dialog box.
e. Open the <TestStand Public>\Components\Callbacks\NI_

SemiconductorModule\SemiconductorModuleCallbacks.
seq file.

f. In the Display Configure Lot Settings Dialog step of the ConfigureLot
Settings sequence, click the Module tab.

g. Click Advanced Settings and remove the checkmark from the Always
Run VI in LabVIEW Run-Time Engine checkbox.

h. Click Close to close the LabVIEW Advanced Settings dialog box.

i. On the Module tab, change the VI path from the default value of LotSe
ttingsDialogs.lvlibp\Configure Lot Settings.vi to C
onfigure Lot Settings.vi.

j. Save the sequence file.

2. Complete the following steps to configure the Lot Settings dialog box VIs for
debugging.

a. Open the Configure Lot Settings VI.

b. Select File»VI Properties to open the VI Properties dialog box.

c. In the Category drop-down menu, select Window Appearance.

d. Click Customize to open the Customize Window Appearance dialog
box. View and record the current custom settings so you can restore
these settings when you finish debugging.

e. Close the Customize Window Appearance dialog box.

f. In the VI Properties dialog box, select Default.

g. Click OK to close the VI Properties dialog box.
h. Save the VI.

3. Debug the Lot Settings dialog box VIs.
4. When you finish debugging the VIs, complete the following steps to restore the

settings to the previous state.

© National Instruments 353

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

a. Open the Configure Lot Settings VI.

b. Select File»VI Properties to open the VI Properties dialog box.

c. In the Category drop-down menu, select Window Appearance.

d. Select Custom and then click Customize to launch the Customize
Window Appearance dialog box.

e. Restore the custom settings you recorded in step 2d.

f. Click OK to close the Customize Window Appearance dialog box.

g. Click OK to close the VI Properties dialog box.
h. Save the VI.

5. Rebuild the packed project library specification as instructed in the
Customizing the Behavior for Obtaining Lot Settings topic to use the modified
version of the dialog box with the restored settings.

6. Complete the following steps to restore TSM to call a packed project library
instead of the Lot Settings dialog box.

a. In the Display Configure Lot Settings Dialog step of the ConfigureLot
Settings sequence, click the Module tab.

b. Click Advanced settings and select the Always Run VI in LabVIEW
Run-Time Engine checkbox.

c. On the Module tab, set the VI path to the LotSettingsDialogs.lv
libp\Configure Lot Settings.vi.

d. Save the sequence file.

ConfigureLotSettings Callback (TSM)

The default implementation of the ConfigureLotSettings callback sequence
launches the default Configure Lot Settings dialog box, in which the operator can
configure the lot settings. You can override this callback sequence to customize the
behavior. You can also use the ConfigureLotWhenStartingLot option on the
Semiconductor Module Manager to customize an operator interface to
automatically call the ConfigureLotSettings callback sequence at the
beginning of the execution of each lot.

ni.com354

TestStand Semiconductor Module

The ConfigureLotSettings callback sequence accepts the following
parameters:

■ LotSettings [In/Out]—An instance of the
NI_SemiconductorModule_LotSettings data type. Configure the Configure
LotSettings callback sequence to assign values for all the properties that
you require.

If you implement a dialog box for users to manually enter lot information,
ensure that the dialog box obtains values for all the properties of the
LotSettings parameter that you require. If the default properties of the
LotSettings parameter do not meet your requirements, you can add
properties to the NI_SemiconductorModule_CustomLotSettings data type.
The properties you add to the data type appear in the Custom container of
the LotSettings parameter.

The LotSettings.Standard.MainSequenceFilePath property
specifies the file path of the test program main sequence file to use with the
current test lot.

TSM records the lot setup time in the LotSettings.Standard.SetupTi
me property and saves lot settings to disk when the ConfigureLotSettin
gs callback sequence sets the Canceled parameter to False. The value of
the LotSettings.Standard.SetupTime property determines the value
of the SETUP_T field in the Master Information Record (MIR) of version 4 of the
Standard Test Data Format (STDF).
■ Canceled [Out]—Configure the ConfigureLotSettings callback
sequence to set this parameter to True if the operator cancels edits in the
Configure Lot Settings dialog box. TSM saves the values of the LotSettings
and StationSettings parameters to disk only when the Canceled parameter
is False.
■ SemiconductorModuleManager [In]—A reference to the Semiconductor
Module Manager object that you use to call utility methods in the TSM
Application API.

© National Instruments 355

TestStand Semiconductor Module

■ StationSettings [In/Out]—An instance of the
NI_SemiconductorModule_StationSettings data type. Use this parameter to
modify station settings you require. Typically, the ConfigureStationSettings
callback sequence sets station settings, but you might want to set certain
station settings while configuring lot settings. TSM saves station settings to
disk when the ConfigureLotSettings callback sequence sets the Canceled
parameter to False.

See Also
Accessing Lot Settings from a Test Program

GetLotSettings Callback (TSM)

TSM calls the GetLotSettings callback sequence to programmatically obtain lot
settings without requiring much, if any, operator interaction when execution begins.
You can also use the ConfigureLotWhenStartingLot option on the Semiconductor
Module Manager to customize an operator interface to automatically call the Confi
gureLotSettings callback sequence at the beginning of the execution of each
lot.

The default implementation of the GetLotSettings callback sequence sets the
LotSettings.Standard.JobName and LotSettings.Standard.JobRe
vision values based on the value of LotSettings.Standard.MainSequenc
eFilePath. You can override this callback sequence to customize the behavior for
when TSM attempts to determine lot settings values at run time. You can also use
the ConfigureLotSettings callback sequence to prompt an operator to manually
enter lot information in a dialog box or to use another mechanism that requires user
input.

The GetLotSettings callback sequence accepts the following parameters:

■ LotSettings [In/Out]—An instance of the
NI_SemiconductorModule_LotSettings data type. Enter values for all the
properties that you require.

If you implement a mechanism for programmatically obtaining lot
information, ensure that the mechanism obtains values for all the properties

ni.com356

TestStand Semiconductor Module

of the LotSettings parameter that you require. If the default properties of the
LotSettings parameter do not meet your requirements, you can add
properties to the NI_SemiconductorModule_CustomLotSettings data type.
The properties you add to the data type appear in the Custom container of
the LotSettings parameter.

TSM records the lot setup time in the LotSettings.Standard.SetupTi
me property when the GetLotSettings callback sequence sets the
UpdateSetupTime parameter to True. When you customize the GetLotSe
ttings callback sequence, set the UpdateSetupTime parameter to True
when the callback sequence updates the LotSettings parameter.
■ UpdateSetupTime [Out]—Configure the GetLotSettings callback
sequence to set this parameter to True when the callback sequence modifies
the values of the LotSettings parameter. If the callback sequence does not
modify the values of the LotSettings parameter, configure the callback
sequence to set this parameter to False.

TSM records the lot setup time in the LotSettings.Standard.SetupTi
me property when the GetLotSettings callback sequence sets this
parameter to True. The value of the LotSettings.Standard.SetupTi
me property determines the value of the SETUP_T field in the Master
Information Record (MIR) of version 4 of the Standard Test Data Format
(STDF).

See Also
Accessing Lot Settings from a Test Program

Accessing Lot Settings from a Test Program (TSM)

Use the Get Test Information step to access standard and custom lot settings in a
test program sequence file.

© National Instruments 357

TestStand Semiconductor Module

Standard Lot Settings

The following table lists the properties of the
NI_SemiconductorModule_StandardLotSettings data type, the fields of the Master
Information Record (MIR) of the Standard Test Data Format (STDF) version 4
specification that the STDF Log result processing plug-in sets using the properties,
or other purpose of each property.

Note Use the Types window in the TestStand
Sequence Editor to review properties on the
standard type or to add properties to the
custom type.

Property Name Corresponding STDF Record Field or Other Purpose
ActiveConfigurationName Specifies the name of the test program configur

ation to use to obtain standard lot settings and c
ustom test conditions.

AuxiliaryDataFile MIR: AUX_FILE
BurnInTime MIR: BURN_TIM
CommandModeCode MIR: CMOD_COD
CorrelationOffsetsFileAbsolutePath Contains the absolute path of the correlation off

sets file the Load Correlation Offsets step loads.
Do not set this property. TSM sets this property
at run time. If the test program does not use cor
relation offsets, this property is an empty string.
If the test program executes multiple Load Corre
lation Offsets steps, this property contains the p
ath loaded by the step that executed last.

DateCode MIR: DATE_COD
DeviceDesignRevision MIR: DSGN_REV
EngineeringLotId MIR: ENG_ID
FabricationProcessId MIR: PROC_ID
JobName MIR: JOB_NAM (Default value is the test progra

m sequence filename without the file extension.
)

JobRevision MIR: JOB_REV (Default value is the test program
sequence file version.)

ni.com358

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/typepalwin.htm

LimitsFileAbsolutePath Contains the absolute path of the test limits file
that TSM used to import test limits at run time.
Do not set this property. TSM sets this property
at run time.

LimitsFileRelativePath Specifies the test limits file to use for importing
test limits at run time. Use the Test Program Edit
or to specify the limits file for a test program con
figuration. TSM sets this property at run time to
the limits file the active test program configurati
on specifies.

LimitsFileReplaceTests Specifies whether TSM deletes existing tests bef
ore importing limits from a test limits file that L
imitsFileRelativePath specifies. A value
of True corresponds to the Replace all tests i
n matching steps import mode. A value of Fa
lse corresponds to the Update limits in mat
ching tests import mode.

LotId MIR: LOT_ID
LotSize Corresponds to the Estimated Lot Size option

in the Configure Lot Settings dialog box. An inlin
e QA algorithm can use this property to determi
ne for which DUTs to enable inline QA.

MainSequenceFilePath Specifies the file path of the test program main
sequence file to use with the current test lot.

MIRUserText MIR: USER_TXT
OperationFrequency MIR: OPER_FRQ
OperatorName MIR: OPER_NAM
PackageType MIR: PKG_TYP
PartType MIR: PART_TYP
ProductFamilyId MIR: FAMLY_ID
ProtectionCode MIR: PROT_COD
RequireEveryStepToBeInLimitsFile Specifies whether TSM requires that every step

or test in the test program sequence file have a c
orresponding entry in the test limits file when i
mporting limits from a test limits file.

RetestCode
RetestCount*

MIR: RTST_COD

© National Instruments 359

TestStand Semiconductor Module

ROMCodeId MIR: ROM_COD
SetupTime MIR: SETUP_T

This value represents the setup time in seconds
since midnight (00:00:00), January 1, 1970, coor
dinated universal time (UTC). UTC is also known
as Greenwich mean time. The STDF Log result p
rocessing plug-in converts this value to local tim
e when storing the value in the SETUP_T field.

SublotId MIR: SBLOT_ID

TSM sets the SBLOT_ID field to the wafer ID obta
ined from the prober driver when you enable th
e Generate One File per Wafer STDF option and t
he SublotId lot setting property value is empty.

SupervisorName MIR: SUPR_NAM
TestCode MIR: TEST_COD
TestFlowId MIR: FLOW_ID
TestModeCode MIR: MODE_COD
TestSetupId MIR: SETUP_ID
TestSpecificationName MIR: SPEC_NAM
TestSpecificationVersion MIR: SPEC_VER
TestTemperature MIR: TST_TEMP
UseEmbeddedLimitsFileData Indicates whether the limits file data is embedd

ed in the test program sequence file. Do not set
this property. TSM sets this property at run time
based on the active configuration.

Wafer.WaferSize WCR: WAFR_SZ
Wafer.DieHeight WCR: DIE_HT
Wafer.DieWidth WCR: DIE_WID
Wafer.Units WCR: WF_UNITS
Wafer.FlatOrientation WCR: WF_FLAT
Wafer.CenterXCoordinate WCR: CENTER_X
Wafer.CenterYCoordinate WCR: CENTER_Y
Wafer.PositiveXDirection WCR: POS_X
Wafer.PositiveYDirection WCR: POS_Y
*

ni.com360

TestStand Semiconductor Module

If (RetestCode is not empty string) then
RTST_COD = RetestCode
Else If (RetestCount is in the range [0-9]) then
RTST_COD = '0' - '9'
Else
RTST_COD = space

NI_SemiconductorModule_LotSettings Data Type

The NI_SemiconductorModule_LotSettings data type defines the properties for
each instance of the LotSettings sequence parameter, which the test program can
access.

TSM obtains the values for the NI_SemiconductorModule_LotSettings data type
from the ConfigureLotSettings and GetLotSettings callback sequences. The
NI_SemiconductorModule_LotSettings data type contains the following properties:

■ Standard—An instance of the
NI_SemiconductorModule_StandardLotSettings data type. This property
contains the standard lot settings TSM recognizes.
■ Custom—An instance of the NI_SemiconductorModule_CustomLotSettings
data type. By default, this property is an empty container. You can add
properties to the NI_SemiconductorModule_CustomLotSettings data type to
add custom lot settings that appear in this container.
■ CustomTestConditions—An empty container. TSM adds properties to this
container at run time that match the custom test conditions in the active test
program configuration.

See Also
GetLotSettings Callback

Accessing Lot Settings from a Test Program

Get Test Information Step

© National Instruments 361

TestStand Semiconductor Module

Reports and Data Logs (TSM)
You can generate the following types of TSM reports and data logs. Enable and
configure the corresponding TSM result processing plug-in to generate the report or
data log.

■ Standard Test Data Format (STDF) Log—Standard file format for storing test
station information, lot information, and semiconductor test result data. Use
the STDF Log to generate an STDF log file that complies with the STDF version
4 specification. Use the STDF Log Options dialog box to specify settings for the
STDF log.
■ Lot Summary Report—Text file that contains a summary of the
semiconductor test results for the current lot of DUTs (test lot). Use the Lot
Summary Report to gather lot, site, software bin, and hardware bin results in a
human-readable ASCII text format. Use the Lot Summary Options dialog box
to specify settings for the Lot Summary Report.
■ Debug Test Results Log—Human-readable text file that contains the
measurement values and test limits for each test that executes on each site.
The Debug Test Results Log result processor generates separate files for each
site in the test program. Use the Debug Test Results Log to debug
measurements and test configurations as a lot executes. Use the Debug Test
Results Log Options dialog box to specify settings for the Debug Test Results
Log.

Note Enabling the Debug Test Results Log
might affect the performance of a test
program.

■ CSV Test Results Log—Human-readable text file that contains data in a
comma-separated values text file, which provides better performance than
the Debug Test Results Log result processor in a production environment. The
CSV Test Results Log result processor generates a single file for all sites in the
test program. You can open the .csv file directly in a spreadsheet application
for analysis or to correlate test results. Use the CSV Test Results Log Options
dialog box to specify settings for the CSV Test Results Log.

Notes

ni.com362

TestStand Semiconductor Module

■ Keeping the Report pane open during
execution negatively affects performance.
■ The STDF Log, the Debug Test Results
Log, and the CSV Test Results Log contain
only semiconductor test result data from
Semiconductor Multi Test steps. These
data logs do not contain result data from
other types of steps. If you use a
Sequence Call step to call a sequence that
contains Semiconductor Multi Test steps,
the data logs do contain the test result
data from those steps unless you use the
Use New Thread sequence call option or
the Use New Execution sequence call
option. When using these sequence call
options to execute a sequence
asynchronously, you must use a Wait step
to wait for the thread or execution for the
data logs to contain the test result data
from the sequence.
■ You can configure the Lot Summary
Report and Debug Test Results Logs in the
Result Processing dialog box to display in
the Report pane in the sequence editor
and in the reports dialog box in the
default operator interface. You cannot
view the STDF Log or CSV Test Results Log
in the sequence editor or default operator
interface.

You can disable result recording by selecting the Disable Result Recording for
All Sequences option on the Execution tab of the Station Options dialog box.

See Also
GetReportFileName Callback

Lot Summary Options Dialog Box

Specifying Report and Data Log Filenames

© National Instruments 363

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/built_in_step_types_sequence_call.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/sync_step_types_wait.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_result_processing.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_station_opt_exe_tab.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_station_opt.htm

STDF Log Options Dialog Box

Debug Test Results Log Options Dialog Box

CSV Test Results Log Options Dialog Box

Enabling and Configuring TSM Result Processing Plug-ins

Complete the following steps to enable and configure one or more TSM result
processing plug-ins to generate TSM reports and data logs for the current lot of DUTs
(test lot).

1. In the TestStand Sequence Editor, select Configure»Result Processing to
launch the Result Processing dialog box.

2. If the Output Name column already contains an item for the type of report or
data log you want to generate, skip to step 5 to configure the result processing
plug-in.

3. Enable the Show More Options control to display additional options to
insert or delete instances of result processing plug-ins.

4. Click the Insert New button and select the item from the list of result
processing plug-ins that corresponds to the type of report or data log you
want to generate. The result processing plug-in you selected now appears in
the Output Name column.

5. Ensure that the Enabled column contains a checkmark for the type of report
or data log that you want to generate.

6. Click the Options button for the result processing plug-in to launch the
related result processing plug-in Options dialog box.

7. In the Destination Directory option, specify the absolute path of the directory
in which you want TSM to create the report or data log file. Leave the control
blank if you want TSM to create the report or data log file in the same
directory as the test program main sequence file.

Note TSM result processing plug-ins use the
combination of the destination directory
you specify in the Options dialog box and
the report or data log filename the
GetReportFileName callback sequence

ni.com364

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/process_model_plugin_arch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/process_model_plugin_arch.html
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_result_processing.htm

returns to determine the absolute path of
the report or data log file. You can modify a
copy of the GetReportFileName sequence to
customize the destination directory and
filename of the report or data log file.

8. Click OK to close the result processing plug-in Options dialog box and click
OK again to close the Result Processing dialog box.

Specifying Report and Data Log Filenames (TSM)

TSM result processing plug-ins determine the name of the report or data log file by
calling the GetReportFileName callback sequence once for each active result
processing plug-in instance. The GetReportFileName callback sequence is
located in the <TestStand Public>\Components\Callbacks\NI_Semic
onductorModule\SemiconductorModuleCallbacks.seq or <TestStan
d>\Components\Callbacks\NI_SemiconductorModule\Semiconduct
orModuleCallbacks.seq file.

TSM result processing plug-ins use the combination of the destination directory you
specify in the corresponding result processing plug-in Options dialog box and the
report or data log filename the GetReportFileName callback sequence returns
to determine the absolute path of the report or data log file. When you customize
the log filename for the Debug Test Results Log, use unique filenames for each test
site. The Debug Test Results Log result processing plug-in appends results from each
DUT to the corresponding site log.

You can customize the filenames and locations in which TSM result processing plug-
ins create report and data log files by modifying the GetReportFileName
callback. The GetReportFileName callback sequence contains parameters that
specify result processing plug-in information, lot information, station information,
date and time information, and a destination directory. You can use the TSM
Application API in a code module the GetReportFilename callback sequence
calls to access batch and site run-time data, including wafer information.

Complete the following steps to customize TSM report and data log filenames.

1. Determine whether a sequence file named SemiconductorModuleCallb
acks.seq exists in the <TestStand Public>\Components\Callbac

© National Instruments 365

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

ks\NI_SemiconductorModule directory. If the sequence file does not
exist, create it and ensure that it does not contain any sequences.

2. Copy the GetReportFileName callback sequence from the <TestStand
>\Components\Modules\NI_SemiconductorModule\Templates\
SemiconductorModuleCallbacks.seq file to the <TestStand Pub
lic>\Components\Callbacks\NI_SemiconductorModule\Semic
onductorModuleCallbacks.seq file and make changes to the copy.

You can use the ModelPlugin, ModelThreadType, ModelData,
LotSettings, StationSettings, StartDate, and StartTime sequence
parameters, as necessary, to assign a value to the ReportFileName
sequence parameter and optionally to the ReportDestinationDirectory
sequence parameter.

GetReportFileName Callback (TSM)

The STDF Log, Lot Summary Report, CSV Test Results Log, and Debug Test Results
Log result processing plug-ins determine the name of the report or data log file by
calling the GetReportFileName callback sequence once for each active result
processing plug-in instance. The STDF Log, CSV Test Results Log, and Lot Summary
Report result processing plug-ins call the callback once per wafer when you enable
the Generate One File per Wafer option. The GetReportFileName callback
sequence is located in the <TestStand Public>\Components\Callbacks\
NI_SemiconductorModule\SemiconductorModuleCallbacks.seq or
the <TestStand>\Components\Callbacks\NI_SemiconductorModule
\SemiconductorModuleCallbacks.seq file.
The GetReportFileName callback sequence accepts the following parameters:

■ ModelPlugin [In] —An instance of the NI_ModelPlugin data type. Use the P
arameters.ModelPlugin.Base.SequenceFileName property to
determine which result processing plug-in called the callback sequence.
Possible values include the following:

■ STDF Log: NI_SemiconductorModule_StdfGenerator.seq

ni.com366

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpnimodelplugin.html

■ Lot Summary Report: NI_SemiconductorModule_LotSummaryRep
ortGenerator.seq
■ Debug Test Results Log: NI_SemiconductorModule_TestResults
LogGenerator.seq
■ CSV Test Results Log: NI_SemiconductorModule_CSVTestResult
sLogGenerator.seq

■ ModelThreadType [In] —An instance of the NI_ModelThreadType data
type. Use values in this container to determine whether the filename
corresponds to a specific site or to all sites. For example, the STDF Log result
processing plug-in creates a single file for all sites, and the Debug Test Results
Log result processing plug-in calls the GetReportFileName callback once
for each site to create a separate file for each site.
■ ModelData [In] —Contains information about the process model used to
test the current lot.
■ LotSettings [In] —An instance of the
NI_SemiconductorModule_LotSettings data type. Use values in this container
to append lot settings, such as Standard.JobName and Standard.LotI
d, to the filename. The TSM result processing plug-ins call the GetReportFi
leName callback sequence after the ConfigureLotSettings and GetLotSettings
callback sequences, which might have set values in this container.
■ StationSettings [In] —An instance of the
NI_SemiconductorModule_StationSettings data type. Use values in this
container to append station settings, such as Standard.NodeName and St
andard.TestFacilityId, to the filename. TSM result processing plug-ins
call the GetReportFileName callback sequence after the
ConfigureStationSettings and GetStationSettings callback sequences, which
might have set values in this container.
■ StartDate [In]—An instance of the DateDetails data type that represents the
date that testing began. For the STDF Log and Lot Summary Report, this
parameter contains the date that the current wafer started testing if the
Generate One File per Wafer option is enabled. Use values in this container to
append the lot test start date to the filename.

© National Instruments 367

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpmodelthreadtypes.html

■ StartTime [In]—An instance of the TimeDetails data type that represents
the time that testing began. For the STDF Log and Lot Summary Report, this
parameter contains the time that the current wafer started testing if the
Generate One File per Wafer option is enabled. Use values in this container to
append the lot test start time to the filename.
■ ReportDestinationDirectory [In/Out]—Contains the report or data log
file destination directory, which you configured in the related result
processing plug-in Options dialog box. Change the value of this parameter to
store the report or data log file in a different location.
■ ReportFileName [Out]—The report or data log filename. TSM
concatenates the values of the ReportDestinationDirectory and
ReportFileName parameters to generate the report or data log file absolute
path.

In addition to using the parameters to generate a report filename, you can use the
TSM Application API in a code module the GetReportFilename callback
sequence calls to access batch and site run-time data, including wafer information.

Standard Test Data Format (STDF) Log (TSM)

The Standard Test Data Format (STDF) Log is a standard file format for storing test
station information, lot information, and semiconductor test result data.

Notes
■ When you retest a DUT, the STDF file
includes the PIR, PRR, PTR, and FTR
records for every test run, including
retests. The WRR, PCR, HBR, and SBR
summary records include only the results
of the last retest and do not include
retested results. The TSR summary record
includes the counts of all tests run,
including retests.
■ All string fields in the STDF log must use
only ASCII characters. If lot settings, such
as TestTemperature, and station
settings, such as LoadBoardId, use

ni.com368

TestStand Semiconductor Module

non-ASCII characters, TSM replaces those
characters with the question mark
character (?) when writing those values to
the STDF log.
■ You cannot view the STDF Log in the
sequence editor or default operator
interface.

Logging Custom Data to the STDF Log File (TSM)

The STDF Log result processing plug-in automatically logs data to the STDF log file
about the tester configuration and test execution. You can customize tester, part,
wafer, and text data to log in the STDF log file.

Data Related to Tester Information

The Master Information Record (MIR), Site Description Record (SDR), and Wafer
Configuration Record (WCR) in the STDF log file store information about the
configuration of the tester itself. TSM automatically logs data from the
NI_SemiconductorModule_StandardLotSettings and
NI_SemiconductorModule_StandardStationSettings data types to these records.
You can customize the data stored in the STDF log records by using callbacks to
modify the data in the containers within TestStand.

TSM stores the following values in the MIR in addition to values TSM obtains from
the NI_SemiconductorModule_LotSettings and
NI_SemiconductorModule_StationSettings data types:

MIR Field Name Value
EXEC_TYPE NI STS Software

Note You can customi
ze this field.

EXEC_VER If STS Software is installed: <STS Software
Version>
Otherwise: <TSM year-based version (
<TSM full version>)> (For example, 201
6 (16.0.0.49152))

© National Instruments 369

TestStand Semiconductor Module

Data Related to Part Information

The Part Results Record (PRR) in the STDF log file stores information about each
tested part, including the Part ID, X and Y coordinates of the location of the part on
the die, and a text description for the part. You can customize the data TSM logs
from the UUT container to these fields within the PRR record.

Data Related to Wafers

The Wafer Information Record (WIR) and Wafer Result Record (WRR) in the STDF log
file store information related to wafer tests. If you are performing wafer testing, you
can customize the data stored in these records by modifying the value of the
WaferRuntimeData parameter in the StartOfTest handler/prober driver entry
point.

Text Data

If the data you want to add to the STDF log file is not included in any of the above
records, you can include text data as a Datalog Text Record (DTR) in the STDF log file
by using the following techniques:

■ Adding Text Data for a Part Using Additional Results—You can use the
Additional Results panel of the Step Settings pane to add a DTR record after all
the part test records associated with the step. To configure the Additional
Results panel to generate a DTR record, set the Name option of the result to N
I.STDF.DTR and set the Value to Log option to the value you want to store
in the DTR record. You can create multiple results with the name NI.STDF.D
TR, and each result appears in the STDF log file as a separate DTR record.
■ Adding Text Data between Parts—If the text data you want to log is not
associated with a specific part, you can insert DTR records between parts
using a .NET Action step in a callback sequence or in a custom result processor
model plug-in.

Logging Failed Cycle Information from NI-Digital Pattern Driver to STDF Log File (TSM)

You can fetch and publish failed cycle information from the NI-Digital Pattern Driver
and log the information in the STDF Log file.

ni.com370

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_step_settings_additional_results.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_step_settings_prop.htm

Note TSM does not support logging failed
cycles when using multiple NI-Digital Pattern
Driver sessions to burst a pattern for a site. If
you need multiple instruments to burst a
pattern for a site, combine those instruments
into a group in the pin map so the test program
uses a single session to burst the pattern.

Fetching and Publishing Failed Cycle
Information in Code Modules (TSM)
Fetch and publish failed cycle information from an NI-Digital Pattern Driver with
your LabVIEW or .NET application.

 LabVIEW

Complete the following steps to log failed cycle information from an NI-Digital
Pattern driver.

1. Configure the NI-Digital Pattern Driver to acquire failed cycle information.
2. Fetch failed cycle information from the NI-Digital Pattern Driver after bursting

a pattern.
3. Publish the fetched cycle information to TSM.

Configure the NI-Digital Pattern Driver to Acquire Failed Cycle
Information
Use the following NI-Digital Pattern Driver API in code modules to configure your NI-
Digital Pattern instruments to acquire failed cycle information and log this
information in the TSM STDF Log file.

Place an niDigital property node on the block diagram and set the following
properties:

■ Triggers»History RAM»Type—Set to First Failure to start acquiring
information on the first failed cycle.

© National Instruments 371

TestStand Semiconductor Module

javascript:expand('labview_section','labview_arrow')

■ History RAM»Cycles to Acquire—Set to Failed Cycles to acquire only
failed cycles.
■ History RAM»Max Samples to Acquire per Site—Set to the maximum
number of failed cycles you want to acquire per site.

Fetch Failed Cycle Information from the NI-Digital Pattern Driver
After configuring the NI-Digital Pattern instrument and bursting a pattern, use the
niDigital Fetch Multi-Site History RAM Information VI to fetch the failed cycle
information and organize the information into a format the TSM Code Module API
can consume.

Note The niDigital Fetch Multi-Site History RAM
Information VI does not appear on the NI-Digital
Pattern Driver palette. Browse to and select the
VI from the NI-Digital Pattern Driver library file (
niDigital.llb), located in the <LabVIEW>
\instr.lib\niDigital directory.

Publish Failed Cycle Information to TSM
Wire the output of the niDigital Fetch Multi-Site History RAM Information VI to the
History RAM Information input of the Publish Pattern Results VI in the TSM Code
Module API. TSM logs the failed cycle information in Functional Test Records (FTRs)
in the STDF Log file.

Code Module Example
The following figure shows how to fetch and publish failed cycle information in a
code module. This example logs a maximum of 10 failed cycles.

 .NET

ni.com372

TestStand Semiconductor Module

javascript:expand('dotnet_section','dotnet_arrow')

Complete the following steps to log failed cycle information from an NI-Digital
Pattern driver.

1. Configure the NI-Digital Pattern Driver to acquire failed cycle information.
2. Fetch failed cycle information from the NI-Digital Pattern Driver after bursting

a pattern.
3. Publish the fetched cycle information to TSM.

Configure the NI-Digital Pattern Driver to Acquire Failed Cycle
Information
Use the following NI-Digital Pattern Driver API in code modules to configure your NI-
Digital Pattern instruments to acquire failed cycle information and log this
information in the TSM STDF Log file.

// Configure the instrument to start acquiring information on the first failed cycle
session.Trigger.HistoryRamTrigger.TriggerType =
HistoryRamTriggerType.FirstFailure;

// Configure the instrument to acquire only failed cycles
session.HistoryRam.CyclesToAcquire = HistoryRamCycle.Failed;

// Set the maximum number of failed cycles you want to acquire per site
session.HistoryRam.MaximumSamplesToAcquirePerSite = 10;

Fetch Failed Cycle Information from the NI-Digital Pattern Driver
After configuring the NI-Digital Pattern instrument and bursting a pattern, use the F
etchMultisiteHistoryRamInformation extension method to fetch the
failed cycle information and organize the information into a format the TSM Code
Module API can consume.

Note The TSM .NET cde module API provides
the FetchMultisiteHistoryRamInform
ation extension method for the NIDigital .NET
class. It is not part of the NI-Digital Pattern
Driver API.

© National Instruments 373

TestStand Semiconductor Module

Publish Failed Cycle Information to TSM
Pass the return value from the FetchMultisiteHistoryRamInformation
method to the historyPamCycleInformation parameter of the PublishPa
tternResults method on the pin query context class in the TSM .NET code
module API. TSM logs the failed cycle information in Functional Test Records (FTRs)
in the STDF Log file.

Code Module Example
The following example shows how to fetch and publish failed cycle information in a
code module. This example code module logs a maximum of 10 failed cycles.

public static void PerformTest(ISemiconductorModuleContext
semiconductorModuleContext, string patternName, string[] patternPins)
{

var pinQueryContext =
semiconductorModuleContext.GetNIDigitalPatternSessionsForPattern(patternPins,
out var sessions, out var siteLists);
var passFailResultsPerSession = new bool[sessions.Length][];
var historyRamCycleInformationPerSession = new
NIDigitalHistoryRamCycleInformation[sessions.Length];

Parallel.For(0, sessions.Length, i =>
{

var session = sessions[i];
var siteList = siteLists[i];

// Configure instrument to acquire cycle information only for first 10 failed cycles
session.Trigger.HistoryRamTrigger.TriggerType =
HistoryRamTriggerType.FirstFailure;
session.HistoryRam.MaximumSamplesToAcquirePerSite = 10;
session.HistoryRam.CyclesToAcquire = HistoryRamCycle.Failed;

// Burst pattern
passFailResultsPerSession[i] = session.PatternControl.BurstPattern(patternName,

ni.com374

TestStand Semiconductor Module

patternName, true, new TimeSpan(0, 0, 2));

// Fetch history RAM cycle information
historyRamCycleInformationPerSession[i] =
session.FetchMultisiteHistoryRamInformation(siteList, patternName);

});

pinQueryContext.PublishPatternResults(passFailResultsPerSession,
historyRamCycleInformationPerSession, "PassFail");

}

See Also
Grouping Instruments

Failed Cycle Information in Functional Test
Records (FTRs) (TSM)
When you publish failed cycle information for a test a Semiconductor Multi Test step
defines, TSM stores the failed cycle information in the Functional Test Record (FTR)
for that test. Because an FTR can contain failed cycle information only for a single
cycle, TSM writes multiple FTRs to the STDF Log file if the data contains information
for multiple failed cycles.

TSM stores the failed cycle information in the following fields of the FTR:

Field Value
CYCL_CNT Cycle number from the NI-Digital Pattern Driver

History RAM information. If this value is larger th
an a 32-bit number, TSM does not set this field.

REL_VADR Vector number from the NI-Digital Pattern Driver
History RAM cycle information.

NUM_FAIL Number of pins in the pattern with 1 or more fail
ures.

© National Instruments 375

TestStand Semiconductor Module

RTN_ICNT Number of actual pin states from the NI-Digital
Pattern Driver History RAM cycle information.

PGM_ICNT Number of expected pin states from the NI-Digit
al Pattern Driver History RAM cycle information.

RTN_INDX Array of pin indexes that corresponds to the act
ual pin states from the NI-Digital Pattern Driver
History RAM cycle information. Each pin index r
efers to a pin index defined in a Pin Map Record
(PMR) for the pin.

RTN_STAT Actual pin states from the NI-Digital Pattern Driv
er History RAM cycle information.

PGM_INDX Array of pin indexes that corresponds to the exp
ected pin states from the NI-Digital Pattern Driv
er History RAM cycle information. Each pin inde
x refers to a pin index defined in a PMR for the pi
n.

PGM_STAT Expected pin states from the NI-Digital Pattern D
river History RAM cycle information.

FAIL_PIN Bitfield that corresponds to the values in the per
-pin pass fail array from the NI-Digital Pattern Dr
iver History RAM cycle information. Each bit corr
esponds to a pin index defined in a PMR record.
For example, if the bit in position 1 is set, the pi
n defined in the PMR with a pin index of 1 failed
for the cycle.

VECT_NAM Pattern name from the NI-Digital Pattern Driver
History RAM cycle information.

TIME_SET Time set name from the NI-Digital Pattern Driver
History RAM cycle information.

Expected Pin State Information in STDF Log Files

The failed cycle information includes the expected pin states from the NI-Digital
Pattern Driver History RAM cycle information. TSM stores this information in the
PGM_STAT field of the FTR. The pin states from the NI-Digital Pattern Driver History
RAM cycle information correspond to the pin states defined in the STDF V4
specification according to the following table.

NI-Digital Pattern Driver Pin State STDF Pin State Value STDF Pin State Description

ni.com376

TestStand Semiconductor Module

0 0 Drive Low
1 1 Drive High
L 2 Expect Low
H 3 Expect High
M 4 Expect Midband
V 5 Expect Valid (not midband)
X 6 Do not drive or compare

Actual Pin State Information in STDF Log Files

The failed cycle information includes the actual pin states from the NI-Digital
Pattern Driver History RAM cycle information. TSM stores this information in the
RTN_STAT field of the FTR. The pin states from the NI-Digital Pattern Driver History
RAM cycle information correspond to the pin states defined in the STDF V4
specification according to the following table.

NI-Digital Pattern Driver Pin State STDF Pin State Value STDF Pin State Description
L 0 0 or Low
H 1 1 or High
M 2 Midband
V* 11 —

* This pin state is not defined in the STDF specification. The NI-Digital Pattern Driver
uses this state only when Vol > Voh and the pin voltage level is between Vol and Voh.

Edge Multiplier Representation

When a pin uses an edge multiplier of 2, the NI-Digital Pattern Driver includes two
pin states for that pin in the History RAM cycle information. For these pins, the FTR
contains duplicate pin indexes to represent both pin states in the PGM_STAT and
RTN_STAT fields.

For example, if the pattern uses two pins with PMR pin indexes 1 and 2, and pin
index 1 uses an edge multiplier of 2, but pin index 2 uses an edge multiplier of 1, the
pin index and pin state fields in the FTR appear as shown in the following table.

Field Value

© National Instruments 377

TestStand Semiconductor Module

PGM_INDX [1, 1, 2]
PGM_STAT [L, L, H]
RTN_INDX [1, 1, 2]
RTN_STAT [0, 0, 1]

Modifying Number of Results to Include in STDF Log Files (TSM)

By default, the STDF log file includes all test results. You can change the default
behavior.

Complete the following steps to limit the number of results to include in the STDF
log file.

1. Launch the STDF Log Options dialog box.

2. Enable the Limit Number of Test Data Records option.

3. Use the Log test data for only one out of every option to specify the
number of tests to include in the STDF log file.

