CALLENT TCS3448 Datasheet

Published by ams-OSRAM AG Tobelbader Strasse 30, 8141 Premstaetten, Austria Phone +43 3136 500-0 ams-osram.com © All rights reserved

TCS3448 Table of contents

CALL OSRAM

Table of contents

1	Gen	eral description 4
	1.1	Key benefits & features5
	1.2	Applications5
	1.3	Block diagram 6
2	Orde	ering information6
3	Pin a	assignment7
	3.1	Pin diagram7
	3.2	Pin description7
4	Abs	olute maximum ratings8
5	Elec	trical characteristics9
6	Opti	cal characteristics10
7	Турі	cal operating characteristics
8	Fune	ctional description14
8	Fun 8.1	Ctional description
8		-
8	8.1	Device architecture
8	8.1 8.2 8.3 8.4	Device architecture
8	8.1 8.2 8.3	Device architecture
8 9	8.1 8.2 8.3 8.4 8.5	Device architecture
	8.1 8.2 8.3 8.4 8.5	Device architecture15Sensor array15GPIO16Interrupt (INT)16LED driver (LDR)16
	8.1 8.2 8.3 8.4 8.5 I²C i	Device architecture 15 Sensor array 15 GPIO 16 Interrupt (INT) 16 LED driver (LDR) 16 nterface 17
	8.1 8.2 8.3 8.4 8.5 I²C i 9.1 9.2 9.3	Device architecture 15 Sensor array 15 GPIO 16 Interrupt (INT) 16 LED driver (LDR) 16 nterface 17 I²C address 17 I²C read transaction 18
	8.1 8.2 8.3 8.4 8.5 I²C i 9.1 9.2 9.3 9.4	Device architecture 15 Sensor array 15 GPIO 16 Interrupt (INT) 16 LED driver (LDR) 16 nterface 17 I²C address 17 I²C write transaction 17 I²C read transaction 18 Timing characteristics 18
	 8.1 8.2 8.3 8.4 8.5 I²C in 9.1 9.2 9.3 9.4 9.5 	Device architecture 15 Sensor array 15 GPIO 16 Interrupt (INT) 16 LED driver (LDR) 16 nterface 17 I²C address 17 I²C write transaction 17 I²C read transaction 18 Timing characteristics 18 Timing diagrams 19
	8.1 8.2 8.3 8.4 8.5 I²C i 9.1 9.2 9.3 9.4	Device architecture 15 Sensor array 15 GPIO 16 Interrupt (INT) 16 LED driver (LDR) 16 nterface 17 I²C address 17 I²C write transaction 17 I²C read transaction 18 Timing characteristics 18
9	 8.1 8.2 8.3 8.4 8.5 I²C in 9.1 9.2 9.3 9.4 9.5 9.6 	Device architecture 15 Sensor array 15 GPIO 16 Interrupt (INT) 16 LED driver (LDR) 16 nterface 17 I²C address 17 I²C write transaction 17 I²C read transaction 18 Timing characteristics 18 Timing diagrams 19

	10.2	Detailed register description	23
11	Арр	lication information	47
	11.1	Schematic	47
	11.2	PCB pad layout	48
	11.3	Application optical requirements	49
12	Pack	kage drawings & markings	50
13	Таре	e & reel information	52
	·		
	Sold	e & reel information	54
14	Sold 14.1	ering & storage information	54 55

TCS3448 14-Channel multi-spectral sensor

1 General description

The TCS3448 is a 14-channel highly versatile, multi-purpose spectral light sensor. It is optimized to sense spectral components of ambient light in the visible range. Such spectral information is used for camera enhancement (CCT, AWB, exposure time).

The spectral response is defined by individual channels covering approximately 380 nm to 1000 nm with 11 channels centered in the visible spectrum (VIS), plus one near-infrared (NIR) and a clear channel. Applications can be assisted to allow classification of ambient light and an integrated flicker detection channel that can automatically flag ambient light flicker at 50/60 Hz as well as buffer data for externally calculating other flicker frequencies.

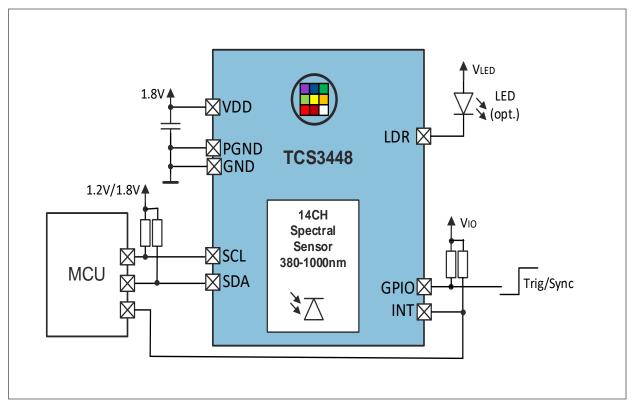
TCS3448 integrates high-precision optical interference filters directly deposited on photodiodes which are embedded in CMOS silicon. A built-in aperture controls the light entering the sensor array to increase accuracy. A programmable digital GPIO and LED driver enable light source and trigger/sync control. Device control and spectral data access is implemented through a serial I²C 1.2 V/1.8 V interface. The device is available in an ultra-low profile package with dimensions of 3.1 mm x 2 mm x 1 mm.

1.1 Key benefits & features

The benefits and features of TCS3448, 14-Channel multi-spectral sensor are listed below:

Table 1:	Added	value	of us	ing	TCS3448
----------	-------	-------	-------	-----	---------

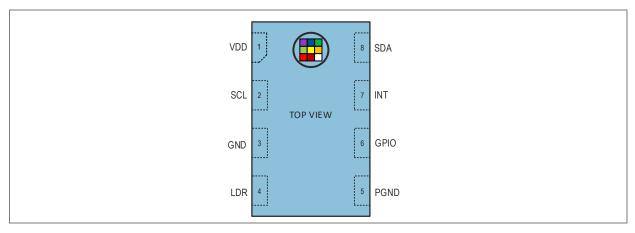
Benefits	Features
Highly versatile multi-purpose spectral sensor	14 channels between 380 nm and 1000 nmReflective, transmissive and emissive applications
Highest sensitivity	Enables ultra-low light operationEnables operation behind dark glass
Low power consumption and minimum I ² C traffic	 1.8 V supply voltage 1.2 V/1.8 V I²C bus voltage Configurable sleep mode Interrupt-driven device
Ultra-high integration	 On chip interference filter technology Integrated LED driver and 6 ADCs 3.1 mm x 2 mm x 1 mm package outline


1.2 Applications

- Accurate ambient light measurement for camera enhancement.
- Calculation of reconstructed spectra, light source ID and ambient light flicker.
- Highly accurate CCT and LUX measurement.

1.3 Block diagram

The functional blocks of this device are shown below:


2 Ordering information

Ordering code	Package	Delivery form	Delivery quantity
TCS34488	OLGA-8	Tape & reel 13-inch	10000 pcs/reel
TCS34488M	OLGA-8	Tape & reel 7-inch	500 pcs/reel

3 Pin assignment

3.1 Pin diagram

Figure 2: Pin diagram of TCS3448 (Top View)

3.2 Pin description

Table 2: Pin description of TCS3448

Pin number	Pin name	Pin type ⁽¹⁾	Description
1	VDD	Р	Positive supply voltage terminal.
2	SCL	DI	Serial interface clock signal line for I ² C interface. Connect pull up resistor to 1.2 V or 1.8 V.
3	GND	Р	Ground. All voltages referenced to GND.
4	LDR	A_I/O	LED current sink input. If not used leave pin open.
5	PGND	Р	Ground. All voltages referenced to GND.
6	GPIO	D_I/O	General purpose input/output. Pin is used to select 1.2 V or 1.8 V I ² C I/O voltage. Please refer to chapter "Selection of I ² C bus interface voltage".
7	INT	DO_OD	Interrupt. Open drain output active low. Connect pull up resistor to 1.8 V. If not used leave pin unconnected.
8	SDA	D_I/O	Serial interface data signal line for I ² C interface. Connect pull up resistor to 1.2 V or 1.8 V.

(1) Explanation of abbreviations:

DI = Digital Input, D_I/O = Digital Input/Output, DO_OD = Digital output, Open drain, P = Power pin, A_I/O = Analog pin

4 Absolute maximum ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Operating Conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. All voltages with respect to GND/PGND. Device parameters are guaranteed at V_{DD}=1.8 V and T_A=25 °C unless otherwise noted.

Symbol	Parameter	Min Max		Unit	Comments
Electrical p	arameters				
V_{DD} / V_{GND}	Supply voltage to ground	-0.3	1.98	V	Applicable for pin VDD
$V_{\text{ANA}_\text{MAX}}$	Analog pins	-0.3	3.6	V	Applicable for pin LDR
V _{IO}	Digital pins	-0.3	3.6	V	Applicable for pins GPIO and INT
V _{BUS}	Digital pins	-0.3	1.98	V	Applicable for pins SCL and SDA
I _{SCR}	Input current (latch-up immunity)	±1	00	mA	AEC-Q100-004E
lo	Output terminal current	-1	20	mA	
Electrostati	ic discharge				
ESD _{HBM}	Electrostatic discharge HBM	±2	000	V	JS-001-2017
ESD_{CDM}	Electrostatic discharge CDM	±5	500	V	JS-002-2018
Temperatur	re ranges and storage conditions				
T _A	Operating ambient temperature	-30	85	°C	
T _{STRG}	Storage temperature range	-40	85	°C	
T _{BODY}	Package body temperature		260	°C	IPC/JEDEC J-STD-020 ⁽¹⁾
R _{HNC}	Relative humidity (non- condensing)	5	85	%	
MSL	Moisture sensitivity level	:	3		Maximum floor life time of 168h

Table 3: Absolute maximum ratings of TCS3448

(1) The reflow peak soldering temperature (body temperature) is specified according to IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices." The lead finish for Pb-free leaded packages is "Matte Tin" (100 % Sn).

5 Electrical characteristics

All limits are guaranteed. The parameters with Min and Max values are guaranteed with production tests or SQC (Statistical Quality Control) methods. All voltages with respect to GND/PGND. Device parameters are guaranteed at V_{DD} =1.8 V and T_A=25 °C unless otherwise noted. While the device is operational across the temperature range, functionality will vary with temperature.

