

Rail-to-Rail Input/Output, 10 MHz Op Amps

Features

Rail-to-Rail Input/Output

• Wide Bandwidth: 10 MHz (typ.)

Low Noise: 8.7 nV/√Hz, at 10 kHz (typ.)

· Low Offset Voltage:

- Industrial Temperature: $\pm 500~\mu V$ (max.) - Extended Temperature: $\pm 250~\mu V$ (max.)

• Mid-Supply V_{REF}: MCP6021 and MCP6023

Low Supply Current: 1 mA (typ.)

• Total Harmonic Distortion: 0.00053% (typ., G = 1)

Unity Gain Stable

· Power Supply Range: 2.5V to 5.5V

· Temperature Range:

Industrial: -40°C to +85°CExtended: -40°C to +125°C

Typical Applications

Automotive

· Driving A/D Converters

· Multi-Pole Active Filters

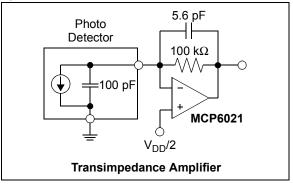
· Barcode Scanners

· Audio Processing

Communications

DAC Buffer

Test Equipment

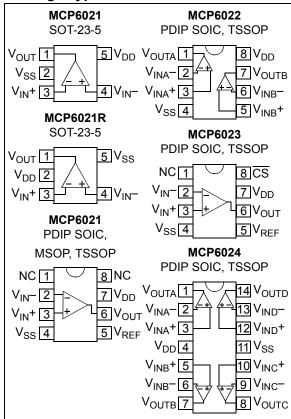

· Medical Instrumentation

Available Tools

· SPICE Macro Model (at www.microchip.com)

FilterLab[®] software (at www.microchip.com)

Typical Application


Description

The MCP6021, MCP6021R, MCP6022, MCP6023 and MCP6024 from Microchip Technology Inc. are rail-to-rail input and output op amps with high performance. Key specifications include: wide bandwidth (10 MHz), low noise (8.7 nV/ $\sqrt{\text{Hz}}$), low input offset voltage and low distortion (0.00053% THD+N). The MCP6023 also offers a Chip Select pin ($\overline{\text{CS}}$) that gives power savings when the part is not in use.

The single MCP6021 and MCP6021R are available in SOT-23-5. The single MCP6021, single MCP6023 and dual MCP6022 are available in 8-lead PDIP, SOIC and TSSOP. The Extended Temperature single MCP6021 is available in 8-lead MSOP. The quad MCP6024 is offered in 14-lead PDIP, SOIC and TSSOP packages.

The MCP6021/1R/2/3/4 family is available in Industrial and Extended temperature ranges. It has a power supply range of 2.5V to 5.5V.

Package Types

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{DD} – V _{SS}	7.0V
All Inputs and Outputs	
Difference Input Voltage	V _{DD} - V _{SS}
Output Short Circuit Current	continuous
Current at Input Pins	±2 mA
Current at Output and Supply Pins	±30 mA
Storage Temperature	65°C to +150°C
Junction Temperature	+150°C
ESD Protection on all pins (HBM; N	MM) $\geq 2 \text{ kV}$; 200V

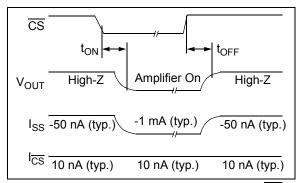
† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Parameters	Sym	Min	Тур	Max	Units	Conditions
Input Offset						<u> </u>
Input Offset Voltage:						
Industrial Temperature Parts	Vos	-500	_	+500	μV	V _{CM} = 0V
Extended Temperature Parts	Vos	-250	_	+250	μV	V _{CM} = 0V, V _{DD} = 5.0V
Extended Temperature Parts	V _{OS}	-2.5		+2.5	mV	$V_{CM} = 0V, V_{DD} = 5.0V$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$
Input Offset Voltage Temperature Drift	$\Delta V_{OS}/\Delta T_{A}$	_	±3.5	_	μV/°C	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$
Power Supply Rejection Ratio	PSRR	74	90	_	dB	V _{CM} = 0V
Input Current and Impedance						
Input Bias Current	I _B	_	1	_	pА	
Industrial Temperature Parts	I _B	_	30	150	pА	T _A = +85°C
Extended Temperature Parts	I _B	_	640	5,000	pА	T _A = +125°C
Input Offset Current	I _{OS}	_	±1	_	pA	
Common-Mode Input Impedance	Z _{CM}	_	10 ¹³ 6	_	ΩpF	
Differential Input Impedance	Z _{DIFF}	_	10 ¹³ 3	_	ΩpF	
Common-Mode						
Common-Mode Input Range	V_{CMR}	V_{SS} -0.3	_	V _{DD} +0.3	V	
Common-Mode Rejection Ratio	CMRR	74	90	_	dB	$V_{DD} = 5V$, $V_{CM} = -0.3V$ to 5.3V
	CMRR	70	85	_	dB	$V_{DD} = 5V, V_{CM} = 3.0V \text{ to } 5.3V$
	CMRR	74	90	_	dB	V_{DD} = 5V, V_{CM} = -0.3V to 3.0V
Voltage Reference (MCP6021 and MC	P6023 only)					
V _{REF} Accuracy (V _{REF} – V _{DD} /2)	V _{REF_ACC}	-50	_	+50	mV	
V _{REF} Temperature Drift	$\Delta V_{REF}/\Delta T_{A}$		±100	_	μV/°C	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$
Open-Loop Gain					•	,
DC Open-Loop Gain (Large Signal)	A _{OL}	90	110	_	dB	$V_{CM} = 0V,$ $V_{OUT} = V_{SS} + 0.3V \text{ to } V_{DD} - 0.3V$
Output						
Maximum Output Voltage Swing	V_{OL}, V_{OH}	V _{SS} +15	_	V _{DD} -20	mV	0.5V output overdrive
Output Short Circuit Current	I _{SC}		±30	_	mA	V _{DD} = 2.5V
	I _{SC}	_	±22	_	mA	V _{DD} = 5.5V
Power Supply						
Supply Voltage	V _S	2.5		5.5	V	
Quiescent Current per Amplifier	IQ	0.5	1.0	1.35	mA	I _O = 0

AC ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless $V_{OUT} \approx V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to $V_{DD}/2$			T _A = +25°	C, V _{DD} =	+2.5V to +	$V_{SS} = GND, V_{CM} = V_{DD}/2,$
Parameters	Sym	Min	Тур	Max	Units	Conditions
AC Response						
Gain Bandwidth Product	GBWP	_	10	_	MHz	
Phase Margin at Unity-Gain	PM	_	65	_	0	G = +1
Settling Time, 0.2%	t _{SETTLE}	_	250	_	ns	G = +1, V _{OUT} = 100 mV _{p-p}
Slew Rate	SR	_	7.0	_	V/µs	
Total Harmonic Distortion Plus N	oise					
f = 1 kHz, G = +1 V/V	THD+N	_	0.00053	_	%	V_{OUT} = 0.25V to 3.25V (1.75V ± 1.50V _{PK}), V_{DD} = 5.0V, BW = 22 kHz
$f = 1 \text{ kHz}, G = +1 \text{ V/V}, R_L = 600\Omega$	THD+N	_	0.00064	_	%	V_{OUT} = 0.25V to 3.25V (1.75V ± 1.50V _{PK}), V_{DD} = 5.0V, BW = 22 kHz
f = 1 kHz, G = +1 V/V	THD+N	_	0.0014	_	%	$V_{OUT} = 4V_{P-P}, V_{DD} = 5.0V, BW = 22 \text{ kHz}$
f = 1 kHz, G = +10 V/V	THD+N	_	0.0009	_	%	$V_{OUT} = 4V_{P-P}, V_{DD} = 5.0V, BW = 22 \text{ kHz}$
f = 1 kHz, G = +100 V/V	THD+N	_	0.005	_	%	$V_{OUT} = 4V_{P-P}, V_{DD} = 5.0V, BW = 22 \text{ kHz}$
Noise						
Input Noise Voltage	E _{ni}	_	2.9	_	µVp-p	f = 0.1 Hz to 10 Hz
Input Noise Voltage Density	e _{ni}	_	8.7	_	nV/√Hz	f = 10 kHz
Input Noise Current Density	i _{ni}	_	3	_	fA/√Hz	f = 1 kHz


