

ACPL-M71U and ACPL-M72U

Wide Operating Temperature, High-Speed, **Low-Power Digital Optocouplers** with R2Coupler™ Isolation

Description

The Broadcom® ACPL-M71U and ACPL-M72U are high-temperature, digital CMOS optocouplers in SOIC-5 packages. These optocouplers use the latest CMOS IC technology to achieve outstanding performance and very low power consumption. All devices operate over the -40°C to 125°C temperature range.

The ACPL-M71U uses a high-speed LED, and the ACPL-M72U uses a low-current LED for lower power dissipation. The high-speed ACPL-M71U features a 35-ns maximum propagation delay (I_F = 10 mA). The ACPL-M72U optocoupler features very low power. With a low 4-mA LED drive current, the ACPL-M72U typical propagation delay is 60 ns.

Each digital optocoupler has a CMOS detector IC, an integrated photodiode, a high-speed transimpedance amplifier, and a voltage comparator with an output driver.

Broadcom R2Coupler™ isolation products provide the reinforced insulation and reliability needed for high-temperature industrial applications.

Features

- 5V CMOS compatible
- Common-mode rejection 40 kV/ μ s at V_{CM} = 1000V
- Wide industrial temperature range: -40°C to 125°C
- Low propagation delay:
 - High-speed ACPL-M71U: 26 ns at I_F = 10 mA
 - Low-power ACPL-M72U: 60 ns at I_F = 4 mA (typical)
- Worldwide safety approval:
 - UL 1577 recognized, 3750 V_{rms} / 1 min
 - CSA approved
 - IEC/EN/DIN EN 60747-5-5 (for Option x60E)

Applications

- Industrial CANBus communications interface
- Industrial isolated high-speed gate drivers for IGBTs and power MOSFETs
- High-temperature digital signal isolation
- Microcontroller interface
- Digital isolation for A/D and D/A conversion

CAUTION! Take normal static precautions in handling and assembly of this component to prevent damage, degradation, or both that may be induced by ESD. The components featured in this data sheet are not to be used in military or aerospace applications or environments. The components are not AECQ100 qualified and are not recommended for automotive applications.

Functional Block Diagram

ACPL-M71U/ACPL-M72U 6 Vdd Anode 1 Cathode 3

Truth Table

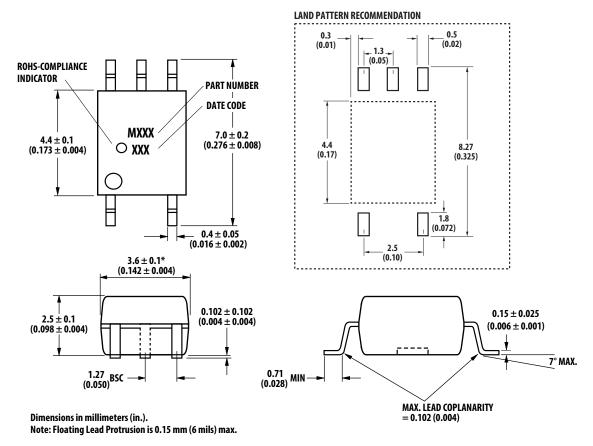
LED	Output (V ₀)
OFF	Н
ON	L

A 0.1-µF bypass capacitor must be connected between pins 4 and 6.

Ordering Information

Part Number	Option RoHS-Compliant	Package	Surface Mount	Tape and Reel	IEC/EN/DIN EN 60747-5-5	Quantity
ACPL-M71U	-000E	SO-5	X			100 per tube
	-500E		X	Х		1500 per reel
ACPL-M72U	-000E	SO-5	X			100 per tube
	-060E		Х		X	100 per tube
	-500E		Х	Х		1500 per reel
	-560E		Х	Х	X	1500 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.


For example, the part number ACPL-M71U-500E describes a device with a surface mount SOIC-5 package; delivered in tape and reel with 1500 parts per reel; and full RoHS compliance.

Option data sheets are available. Contact your Broadcom sales representative or authorized distributor for information.

AV02-3712EN Broadcom

Package Dimensions

ACPL-M71U/ACPL-M72U (JEDEC MO-155 Package)

^{*} Maximum Mold flash on each side is 0.15 mm (0.006 in.).