Conditions Symbol Parameter Min Тур Max Unit V V_{DD} Supply voltage 1.7 1.8 1.98 Operating free-air T_A -30 25 85 °C temperature⁽¹⁾ **Power consumption** VDD=1.8 V; T_A =25 °C μA 210 280 Active mode⁽³⁾ VDD=1.8 V; T_A =25 °C IDD Supply current⁽²⁾ 40 60 μA Idle mode⁽⁴⁾ VDD=1.8 V; T_A =25 °C 0.7 5 μA Sleep mode⁽⁵⁾ **Digital pins** Vbus1.2 Vbus I/O voltage Vbus = 1.2 V 1.08 1.2 1.32 V Vbus1.8 Vbus I/O voltage Vbus = 1.8 V 1.62 1.8 1.98 V VIL-INT and GPIO input low 0.54 ٧ INT/GPIO voltage VIH-INT and GPIO input high v 0.84 INT/GPIO voltage SCL, SDA input low VIL1-Vbus = 1.2 V or 1.8 V -0.1 x Vbus 0.3 x Vbus V SCL/SDA voltage VIH-SCL, SDA input high Vbus = 1.2 V or 1.8 V 0.7 x Vbus V SCL/SDA voltage INT, SDA output low VOL 6 mA sink current 0.4 V voltage CI Input pin capacitance 10 pF Leakage current into SCL, lleak -5 5 μA SDA, INT pins GPIO Maximum capacitive load CLOAD 20 pF GPIO

Table 4: Electrical characteristics of TCS3448

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
LED driver						
		I_LDR= 4 mA ; LED_HALF = "0"			240	mV
		I_LDR= 4 mA ; LED_HALF = "1"			130	
V_LDR	LDR compliance voltage	I_LDR = 134 mA ; LED_HALF = "0"			280	
		I_LDR = 134 mA ; LED_HALF = "1"			180	- mV

(1) While the device is operational across the temperature range, functionality will vary with temperature.

(2) Supply current values are shown at the VDD pin and do not include current through pin LDR.

(3) Active state occurs during active integration (PON = "1"; ALS_EN = "1"). If wait is enabled (WEN = "1"), supply current is lower during the wait period.

(4) Idle state occurs when PON = "1" and all functions are disabled.

(5) Sleep state occurs when PON = "0" and I²C bus is idle. If I²C traffic is active device automatically enters idle mode.

6 Optical characteristics

Parameters listed under Test Level 4 are guaranteed with production tests and SQC (Statistical Quality Control). Parameters listed under Test Level 3 are measured in-line with transparent monitor glasses. Parameters listed under Test Level 2 are measured in lab bench characterization. Parameters listed under Test Level 1 are guaranteed by design. All Test Levels are measured with $V_{DD} = 1.8$ V and $T_A = 25$ °C unless otherwise noted. While the device is operational across the temperature range, functionality will vary with temperature.

Table 5: TCS3448 filter wavelength summary

Channel	Peak wav	elength [nm] ⁽¹⁾⁽	2)	Full width half maximum [nm]	Test level
Channel	(min)	λp (typ)	(max)	(typ)	
F1	397	407	417	28	2+3
F2	414	424	434	29	2+3
FZ	440	450	460	67	2+3
F3	463	473	483	38	2+3
F4	506	516	526	48	2+3
FY	550	560	570	123	2+3
F5	536	546	556	44	2+3
FXL	586	596	606	93	2+3

Channel	Peak wavelength [nm] ⁽¹⁾⁽²⁾			Full width half maximum [nm]	Test level
Channel	(min)	λp (typ)	(max)	(typ)	
F6	626	636	646	58	2+3
F7	677	687	697	63	2+3
F8	738	748	758	77	2+3
NIR	845	855	865	61	2+3

(1) Peak Wavelength and Full Width Half Max is validated by smoothed/averaged results from spectral scans under diffused light with a reference monochromator in ams OSRAM optical lab. Please observe that comparison measurements between two monochromators in different optical labs will first require correlation measurements between these two monochromators.

(2) Repeated temperature stress during e.g. soldering may alter measurements results and optical performance.

Symbol	Parameter ⁽¹⁾⁽²⁾	Conditions	Min	Тур	Мах	Unit	Test level
R _{e_F1}	Irradiance responsivity channel F1	LED_396 nm ; Ee= 155 mW/m² LED_408 nm ; Ee= 155 mW/m²	6108	8144	10180	counts	4
R_{e_F2}	Irradiance responsivity channel F2	LED_408 nm ; Ee= 155 mW/m² LED_448 nm ; Ee= 155 mW/m²	1871	2495	3118	counts	4
R_{e_FZ}	Irradiance responsivity channel FZ	LED_428 nm ; Ee= 155 mW/m² LED_480 nm ; Ee= 155 mW/m²	2122	2830	3536	counts	4
R_{e_F3}	Irradiance responsivity channel F3	LED_448 nm ; Ee= 155 mW/m² LED_500 nm ; Ee= 155 mW/m²	711	949	1185	counts	4
$R_{e_{F4}}$	Irradiance responsivity channel F4	LED_500 nm ; Ee= 155 mW/m² LED_534 nm ; Ee= 155 mW/m²	3002	4003	5003	counts	4
R_{e_FY}	Irradiance responsivity channel FY	LED_534 nm ; Ee= 155 mW/m² LED_593 nm ; Ee= 155 mW/m²	2989	3985	4981	counts	4
R_{e_F5}	Irradiance responsivity channel F5	LED_531 nm ; Ee= 155 mW/m² LED_594 nm ; Ee= 155 mW/m²	1238	1651	2063	counts	4
R_{e_FXL}	Irradiance responsivity channel FXL	LED_593 nm ; Ee= 155 mW/m² LED_628 nm ; Ee= 155 mW/m²	3905	5206	6508	counts	4
$R_{e_{F6}}$	Irradiance responsivity channel F6	LED_618 nm ; Ee= 155 mW/m² LED_665 nm ; Ee= 155 mW/m²	2768	3690	4613	counts	4
R _{e_F7}	Irradiance responsivity channel F7	LED_685 nm ; Ee= 155 mW/m² LED_715 nm ; Ee= 155 mW/m²	4403	5872	7339	counts	4

Table 6: TCS3448 irradiance responsivity of spectral channels, AGAIN: 1024x, int. time: 27.8 ms

Symbol	Parameter ⁽¹⁾⁽²⁾	Conditions	Min	Тур	Мах	Unit	Test level
R _{e_F8}	Irradiance responsivity channel F8	LED_715 nm ; Ee= 155 mW/m² LED_766 nm ; Ee= 155 mW/m²	578	1095	1722	counts	4
$R_{e_{NIR}}$	Irradiance responsivity channel NIR	LED_849 nm ; Ee= 155 mW/m² LED_903 nm ; Ee= 155 mW/m²	6002	8002	10003	counts	4
$R_{e_{FD}}$	Irradiance responsivity channel Flicker	LED_593 nm ; Ee= 155 mW/m² LED_766 nm ; Ee= 155 mW/m² FD_GAIN=64x	3373	4497	5621	counts	4
R _{e_VIS}	Irradiance responsivity channel VIS	LED_396 nm ; Ee= 155 mW/m ² LED_766 nm ; Ee= 155 mW/m ² 2 VIS PDs read-out	847	1129	1411	counts	4

(1) Irradiance responsivity is measured under diffused light.

(2) Repeated temperature stress during e.g. soldering may alter measurements results and optical performance.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	Test level
Dark_1 ⁽²⁾	Dark ADC count value	Ee = 0 μ W/cm ² AGAIN: 512x Integration time: 98 ms		0	5	counts	4
		AGAIN: 0.5x	2.71 ⁽¹⁾	2.9	3.06 ⁽¹⁾		2
-	AGAIN: 1x	6.61 ⁽¹⁾	7.05	7.41 ⁽¹⁾		2	
		AGAIN: 2x	14.49 ⁽¹⁾	15.3	16.11 ⁽¹⁾	See	2
		AGAIN: 4x	23.5	31.4	38.8	note ⁽⁴⁾	4
		AGAIN: 8x	53.4	61.05	68.4		4
		AGAIN: 16x	115.6	123.02	130.7		4
Gain ratio ⁽³⁾	Optical gain ratios, relative to 128x gain setting	AGAIN: 32x	1/4.16	1/4.04	1/3.89	-	4
		AGAIN: 64x	1/2.06	1/2	1/1.91		4
		AGAIN: 128x		1 ⁽³⁾			4
		AGAIN: 256x	1.91	2.05	2.19		4
		AGAIN: 512x	4.01	4.3	4.78		4
		AGAIN: 1024x	7.09	8.3	9.43		4
		AGAIN: 2048x	12.1	17.6	22.9	·	4
ADC noise ⁽⁵⁾		White LED, 2700K Integration time: 100 ms		0.05		% full scale	1
t _{int}	Typical integration time ⁽⁶⁾	ASTEP = 599 ATIME = 29		50		ms	1

Table 7: Optical characteristics of TCS3448, AGAIN: 128x, integration time: 11 ms (unless otherwise noted)

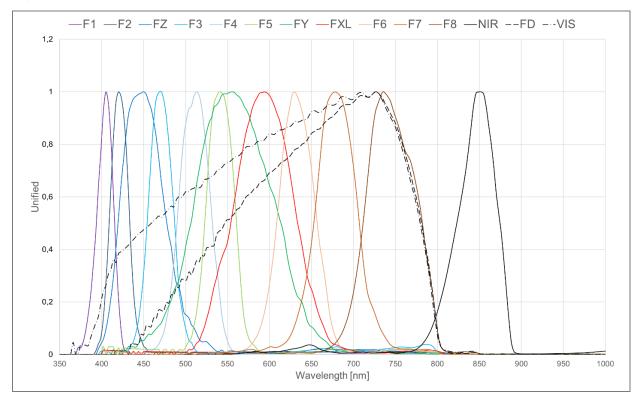
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	Test level
t _{ASTEP}	Integration time step size	ASTEP = 999		2.78		ms	1
h _{ca}	Half cone angle ⁽⁷⁾	On the sensor		37		deg	1

(1) Test light irradiance of ATE too small for measurement of gain ratio variation. Variation has been measured during lab bench characterization.

(2) The typical 3-sigma distribution is between 0 and 1 counts for AGAIN setting of 16x.

(3) The gain ratios are relative to 128x gain setting. The ratio states the worst value measured over the 6 channels.

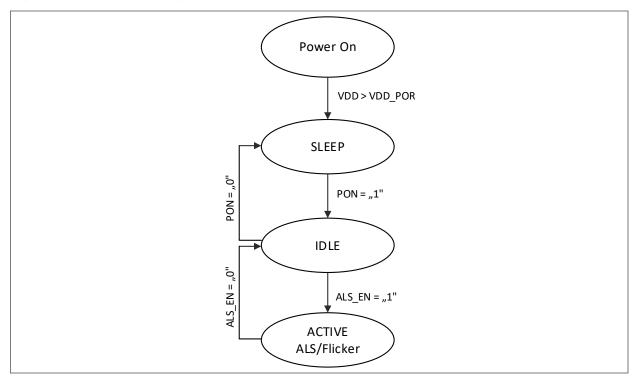
(4) AGAIN ratio 0.5x to 16x is multiplied by 1000 for easier readability.