Customizing STDF MIR, SDR, and WCR Field Values (TSM)

The STDF Log result processing plug-in sets the fields in the Master Information
Record (MIR), Site Description Record (SDR), and Wafer Configuration Record (WCR)
of the STDF version 4 specification by using the values of the properties in the Stan
dard containers of the NI_SemiconductorModule_LotSettings and
NI_SemiconductorModule_StationSettings data types. The LotSettings.Stand
ard.Wafer container contains the property values that determine the WCR field
values. TSM uses the following callback sequences, located in the <TestStand P
ublic>\Components\Callbacks\NI_SemiconductorModule\Semicon
ductorModuleCallbacks.seq or <TestStand>\Components\Module\N
I_SemiconductorModule\Templates\SemiconductorModuleCallbac
ks.seq file, to obtain the values of these data types:

■ ConfigureLotSettings
■ GetLotSettings
■ ConfigureStationSettings
■ GetStationSettings

ni.com378

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

You can create custom versions of these callback sequences to modify the values
TSM obtains for the NI_SemiconductorModule_LotSettings and
NI_SemiconductorModule_StationSettings data types, and therefore to modify the
values the STDF Log result processing plug-in sets in the MIR, SDR, and WCR fields.

When using a handler/prober driver, TSM calls the handler/prober driver Setup entry
point sequence after calling the GetLotSettings and GetStationSettings callbacks.
The Setup entry point sequence can modify the values of the properties in the
LotSettings and StationSettings parameters, which determine the values used in
the MIR, SDR, and WCR fields. Typically, a prober driver sets the properties for the
WCR fields by setting the property values in the LotSettings.Standard.Wafe
r container.

Customizing the MIR EXEC_TYPE Value

Complete the following steps to customize the MIR EXEC_TYPE value:

1. Using a text editor, open the StdfGenerator.ini.example file located
in the <TestStand Application Data>\Cfg\NI_Semiconductor
Module directory.

2. Modify the StdfGenerator.ini.example file to specify the MIR EXEC_T
YPE value you want.

MIR EXEC_TYPE Value Steps
Custom

a. Update the ExecType key with the EXE
C_TYPE value you want. For example,
ExecType = "iniExecType".

b. Verify that the UseTSMVersionBasedEx
ecTypeFromRegistry key is set to fal
se.

Based on registry key Set the UseTSMVersionBasedExecTypeFrom
Registry key to true.

If STS Software is installed, the MIR EXEC_T
YPE value will be updated to NI STS Dev
elopment Software. If STS Software is n
ot installed, the MIR EXEC_TYPE value will

© National Instruments 379

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

be updated to TestStand <year-base
d version> Semiconductor Modul
e Runtime (32 bit or 64 bit) based on the T
estStand version specified in the registry key
.

3. Go to File>>Save as and rename the modifed file to StdfGenerator.in
i.

See Also
Customizing the Behavior for Obtaining Lot Settings

Customizing the Behavior for Obtaining Station Settings

Customizing STDF PRR Field Values (TSM)

The STDF Log result processing plug-in sets the PART_ID, PART_TXT, X_COORD, and
Y_COORD fields in the Part Results Record (PRR) of the STDF version 4 specification
by using the values of properties on the UUT data type as described in the following
table. The handler/prober driver StartOfTest entry point can set any of these fields
by setting the values of the output parameters to the StartOfTest entry point.

STDF PRR Field UUT Property Handler/Prober StartOfTest
Output Parameter

PART_ID SerialNumber SitePartIds

Note By defau
lt, if the handle
r/prober driver
does not set th
e values in the
SitePartIds p
arameter, TSM
automatically
assigns seque
ntial numeric v
alues to the Se
rialNumber

ni.com380

TestStand Semiconductor Module

property, whic
h results in uni
que PART_ID fi
eld values. To
disable the def
ault behavior,
set the Gener
ateUniqueP
artIds prope
rty of the NI_S
emiconductor
Module_Statio
nSettings data
type to False
in the Configur
eStationSettin
gs or GetStatio
nSettings callb
ack sequence.
When the Gen
erateUniqu
ePartIds pr
operty is True
, TSM reassigns
the same uniq
ue Part ID to th
e part when it i
s retested. Cus
tomize the beh
avior of Gene
rateUnique
PartIds to
assign a new
unique Part ID
to a part when
it is retested.

PART_TXT AdditionalData.NI.Semiconduct
orModule.PartText

SitePartTexts

X_COORD, Y_COORD AdditionalData.NI.Semiconduct
orModule.DieCoordinates

SiteDieCoordinates

© National Instruments 381

TestStand Semiconductor Module

You can modify the PART_ID field value in the test program by setting the SerialN
umber property value on the UUT object. You can modify the PART_TXT field value
in the test program by setting the AdditionalData.NI.SemiconductorMod
ule.PartText property value on the UUT object. You can access the UUT object
using a parameter in the PreMainSequence or PreBatch callback sequence or
by using the expression RunState.Root.Locals.UUT in a Statement step.

Customizing STDF WIR and WRR Field Values (TSM)

The STDF Log result processing plug-in sets the fields in the Wafer Information
Record (WIR) and Wafer Result Record (WRR) of the STDF log file by using the values
returned in the WaferRuntimeData parameter of the StartOfTest handler/prober
driver entry point as shown in the following table.

STDF WIR or WRR Field Handler/Prober StartOfTest Output Parameter
WAFER_ID WaferRuntimeData.Identity.WaferId

Note TSM automatical
ly generates unique wa
fer IDs by setting the
WaferRuntimeData.I
dentity.WaferId
parameter value befor
e calling the StartOfTes
t entry point. A prober
driver can override the
wafer IDs by modifying
the parameter value.

FABWF_ID WaferRuntimeData.Identity.FabWaferId
FRAME_ID WaferRuntimeData.Identity.FrameId
MASK_ID WaferRuntimeData.Identity.MaskId
USR_DESC WaferRuntimeData.Identity.UserDescription
EXC_DESC WaferRuntimeData.Identity.ExecDescription

ni.com382

TestStand Semiconductor Module

Adding DTRs to the STDF Log File (TSM)

Using the TSM STDF result processor, you can insert Datalog Text Records (DTR) in
various locations in the STDF log file. The method for creating DTRs differs
depending on the following conditions and locations at which you insert the DTR.

Inserting a DTR after a Test Record

Use the Additional Results edit tab to add an additional result to the step with the
name "NI.STDF.DTR" to insert a DTR after all Parametric Test Records (PTR) or
Functional Test Records (FTR) associated with the step. Set the Value to Log option
for the additional result to the value to store in the TEXT_DAT field of the DTR. The
STDF Log result processor inserts a DTR into the STDF log file for each additional
result with the name NI.STDF.DTR on steps in the main sequence. If the text in
the Value to Log option is longer than 255 characters, the STDF Log result processor
splits the text into character groups that are 255 characters or less and inserts a DTR
for each group.

Note Additional results on steps in ProcessS
etup, ProcessCleanup, and OnSiteTest
ingComplete are ignored. Refer to the
Inserting a DTR between Parts section for
information about inserting a DTR from a
callback sequence in the STDF log file.

Inserting a DTR between Parts

You must call a method on the StdfResultProcessor class defined in the TSM
assembly (NationalInstruments.TestStand.SemiconductorModule)
to insert a DTR at locations other than between test records. Complete the following
steps to call the CreateDtr method to insert a DTR in the STDF log file.

1. Create a .NET Action step in the sequence.
2. Complete the following steps on the Module tab:

a. Set the Assembly option to NationalInstruments.TestStand.
SemiconductorModule.dll.

© National Instruments 383

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_additional_results.htm

b. Set the Root Class option to NationalInstruments.TestStand
.SemiconductorModule.StdfResultProcessor.

c. Set the .NET Invocation option to StdfResultProcessorSingle
ton.CreateDtr(System.String).

d. In the Parameters Table, use the Value column for the text parameter to
insert the text to add to the TEXT_DAT field of the DTR. If the text in the
Value column is longer than 255 characters, the STDF Log result
processor splits the text into character groups that are 255 characters or
less and inserts a DTR for each group.

You can add DTRs using callback sequences in the test program sequence file or by
creating a custom result processor model plug-in. The actual implementation differs
depending on whether you are performing wafer testing and whether you enable
the Generate One File per Wafer option. In both cases, the custom result processor
must not attempt to create DTRs if the STDF Log result processor is disabled.
Confirm whether the STDF Log result processor is disabled at run-time and disable
the custom result processor in the Model Plugin - Initialize entry point.

Adding DTRs for Non-Wafer Testing or When the Generate One Filer per
Wafer Option is Disabled

The custom result processor that you create must appear after the STDF Log result
processor in the order of result processors in the Result Processing dialog box. The
following table lists the sequences to modify to create the DTR for various locations
in the STDF log file.

Location of DTR Test Program Sequence File
Callback Sequence

Custom Result Processor Entry
Point

At beginning of log (after initial
records)

ProcessSetup Model Plugin - Begin

After each batch (after last PRR
of current batch and before first
PIR of next batch)

PostBatch Model Plugin - Batch Done

With each part using Sequential
process model

PostUUT Model Plugin - UUT Done

ni.com384

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_callbacksequences.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpcreatingplugins.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/sequential.html

At end of log (before TSRs, HBR
s, SBRs, and PCR)

ProcessCleanup Model Plugin - Pre Batch

Add the following precondition
to the step: !Parameters.C
ontinueTesting

Adding DTRs for Wafer Testing When the Generate One Filer per Wafer
Option is Enabled

If the Generate One File per Wafer option is enabled, the STDF Log result processor
writes summary records (TSRs, HBRs, SBRs, and PCR) and closes the STDF file when
it encounters the end of the wafer in the Model Plugin - Batch Done entry point. To
ensure that DTRs are included in the wafer STDF file, you must add the DTRs before
the STDF Log result processor Model Plugin - Batch Done entry point is called.

The custom result processor that you create must appear before the STDF Log result
processor in the order of result processors in the Result Processing dialog box. The
following table lists the sequences to modify to create the DTR for various locations
in the STDF log file. In some cases, you must use a custom result processor because
there is no test program callback sequence that generates the desired results.

Desired Location of DTR Test Program Sequence File
Callback Sequence

Custom Result Processor Entry
Point

At beginning of each wafer log (
after initial records) using Batch
process model

 Model Plugin - Pre Batch

Execute step only if Semicond
uctorModuleManager.Bat
chRuntimeData.IsStartO
fWafer is True.

At beginning of each wafer log (
after initial records) using Sequ
ential process model

 Model Plugin - Pre UUT

Execute step only if Semicond
uctorModuleManager.Bat
chRuntimeData.IsStartO
fWafer is True.

With each batch (after last PRR
of previous batch and before fir
st PIR of current batch)

PreBatch Model Plugin - Pre Batch or Mo
del Plugin - Batch Done

© National Instruments 385

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html

With each part using Sequential
process model

PreUUT Model Plugin - Pre UUT or Mode
l Plugin - UUT Done

With last batch before end of ea
ch wafer log using Batch proces
s model

 Model Plugin - Batch Done

Execute step only if Semicond
uctorModuleManager.Bat
chRuntimeData.IsEndOfW
afer is True

With last part before end of eac
h wafer log using Sequential pr
ocess model

 Model Plugin - UUT Done

Execute step only if Semicond
uctorModuleManager.Bat
chRuntimeData.IsEndOfW
afer is True.

Lot Summary Reports (TSM)

When testing completes, you can generate a test Lot Summary Report that provides
information about testing results. You can enable the Lot Summary Report in the
Results Processing dialog box. The Lot Summary Report includes the following
sections:

■ Lot Description Header—Contains lot and station settings information
and execution data, such as start and end time, that describe or identify the
test cell, test conditions, state of Offline Mode, and DUTs tested.
■ Lot Results—Contains results of all DUTs from all sites, including the
percent-of-total yield. The Lot Results section also includes subsections for all
tests and Inline QA only (if available) tests. You can use this data as a metric to
judge the overall quality of the test lot.
■ Site Results—Contains a table of test lot statistics by site. You can use this
data as a metric to compare the test quality among different sites.
■ Software Bin Results—Contains a table of software bin numbers,
associated hardware bin numbers, software bin descriptions, total counts,
and percent-of-total yield. You can use this data to identify specific types of
failures reported during testing.

ni.com386

TestStand Semiconductor Module

■ Hardware Bin Results—Contains a table of hardware bin numbers,
hardware bin descriptions (if available), total counts, and percent-of-total
yield. You can use this data to separate DUTs with different failure modes or
passing grades and to reconcile tester software counts with physical DUT
counts.
■ Test Results—Contains a table of test evaluation results by site for all the
tests that executed at least once in the lot, sorted by execution order. You can
use this data to compare the results of lots, which can be helpful during
debugging. If alarms are enabled, the table includes the number of alarms
raised when executing each test step.
■ Alarms—If alarms are enabled, this section contains a table with the
number of alarms of a given type that were raised during test program
execution, on each site, pin, and step.

Note You can configure the Lot Summary
Report in the Result Processing dialog box to
display in the Report pane in the sequence
editor and in the reports dialog box in the
default operator interface.

See Also
Customizing the Lot Summary Report Header

Lot Summary Options Dialog Box

Customizing the Lot Summary Report Header (TSM)

The Lot Summary Report result processing plug-in sets the information in the Lot
Summary Report header by using the values of the properties in the
NI_SemiconductorModule_LotSettings and
NI_SemiconductorModule_StationSettings data types.

You can modify the following station settings and lot settings values to customize
the values the Lot Summary Report result processing plug-in sets in the Lot
Summary Report header.

■ Station Settings

© National Instruments 387

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_result_processing.htm

■ NodeName
■ HandlerType

■ Lot Settings
■ JobName
■ JobRevision
■ PartType
■ LotId
■ TestFlowId
■ TestTemperature
■ OperatorName

Debug Test Results Logs (TSM)

When testing a lot, you can generate a Debug Test Results Log of human-readable
text that contains the measurement values and test limits for tests on all test steps
that execute on each site. The Debug Test Results Log result processor generates a
separate file for each site in the test program. You can use this data to debug test
and chip design issues and to diagnose test issues on the tester itself.

Notes

■ Enabling the Debug Test Results Log
might affect the performance of a test
program. Perform the following
benchmark to ensure there is no
performance loss when enabling the
Debug Test Results Log: In the operator
interface, enable the Debug Test Results
Log and run the test program. When the
test program execution completes,
subtract the socket time from the cycle
time displayed in the statistics indicator
to calculate the tester index time. If the
tester index time is less than handler/
prober index time, enabling the Debug

ni.com388

TestStand Semiconductor Module

Test Results Log will not impact
performance.
■ You can configure the Debug Test
Results Logs in the Result Processing
dialog box to display in the Report pane in
the sequence editor and in the reports
dialog box in the default operator
interface.

The Debug Test Results Log contains the following sections for each DUT:

■ Header—Contains the Site Number, Batch Number, Part ID, and state of
Offline Mode for each DUT tested. The Batch Number refers to the loop
iteration when testing multiple DUTs. The Debug Test Results Log result
processing plug-in populates the Part ID field from the TestStand SerialNum
ber property, which TSM sets to the values returned in the SitePartIds
parameter of the StartOfTest handler/prober entry point.

Note By default, if the handler/prober
driver does not set the values in the
SitePartIds parameter, TSM automatically
assigns sequential numeric values to the Se
rialNumber property, which results in
unique Part ID field values. To disable the
default behavior, set the GenerateUniqu
ePartIds property of the
NI_SemiconductorModule_StationSettings
data type to False in the
ConfigureStationSettings or
GetStationSettings callback sequence.
When the GenerateUniquePartIds
property is True, TSM reassigns the same
unique Part ID to the part when it is retested.
Customize the behavior of GenerateUniq
uePartIds to assign a new unique Part ID
to a part when it is retested.

■ Step Results—Contains the Step Name and all its corresponding tests.

© National Instruments 389

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_result_processing.htm

■ Test Results—Contains the Test Number, Result, Test Name, Low Limit,
Measurement Value, Correlation Offset (if used), High Limit, and Units.

Modifying Number of Results to Include

By default, the Debug Test Results Log includes all test results. You can change the
default behavior.

Complete the following steps to log results only when a DUT fails.

1. Launch the Debug Test Results Log Options dialog box.

2. Enable the Log Results Only for DUT Failures option.

Complete the following steps to limit the number of results to display for the Debug
Test Results Log.

1. Launch the Debug Test Results Log Options dialog box.

2. Enable the Limit Number of Results Displayed in Report View option.

3. Use the Display Results for Last option to specify the number of tests to
display in the Report View for the Debug Test Results Log.

Changing Report Orientation

By default, the Debug Test Results Log uses portrait orientation. Landscape
orientation uses wider columns for tests with long test numbers or test names.
Complete the following steps to change the report orientation of the Debug Test
Results Log.

1. Launch the Debug Test Results Log Options dialog box.

2. Use the drop-down menu of the Report Orientation option to select
Portrait or Landscape.

Customizing Filename

When you customize the log filename, use unique filenames for each test site. The
Debug Test Results Log result processing plug-in appends results from each DUT to
the corresponding site log.

ni.com390

TestStand Semiconductor Module

Logging Text Data

If you want to add data to the Debug Test Results Log that is not a measurement or
test limit, you can include text data in the Debug Test Results Log by using the
following techniques:

■ Adding Text Data for a Step Using Additional Results—You can use
the Additional Results panel of the Step Settings pane to add text data after all
the measurements and test limits for the tests associated with the step. To
configure the Additional Results panel to generate text data in the Debug Test
Results Log, set the Name option of the result to NI.TestResultsLog and
set the Value to Log option to the value you want to add to the log file. You
can optionally add a text label for the data by adding it to the end of the
Name field in the form NI.TestResultsLog.CustomTextLabel,
where CustomTextLabel is the text you want to display as a label in the log file.
■ Adding Text Data between Test Steps—If the text data you want to log
is not associated with a specific step, you can use the Additional Results step
type to add text data to the Debug Test Results Log. Use the Additional Results
panel of the Step Settings pane as described above to add data to the log file.

See Also
Debug Test Results Log Options Dialog Box

CSV Test Results Logs (TSM)

When a DUT completes testing, you can generate a CSV Test Results Log that
contains data in a comma-separated values text file, which provides better
performance than the Test Results Log result processor in a production
environment. The CSV Test Results Log result processor generates a single file for all
sites in the test program. You can open the .csv file directly in a spreadsheet
application for analysis or to correlate test results.

Note You cannot view the CSV Test Results Log
in the sequence editor or default operator
interface.

© National Instruments 391

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_step_settings_additional_results.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_step_settings_prop.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/built_in_step_types_additional_results.htm

The CSV Test Results Log contains the following sections for each DUT:

■ Wafer ID—Enables the Log Wafer Data option in the CSV Test Results Log
Options dialog box.
■ Batch Number
■ Site Number
■ Part ID
■ Die X Coordinate—Enables the Log Wafer Data option in the CSV Test
Results Log Options dialog box.
■ Die Y Coordinate—Enables the Log Wafer Data option in the CSV Test
Results Log Options dialog box.
■ Sequence Name
■ Step Name
■ Test Number
■ Test Name
■ Result
■ Low Limit
■ Value—The CSV Test Results Log does not scale data values.
■ High Limit
■ Correlation Offset
■ Units
■ Code Module Time—Enables the Log Code Module Execution Time
option in the CSV Test Results Log Options dialog box.

Note The CSV Test Results Log does not include
the state of Offline Mode.

Generating One File per Wafer

Enable the Generate One File per Wafer option on the CSV Test Results Log
Options dialog box to create a log file for each wafer you test. Each new log file
resets the batch number to 1.

ni.com392

TestStand Semiconductor Module

Modifying Number of Results to Include

By default, the CSV Test Results Log includes all test results. You can change the
default behavior.

Complete the following steps to limit the number of results to include in the CSV
Test Results Log.

1. Launch the CSV Test Results Log Options dialog box.

2. Enable the Limit Number of Test Data Records option.

3. Use the Log test data for only one out of every option to specify the
number of tests to include in the CSV Test Results Log.

See Also
CSV Test Results Log Options Dialog Box

Configuring Handler or Prober Support for a Test Program
(TSM)
Semiconductor testers often use handlers and probers to complete the following
tasks:

■ Place untested DUTs in test sites
■ (Handlers) Move tested DUTs from test sites to an appropriate hardware bin,
depending on the test results
■ Potentially notify the tester to stop the test when no DUTs remain

The tester software must be able to communicate with the handler or prober to
execute tests correctly. Handlers and probers use a variety of different
communication protocols and command sets. Test program developers might need
to ensure that the tester can use different types of handlers or probers.

TSM Implementation

Use the TSM handler/prober driver plug-in architecture to write and enable handler/
prober driver sequence files. A handler/prober driver sequence file contains

© National Instruments 393

TestStand Semiconductor Module

handler/prober driver entry point sequences that TSM calls during execution to
accomplish handler-related or prober-related tasks.

Use the NI Built-in Simulated Handler Driver to simulate handler functionality
without requiring access to a real handler. To integrate a real handler or prober in
the handler/prober driver plug-in architecture, you must create a new handler/
prober driver sequence file. TSM uses only one active handler/prober driver
sequence file at a time because the lot of DUTs (test lot) can use just one type of
handler or prober at a time.

See Also
Specifying Settings for the Current Test Station

General Tab of Configure Station Settings Dialog Box

Creating a Handler/Prober Driver Sequence File (TSM)

Complete the following steps to use the HandlerProberDriver.seq file,
located in the <TestStand>\Components\Modules\NI_SemiconductorM
odule\Templates directory, as a starting point for a handler/prober driver
sequence file you create.

1. Copy the HandlerProberDriver.seq file from the <TestStand>\Com
ponents\Modules\NI_SemiconductorModule\Templates
directory to the <TestStand Public>\Components\Modules\NI_Se
miconductorModule\HandlersAndProbers directory.

Note Create the <TestStand Public>\
Components\Modules\NI_Semicondu
ctorModule\HandlersAndProbers
directory if it does not already exist.

2. Rename the <TestStand Public>\Components\Modules\NI_Semi
conductorModule\HandlersAndProbers\HandlerProberDriver
.seq file using the <CompanyName>_<HandlerOrProberName>.seq
convention.

3. Open the handler/prober driver sequence file.

ni.com394

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

4. Modify each of the handler/prober driver entry point sequences to meet the
requirements of the test system. A handler/prober driver sequence file must
contain each handler/prober driver entry point except Configure. You can
leave an entry point empty if you do not want the entry point to perform any
functionality.

5. Save the handler/prober driver sequence file.

Handler/Prober Driver Entry Points (TSM)

TSM invokes a handler/prober driver by calling the following set of required entry
point sequences, which specify a predefined set of parameters, at specific points
during an execution:

■ Configure—Provides a mechanism for end users to configure the handler/
prober driver.
■ Setup—Performs required handler or prober initialization tasks.
■ StartOfTest—Determines when the handler or prober has placed untested
DUTs in test sites by waiting for the handler start-of-test notification.
■ EndOfTest—Sends the end-of-test notification to the handler or prober to
move DUTs from test sites to hardware bins.
■ Cleanup—Performs required handler or prober finalization tasks.

Configure Handler/Prober Driver Entry Point
(TSM)
Use the Configure entry point to provide a mechanism for end users to configure the
handler/prober driver and to persist the settings for multiple lots.

The General tab of the default Configure Station Settings dialog box contains a
Configure Handler/Prober button that calls the Configure entry point of the
handler/prober driver sequence file that the Standard.HandlerDriverSeque
nceFilePath property of the station settings specifies.

Parameters

The Configure entry point accepts the following parameters:

© National Instruments 395

TestStand Semiconductor Module

■ HandlerDriverData [In/Out]—Container that stores handler-specific or
prober-specific settings or run-time data. In a handler/prober driver sequence
file, you can modify the default structure of this parameter, such as by
changing the data type from the default Container to a custom container data
type. However, the Configure entry point must create, and optionally assign,
each field of this parameter using the TestStand API, such as the
PropertyObject.NewSubProperty method or a PropertyObject Set value
method, such as SetValNumber.

Do not enable the Check Type option for this parameter. Right-click the
parameter and remove the checkmark from Check Type in the context menu
to disable the Check Type option.
■ Canceled [Out]—Boolean value that notifies TSM whether the handler/
prober settings have been modified and must be saved to disk. A value of Tru
e indicates that the handler/prober settings have not changed. A value of Fal
se indicates that the handler/prober settings have been modified and must
be saved to disk.
■ SemiconductorModuleManager [In/Out]—Object reference to an
instance of a Semiconductor Module Manager. Use this object reference with
the TSM Application API to get information about the currently configured lot.

Persisting Handler/Prober Configuration Settings

TSM automatically persists the configuration settings that the Configure entry point
returns in the HandlerDriverData parameter to disk when the Canceled
parameter is False. TSM stores configurations settings for all handler/prober
drivers in the <TestStand Config>\NI_SemiconductorModule\Handle
rProberDrivers.cfg file.

Setup Handler/Prober Driver Entry Point (TSM)
Use the Setup entry point to perform required handler or prober initialization tasks.

ni.com396

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsapiref/reftopics/propertyobject_newsubproperty_m.htm
https://www.ni.com/docs/csh?topicname=tsapiref/reftopics/propertyobject_setvalnumber_m.htm

Parameters

The Setup entry point accepts the following parameters:

■ HandlerDriverData [In/Out]—Container that stores handler-specific
settings, prober-specific settings, or run-time data. The input value of this
parameter is the same as the output value of the HandlerDriverData
parameter of the Configure entry point. You can add run-time data to this
container by using the TestStand API, such as the
PropertyObject.NewSubProperty method or a PropertyObject Set value
method, such as SetValNumber. TSM passes the output value of this
parameter into the HandlerDriverData parameter of the StartOfTest,
EndOfTest, and Cleanup entry points. TSM does not persist run-time data that
you add to HandlerDriverData in the Setup entry point.

Do not enable the Check Type option for this parameter. Right-click the
parameter and remove the checkmark from Check Type in the context menu
to disable the Check Type option.
■ StationSettings [In/Out]—Instance of the
NI_SemiconductorModule_StationSettings data type. The Setup entry point
can access and modify the value of this parameter.
■ LotSettings [In/Out]—Instance of the
NI_SemiconductorModule_LotSettings data type. The Setup entry point can
access and modify the value of this parameter. Wafer probers typically set the
values of the properties in the Standard.Wafer container to set the fields
in the Wafer Configuration Record (WCR) of the STDF log file.
■ SemiconductorModuleManager [In/Out]—Object reference to an
instance of a Semiconductor Module Manager. Use this object reference with
the TSM Application API to get information about the currently configured lot.

© National Instruments 397

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsapiref/reftopics/propertyobject_newsubproperty_m.htm
https://www.ni.com/docs/csh?topicname=tsapiref/reftopics/propertyobject_setvalnumber_m.htm

StartOfTest Handler/Prober Driver Entry Point
(TSM)
Use the StartOfTest entry point to determine when the handler or prober has placed
untested DUTs in test sites by waiting for the handler start-of-test notification.

The StartOfTest entry point must notify TSM to continue or stop testing. When you
execute using the Batch process model, the StartOfTest entry point must also notify
TSM of the active or disabled state of each test site. When you execute using the
Sequential or Parallel process model, TSM calls the StartOfTest entry point for each
site independently.

Parameters

The StartOfTest entry point accepts the following parameters:

■ HandlerDriverData [In/Out]—Container that stores handler-specific
settings, prober-specific, or run-time data. In a handler/prober driver
sequence file, you can modify the default structure of this parameter, such as
by changing the data type from the default Container to a custom container
data type. However, the Configure entry point must create, and optionally
assign, each field of this parameter using the TestStand API, such as the
PropertyObject.NewSubProperty method or a PropertyObject Set value
method, such as SetValNumber.

Do not enable the Check Type option for this parameter. Right-click the
parameter and remove the checkmark from Check Type in the context menu
to disable the Check Type option.
■ RequestedSiteState [In]—Array of Boolean values that the StartOfTest
entry point uses to determine the sites in which the handler must place DUTs
or the prober should test. The index to the array corresponds to the site
number of the test site.

A value of True indicates that the handler must place a DUT in the site and
that the handler driver must wait to receive the start-of-test notification for

ni.com398

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/sequential.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/parallel.html
https://www.ni.com/docs/csh?topicname=tsapiref/reftopics/propertyobject_newsubproperty_m.htm
https://www.ni.com/docs/csh?topicname=tsapiref/reftopics/propertyobject_setvalnumber_m.htm

that site. A value of False indicates that the handler must not place a DUT in
the site and that the handler driver must not wait to receive a start-of-test
notification for that site. For probers, a value of True indicates that the
prober should test the die that corresponds to the test site.

When you execute using the Batch process model, TSM sets values in the array
that correspond to sites being tested to True. When you execute using the
Sequential or Parallel process model, TSM sets to True only the value in the
array that corresponds to the current site.
■ ContinueTesting [Out]—Boolean value the StartOfTest entry point uses to
notify TSM to continue or stop testing. A value of True indicates that testing
can continue because DUTs are in place. A value of False indicates that
testing must stop. Set the value to False if the handler or prober indicates
that it has no DUTs to test.
■ ActualSiteState [Out]—Array of Boolean values the StartOfTest entry point
uses to notify TSM of the active or disabled state of each test site on the tester.
The index to the array corresponds to the site number of the test site. TSM
uses this parameter only when you use the Batch process model to execute
the test.

A value of True indicates that the tester must test the site. A value of False
indicates that the tester must skip the site. For each site that the handler or
prober indicates is active, set the corresponding array element to True. For
each site that the handler or prober indicates is disabled, set the
corresponding array element to False.
■ SitePartIds [Out]—Array of strings that specifies the PART_ID field in the
Part Results Records (PRR) of each part to test. The index to the array
corresponds to the site number of the test site.
■ SitePartTexts [Out]—Array of strings that specifies the PART_TXT field in
the PRR of each part to test. The index to the array corresponds to the site
number of the test site.
■ WaferRuntimeData—Instance of the
NI_SemiconductorModule_WaferRuntimeData data type, which is a container
with the following properties:

© National Instruments 399

TestStand Semiconductor Module

■ StartOfWafer [Out]—Boolean value that indicates whether the tester is
starting to test a new wafer. Set this property to True when the prober
indicates that it is starting a new wafer. TSM uses this property to determine
when to generate Wafer Information Records (WIR) of the STDF file. When
executing with the Batch process model, TSM also uses this property to
determine the end of the previous wafer if the prober driver does not set the
EndOfWafer parameter in the EndOfTest handler/prober driver entry
point.
■ SiteDieCoordinates [Out]—Array of
NI_SemiconductorModule_WaferDieCoordinate data type that specifies the
coordinates of each die to test. Set the elements in this array using the die
coordinates the prober provides. Each element in the array contains the
coordinates of one die. The index to the array corresponds to the site
number of the test site. TSM uses the die coordinates to set the X_COORD
and Y_COORD fields in the Part Results Records (PRR) of the STDF log file.
Values for die coordinates must be in the range -32767 to 32767. By default,
the die coordinates have the value -32768, which indicates that the
coordinate is missing or unknown.
■ Identity—Container of properties that identify the wafer, including the
following components:

Note Set the Identity properties only
when starting to test a new wafer. TSM uses
the values in the Identity property only
when the StartOfWafer property value
is True.

■ WaferId [In/Out]—String that specifies the wafer ID to set the
WAFER_ID field in the WIR of the STDF log file. The
SemiconductorModule automatically generates unique wafer IDs, but
the handler driver can override those IDs by setting this property.
■ FabWaferId [Out]—String that specifies the value to use for the
FABWF_ID field in the WRR of the STDF log file.
■ FrameId [Out]—String that specifies the value to use for the
FRAME_ID field in the WRR of the STDF log file.

ni.com400

TestStand Semiconductor Module

■ MaskId [Out]—String that specifies the value to use for the MASK_ID
field in the WRR of the STDF log file.
■ UserDescription [Out]—String that specifies the value to use for the
USR_DESC field in the WRR of the STDF log file.
■ ExecDescription [Out]—String that specifies the value to use for the
EXC_DESC field in the WRR of the STDF log file.

Note TSM does not use the values returned
in the WaferRuntimeData parameter
when running with the Parallel process
model.

■ SemiconductorModuleManager [In/Out]—Object reference to an
instance of a Semiconductor Module Manager. Use this object reference with
the TSM Application API to get information about test execution, obtain test
statistics, monitor the state of the test system, and so on.

See Also
Start of Test Dialog Box

EndOfTest Handler/Prober Driver Entry Point
(TSM)
Use the EndOfTest entry point to send the end-of-test notification to move DUTs
from test sites to hardware bins.

TSM sends the hardware bin results of the current DUTs to the EndOfTest entry
point.

Parameters

The EndOfTest entry point accepts the following parameters:

■ HandlerDriverData [In/Out]—Container that stores handler-specific
settings, prober-specific settings, or run-time data. In a handler/prober driver

© National Instruments 401

TestStand Semiconductor Module

sequence file, you can modify the default structure of this parameter, such as
by changing the data type from the default Container to a custom container
data type. However, the Configure entry point must create, and optionally
assign, each field of this parameter using the TestStand API, such as the
PropertyObject.NewSubProperty method or a PropertyObject Set value
method, such as SetValNumber.

Do not enable the Check Type option for this parameter. Right-click the
parameter and remove the checkmark from Check Type in the context menu
to disable the Check Type option.
■ HardwareBinData [In]—Array of hardware bin numbers that specify the
hardware bins assigned to each part on each site. The index to the array
corresponds to the site number of the test site. A hardware bin value of -1
indicates that TSM did not assign a hardware bin for the site for one of the
following reasons:

■ When you execute tests using the Batch process model, you disabled the
site.
■ When you execute tests using the Parallel process model and the site is
not the currently executing site.

■ SoftwareBinData [In]—Array of software bin numbers that specify the
software bins assigned to each part on each site. The index to the array
corresponds to the site number of the test site. A software bin value of -1
indicates that TSM did not assign a software bin for the site for one of the
following reasons:

■ When you execute tests using the Batch process model, you disabled the
site.
■ When you execute tests using the Parallel process model and the site is
not the currently executing site.

■ EndOfWafer [Out]—Boolean value that indicates whether the tester just
finished testing the last batch of parts on a wafer. Set this property to True
when the prober indicates that there are no more die to test on the wafer. TSM
uses this property to determine when to generate Wafer Results Records
(WRR) of the STDF log file and to determine when to finish writing STDF logs

ni.com402

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsapiref/reftopics/propertyobject_newsubproperty_m.htm
https://www.ni.com/docs/csh?topicname=tsapiref/reftopics/propertyobject_setvalnumber_m.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/parallel.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/parallel.html

and Lot Summary Reports when you enable the Generate One File per Wafer
option for those report generators.

This output parameter is optional when you execute with the Batch process
model. If the prober driver does not set this parameter when executing with
the Batch process model, TSM infers the end of the wafer when the prober
sets the WaferRuntimeData.StartOfWafer parameter to true in the
StartOfTest handler/prober driver entry point. When using the Batch process
model, omitting the wait for an end-of-wafer status message to set the
EndOfWafer parameter in the EndOfTest entry point might improve
performance of the test system.
■ BinTypes [In]—Array of numbers that specifies the types of the bins
assigned to each part on each site. Each element in the array has one of the
following values to indicate the type of bin of the corresponding element in
the SoftwareBinData and HardwareBinData parameter arrays:

■ 0—The bin is a Pass bin.
■ 1—The bin is a Fail bin.
■ 2—The bin is an Other bin.
■ -1—TSM did not assign a bin for the part tested on that site.

■ SemiconductorModuleManager [In/Out]—Object reference to an
instance of a Semiconductor Module Manager. Use this object reference with
the TSM Application API to get information about test execution, obtain test
statistics, monitor the state of the test system, and so on.

Note If one or more test sockets in a batch
execution prematurely stop running, such as
when you abort a test socket, TSM stops all tests
without calling the EndOfTest entry point for
the current DUTs.

See Also
End of Test Dialog Box

© National Instruments 403

TestStand Semiconductor Module

Cleanup Handler/Prober Driver Entry Point (TSM)
Use the Cleanup entry point to perform required handler/prober finalization tasks.

Parameters

The Cleanup entry point accepts the following parameters:

■ HandlerDriverData [In/Out]—Container that stores handler-specific
settings, prober-specific settings, or run-time data. In a handler driver
sequence file, you can modify the default structure of this parameter, such as
by changing the data type from the default Container to a custom container
data type. However, the Configure entry point must create, and optionally
assign, each field of this parameter using the TestStand API, such as the
PropertyObject.NewSubProperty method or a PropertyObject Set value
method, such as SetValNumber.

Do not enable the Check Type option for this parameter. Right-click the
parameter and remove the checkmark from Check Type in the context menu
to disable the Check Type option.
■ SemiconductorModuleManager [In/Out]—Object reference to an
instance of a Semiconductor Module Manager. Use this object reference with
the TSM Application API to get information about the currently configured lot.

Ensuring That a Handler or Prober Driver Captures All Start-of-Test Notifications (TSM)

A handler or prober driver coordinates a connected computer with the tester by
using the driver entry point sequences to wait for a start-of-test (SOT) signal before
beginning a test. Missing an SOT signal might cause the tester to wait indefinitely.

To ensure that a driver captures each SOT signal, the instrument communicating
with the handler or prober must be armed for capturing the SOT signal before
sending the end-of-test (EOT) signal. The handler or prober driver can capture the
SOT signal if it occurs when the tester performs tasks during the tester index time or
continue waiting until the SOT signal arrives.

ni.com404

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsapiref/reftopics/propertyobject_newsubproperty_m.htm
https://www.ni.com/docs/csh?topicname=tsapiref/reftopics/propertyobject_setvalnumber_m.htm

Implement the following functionality in the driver entry points to ensure that the
handler or prober driver captures all SOT signals:

Entry Point Functionality to Implement
Setup

1. Open instrument sessions with which the
handler or prober communicates.

2. Configure the instrument with any armed
triggers or monitoring ports for capturing
the SOT signal.

3. Query for any machine or lot information.
4. Send any initialization routine to the hand

ler or prober, such as load first wafer.