Recommended Pb-Free IR Profile

The recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Use non-halide flux.

Regulatory Information

The ACPL-M71U and ACPL-M72U are approved by the following organizations.

	Approved under UL 1577, component recognition program up to V_{ISO} = 3750 V_{RMS} expected prior to product release.
CSA	Approved under CSA Component Acceptance Notice #5.
IEC/EN/DIN EN 60747-5-5	

AV02-3712EN Broadcom

Insulation and Safety Related Specifications

Parameter	Symbol	Value	Units	Conditions
Minimum External Air Gap (Clearance)	L(I01)	>5	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	>5	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	mm	Insulation thickness between emitter and detector; also known as distance through insulation.
Tracking Resistance (Comparative Tracking Index)	CTI	>175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa		Material Group (DIN VDE 0109)

IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristics (Option x60E)

Description	Symbol	ACPL-M71U/ ACPL-M72U	Units
Maximum Working Insulation Voltage	V _{IORM}	567	V_{PEAK}
Input to Output Test Voltage, Method b $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ second, Partial Discharge < 5 pC	V _{PR}	1063	V_{PEAK}
Input to Output Test Voltage, Method a $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test, t_{m} = 10 seconds, Partial Discharge < 5 pC	V _{PR}	907	V_{PEAK}
Highest Allowable Overvoltage (Transient Overvoltage, t _{ini} = 60 seconds)	V _{IOTM}	6000	V_{PEAK}
Safety Limiting Values (Maximum values allowed in the event of a failure)			
Case Temperature	T _S	175	Ô
Input Current	I _{s, INPUT}	150	mA
Output Power	P _{s,OUTPUT}	600	mW
Insulation Resistance at T _S , V _{IO} = 500V	R _{IO}	≥ 10 ⁹	Ω

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Condition		
Storage Temperature	T _S	– 55	+150	°C			
Ambient Operating Temperature	T _A	-40	+125	°C			
Supply Voltages	V_{DD}	0	6.5	V			
Output Voltage	Vo	-0.5	V _{DD} + 0.5	V			
Average Forward Input Current	I _F	_	20.0	mA			
Peak Transient Input Current	I _{F(TRAN)}	_	1	Α	< 1-µs pulse width, 300 pps		
(I _F at 1-μs pulse width, <10% duty cycle)		_	80	mA	< 1-µs pulse width,< 10% duty cycle		
Reverse Input Voltage	V _r	_	5	V			
Input Power Dissipation	P _I	_	40	mW			
Output Power Dissipation	Po	_	30	mW			
Lead Solder Temperature	260°C for 10 seconds, 1.6 mm below seating plane						

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Ambient Operating Temperature	T _A	-40	+125	°C
Supply Voltages	V_{DD}	3.0	5.5	V
Forward Input Current	I _{F(ON)}	4.0	15	mA
Forward Off State Voltage	V _{F(OFF)}	_	0.8	V
Input Threshold Current	I _{TH}	_	3.5	mA

Electrical Specifications

Over recommended temperature ($T_A = -40^{\circ}\text{C}$ to +125°C), 3.0V \leq $V_{DD} \leq$ 5.5V. All typical specifications are at $T_A = +25^{\circ}\text{C}$, $V_{DD} = +5\text{V}$.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Figure
Input Capacitance	C _{IN}	_	90	_	pF		
Input Reverse Breakdown Voltage	BV _R	5.0	_	_	V	I _R = 10 μA	
Logic High Output Voltage	V _{OH}	V _{DD} -0.6	_	_	V	I _{OH} = -4 mA	4
Logic Low Output Voltage	V _{OL}	_	_	0.6	V	I _{OL} = 4 mA	3
Logic Low Output Supply Current	I _{DDL}	_	0.9	1.5	mA		
Logic High Output Supply Current	I _{DDH}	_	0.9	1.5	mA		
LED Forward Voltage	V _f	1.45	1.5	1.75	V	I _F = 10 mA, Ta = 25°C	
		1.25	1.5	1.85	V	I _F = 10 mA, Ta = -40°C ~ 125°C	
V _f Temperature Coefficient		_	-1.5	_	mV/°C		