(5) ADC noise is calculated as the standard deviation of relative to full scale.

(6) Integration time, in milliseconds, is equal to: (ATIME + 1) x (ASTEP + 1) x 2.78 µs.

(7) Simulated value for center photodiode.

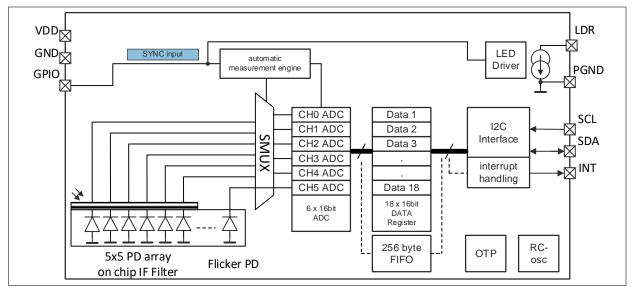
7 Typical operating characteristics


Figure 3: Typical spectral responsivity

8 Functional description

Upon power-up (POR), the device initializes. During initialization (typically 200 µs), the device will deterministically send NAK on I²C and cannot accept I²C transactions. All communication with the device must be delayed and all outputs from the device must be ignored including interrupts. After initialization, the device enters the SLEEP state. In this operational state, the internal oscillator and other circuitry are not active, resulting in ultra-low power consumption. If an I²C transaction occurs during this state, the I²C core wakes up temporarily to service the communication. Once the Power ON bit, "PON", is enabled, the device enters the IDLE state in which the internal oscillator and attendant circuitry are active, but power consumption remains low. Whenever the ALS measurement is enabled (ALS_EN = "1"), the device returns to the IDLE state. If the ALS measurement is disabled (ALS_EN = "0"), the device returns to the IDLE state. The figure below describes a simplified state diagram and the typical supply currents in each state.

If Sleep after Interrupt is enabled (SAI = "1" in register 0xC7), the state machine will enter SLEEP when an interrupt occurs. Entering SLEEP does not automatically change any of the register settings (e.g. PON bit is still high, but the normal operational state is over-ridden by SLEEP state). SLEEP state is terminated when the SAI_ACTIVE bit is cleared (the status bit is in register 0xBC and the clear status bit is in register 0xFA).


Figure 4: Simplified state diagram

TCS3448 Functional description

8.1 Device architecture

The device features six independent 16-bit ADCs. Gain and integration time of the six ADCs can be adjusted with the I²C interface. A wait time can be programed to automatically set a delay between two consecutive ALS measurements and to reduce overall power consumption. Once a measurement is started, the device is automatically processing the channels and storing the measurement data on chip in the corresponding data registers.

8.2 Sensor array

The device features a 5 x 5-photodiode array. On top and below the photodiode array there are two photodiodes with dedicated functions such as flicker detection ("FD") and near-infrared response ("NIR"). The photodiode "C" represents a photodiode without filter and is responsive in the visible spectral range ("VIS").

CALL OSRAM

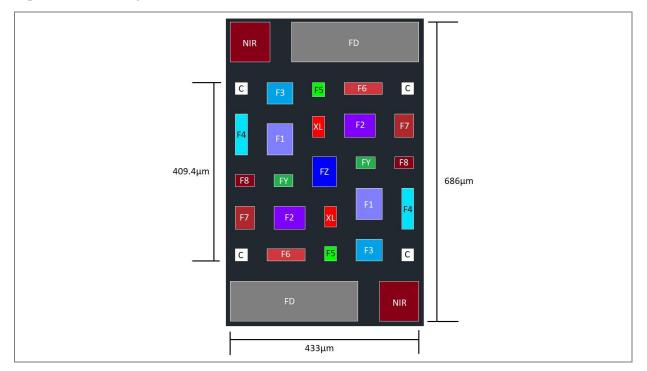


Figure 6: Sensor array

8.3 GPIO

The GPIO can be used synchronization input to start/stop the ALS measurement. It also allows synchronizing the LED driver (LDR) with an external start/stop signal. Default state of the GPIO is "output".

8.4 Interrupt (INT)

The interrupt (INT) can be used to define thresholds and read-out the device only when the channel threshold has been reached. The pin is active low.

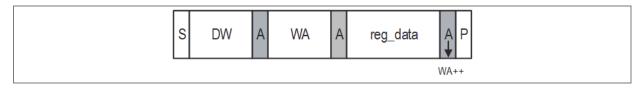
8.5 LED driver (LDR)

The LED driver is programmable and can be used to drive external LEDs. It is also possible to synchronize the LED driver with an external start/stop signal via pin GPIO.

9 I²C interface

The device uses I²C serial communication protocol for communication. The device supports 7bit chip addressing and both standard and full-speed clock frequency modes. Read and Write transactions comply with the standard set by Philips (now NXP). Internal to the device, an 8-bit buffer stores the register address location of the desired byte to read or write. This buffer autoincrements upon each byte transfer and is retained between transaction events (i.e. valid even after the master issues a STOP command and the I²C bus is released). During consecutive Read transactions, the future/repeated I²C Read transaction may omit the memory address byte normally following the chip address byte; the buffer retains the last register address +1. All 16-bit fields have a latching scheme for reading and writing. In general, it is recommended to use I²C bursts whenever possible, especially in this case when accessing two bytes of one logical entity. When reading these fields, the low byte must be read first, and it triggers a 16-bit latch that stores the 16-bit field. The high byte must be read immediately afterwards. When writing to these fields, the low byte must be read immediately followed by the high byte. Reading or writing to these registers without following these requirements will cause errors.

9.1 I²C address


Table 8: TCS3448 I²C slave address

Device	I ² C address
TCS3448	0x59

9.2 I²C write transaction

A Write transaction consists of a START, CHIP-ADDRESSWRITE, REGISTER-ADDRESS WRITE, DATA BYTE(S), and STOP (P). Following each byte (9th clock pulse) the slave places an ACKNOWLEDGE/NOT- ACKNOWLEDGE (A/N) on the bus. If the slave transmits N, the master may issue a STOP.

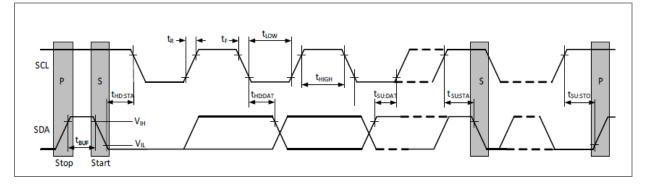
Figure 7: I²C byte write

9.3 I²C read transaction

A Read transaction consists of a START, CHIP-ADDRESSWRITE, REGISTER-ADDRESS, RESTART, CHIP-ADDRESSREAD, DATA BYTE(S), and STOP. Following all but the final byte the master places an ACK on the bus (9th clock pulse). Termination of the Read transaction is indicated by a NACK being placed on the bus by the master, followed by STOP.

Figure 8: I²C read

9.4 Timing characteristics


Parameters listed under Test Level 4 are guaranteed with production tests and SQC (Statistical Quality Control). Parameters listed under Test Level 3 are measured in-line with transparent monitor glasses. Parameters listed under Test Level 2 are measured in lab bench characterization. Parameters listed under Test Level 1 are guaranteed by design. All Test Levels are measured with VDD = 1.8 V and $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Min	Тур	Мах	Unit	Test level
f _{SCL}	I ² C clock frequency			1	MHz	4
t _{BUF}	Bus free time between start and stop condition	1.3				1
thd;sta	Hold time after (repeated) start condition. After this period, the first clock is generated.	0.6			_	1
tsu;sta	Repeated start condition setup time	0.6			μs	1
tsu;sto	Stop condition setup time	0.6			_	1
tLOW	SCL clock low period	1.3			_	1
tніgн	SCL clock high period	0.6			_	1
thd;dat	Data hold time	0				1
t _{SU;DAT}	Data setup time	100			_	1
tF	Clock/data fall time			300	- ns	1
t _R	Clock/data rise time			300	_	1

Table 9: I²C timing characteristics

9.5 Timing diagrams

Figure 9: I²C slave timing diagram

9.6 Selection of I²C bus interface voltage¹

Only once, 600 μ s after startup, the voltage level at the GPIO pin will be measured. There is no I²C communication possible before 600 μ s. "Startup" is determined by a "Power on Reset" at the VDD pin.

If the voltage level at the GPIO pin is higher than 1.5 V (\pm 0.15 V), 1.8 V is selected as I/O voltage for SCL and SDA pins. If the voltage level at the GPIO pin lower than 1.5 V (\pm 0.15 V), 1.2 V is selected as I/O voltage for SCL and SDA pins.

If the GPIO pin is connected to VSS, the I/O voltage for SCL and SDA pins will always be 1.2 V.

After Startup and GPIO pin scan (which takes 600 μ s) the GPIO pin is configured as open drain I/O as known from pin-compatible earlier products.

It is NOT allowed to leave the GPIO pin floating. It shall always be connected to VSS or VBUS. VBUS is usually identical to VDD of the host processor but can also be a separate supply rail for the I²C bus.

For exact I/O voltage levels please refer to Electrical characteristics.

¹ ams OSRAM patents pending.

10 Register description

The device is controlled and monitored by registers accessed through the l²C serial interface. These registers provide device control functions and can be read to determine device status and acquire device data.

The register set is summarized below. The values of all registers and fields that are listed as reserved or are not listed must not be changed at any time. Two-byte fields are always latched with the low byte followed by the high byte. The "Name" column illustrates the purpose of each register by highlighting the function associated to each bit. The bits are shown from MSB (D7) to LSB (D0). GRAY fields are reserved and their values must not be changed at any time.

In order to access registers from 0x58 to 0x66 bit REG_BANK in register CFG0 (0xBF) needs to be set to "1".

