

5.5V, 7A Low R_{DSON} Load Switch with Current Monitoring

DESCRIPTION

The MP5087 is a load switch to provide 7A load protection covering 0.5V to 5.5V voltage range. With the small R_{DSON} in tiny package, MP5087 provides very high efficient and space saving solution in notebook and tablet or other portable devices application.

The MP5087 equipped with the very accurate current monitor function. The gain of the current monitor can be scaled to different applications. With the soft start function, the MP5087 can avoid inrush current during circuit start up. MP5087 also provides different functions, like programmable soft start time, output discharge function, OCP and thermal shutdown features.

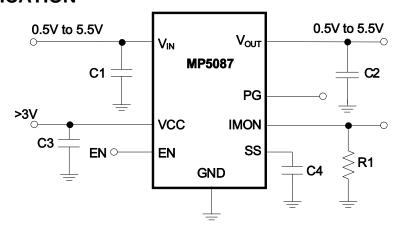
Tiny QFN-12 (2mmx2mm) of MP5087 is available in space saving package.

FEATURES

- Large V_{IN} Range from 0.5V to 5.5V
- <1µA Shutdown Current
- Integrated 10mΩ Low RDSON FETs
- Typical 7A Load Current Range
- Output Current Monitoring Accurate High to 3%
- Push Pull PG Indicator
- Adjustable Start Up Slew Rate
- Output Discharge Function
- <200ns Short-Circuitry Response Protection
- Thermal Protection
- Small QFN-12 (2mmx2mm) Package for Space Saving
- Safety Approvals
 - o UL2367, File No. 20150402-E322138
 - o IEC 62368-1 3rd Edition

APPLICATIONS

- Notebook and Tablet Computers
- Portable Devices
- Solid State Drivers
- Handheld Devices


All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance.

"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

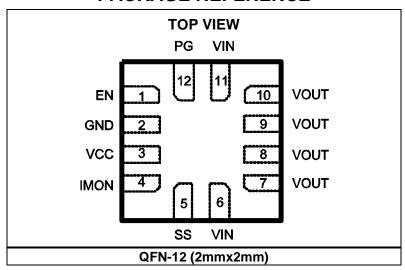
5.5V, 7A Low R_{DSON} Load Switch with Current Monitoring

TYPICAL APPLICATION

ORDERING INFORMATION

Part Number*	Package	Top Marking
MP5087GG	QFN-12 (2mmx2mm)	See Below

^{*} For Tape & Reel, add suffix -Z (e.g. MP5087GG-Z);


TOP MARKING

BDY LLL

BD: product code of MP5087GG;

Y: year code; LLL: lot number;

PACKAGE REFERENCE

© 2025 MPS. All Rights Reserved.

ABSOLUTE MAXIMU	M RATINGS (1)
V _{IN}	0.3V to +6.5V
V _{CC}	0.3V to +6.5V
V _{OUT}	0.3V to +6.5V
EN, SS, IMON	-0.3V to Vcc+0.3 V
Junction Temperature	150°C
Lead Temperature	260°C
Continuous Power Dissipation	
QFN-12 (2mmx2mm)	1.6W
Recommended Operating	g Conditions (3)
Supply Voltage V _{IN}	0.5V to 5.5V
Supply Voltage V _{CC}	
Output Voltage Vout	0.5V to 5.5V
Operating Junction Temp	-40°C to +125°C

Thermal Resistance	е ⁽⁴⁾ <i>Ө</i> <i>У</i> А	0 JC	
QFN-12 (2mmx2mm)	80	16	°C/W

Notes

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-to-ambient thermal resistance θ_{JA} , and the ambient temperature T_A . The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX)- T_A)/ θ_{JA} . Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

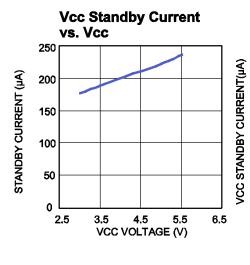
 $V_{IN} = 3.6V$, $V_{CC} = 3.6V$, $T_A = 25$ °C, unless otherwise noted.