MCP6023 CHIP SELECT (CS) ELECTRICAL CHARACTERISTICS

Parameters	Sym	Min	Тур	Max	Units	Conditions
CS Low Specifications						
CS Logic Threshold, Low	V _{IL}	V _{SS}	_	0.2 V _{DD}	V	
CS Input Current, Low	I _{CSL}	-1.0	0.01	_	μA	CS = V _{SS}
CS High Specifications						
CS Logic Threshold, High	V _{IH}	0.8 V _{DD}	_	V_{DD}	V	
CS Input Current, High	I _{CSH}	_	0.01	2.0	μA	CS = V _{DD}
GND Current	I _{SS}	-2	-0.05	_	μΑ	CS = V _{DD}
Amplifier Output Leakage	I _{O(LEAK)}	_	0.01	_	μA	CS = V _{DD}
CS Dynamic Specifications						
CS Low to Amplifier Output Turn-on Time	t _{ON}	_	2	10	μs	$\frac{G = +1, V_{IN} = V_{SS},}{CS = 0.2V_{DD} \text{ to } V_{OUT} = 0.45V_{DD} \text{ time}}$
CS High to Amplifier Output High-Z Time	t _{OFF}	_	0.01	_	μs	$\frac{G = +1, V_{IN} = V_{SS},}{CS} = 0.8V_{DD} \text{ to } V_{OUT} = 0.05V_{DD} \text{ time}$
Hysteresis	V _{HYST}	_	0.6	_	V	V _{DD} = 5.0V, Internal Switch

TEMPERATURE CHARACTERISTICS

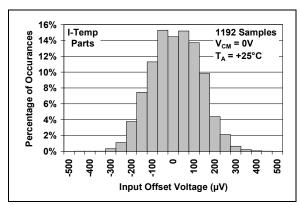
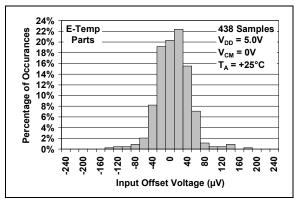
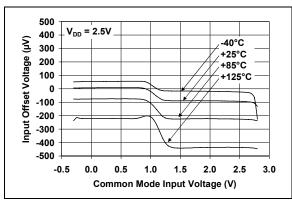
Parameters	Sym	Min	Тур	Max	Units	Conditions				
Temperature Ranges										
Industrial Temperature Range	T _A	-40	_	+85	°C					
Extended Temperature Range	T _A	-40	_	+125	°C					
Operating Temperature Range	T _A	-40	_	+125	°C	Note 1				
Storage Temperature Range	T _A	-65	_	+150	°C					
Thermal Package Resistances										
Thermal Resistance, 5L-SOT-23	θ_{JA}	_	256	_	°C/W					
Thermal Resistance, 8L-PDIP	θ_{JA}	_	85	_	°C/W					
Thermal Resistance, 8L-SOIC	θ_{JA}	_	163	_	°C/W					
Thermal Resistance, 8L-MSOP	θ_{JA}	-	206	_	°C/W					
Thermal Resistance, 8L-TSSOP	θ_{JA}	-	124	_	°C/W					
Thermal Resistance, 14L-PDIP	θ_{JA}	_	70	_	°C/W					
Thermal Resistance, 14L-SOIC	θ_{JA}	_	120	_	°C/W					
Thermal Resistance, 14L-TSSOP	θ_{JA}	_	100	_	°C/W					

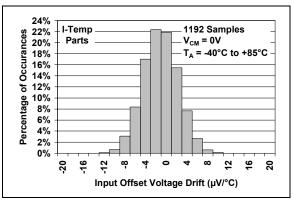
Note 1: The industrial temperature devices operate over this extended temperature range, but with reduced performance. In any case, the internal junction temperature (T_J) must not exceed the absolute maximum specification of 150°C.

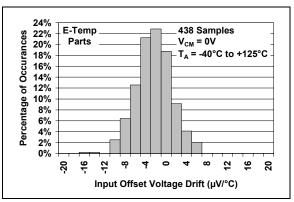
FIGURE 1-1: Timing diagram for the $\overline{\text{CS}}$ pin on the MCP6023.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.


FIGURE 2-1: Input Offset Voltage, (Industrial Temperature Parts).


FIGURE 2-2: Input Offset Voltage, (Extended Temperature Parts).

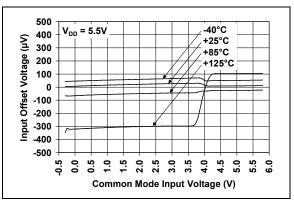

FIGURE 2-3: Input Offset Voltage vs. Common Mode Input Voltage with $V_{DD} = 2.5V$.

FIGURE 2-4: Input Offset Voltage Drift, (Industrial Temperature Parts).

FIGURE 2-5: Input Offset Voltage Drift, (Extended Temperature Parts).

FIGURE 2-6: Input Offset Voltage vs. Common Mode Input Voltage with $V_{DD} = 5.5V$.

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +2.5V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, R_L = 10 k Ω to $V_{DD}/2$ and C_L = 60 pF.

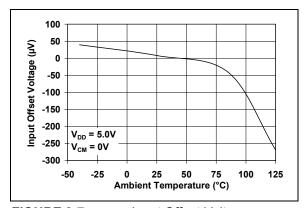


FIGURE 2-7: Temperature.

Input Offset Voltage vs.

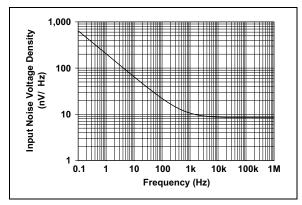


FIGURE 2-8: vs. Frequency.

Input Noise Voltage Density

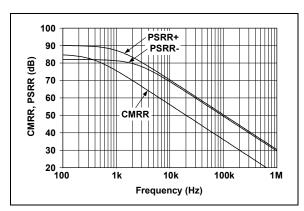


FIGURE 2-9:

CMRR, PSRR vs.