StartOfTest
1. Determine whether the SOT signal was re

ceived.
2. Continue monitoring for an end-of-lot (EO

L) signal while waiting for the SOT signal.
Check until the trigger arrives or the tester
sends an EOL signal.

EndOfTest
1. Reconfigure the instrument to capture the

next SOT signal.
2. Send the EOT signal, including any test re

sults.

Cleanup
1. Send a signal to stop the handler or probe

r.
2. Close instrument sessions.

NI Built-in Simulated Handler Driver (TSM)

When developing, testing, or debugging a semiconductor test program, the test
developer might not have access to a real handler or prober. In such cases, the test
developer can use the NI Built-in Simulated Handler Driver to verify that the test
program behaves correctly without a handler or prober.

© National Instruments 405

TestStand Semiconductor Module

Note You can configure the NI Built-in
Simulated Handler Driver to launch the Start of
Test and the End of Test dialog boxes.

Enabling and Configuring the NI Built-in Simulated Handler Driver

Complete the following steps to enable and configure the NI Built-in Simulated
Handler Driver.

Note The following steps describe the default
TSM implementation of the Configure Station
Settings dialog box.

1. (TestStand Sequence Editor) Select Semiconductor Module»Configure
Station to launch the default Configure Station Settings dialog box.

(Operator Interface) Click the Configure Station button.

2. In the Enable Handler/Prober Driver (Real or Simulated) section on the
General tab of the Configure Station Settings dialog box, select Built-in
Simulated Handler Driver in the Handler/Prober Driver option to
enable the NI Built-in Simulated Handler Driver for the test program. TSM uses
only one active handler driver sequence file at a time because the lot of DUTs
(test lot) can use just one type of handler at a time.

3. Click Configure Handler/Prober to launch the Configure Built-in Simulated
Handler dialog box.

Handler/Prober Modes (TSM)

TSM stores the handler/prober modes as one of the following numeric values for the
Standard.HandlerMode property of the station settings:

Numeric Value Description
0 Specifies no handler or prober interaction.
1 Specifies to use the NI Built-in Simulated Handl

er Driver to interact with dialog boxes to simulat
e the behavior of a handler and to view the test
results.

ni.com406

TestStand Semiconductor Module

2 Specifies to use a real or simulated handler/pro
ber driver other than the NI Built-in Simulated H
andler Driver.

Performing Tasks when Lot Testing Completes (TSM)
TSM calls the LotTestingComplete callback sequence to perform tasks when a
lot completes testing, such as sending generated reports to a central server or
displaying a message on the tester to indicate that the tester is idle.

The default implementation of the LotTestingComplete callback sequence is
empty. You can override this callback to customize the tasks to perform when a lot
completes testing. TSM calls the LotTestingComplete callback after all other
process model plug-ins complete execution.

The LotTestingComplete callback sequence accepts the following parameters:

■ LotSettings [In]—An instance of the NI_SemiconductorModule_LotSettings
data type that contains the settings used during the lot that completed
testing.
■ StationSettings [In]—An instance of the
NI_SemiconductorModule_StationSettings data type that contains the station
settings used during the lot that completed testing.
■ ModelPluginConfiguration [In]—An instance of the
NI_ModelPluginConfiguration data type that contains the configuration and
run-time variables for the set of all active process model plug-in instances.
Use this parameter to extract information, such as report paths and
directories.
■ ModelData [In]—Contains information about the process model used for
the lot that completed testing.

Customizing the LotTestingComplete Callback (TSM)

TSM calls the LotTestingComplete callback sequence, located in the <TestStand
Public>\Components\Callbacks\NI_SemiconductorModule\Semico
nductorModuleCallbacks.seq or <TestStand>\Components\Callbac

© National Instruments 407

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

ks\NI_SemiconductorModule\SemiconductorModuleCallbacks.seq
file, when a lot completes testing.

Complete the following steps to override the default LotTestingComplete
callback sequence and customize the tasks to complete when a lot completes
testing.

1. Determine whether a sequence file named SemiconductorModuleCallb
acks.seq exists in the <TestStand Public>\Components\Callbac
ks\NI_SemiconductorModule directory. If the sequence file does not
exist, create it and ensure that it does not contain any sequences.

2. Copy the LotTestingComplete callback sequences from the <TestStand>\C
omponents\Modules\NI_SemiconductorModule\Templates\Sem
iconductorModuleCallbacks.seq file to the <TestStand Public
>\Components\Callbacks\NI_SemiconductorModule\Semicond
uctorModuleCallbacks.seq file and make changes to the copy.

Retesting a DUT (TSM)
You can initiate a retest from the TestStand Sequence Editor, an operator interface,
or a handler/prober. The STDF log file includes retest information.

Manually Initiating a Retest from the TestStand Sequence Editor or Operator
Interfaces

Click the Retest button on the TSM toolbar or in the Lot Statistics Viewer while
execution is paused to manually initiate a retest. In a custom operator interface, you
can create a button bound to the PerformSinglePartRetest command to perform
the same functionality as the Retest button.

When you manually initiate a retest, TSM retests the DUT without calling the
EndOfTest or StartOfTest callbacks in the handler/prober driver and discards the bin
results of the previous test for the retested DUT.

Initiating a Retest from a Handler/Prober

A handler/prober can initiate a retest by sending a Part ID or part die coordinates
that match a previously tested part. TSM detects this condition, tracks the test as a

ni.com408

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

retest of the previous matching DUT, discards the bin results of the previous test for
that DUT, and does not increment the part counts.

STDF File Contents after Retesting a DUT

When you retest a DUT, the STDF file includes the PIR, PRR, PTR, and FTR records for
every test run, including retests. The WRR, PCR, HBR, and SBR summary records
include only the results of the last retest and do not include retested results. The
TSR summary record includes the counts of all tests run, including retests.

Deploying TSM Test Programs
Complete the following steps to use the TestStand Deployment Utility to deploy a
test program.

1. Complete the following steps on the Mode tab of the deployment utility:

a. Select the Deployable Image Only option.

b. Select the Create new Full Deployment option.

NI recommends that you create a new Full Deployment, save the
deployment to increment the Deployment Version, and store the
deployment in a source code control system each time you create or
update a deployment.

2. Complete the following steps on the System Source tab:

a. Place a checkmark in the From Directory checkbox and specify the
test program directory.

b. Place a checkmark in the Include Subdirectories checkbox.

c. In the Location of Deployable Image field, specify the location in
which to save the deployable image.

3. Click the Distributed Files tab and select Yes to analyze the source files.
4. Click the Build Status tab to display the analysis results. Resolve any issues

before completing the next step.
5. Complete the following steps on the Distributed Files tab:

© National Instruments 409

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/deploymentutility.htm
https://www.ni.com/docs/csh?topicname=tsdeploysystem/infotopics/tsdudefault.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/deploymentutility_modetab.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/deploymentutility_syssourcetab.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/deploymentutility_distfilestab.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/deploymentutility_buildstattab.htm

a. Select the files to include in the distribution. Use the Distributed Files
pull-down menu to filter the display.

b. Click the LabVIEW Options button to launch the LabVIEW VI Options
dialog box, which you use to specify LabVIEW options.

6. In the LabVIEW VI Options dialog box, enable the following options in the
Packed Project Library Options section of the dialog box and use the default
values for the other options in this dialog box.

■ Output VIs to a Packed Project Library ()
■ Copy files from vi.lib before Build
■ Copy files from user.lib before Build
■ Copy files from instr.lib before Build

Enabling these options increases the size of the distribution but allows the
test program to more easily run in the LabVIEW Run-Time Engine (RTE).

7. Click OK in the LabVIEW VI Options dialog box.
8. Complete the following steps on the Distributed Files tab:

a. Click the Save As button if this is the first time you are configuring a
deployment for the test program to save the distribution configuration
for the deployment. Click the Save button when you modify an existing
deployment to increment the version number of the deployment.

b. Click the Build button to build the distribution.

c. Click the Save button to auto-increment the Deployment Version
field on the Mode tab.

9. Complete the remaining tasks in the Deployment Process Overview to transfer
the deployment to a tester and validate the deployment.

Consider the NI recommendations for installers, LabVIEW code modules, .NET code
modules, and protections for test programs and test limits as you design and create
deployments for a semiconductor test system.

ni.com410

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lv_vi_opt.htm
https://www.ni.com/docs/csh?topicname=tsdeploysystem/infotopics/tsduprocessoverview.htm

See Also
Network-Based Deployment Mechanisms

Installer Settings for Deploying TSM Test Programs

Use the following recommended settings to create a simple installer with the
deployment utility:

■ Use the Deployment Version option on the Mode tab of the deployment
utility to specify a version for the distribution. Increment the version with each
release of the test program distribution.
■ Do not enable the Install TestStand Runtime option or include any
software in the Drivers and Components dialog box. Do not use the test
program deployment to control the software installed on a semiconductor
test station.
■ Enable the Do not Ask User for Installation Directory option on the
Installer Options tab of the deployment utility and set the Default
Installation Directory option to install the test program in the same
location on all test stations.

After you create a deployment, save the deployment specification file (.tsd) so you
can use the same configuration to build newer versions of the installer or to create
patches. Additionally, on the Build Status tab of the deployment utility, save the
deployment build status log files to use to troubleshoot issues.

Deploying LabVIEW Code Modules with TSM Test Programs

Build LabVIEW code modules into packed project libraries for deployment by
enabling the Output VIs to a Packed Project Library option in the LabVIEW VI
Options dialog box of the deployment utility. Benefits of using packed project
libraries include faster load and execution times, less disk space, and automatic
version control for installers.

If you need to debug a test program on a production system, NI recommends that
you build separate release and debug deployment installers. In the debug
deployment, enable the Enable Debugging option in the LabVIEW VI Options

© National Instruments 411

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsdeploysystem/infotopics/networkbasedmechanism.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/deploymentutility_installopttab.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/deploymentutility_modetab.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_drivers_and_components.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/deploymentutility_buildstattab.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lv_vi_opt.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lv_vi_opt.htm
https://www.ni.com/docs/csh?topicname=tsdeploysystem/infotopics/customizecomponents.htm
https://www.ni.com/docs/csh?topicname=tsdeploysystem/infotopics/customizecomponents.htm

dialog box to create a debuggable version of the packed project library that includes
LabVIEW block diagrams for the VIs the packed project library contains. When
debugging is enabled, you can debug VIs in the library on a target system with the
LabVIEW Development System installed. NI recommends debug versions of the
packed project libraries only for debugging, not for production testing, because the
debug versions have a negative performance impact and use more memory.

You cannot modify VIs in a packed project library, even when you enable the Enable
Debugging option. Enable the Include Source for Rebuilding Packed Project
Libraries option in the Packed Project Library Options dialog box to include the
source VIs for the packed project library in the deployment if you need to modify the
VIs and then rebuild the packed project library on a target system.

See Also
Deploying VIs in LabVIEW Packed Project Libraries

Editing VIs in LabVIEW Packed Project Libraries

Managing Versioned and Non-Versioned Files

Patching LabVIEW VIs

Processing LabVIEW Code Modules for Deployment

Troubleshooting LabVIEW Code Module Issues

Deploying .NET Code Modules with TSM Test Programs

NI recommends that you do not include the TSM Code Module API assembly (Natio
nalInstruments.TestStand.SemiconductorModule.CodeModuleAPI
.dll) or any referenced NI hardware assemblies in a test program deployment.
Instead, use TSM or corresponding driver installer to install these components as
part of the system configuration to help ensure a stable test system configuration.

If you need to debug a test program on a production system, NI recommends that
you create separate release and debug deployments. In the debug deployment,
include the code module assembly built with a debug configuration and the
program database file (<assembly_name>.pdb file) that contains the debug
symbols for the assembly. NI recommends debug versions of the assemblies only for

ni.com412

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tslabview/infotopics/debug_trace.html
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_ppl_opt.htm
https://www.ni.com/docs/csh?topicname=tslabview/infotopics/ppl_deploy.htm
https://www.ni.com/docs/csh?topicname=tslabview/infotopics/ppl_edit.htm
https://www.ni.com/docs/csh?topicname=tsdeploysystem/infotopics/versionunversion.htm
https://www.ni.com/docs/csh?topicname=tsdeploysystem/infotopics/patchlvvis.htm
https://www.ni.com/docs/csh?topicname=tsdeploysystem/infotopics/processinglvfiles.htm
https://www.ni.com/docs/csh?topicname=tsdeploysystem/infotopics/troubleshootlv.htm

debugging, not for production testing, because the debug versions negatively affect
performance and use more memory.

Protecting Test Programs and Test Limits from Editing and Viewing (TSM)

You can password protect sequence files to deter editing and viewing sequence files
in the sequence editor and in operator interfaces. To protect test limits files, use the
Embed Test Limits File option on the Test limits Files panel of the Test Program
Editor to embed the external test limits files in the test program sequence file before
you password-protect the test program sequence file.

Note NI does not recommend using passwords
as the only way of protecting intellectual
property.

Operator Interfaces (TSM)
Use the TSM default LabVIEW operator interface or STS Operator Tool interface to
run tests and monitor test status. You can customize each TSM default operator
interface to change the permissions, menu items, and controls an operator can
access.

Note The TSM default operator interfaces do
not support executing sequences that create
additional executions.

 Default LabVIEW Operator Interface

The default LabVIEW operator interface contains the following features:

■ Configure Station—Launch the Configure Station Settings dialog box.
■ Configure Lot—Launch the Configure Lot Settings dialog box.
■ Open STS Maintenance Software—Launch STS Maintenance Software.
■ Login/Logout—Log in or out of the operator interface.
■ Exit—Exit the operator interface.

© National Instruments 413

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_seq_file_prop_adv_tab.htm
javascript:expand('labview_section','labview_arrow')

■ Command Buttons—Run, pause, or stop a single test or a test lot. You
might notice a delay after you click the Pause button or the End Lot button
because tests in progress must complete before pausing or ending the lot.
■ Statistics Indicator—Displays statistical information for a lot execution,
such as cycle time and socket time or site part counts.
■ Tester Status Message—Displays the status of the tester.
■ Site Execution Data—Displays statistical and status information for each
site.
■ Active STS Software—Displays the name of the active STS Software
installed on the system.

■ If any component in the active STS Software is missing from the system,
an error icon appears with a tooltip directing you to open STS Version
Selector for more information.
■ If STS Version Selector is not installed, the installed TSM version is
displayed.

■ Settings Table—Displays station and lot settings for the test program. You
can customize this table.
■ View Mid-Lot Summary—Generate and display a Mid-Lot Summary test
report.
■ View Reports—Generate and display reports for the current lot.
■ Bin Table—Displays information about the binning of DUTs for the current
lot, such as the names of the soft bins, the associated hard bins, and the DUT
counts for each site.

 Default STS Operator Tool Interface

The default STS Operator Tool interface contains the following features:

■ A drop-down menu with the following options:

■ Configure Lot—Launch the Configure Lot Settings dialog box.
■ Configure Station—Launch the Configure Station Settings dialog box.

ni.com414

TestStand Semiconductor Module

javascript:expand('stsoperatortool_section','stsoperatortool_arrow')

■ View Mid-Lot Summary—Generate and display a Mid-Lot Summary test
report.
■ View Reports—Generate and display reports or the current lot.
■ Open STS Maintenance Software—Launch STS Maintenance Software.

■ Command Buttons—Run, pause, or stop a single test or test lot. You
might notice a delay after you click the Pause button or the End Lot button
because tests in progress must complete before pausing or ending the lot.
■ System Status—Displays the status of the system.
■ User Icon—Displays the user. Log in or out of the operator interface. Use
the User Icon to temporarily access administrative privileges and view
additional Failure Analysis details by clicking the button.

■ Yield—Displays the socket, index, and cycle times.
■ Test Settings—Displays station and lot settings for the test program.
■ Failure Analysis—Displays detailed statistics for the lot or last 10 tests. Use
the drop-down menu to specify which set of statistics to show. Use the or

 buttons to toggle between the list view and grid view data visualization
layouts, respectively. In grid view, hover over each cell in the table to see a
tooltip with additional information.

Running a Test from a Default TSM Operator Interface

Complete the following steps to test a lot using the TSM default LabVIEW operator
interface or the STS Operator Tool interface.

 Default LabVIEW Operator Interface

1. Launch the operator interface.
2. When the Login dialog box launches, enter or select a username and enter the

password.
3. Complete the following steps to configure the lot.

a. Click Configure Lot.

© National Instruments 415

TestStand Semiconductor Module

javascript:expand('labview_section','labview_arrow')

b. Enter the lot information in the Configure Lot Settings dialog box and
click OK.

4. Click Start Lot to begin testing at lot. Use the Pause and Resume buttons to
pause the lot between DUTs. To test a single batch of DUTs and automatically
pause after testing of those DUTs completes, click Single Test.

5. Click End Lot to stop testing the lot.
6. Repeat steps 3–5 to test a new lot.

7. Click View Mid-Lot Summary to generate and display a Mid-Lot Summary
test report. You can view, refresh, and print the report any time during or after
testing.

8. Click View Reports to view reports for the current lot any time during or after
testing.

9. Click the Exit button to close the test application.

 Default STS Operator Tool Interface

1. Launch the operator interface.
2. When the Login dialog box launches, enter or select a username and enter the

password.
3. Complete the following steps to configure the lot.

a. Select Configure Lot from the drop-down menu.
b. Enter the lot information in the Configure Lot Settings dialog box and

click OK.

4. Click Start Lot to begin testing at lot. Use the Pause and Resume buttons to
pause the lot between DUTs. To test a single batch of DUTs and automatically
pause after testing of those DUTs completes, click Single Test.

5. Click the End Lot button to stop testing the lot.
6. Repeat steps 3–5 to test a new lot.

7. Select View Mid-Lot Summary from the drop-down menu to generate and
display a Mid-Lot Summary test report. You can view, refresh, and print the
report any time during or after testing.

ni.com416

TestStand Semiconductor Module

javascript:expand('stsoperatortool_section','stsoperatortool_arrow')

8. Select View Reports from the drop-down menu to view reports for the
current lot any time during or after testing.

9. Click the X button to close the test application.

Customizing Operator Interfaces (TSM)

Complete the following steps to customize the default LabVIEW operator interface
or STS Operator Tool interface.

1. Copy the contents of the <TestStand>\UserInterfaces\NI_Semico
nductorModule\<LabVIEW or CSharp> directory to the <TestStan
d Public>\UserInterfaces\NI_SemiconductorModule\<LabVI
EW or CSharp> directory.

Note Create the <TestStand Public>\
UserInterfaces\NI_Semiconductor
Module\<LabVIEW or CSharp>
directory if it does not already exist.

2. Modify the files in the <TestStand Public>\UserInterfaces\NI_S
emiconductorModule\<LabVIEW or CSharp> directory to meet your
requirements.

The operator interfaces use the TSM Application API extensively. Review the
LabVIEW operator interface architecture to better understand how the LabVIEW
source code is structured.

Notes If you are upgrading from an earlier
version of TSM and use a custom operator
interface based on TSM 2013 or earlier operator
interface source code, you must re-implement
the custom operator interface to use the latest
TSM operator interface source code, which
includes improvements for performance,
customization, and maintenance. TSM 2017
removed support for custom operator interfaces
that are based on the default TSM 2013 LabVIEW
operator interface.

© National Instruments 417

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Customizing the Settings Table (TSM)

The settings table on the right side of the default operator interface displays
common lot and station settings. You can configure the list of settings to display in
the table by editing the OISettingsTable.cfg file located in the <TestStand
Application Data>\Cfg\NI_SemiconductorModule directory. The <Te
stStand>\Components\Schemas\NI_SemiconductorModule\OISetti
ngsTable.xsd schema file describes the format of the configuration file.

The SemiconductorModuleManager class in the TSM Application API uses the
OISettingsTable.cfg configuration file to determine the list of settings the Ge
tSettingsToDisplay method returns. All default TSM operator interfaces use
the GetSettingsToDisplay method to populate the settings table.

Note The default operator interface reads the O
ISettingsTable.cfg file only at startup.
You must restart the operator interface each
time you make a modification to the OISettin
gsTable.cfg file.

Operator Interface Settings Table File XML
Structure (TSM)
The operator interface settings table XML schema, located at <TestStand>\Comp
onents\Schemas\NI_SemiconductorModule\OISettingsTable.xsd,
defines the following structure for an operator interface settings table configuration
file:

Legend

<Root element>
<Element>
Attribute

 <OISettingsTable>

ni.com418

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ <Settings>—Specifies the list of settings to display in the table. The
order of the items in this list determines the order in which the settings
appear in the table.

■ <Setting>—Specifies a setting to display in a row in the table.

■ label—Label to display in the left column of the table. TSM
localizes the label using the strings in the [NI_SEMICONDUCTORMOD
ULE_OI_SETTINGS_TABLE] section of a language resource file.
■ valueExpr—TestStand expression TSM evaluates to determine
the value to display in the right column of the table. The expression can
refer to LotSettings and StationSettings variables to access the current
lot settings and station settings.
■ visibleExpr—(Optional) TestStand expression TSM evaluates to
determine whether to display the setting in the table. The expression
can refer to LotSettings and StationSettings variables to access the
current lot settings and station settings. If this attribute is missing, TSM
uses a default value of true.
■ displayFileName—(Optional) Boolean value that indicates
whether the settings table displays a simple filename when the value
Expr expression evaluates to an absolute path. If this attribute is
missing, TSM uses a default value of false.

Displaying Specific Site Numbers in Operator Interfaces (TSM)

You can disable specific sites or use the particular connections of a pin map that
match the DIB for the test station.

When you disable sites in the default Configure Lot Settings dialog box or use the Av
ailableSiteNumbers property on the
NI_SemiconductorModule_StationSettings data type to specify which site numbers
from a pin map for a test program to use when running the test program, the default
TSM operator interfaces display only the sites you specify.

TSM 2016 and earlier default operator interfaces and custom operator interfaces
based on those versions display site numbers starting at 0 and increasing by 1, up to
the number of sites. You must make the following changes to custom LabVIEW or C#
operator interfaces based on the TSM 2016 and earlier operator interfaces to display

© National Instruments 419

TestStand Semiconductor Module

the configured site numbers when you disable sites in the default Configure Lot
Settings dialog box or use the AvailableSites station setting:

■ Query the Semiconductor Module Manager to retrieve information about
which site numbers the running test program includes.
■ Update the site status labels to show the correct site numbers.
■ Update the bin table to show the correct site numbers.
■ Update code to avoid an error in the case that the Semiconductor Module
Manager is using 0 sites, which can happen only when you disable sites in the
default Configure Lot Settings dialog box or use the AvailableSites station
setting.

Displaying Specific Site Numbers in Custom
LabVIEW Operator Interfaces (TSM)
You must complete the following steps to modify custom LabVIEW operator
interfaces based on TSM 2016 and earlier operator interfaces to display the
configured site numbers when you disable sites in the default Configure Lot Settings
dialog box or use the AvailableSites station setting. Refer to the LabVIEW source
code for the operator interface for an example.

1. Open a copy of the LVSemiOI.lvproj project in the <TestStand Publ
ic>\UserInterfaces\NI_SemiconductorModule\<LabVIEW>
directory.

2. Complete the following steps to update the site status labels to show the
correct site numbers.

a. Open the Controls/Site Label.lvclass/Site Label.ctl
control.

b. Change the label for the numeric in the private data from Site Numbe
r to Site Index to more accurately reflect what it represents.

c. Complete the following steps to add a VI to update the site label text for
a site number.

ni.com420

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

a. Right-click the Site Label.lvclass and select New::VI F
rom Dynamic Dispatch Template from the context menu.

b. Add an Operator Interface State.lvclass control and
a numeric control (for Site Number)

c. Use the Read Engine VI to get the engine reference from the Oper
ator Interface State wire.

d. Use an ActiveX Invoke Node to call the GetResourceString
method on the engine reference. Pass in NI_SEMICONDUCTOR_
OPERATOR_INTERFACE for the category and SITE_NUMBER
for the symbol.

e. Wire the Site Number input to a Number to Decimal String node.
f. Use a Search and Replace String node by using the result from the
GetResourceString method as the input string and replacing
%1 with the result from the Number to Decimal String node.

g. Use the Read Control Refnum VI to get the control refnum from
the Site Label in input.

h. Use a Property Node to set the Value property of the control
refnum to the resulting string from the Search and Replace String
node.

i. Set up proper error wiring for the VI and save it as Update Site
Label Text.vi.

d. Complete the following steps to add a VI to update the site number for a
site label.

a. Right-click the Site Label.lvclass and select New::VI F
rom Dynamic Dispatch Template from the context menu.

b. Add an Operator Interface State.lvclass control.
c. Use the Read Semiconductor Module Manager VI to get the

manager reference from the operator interface state.
d. Use the Get Site Numbers VI from the TSM Application API to get

the current set of site numbers from the manager reference.

© National Instruments 421

TestStand Semiconductor Module

e. Use the Unbundle By Name node to get the Site Index from
the Site Label input.

f. Use Index Array on the array of site numbers using the Site Ind
ex as the index.

g. Pass the result from the Index Array to the Update Site Label
Text VI you created previously.

h. Set up proper error wiring for the VI and save it as Update Site
Number.vi.

e. Complete the following steps to add a call to the Update Site Number VI
in the Refresh Callback VI for the site label.

a. Open the Controls/Site Label.lvclass/Refresh Cal
lback.vi.

b. After the call to the Display Site Control VI, insert a call to the
Update Site Number VI you created previously.

3. Complete the following steps to update the bin table to show the correct site
numbers.

a. Open the Controls/Bin Table.lvclass/Refresh Callback
.vi.

b. Copy the Site Lot Statistics array control from the front panel.
c. Open the Controls/Bin Table.lvclass/Get Column Heade

rs.vi and complete the following steps.

a. Paste the Site Lot Statistics array control on the front panel.

b. Wire the Site Lot Statistics array to the right-most For Loop and
enable auto-indexing.

c. Remove the wire from the Number of Sites input that connects
to the Count terminal of the For Loop.

d. Inside the For Loop, wire the Lot Statistics reference to an ActiveX
Property Node to retrieve the SiteNumber property.

e. Delete the wire from the For Loop iteration node to the Number to
Decimal String node.

ni.com422

TestStand Semiconductor Module

f. Wire the result from the SiteNumber property to the Number to
Decimal String node.

g. Delete the Number of Sites control.

h. Make the Site Lot Statistics array control a required input on the
connector pane.

d. In the Refresh Callback VI, which you should already have open, delete
the Array Size node and wire the Site Lot Statistics array directly to
the Get Column Headers call.

4. Complete the following steps to update the code to avoid an error in the case
that the Semiconductor Module Manager is using 0 sites, which can happen
only when you disable sites in the default Configure Lot Settings dialog box or
use the AvailableSites station setting.

a. Open the Controls/Last N Parts Label.lvclass/Refresh
Callback.vi.

b. Delete the Index Array, the numeric constant node, and any connected
wire segments.

c. Wire the All Site Lot Statistics reference to the property
node for PartCountWindowSize.

Displaying Specific Site Numbers in Custom C#
Operator Interfaces (TSM)
You must complete the following steps to modify custom C# operator interfaces
based on the TSM 2016 and earlier operator interfaces to display the configured site
numbers when you disable sites in the default Configure Lot Settings dialog box or
use the AvailableSites station setting. Refer to the C# source code for the operator
interface for an example.

1. Open a copy of MainForm.cs in the <TestStand Public>\UserInte
rfaces\NI_SemiconductorModule\<CSharp> directory.

© National Instruments 423

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

2. Complete the following steps to query the Semiconductor Module Manager to
retrieve information about which site numbers the running test program
includes.

a. In the // Bin table member variables section of the file, add
a new field to store the site numbers from the Semiconductor Module
Manager.

b. In the // Stop the lot statistics refresh timer whil
e reconfiguring the controls section of the file, initialize the
site numbers from the Semiconductor Module Manager.

c. Change the existing // Reconfigure the controls if the n
umber of sites has changed section of the file to detect if the
site number information has changed in the Semiconductor Module
Manager, update the operator interface information about the number
of sites and the site numbers, and reconfigure the operator interface
controls.

3. To update the site status labels to show the correct site numbers, when you
set the label text for the site in the // Site Label column section of the
file, use the site index to get the appropriate site number from the stored site
numbers of the operator interface.

4. Complete the following steps in the // Add a column for each site
section of the file to update the bin table to show the correct site numbers.

a. (Optional) Rename the existing site variable for iterating over the sites
to siteIndex to clarify that the variable is the index into the set of
sites and not the site number itself.

b. When you set the site column header text, use the site index to get the
appropriate site number from the stored site numbers of the operator
interface.

5. Complete the following steps to update the code to avoid an error in the case
that the Semiconductor Module Manager is using 0 sites, which can happen
only when you disable sites in the default Configure Lot Settings dialog box or
use the AvailableSites station setting.

ni.com424

TestStand Semiconductor Module

a. In the // Check if PartCountWindowSize has changed
section of the file, use the AllSiteLotStatistics property to get
the PartCountWindowSize instead of querying the siteLotStatistics array
to get the PartCountWindowSize because the AllSiteLotStatistics object
exists and is valid even when you use 0 sites.

b. In the // Update part count window size if it has ch
anged section of the file, remove the now unneeded parameter to the C
onfigurePartCountWindowSizeIfChanged method and
remove the comment that refers to the parameter.

c. In the // Check if the SiteStatusIndicator controls
have been drawn by checking if the width has been
set section of the file, add a check to ensure that any site part count
statistics controls exist before querying the property from the first one.

Handling Errors in Operator Interfaces (TSM)

You can configure TSM operator interfaces to write a message to an error log file
when any run-time error is raised and execute the behavior you specify in the
SemiconductorModuleManager when a code module run-time error is raised.

To specify how TSM treats run-time errors in TSM Operator interfaces, complete the
following steps:

1. Select Configure»Station Options to launch the Station Options dialog
box.

2. Select Show Dialog Box from the On Run-Time Error drop-down menu.

3. Click OK.
4. Optional. Use the following TSM Application API property and event to

customize error handling for the operator interface:

■ ErrorLogFilePath—Specifies the location of the error log file. The default
setting for this property is <TestStand Public>\ErrorLogs\NI_Se
miconductorModule\OperatorInterfaceErrors.log
■ ErrorOccurred event—Generated when any error occurs.

© National Instruments 425

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Code module run-time errors are a class of run-time errors. A code module run-time
error is raised when the MainSequence sequence returns a run-time error from a
source other than TSM, such as a code module or an instrument driver.

To specify how TSM treats code module run-time errors in TSM Operator interfaces,
set the following TSM Application API properties on the
SemiconductorModuleManager object in the operator interface source code:

■ EndLotOnCodeModuleRuntimeError—Determines whether testing
ends immediately after the MainSequence sequence returns a code module
run-time error. The default setting for this property is False.
■ DisplayDialogOnCodeModuleRuntimeError—Determines whether the
operator interface displays the run-time error dialog box when the MainSequ
ence sequence returns a code module run-time error. The default setting for
this property is False.

Note By default, when any run-time error
occurs, TSM assigns the current part to the
Default Error bin the bin definitions file
specifies.

LabVIEW Operator Interface Architecture (TSM)

The LVSemiOI.lvproj, located in the <TestStand>\UserInterfaces\NI
_SemiconductorModule\LabVIEW directory, includes the TestStand Semi
conductor Module Operator Interface.lvlib, which is the primary
library for the operator interface.

See Also
High-Level Classes

Top-Level VI Overview

Updating Controls

ni.com426

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

Top-Level VI Overview (TSM)

The Top-Level VI includes the front panel operators that use the majority of the
source code. This VI contains three main sections of code:

■ Initialization—Configures and initializes the TestStand manager controls,
connects and initializes all the controls on the front panel with the TSM
Application API, localizes all the controls that contain localizable text, and
starts the Application Manager control. Add new controls and indicators to
this section or remove existing controls and indicators.
■ Execution—The event structure contains a set of events for command
buttons value changes, refreshing the front panel controls, and application
exit. The While Loop that contains the event structure stops when the
application exits. If the application generates a refresh controls event or the
timeout of the event structure elapses, the While Loop iterates and the Do
Refresh Controls VI executes, which causes each control to update.
■ Shutdown—Cleans up all resources created during execution, closes the
front panel if it is an executable, and shuts down and closes the application.

High-Level Classes (TSM)

The TSM LabVIEW operator interface uses the following high-level class to hold data
the operator interface uses and to make customization easier.

■ Operator Interface State—Holds references and keeps track of state
information for the execution of the operator interface, including the
following examples:

■ An array of references to the controls on the front panel
■ A reference to events that command buttons generate and that the event
structure in the main execution loop of the Top-Level VI handles
■ TestStand manager controls
■ TestStand Engine
■ Custom events that notify the main execution thread of changes
■ A reference to the Semiconductor Module Manager object, a component
of the TSM Application API that manages most of test execution

© National Instruments 427

TestStand Semiconductor Module

See Also
Command Button Class

Control Class

Control Class (TSM)

The Control class is the base class for many of the controls displayed on the front
panel of the operator interface. You can override the Refresh Callback VI in the
Control class to update the appearance of controls when the operator interface
changes state, such as updating the counts on a statistics control at a fixed interval.

The following classes inherit from the Control class to display additional
information in the operator interface:

■ Bin Table—Displays information about the binning of DUTs of the current
lot, such as the names of the soft bins, the associated hard bins, and the DUT
counts for each site.
■ Command Button—Binds a LabVIEW button to a command object in the
TSM Application API, such as Start Lot, End Lot, Login/Logout, or Configure
Lot. The command object handles the functionality of the button when a user
clicks the button and updates the enabled state and text of the button when
the state of the command changes.
■ InlineQA Label—Displays a label for the statistics and status of inline QA.
The label and statistics controls are hidden when inline QA is disabled.
■ Last N Parts Label—Displays a label for the column of site status controls
and the number of DUTs included in the site status.
■ Site Label—Displays a label for the statistics and status of a particular site.
■ Site Status—Displays a color-coded status of the most recent n DUTs that
have been tested, where the Site Status Part Count station setting specifies n.
The red portion of the bar indicates the number of DUTs that failed. The green
portion of the bar indicates the number of DUTs that passed. The ratio of the
two colors in the bar indicates the recent yield of DUTs tested in a particular
site.

ni.com428

TestStand Semiconductor Module

■ Site Testing Icon—Displays an icon that indicates whether the handler has
placed a DUT in the site or the prober is testing on the site.
■ Statistics Control—Displays statistical information for a lot execution,
such as cycle time and socket time or site part counts. When binding this
control, specify the site and statistics type to display.
■ Test Program Info—Displays the value of relevant station settings and lot
settings for the loaded test program. The OISettingsTable.cfg
configuration file determines the list of settings to display and how to format
the settings values.
■ Tester Status—Displays the current status of the tester, such as if a lot is
testing or if any errors have occurred.

Command Button Class (TSM)
The Command Button class binds the buttons displayed on the front panel of the
default operator interface to command objects in the TSM Application API. This class
inherits from the Control class.

The TSM Application API includes the following types of commands:

■ Configure Lot—Launches a dialog box to configure a lot.
■ Configure Station—Launches a dialog box to configure the station.
■ Open STS Maintenance Software—Launches STS Maintenance Software
17.1 or later.
■ Perform Single Part Test—Starts a lot and tests a single DUT for each site
if no lot is active and pauses between DUTs when complete or, if paused
between DUTs, tests a single DUT for each site before pausing again.
■ Start Lot—Starts testing a new lot.
■ Start/Resume Lot—Starts testing a new lot, resumes a suspended
sequence execution at a breakpoint, or resumes a sequence execution that is
paused between DUTs.
■ Pause Lot—Pauses testing of the lot. Testing pauses between DUTs after
completing the tests for the current DUTs on each site and before TSM sends
the end-of-test (EOT) signal to the handler or prober.

© National Instruments 429

TestStand Semiconductor Module

■ Pause/Resume Lot—Pauses execution of the lot after the current DUT for
each site completes testing, resumes a suspended sequence execution at a
breakpoint, or resumes a sequence execution that is paused between DUTs. If
the sequence execution is suspended at a breakpoint, you cannot use this
command to pause the execution of the lot.
■ Retest—After a single test completes or when you pause a lot, retests a
single DUT for each site for the active sequence file and then pauses
execution.
■ End Lot—Ends execution of the lot.
■ View Mid Lot Summary—Generates a Mid-Lot Summary text report and
displays the report in a floating panel.
■ View Reports—Displays the reports for the current execution in a floating
panel.
■ Login/Logout—Logs an operator in or out.
■ Exit—Closes the operator interface.

Updating Controls (TSM)

Because LabVIEW operates on a data flow model and TestStand generates events,
updating the state of execution while handling events might become a complex
task. However, the Semiconductor Module Manager object handles most of these
events and state management for you. The TSM default operator interface uses the
Command Button.lvclass class to bind LabVIEW button controls to
commands in the TSM Application API. The command objects generate events the
Command Button uses to update the state of the button.

For all other controls, the main execution loop of the Top-Level VI calls the Refresh
Callback VI of its connected class each iteration and updates the state of the control
using information the TSM Application API provides.

TSM Sequence Editor UI Configuration

The default TSM UI Configuration of the TestStand Sequence Editor includes the
following changes to streamline semiconductor test program development.

■ Simplified toolbar

ni.com430

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditor.htm

■ Altered Execute menu that replaces the Test UUTs and Single Pass items
with the Start Lot and Single Test items
■ Modified Insertion Palette pane that displays the Semiconductor Module
folder and the Action Step at the top of the Step Types list
■ More detailed Steps pane

When you launch TSM for the first time or enable TSM, it loads the TSM UI
Configuration, named NI_SemiconductorModule, and saves the most recently
active UI configuration as NI_SemiconductorModule_SavedLayout. When
you disable TSM, TestStand loads the NI_SemiconductorModule_SavedLayo
ut UI configuration. You can modify the TSM UI Configuration and restore it to the
default state.