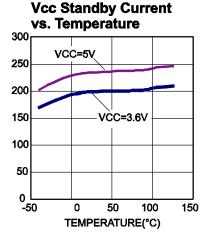
Supply Voltage	Parameters	Symbol	Condition	Min	Тур	Max	Units
Supply Voltage	Input and Supply Voltage Range						
Supply Current Off State Leakage Current IoFF				0.5			V
Off State Leakage Current		Vcc		3		5.5	V
Voc Standby Current Voc Under Voltage Protection Voc Under Voltage Protection Voc Under Voltage Lockout Voc Under Voc Under Voltage Lockout Voc Under Voc U	Supply Current	T			ı	ı	_
Power FET	Off State Leakage Current	l _{OFF}	V _{IN} =5V, EN=0			1	μΑ
Power FET	V _{CC} Standby Current	I _{STBY}				-	μA
Thermal Shutdown and Recovery Shutdown Temperature TSTD 155 °C	Power FET	1	, ,	L	I.	I.	
Shutdown Temperature	ON Resistance	R _{DSON}					mΩ
Hysteresis	Thermal Shutdown and Recovery ⁽⁵	5)					
Under Voltage Protection Vcc_Under Voltage Lockout Vcc_Under Vcc_Under Voltage Lockout Vcc_Under Vcc_Un	Shutdown Temperature	T _{STD}			155		°C
V _{CC} Under Voltage Lockout Threshold V _{CC_UVLO} UVLO Rising Threshold 2.6 2.8 V		T _{HYS}			30		°C
Threshold			,		r	r	
Soft Start SS pull-up current Iss Fixed slew rate 9		Vcc_uvlo	UVLO Rising Threshold		2.6	2.8	V
Soft Start SS pull-up current Iss Fixed slew rate 9	UVLO Hysteresis	V _{UVLO_HYS}			200		mV
Enable	Soft Start				•	•	
Enable	SS pull-up current	Iss	Fixed slew rate		9		μA
$ \begin{array}{ c c c c c c } \hline EN \ Hysteresis & V_{EN_HYS} & 400 & m^{*} \\ \hline \hline \textbf{IMON} & & & & & & & & & & & & & & & & & & &$		1		L	I.	I.	
Current limit Iout R _{IMON} =50kΩ, ramp lout record peak current limit 1.54 1.64 1.74 A Iout=3.75A 44.35 45.73 47.11 Iout=3A 35.49 36.59 37.69 Iout=1.5A(6) 17.39 18.3 19.22 Iout=3.75A 44.3 46.65 49 Iout=3.75A 44.3 46.65 49 Iout=3.75A 44.3 46.65 49 Iout=1.5A(6) 17.54 18.66 19.78 Iout=1.5A(6) Iout=1.	EN Rising Threshold	V _{ENH}		1.3	1.5	1.7	V
Current limit I _{OUT} R _{IMON} =50kΩ, ramp lout record peak current limit 1.54 1.64 1.74 A	· · · · · · · · · · · · · · · · · · ·	V _{EN_HYS}			400		mV
Current Monitor Accuracy Iout	IMON	-					•
VIN=3.6V Iout=3A 35.49 36.59 37.69 Current Monitor Accuracy Iout=3.66) 17.39 18.3 19.22 VIN=1.2V Iout=3.75A 44.3 46.65 49 Iout=3.75A 10.000 35.43 37.3 39.2 Iout=1.5A(6) 17.54 18.66 19.78 Discharge Resistance PG Power Good Rising Threshold VPG_R Voltage gap between Vout and VIN 110 150 250 m' Power Good Hysteresis VPG_H 50 m' Power Good Delay TPG_D 90 µ/s	Current limit	Іоит		1.54	1.64	1.74	А
Current Monitor Accuracy Iout=1.5A(6) 17.39 18.3 19.22 Iout=3.75A 44.3 46.65 49 VIN=1.2V Iout=3A 35.43 37.3 39.2 Iout=1.5A(6) 17.54 18.66 19.78 Discharge Resistance Discharge Resistance RDIS 200 Ω PG Power Good Rising Threshold VPG_R Voltage gap between Vout and VIN 110 150 250 m' Power Good Hysteresis VPG_H 50 m' Power Good Delay TPG_D 90 με			Іоит=3.75А	44.35	45.73	47.11	
V _{IN} =1.2V I _{OUT} =3.75A 44.3 46.65 49 44.3 46.65		V _{IN} =3.6V	Іоит=3А	35.49	36.59	37.69	μΑ
V _{IN} =1.2V I _{OUT} =3.75A 44.3 46.65 49 44.5 44.65 44.65 44.65 44.65 44.65 44.65 44.65 44.65 44.65 44.65 44.65 44.65 44.65 44.6			I _{OUT} =1.5A ⁽⁶⁾	17.39	18.3	19.22	
Iout=1.5A ⁽⁶⁾ 17.54 18.66 19.78	Current Monitor Accuracy		Іоит=3.75А	44.3	46.65	49	
Discharge Resistance Discharge Resistance RDIS 200 Ω PG Power Good Rising Threshold VPG_R and VIN Voltage gap between Vout and VIN 110 150 250 m' Power Good Hysteresis VPG_H 50 m' Power Good Delay TPG_D 90 μs		V _{IN} =1.2V	I _{OUT} =3A	35.43	37.3	39.2	
Discharge Resistance Discharge Resistance RDIS 200 Ω PG Power Good Rising Threshold VPG_R and VIN Voltage gap between Vout and VIN 110 150 250 m' Power Good Hysteresis VPG_H 50 m' Power Good Delay TPG_D 90 μs			I _{OUT} =1.5A ⁽⁶⁾	17.54	18.66	19.78	
Discharge Resistance R _{DIS} 200 Ω PG Power Good Rising Threshold V _{PG_R} Voltage gap between V _{OUT} and V _{IN} 110 150 250 m' Power Good Hysteresis V _{PG_H} 50 m' Power Good Delay T _{PG_D} 90 μs	Discharge Resistance	1		L	I.	I.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Rois			200		Ω
Power Good Rising Threshold V _{PG_R} Voltage gap between V _{OUT} and V _{IN} 110 150 250 m' Power Good Hysteresis V _{PG_H} 50 m' Power Good Delay T _{PG_D} 90 μs			•				
Power Good Delay T _{PG_D} 90 µs	Power Good Rising Threshold	V _{PG_R}		110	150	250	mV
Power Good Delay T _{PG_D} 90 µs	Power Good Hysteresis	V_{PG_H}			50		mV
,	Power Good Delay				90		μs
FOWEL GOOGLEIGH	Power Good High	V _{PG_H}	Vcc=3.3V	3.2			V
	<u> </u>					0.2	V