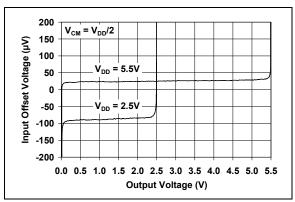
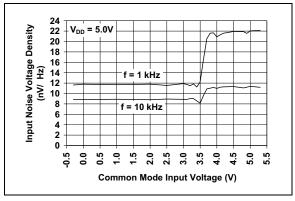
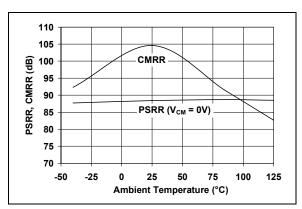
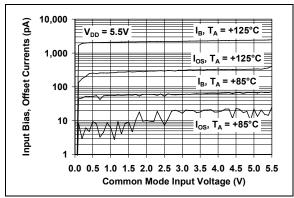
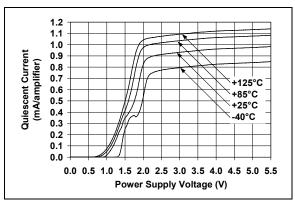



FIGURE 2-10: Output Voltage.

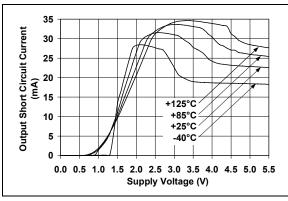
Input Offset Voltage vs.

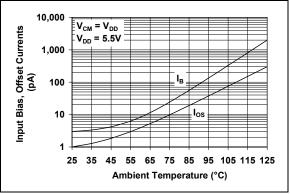
FIGURE 2-11: Input Noise Voltage Density vs. Common Mode Input Voltage.

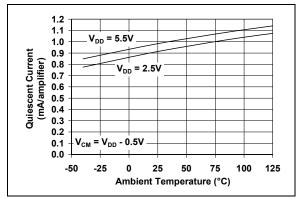



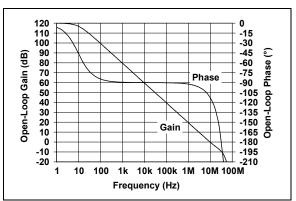

FIGURE 2-12:

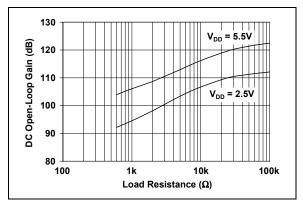
CMRR, PSRR vs.

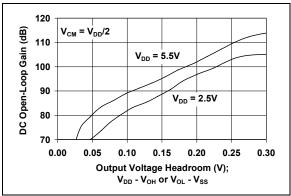

Temperature.

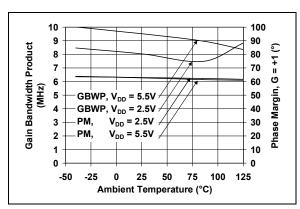

FIGURE 2-13: Input Bias, Offset Currents vs. Common Mode Input Voltage.

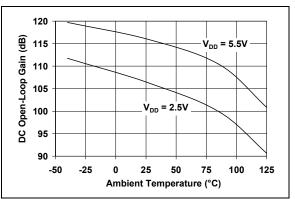

FIGURE 2-14: Quiescent Current vs. Supply Voltage.


FIGURE 2-15: Output Short-Circuit Current vs. Supply Voltage.


FIGURE 2-16: Input Bias, Offset Currents vs. Temperature.


FIGURE 2-17: Quiescent Current vs. Temperature.


FIGURE 2-18: Open-Loop Gain, Phase vs. Frequency.


FIGURE 2-19: DC Open-Loop Gain vs. Load Resistance.

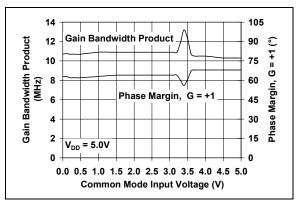

FIGURE 2-20: Small Signal DC Open-Loop Gain vs. Output Voltage Headroom.

FIGURE 2-21: Gain Bandwidth Product, Phase Margin vs. Temperature.

FIGURE 2-22: DC Open-Loop Gain vs. Temperature.

FIGURE 2-23: Gain Bandwidth Product, Phase Margin vs. Common Mode Input Voltage.

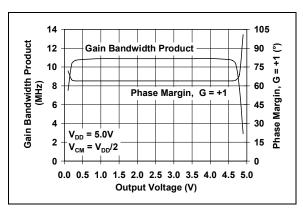
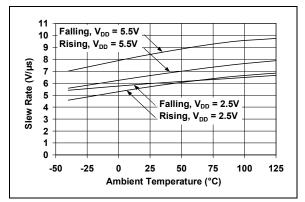
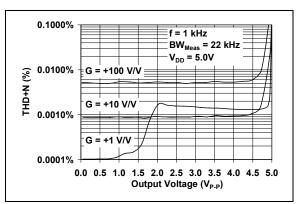
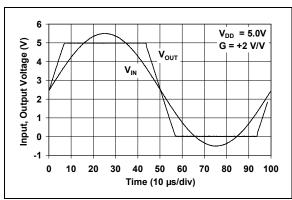
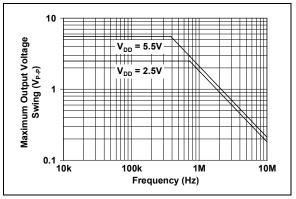


FIGURE 2-24: Gain Bandwidth Product, Phase Margin vs. Output Voltage.


FIGURE 2-25: Slew Rate vs. Temperature.

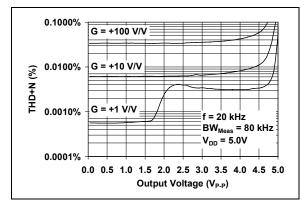
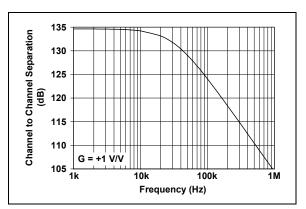
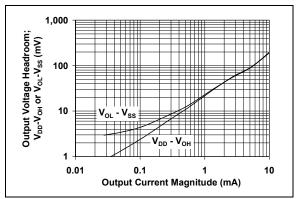
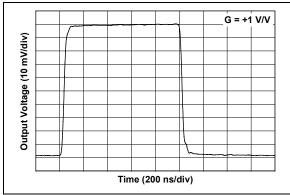
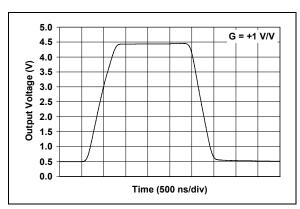

FIGURE 2-26: Total Harmonic Distortion plus Noise vs. Output Voltage with f = 1 kHz.

FIGURE 2-27: The MCP6021/1R/2/3/4 family shows no phase reversal under overdrive.

FIGURE 2-28: Maximum Output Voltage Swing vs. Frequency.

FIGURE 2-29: Total Harmonic Distortion plus Noise vs. Output Voltage with f = 20 kHz.


FIGURE 2-30: Channel-to-Channel Separation vs. Frequency (MCP6022 and MCP6024 only).

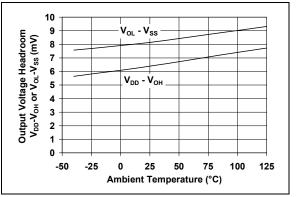

FIGURE 2-31: Output Voltage Headroom vs. Output Current.

FIGURE 2-32: Small-Signal Non-inverting Pulse Response.

FIGURE 2-33: Large-Signal Non-inverting Pulse Response.

FIGURE 2-34: Output Voltage Headroom vs. Temperature.