Modifying the TSM UI Configuration

Complete the following steps to modify the TSM UI Configuration.

1. Customize the toolbars and menus and arrange the sequence editor panes to
create the layout you want.

2. Select Configure»Sequence Editor Options and click the UI Configuration
tab.

3. Select NI_SemiconductorModule in the Saved Configurations list and
click the Save Current button to overwrite the existing TSM UI Configuration
with the UI configuration you just created and to ensure TSM loads the
modified UI configuration when you launch TSM for the first time or enable
TSM.

Note When you first launch the sequence
editor after installing TSM or when you
enable TSM, TSM loads only the UI
configuration named NI_Semiconductor
Module.

Restoring TSM UI Configuration to Default State

Complete the following steps to restore the default TSM UI Configuration

© National Instruments 431

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/insertion_pane.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/customizing_toolbars_menus.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_panes.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_seq_edit_opt_uiconfig_tab.htm

1. Select Configure»Sequence Editor Options and click the UI Configuration
tab.

2. Select NI_SemiconductorModule in the Saved Configurations list and
click the Delete Selected button to delete the UI configuration.

3. Select Semiconductor Module»Disable Semiconductor Module to
disable TSM.

4. Select Semiconductor Module»Enable Semiconductor Module to re-
enable TSM, which loads the default TSM UI Configuration
NI_SemiconductorModule.

Semiconductor Module Toolbar Buttons

The TSM toolbar contains the following buttons.

Note Use the TSM toolbar buttons to control
execution and view lot statistics while
debugging a sequence.

Command Name Icon Description
Edit Test Program: <filename> Launches the Test Program Edit

or in which you can edit the test
program settings for the active
sequence file.

Edit Pin Map File Opens the pin map file associat
ed with the active sequence file
in the Pin Map Editor.

Edit Bin Definitions File Opens the bin definitions file in
the Bin Definitions Editor.

Configure Station Launches the Configure Station
Settings dialog box.

Configure Lot Launches the Configure Lot Set
tings dialog box.

Active Configuration The test program configuration
to use when testing. The availa
ble items correspond to the con
figurations in the active sequen
ce file. The value initially corres
ponds to the value of the LotS

ni.com432

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_seq_edit_opt_uiconfig_tab.htm

ettings.Standard.Activ
eConfigurationName prop
erty in the lot settings. If the act
ive sequence file does not cont
ain a configuration that corresp
onds to the ActiveConfigu
rationName lot setting, the c
ontrol displays one of the confi
gurations in the sequence file. C
hanging the selected configurat
ion with this control does not m
odify the ActiveConfigura
tionName lot setting. You can
also use the Configure Lot Setti
ngs dialog box to change the te
st program configuration.

Import Test Limits into <filena
me>

Imports Semiconductor Multi T
est step test data into the active
sequence file from an external t
est data file.

Export Test Limits from <filena
me>

Exports Semiconductor Multi Te
st step test data from the active
sequence file to an external test
data file.

Single Test Starts a lot and tests a single D
UT for each site for the active se
quence file if no lot is active an
d pauses between DUTs when c
omplete or, if paused between
DUTs, tests a single DUT for eac
h site before pausing again. Tes
ting pauses between DUTs after
completing the tests for the cur
rent DUTs on each site and befo
re TSM sends the end-of-test (E
OT) signal to the handler or pro
ber.

Start/Resume Lot Starts testing a new lot, resume
s a suspended sequence execut
ion at a breakpoint, or resumes

© National Instruments 433

TestStand Semiconductor Module

a sequence execution that is pa
used between DUTs.

Pause Pauses testing of the lot. Testin
g pauses between DUTs after co
mpleting the tests for the curre
nt DUTs on each site and before
TSM sends the end-of-test (EOT
) signal to the handler or prober
.

Retest After a single test completes or
when you pause a lot, retests a
single DUT for each site for the
active sequence file and then p
auses execution. TSM does not
communicate with the handler
or prober when you use the Ret
est button.

End Lot Ends testing the current lot at a
ny time by stopping testing and
closing instrument sessions by
calling the ProcessCleanup mo
del callback sequence.

Step Into Enters and suspends within a fu
nction, VI, or sequence the step
calls. If the step calls a code mo
dule TestStand cannot suspend
within, TestStand suspends the
execution at the next step.

Note When yo
u step into a VI
from TestStan
d and then sel
ect
Return to Cal
ler
without execut
ing the VI, any
values you cha
nge in the cont
rols or indicato

ni.com434

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_codemodules.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_codemodules.html

rs of the suspe
nded VI are not
returned to Te
stStand.

Step Over Executes the step to which the
execution pointer points when t
he sequence execution is in a br
eakpoint state. If the step is a S
equence Call step to another se
quence, Step Over executes the
entire sequence. The execution
then enters a breakpoint state o
n the step following the Sequen
ce Call step. If the engine encou
nters a breakpoint within the S
equence Call step, the executio
n pauses at the breakpoint.

Step Out Resumes execution through the
end of the current sequence an
d suspends/pauses on the next
step in the calling sequence.

Show Lot Statistics Viewer Opens the Lot Statistics Viewer
window to control execution an
d view lot statistics while debug
ging a sequence.

Show Runtime Data Viewer Opens the Runtime Data Viewer
window so you can see test res
ults and debug issues at runtim
e.

Launch Digital Pattern Editor Launches the Digital Pattern Edi
tor and opens the digital patter
n project file, if any, associated
with the active sequence file.

Launch InstrumentStudio Launches InstrumentStudio, w
hich is a pin- and site-aware, sof
tware-based front panel applic
ation you can use to monitor, c
ontrol, and record measuremen
ts from supported devices.

© National Instruments 435

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/built_in_step_types_sequence_call.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/built_in_step_types_sequence_call.htm

Note If you la
unch Instrume
ntStudio in an
y other way, su
ch as from the
Microsoft Wind
ows Start men
u, InstrumentS
tudio is not pin
and site aware.

Enable Offline Mode Indicates Offline Mode is disabl
ed. Click to enable Offline Mode
, which allows you to develop, r
un, and debug test programs o
nly on a computer without acce
ss to NI instruments.

Disable Offline Mode Indicates Offline Mode is enable
d. Click to disable Offline Mode.

Semiconductor Module Menu

The Semiconductor Module menu in the TestStand Sequence Editor contains the
following items:

■ Edit Test Program: <filename>—Launches the Test Program Editor, in
which you can edit the test program settings for the active sequence file.
■ Edit Pin Map File—Opens the pin map file associated with the active
sequence file in the Pin Map Editor.
■ Edit Bin Definitions File—Opens the bin definitions file associated with
the active sequence file in the Bin Definitions Editor.
■ Create Test Program from Digital Pattern Project—Launches the
Create Test Program from Digital Pattern Project dialog box from which you
can create a basic test program that initializes sessions for NI-Digital and NI-
DCPower instruments and bursts the patterns defined in the digital pattern
project.
■ Configure Station—Launches the Configure Station Settings dialog box.

ni.com436

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditor.htm

■ Configure Lot—Launches the Configure Lot Settings dialog box.
■ Import Test Limits into <filename>—Imports Semiconductor Multi Test
step test data into the active sequence file from an external test data file.
■ Export Test Limits from <filename>—Exports Semiconductor Multi Test
step test data from the active sequence file to an external test data file.
■ Export Correlation Offset Template file based on <filename>—
Generates a tab-delimited correlation offsets template file based on the
numerical limit tests in the selected sequence file.
■ Show Lot Statistics Viewer—Opens the Lot Statistics Viewer window, in
which you can control execution and view lot statistics while debugging a
sequence.
■ Show Runtime Data Viewer—Opens the Runtime Data Viewer window, in
which you can see test results and debug issues at runtime.
■ Launch InstrumentStudio—Launches InstrumentStudio, which is a pin-
and site-aware, software-based front panel application you can use to
monitor, control, and record measurements from supported devices.

Note If you launch InstrumentStudio in any
other way, such as from the Microsoft
Windows Start menu, InstrumentStudio is
not pin and site aware.

■ Launch Digital Pattern Editor—Launches the Digital Pattern Editor and
opens the digital pattern project file, if any, associated with the active
sequence file.
■ Custom Instrument Panels—Displays and launches available custom
pin- and site-aware instrument panels you can use to debug instruments
during test program execution at a breakpoint.
■ Measure Performance of <filename>—Launches the Test Program
Performance Measurement Configuration dialog box, in which you can specify
settings to execute and measure test program performance.
■ Launch Test Program Performance Analyzer—Launches the Test
Program Performance Analyzer so you can view data TSM generates when you
measure the performance of a test program.

© National Instruments 437

TestStand Semiconductor Module

■ Enable/Disable Offline Mode—Enables and disables Offline Mode, which
allows you to develop, run, and debug test programs only on a computer
without access to NI instruments.
■ Disable/Enable Semiconductor Module—Disables and enables TSM
and removes TSM type palettes and process model plug-ins.
■ About TestStand Semiconductor Module—Displays version
information for TSM.

TSM Steps Pane

Sequence File Window

The TSM Steps pane is similar to the TestStand Steps pane of the Sequence File
window and contains the following default columns:

■ Step—Displays the name of the step and the step icon. Click to the left of
the step icon to toggle the breakpoint for the step. If you add a comment for a
step, the comment appears in light text above the step name.
■ Description—Displays a description of the step that varies according to the
type of step and the adapter with which it was created. Includes the VI name
or ClassName:MethodName for the associated code module.
■ Num Tests—For a Semiconductor Multi Test step, displays the number of
tests defined for the step.
■ Pins—For Semiconductor Action and Multi Test steps, displays the pins
selected on the Options tab of the step.
■ Multisite Option—For Semiconductor Action and Multi Test steps, displays
the Multisite Option selected on the Options tab of the step.
■ Settings—Displays the properties of the step that contain non-default
values. Use the Step Settings pane to specify step settings.

Execution Window

The TSM Steps pane is similar to the TestStand Steps pane of the Sequence File
window and contains the following default columns:

ni.com438

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqfilewin_step_group_tabs.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqfilewin.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_step_settings_pane.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_steps_tab.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_exe_window.htm

■ Step—The name and icon of the step. Click in the space to the left of the
step icon to toggle the breakpoint for the step.
■ Description—A description of the step that varies according to the type of
step and the module adapter that it uses.
■ Settings—The properties of the step that contain non-default values.
■ Module Time—The code module time for the step for the cycle of
execution.
■ Status—The value of the status property for the step. If the step has not yet
executed, the status is an empty string. After the step executes, the status
reflects the results of the execution. Possible status values can vary based on
the type of step. Typical values include Passed, Failed, Done, and Error.

Test Program Editor (TSM)

Select Semiconductor Module»Edit Test Program: <filename> or click the
Edit Test Program: <filename> button on the TSM toolbar to launch the Test
Program Editor for the sequence file. Use this dialog box to specify the pin map and
bin definitions files, create and edit test program configurations, and configure
other settings for the test program.

The Test Program Editor contains the following panels:

■ Pin Map—Specifies the path of the pin map file.
■ Bin Definitions—Specifies the path of the bin definitions file.
■ Digital Pattern Project—Specifies the path of the digital pattern project file.
■ Offline Mode—Specifies the path of the Offline Mode system configuration
file you want to associate with the test program.
■ InstrumentStudio Project—Specifies the path of the InstrumentStudio
project file.
■ LabVIEW Project—Specifies the path of the LabVIEW project file.
■ Specifications Files—Specifies a list of specifications file references available
for use in the test program.
■ PAT Algorithm Settings—Specifies values for the part average testing (PAT)
algorithm settings for the test program.

© National Instruments 439

TestStand Semiconductor Module

■ Test Limits Files—Specifies a list of test limits file references available for use
in the test program. Each test program configuration can specify a test limits
file to load when test program execution begins.
■ Alarms— Specifies how alarms are handled on a per-alarm and per-pin
basis.
■ Configuration Definition—Specifies a table of standard and custom test
conditions available for use in the test program. Each test program
configuration can specify a value for the test conditions.
■ Configurations—Specifies a list of configurations available for use in the test
program.
■ Configuration Panels—Specifies test condition values and test limits file for
the configuration.

Test Program Editor (TSM)

Pin Map Panel

The Pin Map panel contains the following options:

■ Pin Map File Path—Specifies the relative pathname to the pin map file to
use in the test program.

A red exclamation point indicates that an issue exists with the file, such as the
file is invalid or that the file does not conform to the Pin Map XML schema. A
tooltip displays the error message. If errors exist in the file, you make changes
in the dialog box, and click OK, TSM commits those changes. Do not proceed
without reviewing the errors for the pin map file.
■ Open file for edit —Launches the pin map file in the Pin Map Editor.

See Also
Test Program Editor

ni.com440

TestStand Semiconductor Module

Test Program Editor (TSM)

Bin Definitions Panel

The Bin Definitions panel contains the following options:

■ Bin Definitions File Path—Specifies the pathname of the bin definitions
file to use in the test program.

A red exclamation point indicates that the file is invalid or that the file does
not conform to the Bin Definitions XML schema. A tooltip displays the error
message. If errors exist in the file, you make changes in the dialog box, and
click OK, TSM commits those changes. Do not proceed without reviewing the
errors in the bin definitions file.
■ Open file for edit —Launches the bin definitions file in the Bin
Definitions Editor.

See Also
Bin Definitions Editor

Test Program Editor

Test Program Editor (TSM)

Digital Pattern Project Panel

The Digital Pattern Project panel contains the following options:

■ Digital Pattern Project File Path—Specifies the pathname of the digital
pattern project file to use in the test program.

A red exclamation point indicates that an issue exists for the file. A tooltip
displays the error message. Do not proceed without reviewing the errors for
the file.
■ Open file for edit —Launches the digital pattern project file in the
Digital Pattern Editor.

© National Instruments 441

TestStand Semiconductor Module

See Also
Test Program Editor

Test Program Editor (TSM)

Offline Mode Panel

The optional Offline Mode panel contains the following options:

■ Offline Mode System Configuration File Path—Specifies the Offline
Mode system configuration file you want to associate with the test program.

Test Program Editor (TSM)

InstrumentStudio Project Panel

The InstrumentStudio Project panel contains the following options:

■ InstrumentStudio Project File Path—Specifies the pathname of the
InstrumentStudio project file to use in the test program.

A red exclamation point indicates that an issue exists for the file. A tooltip
displays the error message. Do not proceed without reviewing the errors for
the file.
■ Open file for edit —Launches InstrumentStudio. If you specify an
InstrumentStudio project file, this project opens in InstrumentStudio,
otherwise the most recent project loads.

See Also
Test Program Editor

Test Program Editor (TSM)

LabVIEW Project Panel

Use the LabVIEW Project panel to link a sequence file to a LabVIEW project file,
which allows the selected sequence file to populate pin, relay, relay configuration,

ni.com442

TestStand Semiconductor Module

specification, published data ID, and input data ID controls in the specified LabVIEW
project file. If you link multiple sequence files with different pin map or specification
files, TSM combines the values into a single list when populating the controls. The
LabVIEW Project panel contains the following options:

■ LabVIEW Project File Path—Specifies the pathname of the LabVIEW
project file to associate with the sequence file.
■ Open file for edit —Launches the specified LabVIEW project file in
LabVIEW.
■ Link/Unlink—Links or removes the link from the selected LabVIEW project
file to the sequence file currently open. The LabVIEW project file stores the
sequence file link as a relative path. If the LabVIEW project file is currently
open in LabVIEW, LabVIEW prompts you to save the project.

You can also link a LabVIEW project file to a sequence file in LabVIEW. Refer to
Linking a Sequence File to a LabVIEW Project File (TSM) in the LabVIEW Help for
more information.

See Also
Test Program Editor

Test Program Editor (TSM)

Specifications Files Panel

Click the Add Specifications File button or the Remove Specifications File
button at the bottom of the panel to add or remove specifications files (.specs) to
use with the test program. The Specifications Files panel contains the following
options:

■ Specifications File Path—Specifies the pathname of the specifications
file to use in the test program.

A red exclamation point indicates that the file is invalid or that the file does
not conform to the Specifications XML schema. A tooltip displays the error

© National Instruments 443

TestStand Semiconductor Module

message. If errors exist in the file, you make changes in the dialog box, and
click OK, TSM commits those changes. Do not proceed without reviewing the
errors in the specifications file.
■ Open file for edit —Launches the specifications file in the application
you associated with the .specs file extension, typically an XML editor.
■ Add Specifications File—Adds a new specifications file reference to the
list.
■ Remove Specifications File—Removes the specifications file reference
you select from the list.
■ Specifications Files in Digital Pattern Project list—Displays the
pathname for specifications files in the digital pattern project. A red
exclamation point indicates that an issue exists with the file. A tooltip displays
the error message.

See Also
Test Program Editor

Test Program Editor (TSM)

PAT Algorithm Settings Panel

If the test program settings do not match the PAT algorithm settings defined in the
PAT callbacks sequence file, TSM displays one of the following buttons for you to
take the appropriate action to ensure that the PAT algorithm settings match in both
locations:

■ Remove Test Program Settings—Removes the existing PAT algorithm
settings from the test program if no PAT plug-in is installed or if the PAT
callbacks sequence file does not include any PAT algorithm settings. If you
remove the settings from the test program, you can add the settings back
when you install a PAT plug-in that includes PAT algorithm settings.
■ Add Test Program Settings—Adds the missing PAT algorithm settings to
the test program when an installed PAT callbacks sequence file includes PAT
algorithm settings.

ni.com444

TestStand Semiconductor Module

■ Update Test Program Settings—When applicable, updates the PAT
algorithm settings in the test program to match the PAT algorithm settings
defined in the installed PAT callbacks sequence file.

The Part Average Testing Algorithm Settings panel contains the following options
when a PAT plug-in exists in the <TestStand Public>\Components\Callba
cks\NI_SemiconductorModule directory:

■ Name—Specifies the display name of the PAT algorithm setting. If the PAT
algorithm setting defines a description for the setting, a tooltip displays the
description.
■ Value—Specifies the value to use for the PAT algorithm setting in the test
program.

A red exclamation point indicates that an issue exists with the value, such as
when a value is higher than the maximum value of the setting. A tooltip
displays the error message. If errors exist in any value, you make changes in
the dialog box, and click OK, TSM commits those changes. Do not proceed
without reviewing the errors for the PAT algorithm settings.

See Also
Test Program Editor

Part Average Testing

Part Average Testing Algorithm Settings

Part Average Testing Examples

Test Program Editor (TSM)

Test Limits Files Panel

Click the Add Test Limits File button or the Remove Test Limits File button at
the bottom of the panel to add or remove test limits file references available for use
in the test program. Each test program configuration can specify a test limits file to

© National Instruments 445

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

load when test program execution begins. The Test Limits Files panel contains the
following options:

■ Test Limits File list—Each entry in the list contains the following fields:

■ Name—Specifies a unique name for the test limits file reference. A red
exclamation point indicates that the test limits reference name is invalid. A
tooltip displays the error message.
■ Test Limits File Path—Specifies the relative pathname to the test limits
file. A red exclamation point indicates that the file is invalid. A tooltip
displays the error message.
■ Open file for edit —Launches the test limits file in the default
application associated with the file extension on the computer. This option
is not available if the test limits file is embedded in the test program file.

■ Add Test Limits File—Adds a new test limits file reference to the list.
■ Remove Test Limits File—Removes the test limits file reference you select
from the list.
■ Embed Test Limits File—Embeds the contents of the selected test limits
file in the test program sequence file. To protect limits files from modification
or viewing, embed the limits file in the test program sequence file and use the
TestStand password protection option to lock the sequence file. The Embed
Test Limits File option is available when the test limits file path is valid and not
already embedded in the sequence file.

Note NI does not recommend using
passwords as the only way of protecting
intellectual property.

■ Extract Test Limits File—Extracts an embedded test limits file from the
test program sequence file. Use this option to view or change the contents of
the test limits file.

See Also
Test Program Editor

ni.com446

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_seq_file_prop_adv_tab.htm

Exporting and Importing Test Limits with Text Files

Test Program Editor (TSM)

Alarms Panel

When you open the Alarms panel, TSM checks the pin map and queries each
instrument driver to determine which alarms the instrument supports. The Alarms
panel lists the pins connected to instruments with alarms support and the
supported alarm types for each pin. Use this panel to enable alarms and specify the
run-time behavior for each pin and alarm combination. When a test runs, TSM
checks for alarms after each test step and executes the behavior you specified.

Note Enable Offline Mode to use alarms on a
computer without access to NI instruments that
have alarms support.

The Alarms panel contains the following options:

■ Alarms enabled—Specifies whether alarms are enabled. Enable alarms if
you want TSM to check for alarms after each step and execute the action
specified in the Behavior column. Test times may increase when you enable
alarms.
■ Pin—Specifies the pin.
■ Alarm Type—Specifies the type of alarm.

Note NI TestStand 2020 Semiconductor
Module supports the ComplianceAlarm
for NI-DCPower 20.1 and later. The Compli
anceAlarm indicates that the instrument
state was not at its programmed value or
exceeded programmed limits when a
measurement was made, which invalidates
the measurement.

■ Behavior—Specifies the action that TSM will execute if the alarm is raised.
When you enable alarms and specify Log, Fail step and any tests in step,
or Error step and bin part to alarm bin in the Behavior drop-down

© National Instruments 447

TestStand Semiconductor Module

menu, TSM displays a warning in the Output pane for each raised alarm.
Select one of the following behaviors:

■ Ignore—Ignore the alarm.
■ Log—Log the alarm in the STDF Log file. TSM logs alarm information in
the following STDF Log file records based on the test result data acquired:

■ Parametric Test Records (PTR) or Functional Test Records (FTR)—Logs
the alarm type and associated pin in the ALARM_ID field.
■ Datalog Text Record (DTR)—Creates a new record for each alarm
occurrence and displays the alarm type and associated pin.
■ Test Results Record (TSR)—Increments the alarm count stored in the
ALRM_CNT field.

■ Fail step and any tests in step—Set the step status to Failed and
assign the default fail bin to the DUT.

Note If the test is part of a Semiconductor
Multi Test step, all tests in the step are set
to Failed and the fail bin you specified
for the Semiconductor Multi Test step is
assigned to the DUT. If no bin is specified,
the default fail bin is assigned to the DUT.

■ Error step and bin part to alarm bin—Set the step status to Error
and generate a run-time error. If executing in the sequence editor, TSM will
launch the Semiconductor Module Run-Time Error dialog box. The alarm bin
you specified in the bin definitions file for the test program is assigned to
the DUT.

Note If the test is part of a Semiconductor
Multi Test step, all tests in the step are set
to Failed.

See Also
Bin Definitions Editor

Test Program Editor

ni.com448

TestStand Semiconductor Module

Test Program Editor (TSM)

Configuration Definition Panel

The Configuration Definition panel specifies a table of standard and custom test
conditions available for use in the test program. Each test program configuration
specifies a value for the test conditions.

The Configuration Definition panel contains the following options:

■ Test Condition Type—Specifies the data type of the test condition. You
can modify the type only or custom test conditions. When you modify a test
condition type, each configuration resets the test condition value to a default
value.
■ Test Condition Name—Specifies the name of the test condition. Only
custom test condition names can be modified. A red exclamation point
indicates that the custom test condition name is invalid. A tooltip displays the
error message.
■ Add Condition—Launches the Specify New Condition Name dialog box, in
which you can add a new test condition. You can select a standard test
condition from a list or create a new custom test condition.
■ Delete Condition—Removes the test condition you select from the test
program and the test program configurations.

See Also
Test Program Editor

Test Program Editor (TSM)

Configurations Panel

The Configurations panel specifies a list of configurations available for use in the
test program. When you specify a new configuration, the Test Program Editor
updates with a new panel that matches the name of the configuration you added.
Use the corresponding Configuration panel to specify test condition values and
fields for configuring the test limits file for the configuration.

© National Instruments 449

TestStand Semiconductor Module

The Configurations panel contains the following options:

■ Configuration Name—Specifies the name of the configuration. A red
exclamation point indicates that the configuration name is invalid. A tooltip
displays the error message.
■ Add Configuration—Adds a configuration to the list.
■ Delete Configuration—Removes the configuration you select from the
list.

See Also
Test Program Editor

Test Program Editor (TSM)
Configuration Panels

Each configuration you specify uses a corresponding Configuration panel that
contains a table to specify test condition values and fields for configuring the test
limits file for the configuration.

The Configuration panels contains the following options:

■ Test Condition Name—Displays the name of the test condition.
■ Test Condition Value—Specifies the value for the test condition for the
configuration.
■ Test Limits File—Specifies the test limits file the configuration loads when
test program execution begins.
■ Open for edit —Launches the test limits file in the default application
associated with the file extension on the computer.
■ Test Limits File Import Mode—Specifies whether the test limits file
replaces only matching tests or deletes and adds new tests when loaded into
the test program.

ni.com450

TestStand Semiconductor Module

■ Require every step to be in test limits file—Returns a run-time error
and does not import the file if a test or step exists in the sequence but does
not exist in the limits file. If you do not enable this option, the Import/Export
Test Limits tool imports only matching tests or steps in the limits file.
■ Import into Sequence File—Imports the test limits file into the sequence
file.

See Also
Test Program Editor

Exporting and Importing Test Limits with Text Files

Bin Definitions Editor (TSM)

Use the Bin Definitions Editor to view, create, modify, and save bin definitions files
instead of editing the XML files directly. Use the Bin Definitions panel in the Test
Program Editor to specify a bin definitions file for a test program.

Select Semiconductor Module»Edit Bin Definitions File or click the Edit Bin
Definitions File button on the TSM toolbar to launch the Bin Definitions Editor.
Alternatively, you can select Semiconductor Module»Edit Test Program and
then select Bin Definitions in the Test Program Editor to launch the Bin Definitions
panel. Click the Open file for edit button to launch the Bin Definitions Editor.

The Bin Definitions Editor validates the fields of the hardware and software tabs and
uses a red error icon on the tab and in the corresponding fields to indicate errors to
resolve, such as duplicate bin numbers, duplicate bin names, or software bins
without assigned hardware bins. Hover over the error icon to display a tooltip with
specific error information. You must resolve errors before you can save the file or
close the editor using the OK button. The editor does not load files that are invalid
according to the Bin Definitions schema.

When you close the editor, a dialog box prompts you to discard changes or return to
the editor to save or cancel the changes to the bin definitions file if the file has been
edited since you opened it in the editor.

© National Instruments 451

TestStand Semiconductor Module

Configuring Bin Definitions Files

The Bin Definitions Editor includes the following options and tabs:

■ Bin Definitions File Path—Specifies the bin definitions file loaded.
■ Undo—Removes the last edit made.
■ Redo—Reinstates the last edit removed.
■ Open—Launches the Select Bin Definitions File dialog box, in which you
can browse to the bin definitions file to load.
■ Save—Displays a context menu that includes a Save option to save the file
to the current path and a Save As option to launch as Save As dialog box. The
Save button is disabled when validation errors exist in the bin definitions file.
■ New—Creates a new bin definitions file. If the file currently open in the
editor has unsaved changes, a dialog box prompts you to discard the changes
or return to the editor to save or cancel the changes to the file before creating
a new file.
■ Hardware Bins tab—Displays an editable table that defines a set of
hardware bins. You can edit the cells directly or copy and paste rows of the
table. The table includes the following sortable columns:

■ Number—Specifies the hardware bin number.
■ Name—Specifies the hardware bin name.
■ Type—Specifies an existing bin type. Options include Pass, Fail, and
Other.

■ Software Bins tab—Displays an editable table that defines a set of
software bins. You can edit the cells directly or copy and paste rows of the
table. The table includes the following sortable columns:

■ Number—Specifies the software bin number.
■ Name—Specifies the software bin name.
■ Hardware Bin—Specifies an existing hardware bin.
■ Type—Displays the existing hardware bin type. The specified hardware
bin determines the value of this field.

ni.com452

TestStand Semiconductor Module

■ Default Bins tab—Displays the following options for the default bins to
use when no bin is assigned to a DUT:

■ Default Error—The software bin to which TSM assigns a DUT when the
main test sequence errors. The software bin must be associated with a
hardware bin of the Fail or Other type.
■ Default Pass—The software bin to which TSM assigns a DUT when the
main test sequence passes and the DUT has not yet been assigned to a bin.
The software bin must be associated with a hardware bin of the Pass type.
■ Default Fail—The software bin to which TSM assigns a DUT when the
main test sequence fails and the DUT has not yet been assigned to a bin. The
software bin must be associated with a hardware bin of the Fail or Other
type.
■ Alarm—The software bin to which TSM assigns a DUT when an alarm is
raised and the behavior assigned to the alarm is Error step and bin part
to alarm bin. You can assign the alarm behavior from the Alarms panel in
the Test Program Editor.

■ Add Bin—Adds a new hardware bin when on the Hardware Bins tab or a
new software bin when on the Software Bins tab.
■ Delete Bin—Deletes the selected bin or bins.
■ Software Bins Only—Hides the Hardware Bins tab to specify only
software bins, which can be helpful when a tester configuration does not
support hardware bins, such as for wafer testing. Enabling this option clears
the hardware bins. Use Undo to recover hardware bin information. Disable
this option to return to normal editing mode. The editor saves this setting in
the bin definitions file.

See Also
Bin Definitions Schema

© National Instruments 453

TestStand Semiconductor Module

Pin Map Editor (TSM)

Use the Pin Map Editor to view, create, modify, and save pin map files instead of
editing the XML files directly. Use the Pin Map panel in the Test Program Editor to
specify a pin map file for a test program. The pin map file also serves as the channel
map file.

Select Semiconductor Module»Edit Pin Map File or click the Edit Pin Map
File button on the TSM toolbar to launch the Pin Map Editor. Alternatively, you can
select Semiconductor Module»Edit Test Program and then select Pin Map in
the Test Program Editor to launch the Pin Map panel. Click the Open file for edit
button to launch the Pin Map Editor.

The Pin Map Editor uses a red error icon in the Errors and Warnings window to
indicate that the file does not conform to the Pin Map schema. Click the error icon or
double-click the error message to highlight the error on the XML tab. The Errors and
Warnings window displays a warning in orange text when the file conforms to the
Pin Map schema but will generate an error at run time.

When you close the editor with the Cancel button and the pin map file has been
edited since you opened it in the editor, a dialog box prompts you to discard
changes or return to the editor. When you close the editor with the OK button, the
file is updated on disk with the changes you made in the editor.

Configuring Pin Map Files

The Pin Map Editor includes the following options and tabs:

■ Pin Map File—Specifies the pin map file to load. You can manually enter a
relative file path.
■ Undo—Removes the last edit made.
■ Redo—Reinstates the last edit removed.
■ Open—Launches the Select Pin Map File dialog box, in which you can
browse to the pin map file to load.

ni.com454

TestStand Semiconductor Module

■ Save—Displays a context menu that includes a Save option to save the file
to the current path and a Save As option to launch as Save As dialog box. The
Save button is disabled when errors exist in the pin map file.
■ New—Creates a new pin map file. If the file currently open in the editor has
unsaved changes, a dialog box prompts you to discard the changes or return
to the editor to save or cancel the changes to the file before creating a new
file.
■ Pin Map tab—Displays an editable, hierarchical view of the instruments,
pins, pin groups, relays, relay groups, relay configurations, sites, and
connections in the pin map file. For each item, you can edit the attributes of
the item, insert new items, or insert comments in the file.
■ XML tab—Displays the pin map file in a text format that you can edit.
■ Errors and Warnings window—Displays issues to resolve. Click the Goto
Error in XML error icon to highlight the error on the XML tab.

See Also
Common XML Validation Error Messages

Pin Map Schema

Pin Map Tab (TSM)

The Pin Map tab contains the following sections:

■ Instruments—Use this section to specify the instruments required to
execute the test program.
■ Pins—Use this section to specify the DUT pins and other pin types
connected to the tester.
■ Pin Groups—Use this section to specify a grouping of pins that you can
reference with a single name.
■ Relays—Use this section to specify the relays on the tester that the test
program associates with the pin map file references.

© National Instruments 455

TestStand Semiconductor Module

■ Relay Groups—Use this section to specify a grouping of relays that you can
reference with a single name.
■ Relay Configurations—Use this section to specify a set of relays and their
positions.
■ Sites—Use this section to specify the sites on the tester.
■ Connections—Use this section to specify mappings from pins to
instrument channels for every site and for system resources.

Instruments (TSM)
Use the Instruments section on the Pin Map tab to specify the type of instruments
required to execute the test program and the name and attributes of each
instrument. You can right–click any item in the section you want to edit and use the
context menu to complete common tasks.

Choose one of the following options to add an instrument to the pin map file:

■ Click <Add Instruments Here> to display the Instruments pane, and click
the button of the instrument type you want to add.
■ Right–click <Add Instruments Here> and select the instrument type you
want to add from the context menu.

The Pin Map Editor automatically adds the instrument to the Instruments section.
Select an instrument in the Instruments section to display the Instruments pane,
where you can edit the attributes of the instrument.

You can also cut, copy, and paste instruments, or add comments in the Instruments
pane. Use the Comment button to specify a comment for the selected instrument.
Comments display beneath the instrument they modify.

Notes

■ Consider using the following
instrument naming convention for
semiconductor test programs: Instrume
ntType_ModelNumber_PXIChassis
Location_SlotLocation, for

ni.com456

TestStand Semiconductor Module

example, HSD_657x_C2_S03, where In
strumentType is an ASCII description
of the instrument, ModelNumber is the
model number as defined on ni.com, PX
IChassisLocation uses a single digit
to identify the PXI chassis (Cx), and Slot
Location uses double digits to identify
the slot location (Sxx).
■ Names for NI instruments in the pin
map file are not case sensitive.

TSM supports the following instrument types and instrument attributes:

■ DCPower—Defines an NI-DCPower instrument.

■ Name—Name of the instrument, as defined in Measurement &
Automation Explorer (MAX).
■ Number of Channels—Number of channels available on the
instrument.
■ Channel Group Name/Channels(s) table—Lists the channel groups
and the channels assigned to each group. By default, the Pin Map Editor
creates one channel group containing all instrument channels. Use the plus
(+) or minus (-) buttons to add or remove channel groups.

Note A channel group is a collection of
channels controlled by the same
instrument session. NI-DCPower channel
groups can contain channels from different
physical NI-DCPower instruments.

■ Channel Group Name—Name of the channel group(s). The
Channel Group Name is case sensitive and must not duplicate an
instrument name or a group name on another instrument type.

Note NI-DCPower channels cannot be
added to groups of other instruments.

■ Channel(s)—Channel(s) assigned to a channel group. When you add
a new channel group, the Pin Map Editor prompts you to add channels
to the new group. Define the channels as a comma-separated list (e.g.,

© National Instruments 457

TestStand Semiconductor Module

0,1,3,..,n), a continuous range (e.g., 0:3), or as a combination of the two
(e.g., 0:1,3).

Note All channels for all instruments
must be assigned to a channel group
and no channel can assigned to more
than one group.

■ Digital Pattern—Defines an NI-Digital Pattern instrument.

■ Name—Name of the instrument, as defined in MAX.
■ Number of Channels—Number of channels available on the
instrument.
■ Group—Name of the group that contains the instrument. By default, the
Pin Map Editor sets this attribute to Digital when you add NI–Digital
Pattern instruments to the pin map file. By using the same group name for
all NI-Digital Pattern instruments, TSM combines all instruments into a
single session so you can avoid session loops in code modules. To create
multiple NI-Digital Pattern sessions, use a unique name for each set of
instruments for which you want to create a session. Refer to the Digital
Pattern Help for information about hardware limitations that prevent
certain instruments from operating together as a single instrument.

Note Instrument group names must be
unique and must not duplicate instrument
names in the pin map file.

■ RFSA—Defines an NI-RFSA instrument. NI-RFSA instruments define a
channel named In.

■ Name—Name of the instrument, as defined in MAX.

■ RFSG—Defines an NI-RFSG instrument. NI-RFSG instruments define a
channel named Out.

■ Name—Name of the instrument, as defined in MAX.

■ VST—Defines an NI-VST instrument that can hold RFSA, RFSG, and FPGA
sessions. NI-VST instruments define a channel named In and another channel
named Out.

ni.com458

TestStand Semiconductor Module

■ Name—Name of the instrument, as defined in MAX.
■ Custom FPGA File—(Optional) path to the FPGA file relative to the path
of the pin map file. You can manually specify an absolute file path.

■ RFPM—Defines an RF Port Module instrument that can hold RFPM, RFmx,
RFSA, RFSG, and FPGA sessions.

■ Name—Name of the VST instrument, as defined in MAX, that is part of the
RF port module subsystem.
■ Custom FPGA File—(Optional) path to the FPGA file relative to the path
of the pin map file. You can manually specify an absolute file path.
■ Calibration File—Path, relative to the path of the pin map file, to the
TDMS files that contain the calibration data for the RF Port Module
instrument. You can manually specify an absolute file path.
■ IVI Switch Resource Name—IVI Switch resource name associated with
the port module, as defined in MAX.
■ Ports List—Defines the ports available in the RF Port Module in a comma-
separated list of numbers or ranges of numbers separated by a hyphen. Port
number ranges are inclusive and must be in ascending order, for example, c
hannelList="2,3,4-8".

■ HSDIO—Defines an NI-HSDIO instrument.

■ Name—Name of the instrument, as defined in MAX.
■ Number of Channels—Number of channels available on the
instrument.
■ PFI Lines—(Optional) Defines the PFI lines available in the NI-HSDIO
instrument in a comma-separated list of numbers or ranges of numbers
separated by a hyphen. PFI number ranges are inclusive and must be in
ascending order, for example, PFILines="2,3,4-8".