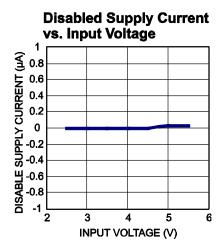
Notes:

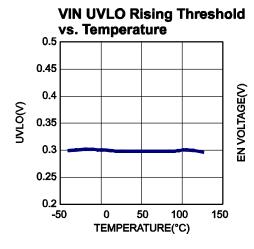
⁵⁾ Guarantee by design.

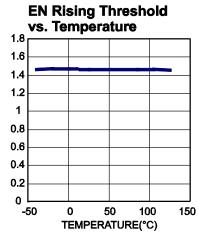
⁶⁾ If load current is smaller than 1.5A, the IMON accuracy will be affected by some internal offset.

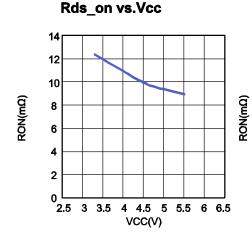

PIN FUNCTIONS

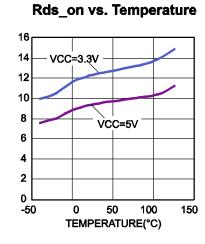

QFN-12 (2mmx2mm) Pin #	Name	Description
1	EN	Enable Input. Pulling this pin below the specified threshold shuts the chip down.
2	GND	Ground.
3	VCC	Supply Voltage to the Control Circuitry.
4	IMON	Output Current Monitor. Provides a voltage proportional to the current flowing through the power device. Place a resistor to ground to set the gain.
5	SS	Soft Start Pin. An external capacitor connected to this pin sets the slew rate of the output voltage soft start period.
6, 11	VIN	Input Power Supply.
7, 8, 9, 10	VOUT	Output to the Load.
12	PG	Power Good Pin. Push-Pull output.

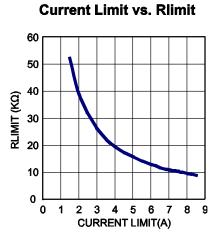

© 2025 MPS. All Rights Reserved.