ACPL-M71U High-Speed Mode Switching Specifications

Over recommended temperature ($T_A = -40^{\circ}\text{C}$ to +125°C), 4.5 V \leq V_{DD} \leq 5.5 V. All typical specifications are at $T_A = +25^{\circ}\text{C}$, V_{DD} = 5V.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to Logic Low Output ^a	t _{PHL}	_	26	35	ns	V_{in} = 4.5V to 5.5V, R_{in} = 390 Ω ±5%, C_{in} = 100 pF,	5, 6, 11	a, b, c
Propagation Delay Time to Logic High Output ^a	t _{PLH}	_	26	35	ns	C _L = 15 pF		
Pulse Width Distortion ^b	PWD	_	0	12	ns			
Propagation Delay Skew ^c	t _{PSK}		_	15	ns			
Output Rise Time (10% - 90%)	t _R	_	10	_	ns			
Output Fall Time (90% - 10%)	t _F	_	10	_	ns			
Common Mode Transient Immunity at Logic High Output ^d	CM _H	15	25	_	kV/µs	$V_{in} = 0V R_{in} = 390\Omega \pm 5\%,$ $C_{in} = 100 pF, V_{cm} = 1000V,$ $T_A = 25^{\circ}C$	12	d
Common Mode Transient Immunity at Logic High Output ^e	CM _L	15	25	_	kV/µs	$V_{in} = 4.5V \text{ to } 5.5V,$ $R_{in} = 390\Omega \pm 5\%, C_{in} = 100 \text{ pF},$ $V_{cm} = 1000V, T_A = 25^{\circ}C$	13	е

a. t_{PHL} propagation delay is measured from the 50% (Vin or If) on the rising edge of the input pulse to 0.8V on the falling edge of the V_O signal.
t_{PLH} propagation delay is measured from the 50% (Vin or If) on the falling edge of the input pulse to the 80% level of the rising edge of the V_O signal.

- b. PWD is defined as $|t_{PHL}-t_{PLH}|.$
- c. t_{PSK} is equal to the magnitude of the worst case difference in t_{PHL} and/or t_{PLH} that will be seen between units at any given temperature within the recommended operating conditions.
- d. CM_H is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state.
- $e. \quad CM_L \ is the \ maximum \ tolerable \ rate \ of fall \ of the \ common \ mode \ voltage \ to \ assure \ that \ the \ output \ will \ remain \ in \ a \ low \ logic \ state.$

ACPL-M72U Low Power Mode Switching Specifications

Over recommended temperature (-40° C to +125°C), 3.0V \leq V_{DD} \leq 5.5V. All typical specifications at +25°C and V_{DD} = 5V.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to Logic Low Output ^a	t _{PHL}	_	60	100	ns	I _F = 4 mA, C _L = 15 pF	7, 8, 9, 10, 14	a, b, c
Propagation Delay Time to Logic High Out ^a	t _{PLH}	_	35	100	ns			
Pulse Width Distortion ^b	PWD	_	25	50	ns			
Propagation Delay Skew ^c	t _{PSK}		_	60	ns			
Output Rise Time (10% to 90%)	t _R		10	_	ns			
Output Fall Time (90% to 10%)	t _F	_	10	_	ns			
Common Mode Transient Immunity at Logic High Output ^d	CM _H	25	40	_	kV/µs	Using Broadcom LED driving circuit, V_{IN} = 0V, R_1 = 350 Ω ±5%, R_2 = 350 Ω ±5%, V_{CM} = 1000V, T_A = 25°C	15	d
Common Mode Transient Immunity at Logic High Output ^e	CM _L	25	40	_	kV/µs	Using Broadcom LED driving circuit, V_{IN} = 4.5V to 5.5V, R_1 = 350 Ω ±5%, R_2 = 350 Ω , V_{CM} = 1000V, T_A = 25°C	16	е

a. t_{PHL} propagation delay is measured from the 50% (Vin or If) on the rising edge of the input pulse to 0.8V on the falling edge of the V_O signal. t_{PLH} propagation delay is measured from the 50% (Vin or If) on the falling edge of the input pulse to the 80% level of the rising edge of the V_O signal.