10.1 Register overview

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>
0x58	AUXID		-		-		AUXID	[3:0]	
0x59	REVID						F	REVID [2:0]	
0x5A	ID				ID	[7:0]			
0x66	CFG12						AL	S_TH_CH	2:0]
0x80	ENABLE		FDEN		SMUXEN	WEN		ALS_EN	PON
0x81	ATIME				ATIM	IE [7:0]		_	
0x83	WTIME				WTIN	1E [7:0]			
0x84	- ALS_TH_L		ALS_TH_L_LSB [7:0]						
0x85	- ALS_IH_L		ALS_TH_L_MSB [7:0]						
0x86	- ALS_TH_H		ALS_TH_H_LSB [7:0]						
0x87	ALS_III_II				ALS_TH_I	H_MSB [7:0]			
0x93	STATUS	ASAT				AINT	FINT		SINT
0x94	ASTATUS	ASAT_ STATUS					AGAIN_STA	TUS [3:0]	
0x95	- ADATA0				ADATA	\0_L [7:0]			
0x96	ADATAU		ADATA0_H [7:0]						
0x97	- ADATA1		ADATA1_L [7:0]						
0x98	ADATAT		ADATA1_H [7:0]						
0x99	- ADATA2				ADATA	2_L [7:0]			
0x9A	ADATAZ				ADATA	.2_H [7:0]			

Table 10: Register overview

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>		
0x9B			ADATA3_L [7:0]								
0x9C	ADATA3		ADATA3_H [7:0]								
0x9D					ADATA	4_L [7:0]					
0x9E	ADATA4		ADATA4_H [7:0]								
0x9F			ADATA5_L [7:0]								
0xA0	ADATA5				ADATA	\5_H [7:0]					
0xA1					ADATA	A6_L [7:0]					
0xA2	ADATA6				ADATA	A6_H [7:0]					
0xA3					ADATA	47_L [7:0]					
0xA4	ADATA7				ADATA	\7_H [7:0]					
0xA5					ADATA	48_L [7:0]					
0xA6	ADATA8				ADATA	\8_H [7:0]					
0xA7	ADATA9				ADATA	49_L [7:0]					
0xA8	ADATA9				ADATA	\9_H [7:0]					
0xA9	ADATA10	_			ADATA	10_L [7:0]					
0xAA	ADATATO				ADATA	10_H [7:0]					
0xAB	ADATA11	_			ADATA	.11_L [7:0]					
0xAC	ADATATI				ADATA	11_H [7:0]					
0xAD	ADATA12	_			ADATA	12_L [7:0]					
0xAE	ADATATZ				ADATA	12_H [7:0]					
0xAF	ADATA13				ADATA	13_L [7:0]					
0xB0	ADATATS				ADATA	13_H [7:0]					
0xB1	ADATA14				ADATA	14_L [7:0]					
0xB2					ADATA	14_H [7:0]					
0xB3	ADATA15				ADATA	15_L [7:0]					
0xB4	ADATAIS				ADATA	15_H [7:0]					
0xB5	ADATA16				ADATA	16_L [7:0]					
0xB6	<i>ND/</i> (I/(I0				ADATA	16_H [7:0]					
0xB7	ADATA17				ADATA	17_L [7:0]					
0xB8					ADATA	17_H [7:0]					
0x90	STATUS 2		AVALID		ASAT_ DIG	ASAT_ ANA		FDSAT _ANA	FDSAT_ DIG		
0x91	STATUS 3			INT_ALS_H	INT_AL S_L						
0xBB	STATUS 5					SINT _FD	SINT _SMUX				
0xBC	STATUS 4	FIFO_ OV		OVTEMP	FD_TRI G		ALS_TRI G	SAI_ ACT	INT_BUS Y		
0xBF	CFG 0			LOW_ POWER	REG_ BANK		WLONG				

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>	
0xC6	CFG1					AGAIN[4:0]				
0xC7	CFG3				SAI					
0xF5	CFG6					SMUX_ MD [4:3]				
0xC9	CFG8	FIFO_TH [[7:6]							
0xCA	CFG9		SIEN _FD		SIEN _SMUX					
0x65	CFG10						F	D_PERS [2	2:0]	
0xCF	PERS						APERS	[3:0]		
0x6B	GPIO					gpio_ INV	GPIO_ IN_EN	GPIO_ OUT	GPIO_ IN	
0xD4	- ASTEP				AST	EP [7:0]				
0xD5	ASTEI				ASTE	EP [15:8]				
0xD6	CFG20	FD_FIF O_8b	auto_	_SMUX						
0xCD	LED	LED_AC T								
0xD7	AGC_GAIN_ MAX		AGC_FD_GAIN_MAX [7:4]							
0xDE	AZ_CONFIG				AT_NTH_IT	ERATION [7:0]				
0xE0	FD_TIME_1				FD_T	IME [7:0]				
0xE2	FD_TIME_2			FD_GAIN [7:	3]		FC	D_TIME [10	:8]	
0xDF	FD_CFG0	FIFO_W RITE_F D								
0xE3	FD_STATUS			FD_ VALID	FD_ SAT	FD_ 120Hz_ VALID	FD_ 100Hz_ VALID	FD_ 120Hz	FD_ 100Hz	
0xF9	INTENAB	ASIEN				ALS_IEN	FIEN		SIEN	
0xFA	CONTROL					SW_ RESET	ALS_MA N_AZ	FIFO_ CLR	CLEAR_ SAI_ACT	
0xFC	FIFO_MAP		FIF	O_WRITE_CH	15_DATA –	FIFO_WRITE_C	H0_DATA [6	:1]	ASTATU S	
0xFD	FIFO_LVL				FIFO_	LVL [7:0]				
0xFE	- FDATA				FDAT	A_L [7:0]				
0xFF	IDAIA				FDAT/	A_H [15:8]				

10.2 Detailed register description

For easier readability, the detailed register description is done in groups of registers related to dedicated device functions. This is not necessarily related to its register address.

Explanation of register access abbreviations: RW = Read or write R = Read only W = Write only SC = Self-clearing after access

10.2.1 Enable and configuration registers

Table 11: ENABLE register

Addr: (0x80	ENABLE		
Bit	Bit name	Default	Access	Bit description
7	Reserved	0	RW	Reserved
				Flicker Detection Enable.
6	FDEN	0	RW	0: Flicker Detection disabled.
				1: Flicker Detection enabled.
5	Reserved	0	RW	Reserved
				SMUX Enable.
4	SMUXEN	0	RW	1: Starts SMUX command.
4	SMOXEN	U		Note: This bit gets cleared automatically as soon as SMUX operation is finished.
				Wait Enable.
3	WEN	0	RW	0: Wait time between two consecutive ALS measurements disabled.
				1: Wait time between two consecutive ALS measurements enabled.
2	Reserved	0	RW	Reserved
				ALS Measurement Enable.
1	ALS_EN	0	RW	0: ALS measurement disabled.
				1: ALS measurement enabled.
				Power ON.
				0: TCS3448 disabled.
0	PON	0	RW	1: TCS3448 enabled.
				Note: When bit is set, internal oscillator is activated, allowing timers and ADC channels to operate.

10.2.1.1 GPIO register (Address 0x6B)

Table 12: GPIO register

Addr: 0	x6B	GPIO		
Bit	Bit name	Default	Access	Bit description
7:4	Reserved	0		Reserved
3	GPIO_INV	0	RW	GPIO Invert. If set, the GPIO output is inverted.
2	GPIO_IN_EN	0	RW	GPIO Input Enable. If set, the GPIO pin accepts a non-floating input.
1	GPIO_OUT	1	RW	GPIO Output. If set, the output state of the GPIO is active directly.
0	GPIO_IN	0	R	GPIO Input. Indicates the status of the GPIO input if GPIO_IN_EN is set.

10.2.1.2 LED register (Address 0xCD)

Table 13: LED register

Addr: 0	xCD	LED		
Bit	Bit name	Default	Access	Bit description
				LED Control.
7	LED_ACT	0	RW	0: External LED connected to pin LDR off.
				1: External LED connected to pin LDR on.
				LED Driving Strength.
				000 0000: 4 mA
				000 0001: 6 mA
				000 0010: 8 mA
6:0	LED_DRIVE	000 0100	RW	000 0011: 10 mA
				000 0100: 12 mA
				111 1110: 256 mA
				111 1111: 258 mA

10.2.1.3 INTENAB register (Address 0xF9)

Table 14: INTENAB register

7 ASIEN 0 RW Enable. When asserted generated. 6:4 Reserved Reserved 3 ALS JEN 0 RW	
7 ASIEN 0 RW Enable. When asserted generated. 6:4 Reserved Reserved 3 ALS JEN 0 RW	
6:4 Reserved Reserved 3 ALS JEN 0 RW	er Detect Saturation Interrupt
ALS IEN 0 BW When asserted	permits saturation interrupts to be
3 ALS IEN 0 RW When asserted	
	Enable.
	permits interrupts to be generated, LS thresholds and persistence filter. n the ENABLE register.
FIFO Buffer Int	errupt Enable.
	permits interrupt to be generated L exceeds the FIFO threshold
1 Reserved 0 Reserved	
System Interru	pt Enable.
	permits system interrupts to be cates that flicker detection status has

10.2.1.4 CONTROL register (Address 0xFA)

Table 15: CONTROL register

Addr: 0	Addr: 0xFA		CONTROL				
Bit	Bit name	Default	Access	Bit description			
7:4	Reserved	0		Reserved			
3	SW_RESET	0	RW	Software Reset When set the device will force a power on reset.			
2	ALS_MAN_AZ	0	RW	ALS Engine Manual Autozero. Starts a manual autozero of the ALS engines. Set ALS_EN = 0 before starting a manual autozero for it to work.			
1	FIFO_CLR	0	RW	FIFO Buffer Clear. Clears all FIFO data, FINT, FIFO_OV, and FIFO_LVL.			
0	CLEAR_SAI_ACT	0	RW	Clear Sleep-After-Interrupt Active. Clears SAI_ACTIVE, ends sleep, and restarts device operation.			

CIMUI OSRAM

10.2.2 ADC timing configuration / integration time

The integration time is set using the ATIME (0x81) and ASTEP (0xD4, 0xD5) registers. The integration time, in milliseconds, is equal to:

Equation 1: Setting the integration time

 $t_{int} = (ATIME + 1) \times (ASTEP + 1) \times 2.78 \,\mu s$

It is not allowed that both settings -ATIME and ASTEP - are set to "0".

The integration time also defines the full-scale ADC value, which is equal to:

Equation 2: ADC full scale value²

 $ADC_{fullscale} = (ATIME + 1) \times (ASTEP + 1)$

10.2.2.1 ATIME register (Address 0x81)

Table 16: ATIME register

Addr: 0x81 AT		ATIME	ATIME				
Bit	Bit name	Default	Access	Bit description			
				Integration Time			
				Sets the number	of integration steps from 1 to 255		
				Value	Integration Time		
7:0	ATIME	0x00	RW	0	ASTEP		
				n	ASTEP x (n+1)		
				255	ASTEP x 256		

² The maximum ADC count is 65535. Any ATIME/ASTEP field setting resulting in higher ADC full-scale values would result in a full-scale of 65535.