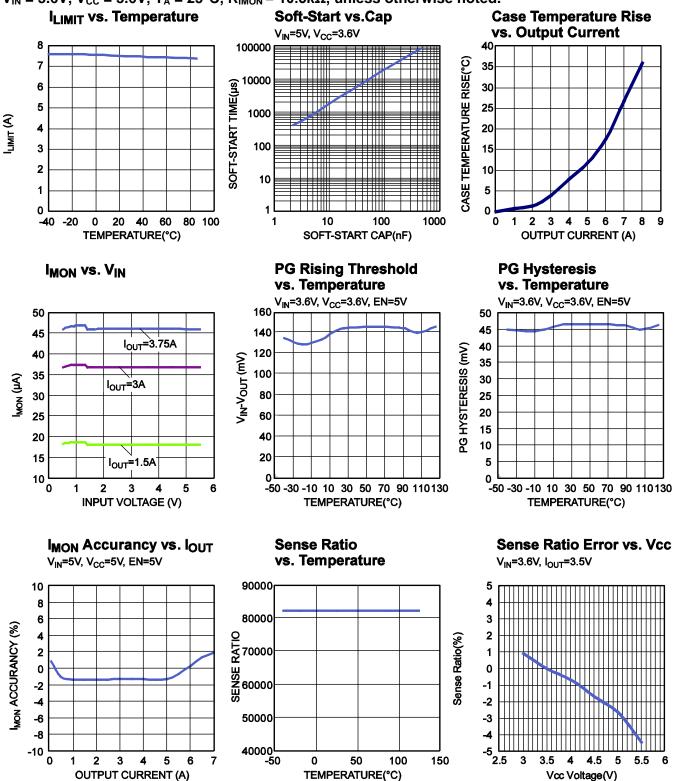


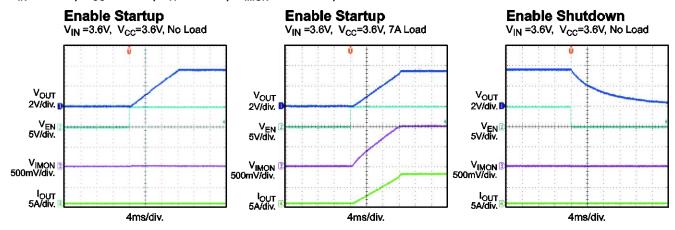

TYPICAL PERFORMANCE CHARACTERISTICS

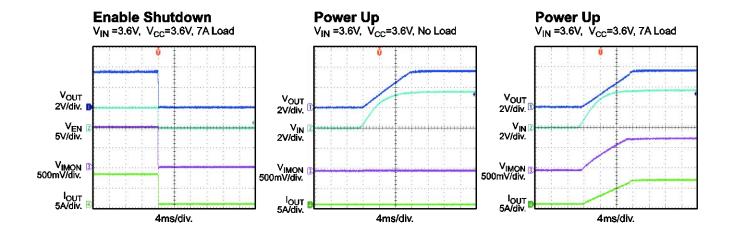


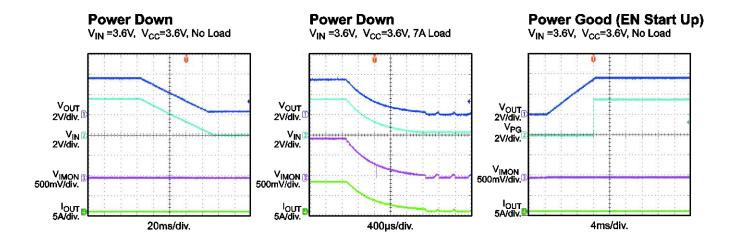




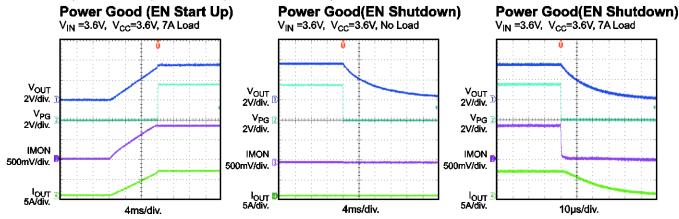


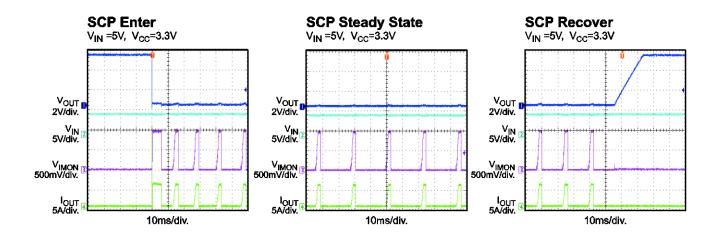


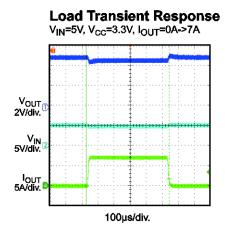

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

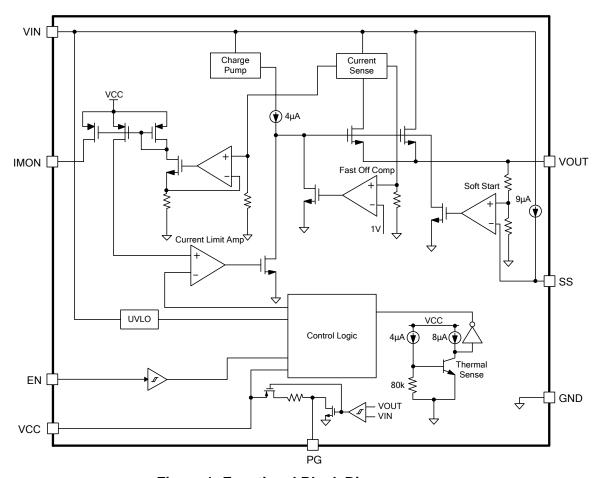


TYPICAL PERFORMANCE CHARACTERISTICS (continued)









TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 1: Functional Block Diagram

OPERATION

The MP5087 is designed to limit the in-rush current to the load when a circuit card is inserted into a live backplane power source, thereby limiting the backplane's voltage drop and the slew rate of the voltage to the load. It provides an integrated solution to monitor the input voltage, output voltage and output current to eliminate the need for an external current power MOSFET, and current sense device.

Enable

When input voltage is greater than the undervoltage lockout threshold (UVLO), typically 0.5V, MP5087 can be enabled by pulling EN pin to higher than 1.5V. Pulling down to ground will disable MP5087.

Current Limit

The MP5087 provides a constant current limit that can be programmed by an external resistor. Once the device reaches its current limit threshold, the internal circuit regulates the gate voltage to hold the current in the power FET constant. The typical response time is about 20µs and the output current may have a small overshoot during this time period.

