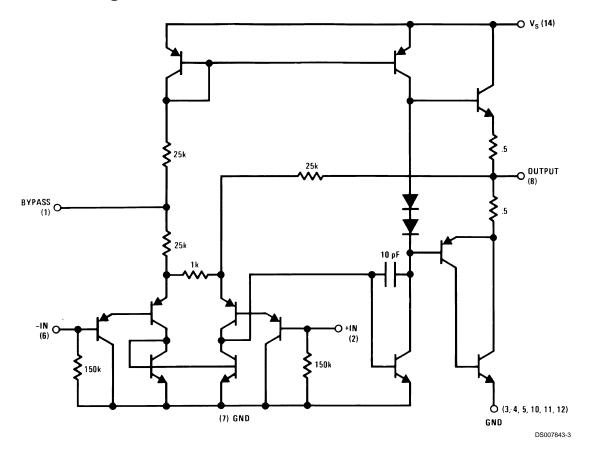
LM384 5W Audio Power Amplifier

General Description

The LM384 is a power audio amplifier for consumer applications. In order to hold system cost to a minimum, gain is internally fixed at 34 dB. A unique input stage allows ground referenced input signals. The output automatically self-centers to one-half the supply voltage.


The output is short-circuit proof with internal thermal limiting. The package outline is standard dual-in-line. A copper lead frame is used with the center three pins on either side comprising a heat sink. This makes the device easy to use in standard p-c layout.

Uses include simple phonograph amplifiers, intercoms, line drivers, teaching machine outputs, alarms, ultrasonic drivers, TV sound systems, AM-FM radio, sound projector systems, etc. See AN-69 for circuit details.

Features

- Wide supply voltage range: 12V to 26V
- Low quiescent power drain
- Voltage gain fixed at 50
- High peak current capability: 1.3A
- Input referenced to GND
- High input impedance: 150kΩ
- Low distortion: 0.25% (P_{Ω} =4W, R_{I} =8 Ω)
- Quiescent output voltage is at one half of the supply voltage
- Standard dual-in-line package

Schematic Diagram

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

 Supply Voltage
 28V

 Peak Current
 1.3A

 Power Dissipation (See (Notes 4, 5))
 1.67W

 Input Voltage
 ±0.5V

 Storage Temperature
 -65°C to +150°C

Operating Temperature 0°C to $+70^{\circ}\text{C}$ Lead Temperature (Soldering, 10 sec.) 260°C Thermal Resistance

 θ_{JC} 30°C/W θ_{JA} 79°C/W

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

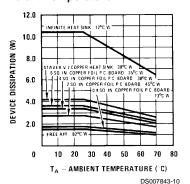
Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Z _{IN}	Input Resistance			150		kΩ
I _{BIAS}	Bias Current	Inputs Floating		100		nA
A _V	Gain		40	50	60	V/V
P _{OUT}	Output Power	THD = 10%, $R_L = 8\Omega$	5	5.5		W
IQ	Quiescent Supply Current			8.5	25	mA
V _{OUT Q}	Quiescent Output Voltage			11		V
BW	Bandwidth	$P_{OUT} = 2W, R_L = 8\Omega$		450		kHz
V ⁺	Supply Voltage		12		26	V
I _{sc}	Short Circuit Current (Note 6)			1.3		А
PSRR _{RTO}	Power Supply Rejection Ratio			31		dB
	(Note 3))					
THD	Total Harmonic Distortion	$P_{OUT} = 4W, R_L = 8\Omega$		0.25	1.0	%

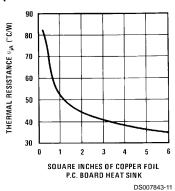
- Note 2: $V^+ = 22V$ and $T_A = 25^{\circ}C$ operating with a Staver V7 heat sink for 30 seconds.
- Note 3: Rejection ratio referred to the output with C_{BYPASS} = 5 μF , freq = 120 Hz.
- Note 4: The maximum junction temperature of the LM384 is 150°C.
- Note 5: The package is to be derated at 15°C/W junction to heat sink pins.
- Note 6: Output is fully protected against a shorted speaker condition at all voltages up to 22V.