■ DMM—Defines an NI-DMM instrument. NI-DMM instruments define a single
channel, displayed within TSM as channel 0.

■ Name—Name of the instrument, as defined in MAX.

© National Instruments 459

TestStand Semiconductor Module

■ SCOPE—Defines an NI-SCOPE instrument.

■ Name—Name of the instrument, as defined in MAX.
■ Number of Channels—Number of channels available on the
instrument.
■ Group—Name of the group that contains the instrument. By default, the
Pin Map Editor sets this attribute to Scope when you add NI–SCOPE
instruments to the pin map file. By using the same group name for all NI-
SCOPE instruments, TSM combines all instruments into a single session so
you can avoid session loops in code modules. To create multiple NI-SCOPE
sessions, use a unique name for each set of instruments for which you want
to create a session. Refer to the NI-SCOPE Help for information about
hardware limitations that prevent certain instruments from operating
together as a single instrument.

Note Instrument group names must be
unique and must not duplicate instrument
names in the pin map file.

■ FGEN—Defines an NI-FGEN instrument.

■ Name—Name of the instrument, as defined in MAX.
■ Number of Channels—Number of channels available on the
instrument.

■ DAQmx—Defines an NI-DAQmx task, not an instrument.

■ Name—Name of the task, as defined in test program code modules.
■ Task Type—Category of the task. Pin queries that return tasks of more
than one task type return an error.
■ Channel List—List of physical channels associated with the task.

■ Relay Driver—Defines a PXI-2567 relay driver module.

■ Name—Name of the relay driver module, as defined in MAX.
■ Number of Control Lines—Number of control lines available on the
relay driver module.

ni.com460

TestStand Semiconductor Module

■ Multiplexer—Defines a switching instrument to use as a multiplexer across
multiple test sites. You can use one instrument multiplexed across multiple
test sites or multiple instruments multiplexed across multiple test sites.

■ Name—Name of the Switch Executive virtual device, as defined in MAX.
■ Multiplexer Type—(Optional) String that identifies the switch type,
family, class, or product group. You cannot specify a value that begins with n
i. This value is a string that you define in the pin map and is not a
predefined value from some other source, such as a name in MAX, that you
select. Use this value to identify all instances of a particular switch type.
Switches of the same type typically have the same session data type and
same driver API.

■ Custom Instrument—Defines an instrument that TSM does not natively
support. Use the TSM Code Module API to set any type of session data on a
channel, group of channels, or instrument. Refer to the <TestStand Publ
ic>\Examples\NI_SemiconductorModule\Custom Instruments
directory for examples of using TSM pin map files and VIs to perform tests
using instruments that TSM does not natively support.

■ Name—Identifies the instrument. For instruments that NI provides but
that TSM does not natively support, specify the name of the instrument, as
defined in MAX.

Note Names for custom instruments in the
pin map file are case sensitive.

■ Instrument Type Id—String that identifies the instrument type, family,
class, or product group. You cannot specify a value that begins with ni. This
value is a string that you define in the pin map and is not a predefined value
from some other source, such as a name in MAX, that you select. Use this
value to identify all instances of a particular instrument type. Instruments of
the same type typically have the same session data type and same driver
API.

■ Model-Based Instrument—Defines a Model-Based Instrument.

■ Name—Unique string that identifies the instance of the Model-Based
Instrument in the pin map.

© National Instruments 461

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

■ Instrument Model—List of installed model description files in the
Instrument Model Library.
■ Category—Category of the ModelBasedInstrument. The category is set in
the instrument model and cannot be changed.
■ Subcategory—Subcategory of the ModelBasedInstrument. The
subcategory is set in the instrument model and cannot be changed.
■ Property/Value Tables—Editable tables of instrument and resource
properties as defined in the model description file. The first table contains
properties for the entire instrument. Subsequent tables contain properties
for specific resources of the instrument.

Pins (TSM)
Use the Pins section on the Pin Map tab to specify the DUT pins and other pin types
connected to the tester. You can right–click any item in the section you want to edit
and use the context menu to complete common tasks.

Choose one of the following options to add a pin connection to the pin map file:

■ Click <Add Pins Here> to display the Pins pane, and click the button of the
pin type you want to add.
■ Right–click <Add Pins Here> and select the pin type you want to add from
the context menu.

The Pin Map Editor automatically adds the pin connection to the Pins section.
Select a pin connection in the Pins section to display the Pins pane, where you can
edit the pin’s name.

Note Pin names are case sensitive, must begin
with a letter or underscore (_), and are limited
to A-Z, a-z, 0-9, or _ characters.

You can also cut, copy, and paste pins, or add comments in the Pins pane. Use the
Comment button to specify a comment for the selected pin. Comments display
beneath the pin they modify.

ni.com462

TestStand Semiconductor Module

TSM supports the following pin connection types:

■ DUT pin—Specifies a DUT pin, which is a pin on a DUT or a resource on the
tester or DIB that is associated with one or more sites.
■ System pin—Specifies a system pin, which is resource on the tester or DIB
that is connected to an instrument

See Also
Connecting Shared Resources in the Pin Map

Pin Groups (TSM)
Use the Pin Groups section on the Pin Map tab to specify a grouping of pins that
you can reference with a single name.

Choose one of the following options to add a pin group to the pin map file:

■ Click <Add Pin Groups Here> to display the Pin Groups pane, and click
the Pin Group button.
■ Right–click <Add Pin Groups Here> and select Pin Group from the context
menu.

The Pin Map Editor automatically adds the pin group to the Pin Groups section.
Select a pin group in the Pin Groups section to display the Pin Groups pane, where
you can change the pin group name and use the individual checkboxes or the
Select All checkbox to add or remove DUT pins, system pins, or pin groups from the
selected pin group.

Note Pin group names are case sensitive, must
begin with a letter or underscore (_), and are
limited to A-Z, a-z, 0-9, or _ characters.

Once you create a pin group, you can also add pins or other pin groups to the pin
group using one of the following options:

© National Instruments 463

TestStand Semiconductor Module

■ Click <Add Pin References Here>, and click the Pin Reference button in
the Pin Groups pane to display a drop–down menu of available pins and pin
groups.
■ Right–click <Add Pin References Here>, and select Pin Reference from
the context menu to display a drop–down menu of available pins and pin
groups.
■ Drag pins or pins groups from the Pins or Pin Groups section into a pin
group.

You can also cut, copy, and paste pins, or add comments in the Pin Groups pane.
Use the Comment button to specify a comment for the selected pin group.
Comments display beneath the pin group they modify.

Relays (TSM)
Use the Relays section on the Pin Map tab to specify the relays on the site and the
relays on the tester that the test program associates with the pin map file
references. You can right–click any item in the section you want to edit and use the
context menu to complete common tasks.

Choose one of the following options to add a relay to the pin map file:

■ Click <Add Relays Here> to display the Relays pane, and click the button
of the relay type you want to add.
■ Right–click <Add Relays Here> and select the relay type you want to add
from the context menu.

The Pin Map Editor automatically adds the relay to the Relays section. Select a
relay in the Relays section to display the Relays pane, where you can edit the
relay’s name, open state display label, and closed state display label.

Note Relay names are case sensitive, must
begin with a letter or underscore (_), and are
limited to A-Z, a-z, 0-9, or _ characters.

ni.com464

TestStand Semiconductor Module

You can also cut, copy, and paste relays, or add comments in the Relays pane. Use
the Comment button to specify a comment for the selected relay. Comments
display beneath the relay they modify.

TSM supports the following relay types:

■ Site relay—Specifies a site relay, which is a relay on the tester or DIB that is
connected to a relay driver module and that is associated with one or more
sites.
■ System relay—Specifies a system relay, which is a relay on the tester or
DIB that is connected to a relay driver module and that is associated with all
sites.

See Also
Connecting Shared Resources in the Pin Map

Relay Groups (TSM)
Use the Relay Groups section on the Pin Map tab to specify a grouping of relays
that you can reference with a single name. You can right–click any item in the
section you want to edit and use the context menu to complete common tasks.

Choose one of the following options to add a relay group to the pin map file:

■ Click <Add Relay Groups Here> to display the Relay Groups pane, and
click the Relay Group button.
■ Right–click <Add Relay Groups Here> and select Relay Group from the
context menu.

The Pin Map Editor automatically adds the relay group to the Relay Groups
section. Select a relay group in the Relay Groups section to display the Relay
Groups pane, where you can change the relay group name and use the individual
checkboxes or the Select All checkbox to add or remove site relays, system relays,
or relay groups from the selected relay group.

© National Instruments 465

TestStand Semiconductor Module

Note Relay group names are case sensitive,
must begin with a letter or underscore (_), and
are limited to A-Z, a-z, 0-9, or _ characters.

Once you create a relay group, you can also add relays or other relay groups to the
relay group using one of the following options:

■ Click <Add Relay References Here>, and click the Relay Reference
button in the Relay Groups pane to display a drop–down menu of available
relays and relay groups.
■ Right–click <Add Relay References Here>, and select Relay Reference
from the context menu to display a drop–down menu of available relays and
relay groups.
■ Drag relays or relay groups from the Relays or Relay Groups section into a
relay group.

You can also cut, copy, and paste relay groups, or add comments in the Relay
Groups pane. Use the Comment button to specify a comment for the selected relay
group. Comments display beneath the relay group they modify.

Relay Configurations (TSM)
Use the Relay Configurations section on the Pin Map tab to specify a set of relays
and their relay position states. You can set the relay state position of all relays with a
single call to the TSM Code Module API. You can right–click any item in the section
you want to edit and use the context menu to complete common tasks.

Choose one of the following options to add a relay configuration to the pin map file:

■ Click <Add Relay Configurations Here> to display the Relay
Configurations pane, and click the Relay Configuration button.
■ Right–click <Add Relay Configurations Here> and select Relay
Configuration from the context menu.

The Pin Map Editor automatically adds the relay configuration to the Relay
Configurations section. Select a relay configuration in the Relay Configurations

ni.com466

TestStand Semiconductor Module

section to display the Relay Configuration pane, where you can change the relay
configuration name, select the relay position state, view the final relay state, and
change the order of relays and relay groups. Relay state positions are applied
sequentially in the order in which the relay or relay group appears in the Relay
Configuration pane. You can change the order of a relay or relay group by using the
Up and Down buttons to move the selected relay or relay group.

Alternatively, when you create a new relay configuration, you can click <Add Relay
Positions Here>, then click the Relay Position button. Select the relay or relay
group you want to add from the top drop–down menu, then select the relay position
state from the bottom drop–down menu. Use the Relay Configuration pane to make
additional changes.

Click the Relay Configurations section to display the Relay Configurations table,
which includes a column for each relay and a column for each relay configuration.
Each relay configuration column shows the final relay state of the corresponding
relay(s).

You can also cut, copy, and paste relay configurations, or add comments in the Relay
Configurations pane. Use the Comment button to specify a comment for the
selected relay configuration. Comments display beneath the relay configuration
they modify.

Sites (TSM)
Use the Sites section on the Pin Map tab to specify the sites on the tester. Site
numbers start at 0 and must be consecutive without gaps. You can right–click any
item in the section you want to edit and use the context menu to complete common
tasks.

Choose one of the following options to add a site to the pin map file:

■ Click <Add Sites Here> to display the Sites pane, and click the Site
button.
■ Right–click <Add Sites Here> and select Site from the context menu.

© National Instruments 467

TestStand Semiconductor Module

The Pin Map Editor automatically adds the site to the Sites section. Select a site in
the Sites section to display the Sites pane.

You can also cut, copy, and paste sites, or add comments in the Sites pane. Use the
Comment button to specify a comment for the selected site. Comments display
beneath the site they modify.

Adding a Connection in the Pin Map Editor (TSM)
Use the Connections section on the Pin Map tab to specify mappings among pins,
relays, sites, instruments, instrument channels, relay driver modules, and relay
driver control lines.

1. Navigate to Semiconductor Module»Edit Pin Map File to launch the Pin
Map Editor.

2. In the Pin Map tab, click <Add Connections Here> to open the Connections
pane.

3. Click the connection type you want to add. Select from the options below.

Connection Type Description
Connection A connection between a DUT pin and an inst

rument channel for one or more sites

System Connection A direct connection between a system pin an
d an instrument channel

Multiplexed Connection A multiplexed connection between the same
DUT pin on multiple sites and a single instru
ment channel

Relay Connection A connection between a site relay and a rela
y driver module control line for one or more
sites

System Relay Connection A direct connection between a system relay
and a control line of a relay drive module

4. Configure the connection.
The Pin Map Editor automatically adds the connection to the Connections
section.

ni.com468

TestStand Semiconductor Module

5. (Optional) Click a connection to view and edit it in the Connections pane. You
can also view and edit all connections in the Connections table.

6. (Optional) Add a comment to help keep connections organized.

a. Click on the connection where you want to add a comment.

b. In the Connections pane, click Comment.

c. Add your comment in the Comment field.
TSM displays the comment above the connection.

Viewing and Editing Connections in the
Connections Table (TSM)
Use the Connections table to view and edit connections and connection attributes.
The Connections table includes a row for every connection that can be made with
the available pins, relays, and sites.

1. Navigate to Semiconductor Module»Edit Pin Map File to launch the Pin
Map Editor.

2. In the Pin Map tab, click Connections to open the Connections table.

3. (Optional) Use the View Connections for drop-down menu to filter the table
using one of the following categories.

■ All Pins and Relays
■ DUT Pins and Site Relays by Site
■ System Pins and Relays

4. (Optional) Click a column header to sort the column so you can navigate
values faster.

5. Edit the values in the table directly or by using the drop-down menus. Refer to
the descriptions below to understand the columns based on whether they
describe a pin or relay.

Column Name Description
Pin For pins, the name of a device pin you conne

ct to an instrument channel

© National Instruments 469

TestStand Semiconductor Module

For relays, the name of a relay you connect t
o a control line on a relay driver module

Site The test site or sites of the connection. After
selecting an instrument or relay driver modu
le in the Instrument column, enter a comm
a-separated list of site numbers to allow mul
tiple sites to share the connection.

Instrument For pins, the name of the instrument to conn
ect
For relays, the name of the relay driver mod
ule to connect

Select <Disconnect> to remove the associa
tion between the pin and the instrument or t
he relay and the relay driver module.

Channel For pins, an instrument channel number to a
ssign to the pin
For relays, a control line on a relay driver mo
dule to assign to the relay

Multiplexer If applicable, specifies the multiplexer requir
ed to create the route

Route If applicable, specifies the multiplexer route
required to connect the pin and site to the in
strument and channel

TSM Step Types

The TSM folder in the Step Types list on the Insertion Palette pane in the TestStand
Sequence Editor contains the following step types:

■ Semiconductor Multi Test—Evaluates one or more parametric or functional
tests for the DUT. A single Semiconductor Multi Test step can specify multiple
parametric or functional tests. You can configure multisite and binning
options directly on the step.
■ Semiconductor Action—Performs an action, such as instrument
configuration, with access to the pin map and per-site inputs. You can
configure multisite and per-site input options directly on the step.

ni.com470

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/insertion_pane.htm

■ Semiconductor Sequence Call Step—Calls a sequence and propagates tests
to Semiconductor Multi Test steps in the called sequence.
■ Inline QA Test Block—Inserts a block of Inline QA Test Block and End steps,
in which you can insert additional steps that call code modules that perform
the inline QA tests.
■ Set and Lock Bin—Uses an expression to assign a software bin to a DUT and
overrides TSM automatic bin assignment.
■ Set Relays—Controls relays and applies relay configurations.
■ Get Test Information Step —Obtains the values for lot settings, station
settings, STS state, execution data, and custom test conditions.
■ Control STS Test Head Step—Controls properties of the STS.
■ Load Correlation Offsets Step—Loads and applies correlation offset values
to test results on a per-site basis at run time before evaluating the test result
data against limits.
■ Perform Part Average Testing Step—Performs part average testing for any
tests with part average testing enabled that have already been performed for
the current part.
■ RF Steps—A series of TestStand step types you use to create measurement
sequences for RF instruments. For more information, refer to the RF Steps
documentation. You must have the STS Software Bundle installed to use RF
Steps and the RF Steps documentation.

Note TSM steps disable the Switching panel of
the Properties tab in the Step Settings pane. Use
relays in the pin map to perform switching
operations. To use the NI Switch Executive to
perform switching operations, use the NI Switch
Executive API in code modules.

TSM Step Templates

TSM provides a mechanism for other add-ons to install step type templates, such as
TSM Mixed Signal Steps. Use the step types with template code to perform common
operations, such as setting up and closing instruments, powering up a DUT, or
executing common tests. You can modify the code to customize the behavior of the
step within a test program.

© National Instruments 471

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_end.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_step_settings_pane.htm

Adding Step Templates to a Test Program

When you add a step template to a test program, the step prompts you to specify a
location for the corresponding predefined VI or .NET assembly the step generates,
based on the current module adapter setting. The step executes the corresponding
code module from the location you specify.

Notes
■ Some of the generated template VIs are
not compatible with all the versions of
LabVIEW that TSM supports. TSM
generates a template VI that is compatible
with the version of LabVIEW that has most
recently been run on the computer.
■ If you use the LabVIEW Adapter, you
must have the LabVIEW Development
System installed, and you must configure
the LabVIEW Adapter to use the LabVIEW
Development System.
■ If you use the .NET Adapter, TSM
generates the template code for all the
step type templates in a single .NET
assembly when you add any of the step
type templates to the test program.
Additional step type templates you add to
the test program automatically use the
existing instance of the .NET assembly.

Configuring the Step

The template code module for each step type uses default values for most input
parameters. You must configure settings, such as limits and the pin(s) to use for the
operation, for any tests associated with the step.

Step types that perform tests are based on the Semiconductor Multi Test step type.
Step types that do not perform tests are based on the Semiconductor Action step
type.

ni.com472

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lvadapterconfig.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lvadapterconfig.htm

Modifying the Code Templates

Modifying the code module template for a step type affects the code module TSM
generates when you add a new instance of the step type to any test program on the
computer.

TSM stores LabVIEW code module templates in directories based on the earliest
version of LabVIEW the template supports. To modify a LabVIEW code module
template, copy the template VI directory from one of the LabVIEW version-specific
directories in the <TestStand>\Components\Modules\NI_Semiconducto
rModule\StepTypeTemplates directory to the <TestStand Public>\Co
mponents\Modules\NI_SemiconductorModule\StepTypeTemplates
directory within the corresponding LabVIEW version-specific directory and make
changes to the template VIs in that location. If you want to use subVIs in the
LabVIEW code module template, store the subVIs in a SubVIs directory within the
template directory. Use the following syntax for the subVI filename: NameOfTempl
ate – SubVIName.vi.

For example, to modify the Continuity Test template for LabVIEW 2018 and later,
copy the <TestStand>\Components\Modules\NI_SemiconductorModu
le\StepTypeTemplates\LabVIEW\LabVIEW 2018\Continuity Test\
Template - Continuity Test.vi to the <TestStand Public>\Compo
nents\Modules\NI_SemiconductorModule\StepTypeTemplates\Lab
VIEW 2018 directory and copy all the subVIs with the prefix Continuity Test
- from the <TestStand>\Components\Modules\NI_SemiconductorMod
ule\StepTypeTemplates\LabVIEW 2018\Continuity Test\SubVIs
directory to the <TestStand Public>\Components\Modules\NI_Semico
nductorModule\StepTypeTemplates\LabVIEW 2018\Continuity Te
st\SubVIs directory.

To create LabVIEW template VIs to use in specific versions of LabVIEW, copy the
customized VIs to directories that correspond to the year-based version of LabVIEW
you want to use. For example, to use the modified Continuity Test LabVIEW template
when LabVIEW 2019 or later is active, copy it to a <TestStand Public>\Compo
nents\Modules\NI_SemiconductorModule\StepTypeTemplates\Lab
VIEW 2019 directory. TSM uses this version of the Continuity Test template when

© National Instruments 473

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

LabVIEW 2019 is active, even if a version of the Continuity Test template also exists
in the LabVIEW 2018 directory.

To modify a .NET code module template, copy the <TestStand>\Components\
Modules\NI_SemiconductorModule\StepTypeTemplates\DotNet
directory to the <TestStand Public>\Components\Modules\NI_Semico
nductorModule\StepTypeTemplates\DotNet directory, make changes to
the .NET source in this location, and rebuild the .NET assembly to update the
template. After you rebuild the .NET assembly, rename it to use the Template -
prefix so the step types detect it properly.

Semiconductor Multi Test Step

Use the Semiconductor Multi Test step to evaluate one or more parametric or
functional tests for the DUT. A single Semiconductor Multi Test step can specify
multiple parametric or functional tests. You can configure multisite, binning, and
per-site input options directly on the step.

Note You cannot use multiple Semiconductor
Multi Test steps configured to use multiple
threads in While loops, in Do While loops or in
For loops that use the Custom Loop option
when performing multisite testing. The
Semiconductor Multi Test step reports a run-
time error in these situations. Use other types of
loops instead, such as For loops that use the
Fixed Number of Iterations option.

Configuring the Step

You can configure a single Semiconductor Multi Test step test to evaluate a Boolean
or numeric measurement against specified limits. Each numeric limit test can have
independent limits, base units, comparison type, and software bin. Configure each
measurement the same way you configure an individual Numeric Limit Test step. A
Semiconductor Multi Test step passes when none of the specified tests fail.

Use the Semiconductor Multi Test step edit tabs in the TestStand Sequence Editor to
specify the tests, comparison, limits, multisite, binning, and per-site input options.

ni.com474

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_while.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_do_while.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_for.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_forloop.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_forloop.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/test_step_types_nl_test.htm

Step Properties

The Semiconductor Multi Test step type defines a set of step properties and
constants, in addition to the built-in properties common to all TestStand steps.

See Also
Test Program Editor

Exporting and Importing Test Limits with Text Files

Multisite Programming Techniques

Semiconductor Multi Test Step Execution
Overview
The Semiconductor Multi Test step uses the following process when executing:

1. Creates a SemiconductorModuleContext object and stores it on the
Step.SemiconductorModuleContext property if the site that executes the step
is the working site. The SemiconductorModuleContext object describes
a subset of pins, relays, sites, and instruments on a test system.

2. Replaces each test that specifies a pin group with a set of tests that are
equivalent to the pin group test and deletes the pin group test, except for the
following differences:

■ The Pin is set to the name of the pin in the pin group.
■ The Test Number is computed by adding the test number specified for the
pin group test to the zero-based index of the pin in the pin group.
■ The Test Name is computed by appending the name of the pin in the pin
group to the test name specified for the pin group test.

Note This replacement happens the first
time the step executes.

3. Calls a code module that completes the following actions:

© National Instruments 475

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/built_in_step_properties.html

a. Receives the Step.SemiconductorModuleContext property as
an input parameter.

b. Obtains instrument channel and session information using the TSM
Code Module API.

c. Performs measurements.
d. Publishes measurement data using the TSM Code Module API.

4. Performs tests. For each test, the step completes the following actions:

a. Obtains the measurement value from the published measurement data
or from the expression, if specified, in the Test Data Source column on
the Tests tab.

b. Adds the correlation offset specified in the currently loaded correlation
offsets file, if any, to the measurement value.

c. Compares the measurement value against the specified limits.
d. Sets the test status depending on the evaluation type, limits, or

measurement value, as shown in the following table.

Evaluation Type Condition Status
Numeric Limit You specify a low limit and

high limit
Passed or Failed

You do not specify a low li
mit and high limit

Done

Pass/Fail The measurement value is
True

Passed

The measurement value is
False

Failed

None None Done

Note When you enable the
Stop Performing Tests after First
Failure
option on the Options tab and a test fails,
TSM sets the status of the remaining
Numeric Limit and Pass/Fail tests to Ski
pped. The step sets the status for tests

ni.com476

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_expressions.html

with the None evaluation type to Done
regardless of whether any test fails.

e. Stores the measurement value in the expression, if specified, in the
Export Data To column on the Tests tab.

f. Assigns a software bin to the DUT if the test fails and a bin has not yet
been assigned to the DUT. If you have already assigned a bin using the
Set and Lock Bin step and the test fails, the step reports a run-time error.

g. Continues or stops performing tests depending on whether a test failed
and whether you enable the Stop Performing Tests after First
Failure option on the Options tab. The step stores the measurement
value in the Export Data To expression for tests with the None
evaluation type, regardless of whether a test failed.

5. Sets the step status to Passed if all tests pass. Otherwise, sets the step status
to Failed or Error.

Semiconductor Multi Test Step Properties
The Semiconductor Multi Test step type defines the following step properties:

■ Result.Evaluations—An array that stores the tests you configure for the
step on the Tests edit tab. The NI_SemiconductorModule_Evaluation data
type defines the following fields:

■ EvaluationType—The type of evaluation the test performs. The default
evaluation type is Numeric Limit.
■ Pin—A string that stores the test pin or pin group.
■ MeasurementId—A string that stores the published data ID.

Note The TSM Code Module API uses the E
valuationType, Pin, and Measureme
ntId properties to publish measurements
from the code module to the
corresponding tests the Semiconductor
Multi Test step specifies.

© National Instruments 477

TestStand Semiconductor Module

■ TestNumberExpr—An expression that determines the test number at
run time. If this expression is not empty, the Semiconductor Multi Test step
evaluates the expression and copies the evaluated value to the TestNumbe
r property.
■ TestNumber—A number that stores the test number.
■ FailBinExpr—An expression that determines the software fail bin for the
test at run time. The expression must evaluate to a valid software bin
number. If the test fails and this expression is not empty, the Semiconductor
Multi Test step evaluates the expression and copies the evaluated value to
the FailBin property.
■ FailBin—A number that stores the software fail bin for the test.
■ TestNameExpr—An expression that determines the test name at run
time. If this expression is not empty, the Semiconductor Multi Test step
evaluates the expression and copies the evaluated value to the TestName
property.
■ TestName—A string that stores the test name.
■ MeasurementSourceExpr—An expression that determines the numeric
or Boolean measurement value at run time. If this expression is empty, the
step obtains the measurement data from the TSM Code Module API in the
code module the step calls.
■ MeasurementDestinationExpr—Optional. An expression that specifies
a custom location to store the numeric or Boolean measurement value after
the step performs the test.
■ Status—A string that stores the Passed, Failed, Done, Skipped, or E
rror test result.
■ NumericLimit—The
NI_SemiconductorModule_Evaluation_NumericLimit data type defines the
following fields:

■ Data—A number that stores the numeric measurement value. The
step obtains this value from the TSM Code Module API in the code
module the step calls or from the MeasurementSourceExpr
property.

ni.com478

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_expressions.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_expressions.html

■ LowLimitExpr, LowLimit, HighLimitExpr, and HighLimit—The
limits for the test.
■ ComparisonType—The type of comparison, such as "GELE".
■ Units—A string that stores the base units for the limits and
measurement value.
■ DataScalingExponent, LowLimitScalingExponent,
HighLimitScalingExponent—Numbers that determine the scaling
factors for the measurement value and each limit value. Each of these
properties contains an integer value that TSM uses as an exponent for
the number 10 to determine the scaling factor.
■ CorrelationOffset—The correlation offset value to apply to test
results on a per-site basis at run time before evaluating the test result
data against limits. The Load Correlation Offsets step sets this property.
■ SimulatedData—The SimulatedData container uses the following
fields to specify values for tests in Offline Mode:

■ SimulatedDataUsageType—Set to AllSites to specify a single
value for all sites. Set to PerSite to specify specific values for each
site. Set to UsePublishedValue if you want to use the published
values. The default value is None, which specifies the default
behavior of Offline Mode to ignore the values of AllSite, PerSite,
and the published values.
■ AllSites—Specifies a single value for all sites.
■ PerSite—Specifies specific values for each site.

■ PassFail—The NI_SemiconductorModule_Evaluation_PassFail data type
defines the following fields:

■ Data—A Boolean value the step obtains from the TSM Code Module
API in the code module the step calls or from the MeasurementSour
ceExpr property.
■ SimulatedData—The SimulatedData container uses the following
fields to specify values for tests in Offline Mode:

© National Instruments 479

TestStand Semiconductor Module

■ SimulatedDataUsageType—Set to AllSites to specify a single
value for all sites. Set to PerSite to specify specific values for each
site. Set to UsePublishedValue if you want to use the published
values. The default value is None, which specifies the default
behavior of Offline Mode to ignore the values of AllSite, PerSite,
and the published values.
■ AllSites—Specifies a single value for all sites.
■ PerSite—Specifies specific values for each site.

■ Result.SemiconductorCommon—A container that stores run-time data
about the step. The NI_SemiconductorModule_SemiconductorCommon data
type defines the following field:

■ Sites—A string that stores a comma-separated list of sites tested in the
current thread, as shown in the Multisite Execution Diagram of the step. The
step sets this property at run time.
■ RaisedAlarms—A string that stores a comma-separated list of alarms
that were raised by the step. The step sets this property at run time.

■ SemiconductorModuleContext—An object reference that stores the Sem
iconductorModuleContext object the step code module uses. The Sem
iconductorModuleContext object describes a subset of pins, relays,
sites, and instruments on a test system. Code modules use this property to
access the TSM Code Module API.
■ Multisite—A container that stores the multisite options you configure for
the step on the Options edit tab. The NI_SemiconductorModule_Multisite data
type defines the following fields:

■ SynchronizationOption—The multisite option. The default option is
One thread per subsystem.
■ SpecifyPinsAndRelaysOption*—The option for how you specify what
pins and relays to include in the SemiconductorModuleContext
object for the step.
■ PinsAndRelaysExpression*— The expression that specifies what pins
and relays to include in the SemiconductorModuleContext object for

ni.com480

TestStand Semiconductor Module

the step. The step uses this expression only when the SpecifyPinsAndR
elaysOption property is set to 1.
■ DUTPinFilterOption*—The option for determining what pins to include
in the SemiconductorModuleContext object for the step. By default,
all DUT pins are included. If you try to access a pin that is not included in the
SemiconductorModuleContext object, the step returns an error.
■ IncludedDUTPins*—An array that stores the DUT pins to include in the
SemiconductorModuleContext object for the step. The step uses this
array only when the DUTPinFilterOption property is set to 1.
■ ExcludedDUTPins*—An array that stores the DUT pins to exclude from
the SemiconductorModuleContext object for the step. The step uses
this array only when the DUTPinFilterOption property is set to 0.
■ IncludeSystemPins*—A Boolean value that specifies whether to include
all system pins in the SemiconductorModuleContext object for the
step.
■ IncludedPinGroups*—An array that stores the pin groups to include in
the SemiconductorModuleContext object for the step.
■ SpecifySiteRelays*—The option to manually specify which site relays to
include in the SemiconductorModuleContext object for the step. By
default, no site relays are included.
■ IncludedSiteRelays*—An array that stores the site relays to include in
the SemiconductorModuleContext object for the step. The step uses
this array only when the SpecifySiteRelays property is set to True.
■ IncludedRelayGroups*—An array that stores the relay groups to
include in the SemiconductorModuleContext object for the step. The
step uses this array only when the SpecifySiteRelays property is set to
True.
■ IncludedRelayConfigurations*—An array that stores the relay
configurations to include in the SemiconductorModuleContext object
for the step. The step uses this array only when the SpecifySiteRelays
property is set to True.

© National Instruments 481

TestStand Semiconductor Module

■ IncludeSystemRelays*—A Boolean value that specifies whether to
include all system relays in the SemiconductorModuleContext object
for the step.

■ EvaluationFailureOption—The test failure option. The default value is
stop on failure.
■ DotNetRuntimeData—A hidden object reference that substeps of the
Semiconductor Multi Test step use to cache run-time information about the
step. Do not directly interact with this property.

Notes
■ The numeric representation for the
numeric limit data and limit values must
be double-precision, 64-bit floating-point
values, and cannot be signed or unsigned
64-bit integers.
■ The TestNameExpr, TestNumberE
xpr, and FailBinExpr properties do
not correspond to options on the
Semiconductor Multi Test step edit tabs.
■ * The Semiconductor Multi Test step
uses these properties only when the
SynchronizationOption is set to
One thread per subsystem and the
step is executing in a test socket thread.
Steps in process model callback
sequences such as ProcessSetup and
ProcessCleanup include all DUT pins
and system pins, and all site and system
relays.

Semiconductor Multi Test Step Constants
Use the following constants with the Semiconductor Multi Test step properties to
configure options for the step:

ni.com482

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpmodelthreadtypes.html

■ EvaluationType—Use the following constants with the
Step.Result.Evaluations[i].EvaluationType property:

■ 0—Numeric Limit test
■ 1—Pass/Fail test
■ 2—None evaluation

■ ComparisonType—Use the following constants with the
Step.Result.Evaluations[i].NumericLimit.ComparisonType property:

■ "GELE"—Low <= X <= High
■ "GTLT"—Low < X < High
■ "GELT"—Low <= X < High
■ "GTLE"—Low < X <= High
■ "LOG"—No comparison

■ SynchronizationOption—Use the following constants with the
Step.Multisite.SynchronizationOption property:

■ 0—One thread per site
■ 1—One thread only
■ 2—One thread per subsystem

■ SpecifyPinsAndRelaysOption—Use the following constants with the
Step.Multisite.SpecifyPinsAndRelaysOption property:

■ 0—Specify manually
■ 1—Use expression

■ DUTPinFilterOption—Use the following constants with the
Step.Multisite.DUTPinFilterOption property:

■ 0—Include all DUT pins except those listed in the ExcludedDUTPins array.
■ 1—Exclude all DUT pins except those listed in the IncludedDUTPins array.

■ SpecifySiteRelays—Use the following constants with the
Step.Multisite.SpecifySiteRelays property:

© National Instruments 483

TestStand Semiconductor Module

■ False—Include all site relays.
■ True—Include only the site relays listed in the IncludedSiteRelays array.

■ TestFailureOption—Use the following constants with the
Step.EvaluationFailureOption property:

■ 0—Stop on failure. The step stops performing tests after the first test fails.
■ 1—Continue on failure. The step performs all tests even if one test fails.

Semiconductor Multi Test Edit Tabs
Use the Semiconductor Multi Test step edit tabs in the TestStand Sequence Editor to
specify the tests, limits, multisite, and binning options for the Semiconductor Multi
Test step.

The Step Settings pane for the Semiconductor Multi Test step contains the following
tabs:

■ Tests—Configure the tests for the step. Each test specifies the test number,
test name, pin or pin group, published data ID, limits, scaling factor, base
units, software bin, evaluation type, test data source, and measurement
destination.
■ Per-Site Inputs—Configure the per-site inputs for the step. Each per-site
input specifies a data value that you access in a code module using the TSM
Code Module API.
■ Options—Configure multisite and other options for the step.
■ Part Average Testing—Configure part average testing (PAT) on the tests for
the step.

See Also
Test Program Editor

Exporting and Importing Test Limits with Text Files

ni.com484

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_step_settings_pane.htm

Tests Tab
The Tests tab contains a table that lists the tests the step performs. The following
step types display a Tests tab:

■ Semiconductor Multi Test step
■ Semiconductor Sequence Call step
■ Perform Part Average Testing step

Changing the Layout and Entering Data

Change the layout of the Tests table in the following ways:

■ Use the buttons located to the right of the table to add, remove, or reorder
tests.
■ Drag column headers to reorder columns.

Enter data in the table in the following ways:

■ Enter data when a cell is highlighted.
■ Click in a cell when it is highlighted.
■ Double-click a cell.
■ Select a value from a drop-down menu.
■ Drag a variable or property from the Variables pane to a text or expression
cell.

Copying and Pasting Data

You can copy and paste data in the Tests table in the following ways:

■ Press <Ctrl-C> to copy the contents of selected table rows, columns, or cells
to the clipboard.
■ Press <Ctrl-V> to insert data from the clipboard into the table starting from
the top left selected cell. If the number of rows of data on the clipboard is
greater than the number of tests in the Tests table, the paste command adds
new tests to the step to match the clipboard data.

© National Instruments 485

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqfilewin_variables_view.htm

■ You can copy data to tests on the same Semiconductor Multi Test or
Semiconductor Sequence Call step, to tests on other Semiconductor Multi Test
or Semiconductor Sequence Call steps, or to a Microsoft Excel spreadsheet.
■ When you modify the data in Excel and paste it back to a Semiconductor
Multi Test or Semiconductor Sequence Call step, the step returns an error if
the modified data is invalid for a test.

Part Average Testing results

When used in a Part Average Testing step, the Tests tab displays, during test program
execution, the results of the tests that it performs. If testing is not in progress, if the
step has not yet executed, if a PAT plug-in is not installed, or if the Part Average
Testing step type is disabled in the plug-in, the Tests tab does not display any
content.

Columns

The Tests table contains the following columns:

■ Test Number—The test number. If you do not specify a test number, the
step assigns the value 0. The step stores this value in the
Step.Result.Evaluations[i].TestNumber property. For tests that correspond to a
pin in a pin group, the step sets the test number to a value that equals the sum
of the test number specified for the pin group test and the zero-based index of
the pin in the pin group.

TSM uses the test number and test name to identify the test in an STDF log file.
■ Test Name—A string that identifies or describes the test. The step stores
this string in the Step.Result.Evaluations[i].TestName property. For tests that
correspond to a pin in a pin group, the step sets the test name to a string that
consists of the test name specified for the pin group test concatenated with
the pin name.
■ Pin—The pin or pin group to test. The step stores this value in the
Step.Result.Evaluations[i].Pin property.

When you specify a valid pin map file in the Test Program Editor, this cell

ni.com486

TestStand Semiconductor Module

contains a drop-down menu that includes the pin groups, DUT pins, and
system pins the pin map defines. If the pin map file is invalid or if you do not
specify a pin map file, this cell contains an editable string.

Leave the Pin column blank for tests that receive data from the Publish
Pattern Results VI or PublishPatternResults .NET method.