The pre-set current limit value can be calculated by below equation:

$$I_{Limit} = (1 \div R_{IMON}) \times S$$
 (1)

S is the current sense ratio of MP5087, and this value is typically 82000 in V_{IN} =3.6V. The S is almost a constant value when Vin is changing from 1.2V to 5.5V, and when Vin is smaller than 1.2V, a step change will come to S value, the value will change from 82000 to about 80000. Meanwhile, when Vcc is changing, there is also a little shift on S value, for more information, please refer the curves in typical performance characteristics.

If the current limit block starts to regulate the output current, the power loss on power MOSFET will cause the IC temperature rise. If the junction temperature rose to high enough, it will trigger thermal shutdown. After thermal shutdown happened, it will disable the output until the over temperature fault remove. The over temperature threshold is 155°C and hysteresis is 30°C.

Power-Good Function

The PG pin is the push pull of a MOSFET that can be pulled high to Vcc. The MOSFET turns on with the application of an input voltage so that the PG pin is pulled to GND. After the voltage gap between V_{IN} and V_{OUT} is smaller than 150mV, the PG pin is pulled high after a 90µs delay. When the voltage gap is higher than 200mV, the PG pin will be pulled low. The PG pin has a nominal pull down resistance of 200 Ω and a pull-up resistance of 250K Ω .The maximum sink current when the pin is pulled to GND through the internal pull-down resistor should be <10mA

Short-Circuit Protection

If the load current increases rapidly due to a short circuit, the current may exceed the current limit threshold by a lot before the control loop can respond. If the current reaches an internal secondary current limit level (about 13A), a fast turn-off circuit activates to turn off the power FET. This limits the peak current through the switch to limit the input voltage drop. The total short circuit response time is about 200ns. If fast off works, it will keep off the power FET for 80µs. After that time period, it will re-turn on power FET, if the part is still in short-circuit condition. MP5087 will reduce the current limit to 2/3 of pre-set value, and hold it until the part is so hot and thermal shutdown. After the shortcircuit condition removed, the current limit will recover to the pre-set value automatically.

Output Discharge

MP5087 has output discharge function. This function can discharge the V_{OUT} by internal pull down resistance when IC disabled and the load is very light.

Soft-Start

A capacitor connected to the SS pin determines the soft-start time. There is an internal $9\mu A$ constant current source charge SS cap and ramps up the voltage on the SS pin. The output voltage rises at 3 times the slew rate to the SS voltage.

The soft-start time can be calculated by below equation:

$$T_{SS}(ms) = \frac{1}{3} \times \frac{V_{OUT}(V) \cdot C_{SS}(nF)}{I_{SS}(uA)}$$
 (2)

Tss is the soft-start time, Iss is internal 9µA constant current, Css is external soft-start cap.

The suggestion minimum SS cap should be bigger than 4.7nF. If the SS pin is floated or SS cap is too small, the V_{OUT} rising time will be just limited by power MOS charge time.

APPLICATION INFORMATION

IMON Resistor Selection

The current limit value can be set by IMON resistor. The current limit can be gotten by equation (1).

The current limit threshold is suggested to 10% ~ 20% higher than maximum load current. For example, if the system's full load is 7A, set the current limit to 7.7A.

IMON Capacitor Selection

The internal advanced auto-zero comparator bring a high accuracy of current monitor. The auto-zero will also cause some little jitter on IMON pin. To get a more stable IMON, a small ceramic capacitor can be mounted between IMON and ground. Suggested place an IMON capacitor less than 1nF.

Input Capacitor Selection

A minimum 0.1µF capacitor must be connected to VCC to stabilize the loop.

The MP5087 does not have a specific VIN capacitance requirement. However, the VIN capacitor must be able to absorb the voltage spike caused by the parasitic inductance on the input line to ensure it does not exceed the absolute maximum ratings, especially during hot plug, over-current protection (OCP), or short-circuit protection (SCP).

Soft Start Capacitor Selection

There is an internal 9µA constant current source charge SS cap and ramps up the voltage on the SS pin. The output voltage rises follow the slew rate of SS voltage.