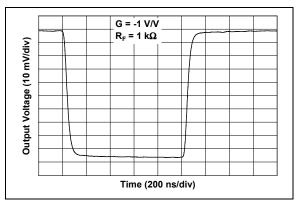
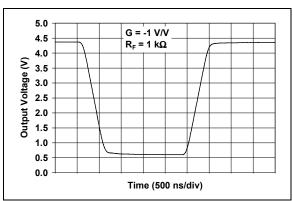
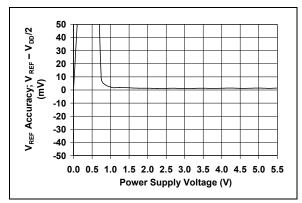
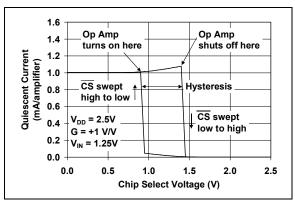
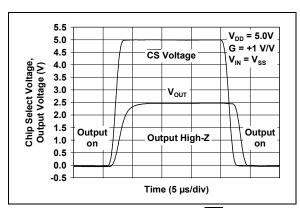
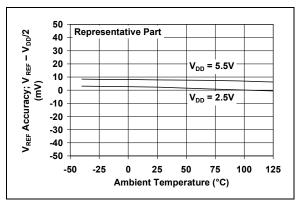


FIGURE 2-35: Small-Signal Inverting Pulse Response.


FIGURE 2-36: Large-Signal Inverting Pulse Response.


FIGURE 2-37: V_{REF} Accuracy vs. Supply Voltage (MCP6021 and MCP6023 only).

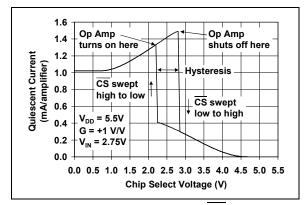

FIGURE 2-38: Chip Select (\overline{CS}) Hysteresis (MCP6023 only) with $V_{DD} = 2.5V$.

FIGURE 2-39: Chip Select (\overline{CS}) to Amplifier Output Response Time (MCP6023 only).

FIGURE 2-40: V_{REF} Accuracy vs. Temperature (MCP6021 and MCP6023 only).

FIGURE 2-41: Chip Select (\overline{CS}) Hysteresis (MCP6023 only) with $V_{DD} = 5.5V$.

3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

MCP6021 (PDIP, SOIC, MSOP, TSSOP) (Note 1)	MCP6021 (SOT-23-5) (Note 1)	MCP6021R (SOT-23-5) (Note 2)	MCP6022	MCP6023	MCP6024	Symbol	Description
6	1	1	1	6	1	V _{OUT} , V _{OUTA}	Analog Output (op amp A)
2	4	4	2	2	2	V_{IN} -, V_{INA} -	Inverting Input (op amp A)
3	3	3	3	3	3	V_{IN} +, V_{INA} +	Non-inverting Input (op amp A)
7	5	2	8	7	4	V_{DD}	Positive Power Supply
_	-		5	_	5	V _{INB} +	Non-inverting Input (op amp B)
_			6	_	6	V _{INB} -	Inverting Input (op amp B)
_			7	_	7	V_{OUTB}	Analog Output (op amp B)
_			_	_	8	V _{OUTC}	Analog Output (op amp C)
_			_	_	9	V _{INC} -	Inverting Input (op amp C)
_		1	_	_	10	V _{INC} +	Non-inverting Input (op amp C)
4	2	5	4	4	11	V_{SS}	Negative Power Supply
_	_	_	_	_	12	V _{IND} +	Non-inverting Input (op amp D)
_	_	_	_	_	13	V _{IND} -	Inverting Input (op amp D)
	_	_			14	V _{OUTD}	Analog Output (op amp D)
5	_	_		5		V _{REF}	Reference Voltage
_	_	_	_	8	_	CS	Chip Select
1, 8	_	_	_	1	_	NC	No Internal Connection

Note 1: The MCP6021 in the 8-pin MSOP package is only available for E-temp (Extended Temperature) parts. The MCP6021 in the 8-pin TSSOP package is only available for I-temp (Industrial Temperature) parts.

3.1 Analog Outputs

The op amp output pins are low-impedance voltage sources.

3.2 Analog Inputs

The op amp non-inverting and inverting inputs are highimpedance CMOS inputs with low bias currents.

3.3 V_{REF} Output (MCP6021 and MCP6023)

Mid-supply reference voltage provided by the single op amps (except in SOT-23-5 package). This is an unbuffered, resistor voltage divider internal to the part.

3.4 CS Digital Input

This is a CMOS, Schmitt-triggered input that places the part into a low power mode of operation.

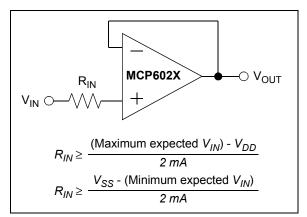
3.5 Power Supply (V_{SS} and V_{DD})

The positive power supply pin (V_{DD}) is 2.5V to 5.5V higher than the negative power supply pin (V_{SS}). For normal operation, the other pins are at voltages between V_{SS} and V_{DD} .

Typically, these parts are used in a single (positive) supply configuration. In this case, V_{SS} is connected to ground and V_{DD} is connected to the supply. V_{DD} will need a local bypass capacitor (typically 0.01 μF to 0.1 μF) within 2 mm of the V_{DD} pin. These parts need to use a bulk capacitor (typically 1 μF or larger) within 100 mm of the V_{DD} pin; it can be shared with nearby analog parts.

^{2:} The MCP6021R is only available in the 5-pin SOT-23 package, and for E-temp (Extended Temperature) parts.

4.0 APPLICATIONS INFORMATION


The MCP6021/1R/2/3/4 family of operational amplifiers are fabricated on Microchip's state-of-the-art CMOS process. They are unity-gain stable and suitable for a wide range of general-purpose applications.

4.1 Rail-to-Rail Input

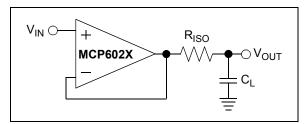
The MCP6021/1R/2/3/4 amplifier family is designed to not exhibit phase inversion when the input pins exceed the supply voltages. Figure 2-27 shows an input voltage exceeding both supplies with no resulting phase inversion.

The input stage of the MCP6021/1R/2/3/4 family of devices uses two differential input stages in parallel; one operates at low common-mode input voltage (V_{CM}), while the other operates at high V_{CM}. With this topology, the device operates with V_{CM} up to 0.3V past either supply rail (V_{SS} – 0.3V to V_{DD} + 0.3V) at +25°C. The amplifier input behaves linearly as long as V_{CM} is kept within the specified V_{CMR} limits. The input offset voltage is measured at both V_{CM} = V_{SS} – 0.3V and V_{DD} + 0.3V to ensure proper operation.

Input voltages that exceed the input voltage range (V_{CMR}) can cause excessive current to flow in or out of the input pins. Current beyond ± 2 mA introduces possible reliability problems. Thus, applications that exceed this rating must externally limit the input current with an input resistor (R_{IN}) , as shown in Figure 4-1.

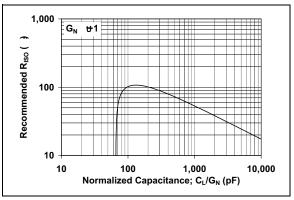
FIGURE 4-1: R_{IN} limits the current flow into an input pin.