Heat Sink Dimensions

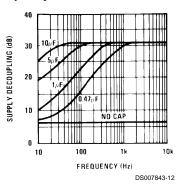
Staver "V7" Heat Sink

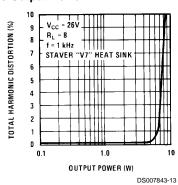

DS007843-4

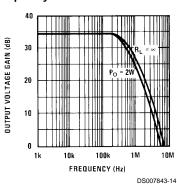
Staver Company 41 Saxon Ave. P.O. Drawer H Bay Shore, N.Y. Tel: (516) 666-8000

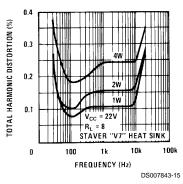

www.national.com

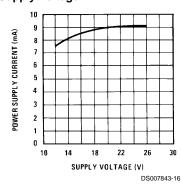
Typical Performance Characteristics

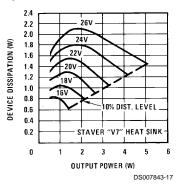

Device Dissipation vs Ambient Temperature

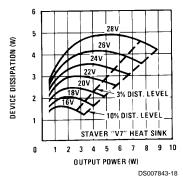

Thermal Resistance vs Square Inches


Supply Decoupling vs Frequency

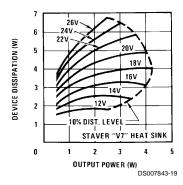

Total Harmonic Distortion vs Output Power


Output Voltage Gain vs Frequency

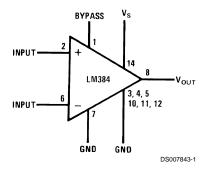

Total Harmonic Distortion vs Frequency

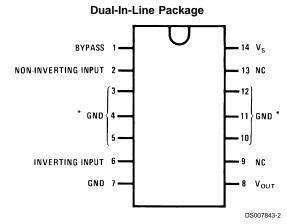

Power Supply Current vs Supply Voltage

Device Dissipation vs Output Power — 16Ω Load



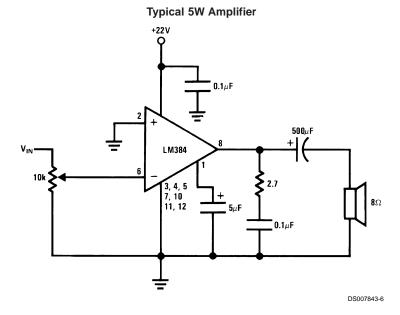
Device Dissipation vs Output Power — 8Ω Load



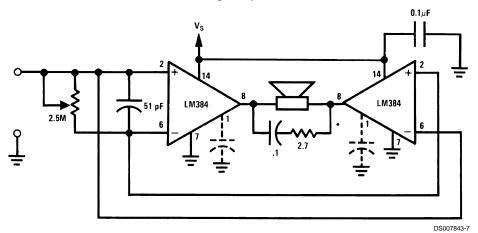

Typical Performance Characteristics (Continued)

Device Dissipation vs Output Power — 4Ω Load

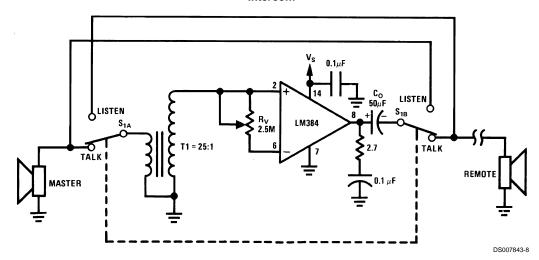
Block and Connection Diagrams



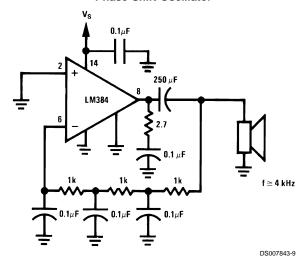
Note 7: Heatsink Pins

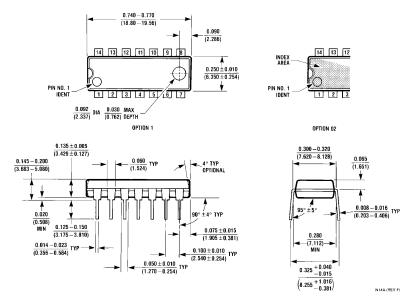

Top View Order Number LM384N See NS Package Number N14A

www.national.com


Typical Applications

Bridge Amplifier


Intercom


*For stability with high current loads

Typical Applications (Continued)

Phase Shift Oscillator

Physical Dimensions inches (millimeters) unless otherwise noted

Molded Dual-In-Line Package (N) Order Number LM384N NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171

Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466

Fax: 65-2504466 Email: ap.support@nsc.com **National Semiconductor** Tel: 81-3-5639-7560

Fax: 81-3-5639-7507