10.2.2.2 ASTEP register (Address 0xD4, 0xD5)

Table 17: ASTEP register

Addr: 0>	(D4, 0xD5	ASTEP				
Bit	Bit name	Default	Access	Bit description Integration Time Step Size. Sets the integration time per step in increments of 2.78 μs. The default value is 999 (0x03E7).		
		0xE7				
7:0 ASTEP LOW	ASTEP LOW			VALUE	STEP SIZE	
0xD4	ASTEP HIGH			0 (0x0000)	2.78 µs	
			RW	n	2.78 µs x (n+1)	
				599 (0x0257)	1.67 ms	
				999 (0x03E7)	2.78 ms(default)	
15:8	ASTEP HIGH			17999 (0x464F)	50 ms	
DxD5	ASTEP HIGH	0x03		65534 (0xFFFE)	182 ms	
				65535 (0xFFFE)	Reserved, do not use.	

10.2.2.3 WTIME register (Address 0x83)

If wait is enabled (WEN = "1" register 0x80), each new measurement is started based on WTIME. It is necessary for WTIME to be sufficiently long for ALS integration and any other functions to be completed within the period. The device will warn the user if the timing is configured incorrectly. If WTIME is too short, then ALS_TRIG in register STATUS6 (ADDR: 0xBC) will be set to "1".

Addr: 0x83		WTIME	WTIME					
Bit	Bit name	Default	Access	Bit descri	ption			
				ALS Meas	urement Wait Time			
				8-bit value to specify the delay between two consecutive ALS measurements.				
				Value	Wait Cycles	Wait Time		
7:0	WTIME	0x00	RW	0x00	1	2.78 ms		
				0x01	2	5.56 ms		
				n	n	2.78 ms x (n+1)		
				Oxff	256	711 ms		

Table 18: WTIME register

10.2.2.4 FD_TIME register (Address 0xE0, 0xE2)

The register FD_Time_1 and FD_Time_2 can be used to configure the integration time and gain (ADC 5) of the flicker detection independently from the other ADCs. The FD_TIME register is an 11-bit register with the MSB in register 0xDA (bit 10:8) and the LSB in register 0xD8 (bit 7:0). The bit FDEN (register 0x80) must be set to "1" in order to use the FD_TIME registers. If the bit FDEN is not set, ADC5 runs automatically with the same gain and integration time as ADC0 to ADC4.

Equation 3: Calculating the flicker detection integration time

 $t_{int FD} = FD_TIME \times 2.78 \, \mu s$

Table 19: FD_Time_1 register

Addr: 0x	Addr: 0xE0		FD_TIME_1		
Bit	Bit name	Default	Access	Bit description	
7:0	FD_TIME [7:0]	0110 0111	RW	LSB of flicker detection integration time. Note: Must not be changed during FDEN = 1 and PON = 1.	

Table 20:	FD_	Time_2	register	
-----------	-----	--------	----------	--

Addr: 0xE2		FD_TIME_2	FD_TIME_2				
Bit	Bit name	Default	Access	Bit description			
				Flicker Detectio	n Gain Setting (ADC5)		
				VALUE	GAIN		
				0	0.5x		
				1	1x		
				2	2x		
				3	4x		
				4	8x		
7:3	FD_GAIN	9	RW	5	16x		
				6	32x		
				7	64x		
				8	128x		
				9	256x		
				10	512x		
				11	1024x		
				12	2048x		
2:0	FD_TIME [10:8]	1	RW	MSB of flicker de not be changed o	etection integration time. Note: Must during FDEN = 1 and PON = 1.		

10.2.3 ADC configuration

The following registers provide configuration for the 6 integrated ADCs (CH0 to CH5). It is possible to adjust the gain and setup the auto zero compensation for the ADCs.

10.2.3.1 CFG1 register (Address 0xC6)

Addr: 0xC6		CFG1	CFG1				
Bit	Bit name	Default	Access	Bit description			
7:5	Reserved	0		Reserved			
				ALS Engines Ga Sets the ALS ser			
				VALUE	GAIN		
				0	0.5x		
				1	1x		
				2	2x		
				3	4x		
1.0		0	DW	4	8x		
4:0	AGAIN	9	RW	5	16x		
				6	32x		
				7	64x		
				8	128x		
				9	256x		
				10	512x		
				11	1024x		
				12	2048x		

10.2.3.2 CFG10 register (Address 0x65)

Table 21: CFG10 register

Addr: 0x65		CFG10	CFG10			
Bit	Bit name	Default	Access	Bit description		
7:3	Reserved	Reserved	Reserved	Reserved		
				Flicker Detect Persistence.		
2:0	FD_PERS	2	RW	Sets the number of consecutive flicker detect results that must be different before the flicker detect status will be changed. Flicker detection interrupts on SINT are affected by this setting. Flicker detect persistence is equal to $2^{(FD_{PERS}-1)}$		
				Setting "0" equals to every time.		

10.2.3.3 AZ_CONFIG register (Address 0xDE)

The following register configures how often the ALS engine offsets are reset (auto zero) to compensate for changes of the device temperature. The typical time auto zero needs to be completed is 15 ms.

Table 22: AZ_CONFIG register

Addr: 0xDE		AZ_CONFIG				
Bit	Bit name	Default	ault Access Bit description			
				AUTOZERO	D FREQUENCY.	
					quency at which the device performs auto ALS engines.	
			Note: If FDEN = "1" auto zero is also done for ADC 5 The flicker detection measurement will be interrupted and restarted in this case.			
				VALUE	AUTOZERO FREQUENCY	
7:0	AZ_NTH_ITERATION	255	RW	0	Never (not recommended)	
				1	Every integration cycle	
				2	Every 2 cycles	
					Every "AZ_NTH_ITERATION" cycle	
				254	Every 254 cycles	
				255	Only before first measurement cycle	

10.2.3.4 AGC_GAIN_MAX register (Address 0xD7)

Table 23: AGC_GAIN_MAX register

Addr: 0xD7		AGC_GAIN_MAX		
Bit	Bit name	Default	Access	Bit description
				Flicker Detection AGC Gain Max.
7:4	AGC_FD_GAIN_MAX	9	RW	Sets the maximum gain for flicker detection to $2^{AGC_FD_GIAN_MAX}$
				Default value is 9 (256x). The range can be set from 0 (0.5x) to 10 (2048x).
3:0	Reserved	9	Reserved	Reserved

10.2.3.5 CFG8 register (Address 0xC9)

Table 24: CFG8 register

Addr: 0xC9		CFG8	CFG8		
Bit	Bit name	Default	Access	Bit description	
				FIFO Threshold.	
				Sets a threshold on the FIFO level that triggers the first FIFO buffer interrupt (FINT).	
				VALUE	FIFO_LVL
7:6	FIFO_TH	2	RW	0	1
				1	4
				2	8
				3	16
5:0	Reserved	0		Reserved	

10.2.4 Device identification

The following registers provided device identification. Device ID, revision ID and auxiliary ID are read only.

10.2.4.1 AUXID register (Address 0x58)

Addr: 0x58		AUXID		
Bit	Bit name	Default	Access	Bit description
7:4	Reserved			Reserved
3:0	AUXID	0000	R	Auxiliary Identification TCS3448

10.2.4.2 REVID register (Address 0x59)

Table 26: REVID register

Addr: 0x59		REVID		
Bit	Bit name	Default	Access	Bit description
7:3	Reserved			Reserved
2:0	REV_ID	000	R	Revision Number Identification

10.2.4.3 ID register (Address 0x5A)

Table 27: ID register

Addr: 0x5A		ID		
Bit	Bit name	Default	Access	Bit description
7:0	ID	10000001	R	Part Number Identification Value 10000001

10.2.5 ALS interrupt configuration

The ALS interrupt threshold registers provide 16-bit values to be used as the high and low thresholds for comparison to the 16-bit CH0_DATA values (ADC CH0). If ALS_IEN (register 0xF9) is enabled and CH0_DATA is not between the two thresholds for the number of consecutive measurements specified in APERS (register 0xBD) an interrupt is set.

10.2.5.1 ALS_TH_L_LSB register (Address 0x84)

Table 28: ALS_TH_L_LSB register

Addr: 0x84		ALS_TH_L_LSB		
Bit	Bit name	Default	Access	Bit description
				ALS Low Threshold LSB
7:0	ALS_TH_L_LSB	0x00	RW	This register provides the low byte of the low interrupt threshold (CH0).

10.2.5.2 ALS_TH_L_MSB register (Address 0x85)

Table 29: ALS_TH_L_MSB register

Addr: 0x85		ALS_TH_L_MSB		
Bit	Bit name	Default	Access	Bit description
				ALS Low Threshold MSB
				This register provides the high byte of the low interrupt threshold (CH0).
			RW	Both ALS_TH_L registers are combined to a 16-bit threshold. If the value captured by channel 0 is below the low threshold and the APERS value is reached the bit ALS_IEN is set and an interrupt is generated.
7:0	ALS_TH_L_MSB	0x00		There is an 8-bit data latch implemented that stores the written low byte until the high byte is written. Both bytes will be applied at the same time to avoid an invalid threshold.
				Note: The LSB register cannot be changed without writing to the MSB register. It is recommended to write to ALS_TH_L_LSB and ALS_TH_L_MSB within one I ² C command.

10.2.5.3 ALS_TH_H_LSB Register (Address 0x86)

Table 30: ALS_TH_H_LSB register

Addr: 0x86		ALS_TH_H_LSB		
Bit	Bit name	Default	Access	Bit description
7:0	ALS_TH_H_LSB	0x00	RW	ALS High Threshold LSB This register provides the low byte of the high interrupt threshold (CH0).

10.2.5.4 ALS_TH_H_MSB register (Address 0x87)

Table 31: ALS_TH_H_MSB register

Addr: 0x87		ALS_TH_H_MSB		
Bit	Bit name Default Access		Access	Bit description
				ALS High Threshold MSB
				This register provides the high byte of the high interrupt threshold (CH0).
7:0	ALS_TH_H_MSB	0x00	RW	Both ALS_TH_H registers are combined to a 16-bit threshold. If the value captured by channel 0 is above the high threshold and the APERS value is reached the bit ALS_IEN is set and an interrupt is generated.

10.2.5.5 CFG12 register (Address 0x66)

Table 32: CFG12 register

Addr: 0x66		CFG12	CFG12				
Bit	Bit name	Default	Access	Bit description			
7:3	Reserved	0		Reserved			
				ALS Threshold C	hannel.		
					used for interrupts and persistence, rmine device status and gain		
				VALUE	CHANNEL		
			514	0	CH0		
2:0	ALS_TH_CH 0	0	RW	1	CH1		
				2	CH2		
				3	CH3		
				4	CH4		
				5	CH5		

10.2.6 Device status registers

The following registers provide status of the device and indicate details about saturation, interrupts, over temperature, device execution and ambient light flicker detection.

