This is a water pressure sensor that adopts DFRobot Gravity 3-pin interface. It supports standard 5V voltage input and 0.5~4.5V linear voltage output. It is compatible with multiple Arduino controllers. Coordinate with a DFRobot Gravity IO Expansion Shield (https://www.dfrobot.com/product-1009.html), the water pressure sensor can be plugged into an Arduino board, wiring-free. Put it with a Solenoid Valve (https://www.dfrobot.com/product-1530.html), a Water Turbine Generator (https://www.dfrobot.com/product-1610.html) and other sensors, you can build a smart water
control system. Briefly speaking, this water pressure sensor is a stethoscope to a water pipe. It will help you to diagnose whether there is water, how strong the water pressure is. It can be widely applied to smart home control systems (SCS), Internet of Things (IoT) and device detection.

Features

- Support water pressure detection of living environmental water systems, such as houses, gardens and farms.
- Support water pressure detection of outdoor environment, such as rivers, lakes and sea.
- Support water pressure detection of tanks.
- Support liquid level detection in special situation.

Specification

- Medium: liquid/gas without corrosion
- Wiring: Gravity-3Pin (Signal-VCC-GND)
- Pressure Measurement Range: 0~1.6 Mpa
- Input Voltage: +5 VDC
- Output Voltage: 0.5~4.5 V
- Measurement Accuracy: 0.5%±%FS (0.5%, 055°C)
- Threadably: G1/4
- Adapter: G1/2 to G1/4
- Waterproof Level: IP68
- Operating Temperature: -20~85°C
Gravity__Water_Pressure_Sensor_SKU__SEN0257-DFRobot

- Response Time: <2.0 ms
- Quiescent Current: 2.8 mA
- Normal Operating Pressure: ≤2.0 Mpa
- Damaged Pressure: ≥3.0 Mpa
- Service Life: ≥10’000’000 times (10 million)

PinOut

<table>
<thead>
<tr>
<th>Label</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>Signal (Output:0.5~4.5V)</td>
<td>Analog Signal</td>
</tr>
<tr>
<td>Red</td>
<td>VCC (5VDC)</td>
<td>+</td>
</tr>
<tr>
<td>Black</td>
<td>GND</td>
<td>-</td>
</tr>
</tbody>
</table>

https://wiki.dfrobot.com/Gravity__Water_Pressure_Sensor_SKU__SEN0257
Input & Output

The monocrystallinesilicon is one interior material of the sensor. When monocrystallinesilicon material suffers force, it makes an infinitesimal change and an electronic level change of internal atom structure, which will also lead to a great change in resistivity (Factor H Mutation), so as the resistance. This physical effect is piezoresistive effect.

Based on the piezoresistive effect, a strain gauge is also a work of IC (integrated circuit) engineering technology. Its production process contains doping, diffusion and a crystal orientation of the substrate. A strain gauge makes a Wheatstone Bridge. Taking advantage of elasticity properties of special silicon material and heterosexual micro-machining the same silicon material in different directions, then a diffused silicon sensor comes into being. The sensor is force-sensitive and mechanical-electrical detective.

Equipped with an amplify circuit and other parts in need, enable the circuit to output a standard signal, the diffused silicon sensor makes a pressure transmitter.
In this section, we'll show the basic sensor usage and a simple demo about pressure detector.

Demo: Read Water Pressure Value

Requirements

- **Hardware**
Gravity: Analog Water Pressure Sensor

- DFRduino UNO R3 (https://www.dfrobot.com/product-838.html) (or similar) x 1
- Dupont wires

- **Software**
 - Arduino IDE (Version requirements: V1.6.+), click to Download Arduino IDE from Arduino® (https://www.arduino.cc/en/Main/Software)

Connection Diagram (Arduino)
Sample Code

Read Data by Serial Port.
/**
 * @file SEN0257.ino
 * @brief Water pressure sensor demo (Computer serial)
 * @n - Obtain the water pressure through the output
 * @n of the sensor.
 * @copyright Copyright (c) 2010 DFRobot Co.Ltd (http://www.dfrobot.com)
 * @license The MIT License (MIT)
 * @author DFRobot
 * @version V1.0
 * @date 2023-07-06
 */

/**
Water Sensor Key Parameter
- Parts No.: KY-3-5
- Sensing range: 0 - 1 MPa
- Input Voltage: 5VDC
- Output Voltage: 0.5 - 4.5 VDC
 (Linearly corresponding to 0 - 1 MPa)
- Accuracy: 0.5% - 1% FS
***/

/**
Water Sensor Calibration
The output voltage offset of the sensor is 0.5V (nominal).
However, due to the zero-drifting of the internal circuit, the
no-load output voltage is not exactly 0.5V. Calibration
be carried out as follow.