Total Harmonic Distortion Plus Noise (THD+N) can be affected by the common mode input voltage (V_{CM}). As shown in Figure 2-3 and Figure 2-6, the input offset voltage (V_{OS}) is affected by the change from the NMOS to the PMOS input differential pairs. This change in V_{OS} will increase the distortion if the input voltage includes this transition region. This transition occurs between $V_{DD}-1.0V$ and $V_{DD}-2.0V$, depending on V_{DD} and temperature.


4.2 Rail-to-Rail Output

The Maximum Output Voltage Swing is the maximum swing possible under a particular output load. According to the specification table, the output can reach within 20 mV of either supply rail when $R_L=10\ k\Omega.$ See Figure 2-31 and Figure 2-34 for more information concerning typical performance.

4.3 Capacitive Loads


Driving large capacitive loads can cause stability problems for voltage feedback op amps. As the load capacitance increases, the feedback loop's phase margin decreases, and the closed loop bandwidth is reduced. This produces gain-peaking in the frequency response, with overshoot and ringing in the step response.

When driving large capacitive loads with these op amps (e.g., > 60 pF when G = +1), a small series resistor at the output ($R_{\rm ISO}$ in Figure 4-2) improves the feedback loop's phase margin (stability) by making the load resistive at higher frequencies. The bandwidth will be generally lower than the bandwidth with no capacitive load.

FIGURE 4-2: Output resistor R_{ISO} stabilizes large capacitive loads.

Figure 4-3 gives recommended R_{ISO} values for different capacitive loads and gains. The x-axis is the normalized load capacitance (C_L/G_N), where G_N is the circuit's noise gain. For non-inverting gains, G_N and the Signal Gain are equal. For inverting gains, G_N is 1+|Signal Gain| (e.g., -1 V/V gives G_N = +2 V/V).

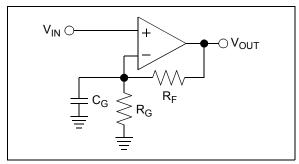


FIGURE 4-3: Recommended R_{ISO} values for capacitive loads.

After selecting $R_{\rm ISO}$ for your circuit, double-check the resulting frequency response peaking and step response overshoot. Modify $R_{\rm ISO}$'s value until the response is reasonable. Evaluation on the bench and simulations with the MCP6021/1R/2/3/4 Spice macro model are helpful.

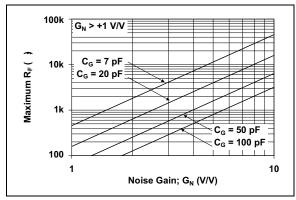
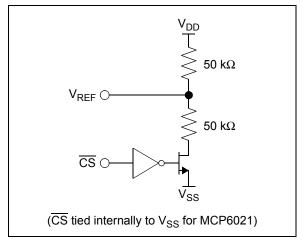

4.4 Gain Peaking

Figure 2-35 and Figure 2-36 use R_F = 1 $k\Omega$ to avoid (frequency response) gain peaking and (step response) overshoot. The capacitance to ground at the inverting input (C_G) is the op amp's common mode input capacitance plus board parasitic capacitance. C_G is in parallel with R_G , which causes an increase in gain at high frequencies for non-inverting gains greater than 1 V/V (unity gain). C_G also reduces the phase margin of the feedback loop for both non-inverting and inverting gains.

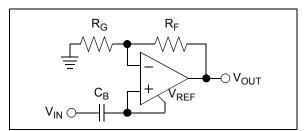
FIGURE 4-4: Non-inverting gain circuit with parasitic capacitance.

The largest value of R_F in Figure 4-4 that should be used is a function of noise gain (see G_N in **Section 4.3** "Capacitive Loads") and C_G . Figure 4-5 shows results for various conditions. Other compensation techniques may be used, but they tend to be more complicated to the design.

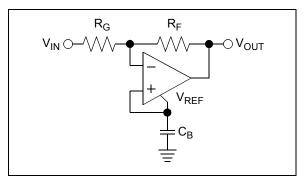

FIGURE 4-5: Non-inverting gain circuit with parasitic capacitance.

4.5 MCP6023 Chip Select (CS)

The MCP6023 is a single amplifier with chip select (\overline{CS}). When \overline{CS} is high, the supply current is less than 10 nA (typ) and travels from the \overline{CS} pin to V_{SS} , with the amplifier output being put into a high-impedance state. When \overline{CS} is low, the amplifier is enabled. If \overline{CS} is left floating, the amplifier may not operate properly. Figure 1-1 and Figure 2-39 show the output voltage and supply current response to a \overline{CS} pulse.


4.6 MCP6021 and MCP6023 Reference Voltage

The single op amps (MCP6021 and MCP6023), not in the SOT-23-5 package, have an internal mid-supply reference voltage connected to the V_{REF} pin (see Figure 4-6). The MCP6021 has \overline{CS} internally tied to V_{SS} , which always keeps the op amp on and always provides a mid-supply reference. With the MCP6023, taking the \overline{CS} pin high conserves power by shutting down both the op amp and the V_{REF} circuitry. Taking the \overline{CS} pin low turns on the op amp and V_{REF} circuitry.


FIGURE 4-6: Simplified internal V_{REF} circuit (MCP6021 and MCP6023 only).

See Figure 4-7 for a non-inverting gain circuit using the internal mid-supply reference. The DC-blocking capacitor (C_B) also reduces noise by coupling the op amp input to the source.

FIGURE 4-7: Non-inverting gain circuit using V_{REF} (MCP6021 and MCP6023 only).

To use the internal mid-supply reference for an inverting gain circuit, connect the V_{REF} pin to the non-inverting input, as shown in Figure 4-8. The capacitor C_B helps reduce power supply noise on the output.

FIGURE 4-8: Inverting gain circuit using V_{RFF} (MCP6021 and MCP6023 only).

If you don't need the mid-supply reference, leave the V_{RFF} pin open.

4.7 Supply Bypass

With this family of operational amplifiers, the power supply pin (V_{DD} for single supply) should have a local bypass capacitor (i.e., 0.01 μ F to 0.1 μ F) within 2 mm for good, high-frequency performance. It also needs a bulk capacitor (i.e., 1 μ F or larger) within 100 mm to provide large, slow currents. This bulk capacitor can be shared with nearby analog parts.

4.8 Unused Op Amps

An unused op amp in a quad package (MCP6024) should be configured as shown in Figure 4-9. These circuits prevent the output from toggling and causing crosstalk. Circuit A can use any reference voltage between the supplies, provides a buffered DC voltage, and minimizes the supply current draw of the unused op amp. Circuit B uses the minimum number of components and operates as a comparator; it may draw more current.

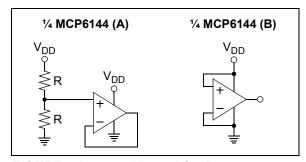
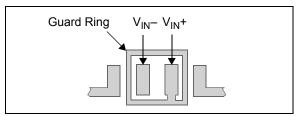



FIGURE 4-9: Unused Op Amps.

4.9 PCB Surface Leakage

In applications where low input bias current is critical, PCB (printed circuit board) surface-leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity conditions, a typical resistance between nearby traces is $10^{12}\Omega$. A 5V difference would cause 5 pA of current to flow, which is greater than the MCP6021/1R/2/3/4 family's bias current at +25°C (1 pA, typ).

The easiest way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. Figure 4-10 shows an example of this type of layout.

FIGURE 4-10: Example Guard Ring Layout.