10.2.6.1 STATUS register (Address 0x93)

The primary status register for TCS3448 indicates if there are saturation or interrupt events that need to be handled by the user. This register is self-clearing, meaning that writing a "1" to any bit in the register clears that status bit. In this way, the user should read the STATUS register, handle all indicated event(s) and then write the register value back to STATUS to clear the handled events. Writing "0" will not clear those bits if they have a value of "1", which means that new events that occurred since the last read of the STATUS register will not be accidentally cleared. In case channel saturation has happened (ASAT or FDSAT) it is recommended to discard the measurement results and re-configure device configuration such as AGAIN and Integration Time to avoid saturation.

Addr: 0x93		STATUS	STATUS		
Bit	Bit name	Default	Access	Bit description	
				ALS and Flicker Detect Saturation.	
7	ASAT	0	R, SC	If ASIEN is set, indicates ALS saturation. Check STATUS2 register to distinguish between analog or digital saturation.	
6:4	Reserved	0	R	Reserved	
				ALS Channel Interrupt.	
3	AINT	0	R, SC	If ALS_IEN is set, indicates that a ALS event that met the programmed thresholds and persistence (APERS) occurred.	
				FIFO Buffer Interrupt.	
2	FINT	0	R, SC	If FIEN is set, indicates that the FIFO_LVL fulfills the threshold condition. If cleared by writing 1, the interrupt will be asserted again as more data is collected. To fully clear this interrupt, all data must be read from the FIFO buffer.	
1	Reserved	0	R	Reserved	
0	SINT	0	R, SC	System Interrupt. If SIEN is set, indicates that system interrupt is set. Refer to Status5 register.	

Table 33: STATUS register

10.2.6.2 STATUS 2 register (Address 0x90)

Table 34: STATUS 2 register

Addr: 0x90		STATUS 2	STATUS 2		
Bit	Bit name	Default	Access	Bit description	
7	Reserved	0		Reserved	
				ALS Valid.	
6	AVALID	0	R	Indicates that the ALS measurement has been completed.	
5	Reserved	0		Reserved	
				Digital Saturation.	
4	ASAT_DIGITAL	0	R	Indicates that the maximum counter value has been reached. Maximum counter value depends on integration time set in the ATIME register.	
				Analog Saturation.	
3	ASAT_ANALOG	0	R	Indicates that the intensity of ambient light has exceeded the maximum integration level for the ALS analog circuit.	
2	Reserved	0	R	Reserved	
				Flicker Detect Analog Saturation.	
1	FDSAT_ANALOG	0	R	Indicates that the intensity of ambient light has exceeded the maximum integration level for the analog circuit for flicker detection.	
				Flicker Detect Digital Saturation.	
0	FDSAT_DIGITAL	0	R	Indicates that the maximum counter value has been reached during flicker detection.	

10.2.6.3 STATUS 3 register (Address 0x91)

Table 35: STATUS 3 register

Addr: 0x91		STATUS 3	STATUS 3		
Bit	Bit name	Default	Access	Bit description	
7:6	Reserved	0		Reserved	
				ALS Interrupt High.	
5	INT_ALS_H	0	R	Indicates that a ALS interrupt occurred because the data exceeded the high threshold.	
				ALS Interrupt Low.	
4	INT_ALS_L	0	R	Indicates that a ALS interrupt occurred because the data is below the low threshold.	
3:0	Reserved	0		Reserved	
3:0	Reserved	0		Reserved	

10.2.6.4 STATUS 5 register (Address 0xBB)

Table 36: STATUS 5 register

Addr: 0xBB		STATUS 5		
Bit	Bit name	Default	Access	Bit description
7:4	Reserved	0		Reserved
				Flicker Detect Interrupt.
3	SINT_FD	0	R	If SIEN_FD is set, indicates that the FD_STATUS register status has changed.
				SMUX Operation Interrupt.
2	SINT_SMUX	0	R	Indicates that SMUX command execution has finished.
1:0	Reserved	0		Reserved

10.2.6.5 STATUS 4 register (Address 0xBC)

Table 37: STATUS 4 register

Addr: 0xBC		STATUS 4	STATUS 4	
Bit	Bit name	Default Access		Bit description
				FIFO Buffer Overflow.
7	FIFO_OV	0	R	Indicates that the FIFO buffer overflowed and information has been lost. Bit is automatically cleared when the FIFO buffer is read
6	Reserved	0	R	Reserved
				Over Temperature Detected.
5	OVTEMP	0	R	Indicates the device temperature is too high. Write 1 to clear this bit.
				Flicker Detect Trigger Error.
4	FD_TRIG	0	R	Indicates that there is a timing error that prevents flicker detect from working correctly.
3	Reserved	0		Reserved
				ALS Trigger Error.
2	ALS_TRIG	0	R	Indicates that there is a timing error. The WTIME is too short for the selected ATIME.
				Sleep after Interrupt Active.
1	SAI_ACTIVE	0	R	Indicates that the device is in SLEEP due to an interrupt. To exit SLEEP mode, clear this bit.
				Initialization Busy.
0	INT_BUSY	0	R	Indicates that the device is initializing. This bit will remain 1 for about 300 μ s after power on. Do not interact with the device until initialization is complete.

10.2.6.6 FD_STATUS Register (Address 0xE3)

Table 38: FD STATUS register

Addr:	Addr: 0xE3		FD_STATUS		
Bit	Bit name	Default	Access	Bit description	
7:6	Reserved			Reserved	
	FD MEASUREMENT			Flicker Detection Measurement Valid.	
5	VALID	0	R	Indicates that flicker detection measurement is complete. Write 1 to this bit to clear this field.	
				Flicker Saturation Detected.	
4	FD_SATURATION_ DETECTED	0	R	Indicates that saturation occurred during the last flicker detection measurement, and the result may not be valid. Write 1 to this bit to clear this field.	
	FD_120Hz_FLICKER_			Flicker Detection 120 Hz Flicker Valid.	
3	VALID	0	R	Indicates that the 120 Hz flicker detection calculation is valid. Write 1 to this bit to clear this field.	
	FD_100Hz_FLICKER_			Flicker Detection 100 Hz Flicker Valid.	
2	VALID	0	R	Indicates that the 100 Hz flicker detection calculation is valid. Write 1 to this bit to clear this field.	
1		0	D	Flicker Detected at 120 Hz.	
1	FD_120Hz_FLICKER	D_120Hz_FLICKER 0 R	г	Indicates if an ambient light source is flickering at 120 Hz.	
0	FD 100Hz FLICKER	0	R	Flicker Detected at 100 Hz.	
<u> </u>		0		Indicates if an ambient light source is flickering at 100 Hz.	

10.2.7 ALS data and status

The ASTATUS register provides saturation and gain status associated to each set of ALS data. Reading the ASTATUS register (0x94) latches all 36 ALS data bytes to that status read. Reading these bytes consecutively (0x94 to 0xB8) ensures that the data is concurrent. All ALS data are stored as 16-bit values. If flicker detection is enabled, ALS channel five (CH5 ADC) is used for the flicker detection function. The ASTATUS and ALS data registers are read only.

10.2.7.1 ASTATUS register (Address 0x94)

Table 39: ASTATUS register

Addr: 0)x94	ASTATUS		
Bit	Bit name	Default	Access	Bit description
7	ASAT_STATUS	0	R, SC	Saturation Status. Indicates if the latched data is affected by analog or digital saturation.
6:4	Reserved	0	R	Reserved
3:0	AGAIN_STATUS	0	R, SC	Gain Status. Indicates the gain applied for the ALS data latched to this ASTATUS read.

10.2.7.2 DATA register (Address 0x95/0xB8)

Table 40: DATA_L register

Addr: (0x95/97/99B7	DATA_L		
Bit	Bit name	Default	Access	Bit description
7:0	DATA_L	0	R	ALS Data – low byte

Table 41: DATA_H register

Addr: 0)x96/98/9AB8	DATA_H		
Bit	Bit name	Default	Access	Bit description
7:0	DATA_H	0	R	ALS Data – high byte

10.2.8 Miscellaneous configuration

10.2.8.1 CFG0 register (Address 0xBF)

Table 42: CFG0 register

Addr: (DxBF	CFG0	CFG0		
Bit	Bit name	Bit name Default Access		Bit description	
7:6	Reserved	0		Reserved	
				Low Power Idle.	
5	LOW_POWER	0	RW	When asserted, the device will automatically run in a low power mode whenever all functions are in wait states or disabled.	
		0	RW	Register Bank Access	
	REG BANK			0: Register access to register 0x80 and above.	
4				1: Register access to register 0x20 to 0x7F.	
		Ū		Note: Bit needs to be set to access registers 0x20 to 0x7F. If registers 0x80 and above needs to be accessed bit needs to be set to "0".	
3	Reserved	0		Reserved	
0		0	D\\/	Trigger Long.	
2	WLONG	0	RW	Increases the WTIME setting by a factor of 16.	
1:0	Reserved	0		Reserved	

10.2.8.2 CFG3 register (Address 0xC7)

Table 43: CFG3 register

0xC7	CFG3	CFG3	
Bit name	Default	Access	Bit description
Reserved	0		Reserved
			Sleep After Interrupt.
SAI	0	RW	If set, the oscillator is turned off whenever an interrupt is active. SAI_ACTIVE is set in this event. To activate the oscillator again, clear all interrupts and clear the SAI_ACTIVE bit.
Reserved	0xC		Reserved
	Bit name Reserved SAI	Bit name Default Reserved 0 SAI 0	Bit name Default Access Reserved 0 SAI 0 RW

10.2.8.3 CFG6 register (Address 0xF5)

Table 44: CFG6 register

Addr: 0xF5		CFG6			
Bit	Bit name	Default	Access	Bit descripti	ion
				SMUX Comr	nand.
				setting SMU	SMUX command to execute when XEN gets set. Do not change during JX operation.
				VALUE	SMUX_CMD
4:3	SMUX_CMD	2	RW	0	ROM code initialization of SMUX
				1	Read SMUX configuration to RAM from SMUX chain
				2	Write SMUX configuration from RAM to SMUX chain
				3	Reserved, do not use

10.2.8.4 CFG9 register (Address 0xCA)

Table 45: CFG9 register

Addr: 0	DxCA	CFG9	CFG9	
Bit	Bit name Default Access		Bit description	
7	Reserved	0		Reserved
				System Interrupt Flicker Detection.
6	SIEN_FD	0	RW	Enables system interrupt when flicker detection status change has occurred.
5	Reserved			Reserved
				System Interrupt SMUX Operation.
4	SIEN_SMUX	0	RW	Enables system interrupt when SMUX command has finished
3:0	Reserved			Reserved