If the inrush on output current reached the current limit during start up (like with large output cap or very large load), MP5087 will limit the output current and the same time, SS time will be increased (Fig 2 and Fig 3).

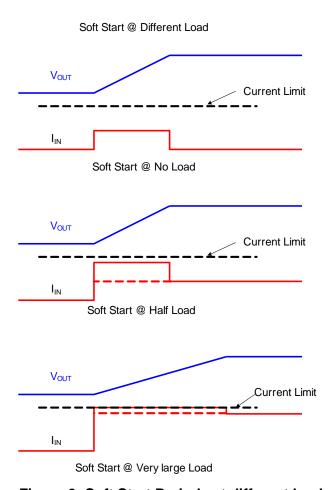


Figure 2: Soft Start Periods at different load

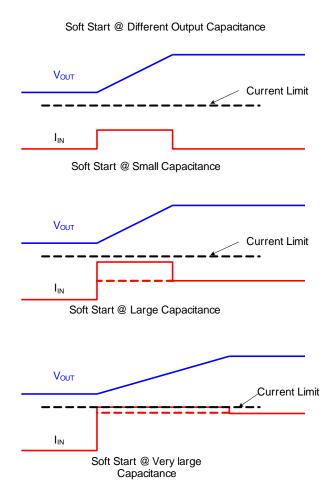


Figure 3: Soft Start Periods at different output capacitance

Design Example

Some design example and are provided below. See Table 1 and Figure 4.

Table 1

V _{IN} (V)	Max Load Range (A)	Rlimit (kΩ)	SS cap (nF)	SS time (ms)
5	3	26.1	22	4
5	5	15.8	47	9
5	7.5	10.5	100	20

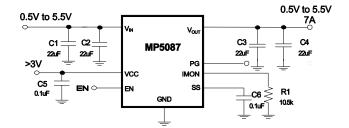
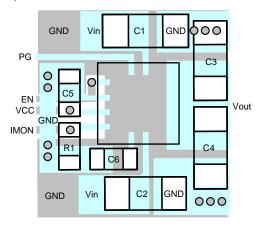
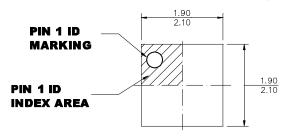
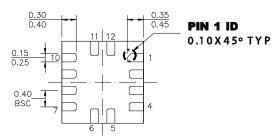


Figure 4: Typical Application Schematic

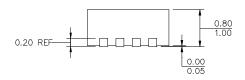
Layout Guide

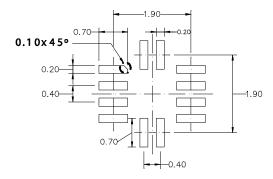
PCB layout is very important to achieve stable operation. Please follow these guidelines and take below figure for reference. Place R_{IMON} close to IMON pin, input cap close to V_{CC} pin. Put enough vias around IC to achieve better thermal performance.


Figure 5: Recommended Layout

PACKAGE INFORMATION


QFN-12 (2mmx2mm)



TOP VIEW

BOTTOM VIEW

SIDE VIEW

RECOMMENDED LAND PATTERN

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS
- 2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH
- 3) LEAD COPLANARITY SHALL BED.10 MILLIMETERS MAX
- 4) JEDEC REFERENCE IS MQ220.
- 5) DRAWING IS NOT TO SCALE

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	7/18/2014	Initial Release	-
1.1	3/2/2017	Updated TPC	6–9
1.2	8/16/2017	Add UL2361, file no. 20150402-E322138	1
1.3	1/15/2018	Customer-specific version, add "EN0.3V to Vcc+0.5V for less than 5ns" description in "ABSOLUTE MAXIMUM RATINGS" section	3
1.4	2/26/2025	In the Features section: • Formatting updates • Added CB Certification IEC 62368-1 3rd edition • Correct the UL number from 2361 to 2367	1
		Added the Input Capacitor Selection section.	14

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.