- 1. Non-inverting Gain and Unity-Gain Buffer.
 - Connect the guard ring to the inverting input pin (V_{IN}-); this biases the guard ring to the common mode input voltage.
 - b) Connect the non-inverting pin (V_{IN}+) to the input with a wire that does not touch the PCB surface.
- Inverting (Figure 4-10) and Transimpedance Gain Amplifiers (convert current to voltage, such as photo detectors).
 - a) Connect the guard ring to the non-inverting input pin (V_{IN}+). This biases the guard ring to the same reference voltage as the op amp's input (e.g., V_{DD}/2 or ground).
 - b) Connect the inverting pin (V_{IN}-) to the input with a wire that does not touch the PCB surface.

4.10 High Speed PCB Layout

Due to their speed capabilities, a little extra care in the PCB (Printed Circuit Board) layout can make a significant difference in the performance of these op amps. Good PC board layout techniques will help you achieve the performance shown in Section 1.0 "Electrical Characteristics" and Section 2.0 "Typical Performance Curves", while also helping you minimize EMC (Electro-Magnetic Compatibility) issues.

Use a solid ground plane and connect the bypass local capacitor(s) to this plane with minimal length traces. This cuts down inductive and capacitive crosstalk.

Separate digital from analog, low speed from high speed and low power from high power. This will reduce interference.

Keep sensitive traces short and straight. Separating them from interfering components and traces. This is especially important for high-frequency (low rise-time) signals.

Sometimes it helps to place guard traces next to victim traces. They should be on both sides of the victim trace, and as close as possible. Connect the guard trace to ground plane at both ends, and in the middle for long traces.

Use coax cables (or low inductance wiring) to route signal and power to and from the PCB.

4.11 Typical Applications

4.11.1 A/D CONVERTER DRIVER AND ANTI-ALIASING FILTER

Figure 4-11 shows a third-order Butterworth filter that can be used as an A/D converter driver. It has a bandwidth of 20 kHz and a reasonable step response. It will work well for conversion rates of 80 ksps and greater (it has 29 dB attenuation at 60 kHz).

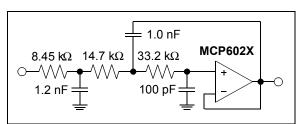
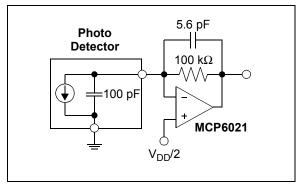



FIGURE 4-11: A/D converter driver and anti-aliasing filter with a 20 kHz cutoff frequency.

This filter can easily be adjusted to another bandwidth by multiplying all capacitors by the same factor. Alternatively, the resistors can all be scaled by another common factor to adjust the bandwidth.

4.11.2 OPTICAL DETECTOR AMPLIFIER

Figure 4-12 shows the MCP6021 op amp used as a transimpedance amplifier in a photo detector circuit. The photo detector looks like a capacitive current source, so the 100 k Ω resistor gains the input signal to a reasonable level. The 5.6 pF capacitor stabilizes this circuit and produces a flat frequency response with a bandwidth of 370 kHz.

FIGURE 4-12: Transimpedance Amplifier for an Optical Detector.

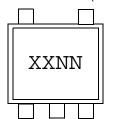
5.0 DESIGN TOOLS

Microchip provides the basic design tools needed for the MCP6021/1R/2/3/4 family of op amps.

5.1 SPICE Macro Model

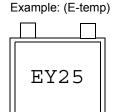
The latest SPICE macro model available for the MCP6021/1R/2/3/4 op amps is on Microchip's web site at www.microchip.com. This model is intended as an initial design tool that works well in the op amp's linear region of operation at room temperature. Within the macro model file is information on its capabilities.

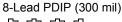
Bench testing is a very important part of any design and cannot be replaced with simulations. Also, simulation results using this macro model need to be validated by comparing them to the data sheet specifications and characteristic curves.

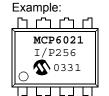

5.2 FilterLab® Software

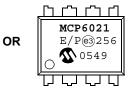
Microchip's FilterLab® software is an innovative tool that simplifies analog active filter (using op amps) design. It is available free of charge from our web site at www.microchip.com. The FilterLab software tool provides full schematic diagrams of the filter circuit with component values. It also outputs the filter circuit in SPICE format, which can be used with the macro model to simulate actual filter performance.

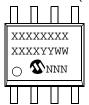
6.0 PACKAGING INFORMATION

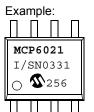

6.1 Package Marking Information

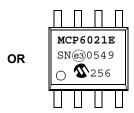



Device	E-Temp Code					
MCP6021	EYNN					
MCP6021R	EZNN					
Notes Applies to File ad COT CO						


Note: Applies to 5-Lead SOT-23







8-Lead SOIC (150 mil)

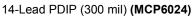
8-Lead MSOP

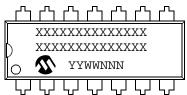
8-Lead TSSOP

Legend: XX...X Customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

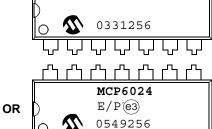
NNN Alphanumeric traceability code

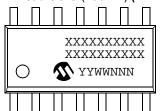

e3 Pb-free JEDEC designator for Matte Tin (Sn)

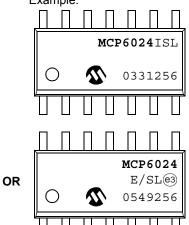

This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

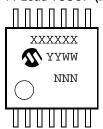
can be round on the outer packaging for this package.

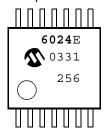
ote: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

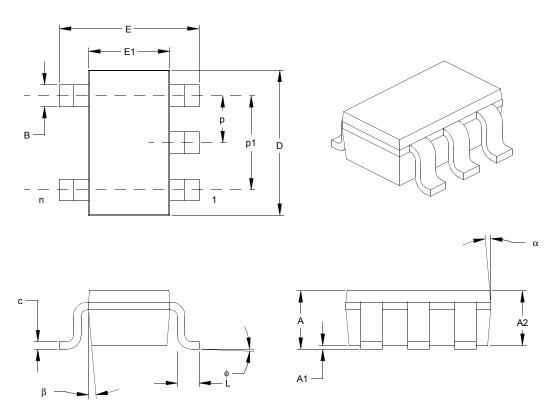

Package Marking Information (Continued)




Example:


14-Lead SOIC (150 mil) (MCP6024)



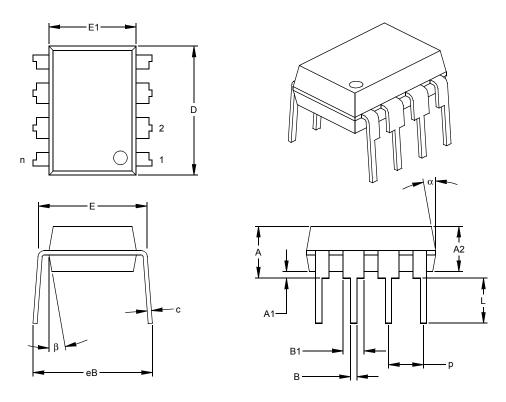

14-Lead TSSOP (MCP6024)

Example:

5-Lead Plastic Small Outline Transistor (OT) (SOT-23)