10.2.8.5 CFG20 register (Address 0xD6)

Table 46: CFG20 register

Addr: 0xD6		CFG20		
Bit	Bit name	Default	Access	Bit description
				Enable 8-bit FIFO mode for Flicker Detection.
				0: Disabled
7	FD FIFO 8b	0	RW	1: Enabled
I		-		Note: FD_TIME must be smaller than 256, else flicker data might be larger than 8 bits. In that case flicker data gets saturated to 0xFF.
				Automatic channel read-out
		0		0: 6 Channel
			RW	FZ, FY, FXL, NIR, 2xVIS, FD
				1: Reserved
				2: Automatic 12 channel
				Cycle 1: FZ, FY, FXL, NIR, 2xVIS, FD
				Cycle 2: F2, F3, F4, F6, 2xVIS, FD
				3: Automatic 18 channel
6:5	auto_smux			Cycle 1: FZ, FY, FXL, NIR, 2xVIS, FD
0.0				Cycle 2: F2, F3, F4, F6, 2xVIS, FD
				Cycle 3: F1, F7, F8, F5, 2xVIS, FD
				Note: The bit "auto_smux" should only be changed before a measurement is started.
				Once a measurement is started, the device is automatically processing the channels as per definition above and storing the measurement results in the eighteen data registers.
				2xVIS: Per default the "Top Left" and "Both Right" VIS/CLEAR PD is read-out.
4:0	Reserved			Reserved

10.2.8.6 PERS Register (Address 0xCF)

Table 47: PERS register

Addr: 0xCF		PERS		
Bit	Bit name	Default	Access	Bit description
7:4	Reserved	0		Reserved

Addr: 0xCF		PERS	PERS		
Bit	Bit name	Default	Access	Bit descr	iption
				ALS Inter	rrupt Persistence.
				occurrent threshold ALS_TH_ ALS data set by AL	filter for the number of consecutive ces that ALS data must remain outside the range between ALS_TH_L and H before an interrupt is generated. The channel used for the persistence filter is S_TH_CHANNEL. Any sample that is threshold range resets the counter to 0.
				VALUE	CHANNEL
				0	Every ALS cycle generates an interrupt
3:0	APERS	0	RW	1	1
				2	2
				3	3
				4	5
				5	10
					5 x (APERS – 3)
				14	55
				15	60

10.2.9 FIFO buffer data and status

The FIFO buffer is used to poll ALS data with fewer I²C read and write transactions. The FIFO buffer is 256 bytes of RAM containing 128 two-byte datasets. If the FIFO overflows (i.e. 129 datasets before host reads data from the FIFO buffer), an overflow flag will be set and new data will be lost. The Host acquires data by reading addresses: 0xFE - 0xFF. The register address pointer automatically wraps from 0xFF to 0xFE as data are read. Data can be read one byte at a time or in blocks, (there is no block-read length limit). When reading single bytes, the internal FIFO read pointer and the FIFO Buffer Level, FIFO_LVL, are updated each time register 0xFF is read. For block-reads, the internal FIFO read pointer and the FIFO Buffer Level, FIFO_LVL update for each two-byte entry. If the FIFO continues to be accessed after FIFO_LVL = 0, the device will return 0 for all data. The FINT interrupt indicates when there is valid data in the FIFO buffer. The amount of unread data is indicated by the FIFO_LVL.

10.2.9.1 FIFO_MAP register (Address 0xFC)

Table 48: FIFO_MAP register

Addr: (Addr: 0xFC		FIFO_MAP	
Bit	Bit name	Default	Access	Bit description
7	Reserved	0		Reserved
				FIFO Write CH5 Data.
6	FIFO_WRITE_CH5_DATA	0	RW	If set, CH5 data is written to the FIFO Buffer. (two bytes per sample)
				Note: If flicker detection is enabled, this bit is ignored. Refer to register 0xD7 for FDEN="1".
				FIFO Write CH4 Data.
5	FIFO_WRITE_CH4_DATA	0	RW	If set, CH4 data is written to the FIFO Buffer. (two bytes per sample).
				FIFO Write CH3 Data.
4	FIFO_WRITE_CH3_DATA	0	RW	If set, CH3 data is written to the FIFO Buffer. (two bytes per sample).
				FIFO Write CH2 Data.
3	FIFO_WRITE_CH2_DATA	0	RW	If set, CH2 data is written to the FIFO Buffer. (two bytes per sample).
				FIFO Write CH1 Data.
2	FIFO_WRITE_CH1_DATA	0	RW	If set, CH1 data is written to the FIFO Buffer. (two bytes per sample).
				FIFO Write CH0 Data.
1	FIFO_WRITE_CH0_DATA	0	RW	If set, CH0 data is written to the FIFO Buffer. (two bytes per sample).
				FIFO Write Status.
0	FIFO_WRITE_ASTATUS	0	RW	If set, ASTATUS (one byte per sample) is written to the FIFO Buffer.

10.2.9.2 FIFO_CFG0 register (Address 0xDF)

Table 49: FIFO_CFG0 register

Addr: 0xDF		FIFO_CFG0		
Bit	Bit name	Default	Access	Bit description
				FIFO Write Flicker Detection
7	FIFO_WRITE_FD	0	RW	If set flicker raw data is written into FIFO (one byte per sample).
				Note: This bit is ignored if flicker detection is disabled. Refer to register 0xFC for FDEN="0".
6:0	Reserved	0100001		Reserved, do not change.

10.2.9.3 FIFO_LVL register (Address 0xFD)

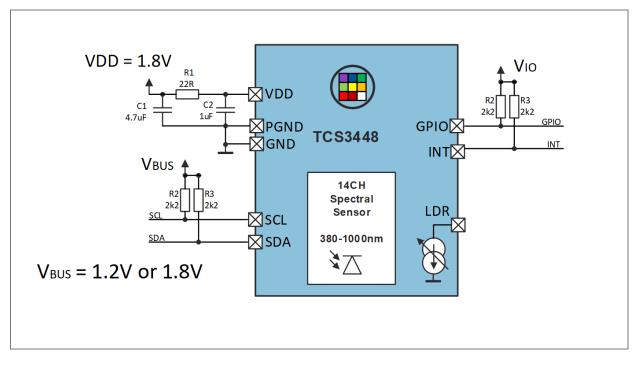
Table 50: FIFO_LVL register

Addr: 0xFD		FIFO_LVL	FIFO_LVL	
Bit	Bit name	Default	Access	Bit description
7:0	FIFO_LVL	0	R	FIFO Buffer Level. Indicates the number of entries (each are 2 bytes) available in the FIFO buffer waiting for readout. The FIFO RAM is 256 byte, the FIFO_LVL range is from 0 entries to 128 entries.

10.2.9.4 FDATA register (Address 0xFE and 0xFF)

Table 51: FDATA_L register

Addr: 0xFE		FDATA_L		
Bit	Bit name	Default	Access	Bit description
7:0	FDATA	0	R	FIFO Buffer Data

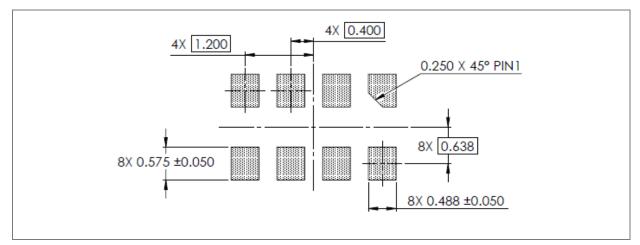

Table 52: FDATA_H register

Addr: 0xFF		FDATA_H	FDATA_H		
Bit	Bit name	Default	Access	Bit description	
15:8	FDATA	0	R	FIFO Buffer Data	

11 Application information

11.1 Schematic

Pin GPIO is used to select the I²C bus interface voltage during start-up of the device. Please refer to chapter "Selection of I²C bus interface voltage" for details.

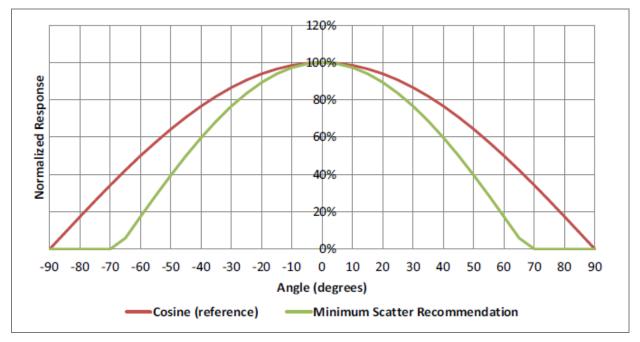

Configuration examples:

$$\begin{split} V_{GPIO} &= GND : V_{BUS} = 1.2 \ V \\ V_{GPIO} &= 1.2 \ V : V_{BUS} = 1.2 \ V \\ V_{GPIO} &= 1.8 \ V : V_{BUS} = 1.8 \ V \\ V_{GPIO} &= 3.3 \ V : V_{BUS} = 1.8 \ V \end{split}$$

Pins GPIO and INT are both 3 V compliant (3.6 V abs max) and do not have to be connected to the same V_{IO} voltage.

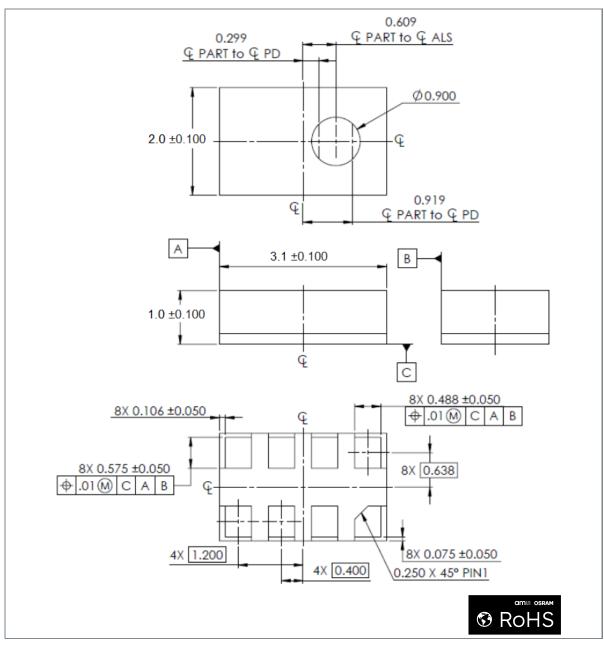
11.2 PCB pad layout

Figure 11: Recommended PCB pad layout



- (1) All dimensions are in millimeters.
- (2) Dimension tolerances are 0.05 mm unless otherwise noted.
- (3) This drawing is subject to change without notice.

11.3 Application optical requirements


For stable performance, an achromatic diffuser shall be placed above the device aperture. The recommended solution is a bulk diffuser that meets the minimum recommended scattering characteristic shown below. For more details refer to the optical design guide or contact ams OSRAM.