- b. PWD is defined as $|t_{PHL} t_{PLH}|$.
- c. t_{PSK} is equal to the magnitude of the worst case difference in t_{PHL} and/or t_{PLH} that will be seen between units at any given temperature within the recommended operating conditions.
- d. CM_H is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state.
- e. CM_L is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state.

Package Characteristics

All typical at $T_A = 25$ °C.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Input-Output Momentary Withstand Voltage	V _{ISO}	3750	_		V _{rms}	RH \leq 50%, t = 1 min., T _A = 25°C
Input-Output Resistance	R _{I-O}	_	10 ¹⁴	_	Ω	V _{I-O} = 500V dc
Input-Output Capacitance	C _{I-O}	_	0.6	_	pF	f = 1 MHz, T _A = 25°C

AV02-3712EN Broadcom

Performance Plots

Figure 1: Typical Diode Input Forward Current Characteristic

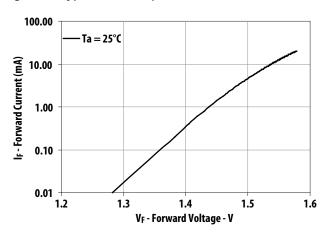


Figure 3: Typical Logic Low Output Voltage vs. Logic Low Output Current

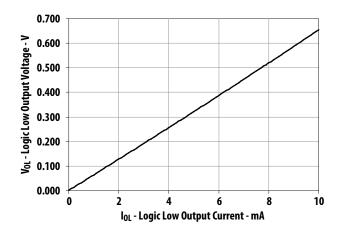


Figure 5: IACPL-M71U (High Speed) Typical Propagation Delay vs. Temperature

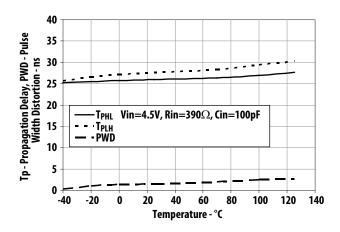


Figure 2: Typical Output Voltage vs. Input Forward Current

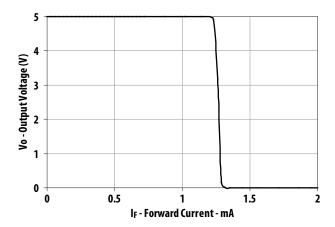


Figure 4: Typical Logic High Output Voltage vs. Logic High Output Current

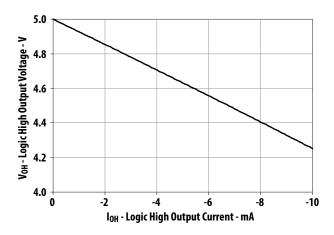


Figure 6: ACPL-M71U (High Speed) Typical Propagation Delay vs. Forward Current – $I_{\rm F}$

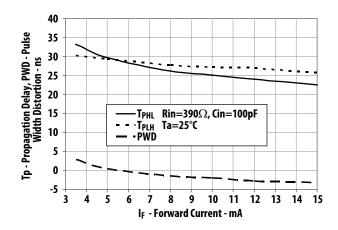


Figure 7: ACPL-M72U (5V) Typical Propagation Delay vs. Temperature

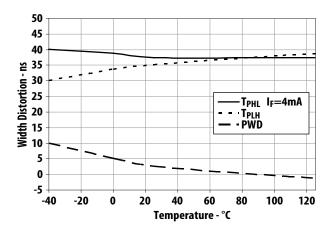


Figure 9: ACPL-M72U (3V) Typical Propagation Delay vs. Temperature

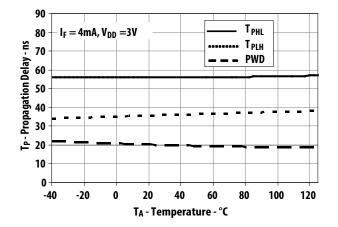


Figure 8: ACPL-M72U (5V) Typical Propagation Delay vs. Forward Current – $I_{\rm F}$

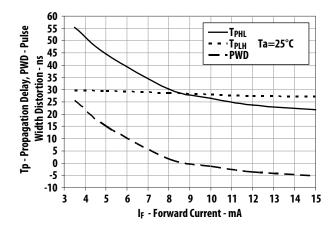
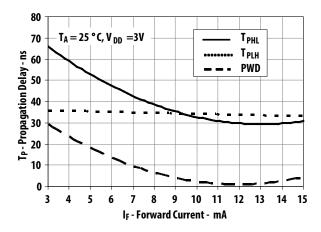