	Units		INCHES*		N	IILLIMETERS	
Dimension I	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		5			5	
Pitch	р		.038			0.95	
Outside lead pitch (basic)	p1		.075			1.90	
Overall Height	Α	.035	.046	.057	0.90	1.18	1.45
Molded Package Thickness	A2	.035	.043	.051	0.90	1.10	1.30
Standoff	A1	.000	.003	.006	0.00	0.08	0.15
Overall Width	E	.102	.110	.118	2.60	2.80	3.00
Molded Package Width	E1	.059	.064	.069	1.50	1.63	1.75
Overall Length	D	.110	.116	.122	2.80	2.95	3.10
Foot Length	L	.014	.018	.022	0.35	0.45	0.55
Foot Angle	f	0	5	10	0	5	10
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.014	.017	.020	0.35	0.43	0.50
Mold Draft Angle Top	а	0	5	10	0	5	10
Mold Draft Angle Bottom	b	0	5	10	0	5	10

^{*} Controlling Parameter

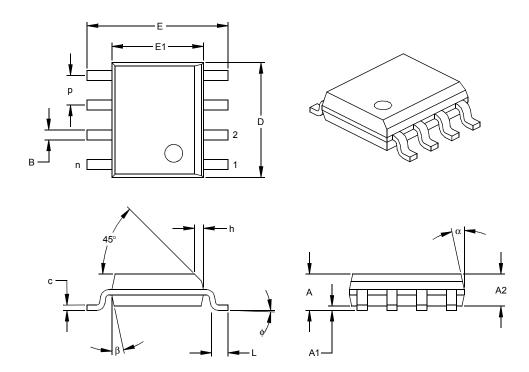

Notes

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side. EIAJ Equivalent: SC-74A

Drawing No. C04-091

Revised 09-12-05

8-Lead Plastic Dual In-line (P) - 300 mil (PDIP)

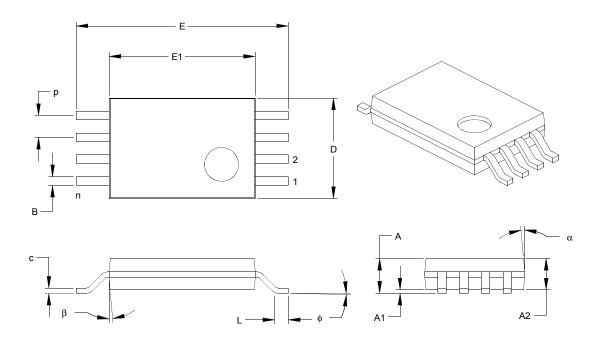

	Units		INCHES*		N	IILLIMETERS	3
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.360	.373	.385	9.14	9.46	9.78
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing	§ eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-018

^{*} Controlling Parameter § Significant Characteristic

8-Lead Plastic Small Outline (SN) - Narrow, 150 mil (SOIC)


	Units		INCHES*		N	IILLIMETERS	3
Dimension	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		8			8	
Pitch	р		.050			1.27	
Overall Height	Α	.053	.061	.069	1.35	1.55	1.75
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25
Overall Width	Е	.228	.237	.244	5.79	6.02	6.20
Molded Package Width	E1	.146	.154	.157	3.71	3.91	3.99
Overall Length	D	.189	.193	.197	4.80	4.90	5.00
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51
Foot Length	L	.019	.025	.030	0.48	0.62	0.76
Foot Angle	ф	0	4	8	0	4	8
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25
Lead Width	В	.013	.017	.020	0.33	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

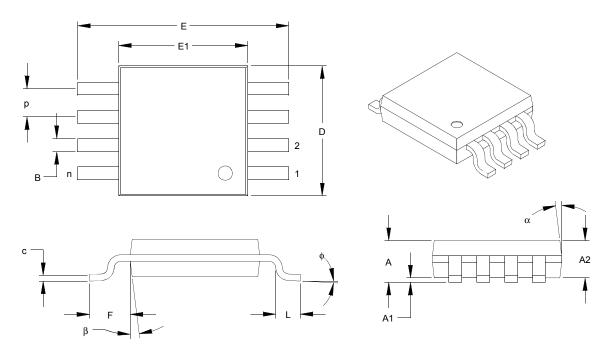
.010" (0.254mm) per side. JEDEC Equivalent: MS-012 Drawing No. C04-057

^{*} Controlling Parameter § Significant Characteristic

8-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)

	Units		INCHES		M	ILLIMETERS*	
Dimension Limit	s	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.026			0.65	
Overall Height	Α	.039	.041	.043	1.00	1.05	1.10
Molded Package Thickness	A2	.033	.035	.037	0.85	0.90	0.95
Standoff	A1	.002	.004	.006	0.05	0.10	0.15
Overall Width	E	.246	.251	.256	6.25	6.38	6.50
Molded Package Width	E1	.169	.173	.177	4.30	4.40	4.50
Molded Package Length	D	.114	.118	.122	2.90	3.00	3.10
Foot Length	L	.020	.024	.028	0.50	0.60	0.70
Foot Angle	ф	0°	4°	8°	0°	4°	8°
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.007	.010	.012	0.19	0.25	0.30
Mold Draft Angle Top	α	0°	5°	10°	0°	5°	10°
Mold Draft Angle Bottom	β	0°	5°	10°	0°	5°	10°

^{*} Controlling Parameter


Notes

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side. JEDEC Equivalent: MO-153

Drawing No. C04-086

Revised 07-21-05

8-Lead Plastic Micro Small Outline Package (MS) (MSOP)

	Units		INCHES		MI	LLIMETERS*		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		8			8		
Pitch	р		.026 BSC			0.65 BSC		
Overall Height	Α	-	1	.043	1	-	1.10	
Molded Package Thickness	A2	.030	.033	.037	0.75	0.85	0.95	
Standoff	A1	.000	1	.006	0.00	-	0.15	
Overall Width	E		.193 BSC			4.90 BSC		
Molded Package Width	E1		.118 BSC			3.00 BSC		
Overall Length	D		.118 BSC		3.00 BSC			
Foot Length	L	.016	.024	.031	0.40	0.60	0.80	
Footprint (Reference)	F		.037 REF			0.95 REF		
Foot Angle	ф	0°	1	8°	0°	-	8°	
Lead Thickness	С	.003	.006	.009	0.08	-	0.23	
Lead Width	В	.009	.012	.016	0.22	-	0.40	
Mold Draft Angle Top	α	5°	1	15°	5°	-	15°	
Mold Draft Angle Bottom	β	5°	1	15°	5°	-	15°	

^{*} Controlling Parameter

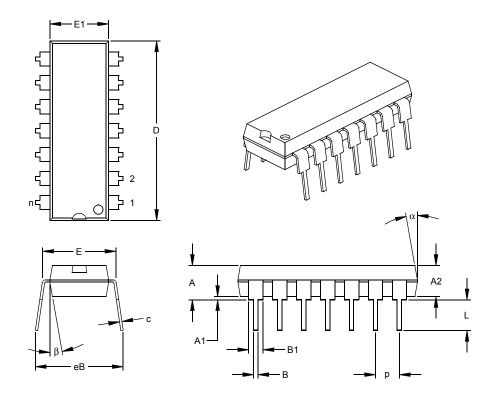
Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

See ASME Y14.5M

 $\label{eq:REF:Reference Dimension, usually without tolerance, for information purposes only. \\$