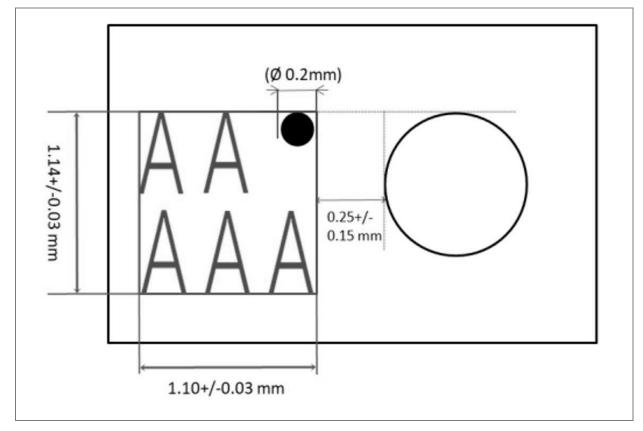
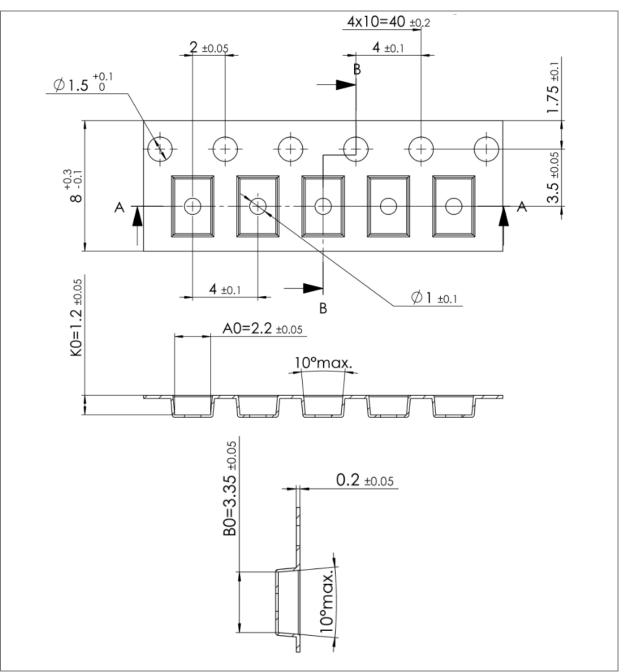

12 Package drawings & markings

Table 53: OLGA8 package outline drawing

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Dimensioning and tolerance conform to ASME Y14.5M-1994.
- (3) This package contains no lead (Pb).
- (4) This drawing is subject to change without notice.



(1) Marking code consists of random characters or digits. Placeholder is indicated with "AAAAA" in drawing.

- (2) All dimensions are in millimeters. Angles in degrees.
- (3) Dimensioning and tolerance conform to ASME Y14.5M-1994.
- (4) This package contains no lead (Pb).
- (5) This drawing is subject to change without notice.

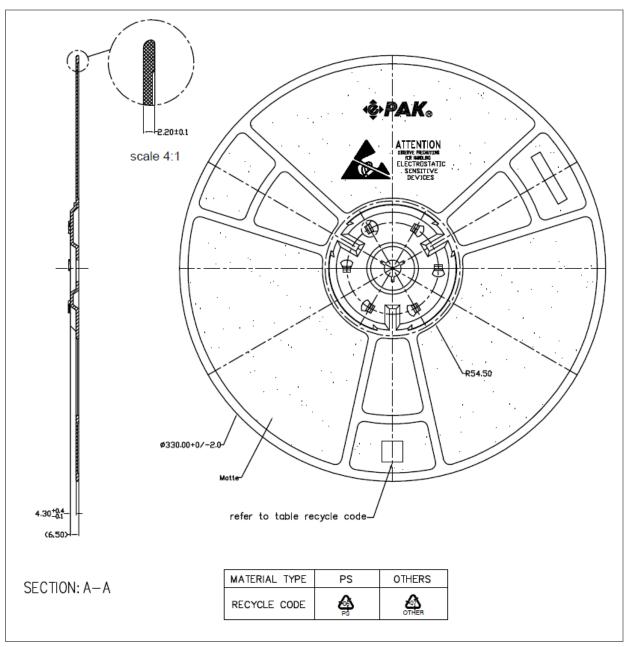

13 Tape & reel information

Figure 14: TCS3448 OLGA8 tape dimensions

(1) All dimensions are in millimeters. Angles in degrees.

(2) This drawing is subject to change without notice.

Figure 15: TCS3448 OLGA8 reel dimensions

 $(1) \quad \text{All dimensions are in millimeters. Angles in degrees.}$

(2) This drawing is subject to change without notice.

14 Soldering & storage information

The module has been tested and has demonstrated an ability to be reflow-soldered to a PCB substrate. <u>Please observe, however, that such repeated temperature stress may alter</u> <u>measurements results and optical performance and will influence color measurement</u> <u>accuracy.</u> The solder reflow profile describes the expected maximum heat exposure of components during the solder reflow process of product on a PCB. Temperature is measured on top of component. The components should be limited to a maximum of three passes through this solder reflow profile.

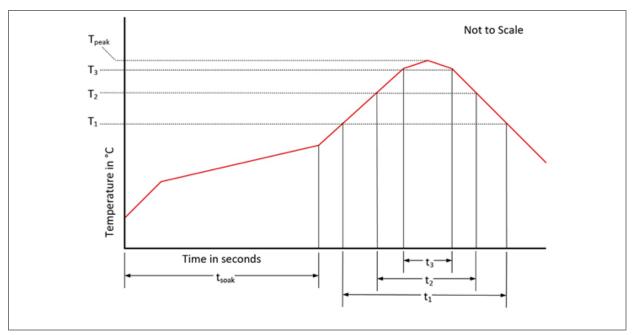


Figure 16: Solder reflow profile graph

Table 54: Solder reflow profile

Parameter	Reference	Device
Average temperature gradient in preheating		2.5 °C/s
Soak time	t _{soak}	2 to 3 minutes
Time above 217 °C (T1)	t1	Max 60 s
Time above 230 °C (T2)	t ₂	Max 50 s
Time above T _{peak} – 10 °C (T3)	t ₃	Max 10 s
Peak temperature in reflow	T _{peak}	260 °C
Temperature gradient in cooling		Max −5 °C/s

CALL OSRAM

14.1 Storage information

14.1.1 Moisture sensitivity

Optical characteristics of the device can be adversely affected during the soldering process by the release and vaporization of moisture that has been previously absorbed into the package.

To ensure the package contains the smallest amount of absorbed moisture possible, each device is baked prior to being dry packed for shipping. Devices are dry packed in a sealed aluminized envelope called a moisture-barrier bag with silica gel to protect them from ambient moisture during shipping, handling, and storage before use.

14.1.2 Shelf life

The calculated shelf life of the device in an unopened moisture barrier bag is 24 months from the date code on the bag when stored under the following conditions:

- Shelf Life: 24 months
- Ambient Temperature: <40 °C
- Relative Humidity: <90%

Re-baking of the devices will be required if the devices exceed the 24 months shelf life or the Humidity Indicator Card shows that the devices were exposed to conditions beyond the allowable moisture region. Please observe, however, that such repeated temperature stress may alter measurements results and optical performance and will influence color measurement accuracy.

14.1.3 Floor life

The module has been assigned a moisture sensitivity level of MSL 3. As a result, the floor life of devices removed from the moisture barrier bag is 168 hours from the time the bag was opened, provided that the devices are stored under the following conditions:

- Floor Life: 168 hours
- Ambient Temperature: <30 °C
- Relative Humidity: <60%

If the floor life or the temperature/humidity conditions have been exceeded, the devices must be re-baked prior to solder reflow or dry packing. Please observe, however, that such repeated

temperature stress may alter measurements results and optical performance and will influence color measurement accuracy.

14.1.4 Re-baking instructions

When the shelf life or floor life limits have been exceeded, re-bake at 50 °C for 12 hours.

15 Revision information

Document status	Product status	Definition
Product Preview	Pre-development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams-OSRAM AG standard warranty as given in the General Terms of Trade

Other definitions

Draft / Preliminary:

The draft / preliminary status of a document indicates that the content is still under internal review and subject to change without notice. ams-OSRAM AG does not give any warranties as to the accuracy or completeness of information included in a draft / preliminary version of a document and shall have no liability for the consequences of use of such information.

Short datasheet:

A short datasheet is intended for quick reference only, it is an extract from a full datasheet with the same product number(s) and title. For detailed and full information always see the relevant full datasheet. In case of any inconsistency or conflict with the short datasheet, the full datasheet shall prevail.

Changes from previous released version to current revision v1-01

Page

Document security class is updated to "PUBLIC" in the footer

- Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
- Correction of typographical errors is not explicitly mentioned.

16 Legal information

Copyright & disclaimer

Copyright ams-OSRAM AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams-OSRAM AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams-OSRAM AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams-OSRAM AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams-OSRAM AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams-OSRAM AG for each application. This product is provided by ams-OSRAM AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams-OSRAM AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams-OSRAM AG rendering of technical or other services.

Product and functional safety devices/applications or medical devices/applications:

ams-OSRAM AG components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices. ams-OSRAM AG products are not qualified at module and system level for such application.

In case buyer – or customer supplied by buyer – considers using ams-OSRAM AG components in product safety devices/applications or medical devices/applications, buyer and/or customer has to inform the local sales partner of ams-OSRAM AG immediately and ams-OSRAM AG and buyer and /or customer will analyze and coordinate the customer-specific request between ams-OSRAM AG and buyer and/or customer.

ams OSRAM RoHS and REACH compliance statements for semiconductor products

RoHS compliant: The term "RoHS compliant" means that semiconductor products from ams OSRAM fully comply with current RoHS directives, and China RoHS. Our semiconductor products do not contain any chemicals for all 6 substance categories plus additional 4 substance categories (per amendment EU2015/863) above the defined threshold limit in the Annex II.

REACH compliant: Semiconductor products from ams OSRAM are free of Substances of Very High Concern (SVHC) according Article 33 of the REACH Regulation 2006/1907/EC; please refer to the Candidate List of Substances of ECHA here.

Important information: The information provided in this statement represents ams OSRAM knowledge and belief as of the date that it is provided. ams OSRAM bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. We are undertaking efforts to better integrate information from third parties. ams OSRAM has taken and will continue to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams OSRAM and its suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Headquarters	Please visit our website at ams-osram.com
ams-OSRAM AG	For information about our products go to Products
Tobelbader Strasse 30	For technical support use our Technical Support Form
8141 Premstaetten	For feedback about this document use Document Feedback
Austria, Europe	For sales offices and branches go to Sales Offices / Branches
Tel: +43 (0) 3136 500 0	For distributors and sales representatives go to Channel Partners