If you specify a pin group, the Tests table inserts a test for each pin in the pin
group. These inserted tests are not editable and are identical to the test that
specifies a pin group, with the following exceptions:

■ The Pin column is set to the name of a pin in the pin group.
■ The Test Number column is computed by adding the test number
specified for the pin group test to the zero-based index of the pin in the pin
group.
■ The Test Name column is computed by appending the name of the pin in
the pin group to the test name specified for the pin group test.

Although the step does not save the inserted tests in the sequence file, at run
time the step adds and performs tests identical to these inserted tests. The pin
group test does not appear at run time or in log files or reports.

Note To use a different numbering scheme
for test numbers or a different naming
scheme for the test name for pins in a pin
group, copy the tests that were inserted for
the pin group, delete the pin group test, and
paste the copied tests into the Tests table.
You can then edit the test numbers and test
names directly.

■ Published Data Id—(Semiconductor Multi Test step) A string that
identifies the measurement. The step stores this string in the
Step.Result.Evaluations[i].MeasurementId property.

This option is not available when you specify an expression in the Test Data
Source cell.

The published data ID string can be empty, but if the code module that the

© National Instruments 487

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_expressions.html

step calls performs multiple measurements for a single pin, the code module
must distinguish the different measurements using unique values for the
published data ID when the code module uses the TSM Code Module API to
publish the measurement data.

If a Semiconductor Multi Test step executes inside a sequence called by a
Semiconductor Sequence Call step and the Semiconductor Sequence Call
step defines a test with the same step name and published data ID, then the
properties of the test in the Semiconductor Sequence Call step replace the
properties of the test in the Semiconductor Multi Test.
■ Step Name.Published Data Id—(Semiconductor Sequence Call step) A
string that identifies the step name and published data ID of a Semiconductor
Multi Test step in the sequence called by the Semiconductor Sequence Call
step. The Semiconductor Sequence Call step stores this string in the
Step.Result.Evaluations[i].MeasurementId property.

The Semiconductor Sequence Call step uses the step name and published
data ID to assign the tests you specify to the Semiconductor Multi Test steps in
the called sequence.
■ Low Limit—A numeric expression that specifies the low limit. This option is
available only when you select Numeric Limit in the Evaluation Type column.
The step stores this expression in the
Step.Result.Evaluations[i].NumericLimit.LowLimitExpr property.

If you specify a low limit, you must also specify a high limit. Use the
Evaluation Comparison Mode option on the Options tab to configure how
the step evaluates the limits.

If you do not specify a low limit and high limit, the step skips the comparison
and logs only the measurement value in an STDF logfile.
■ High Limit—A numeric expression that specifies the high limit. This option
is available only when you select Numeric Limit in the Evaluation Type
column. The step stores this expression in the
Step.Result.Evaluations[i].NumericLimit.HighLimitExpr property.

ni.com488

TestStand Semiconductor Module

If you specify a high limit, you must also specify a low limit. Use the
Evaluation Comparison Mode option on the Options tab to configure how
the step evaluates the limits.

If you do not specify a low limit and high limit, the step skips the comparison
and logs only the measurement value in an STDF logfile.
■ Scaling Factor—The scaling factor to use for the measurement and limit
values. The step assumes that measurement values are in base units and that
limit values are in scaled units. The Tests table displays all values in scaled
units.
■ Base Units—A string that specifies the base units associated with the limits
and the measurement. This option is available only when you select Numeric
Limit in the Evaluation Type column. The step stores this string in the
Step.Result.Evaluations[i].NumericLimit.Units property.
■ Software Bin—The test software bin. This bin must be a valid fail bin. The
step stores this value in the Step.Result.Evaluations[i].FailBin property.

If the test fails and TSM has not yet assigned a software bin to the DUT, the
step assigns this software bin to the DUT. If you have already assigned a bin
using the Set and Lock Bin step and the test fails, the step reports a run-time
error.

When you specify a valid bin definitions file in the Test Program Editor, this
cell contains a drop-down menu that includes the software fail bins the bin
definitions file defines. If the bin definitions file is invalid or if you do not
specify a bin definitions file, this cell contains an editable string.

If you do not specify a software bin, the step stores the value -1, which
specifies that no binning occurs for the test.
■ Evaluation Type—The Numeric Limit, Pass/Fail, or None evaluation type.
Use a Numeric Limit evaluation for a parametric test, and use a Pass/Fail
evaluation for a functional test. Use the None evaluation type to publish data
from a code module without evaluating the data. The step stores this value in
the Step.Result.Evaluations[i].EvaluationType property.

© National Instruments 489

TestStand Semiconductor Module

When you select the Pass/Fail or None evaluation type, the Low Limit, High
Limit, and Base Units cells are not available.
■ Test Data Source—Optional. An expression that specifies the
measurement data to use for the test. The step stores this expression in the
Step.Result.Evaluations[i].MeasurementSourceExpr property.

When you specify an expression, the Pin and Published Data Id cells are not
available.

If you do not specify an expression, you must use the TSM Code Module API in
the code module the step calls to publish the measurement data to the test.
This expression must be a numeric value for tests with a Numeric Limit
evaluation type or must be a Boolean value for tests with a Pass/Fail
evaluation type. This expression must be a Boolean, numeric, or string value
for None evaluation type tests.

This option is not available in the Test edit tab of the Semiconductor
Sequence Call step.
■ Export Data To—Optional. An expression that specifies a location to copy
the measurement data from the test. Use this expression when you need to
refer to the measurement in subsequent steps. The step stores this expression
in the Step.Result.Evaluations[i].MeasurementDestination
Expr property. For tests that refer to a pin group, use an array expression to
copy the measurement data for each pin test to an element in the array. The
step automatically adjusts the size of the array to have enough elements to
contain the data for each pin in the pin group.

The following columns are available only in the Execution window for a
Semiconductor Multi Test or Semiconductor Sequence Call step suspended at a
breakpoint during an execution:

■ Status—The status of the test.
■ Data—The measurement data associated with the test.

ni.com490

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_exe_window.htm

See Also
Exporting and Importing Test Limits with Text Files

Semiconductor Multi Test Step Constants

Semiconductor Multi Test Step Properties
Scaling Measurement and Limit Data (TSM)
Use the Scaling Factor column in the Tests table on the Tests tab of the
Semiconductor Multi Test step and the Semiconductor Sequence Call step to specify
the scaling factor for the base units for test limits and measurements.

Changing the scaling factor in the Scaling Factor column in the Tests table sets the
same scaling factor for the limits and the measurement.

To specify different scaling factors for each limit and the measurement, use the
Property Browser panel on the Properties tab of the Step Settings pane and set the
following properties:

Property Description
Step.Result.Evaluations[i].Numeri
cLimit.DataScalingExponent

Measurement scaling factor

Step.Result.Evaluations[i].Numeri
cLimit.LowLimitScalingExponent

Low limit scaling factor

Step.Result.Evaluations[i].Numeri
cLimit.HighLimitScalingExponent

High limit scaling factor

The Semiconductor Multi Test step and the Semiconductor Sequence Call step use
the scaling factors in the following ways:

■ Measurement Value Scaling Factor—The steps assume the
measurement values that code modules publish use base units. At run time,
the steps use the measurement scaling factor to display the measurement
value in scaled units in the Data column of the Tests table. The STDF Log result
processing plug-in stores the corresponding scaling exponent in the
RES_SCAL field of the PTRs. The Debug Test Results Log result processing
plug-in uses the measurement scaling factor to format the values and units in
the Measurement Value column of the Debug Test Results Log.

© National Instruments 491

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_step_settings_prop_browser.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_step_settings_prop.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_step_settings_pane.htm

■ Limits Scaling Factors—The steps assume the limit values in the Low
Limit and High Limit columns use scaled units. At run time, the steps use the
limit scaling factors to convert the limit values to base units to compare the
measurement value to the limit values. The STDF Log result processing plug-in
stores the corresponding scaling exponents for the low limit and high limit
scaling factors in the LLM_SCAL and HLM_SCAL fields of the PTRs. The Debug
Test Results Log result processing plug-in uses the limit scaling factors to add
units to the values in the Low Limit and High Limit columns of the Debug Test
Results Log.

Supported Scaling Factors

TSM recognizes the following scaling factors, which correspond to the recognized
values for the RES_SCAL, HLM_SCAL, and LLM_SCAL fields of the STDF Parametric
Test Records (PTRs):

Scaling Factor
Name

Scaling Factor Value Units Prefix DataScalingExpone
nt,

LowLimitScalingEx
ponent,

and
HighLimitScalingEx
ponent

Property Values

STDF _SCAL Field
Value

femto 10 f -15 15
pico 10 p -12 12
nano 10 n -9 9
micro 10 u -6 6
milli 10 m -3 3
percent 10 % -2 2
<blank> 1 0 0
kilo 10 K 3 -3
mega 10 M 6 -6

ni.com492

TestStand Semiconductor Module

giga 10 G 9 -9
tera 10 T 12 -12

See Also
Exporting and Importing Test Limits with Text Files

Semiconductor Multi Test Part Average Testing
Tab
When a part average testing (PAT) callbacks sequence file exists in the <TestStand
Public>\Components\Callbacks\NI_SemiconductorModule directory,
the Part Average Testing tab contains a table that lists PAT settings for the tests the
step performs.

Entering Data

You can enter data in the table in the following ways:

■ Enter data when a cell is highlighted.
■ Click in a cell when it is highlighted.
■ Double-click a cell.
■ Select a value from a drop-down menu.
■ Drag a variable or property from the Variables pane to a text or expression
cell.

Copying and Pasting Data

You can copy and paste data in the table in the following ways:

■ Press <Ctrl-C> to copy the contents of selected table rows, columns, or cells
to the clipboard.
■ Press <Ctrl-V> to insert data from the clipboard into the table starting from
the top left selected cell. If the number of rows of data on the clipboard is

© National Instruments 493

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqfilewin_variables_view.htm

greater than the number of tests in the Tests table, the paste command adds
new tests to the step to match the clipboard data.
■ You can copy data to tests on the same Semiconductor Multi Test step, to
tests on other Semiconductor Multi Test steps, or to a Microsoft Excel
spreadsheet.
■ When you modify the data in Excel and paste it back to a Semiconductor
Multi Test step, the step returns an error if the modified data is invalid for a
test.

Columns

The Part Average Testing table contains the following columns:

Notes
■ The current PAT environment settings
determine which of the following columns
are visible.
■ Part average testing is available only for
tests with a Numeric Limit evaluation
type.

■ Test Number—The read-only test number for the test to which the PAT
settings apply. This column is always visible.
■ Test Name—The read-only test name of the test to which the PAT settings
apply. This column is always visible.
■ PAT Base Test Number—A base test number a PAT algorithm can use to
automatically generate PAT test numbers. PAT plug-ins that use this setting
typically hide and ignore the Dynamic PAT Test Number and Static PAT
Test Number settings.
■ Enable Dynamic PAT—Enables dynamic part average testing for the test
and enables editing of the other dynamic PAT settings for the test. When this
setting is enabled, TSM automatically generates a PAT test associated with the
test. The PAT algorithm customizes, assigns limits to, and performs the
dynamic PAT tests after all other tests in the MainSequence sequence
complete or during the execution of a Perform Part Average Testing step.

ni.com494

TestStand Semiconductor Module

■ Dynamic PAT Test Number—The test number for the dynamic PAT test.
This setting is available only when Enable Dynamic PAT is enabled.
■ Dynamic PAT Test Name—The test name for the dynamic PAT test. This
setting is available only when Enable Dynamic PAT is enabled.
■ Dynamic PAT Software Bin—The software bin for the dynamic PAT test.
This bin must be a valid fail bin defined in the bin definitions file. This setting
is available only when Enable Dynamic PAT is enabled.
■ Dynamic PAT Low Limit—The low limit for the dynamic PAT test specified
in standard deviations from the mean. A typical PAT algorithm uses this
setting to convert the test measurement data to standard deviations before
performing the PAT test. This setting is available only when Enable Dynamic
PAT is enabled.
■ Dynamic PAT High Limit—The high limit for the dynamic PAT test
specified in standard deviations from the mean. A typical PAT algorithm uses
this setting to convert the test measurement data to standard deviations
before performing the PAT test. This setting is available only when Enable
Dynamic PAT is enabled.
■ Enable Static PAT—Enables static part average testing for the test and
enables editing of the other static PAT settings for the test. When this setting is
enabled, TSM automatically generates a static PAT test associated with the
test. The PAT algorithm obtains static PAT limits, sets the limits on the static
PAT tests, and performs the static PAT tests after all other tests in the MainSe
quence sequence complete or when a Perform Part Average Testing step
executes.
■ Static PAT Test Number—The test number for the static PAT test. This
setting is available only when Enable Static PAT is enabled.
■ Static PAT Test Name—The test name for the static PAT test. This setting is
available only when Enable Static PAT is enabled.
■ Static PAT Software Bin—The software bin for the static PAT test. This bin
must be a valid fail bin defined in the bin definitions file. This setting is
available only when Enable Static PAT is enabled.

© National Instruments 495

TestStand Semiconductor Module

See Also
Part Average Testing

Semiconductor Multi Test Per-Site Inputs Tab
The Per-Site Inputs tab contains a table that lists the site-specific inputs to the code
module for the step. Use per-site inputs when the data you need to send to the code
module has the potential to be different for each site. Specify the data value in the
Per-Site Inputs table and use the TSM Code Module API in the code module to obtain
the data.

Modifying the Layout and Entering Data

You can modify the layout of the Per-Site Inputs table in the following ways:

■ Use the buttons located to the right of the table to add, remove, or reorder
per-site inputs.
■ Drag column headers to reorder columns.

You can enter data in the table in the following ways:

■ Enter data when a cell is highlighted.
■ Click in a cell when it is highlighted.
■ Double-click a cell.
■ Select a value from a drop-down menu.
■ Drag a variable or property from the Variables pane to a text or expression
cell.

Columns

The Per-Site Inputs table contains the following columns:

■ Pin—The pin associated with the data. If you do not specify a pin, you must
specify a non-empty Input Data Id string.

When you specify a valid pin map file on the Pin Map panel of the Test

ni.com496

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqfilewin_variables_view.htm

Program Editor, this cell contains a drop-down menu that includes the DUT
and system pins the pin map defines. If the pin map file is invalid or if you do
not specify a pin map file, this cell contains an editable string.
■ Input Data Id—A string that identifies the input data. If you do not specify
a value for this string, you must specify a pin.
■ Data Source—An expression that specifies the input data to send to the
code module. The expression must evaluate to a Boolean, number, or string
value.

The order of the per-site inputs in the table is not significant.

Semiconductor Multi Test Options Tab
The Options tab contains the following options:

■ Stop Performing Tests after First Failure—When you enable this
checkbox and a test fails, the Semiconductor Multi Test does not evaluate any
subsequent tests in the step and sets the remaining test results to Skip.
■ Evaluation Comparison Mode—Select how the step compares limits for
all tests the step specifies. This drop-down menu is available only when you
specify at least one test with a low and high limit on the Tests tab.
■ Test Numeric Display Format—Displays the TestStand numeric format
associated with the limits and measurement data. The numeric format
determines how the Tests tab displays numeric values and how the TestStand
report generators display numeric values in reports. Click the Edit button to
launch the Numeric Format dialog box, in which you can specify the numeric
format.
■ Multisite Option—Use this drop-down menu to specify how the step
executes the step code module on multiple sites:

■ One thread per subsystem—Execute the code module for each
subsystem in a separate thread. The Semiconductor Multi Test step
identifies subsystems by using the pin map and the pins and relays shown in
SemiconductorModuleContext Pins and Relays.

© National Instruments 497

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_numeric_format.htm

■ One thread only—Execute the code module for all sites in a single
thread.
■ One thread per site—Execute the code module for each site in a
separate thread. Use this option only when the code module does not use
hardware shared among multiple sites.

Notes
■ TSM does not synchronize executions
when you use the Parallel process model
■ Semiconductor Multi Test steps in the
ProcessSetup and ProcessCleanup
sequences always execute as if you
specified One thread only in the
Multisite Option drop-down menu.

■ Multisite Execution Diagram—When you associate a pin map file with
the sequence file, this diagram shows the threads the step uses to execute
code modules when executing with the Batch process model using multiple
sites. Each rectangle represents a single thread. The numbers within the
rectangle represent the sites tested in the same thread. Each thread
corresponds to one of the test socket threads. The step determines which test
socket thread executes the code module at run time. This diagram is available
only when you chose Select Manually from the Specify Pins and Relays
drop-down menu.
■ Specify Pins and Relays—Specifies which pins and relays are included in
the SemiconductorModuleContext. Specify pins and relays manually or
by using an expression.
■ SemiconductorModuleContext Pins and Relays—Shows the list of
pins and relays or specifies the expression that determines the pins and relays
that the SemiconductorModuleContext object contains at run time.

By default, the SemiconductorModuleContext object contains all DUT
pins in the pin map file and no system pins. If your code module uses any
system pins, you must manually select the Include System Pins checkbox
or include the system pins in your expression. Code modules that use system

ni.com498

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/parallel.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpmodelthreadtypes.html

pins execute in one thread for all sites. If your code module uses only DUT
pins, you can improve performance by specifying only the DUT pins you use in
the code module.

By default, the SemiconductorModuleContext object contains no
relays. If your code module uses any system relays, you must manually select
the Include System Relays checkbox or include the system relays in your
expression. If your code module uses site relays, you must manually select the
Specify Site Relays checkbox and specify the relays or include the site
relays in your expression.

To specify the pins and relays manually, choose Select Manually from the
Specify Pins and Relays drop-down menu and enable the options you
want.

■ Include System Pins—Include all system pins.
■ Specify DUT Pins—Select the DUT pins or pin groups you want to
include. When you select a pin group, the tab dims the DUT pins that belong
to the pin group.
■ Include System Relays—Include all system relays.
■ Specify Site Relays—Select the relays, relay groups, or relay
configurations you want to include. When you select a relay group or relay
configuration, the tab dims the relays that belong to the relay group or
configuration.

Note If you choose One thread only or
One thread per site in the
Multisite Option drop-down menu, all pins
and relays are included in the Semiconduc
torModuleContext and the checkboxes
are disabled.

To specify the pins and relays using an expression, select Use Expression
from the Specify Pins and Relays drop-down menu. At run time, the
expression you use must evaluate to an array of DUT and system pin names,
and site and system relay names.

© National Instruments 499

TestStand Semiconductor Module

Note The SemiconductorModuleCont
ext object for steps in the ProcessSetup
and ProcessCleanup sequences always
contains all DUT and system pins and all site
and system relays.

See Also
Multisite Programming Techniques

Semiconductor Action Step

Use the Semiconductor Action step to perform an action, such as instrument
configuration, with access to the pin map and per-site inputs. You can configure
multisite and per-site input options directly on the step.

Note You cannot use multiple Semiconductor
Action steps configured to use multiple threads
in While loops, in Do While loops or in For loops
that use the Custom Loop option when
performing multisite testing. The
Semiconductor Action step reports a run-time
error in these situations. Use other types of
loops instead, such as For loops that use the
Fixed Number of Iterations option.

Configuring the Step

Use the Semiconductor Action step edit tabs in the TestStand Sequence Editor to
specify the multisite and per-site input options.

Step Properties

The Semiconductor Action step type defines a set of step properties and constants,
in addition to the built-in properties common to all TestStand steps.

Semiconductor Action Step Execution Overview
The Semiconductor Action step uses the following process when executing:

ni.com500

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_while.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_do_while.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_for.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_forloop.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_forloop.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/built_in_step_properties.html

1. Creates a SemiconductorModuleContext object and stores it on the
Step.SemiconductorModuleContext property if the site that executes the step
is the working site. The SemiconductorModuleContext object describes
a subset of pins, relays, sites, and instruments on a test system.

2. Calls a code module that completes the following actions:

a. Receives the Step.SemiconductorModuleContext property as
an input parameter.

b. Obtains instrument channel and session information using the TSM
Code Module API.

c. Performs an action with access to the SemiconductorModuleCont
ext and any per-site inputs specified for the step.

Note The Publish Data VI and Publish .NET
method have no effect in code modules you call
from the Semiconductor Action step because no
test locations exist for publishing data.

Semiconductor Action Step Properties
The Semiconductor Action step type defines the following step properties:

■ Result.SemiconductorCommon—A container that stores run-time data
about the step. The NI_SemiconductorModule_SemiconductorCommon data
type defines the following field:

■ Sites—A string that stores a comma-separated list of sites tested in the
current thread, as shown in the Multisite Execution Diagram of the step. The
step sets this property at run time.
■ RaisedAlarms—A string that stores a comma-separated list of alarms
that were raised by the step. The step sets this property at run time.

■ SemiconductorModuleContext—An object reference that stores the Sem
iconductorModuleContext object the step code module uses. The Sem
iconductorModuleContext object describes a subset of pins, relays,
sites, and instruments on a test system. Code modules use this property to
access the TSM Code Module API.

© National Instruments 501

TestStand Semiconductor Module

■ Multisite—A container that stores the multisite options you configure for
the step on the Options edit tab. The NI_SemiconductorModule_Multisite data
type defines the following fields:

■ SynchronizationOption—The multisite option. The default option is
one thread per subsystem.
■ SpecifyPinsAndRelaysOption*—The option for how you specify what
pins and relays to include in the SemiconductorModuleContext
object for the step.
■ PinsAndRelaysExpression*— The expression that specifies what pins
and relays to include in the SemiconductorModuleContext object for
the step. The step uses this expression only when the SpecifyPinsAndR
elaysOption property is set to 1.
■ DUTPinFilterOption*—The option for determining what pins to include
in the SemiconductorModuleContext object for the step. By default,
all DUT pins are included. If you try to access a pin that is not included in the
SemiconductorModuleContext object, the step returns an error.
■ IncludedDUTPins*—An array that stores the DUT pins to include in the
SemiconductorModuleContext object for the step. The step uses this
array only when the DUTPinFilterOption property is set to 1.
■ ExcludedDUTPins*—An array that stores the DUT pins to exclude from
the SemiconductorModuleContext object for the step. The step uses
this array only when the DUTPinFilterOption property is set to 0.
■ IncludeSystemPins*—A Boolean value that specifies whether to include
all system pins in the SemiconductorModuleContext object for the
step.
■ IncludedPinGroups*—An array that stores the pin groups to include in
the SemiconductorModuleContext object for the step.
■ SpecifySiteRelays*—The option to manually specify which site relays to
include in the SemiconductorModuleContext object for the step. By
default, no site relays are included.

ni.com502

TestStand Semiconductor Module

■ IncludedSiteRelays*—An array that stores the site relays to include in
the SemiconductorModuleContext object for the step. The step uses
this array only when the SpecifySiteRelays property is set to True.
■ IncludedRelayGroups*—An array that stores the relay groups to
include in the SemiconductorModuleContext object for the step. The
step uses this array only when the SpecifySiteRelays property is set to
True.
■ IncludedRelayConfigurations*—An array that stores the relay
configurations to include in the SemiconductorModuleContext object
for the step. The step uses this array only when the SpecifySiteRelays
property is set to True.
■ IncludeSystemRelays*—A Boolean value that specifies whether to
include all system relays in the SemiconductorModuleContext object
for the step.

■ DotNetRuntimeData—A hidden object reference that substeps of the
Semiconductor Action step use to cache run-time information about the step.
Do not directly interact with this property.

Note * The Semiconductor Action step uses
these properties only when the
SynchronizationOption is set to
One thread per subsystem and the step is
executing in a test socket thread. Steps in
process model callback sequences such as Pro
cessSetup and ProcessCleanup include
all DUT pins and system pins, and all site and
system relays.

Semiconductor Action Step Constants
Use the following constants with the Semiconductor Action step properties to
configure options for the step:

■ SynchronizationOption—Use the following constants with the
Step.Multisite.SynchronizationOption property:

© National Instruments 503

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpmodelthreadtypes.html

■ 0—One thread per site
■ 1—One thread only
■ 2—One thread per subsystem

■ SpecifyPinsAndRelaysOption—Use the following constants with the
Step.Multisite.SpecifyPinsAndRelaysOption property:

■ 0—Specify manually
■ 1—Use expression

■ DUTPinFilterOption—Use the following constants with the
Step.Multisite.DUTPinFilterOption property:

■ 0—Include all DUT pins except those listed in the ExcludedDUTPins array.
■ 1—Exclude all DUT pins except those listed in the IncludedDUTPins array.

■ SpecifySiteRelays—Use the following constants with the
Step.Multisite.SpecifySiteRelays property:

■ False—Include all site relays.
■ True—Include only the site relays listed in the IncludedSiteRelays array.

Semiconductor Action Edit Tabs
Use the Semiconductor Action step edit tabs in the TestStand Sequence Editor to
specify the multisite and per-site input options for the Semiconductor Action step.

The Step Settings pane for the Semiconductor Action step contains the following
tabs:

■ Per-Site Inputs—Configure the per-site inputs for the step. Each per-site
input specifies a data value that you access in a code module using the TSM
Code Module API.
■ Options—Configure multisite and other options for the step.

ni.com504

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqeditwin_step_settings_pane.htm

Semiconductor Action Per-Site Inputs Tab
The Per-Site Inputs tab contains a table that lists the site-specific inputs to the code
module for the step. Use per-site inputs when the data you need to send to the code
module has the potential to be different for each site. Specify the data value in the
Per-Site Inputs table and use the TSM Code Module API in the code module to obtain
the data.

Modifying the Layout and Entering Data

You can modify the layout of the Per-Site Inputs table in the following ways:

■ Use the buttons located to the right of the table to add, remove, or reorder
per-site inputs.
■ Drag column headers to reorder columns.

You can enter data in the table in the following ways:

■ Enter data when a cell is highlighted.
■ Click in a cell when it is highlighted.
■ Double-click a cell.
■ Select a value from a drop-down menu.
■ Drag a variable or property from the Variables pane to a text or expression
cell.

Columns

The Per-Site Inputs table contains the following columns:

■ Pin—The pin associated with the data. If you do not specify a pin, you must
specify a non-empty Input Data Id string.

When you specify a valid pin map file on the Pin Map panel of the Test
Program Editor, this cell contains a drop-down menu that includes the DUT
and system pins the pin map defines. If the pin map file is invalid or if you do
not specify a pin map file, this cell contains an editable string.

© National Instruments 505

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqfilewin_variables_view.htm

■ Input Data Id—A string that identifies the input data. If you do not specify
a value for this string, you must specify a pin.
■ Data Source—An expression that specifies the input data to send to the
code module. The expression must evaluate to a Boolean, number, or string
value.

The order of the per-site inputs in the table is not significant.

Semiconductor Action Options Tab
The Options tab contains the following options:

■ Multisite Option—Select one of the following options to specify how the
step executes the step code module on multiple sites:

■ One thread per subsystem—Execute the code module for each
subsystem in a separate thread. The Semiconductor Action step identifies
subsystems by using the pin map and the pins shown in
SemiconductorModuleContext Pins and Relays.
■ One thread only—Execute the code module for all sites in a single
thread.
■ One thread per site—Execute the code module for each site in a
separate thread. Use this option only when the code module does not use
hardware shared among multiple sites.

Notes
■ TSM does not synchronize executions
when you use the Parallel process model
■ Semiconductor Action steps in the
ProcessSetup and ProcessCleanup
sequences always execute as if you
specified One thread only in the
Multisite Option drop-down menu.

■ Multisite Execution Diagram—When you associate a pin map file with
the sequence file, this diagram shows the threads the step uses to execute

ni.com506

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/parallel.html

code modules when executing with the Batch process model using multiple
sites. Each rectangle represents a single thread. The numbers within the
rectangle represent the sites tested in the same thread. Each thread
corresponds to one of the test socket threads. The step determines which test
socket thread executes the code module at run time. This diagram is available
only when you chose Select Manually from the Specify Pins and Relays
drop-down menu.
■ Specify Pins and Relays—Specifies which pins and relays are included in
the SemiconductorModuleContext. Specify pins and relays manually or
by using an expression.
■ SemiconductorModuleContext Pins and Relays—Shows the list of
pins and relays or specifies the expression that determines the pins and relays
that the SemiconductorModuleContext object contains at run time.

By default, the SemiconductorModuleContext object contains all DUT
pins in the pin map file and no system pins. If your code module uses any
system pins, you must manually select the Include System Pins checkbox
or include the system pins in your expression. Code modules that use system
pins execute in one thread for all sites. If your code module uses only DUT
pins, you can improve performance by specifying only the DUT pins you use in
the code module.

By default, the SemiconductorModuleContext object contains no
relays. If your code module uses any system relays, you must manually select
the Include System Relays checkbox or include the system relays in your
expression. If your code module uses site relays, you must manually select the
Specify Site Relays checkbox and specify the relays or include the site
relays in your expression.

To specify the pins and relays manually, choose Select Manually from the
Specify Pins and Relays drop-down menu and enable the options you
want.

■ Include System Pins—Include all system pins.

© National Instruments 507

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpmodelthreadtypes.html

■ Specify DUT Pins—Select the DUT pins or pin groups you want to
include. When you select a pin group, the tab dims the DUT pins that belong
to the pin group.
■ Include System Relays—Include all system relays.
■ Specify Site Relays—Select the relays, relay groups, or relay
configurations you want to include. When you select a relay group or relay
configuration, the tab dims the relays that belong to the relay group or
configuration.

Note If you choose One thread only or
One thread per site in the
Multisite Option drop-down menu, all pins
and relays are included in the Semiconduc
torModuleContext and the checkboxes
are disabled.

To specify the pins and relays using an expression, select Use Expression
from the Specify Pins and Relays drop-down menu. At run time, the
expression you use must evaluate to an array of DUT and system pin names,
and site and system relay names.

Note The SemiconductorModuleCont
ext object for steps in the ProcessSetup
and ProcessCleanup sequences always
contains all DUT and system pins and all site
and system relays.

See Also
Multisite Programming Techniques

Semiconductor Sequence Call Step

Use the Semiconductor Sequence Call step to call a sequence and assign tests to
Semiconductor Multi Test steps in the called sequence. Call a sequence in the
current sequence file or in another sequence file. The Semiconductor Sequence Call
step uses the Sequence Adapter.

ni.com508

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/sequence.htm

Note The Semiconductor Sequence Call step
does not evaluate tests. It defines and assigns
tests to the Semiconductor Multi Test steps in
the called sequence. The Semiconductor Multi
Test steps in the called sequence evaluate the
tests.

Configuring the Step

Complete the following steps to create a subsequence with the Semiconductor Multi
Test steps you want to call from a Semiconductor Sequence Call step.

1. Create a new sequence.
2. Insert one or more Semiconductor Multi Test steps in the sequence. The figure

below shows a subsequence named MeasureGain that consists of one
Semiconductor Action step and two Semiconductor Multi Test steps.

3. On the Module tab of the Step Settings pane, specify the code modules you
want to use for each step.

4. On the Tests tab, add tests and specify the published data ID for each test.

© National Instruments 509

TestStand Semiconductor Module

5. Add and configure any other required steps, such as Semiconductor Action
steps.

6. Save the sequence file.

Complete the following steps to configure a Semiconductor Sequence Call step.

1. Insert one or more Semiconductor Sequence Call steps into a sequence where
you want to call the subsequence you created.

2. For each Semiconductor Sequence Call step, select the Module tab of the Step
Settings pane and specify the sequence file that contains the subsequence.

3. Configure any additional Sequence Call Module options in the Module tab.
4. Select the Tests tab of the Step Settings pane and configure the parameters

you want to assign to each Semiconductor Multi Test step called by the
Semiconductor Sequence Call step.

a. Define the Step Name.Published Data Id.
The value you specify must correspond to the step name and published
data ID of the Semiconductor Multi Test step for which you want to
specify parameters. The Semiconductor Sequence Call step assigns
parameters to the Semiconductor Multi Test step with a step name and
publish data ID that match the Step Name.Published Data Id you define.

The figure below shows the MainSequence sequence which consists
of two Semiconductor Sequence Call steps named Check 0.0V Gai
n and Check 1.0V Gain. Each Semiconductor Sequence Call step
consists of two tests that specify 1MHzResponse.Power and 5MHzR
esponse.Power in the Step Name.Published Data Id field. These
values correspond to the names and published data IDs of the
Semiconductor Multi Test steps shown in the figures in Step 2 and Step 4
above.

ni.com510

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_seqcall_module.htm

b. Define test number, test name, pin or pin group, limits, scaling factor,
base units, software bin, evaluation type, and measurement
destination.

5. Run the TestStand Sequence Analyzer and resolve any errors or warnings.
Semiconductor Sequence Call steps with unresolved Sequence Analyzer
errors will throw run-time errors.

6. Run the sequence. Before TSM executes each Semiconductor Multi Test step,
the Semiconductor Sequence Call step assigns the test parameters you
specified to the Semiconductor Multi Test steps.
The figure below shows the Semiconductor Multi Test steps called by
Semiconductor Sequence Call steps Check 0.0V Gain and Check 1.0V
Gain on the left and right, respectively. The parameters for each step have
been assigned by the corresponding Semiconductor Sequence Call step.

Step Properties

The Semiconductor Sequence Call step defines a set of step properties, in addition
to the built-in properties common to all TestStand steps.

See Also
Test Program Editor

© National Instruments 511

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/built_in_step_properties.html

Exporting and Importing Test Limits with Text Files

Semiconductor Sequence Call Step Properties
The Semiconductor Sequence Call step defines the following properties. These
properties are assigned to the Semiconductor Multi Test step tests in the called
sequence that have corresponding step names and published data IDs.

TSM replaces all step property values for the Semiconductor Multi Test steps in the
called sequence, except MeasurementSourceExpr and MeasurementDestin
ationExpr, with the values specified in the Semiconductor Sequence Call step.

■ Result.Evaluations—An array that stores the tests you configure for the
step on the Tests edit tab. The NI_SemiconductorModule_Evaluation data
type defines the following fields:

■ EvaluationType—The type of evaluation the test performs. The default
evaluation type is Numeric Limit.
■ Pin—A string that stores the test pin or pin group.
■ MeasurementId—A string that stores the Step Name.Published Data Id
value. The Semiconductor Sequence Call step uses the step name and
published data ID to assign the tests you specify to the Semiconductor Multi
Test steps in the called sequence.
■ TestNumberExpr—An expression that determines the test number at
run time. If you specify this expression, the Semiconductor Multi Test step
you call from the Semiconductor Sequence Call step evaluates the
expression and copies the evaluated value to its TestNumber property.
■ TestNumber—A number that stores the test number.
■ FailBinExpr—An expression that determines the software fail bin for the
test at run time. The expression must evaluate to a valid software bin
number. If you specify this expression, the Semiconductor Multi Test step
you call from the Semiconductor Sequence Call step evaluates the
expression and copies the evaluated value to the FailBin property.
■ FailBin—A number that stores the software fail bin for the test.

ni.com512

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_expressions.html

■ TestNameExpr—An expression that determines the test name at run
time. If you specify this expression, the Semiconductor Multi Test step you
call from the Semiconductor Sequence Call step evaluates the expression
and copies the evaluated value to its TestName property.
■ TestName—A string that stores the test name.
■ MeasurementSourceExpr—The value of this property is not used by
the Semiconductor Sequence Call step and it is not passed to
Semiconductor Multi Test steps. The value cannot be set on the Tests edit
tab of the Semiconductor Sequence Call step.
■ MeasurementDestinationExpr—Optional. An expression that specifies
a custom location in the context of the Semiconductor Sequence Call step to
store the numeric or Boolean measurement value. The Semiconductor Multi
Test step stores the measurement value in the locations specified by the
MeasurementDestinationExpr properties of the Semiconductor Multi Test
step and the Semiconductor Sequence Call step after the step performs the
test.
■ Status—This property is not used by the Semiconductor Sequence Call
step.
■ NumericLimit—The
NI_SemiconductorModule_Evaluation_NumericLimit data type defines the
following fields:

■ Data—This property is not used by the Semiconductor Sequence Call
step.
■ LowLimitExpr, LowLimit, HighLimitExpr, and HighLimit—The
limits for the test.
■ ComparisonType—The type of comparison, such as "GELE".
■ Units—A string that stores the base units for the limits and
measurement value.
■ DataScalingExponent, LowLimitScalingExponent,
HighLimitScalingExponent—Numbers that determine the scaling
factors for the measurement value and each limit value. Each of these

© National Instruments 513

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_expressions.html

properties contains an integer value that TSM uses as an exponent for
the number 10 to determine the scaling factor.
■ CorrelationOffset—The correlation offset value to apply to test
results on a per-site basis at run time before evaluating the test result
data against limits. The Load Correlation Offsets step sets this property.
■ SimulatedData—The SimulatedData container uses the following
fields to specify values for tests in Offline Mode:

■ SimulatedDataUsageType—Set to AllSites to specify a single
value for all sites. Set to PerSite to specify specific values for each
site. Set to UsePublishedValue if you want to use the published
values. The default value is None, which specifies the default
behavior of Offline Mode to ignore the values of AllSite, PerSite,
and the published values.
■ AllSites—Specifies a single value for all sites.
■ PerSite—Specifies specific values for each site.

■ PassFail—The NI_SemiconductorModule_Evaluation_PassFail data type
defines the following fields:

■ Data—This property is not used by the Semiconductor Sequence Call
step.
■ SimulatedData—The SimulatedData container uses the following
fields to specify values for tests in Offline Mode:

■ SimulatedDataUsageType—Set to AllSites to specify a single
value for all sites. Set to PerSite to specify specific values for each
site. Set to UsePublishedValue if you want to use the published
values. The default value is None, which specifies the default
behavior of Offline Mode to ignore the values of AllSite, PerSite,
and the published values.
■ AllSites—Specifies a single value for all sites.
■ PerSite—Specifies specific values for each site.

ni.com514

TestStand Semiconductor Module

■ DotNetRuntimeData—A hidden object reference that sub-steps of the
Semiconductor Sequence Call step use to cache run-time information about
the step. Do not directly interact with this property.