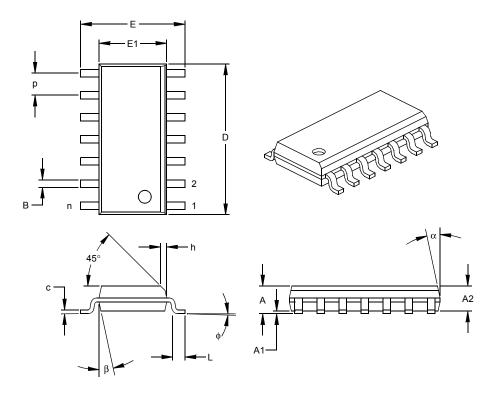

See ASME Y14.5M

JEDEC Equivalent: MO-187

Drawing No. C04-111

Revised 07-21-05

14-Lead Plastic Dual In-line (P) - 300 mil (PDIP)


	Units	INCHES*		MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		14			14	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.740	.750	.760	18.80	19.05	19.30
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eВ	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

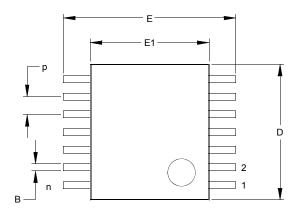
.010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-005

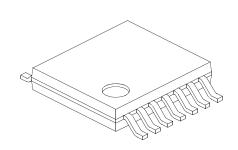
^{*} Controlling Parameter § Significant Characteristic

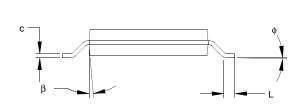
14-Lead Plastic Small Outline (SL) - Narrow, 150 mil (SOIC)

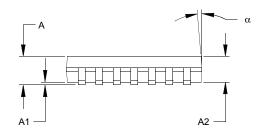
	Units	INCHES*			MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		14			14		
Pitch	р		.050			1.27		
Overall Height	Α	.053	.061	.069	1.35	1.55	1.75	
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55	
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25	
Overall Width	Е	.228	.236	.244	5.79	5.99	6.20	
Molded Package Width	E1	.150	.154	.157	3.81	3.90	3.99	
Overall Length	D	.337	.342	.347	8.56	8.69	8.81	
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51	
Foot Length	L	.016	.033	.050	0.41	0.84	1.27	
Foot Angle	ф	0	4	8	0	4	8	
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25	
Lead Width	В	.014	.017	.020	0.36	0.42	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

^{*} Controlling Parameter § Significant Characteristic


Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed


.010" (0.254mm) per side.


JEDEC Equivalent: MS-012 Drawing No. C04-065

14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)

	Units	INCHES			MILLIMETERS*			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n	14			14			
Pitch	р	.026 BSC			0.65 BSC			
Overall Height	Α	.039	.041	.043	1.00	1.05	1.10	
Molded Package Thickness	A2	.033	.035	.037	0.85	0.90	0.95	
Standoff	A1	.002	.004	.006	0.05	0.10	0.15	
Overall Width	Е	.246	.251	.256	6.25	6.38	6.50	
Molded Package Width	E1	.169	.173	.177	4.30	4.40	4.50	
Molded Package Length	D	.193	.197	.201	4.90	5.00	5.10	
Foot Length	L	.020	.024	.028	0.50	0.60	0.70	
Foot Angle	ф	0°	4°	8°	0°	4°	8°	
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20	
Lead Width	В	.007	.010	.012	0.19	0.25	0.30	
Mold Draft Angle Top	α	12° REF		12° REF				
Mold Draft Angle Bottom	β	12° REF			12° REF			

^{*} Controlling Parameter

Notes:

Dimensions D and E1 do not include mold fla sh or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

See ASME Y14.5M

REF: Reference Dimension, usually without tole rance, for information purposes only.

See ASME Y14.5M

JEDEC Equivalent: MO-153 AB-1

Drawing No. C04-087

Revised: 08-17-05

NOTES:

APPENDIX A: REVISION HISTORY

Revision C (March 2006)

The following is the list of modifications:

- Added SOT-23-5 package option for single op amps MCP6021 and MCP6021R (E-temp only).
- 2. Added MSOP-8 package option for E-temp single op amp (MCP6021).
- 3. Corrected package drawing on front page for dual op amp (MCP6022).
- Clarified spec conditions (I_{SC}, PM and THD+N) in Section 2.0 "Typical Performance Curves".
- 5. Added Section 3.0 "Pin Descriptions".
- Updated Section 4.0 "Applications information" for THD+N, unused op amps, and gain peaking discussions.
- Corrected and updated package marking information in Section 6.0 "Packaging Information".
- 8. Added Appendix A: "REVISION HISTORY".

Revision B (November 2003)

· Second Release of this Document

Revision A (November 2001)

· Original Release of this Document

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>X /XX</u>	Exa	Examples:				
	erature Package nge	a)	MCP6021T-E/OT:	Tape and Reel, Extended temperature, 5LD SOT-23.			
-		b)	MCP6021-E/P:	Extended temperature, 8LD PDIP.			
Device:	MCP6021 Single Op Amp MCP6021T Single Op Amp	c)	MCP6021-E/SN:	Extended temperature, 8LD SOIC.			
	(Tape and Reel for SOT-23, SOIC, TSSOP, MSOP) MCP6021R Single Op Amp MCP6021RT Single Op Amp	a)	MCP6021RT-E/O	T:Tape and Reel, Extended temperature, 5LD SOT-23.			
	(Tape and Reel for SOT-23) MCP6022 Dual Op Amp MCP6022T Dual Op Amp	a)	MCP6022-I/P:	Industrial temperature, 8LD PDIP.			
	(Tape and Reel for SOIC and TSSOP) MCP6023 Single Op Amp w/ CS	b)	MCP6022-E/P:	Extended temperature, 8LD PDIP.			
	MCP6023T Single Op Amp w/ CS (Tape and Reel for SOIC and TSSOP) MCP6024 Quad Op Amp MCP6024T Quad Op Amp	c)	MCP6022T-E/ST:	Tape and Reel, Extended temperature, 8LD TSSOP.			
	(Tape and Reel for SOIC and TSSOP)	a)	MCP6023-I/P:	Industrial temperature, 8LD PDIP.			
Temperature Range:	I = -40°C to +85°C	b)	MCP6023-E/P:	Extended temperature, 8LD PDIP.			
	E = -40°C to +125°C	c)	MCP6023-E/SN:	Extended temperature, 8LD SOIC.			
Package:	OT = Plastic Small Outline Transistor (SOT-23), 5-lead (MCP6021, E-Temp; MCP6021R, E-Temp)	a)	MCP6024-I/SL:	Industrial temperature, 14LD SOIC.			
	MS = Plastic MSOP, 8-lead (MCP6021, E-Temp)	b)		Extended temperature, 14LD SOIC.			
	P = Plastic DIP (300 mil Body), 8-lead, 14-lead SN = Plastic SOIC (150 mil Body), 8-lead SL = Plastic SOIC (150 mil Body), 14-lead ST = Plastic TSSOP, 8-lead (MCP6021,I-Temp; MCP6022, I-Temp, E-Temp; MCP6023, I-Temp, E-Temp;)		MCP6024T-E/ST:	Tape and Reel, Extended temperature, 14LD TSSOP.			
	ST = Plastic TSSOP, 14-lead						

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, Real ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002 ===

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago

Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose

Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou

Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi

Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Gumi

Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang

Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870

Fax: 65-6334-8850 **Taiwan - Hsin Chu**

Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung

Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

02/16/06