Figure 10: ACPL-M72U (3V) Typical Propagation Delay vs. Input Forward Current

Test Circuit Diagrams

ACPL-M71U High-Speed Mode

Figure 11: High-Speed Mode Test Circuit and Typical Waveform

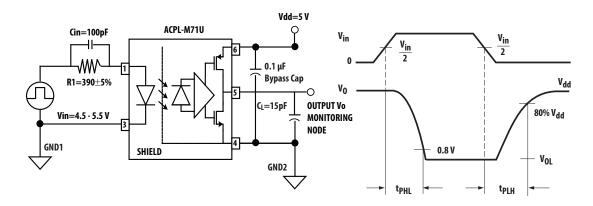


Figure 12: High-Speed Mode CMH Test Circuit and Typical Waveform

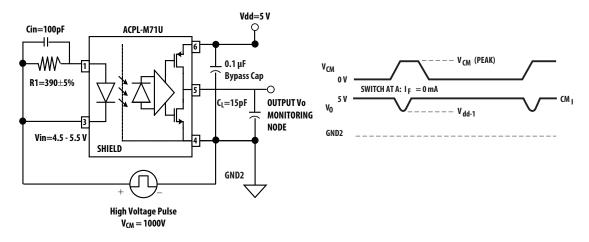
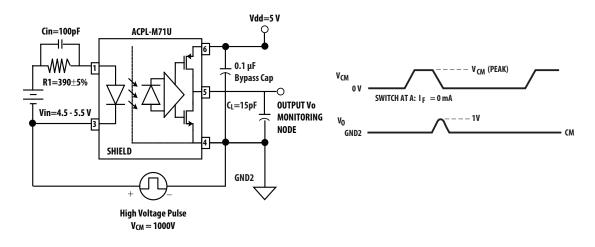



Figure 13: High-Speed Mode CML Test Circuit and Typical Waveform

ACPL-M71U Low-Speed Mode

Figure 14: Low-Power Mode Switching Test Circuit and Typical Waveform

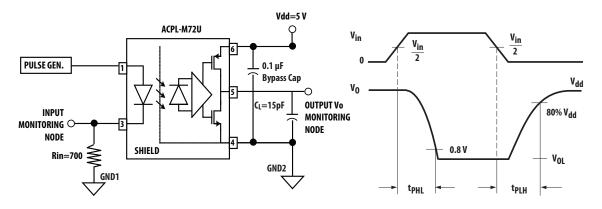


Figure 15: Low-Power Mode High CMR, CMH Test Circuit

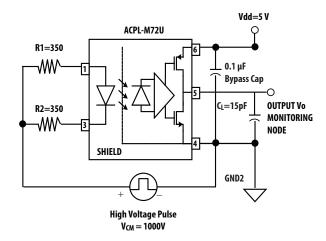
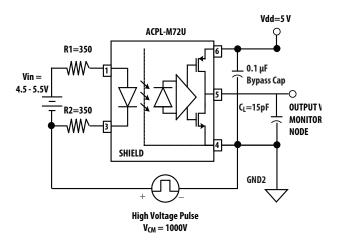
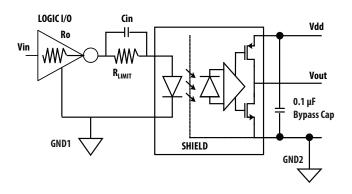
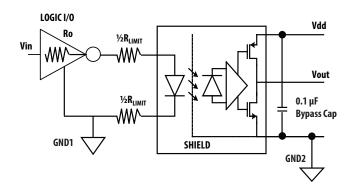




Figure 16: Low-Power Mode High CMR, CML Test Circuit

Application Circuits


Figure 17: Recommended Application Circuit for ACPL-M71U High Speed Performance

Truth Table

V _{in}	LED	V _{out}
L	ON	L
Н	OFF	Н

Figure 18: Recommended Application Circuit for ACPL-M72U Low Power Performance

Truth Table

V _{in}	LED	V _{out}
L	ON	L
Н	OFF	Н

Copyright © 2012–2023 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, go to www.broadcom.com. All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