Notes
■ The numeric representation for the
numeric limit data and limit values must
be double-precision, 64-bit floating-point
values, and cannot be signed or unsigned
64-bit integers.
■ The TestNameExpr, TestNumberE
xpr, and FailBinExpr properties do
not correspond to options on the
Semiconductor Multi Test step edit tabs.

Set Relays Step (TSM)

Use the Set Relays step to control relays and to apply relay configurations.

Configuring the Step

Use the Set Relays Step edit tab in the TestStand Sequence Editor to specify how
you want to control relays and apply relay configurations.

Set Relays Tab (TSM)
The Set Relays tab contains the following options:

■ Relay or Relay Configuration Name—Specifies the relay or relay group
that you want to control, or the relay configuration that you want to apply.
Relays, relay groups, and relay configurations must be defined in the pin map
file.
Select the Edit Pin Map button next to the input field to launch the Pin
Map Editor and edit relays, relay groups, and relay configurations in the pin
map file.

© National Instruments 515

TestStand Semiconductor Module

Initialize NI-SWITCH relay driver sessions for all relay driver modules in the pin
map file and register these sessions with the Set Relay Driver NI-SWITCH
Session VI or the SetRelayDriverNISwitchSession .NET method.

■ Relay Action—Specifies how you want to set the relays. Valid options
include:

■ Apply Relay Configuration—Applies the relay configuration specified
in Relay or Relay Configuration Name. Relays are opened or closed
according to the relay position specified in the relay configuration.
This option is only valid if Relay or Relay Configuration Name specifies
a relay configuration.

■ Open Relays—Opens the relays specified in Relay or Relay
Configuration Name. If Relay or Relay Configuration Name specifies
a relay group, all relays in the group are opened.
This option is only valid if Relay or Relay Configuration Name specifies
a relay or relay group.

■ Close Relays—Closes the relays specified in Relay or Relay
Configuration Name. If Relay or Relay Configuration Name specifies
a relay group, all relays in the group are closed.
This option is only valid if Relay or Relay Configuration Name specifies
a relay or relay group.

■ Time to wait (in seconds)—Specifies the time to wait for the relays to
settle after switching.

See Also
Set Relays Step Properties

Set Relays Step Properties
The Set Relays step type defines the following step properties:

ni.com516

TestStand Semiconductor Module

■ RelayName—The name of the relay or relay configuration to set.
■ RelayNameExpr—An expression that determines at run time the name of
the relay or relay configuration to set. If this expression is not empty, the Set
Relays step evaluates the expression and substitutes the evaluated value for
the RelayName property.
■ CloseRelay—A flag that specifies the action for a relay or relay group.
When False, individual relays or relays in a relay group are opened. When
True, individual relays or relays in a relay group are closed.
This flag applies only when RelayName or RelayNameExpr specify a relay
or relay group.

■ CloseRelayExpr—An expression that determines at run time the action for
a relay or relay group. If this expression is not empty, the Set Relays step
evaluates the expression and substitutes the evaluated value for the CloseR
elay property. When the expression evaluates to False, individual relays or
relays in a relay group are opened. When the expression evaluates to True,
individual relays or relays in a relay group are closed.
This expression applies only when RelayName or RelayNameExpr specify
a relay or relay group.

■ TimeToSettle—An expression that determines at run time the time in
seconds that the Set Relay step waits for relays to settle after switching.

Get Test Information Step (TSM)

Use the Get Test Information step to obtain the values for lot settings, station
settings, STS state, execution data, and custom test conditions. Store the value of
the items in TestStand local variables so that any step in the sequence can access
the values.

Configuring the Step

Use the Get Test Information edit tab in the TestStand Sequence Editor to specify
the list of lot settings, station settings, STS state, execution data, and custom test
conditions and the locations to store the values.

© National Instruments 517

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_seq_local_variables.html

Get Test Information Tab (TSM)
The Get Test Information tab contains a table that lists the items the step accesses.

Modifying the Layout and Entering Data

Use the buttons located to the right of the table to add, remove, or reorder per-site
inputs.

You can enter data in the table in the following ways:

■ Enter data when a cell is highlighted.
■ Click in a cell when it is highlighted.
■ Double-click a cell.
■ Select a value from a drop-down menu.
■ Drag a variable or property from the Variables pane to a text or expression
cell.

Columns

The test information table contains the following columns:

■ Filter—Drop-down menu of the category types for the item you want to
access. Select All to display items from all the categories. Categories include
the following:

 Use this Toggle Expansion button to expand or collapse all the following
sections at once. Use the black arrows next to each heading to expand or
collapse sections individually. You must expand each section you want to
print or search.

 Lot and Station Settings

You can access the standard lot and station settings and custom lot and
station settings you create from this step.

 STS Test Head

ni.com518

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqfilewin_variables_view.htm
javascript:toggleexpansion()
javascript:expand('lotstation_section','lotstation_arrow')
javascript:expand('testhead_section','testhead_arrow')

The following table lists the STS properties you can access from this step.
Except for the TestHeadAvailable property, these queries must be run
only on an STS with STS Maintenance Software 19.0 or later.

Name Type Description
12VPowerSupplyEnabled Boolean Returns whether the 12 V pin

s on STS CX and STS DX syste
ms are enabled. The pins are
disabled by default at STS po
wer up and when a load boar
d is not installed or locked do
wn on the STS, such as when
the value of the DIBPresen
t property is False. These s
ignals are available on the sy
stem cable for STS CX system
s and on the P143 system blo
ck for STS DX systems.

Note You ca
n successfully
make this qu
ery only on S
TS M2 system
s. Otherwise,
the step retur
ns a run-time
error.

48VPowerSupplyEnabled Boolean Returns whether the 48 V pin
s on STS CX and STS DX syste
ms are enabled. The pins are
disabled by default at STS po
wer up and when a load boar
d is not installed or locked do
wn on the STS, such as when
the value of the DIBPresen
t property is False. These s
ignals are available on the sy
stem cable for STS CX system
s and on the P143 system blo
ck for STS DX systems.

© National Instruments 519

TestStand Semiconductor Module

Note The ste
p returns a ru
n-time error if
you make this
query on STS
T1 M1 system
s.

CurrentRunTime String Reads from the system contr
oller of the STS the amount o
f time the STS has been runni
ng since the last power-on ev
ent.

DIBLocked Boolean Returns the locked state of th
e DIB locker.

DIBPresent Boolean Returns whether a load boar
d is installed by detecting wh
ether the load board shorts t
he DIB_INTERLOCK pin to GN
D. The DIB_INTERLOCK and G
ND signals are available on th
e system cable for STS CX sys
tems and on the P143 system
block for STS DX systems.

Note You mu
st design the l
oad board to
connect DIB_I
NTERLOCK to
GND to activa
te STS DIB de
tection. Refer
to the DIB De
sign Kit for m
ore informati
on about desi
gning load bo
ards.

FramePartNumber String Returns the unique identifier
and revision of the STS.

ni.com520

TestStand Semiconductor Module

FrameSerialNumber String Returns the unique serial nu
mber of the STS.

LoadBoardIDPROM.Checksu
mPassed

Boolean Returns whether the checksu
m of the load board passed.

LoadBoardIDPROM.DateMan
ufactured

String Returns the manufacture dat
e of the load board.

LoadBoardIDPROM.Descripti
on

String Returns the description of th
e load board.

LoadBoardIDPROM.Format Number Returns the version number
of the format that describes
how the raw data from the ID
PROM is converted into IDPR
OM values.

LoadBoardIDPROM.Manufact
urer

String Returns the manufacturer of
the load board.

LoadBoardIDPROM.PartNum
ber

String Returns the part number of t
he load board. By default, TS
M writes this property to the
LoadBoardType station se
ttings and logs the value to th
e corresponding STDF record
field if LoadBoardIDPROM
.ChecksumPassed is tru
e. You can override this beha
vior in the GetStationSet
tings and ConfigureSta
tionSettings callback se
quences of the Semicondu
ctorModuleCallbacks.
seq sequence file.

LoadBoardIDPROM.Revision Number Returns the revision number
of the load board.

LoadBoardIDPROM.SerialNu
mber

Number Returns the serial number of
the load board. By default, TS
M writes this property to the
LoadBoardId station settin
gs and logs the value to the c
orresponding STDF record fie
ld if LoadBoardIDPROM.C

© National Instruments 521

TestStand Semiconductor Module

hecksumPassed is true. Y
ou can override this behavior
in the GetStationSettin
gs and ConfigureStatio
nSettings callback seque
nces of the Semiconducto
rModuleCallbacks.seq
sequence file.

SystemPartNumber String Returns the unique identifier
and revision of the STS config
uration.

SystemSerialNumber String Returns the unique serial nu
mber of the STS configuratio
n.

Note If the S
TS does not r
eturn a serial
number or th
e serial numb
er is NOTSET,
this property
returns the sa
me value as t
he FrameSe
rialNumbe
r property.

TestHeadAvailable Boolean Returns whether TSM can acc
ess the STS. The following co
nditions prevent TSM from ac
cessing the STS:

■ STS Maintenance Softwa
re is not installed.
■ The version of STS Maint
enance Software is earlier t
han version 19.0.
■ An error occurred when t
rying to communicate with
the STS.

ni.com522

TestStand Semiconductor Module

TotalRunTime String Reads from the system contr
oller of the STS the amount o
f time the STS has run over its
entire lifetime.

 Execution Data

The following table lists the execution data properties you can access from
this step.

Name Type Description Access Restrictions
BinType Number or NI_Semic

onductorModule_Bin
Type

Type of the bin assign
ed to the part tested
on the current site. (0
=Pass, 1=Fail, 2=Othe
r)

Test Socket Threads
Only

Valid in PostUUT

BinTypes Array of numbers or a
rray of NI_Semicondu
ctorModule_BinType

The types of the bins
assigned to each part
on each site. (0=Pass,
1=Fail, 2=Other)

Valid in PostBatch

CSVTestResultsLogFil
ePath

String Returns the absolute
file path of the last CS
V Test Results Log gen
erated for the current
lot.

Valid in MainSequenc
e

CSVTestResultsLogFil
ePaths

Array of strings Returns the absolute
file paths of all CSV Te
st Results Logs gener
ated for the current lo
t. If the Generate One
File per Wafer option i
s enabled, one path is
returned for each waf
er processed in the lo
t so far. Otherwise, th
e length of the array i
s 1.

Valid in MainSequenc
e

DebugTestResultsLog
FilePath

String Returns the absolute
file path of the Debug
Test Results Log gene

Valid in MainSequenc
e

© National Instruments 523

TestStand Semiconductor Module

javascript:expand('exdata_section','exdata_arrow')

rated for the current s
ite.

DebugTestResultsLog
FilePaths

Array of strings Returns the absolute
file paths of the Debu
g Test Results Logs ge
nerated for all sites in
the current lot.

Controller Thread Onl
y

DidInlineQABlockExe
cute

Boolean Returns true if an Inli
neQA step executed it
s block of steps for thi
s site.

Test Socket Threads
Only

Valid in MainSequenc
e

DieCoordinateX Number Returns the X wafer c
oordinate of the curre
nt die being tested on
this site. The handler/
prober driver sets this
property value by sett
ing values in the Wafe
rRuntimeData.SiteDie
Coordinates paramet
er in the StartOfTest h
andler driver entry po
int sequence. This pr
operty corresponds t
o the X_COORD field i
n the Part Results Rec
ord (PRR) in the STDF
log file.

Test Socket Threads
Only

Valid in MainSequenc
e

DieCoordinateY Number Returns the Y wafer c
oordinate of the curre
nt die being tested on
this site. The handler/
prober driver sets this
property value by sett
ing values in the Wafe
rRuntimeData.SiteDie
Coordinates paramet
er in the StartOfTest h
andler driver entry po
int sequence. This pr

Test Socket Threads
Only

Valid in MainSequenc
e

ni.com524

TestStand Semiconductor Module

operty corresponds t
o the Y_COORD field i
n the Part Results Rec
ord (PRR) in the STDF
log file.

HardwareBinName String Returns the name of t
he hardware bin that
the tester assigned to
the last part that was
tested on this site.

Test Socket Threads
Only

Valid in PostUUT

HardwareBinNames Array of Strings The names of the har
dware bins that the te
ster assigned to the p
arts in the current bat
ch.

Valid in PostBatch

HardwareBinNumber Number The number of the ha
rdware bin that the te
ster assigned to the la
st part that was teste
d on this site. Returns
-1 if the tester has not
yet assigned a bin to t
he part or a value bet
ween 0 and 65535 if t
he bin was assigned.

Test Socket Threads
Only

Valid in PostUUT

HardwareBinNumber
s

Array of Numbers The numbers of the h
ardware bins that the
tester assigned to the
parts in the current b
atch.

Valid in PostBatch

IsDuplicateDieCoordi
nates

Boolean Returns true if a part
with the same die coo
rdinates as the curren
t part was tested prev
iously in the current
wafer.

Test Socket Threads
Only

Valid in MainSequenc
e

IsDuplicatePartId Boolean Returns true if a part
with the same part ID
as the current part w

Test Socket Threads
Only

© National Instruments 525

TestStand Semiconductor Module

as tested previously i
n the current lot.

Valid in MainSequenc
e

IsRetesting Boolean Returns true if the tes
ter is currently retesti
ng the same parts fro
m the previous batch
because the operator
requested a retest.

Valid in PreBatch

IsStartOfWafer Boolean Returns true if the cur
rent batch is the first
batch of parts of a ne
w wafer. This propert
y remains true if the fi
rst batch of parts are
retested.

Valid in PreBatch

LotSummaryReportFi
lePath

String Returns the absolute
file path of the last Lo
t Summary Report ge
nerated for the curre
nt lot.

Valid in MainSequenc
e

LotSummaryReportFi
lePaths

Array of strings Returns the absolute
file paths of all Lot Su
mmary Reports gener
ated for the current lo
t. If the Generate One
File per Wafer option i
s enabled, one path is
returned for each waf
er processed in the lo
t so far. Otherwise, th
e length of the array i
s one.

Valid in MainSequenc
e

NumberOfSites Number The number of sites t
hat are testing the cu
rrent lot.

—

PartId String Returns the part iden
tifier for the current p
art being tested on th
is site. The handler/pr
ober driver sets this p

Test Socket Threads
Only

Valid in MainSequenc
e

ni.com526

TestStand Semiconductor Module

roperty value by setti
ng values in the SiteP
artIds parameter in th
e StartOfTest handler
driver entry point seq
uence. If the handler/
prober driver does no
t set this property, th
e tester sets the value
to a unique value if th
e GenerateUniquePar
tIds station settings is
set to true. This prop
erty corresponds to t
he PART_ID field in th
e Part Results Record
(PRR) in the STDF log
file.
When the Generate
UniquePartIds pr
operty is True, TSM r
eassigns the same un
ique Part ID to the par
t when it is retested.
Customize the behavi
or of GenerateUni
quePartIds to
assign a new unique
Part ID to a part when
it is retested.

PartText String Returns the part desc
ription text for the cur
rent part being tested
on this site. The hand
ler/prober driver sets
this property value by
setting values in the S
itePartTexts paramete
r in the StartOfTest ha
ndler driver entry poi
nt sequence. This pro

Test Socket Threads
Only

Valid in MainSequenc
e

© National Instruments 527

TestStand Semiconductor Module

perty corresponds to
the PART_TXT field in
the Part Results Recor
d (PRR) in the STDF lo
g file.

SiteNumber Number Site number of the cu
rrent site.

Test Socket Threads
Only

SiteNumbers Array of Numbers The site numbers tha
t are testing the curre
nt lot.

—

SiteTestTimeInSecon
ds

Number Returns the time to e
xecute the MainSeq
uence sequence for t
he last part that was t
ested on this site.

Test Socket Threads
Only

Valid in PostUUT

SoftwareBinName String The name of the soft
ware bin that the test
er assigned to the last
part that was tested o
n this site.

Test Socket Threads
Only

Valid in PostUUT

SoftwareBinNames Array of Strings The names of the soft
ware bins that the tes
ter assigned to the pa
rts in the current batc
h.

Valid in PostBatch

SoftwareBinNumber Number The number of the sof
tware bin that the tes
ter assigned to the las
t part that was tested
on this site. Returns -
1 if the tester has not
yet assigned a bin to t
he part or a value bet
ween 0 and 65535 if t
he bin was assigned.

Test Socket Threads
Only

Valid in PostUUT

SoftwareBinNumbers Array of Numbers The numbers of the s
oftware bins that the
tester assigned to the
parts in the current b
atch.

Valid in PostBatch

ni.com528

TestStand Semiconductor Module

StdfLogFilePath String Returns the absolute
file path of the last ST
DF log file generated f
or the current lot.

Valid in MainSequenc
e

StdfLogFilePaths Array of strings Returns the absolute
file paths of all STDF l
og files generated for
the current lot. If the
Generate One File per
Wafer option is enabl
ed, one path is return
ed for each wafer pro
cessed in the lot so fa
r. Otherwise, the leng
th of the array is one.

Valid in MainSequenc
e

WaferRuntimeData.Ex
ecDescription

String Returns the wafer des
cription supplied by e
xec. This property cor
responds to the EXC_
DESC field in the Waf
er Results Record (WR
R) in the STDF log file.

Valid in PreBatch

WaferRuntimeData.F
abWaferId

String Returns the fab wafer
ID. This property corr
esponds to the FABW
F_ID field in the Wafer
Results Record (WRR)
in the STDF log file.

Valid in PreBatch

WaferRuntimeData.Fr
ameId

String Returns the wafer fra
me ID. This property c
orresponds to the FR
AME_ID field in the W
afer Results Record (
WRR) in the STDF log
file.

Valid in PreBatch

WaferRuntimeData.M
askId

String Returns the wafer ma
sk ID. This property c
orresponds to the MA
SK_ID field in the Waf

Valid in PreBatch

© National Instruments 529

TestStand Semiconductor Module

er Results Record (WR
R) in the STDF log file.

WaferRuntimeData.U
serDescription

String Returns the wafer des
cription supplied by u
ser. This property cor
responds to the USR_
DESC field in the Waf
er Results Record (WR
R) in the STDF log file.

Valid in PreBatch

WaferRuntimeData.W
aferId

String Returns the wafer ID.
This property corresp
onds to the WAFER_I
D field in the Wafer In
formation Record (WI
R) and Wafer Results
Record (WRR) in the S
TDF log file.

Valid in PreBatch

Access Restrictions
Some properties are valid only when accessed from certain process model
threads. If you access these properties from an unsupported model thread,
the step reports a run-time error.

Some properties are valid only at certain times during execution. If you access
these properties before they are valid, the step either returns default values or
reports a run-time error as described below.

■ Test Socket Threads Only—You must access these site-specific
properties from a test socket thread. The step reports a run-time error if you
access the property in a sequence that executes in a controller thread, such
as ProcessSetup when executing the Batch process model. You can
access these properties from any sequence when using the Sequential
process model.
■ Controller Thread Only—You must access these properties from a
process model callback sequence that executes in a controller thread, such
as ProcessCleanup. The step reports a run-time error if you access the
property in a sequence that executes in a test socket thread, such as MainS
equence or PreUUT.

ni.com530

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpmodelthreadtypes.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpmodelthreadtypes.html

■ Valid in PreBatch—TSM assigns values to these properties before testing
starts for the current batch. These properties have meaningful values only in
the following locations. The step returns default values if you access the
property from other locations. The step returns default values if you access
the property from other locations.

■ In the Model Plugin – Pre Batch entry point and beyond in model
plug-ins when using the Batch process model.
■ In the Model Plugin – Pre UUT entry point and beyond in model plug-
ins when using the Sequential process model.
■ In the PreUUT Model callback and beyond in test programs.

■ Valid in MainSequence—TSM assigns values to these site-specific
properties before testing starts for the current part. These properties have
meaningful values only in the following locations. The step returns default
values if you access the property from other locations.

■ In the Model Plugin – Pre UUT entry point and beyond in model plug-
ins.
■ In the MainSequence sequence and beyond in test programs.

■ Valid in Post UUT—TSM assigns values to site-specific properties after
testing completes for the current part. These properties have meaningful
values only in the following locations. The step reports a run-time error if
you access these properties from other locations.

■ In the Model Plugin – UUT Done entry point and beyond in model
plug-ins.
■ In the PostUUT Model callback and beyond in test programs.

■ Valid in Post Batch—TSM assigns values to these properties after testing
completes for all sites. These properties have meaningful values only in the
following locations. The step reports a run-time error if you access these
properties from other locations.

■ In the Model Plugin – Batch Done entry point and beyond in model
plug-ins when using the Batch process model.

© National Instruments 531

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpprebatchep.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmppreuutep.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch_model_callbacks.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmppreuutep.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpuutdoneep.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch_model_callbacks.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpbatchdoneep.html

■ In the Model Plugin – UUT Done entry point and beyond in model
plug-ins when using the Sequential process model.
■ In the PostBatch callback and beyond in test programs when using
the Batch process model.
■ In the PostUUT callback and beyond in test programs when using the
Sequential process model.

 Custom Test Conditions

Access the custom test conditions you created in the Test Program Editor.

■ Name—The name of the lot setting, station setting, STS state, execution
data, or custom test condition to access. You can choose one of the items from
the drop-down menu, or you can type any part of the item name and select
the item from the drop-down menu of suggestions.
■ Destination Expression—An expression that specifies the location to
copy the value. You typically specify a local variable that you can use
throughout the sequence.

Control STS Test Head Step (TSM)

Use the Control STS Test Head step to control properties of the STS. The step must
be run only on an STS with STS Maintenance Software 19.0 or later.

Configuring the Step

Use the Control STS Test Head edit tab in the TestStand Sequence Editor to specify
the list of STS properties and settings.

Control STS Test Head Tab (TSM)
The Control STS Test Head tab contains a table that lists the STS properties the step
controls.

ni.com532

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpuutdoneep.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch_model_callbacks.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/sequential_model_callbacks.html
javascript:expand('testcond_section','testcond_arrow')
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_seq_local_variables.html

Modifying the Layout and Entering Data

Use the buttons located to the right of the table to add, remove, or reorder per-site
inputs.

You can enter data in the table in the following ways:

■ Enter data when a cell is highlighted.
■ Click in a cell when it is highlighted.
■ Double-click a cell.
■ Select a value from a drop-down menu.
■ Drag a variable or property from the Variables pane to a text or expression
cell.

Columns

The table contains the following columns:

■ Name—The name of the STS property to control. You can choose one of the
items from the drop-down menu, or you can type any part of the property
name and select the item from the drop-down menu of suggestions.
■ Source Expression—An expression that specifies the value to set for the
STS property.

The following table lists the STS properties you can access from this step.

Name Type Description
12VPowerSupplyEnabled Boolean Enables or disables the 12 V

pins on STS CX and STS DX sy
stems. The pins are disabled
by default at STS power up a
nd when a load board is not i
nstalled or locked down on t
he STS, such as when the val
ue of the DIBPresent prop
erty is False. These signals
are available on the system c
able for STS CX systems and

© National Instruments 533

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/seqfilewin_variables_view.htm

on the P143 system block for
STS DX systems.

48VPowerSupplyEnabled Boolean Enables or disables the 48 V
pins on STS CX and STS DX sy
stems. The pins are disabled
by default at STS power up a
nd when a load board is not i
nstalled or locked down on t
he STS, such as when the val
ue of the DIBPresent prop
erty is False. These signals
are available on the system c
able for STS CX systems and
on the P143 system block for
STS DX systems.

Inline QA Test Block Step (TSM)

Use the Inline QA Test Block step to insert in the MainSequence sequence of the
test program main sequence file a block of Inline QA Test Block and End steps, in
which you can insert additional steps that call code modules that perform the inline
QA tests. The steps within the block execute only when all of the following
conditions are true:

■ The StationSettings.Standard.InlineQAEnabled Boolean property is True.
■ The Step.ConditionExpr property of the Inline QA Test Block step
specifies an expression that evaluates to True.
■ The next inline QA state, which is the next Boolean value removed from the
TSM queue of inline QA states, is True.

Notes
■ If multiple inline QA test blocks exist in
the sequence, only the first one that
executes dequeues the inline QA state for
the DUT. Subsequent inline QA test blocks
use the inline QA state that the first inline
QA test block dequeued.
■ The default expression for the Step.C
onditionExpr property evaluates to T

ni.com534

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/flow_control_step_types_end.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_expressions.html

rue when the MainSequence sequence
has not yet encountered a sequence
failure. You can modify the expression the
Step.ConditionExpr property
specifies to customize the condition for
which the inline QA test block executes.
■ You can place multiple Inline QA Test
Block step type instances at any location
in any test sequence, but NI recommends
that you place only a single instance after
all standard test steps in the MainSeque
nce sequence of the test program main
sequence file.

Set and Lock Bin Step (TSM)

Use the Set and Lock Bin step to use an expression to assign a software bin to a DUT
and override the TSM automatic bin assignment.

Use the Bin Expression control on the Set and Lock Bin tab to specify an
expression that evaluates at run time to a valid software bin number defined in the
bin definitions file. The step assigns the software bin to the DUT and locks the bin.
Once the bin is locked, subsequent failing tests on Semiconductor Multi Test steps
report a run-time error.

Note The Set and Lock Bin step assigns the
software bin to the DUT regardless of whether
the test program previously assigned a different
software bin to the DUT. An instance of the Set
and Lock Bin step can override a bin assigned
by a previous Set and Lock Bin step. Therefore,
NI recommends that you use a Set and Lock Bin
step only after all tests have executed.

You can use the Set and Lock Bin step to implement grading in a test program.

Set and Lock Bin Tab (TSM)
The Set and Lock Bin tab contains the following options:

© National Instruments 535

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/bldgblocks_expressions.html

■ Bin Expression—An expression that evaluates at run time to a valid
software bin number defined in the bin definitions file associated with the test
program. You can use the drop-down menu to select a software bin defined in
the bin definitions file.

See Also
Binning DUTs Based on Test Results

Grading Passed DUTs

Load Correlation Offsets Step (TSM)

Use the Load Correlation Offsets step only in the ProcessSetup sequence to load
and apply correlation offset values to test results on a per-site basis. The step
applies correlation offset values at run time before evaluating the test result data
against limits. The step stores the offset value to apply in the Step.Result.Eval
uations[index].NumericLimit.CorrelationOffset property on
Semiconductor Multi Test steps. The Semiconductor Multi Test step adds the
correlation offset to the test result data before evaluating against limits. The Debug
Test Results Log and CSV Test Results Log include the correlation offset values. The
STDF Log includes the correlation offsets file path as a DTR with an NIDTR: prefix
to record the path of the correlation offsets file in a <CorrelationOffsetsFil
ePath> XML tag. For example, if you specify C:\Data\TestPrograms\mypath
.txt in the Correlation Offsets File Path option of the Load Correlation Offsets
step edit tab, the STDF Log includes the following information:

NIDTR:<CorrelationOffsetsFilePath>C:\Data\TestPrograms\myp
ath.txt</CorrelationOffsetsFilePath>
If the length of the text to add is more than 255 characters, TSM splits the text
among multiple DTRs, each with an NIDTR: prefix.

When this step is used to load a correlation offsets file, it stores the file path in the C
orrelationOffsetsFileAbsolutePath lot settings property. To access this
file path or determine whether correlation offsets have been loaded at runtime, use
the Get Test Information step to read the value of this property.

ni.com536

TestStand Semiconductor Module

Configuring the Step

Use the Load Correlation Offsets Step edit tab in the TestStand Sequence Editor to
specify the correlation offsets file to use.

Load Correlation Offsets Tab (TSM)
The Load Correlation Offsets tab contains the following options:

■ Correlation Offsets File Path—Path to the correlation offsets file to use.
TSM sets the CorrelationOffsetsFileAbsolutePath property at run time with
this value.
■ Specify by Expression—Enable this option to use an expression to specify
the path to the correlation offsets file to use.

Perform Part Average Testing Step (TSM)

Use the Perform Part Average Testing step to perform part average testing for any
tests that have part average testing enabled and have already executed for the
current DUT. Specify the Perform Part Average Testing step settings in the PAT
Algorithm Settings panel of the Test Program Editor. Tests performed by the Perform
Part Average Testing step will not be performed after the MainSequence sequence
of the test program executes.

The step sets the Result.Status property based on the result of the tests that it
performs.

Status Test Results
Done The step did not execute any tests.
Passed The step executed at least one test and all tests

passed.
Failed The step executed at least one test and at least

one test failed.
Error A run-time error occurred when executing the P

AT algorithm.

© National Instruments 537

TestStand Semiconductor Module

Configuring the Step

To enable the step, set the value of the PartAverageTestingAlgorithmDesc
ription.EnvironmentSettings.EnablePerformPartAverageTestin
gStep file global variable to True in the PAT callback sequence file. TSM reports a
run-time error if it executes a Perform Part Average Testing step and this step type is
not enabled.

You do not need to configure the Step Settings pane for the step to perform part
average tests. The step displays the test results under the Tests tab of the Step
Settings pane during program execution, after the step executes. Once the test
program finishes executing, the Tests tab is empty.

Configure Lot Settings Dialog Box (TSM)

Select Semiconductor Module»Configure Lot in the TestStand Sequence Editor,
click the Configure Lot button on the TSM toolbar, or click the Configure Lot
button in the default TSM operator interface to launch the Configure Lot Settings
dialog box, in which you can specify settings for the current lot under test.

Note If an active test configuration you select
for a test program contains any of the following
fields, TSM dims the field in this dialog box
because the test program obtains the value
from the test configuration at run time.

The Configure Lot Settings dialog box contains the following options:

■ Test Program Path—When the Test Program Directory option on the
General tab of the Configure Station Settings dialog box is empty, use this
option to browse to a file path. If you specify a value for the Test Program
Directory option, this control lists the sequence files in the directory you
specified.
■ Test Program Configuration—Specifies the test program configuration to
execute. This option is available only when you define configurations for a test
program.
■ Part Type—Populates the LotSettings.Standard.PartType
property, which specifies the PART_TYP field in an STDF MIR record.

ni.com538

TestStand Semiconductor Module

■ Lot ID—Populates the LotSettings.Standard.LotId property,
which specifies the LOT_ID field in an STDF MIR record.
■ Estimated Lot Size—Populates the LotSettings.Standard.LotSi
ze property, which an inline QA algorithm can use to determine for which
DUTs to enable inline QA.
■ Test Flow—Populates the LotSettings.Standard.TestFlowId
property, which specifies the FLOW_ID field in an STDF MIR record.
■ Test Temperature—Populates the LotSettings.Standard.TestTe
mperature property, which specifies the TST_TMP field in an STDF MIR
record.
■ Operator Name—Displays the value of the LotSettings.Standard.
OperatorName property, if it exists. If this property is blank, this field
displays the user name of the currently logged in user. TSM uses this value to
specify the OPER_NAM field in an STDF MIR record.
■ Enabled Sites—Populates the StationSettings.Standard.Avail
ableSiteNumbers property, which specifies which site numbers to use
when running a test program. TSM obtains the sites to display in this list from
the pin map for the test program or from the number of test sockets specified
in the Model Options dialog box if the test program does not use a pin map.
You must enable at least one site. If the test program uses the Sequential
process model, you can enable only one site.

See Also
Customizing the Behavior for Obtaining Lot Settings

Configure Built-in Simulated Handler Dialog Box (TSM)

The Configure Built-in Simulated Handler dialog box contains the following options:

■ Number of DUTs to Test—Specifies the number of DUTs to test before the
simulated handler driver notifies the tester to stop testing. When you start
testing by clicking the Start Lot button on the TSM toolbar, the simulated
handler driver stores an internal count of the number of DUTs that have
completed testing.

© National Instruments 539

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_model_options.htm
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/sequential.html

■ Simulated Index Time—Specifies the amount of time, in milliseconds, to
elapse before the simulated handler driver notifies the tester to begin the next
iteration of testing. When you start testing by clicking the Start Lot button on
the TSM toolbar, the simulated handler driver waits the specified simulated
index time from the end of the EndOfTest simulated handler driver entry point
before sending the start-of-test notification, which allows the StartOfTest
simulated handler driver entry point to begin the next iteration of testing.
When you execute a test using the Single Pass Execution entry point, the
simulated handler driver ignores any value specified in this control and
performs only a single test iteration.
■ Show Handler Dialogs—When you enable this option, the simulated
handler driver launches a dialog box when invoking the StartOfTest and
EndOfTest simulated handler driver entry points.

See Also
Configure Handler Driver Entry Point

Configure Station Settings Dialog Box (TSM)

Select Semiconductor Module»Configure Station in the TestStand Sequence
Editor, click the Configure Station button on the TSM toolbar, or click the
Configure Station button in the TSM operator interface to launch the Configure
Station Settings dialog box, in which you can specify settings for the current test
station.

The Configure Station Settings dialog box contains the following tabs:

■ General—Configures settings for the handler/prober mode, Inline QA, and
step failure mode.
■ Advanced—Contains buttons to launch the Result Processing, Station
Options, Edit Search Directories, and LabVIEW Adapter Configuration dialog
boxes.

ni.com540

TestStand Semiconductor Module

See Also
Customizing the Behavior for Obtaining Station Settings

Configure Station Settings Dialog Box (TSM)
Advanced Tab

The Advanced tab contains the following options:

■ Result Processing—Launches the Result Processing dialog box, in which
you specify and configure the result processors to execute during test
program execution.
■ Station Options—Launches the Station Options dialog box, in which you
configure advanced options for the test station.
■ Search Directories—Launches the Edit Search Directories dialog box, in
which you configure the search directories to use to find files during
execution.
■ LabVIEW Adapter—Launches the LabVIEW Adapter Configuration dialog
box, in which you specify options for calling LabVIEW code. Select the
Development System option for debugging. Select the LabVIEW Run-
Time Engine option for execution.

See Also
Configure Station Settings dialog box

Configure Station Settings Dialog Box (TSM)
General Tab

The General tab contains the following options:

■ Enable Handler/Prober Driver (Real or Simulated)—Specifies
handler/prober options.

© National Instruments 541

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_result_processing.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_station_opt.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_search_dir.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_lvadapterconfig.htm

■ Handler/Prober Driver—Specifies the handler/prober driver to use. The
drop-down menu lists the Built-in Simulated Handler Driver first and any
other installed drivers in alphabetical order. Select the Built-in Simulated
Handler Driver option to use the NI Built-in Simulated Handler Driver to
simulate handler functions when you do not have access to a real handler.
■ Configure Handler/Prober—Launches a dialog box, which you use to
specify handler options.

■ Enable Inline QA—Specifies whether to enable inline QA. When you
enable this option, specify a sequence file to determine the frequency of inline
QA in the Inline QA Algorithm control. The drop-down menu displays only
algorithms located in the <TestStand Public>\Components\Module
s\NI_SemiconductorModule\InlineQA directory.
■ Test Program Directory—(Optional) Limits the selection of the test
program to the directory you specify.
■ Step Failure Mode—Specifies how the test program continues after a
failure occurs. This option mimics the functionality of the Immediately Goto
Cleanup On Sequence Failure option on the Execution tab of the Station
Options dialog box.

■ Continue on Step Failure—Specifies to continue testing after a failure
occurs.
■ Goto Cleanup on Step Failure—Specifies to stop testing after a failure
occurs.

■ Site Status Part Count—Specifies the number of part test results tracked
per site. The site status indicators in the operator interface display the results
of the last n parts, where this option specifies n.

See Also
Configure Station Settings dialog box

ni.com542

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_station_opt_exe_tab.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_station_opt.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/db_station_opt.htm

Create Test Program from Digital Pattern Project Dialog Box (TSM)

Select Semiconductor Module»Create Test Program from Digital Pattern
Project to launch the Create Test Program from Digital Pattern Project dialog box.
Use this dialog box to create a basic test program with a structure for initializing
sessions for NI-Digital and NI-DCPower instruments and bursting the patterns
defined in the digital pattern project. Use this basic test program as a starting point
to build a more comprehensive test program.

The Create Test Program from Digital Pattern Project dialog box contains the
following options:

■ Source Digital Pattern Project File Path—Specifies the digital pattern
project file from which you want to create a test program.
■ Target Test Program Directory Path—Specifies the directory in which
you want to create the test program from the digital pattern project.
■ Errors and warnings (optional output)—Displays errors and warnings.
You must resolve errors before you can create the test program.

The generated test program for a digital pattern project consists of the following
components:

■ Sequence File—Implements the test program for the digital pattern
project. The test program defines the three sequences described below. For
each sequence, replace the placeholder labels with an implementation from
your measurement library or a step template provided by another add-on.

■ ProcessSetup—Use this sequence to initialize sessions for NI-Digital and
NI-DCPower instruments defined in the active pin map file of the digital
pattern project. Sessions for NI-Digital should use the active pin levels sheet
and the active timing sheet of the digital pattern project.
■ MainSequence—Use this sequence to burst the patterns defined in the
digital pattern project and optionally capture waveforms.
■ ProcessCleanup—Use this sequence to close sessions for NI-Digital and
NI-DCPower instruments defined in the active pin map file of the digital
pattern project.