Calibration: connect the 3 pin wire to the Arduino Uart
without connecting the sensor to the water pipe and
for once. Mark down the LOWEST voltage value through
monitor and revise the "OffSet" value to complete the
After the calibration the sensor is ready for measu
const float OffSet = 0.483;

float V, P;

void setup()
{
 Serial.begin(9600); // open serial port, set
 Serial.println("/** Water pressure sensor demo **/");
}

void loop()
{

 //Connect sensor to Analog 0
 V = analogRead(0) * 5.00 / 1024; //Sensor output
 P = (V - OffSet) * 250; //Calculate wat
 Serial.print("Voltage:");
 Serial.print(V, 3);
 Serial.println("V");

 Serial.print(" Pressure:");
 Serial.print(P, 1);
 Serial.println(" KPa");
 Serial.println();

delay(500);
}

Demo: DIY a Simple Water Pressure Detector

Requirements
• Hardware

- DFRduino UNO R3
 (https://www.dfrobot.com/product-838.html) (or similar) x 1
- DFRobot Gravity IO Expansion Shield
 (https://www.dfrobot.com/product-1009.html) x1
- Gravity: I2C 16x2 Arduino LCD with RGB Backlight Display
- 7.4V 2500MA Lithium Battery x1
- Dupont wires

• Software

- Arduino IDE (Version requirements: V1.6.+), [click to Download Arduino IDE from Arduino®](https://www.arduino.cc/en/Main/Software)

Connection Diagram
Sample Code

Read Data by LCD1602 Display.
/*!
 * @file SEN0257.ino
 * @brief Water pressure sensor demoB(LCD1602)
 * @n - Obtain the water pressure through the output of the sensor.
 * @n @copyright Copyright (c) 2010 DFRobot Co.Ltd (https://www.dfrobot.com)
 * @license The MIT License (MIT)
 * @author DFRobot
 * @version V1.0
 * @date 2023-07-06
 */

/******************************
Water Sensor Key Parameter
- Parts No.:KY-3-5
- Sensing range: 0 - 1 MPa
- Input Voltage: 5VDC
- Output Voltage: 0.5 - 4.5 VDC
 (Linearly corresponding to 0 - 1 MPa)
- Accuracy: 0.5% - 1% FS
*******************************/

/****************************
Water Sensor Calibration
The output voltage offset of the sensor is 0.5V (non-zero). However, due to the zero-drifting of the internal circuit, the no-load output voltage is not exactly 0.5V. Calibration be carried out as follow.

Calibration: connect the 3 pin wire to the Arduino UNO without connecting the sensor to the water pipe all the time for once. Mark down the LOWEST voltage value through the monitor and revise the "OffSet" value to complete the calibration.

After the calibration the sensor is ready for measurement.

```
#include <Wire.h>
#include "DFRobot_RGBLCD1602.h"
const float OffSet = 0.483;
float V;
int P;
unsigned int lcdR = 0, lcdG = 0, lcdB = 0;
unsigned long delaytime = 0, lighttime = 0;

/*/  
Change the RGBaddr value based on the hardware version 
------------------------------------------------------------------------

<table>
<thead>
<tr>
<th>Module</th>
<th>Version</th>
<th>RGBAddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD1602 Module</td>
<td>V1.0</td>
<td>0x60</td>
</tr>
<tr>
<td>LCD1602 Module</td>
<td>V1.1</td>
<td>0x6B</td>
</tr>
<tr>
<td>LCD1602 RGB Module</td>
<td>V1.0</td>
<td>0x60</td>
</tr>
<tr>
<td>LCD1602 RGB Module</td>
<td>V1.1</td>
<td>0x2D</td>
</tr>
</tbody>
</table>

*/
DFRobot_RGBLCD1602 lcd(/*RGBAddr*/0x60 ,/*lcdCols*//16

void setup()
{
    lcd.init();
delay(5000);
Serial.begin(115200);
Serial.println("hello start");
lighttime = millis();
lcd.setCursor(0, 0);
lcd.print("Water Pressure:");
```
lcd.setRGB(255, 255, 0);
}

void loop() {
 lcdR = random(256);
delayMicroseconds(10);
 lcdG = random(256);
delayMicroseconds(10);
 lcdB = random(256);
 if (millis() - lighttime > 3000)
 {
 lcd.setRGB(lcdR, lcdG, lcdB);
 lighttime = millis();
 }
 //delay(100);

 V = analogRead(5) * 5.00 / 1024;
P = (V - OffSet) * 250 * 10;
lcd.setCursor(3, 1);

 lcd.print(P / 10000 % 10);
lcd.print(P / 1000 % 10);
lcd.print(P / 100 % 10);
lcd.print(P / 10 % 10);
lcd.print(
 .'');
lcd.print(" kPa");
}
Installation

- Installation Scenes
NOTE: 1. To guarantee the interface tightness, you need to install a waterproof nut and bind PTFE tape.
2. Please take necessary measures to avoid large pressure involved during usage.

FAQ

If you have any questions about using this product, please check the FAQ list (https://www.dfrobot.com/forum/topic/315595) for that product for a corresponding solution. For any questions, advice or cool ideas to share, please visit the DFRobot Forum (https://www.dfrobot.com/forum/).
More Documents

Turn to the Top