© National Instruments 543

TestStand Semiconductor Module

■ Supporting Materials—Contains the following files and subdirectories:

■ A copy of the source digital pattern project file
■ Bin Definitions—Contains the default bin definitions.
■ Pin Maps—Contains copies of pin map files from the source digital
pattern project.
■ Specifications—Contains specification files.
■ Digital—Contains copies of data files for digital tests from the source
digital pattern project, including the following files:

■ Pattern files
■ Timing files
■ Levels files
■ Source and capture waveform files

■ Offline Mode Configurations—Defines an Offline Mode System
Configuration that includes the NI-Digital and NI-DCPower instruments in
the pin map file. Use this file to simulate the instruments needed by the test
program in Offline Mode.
Ensure instruments in the pin map file follow the recommended instrument
naming convention for semiconductor test programs:

InstrumentType_ModelNumber_PXIChassisLocation_SlotLocation, for
example, HSD_657x_C2_S03, where InstrumentType is an ASCII
description of the instrument, ModelNumber is the model number as
defined on ni.com, PXIChassisLocation uses a single digit to identify
the PXI chassis (Cx), and SlotLocation uses double digits to identify the
slot location (Sxx).

To find the digital pattern project for the test program, select Semiconductor
Module»Edit Test Program... then select Digital Pattern Project.

ni.com544

TestStand Semiconductor Module

CSV Test Results Log Options Dialog Box (TSM)

Enable and configure the TSM result processing plug-ins to launch the CSV Test
Results Log Options dialog box, in which you can specify settings for the CSV Test
Results Log.

The CSV Test Results Log Options dialog box contains the following options:

■ CSV Log Destination Directory—Absolute path of the directory in which
you want TSM to create the CSV data log file. Leave the control blank if you
want TSM to create the CSV data log file in the same directory as the test
program main sequence file. During testing, the CSV Test Results Log result
processor writes data to a temporary file with an extension of .csvtemp in
this directory at the end of each batch. When the file completes, the CSV Test
Results Log result processor renames the file to the final report filename you
specify.
■ Generate One File per Wafer—Specifies to create a separate CSV log file
for each tested wafer. This option has no effect when testing without a wafer
probe. Each new log file resets the batch number to 1.
■ Log Wafer Data—Specifies to create columns in the CSV log file for the
following data:

■ Wafer ID
■ Die X Coordinate
■ Die Y Coordinate

■ Log Code Module Execution Time—Specifies to create a column in the
CSV log file for the code module execution time for each test.
■ Limit Number of Test Data Records—Specifies to limit the number of
individual part test records in the CSV log file to one of out every N DUTs you
specify per site. When you enable the Generate One File per Wafer option,
this option applies to each CSV file independently and not to the entire lot.
Each wafer CSV file includes test records for one out of every N DUTs per site.

© National Instruments 545

TestStand Semiconductor Module

End of Test Dialog Box (TSM)

The NI Built-in Simulated Handler Driver launches the End of Test dialog box to
display hardware and software bin information during the EndOfTest entry point
when you enable the Show Handler Dialogs option on the Configure Built-in
Simulated Handler Driver dialog box and you use the Batch or Sequential process
model.

The End of Test dialog box contains the following elements:

■ Site Bins—Displays the hardware and software bins that correspond to the
DUT tested at each site on a per-test basis.
■ Bin Totals—Displays the total number of DUTs per hardware and software
bin on a per-lot basis.
■ Show/Hide Details—Shows or hides the Bin Totals table.
■ Do not show this dialog again for this lot—Enable this option to hide
the dialog box for the remainder of lot testing.

See Also
NI Built-in Simulated Handler Driver

Log Browser Window

Click the Log Browser button near the upper right corner of the Test Program
Performance Analyzer to open the Log Browser window, which you can use to view
or compare multiple log files that represent different modifications of a test
program.

Complete the following steps to view or compare log files.

1. In the Log Directory path control, select the top-level directory that contains
the log files you want to view to compare. The column on the left displays
relative subdirectories.

2. Complete the following steps to view file(s) in Single Data Set mode or
Compare Data Sets mode.

ni.com546

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/sequential.html

a. Single Data Set – Double-click the row of the file you want to load. The
background row color turns blue.

b. Compare Data Sets – Right-click the row of the base log file you want
to load and chose Select Base Log File from the context menu. The
background row color of the base log file you selected turns gray. Right-
click the row of the modified log file you want to load and chose Select
Modified Log File from the context menu. The background row color
of the modified log file you selected turns blue.

Lot Statistics Viewer (TSM)

Select Semiconductor Module»Show Lot Statistics Viewer or click the Show
Lot Statistics Viewer button on the TSM toolbar to launch the Lot Statistics Viewer
window, in which you can view lot statistics, including per-site bin counts, while
running or debugging a sequence in the sequence editor. You can also control test
program execution in the Lot Statistics Viewer.

The Lot Statistics Viewer displays a new tab for each test program sequence file you
execute. The tab includes a table of the software bin statistics for each site and
highlights the cell for each updated DUT result. When execution completes, the
table dims. Click the expand/collapse button to the left of the software bin name to
collapse the view to show only the total part count or to expand the view to show
part counts for each software bin.

When you use the AvailableSiteNumbers property on the
NI_SemiconductorModule_StationSettings data type to specify which site numbers
from a pin map for a test program to use when running the test program, the Lot
Statistics Viewer displays only the sites you specify.

The Lot Statistics Viewer window includes the following options:

■ Configuration—Configures the lot with the selected configuration for the
test program that corresponds to the active sequence file. This control is
disabled if the active sequence file has no configurations.
■ Single Test—Starts a lot and tests a single DUT for each site for the active
sequence file if no lot is active and pauses when complete or, if paused, tests a
single DUT for each site before pausing again.

© National Instruments 547

TestStand Semiconductor Module

■ Start/Resume Lot—Starts testing a new lot, resumes a suspended
sequence execution at a breakpoint, or resumes a sequence execution that is
paused between DUTs.
■ Pause—Pauses testing of the lot. Testing pauses between DUTs after
completing the tests for the current DUTs on each site and before TSM sends
the end-of-test (EOT) signal to the handler or prober.
■ Retest—After a single test completes or when you pause a lot, retests a
single DUT for each site for the active sequence file and then pauses
execution. The lot statistics update to include only the results from the last
retest for a given DUT.
■ End Lot—Ends testing the current lot. Click this button instead of selecting
the Debug»Terminate All menu item to safely end a lot.
■ Hide Empty Bins—Removes the empty bins from the display. This option
is enabled by default.

Lot Summary Options Dialog Box (TSM)

Enable and configure the TSM result processing plug-ins to launch the Lot Summary
Options dialog box, in which you can specify settings for the STDF Log file.

The Lot Summary Options dialog box contains the following options:

■ Lot Summary Report Destination Directory—Absolute path of the
directory in which you want TSM to create the report file. Leave the control
blank if you want TSM to create the report file in the same directory as the test
program main sequence file.
■ Generate One File per Wafer—Specifies to create a separate Lot
Summary Report file for each tested wafer. This option has no effect when
testing without a wafer probe.

Viewing TSM Data at Runtime

Use the TSM Runtime Data Viewer to see test results and debug issues at runtime.

1. To start logging, open the Runtime Data Viewer from Semiconductor
Module»Show Runtime Data Viewer.

ni.com548

TestStand Semiconductor Module

2. Click between the following tabs to see your data in different formats.

■ High Level Grid– Each row represents a test and each column represents
a part. TSM adds new parts on the left as they are tested.
TSM shows the test result value for numeric tests and a blank cell for pass /
fail tests. For each result, a green colored cell indicates a passed test while a
red colored cell indicates a failed test.

■ Verbose View– TSM shows each test on each part in the order that they
are executed.

3. (Optional) Filter the data you see. Refer to Filtering Runtime Data in the
High Level Grid and Filtering Data in the Verbose View for more
information.

4. (Optional) To copy the filtered data, click Copy filtered list to clipboard
.

5. (Optional) To clear all results, click Clear all test results . TSM will also
clear all results when starting a new lot.

6. To stop logging, close the Runtime Data Viewer.

Filtering Runtime Data in the High Level Grid

Filter the data you see in the High Level Grid tab of the Runtime Data Viewer.

In the Filter for field, specify the category you want to filter on and the value you
want to filter for. Use the syntax, category:value, when creating a filter.
Separate multiple filter requirements with a comma. For example, site:0, test
#:100-102, partId:1.

Use the following categories to filter your data.

■ site
■ test#
■ batch
■ partId
■ step or stepName
■ test or testName

© National Instruments 549

TestStand Semiconductor Module

■ status
■ X or dieCoordinateX
■ Y or dieCoordinateY

Filtering Data in the Verbose View

Filter the data you see in the Verbose View tab of the Runtime Data Viewer.

To filter, click the filter button on any column and specify the value you want to filter
for.

To reveal or hide a column, click Select columns and rows to view and
enable or disable the columns. You can also limit the number of results to the last N
batches.

Semiconductor Module Run-Time Error Dialog Box

The Semiconductor Module Run-Time Error dialog box launches when a run-time
error occurs in an execution that uses a process model if TSM is enabled. The dialog
box contains a description of the error and the step, sequence, and sequence file
where the error occurred. The dialog box includes an error code only for TestStand
errors unrelated to TSM. Use the More Options and Fewer Options buttons to
show or hide the controls that specify how to handle the run-time error.

The Semiconductor Module Run-Time Error dialog box contains the following run-
time error handling options:

■ End lot after running cleanup—Execution proceeds to the Cleanup step
group for the sequence, and lot testing ends.
■ Run cleanup and continue testing—Execution proceeds to the Cleanup
step group for the sequence, and lot testing continues with the next DUT.
■ Retry—TestStand executes the step again.
■ Ignore—TestStand does not set the status of the sequence to Error.
Instead, TestStand sets the Error.Occurred property of the step to Fals
e, and execution continues normally with the next step in the sequence. The R
esult.Status property of the step remains set to Error.

ni.com550

TestStand Semiconductor Module

■ Abort immediately—TestStand stops execution immediately without
running any Cleanup steps.

The text on the following buttons change depending on the option you select for
handling the run-time error:

■ Break, Then Option—TestStand suspends execution at the step that
caused the run-time error. If you resume the execution after closing the dialog
box, TestStand performs the actions for the selected run-time error handling
option as described above. This button is hidden when you select the Abort
immediately option.
■ Option—TestStand performs the actions for the selected run-time error
handling option as described above.

The Semiconductor Module Run-Time Error dialog box also provides the following
options that change how TestStand handles subsequent run-time errors:

■ Do this for all Run-Time Errors in this Execution—Performs the
selected run-time error handling option for any run-time errors that occur
later in the execution without displaying the Semiconductor Module Run-Time
Error dialog box.
■ Do this for all Run-Time Errors in this Batch—Performs the selected
run-time error handling option for any run-time errors that occur later in any
execution that is associated with the current batch without displaying the
Semiconductor Module Run-Time Error dialog box. This option is available
only when you use the Batch process model.

Start of Test Dialog Box (TSM)

The NI Built-in Simulated Handler Driver launches the Start of Test dialog box during
the StartOfTest entry point when you enable the Show Handler Dialogs option on
the Configure Built-in Simulated Handler Driver dialog box and you use the Batch or
Sequential process model. The Start of Test dialog box displays information about
the number of DUTs tested, the number of DUTs left to test, and the active sites.

© National Instruments 551

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/sequential.html

When using the Batch process model, use the checkboxes to enable or disable sites.
Enable the Do not show this dialog again for this lot option to hide the dialog
box for the remainder of lot testing.

See Also
NI Built-in Simulated Handler Driver

STDF Log Options Dialog Box (TSM)

Enable and configure the TSM result processing plug-ins to launch the STDF Log
Options dialog box, in which you can specify settings for the STDF Log file.

The STDF Log Options dialog box contains the following options:

■ STDF Log Destination Directory—Absolute path of the directory in
which you want TSM to create the data log file. Leave the control blank if you
want TSM to create the data log file in the same directory as the test program
main sequence file. During testing, the STDF Log result processor writes data
to a temporary file with an extension of .stdtemp in this directory at the end
of each batch. When the file completes, the STDF Log result processor
renames the file to the final report filename you specify.
■ Generate One File per Wafer—Specifies to create a separate STDF log file
for each tested wafer. This option has no effect when testing without a wafer
probe.
■ Limit Number of Test Data Records—Specifies to limit the number of
individual part test records in the STDF log to one of out every N DUTs you
specify per site. Individual test records include PTR, FTR, and DTR. The
summary test result records include the test result records of the parts for
which you omitted individual test records. When you enable the Generate One
File per Wafer option, this option applies to each STDF file independently and
not to the entire lot. Each wafer STDF file includes test records for one out of
every N DUTs per site.

ni.com552

TestStand Semiconductor Module

Test Program Performance Measurement Configuration Dialog Box (TSM)

Select Semiconductor Module»Measure Performance of <filename> in the
TestStand Sequence Editor to launch the Test Program Performance Measurement
Configuration dialog box, in which you can specify settings for measuring test
program performance. The changes you make persist in the dialog box.

The Test Program Performance Measurement Configuration dialog box contains the
following options:

■ Test Program—Displays the test program on which to measure
performance.
■ Process Model—Displays the process model the test program uses.
■ Operator Interface Path—By default, specifies the absolute path to the
default LabVIEW operator interface TSM installs. Use the browse button to
navigate to a custom operator interface to use instead of the default TSM
LabVIEW operator interface or paste the path to the executable into the
control. This control cannot be empty.
■ Output File Directory—Specifies the directory in which to write the log
files. Use the browse button to navigate to a custom output directory or paste
the path to the directory into the control. The path must be an absolute path.
■ Number of Parts Per Site—Specifies the number of parts to run on each
site.
■ Site Configurations—Each row corresponds to a lot and contains a
comma-separated list of integers or integer ranges that specifies the sites the
lot contains, for example: 0, 1, 2-7. The sites must exist in the pin map. Use the
Add Site Configuration and Delete Site Configuration buttons to add
and delete rows. TSM ignores empty rows at run time.

Note If you are using the Sequential
process model, Site Configurations
displays a single configuration that contains
a single site (0). If you switch back to using
the Batch process model,
Site Configurations displays the previous
set of configurations.

© National Instruments 553

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/sequential.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/batch.html

■ Configure Lot Settings—Launches the Configure Lot Settings dialog box.
If you have not configured lot settings for the active test program, TSM
disables the OK button and displays a warning to prompt you to configure the
lot settings.

Click the expand/collapse button to view or hide the Advanced section of the
dialog box, which includes the following option that configures the testing
environment to simulate a production environment:

■ Operator Interface Command Line—The default command line is /NoC
ompatibilityIssuesDialog /run "Measure Test Program Pe
rformance" "<TestStand>\Components\Modules\NI_Semicond
uctorModule\NI_SemiconductorModule_PerformanceMeasurem
ent.seq" /quit, which configures the execution environment. If you use
a custom sequence file instead of the default NI_SemiconductorModule
_PerformanceMeasurement.seq file to configure the environment for
performance testing, modify the command line to call the custom sequence
file.

Note If you use an operator interface with a
custom command-line parser, modify the
command-line arguments to ensure that the
operator interface calls the Measure Test
Program Performance sequence of the
NI_SemiconductorModule_ Perform
anceMeasurement.seq file located in
the <TestStand>\Components\Modul
es\NI_SemiconductorModule
directory.

■ Reset to Default—Reverts the value of the Operator Interface
Command Line option to use the default command-line value.
■ Allow execution with LabVIEW Development Environment Adapter
—By default, when you select the LabVIEW Development Environment
adapter in TestStand, the adapter temporarily switches to use the LabVIEW
Run-Time Engine to simulate production performance. Enabling this option
disables the switch to the LabVIEW Run-Time Engine, allowing performance
measurement with the LabVIEW Development Environment adapter. This

ni.com554

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/directories.html

increases test time. This option is disabled if the LabVIEW adapter is already
set to use the LabVIEW Run-Time Engine.

Note Changing any option under
Advanced causes the section to remain
expanded until the next time the dialog box
is opened.

Debug Test Results Log Options Dialog Box (TSM)

Enable and configure the TSM result processing plug-ins to launch the Debug Test
Results Log Options dialog box, in which you can specify settings for the Debug Test
Results Log.

The Debug Test Results Log Options dialog box contains the following options:

■ Debug Test Results Log Destination Directory—Absolute path of the
directory in which you want TSM to create the data log file. Leave the control
blank if you want TSM to create the data log file in the same directory as the
test program main sequence file.
■ Report Orientation—Specifies the orientation of the Debug Test Results
Log. The default is portrait orientation. Landscape orientation uses wider
columns for tests with long test numbers or test names. Landscape
orientation does not maintain report column alignment when test names
exceed 101 characters.
■ Log Results Only for DUT Failures—Includes results in the Debug Test
Results Log only if the DUT fails testing, as determined by the bin assignment
for the DUT. If a DUT passes testing, TSM does not update the Debug Test
Results Log.
■ Limit Number of Results Displayed in Report View—Limits the
number of results to display in the report views in the TSM Operator Interface
and TestStand Sequence Editor to the number of DUTs you specify.

TSM Application API
The TSM Application API is a component that simplifies custom operator interfaces,
custom test reports and logs, and other applications for controlling or monitoring a
test system. The ConfigureLotSettings and ConfigureStationSettings callback

© National Instruments 555

TestStand Semiconductor Module

sequences also use the TSM Application API to obtain information about the test
system.

Using the TSM Application API in LabVIEW Applications

TSM does not provide a full set of VIs for every TSM Application API method and
property. You can access the TSM Application API COM server using the LabVIEW
ActiveX Invoke and Property nodes to access the methods and properties. The
Application Development palette in LabVIEW includes a set of wrapper VIs that use
the TSM Application API COM server for some functionality. To access the wrapper
VIs, add the SemiconductorModuleManager.mnu palette from the <LabVIEW
>\vi.lib\NI_TestStand_SemiconductorModule\NI_TestStand_Sem
iconductor_Module.lvlibp project library to the palette in LabVIEW. Refer to
the LabVIEW Help for more information about customizing palettes. In LabVIEW,
select Help»LabVIEW Help to launch the LabVIEW Help.

Using the TSM Application API in .NET Applications

Use the TSM Application API .NET class library to access the TSM Application API.
Add a reference to the <TestStand>\API\DotNET\Assemblies\CurrentV
ersion\NationalInstruments.TestStand.SemiconductorModule.A
pplicationAPI.dll assembly to your Visual Studio project.

See Also
Creating the Semiconductor Module Manager Object

Programming with TSM APIs in C#

Using the Semiconductor Module Manager Object

Creating or Obtaining the Semiconductor Module Manager Object

Applications that use the TSM Application API must first create or obtain an instance
of the Semiconductor Module Manager object, which implements most of the
methods in the TSM Application API.

For applications that control a test system, such as an operator interface, you must
create a new Semiconductor Module Manager object. For custom reports, callbacks

ni.com556

TestStand Semiconductor Module

used to set lot of station settings, and other programs for monitoring a test system,
you must obtain the existing Semiconductor Module Manager object that the
TestStand Sequence Editor or an operator interface created.

Creating an Instance of the Semiconductor Module Manager

Before you create the Semiconductor Module Manager object, you must first create
a TestStand Application Manager control and a SequenceFileView Manager control
in the TestStand user interface.

To create the Semiconductor Module Manager object in LabVIEW, use the Create
Semiconductor Module Manager VI. To create the object in .NET, call the NewSemic
onductorModuleManager static method on the SemiconductorModuleMan
agerFactory class.

Obtaining an Existing Instance of the Semiconductor Module Manager

To obtain the existing Semiconductor Module Manager object in LabVIEW, use the
Get Semiconductor Module Manager VI. To obtain the existing object in .NET, call the
GetSemiconductorModuleManager static method on the SemiconductorM
oduleManagerFactory class.

See Also
Using the Semiconductor Module Manager Object

Using the Semiconductor Module Manager Object

To control the test system programmatically, call methods directly on the
Semiconductor Module Manager object, such as StartLot, PauseLot, and EndLot.

Controlling Test Systems Using Buttons on Operator Interfaces

Complete the following tasks to use the Command objects to control the test system
using buttons on an operator interface.

© National Instruments 557

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/application_manager.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/sequencefileview_manager.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/uis.html

■ Get a specific Command object that corresponds to the action for the
button on the operator interface, such as StartLot or EndLot, by calling the Ge
tCommand method on the Semiconductor Module Manager object.
■ Use the properties on the Command object to determine the text to display
and the enabled state of the button.
■ Use the events on the Command object to determine when to update the
text or enabled state of the button.
■ Use the Execute method on the Command object to initiate the action.

Monitoring the State of the Test System

Complete the following tasks to use an Observer object to monitor the state of the
test system.

■ Create an Observer object by calling the CreateObserver method on the
Semiconductor Module Manager object.
■ Use the events on the Observer object to determine when changes to test
system state occur.
■ Use the TestingState property on the Semiconductor Module Manager
object to determine the current state of the test system.
■ Use the TesterStatus property on the Semiconductor Module Manager
object to get a description of the current state of the test system.

Obtaining Test Statistics

Complete the following tasks to use the Lot Statistics object to obtain test statistics
for individual test sites or for all test sites. The statistics are available for the entire
lot or for the current wafer in the lot.

■ Get the Lot Statistics object for an individual test site by calling the GetSit
eLotStatistics or GetWaferSiteLotStatistics methods on the
Semiconductor Module Manager object.
■ Get the Lot Statistics object for all test sites by accessing the AllSiteLotS
tatistics or WaferAllSiteLotStatistics properties on the
Semiconductor Module Manager object.

ni.com558

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsmapplicationapi/interface_national_instruments_1_1_test_stand_1_1_semiconductor_module_1_1_i_semiconductor_module_manager.html
https://www.ni.com/docs/csh?topicname=tsmapplicationapi/interface_national_instruments_1_1_test_stand_1_1_semiconductor_module_1_1_i_semiconductor_module_manager.html

■ Use the properties and methods on the Lot Statistics object to get the
following types of information:

■ Number of passing and failing parts
■ Number of parts in each software bin and hardware bin
■ Average socket time
■ Average cycle time

Obtaining Information about the Test Execution

Complete the following tasks to use the Site Runtime Data, Batch Runtime Data, or
Wafer Runtime Data objects to obtain run-time data for individual test sites for the
current batch of parts on each test site or for the current wafer.

Note Some of the run-time data properties
have valid values only at particular points
during execution. Refer to the documentation of
the property to determine when to access a
property.

■ In LabVIEW, use the Get Site Runtime Data VI to obtain the run-time data for
an individual site. In .NET, call the GetSiteRuntimeData method on the
Semiconductor Module Manager object and index into the array using the site
number.
■ Unbundle the Site Runtime Data cluster in LabVIEW or use the .NET
properties and methods on the SiteRuntimeData object to obtain the
following types of information about the site:

■ Start and end test times
■ Whether it is currently retesting or will retest the current part
■ Information about the current part
■ Wafer die coordinates
■ Hardware and software bin information the part will be assigned

■ In LabVIEW, use the Get Batch Runtime Data VI to obtain run-time data for
the current batch. In .NET, access the BatchRuntimeData property on the
Semiconductor Module Manager object.

© National Instruments 559

TestStand Semiconductor Module

■ Unbundle the Batch Runtime Data cluster in LabVIEW or use the .NET
properties and methods on the BatchRuntimeData object to obtain the
following types of information about the batch:

■ Start and end test times
■ Whether it is currently resting or will retest the current part
■ Whether this is the first or last batch in a wafer
■ The wafer run-time data

■ Obtain the run-time data for the current wafer by calling the Get Wafer
Runtime Data VI or by accessing the WaferRuntimeData property of the Ba
tchRuntimeData .NET property.
■ Use the values of the output terminals on the Get Wafer Runtime Data VI or
use the .NET properties and methods of the WaferRuntimeData object to
obtain the wafer ID and other information about the wafer.

See Also
Creating or Obtaining the Semiconductor Module Manager Object

Structure of the MainSequenceResult PropertyObject (TSM)

Use the MainSequenceResult parameter in the Model Plugin – UUT Done entry point
in a custom model plug-in to obtain the test results for a part. The
MainSequenceResult is a TestStand PropertyObject container that contains the
test results for the MainSequence sequence in the test program. Use the
TestStand core API to access individual test results.

The MainSequenceResult includes the following properties:

Name Type Description
Status String Status of the MainSequence

sequence. Possible values are P
assed, Failed, Terminate
d, and Error.

Error Error (Container) Contains error code and messa
ge if an error occurred.

ni.com560

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpentrypointparameters.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpuutdoneep.html
https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpcreatingplugins.html
https://www.ni.com/docs/csh?topicname=tsapiref/infotopics/teststand_api.html

TS.StartTime Number Time that execution of the sequ
ence began, in seconds, since t
he TestStand Engine started. Yo
u can add this value to Engine
.SecondsAtStartIn1970U
niversalCoordinatedTim
e to convert to a universal time
base.

TS.TotalTime Number Time in seconds to execute the
MainSequence sequence.

TS.SequenceCall Container This property has the following
subproperties:

Subprope
rty

Type Descriptio
n

Sequenc
eFile

String Absolute
path of th
e test pro
gram seq
uence file
.

Sequenc
eFileVersi
on

String Version o
f the test
program
sequence
file.

Status String Do not us
e this pro
perty bec
ause it do
es not ref
lect error
s if they o
ccur.

ResultLis
t

Array of R
esults

Individua
l step res
ults the t
est progr
am gener

© National Instruments 561

TestStand Semiconductor Module

ates. Eac
h item is
a Resul
t contain
er, which
includes
a set of p
roperties
common
to all res
ults and a
set of pro
perties s
pecific to
the type
of step th
at produc
ed the re
sult.

The following table includes commonly used properties in Result containers.

Name Type Description
Error Error (Container) Contains error code and messa

ge if an error occurred.
Status String Status of the step. Possible valu

es are Passed, Failed, Done
, Skipped, Terminated, and
Error. A status of Skipped in
dicates that the step did not exe
cute.

TS.StartTime Number Time that the step started exec
uting, in seconds, since the Test
Stand Engine started.

TS.TotalTime Number Time in seconds to execute the
step.

TS.Index Number Index of the step in the step gro
up of the sequence.

TS.StepName Number Name of the step.

ni.com562

TestStand Semiconductor Module

TS.StepGroup String Name of the step group. Possibl
e values are Setup, Main, and
Cleanup.

TS.StepId Number Unique ID of the step.
TS.StepType String Name of the step type. Use this

property to determine what typ
e of step the result belongs to. I
f this string has the value NI_S
emiconductorModule_Mul
tiTest, the Result containe
r includes an Evaluations prope
rty, as described below.

AdditionalResults Array of Container This property exists only if the s
tep contains a list of additional
results on the Additional Result
s Panel. Each item in the array c
orresponds to a row in the table
in the panel.

SemiconductorCommon.Sites String This property exists only on res
ults of Semiconductor Multi Tes
t steps and Semiconductor Acti
on steps. This string stores a co
mma-separated list of sites test
ed in the current thread, as sho
wn in the Multisite Execution Di
agram of the step.

SemiconductorCommon.Raise
dAlarms

String This property exists only on res
ults of Semiconductor Multi Tes
t steps and Semiconductor Acti
on steps. This string stores a co
mma-separated list of alarms t
hat were raised by the step.

Evaluations Array of NI_Semiconductor
Module_Evaluation

This property exists only on res
ults of Semiconductor Multi Tes
t steps. Each evaluation item co
ntains the result of evaluating t
est limits on a test listed on the
Tests tab of the Semiconductor
Multi Test step. To reduce mem
ory requirements, not all Semic

© National Instruments 563

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_step_settings_additional_results.htm
https://www.ni.com/docs/csh?topicname=tsref/infotopics/pane_step_settings_additional_results.htm

onductor Multi Test step proper
ties exist in the result list.

TS.SequenceCall Container This property exists only on res
ults of Sequence Call steps and
contains the results from steps i
n the called sequence. This pro
perty has the following subprop
erties:

Subprope
rty

Type Descriptio
n

Sequenc
eFile

String Absolute
path of th
e sequen
ce file tha
t contain
s the call
ed seque
nce.

Sequenc
eFileVersi
on

String Version o
f the seq
uence file
that cont
ains the c
alled seq
uence.

Sequenc
e

String Name of t
he called
sequence
.

Status String The statu
s of the s
equence
call step.

No
te
 If a
n er
ror

ni.com564

TestStand Semiconductor Module

occ
urs
in t
he c
alle
d se
que
nce
this
pro
per
ty is
not
set
to E
rr
or.

See Also
TestStand Standard Result Properties

TestStand Semiconductor Module Application .NET API

April 2022, 375355J-01

This help file contains detailed information about the TestStand Semiconductor
Module™ (TSM) Application .NET API.

Note If you open help files directly from the <T
estStand>/Doc/Help directory, NI
recommends that you open TSHelp.chm first
because this file is a collection of all the
TestStand help files and provides a complete
table of contents and index.

To navigate this help file, use the Contents, Index, and Search tabs to the left of
this window.

© 2015–2022 National Instruments Corporation. All rights reserved.

© National Instruments 565

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/standard_result_props.html
https://www.ni.com/docs/csh?topicname=tsmapplicationapi/annotated.html
javascript:tsfundlink('/infotopics/directories.html')
javascript:tsfundlink('/infotopics/directories.html')

Glossary (TSM)

A
active site Site that is currently testing DUTs and not

disabled.

B
batch A set of DUTs you test simultaneously.
bin definitions file Defines the hardware bins and software bins,

defines how the software bins relate to
hardware bins, and defines the default software
bins for the test program main sequence file.

binning Process of assigning a software bin and
hardware bin to a tested DUT.

C
channel Connection to a data acquisition system or to an

instrument.
channel group A synchronized group of channels.
configuration Defines values for conditions that a test

program can reference at run time and the test
limits file that loads before running a test lot. A
test program can use multiple configurations to
implement multiple test flows using the same
sequences and code modules. For example, you
can create configurations for Hot and Cold flows
or for QA and Production lots.

connection An entry in a pin map file that defines the
relationship of a pin to a channel on an
instrument.

custom instrument An instrument that TSM does not natively
support.

cycle time The socket time plus the index time. You can
use the TSM Application API to obtain cycle time

ni.com566

TestStand Semiconductor Module

information.
See also Execution Timing Overview.

D
device Item you are testing.
DIB Device interface board.
DUT Device under test.

See also part.
DUT pin One of the following:

■ A specific pin on the DUT.
■ A resource on the tester or DIB that has
instrument connections and that is
associated with one or more sites. This
resource can have one connection per site
or can have one connection per group of
sites.

See also system pin.

G
grading Process in which the test program evaluates a

DUT with different test criteria and assigns a
pass bin to the DUT depending on the level of
criteria the DUT met.

H
handler Places DUTs on the test head for testing,

removes the DUTs from the test head after
testing completes, and places the DUTs in a
hardware bin, depending on the test results.

handler/prober index time Time spent by a handler to remove and bin the
tested parts and place new parts to be tested or
by a prober to move the probes from the current
position to the position of the next dies to be
tested. Index time is measured by the time
elapsed between sending the end-of-test
notification to the handler or prober and

© National Instruments 567

TestStand Semiconductor Module

receiving the start-of-test (SOT) notification
from the handler or prober.
See also Execution Timing Overview.

hardware bin Physical location into which handler places a
DUT after testing.

hardware configuration file Defines the configuration of the instruments in
the test system.

I
index time See handler/prober index time.
inline QA Performing one or more quality assurance tests

within a standard test sequence.
instrument Equipment used to test devices. TSM supports

NI and custom instruments.

L
lot See also test lot.

M
multisite Testing multiple DUTs at the same time in

parallel to improve tester efficiency.

P
part The item to test.

See also DUT.
pin Input or output of a connection to a device you

are testing.
pin group A collection of pins defined in a pin map that

can be specified in a Semiconductor Multi Test
step test or passed as a parameter to the TSM
Code Module API.

pin map Defines the instrumentation on the tester,
defines the pins on the DUT, and defines how
the DUT pins are connected to the tester
instrumentation for each test site.

ni.com568

TestStand Semiconductor Module

prober Tests integrated circuits on a wafer.
PTE Parallel test efficiency.

R
result Data that is logged for analysis or used to

evaluate the pass/fail status of a DUT.

S
Semiconductor Module context Required input to all TSM Code Module API VIs

and .NET methods that represents a subset of
pins, sites, and instruments on a test system.

site Physical location on a tester for testing DUTs.
See also test socket. TSM site numbers do not
always directly correspond to test socket
indexes. Use the Get Site Runtime Data VI or the
GetSiteRuntimeData .NET method of the
TSM Application API or use the Get Test
Information step to obtain specific site
numbers.

site relay A relay on the tester or DIB that is connected to
a relay driver module and that is associated
with one or more sites. A site relay can have one
connection per site or can have one connection
per group of sites.
See also system relay.

socket time Time spent by the DUT in the test socket, as
measured by the time elapsed between
receiving the start-of-test (SOT) notification
from the handler or prober and sending the
end-of-test (EOT) notification to the handler or
prober. You can use the TSM Application API to
obtain socket time information.
See also cycle time and tester index time.
See also Execution Timing Overview.

software bin Virtual bin you define in software to store
information about a DUT or testing results for a
DUT before assigning the DUT to a hardware bin
after testing. Use a bin definitions file to define

© National Instruments 569

TestStand Semiconductor Module

the relationship between software bins and
hardware bins.

software fail bin Software bin associated with a hardware bin of
the Fail type. The Software Bin column on the
Tests tab of the Semiconductor Multi Test step
lists only software fail bins.

software pass bin Software bin associated with a hardware bin of
the Pass type.

STDF Standard Test Data Format. A standard file
format for storing semiconductor test result
data.

STS NI Semiconductor Test System.
subsystem A set of sites and system resources on the tester

that can operate independently. A
Semiconductor Multi Test step automatically
calculates and creates subsystems depending
on the active sites for the step and the pins
required to complete the test.

system pin A resource on the tester or DIB that is connected
to an instrument. A system pin has a single
connection and is associated with all sites.
You can also use DUT pins for shared resources
by specifying the sites that share the resource in
the connection. Use a DUT pin instead of a
system pin if you need to burst patterns to the
pin using the NI-Digital Pattern instrument
driver.
See also DUT pin.

system relay A relay on the tester or DIB that is connected to
a relay driver module and that is associated
with all sites. A system relay has a single
connection for all sites.
See also site relay.

T
test cell The entire physical area for testing DUTs. The

test cell includes the tester (or test station), the
DUT handler or prober, the operator, and

ni.com570

TestStand Semiconductor Module

anything else physically located in the test area
that has an effect on the test cell operation.

test code A program module, such as a DLL or VI, that
contains one or more functions that perform a
specific test or other action.

test condition Specifies historical information, descriptive
information, such as DUT numbers or package
types, and conditions under which to test the
DUTs, such as temperature or voltage. The test
program can use test conditions to determine
how to execute tests. For example, test
conditions might dictate which steps execute,
what temperature to apply to a DUT, what
voltage to use, and so on.

test limits file Defines test limits the test program loads before
running a test lot. The test program replaces
test limits in test steps in the sequence file with
those specified in the test limits file. You can
embed test limits in the sequence file to prevent
viewing or tampering with the limits.

test lot Set of DUTs tested during a single testing
session.

test number Integer that uniquely identifies a specific test
instance.

test program The set of information that specifies how to
execute the test. A semiconductor test program
requires a main sequence file, optional
subordinate sequence files, a pin map file, a bin
definitions file, and code modules.

test program main sequence Specifies the tests and test limits and
determines which code modules to call to test a
DUT. The main sequence file refers to a pin map
file and bin definitions file that the test program
uses during execution.

The sequence file contains at least one MainSe
quence sequence and can optionally contain
one or more subsequences. A subsequence can
call its own code modules, but you can specify
only one pin map file or bin definitions file for a

© National Instruments 571

TestStand Semiconductor Module

test program. You can use multiple sequences in
a test program to keep the test code modular
and organized.

test socket An execution thread in TestStand for testing a
DUT for an associated site.
See also Process Model Thread Types. TSM site
numbers do not always directly correspond to
test socket indexes. Use the Get Site Runtime
Data VI or the GetSiteRuntimeData .NET
method of the TSM Application API or use the
Get Test Information step to obtain specific site
numbers.

test station A complete test implementation that
production operators, test engineers, and
system engineers use to perform tests.

test step An instance of the Semiconductor Multi Test
step type that performs one or more parametric
or functional tests. A test step calls a code
module implemented in LabVIEW or .NET to
control the instrumentation on the tester, take
measurements from the DUT, and pass
measurement values back to the
Semiconductor Multi Test step.

tester The hardware solution for executing
semiconductor tests. The tester is connected to
a handler, which places DUTs in a test site or a
prober that probes a wafer. The tester includes
on-board instruments that perform
measurements. The tester executes the tests the
tester software defines.

tester index time Time required to update the operator interface,
process results for reports and data logs, and
perform other tasks that the tester must
complete before starting the next testing cycle.
See also Execution Timing Overview.

tester software The software solution installed on a tester that
defines the test program and provides software
tools for configuring and executing tests, such
as a handler/prober driver for communicating
with a handler or prober.

ni.com572

TestStand Semiconductor Module

https://www.ni.com/docs/csh?topicname=tsfundamentals/infotopics/pmpmodelthreadtypes.html

TSM TestStand Semiconductor Module™

V
virtual pin A DUT pin that does not physically exist but that

you create in the pin map so you can map
multiple instruments to the same physical DUT
pin.

W
working site The test socket that executes the code module.

When testing multiple sites, the working site is
assigned to the first site that reaches a step for
the set of sites that must execute together
during execution and, when you configure the
test step to execute all sites in a single thread, is
therefore the only site that executes a copy of
the code module.

© National Instruments 573

TestStand Semiconductor Module

© 2023 National Instruments Corporation.

	button-field #1:
	button-field #2:
	button-field #3:
	button-field #4:
	button-field #5:
	button-field #6:
	button-field #7:
	button-field #8:
	button-field #9:
	button-field #10:
	button-field #11:
	button-field #12:
	button-field #13:
	button-field #14:
	button-field #15:

