ADC with Serial and Parallell/O

feftures

- Single Supply 5V or $\pm 5 \mathrm{~V}$ Operation
- Sample Rate: 200ksps
$\pm \pm 1.25$ LSB INL and \pm 1LSB DNL Max
- Power Dissipation: 15mW (Typ)
- Parallel or Serial Data Output
- No Missing Codes Over Temperature
- Power Shutdown: Nap and Sleep
- External or Internal Reference
- Differential High Impedance Analog Input
- Input Range: 0 V to 4.096 V or $\pm 2.048 \mathrm{~V}$
- $81.5 \mathrm{dBS} /(\mathrm{N}+\mathrm{D})$ and -94dB THD at Nyquist
- 28-Pin Narrow PDIP and SSOP Packages

APPLICATIONS

- Remote Data Acquisition
- Battery Operated Systems
- Digital Signal Processing
- Isolated Data Acquisition Systems
- Audio and Telecom Processing
- Medical Instrumentation

DESCRIPTIOn

The $\operatorname{LTC}^{\circledR} 1418$ is a low power, 200ksps, 14 -bit A/D converter. Data output is selectable for 14 -bit parallel or serial format. This versatile device can operate from a single 5 V or $\pm 5 \mathrm{~V}$ supply. An onboard high performance sample-and-hold, a precision reference and internal timing minimize external circuitry requirements. The low 15 mW power dissipation is made even more attractive with two user selectable power shutdown modes.

The LTC1418 converts 0V to 4.096V unipolar inputs from a single 5 V supply and $\pm 2.048 \mathrm{~V}$ bipolar inputs from $\pm 5 \mathrm{~V}$ supplies. DC specs include $\pm 1.25 \mathrm{LSB}$ INL, ± 1 LSB DNL and no missing codes over temperature. Outstanding AC performanceincludes $82 \mathrm{dBS} /(\mathrm{N}+\mathrm{D})$ and 94 dB THD at the Nyquist input frequency of 100 kHz .

Theflexibleoutput format allows either parallel or serial I/O. The SPI/MICROMRE ${ }^{\text {TM }}$ compatible serial I/Oport can operateas either master or slave and can support clock frequencies from DCto 10 MHz A separate convert start input and adataready signal (BUSY) allow easy control of conversion start and data transfer.
$\boldsymbol{\mathcal { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation. MICROWIRE is a trademark of National Semiconductor Corporation.

TYPICAL APPLICATION

Low Power, 200kHz, 14-Bit Sampling A/D Converter

Typical INL Curve

LTC 1418

ABSOLUTE MAXIMUM RATINGS

(Notes 1, 2)
Supply Voltage (WWW

DYNAMIC ACCURACY (Note 5)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX
S/(N+D)	Signal-to-Noise Plus Distortion Ratio	97.5 kHz Input Signal	\bullet	79	81.5
THD	Total Harmonic Distortion	100 kHz Input Signal, Frst 5 Harmonics	\bullet	-94	-86
SFDR	Spurious Free Dynamic Range	100 kHz Input Signal	\bullet	86	95
IMD	Intermodulation Distortion	$\mathrm{f}_{\mathrm{IN} 1}=97.7 \mathrm{kHz}, \mathrm{f}_{\mathrm{INR}}=104.2 \mathrm{kHz}$	dB		
	Full Power Bandwidth			-90	dB
	Full Linear Bandwidth	$\mathrm{S} /(\mathrm{N}+\mathrm{D}) \geq 77 \mathrm{~dB}$	5	dB	

Internil reference characteristics (noe s)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {RE }}$ Output Voltage	lour $=0$		2.480	2.500	2.520	V
$\mathrm{V}_{\text {RE }}$ Output Tempco	lor $=0$, Commercial lar $=0$, Industrial	\bullet		$\begin{aligned} & \pm 10 \\ & \pm 20 \end{aligned}$	± 45	$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
V_{RF} Line Regulation	$\begin{aligned} & 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25 \mathrm{~V} \\ & -5.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SS}} \leq-4.75 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & \mathrm{LSB} / \mathrm{V} \\ & \mathrm{LSB} / \mathrm{V} \end{aligned}$
$\mathrm{V}_{\text {RE }}$ Output Resistance	$0.1 \mathrm{~mA} \leq \mid$ lorl $\mid \leq 0.1 \mathrm{~mA}$			8		k Ω

DIGITAL InPUTS AnD OUTPUTS (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MII	TYP	MAX	UNITS
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$\mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V}$	\bullet	2.4			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=4.75 \mathrm{~V}$	\bullet			0.8	V
I_{IN}	Digital Input Ourrent	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{DD}	\bullet			± 10	$\mu \mathrm{A}$
G_{N}	Digital Input Capacitance				1.4		pF
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-200 \mu \mathrm{~A} \end{aligned}$	\bullet	4.0	4.74		V
V_{α}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=160 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 0.05 \\ & 0.10 \end{aligned}$	0.4	V
$\underline{\mathrm{l}} \mathrm{z}$	Hi-Z Output Leakage D13 to D0	$\mathrm{V}_{\text {Or }}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \overline{\mathrm{CS}}$ High	\bullet			± 10	$\mu \mathrm{A}$
COZ_{0}	Hi-Z Output Capacitance D13 to D0	$\overline{\text { CS }}$ High (Note 9)	\bullet			15	pF
$I_{\text {SOURCE }}$	Output Source Ourrent	$\mathrm{V}_{\text {OU }}=0 \mathrm{~V}$			-10		mA
$\mathrm{I}_{\text {SINK }}$	Output Sink Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}$			10		mA

POWER REPUIREMENTS (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V_{DD}	Positive Supply Voltage (Notes 10, 11)			4.75		5.25	V
$\mathrm{V}_{\text {SS }}$	Negative Supply Voltage (Note 10)	Bipolar Only ($\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ for Unipolar)		-4.75		-5.25	V
I_{DD}	Positive Supply Ourrent Nap Mode Sleep Mode	Unipolar, $\overline{\mathrm{RD}}$ High (Note 5) Bipolar, $\overline{\text { RD }}$ High (Note 5) $\overline{S H D N}=0 \mathrm{~V}, \overline{\mathrm{CS}}=0 \mathrm{~V}$ (Note 12) $\overline{S H D N}=0 V, \overline{C S}=5 V($ Note 12)	\bullet		$\begin{gathered} 3.0 \\ 3.9 \\ 570 \\ 2 \end{gathered}$	$\begin{aligned} & 4.3 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
$I_{\text {SS }}$	Negative Supply Ourrent $\begin{array}{r}\text { Nap Mode } \\ \text { Sleep Mode }\end{array}$	$\begin{aligned} & \text { Bipolar, } \overline{\text { RD }} \text { High (Note 5) } \\ & \begin{array}{l} \overline{S H D N}=0 V, \overline{C S}=0 V(\text { Note 12) } \\ \overline{S H D N}=0 V, \overline{C S}=5 V(\text { Note 12) } \end{array} \end{aligned}$	\bullet		$\begin{aligned} & \hline 1.4 \\ & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	1.8	$\begin{gathered} \mathrm{mA} \\ \mu \mathrm{~A} \end{gathered}$ $\mu \mathrm{A}$
$\mathrm{P}_{\mathrm{DIS}}$	Power Dissipation	Unipolar Bipolar	\bullet		$\begin{aligned} & 15.0 \\ & 26.5 \end{aligned}$	$\begin{aligned} & 21.5 \\ & 31.5 \end{aligned}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

timing Characteristics

(Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{f}_{\text {SAMPLE(MAX }}$	Maximum Sampling Frequency		\bullet	200			kHz
toow	Conversion Time		\bullet		3.4	4	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{AOQ}}$	Acquisition Time		\bullet		0.3	1	$\mu \mathrm{S}$
$t_{\text {AOQ }}+t_{\text {coav }}$	Acquisition Plus Conversion Time		\bullet		3.7	5	$\mu \mathrm{S}$
t_{1}	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$ Setup Time	(Notes 9, 10)	\bullet	0			ns
t_{2}	$\overline{\text { CS }} \downarrow$ to CONVST \downarrow Setup Time	(Notes 9, 10)	\bullet	40			ns
t_{3}	$\overline{\mathrm{CS}} \downarrow$ to $\overline{\mathrm{SH}} \mathrm{DN} \downarrow$ Setup Time to Ensure Nap Mode	(Notes 9, 10)	\bullet	40			ns
t_{4}		(Note 10)			500		ns
t_{5}	CONVST Low Time	(Notes 10, 11)	\bullet	40			ns
t_{6}	$\overline{\text { OONVST }}$ to $\overline{\text { BUSY }}$ Delay	$\mathrm{C}=25 \mathrm{pF}$	\bullet		35	70	ns
t_{7}	Data Ready Before $\overline{B U S Y} \uparrow$		\bullet	20 15	35		ns
t_{8}	Delay Between Conversions	(Note 10)	\bullet	500			ns
t_{9}	Wait Time $\overline{\mathrm{RD}} \downarrow$ After $\overline{\mathrm{BUSY}} \uparrow$		\bullet	-5			ns
t_{10}	Data Access Time After $\overline{\mathrm{RD}} \downarrow$	$\mathrm{G}=25 \mathrm{pF}$	\bullet	15		$\begin{aligned} & 30 \\ & 40 \end{aligned}$	ns
		$\mathrm{G}=100 \mathrm{pF}$	\bullet	20		$\begin{aligned} & 40 \\ & 55 \end{aligned}$	ns
t_{11}	Bus Relinquish Time	Commercial Industrial	\bullet	8		$\begin{aligned} & 20 \\ & 25 \\ & 30 \\ & \hline \end{aligned}$	ns ns ns
t_{12}	$\overline{\mathrm{RD}}$ Low Time		\bullet	t_{10}			ns
t_{13}	CONVST High Time			40			ns
$\underline{t_{14}}$	Delay Time, SCLK \downarrow to Dorr Valid	$\mathrm{G}=25 \mathrm{pF}$ (Note 9)	\bullet		35	70	ns
t_{15}	Time from Previous Data Remain Valid After SCLK \downarrow	$\mathrm{G}=25 \mathrm{pF}$ (Note9)	\bullet	15	25		ns
${ }_{\text {f Sa_k }}$	Shift Cock Frequency	(Notes 9, 10)		0		12.5	MHz
fextakin	External Conversion Cock Frequency	(Notes 9, 10)		0.03		4.5	MHz
$\underline{t_{\text {dexTa_KIN }}}$	Delay Time, $\overline{\text { OONVST } \downarrow \text { to External Conversion Oock Input }}$	(Notes 9, 10)				533	$\mu \mathrm{S}$
thsaz	SCLK High Time	(Notes 9, 10)		10			ns
t LsaK	SCLK Low Time	(Notes 9, 10)		20			ns
thextakin	EXTCLKIN High Time	(Notes 9, 10)			250		ns
t Lextakin	EXTCLKIN Low Time	(Notes 9, 10)			250		ns

The denotes specifications which apply over the full operating temperature range; all other limits and typicals $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: All voltage values are with respect to ground with DGND and AGND wired together (unless otherwise noted).
Note 3: When these pin voltages are taken below $\mathrm{V}_{S S}$ or above V_{DD}, they will be clamped by internal diodes. This product can handle input currents greater than 100 mA below $\mathrm{V}_{S S}$ or above V_{\subseteq} without latchup.
Note 4: When these pin voltages are taken below $V_{S S}$ they will be clamped by internal diodes. This product can handle input currents greater than 100 mA below V_{SS} without latchup. These pins are not clamped to V_{DD}.
Note 5: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$ or -5 V , $\mathrm{f}_{\text {SAMPLE }}=200 \mathrm{kHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}$ unless otherwise specified.
Note 6: Linearity, offset and full-scale specifications apply for a singleended input with $\mathrm{A}_{\mathrm{IN}^{-}}$grounded.

Note 7: Integral nonlinearity is defined as the deviation of a code from a straight line passing through the actual endpoints of the transfer curve. The deviation is measured from the center of the quantization band.
Note 8: Bipolar offset is the offset voltage measured from -0.5LSB when the output code flickers between 00000000000000 and 11111111111111.

Note 9: Guaranteed by design, not subject to test.
Note 10: Recommended operating conditions.
Note 11: The falling edge of CONVST starts a conversion. If CONVST returns high at a critical point during the conversion, it can create small errors. For best performance ensure that OONVST returns high either within $2.1 \mu \mathrm{~s}$ after the conversion starts or after BUSY rises.
Note 12: Pins 16 (D4/EXTCLKIN), 17 (D3/SCLK) and 20 (DOEXT//NT) at 0 V or 5V. See Power Shutdown.

TYPICAL PERFORMAOCE CHARACTERISTICS

1418 TA02
Signal-to-Noise Ratio vs Input Frequency

Nonaveraged, 4096 Point FFT, Input Frequency $=10 \mathrm{kHz}$

Differential Nonlinearity
vs Output Code

1418 G06

Distortion vs Input Frequency

Nonaveraged, 4096 Point FFT, Input Frequency $=100 \mathrm{kHz}$

Spurious-Free Dynamic Range vs Input Frequency

Intermodulation Distortion Plot

TYPICAL PGRFORMANCE CHARACTGRISTICS

$V_{D D}$ Supply Current vs Temperature (Unipolar Mode)

$V_{D D}$ Supply Current vs Sampling Frequency (Unipolar Mode)

1418G14

1418 G09

$V_{D D}$ Supply Current vs Sampling Frequency (Bipolar Mode)

418 G15

Input Offset Voltage Shift vs Source Resistance
 1418 G10
$V_{\text {SS }}$ Supply Current vs Temperature (Bipolar Mode)

1418 G13
$V_{\text {SS }}$ Supply Current vs Sampling Frequency (Bipolar Mode)

PIn fUnCTIOnS

$\mathrm{A}_{\mathrm{IN}}{ }^{+}$(Pin 1): Positive Analog Input.
$A_{I N_{N}}{ }^{-}$(Pin 2): Negative Analog Input.
$\mathbf{V}_{\text {REF }}$ (Pin 3): 2.50V Reference Output. Bypass to AGND with $1 \mu \mathrm{~F}$.
REFCOMP (Pin 4): 4.096V Reference Bypass Pin. Bypass to AGND with $10 \mu \mathrm{Ftantalum}$ in parallel with $0.1 \mu \mathrm{~F}$ ceramic.
AGND (Pin 5): Analog Ground.
D13 to D6 (Pins 6 to 13): Three-State Data Outputs (Parallel). D13 is the most significant bit.
DGND (Pin 14): Digital Ground for Internal Logic. Tie to AGND.
D5 (Pin 15): Three-State Data Output (Parallel).
D4 (EXTCLKIN) (Pin 16): Three-State Data Output (Parallel). Conversion clock input (serial) when Pin 20 (EXT//INT) is tied high.
D3 (SCLK) (Pin 17): Three-State Data Output (Parallel). Data clock input (serial).
D2 (CLKOUT) (Pin 18): ThreeStateDataOutput (Parallel). Conversion clock output (serial).
D1 ($\mathrm{D}_{\text {OUT }}$) (Pin 19): Three-State Data Output (Parallel). Serial data output (serial).
DO (EXT/INT) (Pin 20): Three-StateDataOutput (Parallel). Conversion clock selector (serial). An input low enables
the internal conversion clock. An input high indicates an external conversion clock will be assigned to Pin 16 (EXTCLKIN).
SER/PAR (Pin 21): Data Output Mode.
$\overline{\text { SHDN }}$ (Pin 22): Power Shutdown Input. Low selects shutdown. Shutdown modeselected by $\overline{\mathrm{CS}} . \overline{\mathrm{CS}}=0$ for nap mode and $\overline{\mathrm{CS}}=1$ for sleep mode.
$\overline{\mathrm{RD}}$ (Pin 23): Read Input. This enables the output drivers when CS is low.
$\overline{\text { CONVST (Pin 24): Conversion Start Signal. This activelow }}$ signal starts a conversion on its falling edge.
$\overline{\mathrm{CS}}$ (Pin 25): Chip Select. This input must be low for the ADCto recognizethe $\overline{O O N V S T}$ and $\overline{\mathrm{RD}}$ inputs. $\overline{\mathrm{SS}}$ also sets the shutdown mode when $\overline{\text { SHDN }}$ goes low. $\overline{\mathrm{CS}}$ and $\overline{\text { SHDN }}$ low select the quick wake-up nap mode. $\overline{\mathrm{CS}}$ high and $\overline{\text { SHDN }}$ low select sleep mode.
$\overline{\text { BUSY }}$ (Pin 26): The $\overline{\text { BUSY }}$ Output Shows the Converter Status. It is low when a conversion is in progress.
VSS (Pin 27): NegativeSupply, -5V for Bipolar Operation. Bypass to AGND with 10 μ Ftantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic. Analog ground for unipolar operation.
$V_{D D}$ (Pin 28): 5V Positive Supply. Bypass to AGND with $10 \mu \mathrm{~F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic.

TEST CIRCUITS

Load Circuits for Access Timing

A) $\mathrm{H}-\mathrm{ZTO} V_{\mathrm{OH}} A N D V_{\mathrm{Q}} \mathrm{TOV}_{\mathrm{OH}}$

B) $\mathrm{HI}-\mathrm{ZTO} V_{\mathrm{OL}}$ AND $V_{\mathrm{OH}} T O V_{\mathrm{O}}$

Load Circuits for Output Float Delay

1418 T001

LTC 1418

functional Block piagram

NOTE: PIN NAMES IN PARENTHESES
REER TOSERIAL MODE

APPLICATIONS INFORMATION

CONVERSION DETAILS

The LTC1418 uses a successive approximation algorithm and an internal sample-and-hold circuit to convert an analog signal to a 14 -bit parallel or serial output. The ADC is complete with a precision reference and an internal clock. The control logic provides easy interface to microprocessors and DSPs (please refer to Digital Interface section for the data format).
Conversion start is controlled by the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{CONVST}}$ inputs. At the start of the conversion the successive approximation register (SAR) is reset. Once a conversion cycle has begun it cannot be restarted.
During the conversion, the internal differential 14-bit capacitive DAC output is sequenced by the SAR from the most significant bit (MSB) to the least significant bit (LSB).

Figure 1. Simplified Block Diagram

APPLLCATIONS InFORMATION

Referring to Figure 1, the $\mathrm{A}_{\mathrm{IN}^{+}}$and $\mathrm{A}_{\mathrm{IN}^{-}}$inputs are connected to the sample-and-hold capacitors (CSAMPLE) during the acquirephase and thecomparator offset is nulled by the zeroing switches. In this acquire phase, a minimum delay of 1μ s will provide enough time for the sample-andhold capacitors to acquire the analog signal. During the convert phase the comparator zeroing switches open, putting the comparator into compare mode. The input switches the CSAMPLE capacitors to ground, transferring the differential analog input charge onto the summing junction. This input chargeis successively compared with the binary weighted charges supplied by the differential capacitive DAC. Bit decisions are made by the high speed comparator. At the end of a conversion, the differential DACoutput balances the $A_{I_{N}}{ }^{+}$and $A_{I N}{ }^{-}$input charges. The SAR contents (a 14-bit data word) which represent the difference of $\mathrm{AlN}_{\mathrm{IN}^{+}}$and $\mathrm{A}_{\mathrm{IN}^{-}}$are loaded into the 14-bit output latches.

DYNAMIC PERFORMANCE

The LTC1418 has excellent high speed sampling capability. FT (Fast Fourier Transform) test techniques are used totest the ADCs frequency response, distortion and noise at the rated throughput. By applying alow distortion sine wave and analyzing the digital output using an FTT algorithm, the ADC's spectral content can be examined for frequencies outside the fundamental. Figure 2 shows a typical LTC1418 FT plot.

Signal-to-Noise Ratio

The signal-to-noise plus distortion ratio [$\mathrm{S} /(\mathrm{N}+\mathrm{D})]$ is the ratio between theRMSamplitude of thefundamental input frequency to the RMS amplitude of all other frequency components at the A/D output. The output is band limited tofrequencies from aboveDCand below half the sampling frequency. Fgure2ashows atypical spectral content with a 200 kHz sampling rate and a 10 kHz input. The dynamic performance is excellent for input frequencies up to and beyond the Nyquist limit of 100 kHz .

Figure 2a. LTC1418 Nonaveraged, 4096 Point FFT, Input Frequency $=10 \mathrm{kHz}$

Figure 2b. LTC1418 Nonaveraged, 4096 Point FFT, Input Frequency $=97.5 \mathrm{kHz}$

Effective Number of Bits

The effectivenumber of bits (ENOBS) is a measurement of the resolution of an ADC and is directly related to the $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ by the equation:

$$
N=[S /(N+D)-1.76] / 6.02
$$

where N is the effective number of bits of resolution and $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ is expressed in dB . At the maximum sampling rate of 200kHz the LTC1418 maintains near ideal 日NOBs up to the Nyquist input frequency of 100 kHz (refer to Fgure 3).

APPLICATIONS INFORMATION

Figure 3. Effective Bits and Signal/(Noise + Distortion) vs Input Frequency

Total Harmonic Distortion

Total harmonic distortion (THD) is the ratio of the RMS sum of all harmonics of theinput signal tothefundamental itself. Theout-of-band harmonics alias into thefrequency band between DCand half the sampling frequency. THD is expressed as:

$$
T H D=20 \log \frac{\sqrt{V 2^{2}+V 3^{2}+V 4^{2}+\ldots \mathrm{Vn}^{2}}}{\mathrm{~V} 1}
$$

where V 1 is the RMS amplitude of the fundamental frequency and V2 through Vn are the amplitudes of the second throughnth harmonics. THDvs Input Frequency is
shown in Fgure 4. The LTC1418 has good distortion performance up to the Nyquist frequency and beyond.

Intermodulation Distortion

If the ADCinput signal consists of morethan one spectral component, the ADC transfer function nonlinearity can produce intermodulation distortion (IMD) in addition to THD. IMD is the change in one sinusoidal input caused by the presence of another sinusoidal input at a different frequency.

If two pure sine waves of frequencies faand fb are applied to the ADC input, nonlinearities in the ADCtransfer function can create distortion products at the sum and difference frequencies of $m f a \pm n f b$, where m and $n=0,1,2,3$, etc. For example, the 2nd order IMD terms include ($\mathrm{fa}+\mathrm{fb}$). If the two input sine waves are equal in magnitude, the value(in decibels) of the2nd order IMDproducts can be expressed by the following formula:

$$
\operatorname{IMD}(\mathrm{fa}+\mathrm{fb})=20 \log \frac{\text { Amplitude at }(\mathrm{fa}+\mathrm{fb})}{\text { Amplitude at } \mathrm{fa}}
$$

Figure 4. Distortion vs Input Frequency

APPLICATIONS INFORMATION

Full-Power and Full-Linear Bandwidth

The full-power bandwidth is that input frequency at which the amplitude of the reconstructed fundamental is reduced by 3dB for a full-scale input signal.

The full-linear bandwidth is the input frequency at which the $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ has dropped to 77dB (12.5 effective bits). The LTC1418 has been designed to optimize input bandwidth, allowing the ADCto undersampleinput signals with frequencies abovetheconverter's Nyquist Frequency. The noise floor stays very low at high frequencies; $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ becomes dominated by distortion at frequencies far beyond Nyquist.

DRIVING THE ANALOG INPUT

The differential analog inputs of theLTC1418 are easy to drive. Theinputs may bedriven differentially or as asingleended input (i.e., the $A_{I N}{ }^{-}$input is grounded). The $A_{I N}{ }^{+}$and $\mathrm{A}_{\mathrm{IN}}{ }^{-}$inputs are sampled at the same instant. Any unwanted signal that is common mode to both inputs will be reduced by thecommon moderejection of the sample-and-hold circuit. The inputs draw only one small current spike while charging the sample-and-hold capacitors at the end of conversion. During conversion, the analog inputs draw only a small leakage current. If the source impedance of the driving circuit is low then the LTC1418 inputs can be driven directly. As source impedance increases so will acquisition time (see Fgure 6). For minimum acquisitiontime, with high sourceimpedance, a buffer amplifier must beused. Theonly requirement isthat the amplifier driving the analog input(s) must settle after thesmall current spikebeforethenext conversionstarts1μ s for full throughput rate.

Choosing an Input Amplifier

Choosing an input amplifier is easy if afew requirements aretaken into consideration. Frst, choosean amplifier that has a low output impedance ($<100 \Omega$) at the closed-loop bandwidth frequency. For example, if an amplifier is used in again of 1 and has a closed-loop bandwidth of 10 MHz , then the output impedance at 10 MHz must be less than 100Ω. The second requirement is that the closed-loop bandwidth must begreater than 5 MHz to ensure adequate
small-signal settling for full throughput rate. If slower op amps are used, more settling time can be provided by increasing the time between conversions.
The best choice for an op amp to drive the LTC1418 will depend on the application. Generally, applications fall into two categories: ACapplications wheredynamic specifications aremost critical and timedomain applications where DC accuracy and settling time are most critical. The following list is asummary of theop amps that aresuitable for driving the LTC1418. More detailed information is available in the Linear Technology Databooks and on the LinearView ${ }^{\text {TM }}$ CD-ROM.
$\mathrm{LT}^{\circledR}{ }^{\circledR}$ 1354: $12 \mathrm{MHz}, 400 \mathrm{~V} /$ us Op Amp. 1.25 mA maximum supply current. Good AC and DC specifications. Suitable for dual supply application.
LT1357: $25 \mathrm{MHz}, 600 \mathrm{~V} / \mu \mathrm{s}$ Op Amp. 2.5 mA maximum supply current. Good AC and DC specifications. Suitable for dual supply application.
LT1366/LT1367: Dual/Quad Precision Rail-to-Rail Input and Output OpAmps. 375μ A supply current per amplifier. 1.8 V to $\pm 15 \mathrm{~V}$ supplies. Low input offset voltage: $150 \mu \mathrm{~V}$. Good for low power and single supply applications with sampling rates of 20 ksps and under.
LT1498/LT1499: 10MHz, 6V/us, Dual/Quad Rail-to-Rail Input and Otput Op Amps. 1.7mA supply current per

Figure 6. $\mathrm{t}_{\mathrm{Aca}}$ vs Source Resistance

LinearView is a trademark of Linear Technology Corporation.

APPLICATIONS INFORMATION

amplifier. 2.2 V to $\pm 15 \mathrm{~V}$ supplies. Good ACperformance, input noise voltage $=12 \mathrm{nV} / \sqrt{\mathrm{Hz}}($ typ $)$.
LT1630/LT1631: 30MHz, 10V/us, Dual/Quad Rail-to-Rail Input and Otput Precision Op Amps. 3.5 mA supply current per amplifier. 2.7 V to $\pm 15 \mathrm{~V}$ supplies. Best AC performance, input noise voltage $=6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (typ), THD $=-86 \mathrm{~dB}$ at 100 kHz

Input Filtering

The noise and the distortion of the input amplifier and other circuitry must be considered since they will add to the LTC1418 noise and distortion. The small-signal bandwidth of thesample-and-holdcircuitis 5MHz Any noiseor distortion products that are present at the analog inputs will be summed over this entire bandwidth. Noisy input circuitry should be filtered prior to the analog inputs to minimize noise. A simple 1-pole RC filter is sufficient for many applications. For example, Fgure7 shows a2000pF capacitor from + AInto ground and a 100Ω sourceresistor to limit the input bandwidth to 800 kHz . The 2000pF capacitor also acts as a charge reservoir for the input sample-and-hold and isolates the ADC input from samplingglitch sensitive circuitry. High quality capacitors and resistors should beused sincethese components can add distortion. NPO and silver micatype dielectric capacitors haveexcellent linearity. Carbonsurfacemount resistors can also generatedistortion from self heating and from damage that may occur during soldering. Metal film surface mount resistors are much less susceptible to both problems.

Figure 7. RC Input Filter

Input Range

The $\pm 2.048 \mathrm{~V}$ and 0 V to 4.096 V input ranges of the LTC1418 are optimized for low noise and low distortion. Most op amps also perform well over these ranges, allowing direct coupling to the analog inputs and eliminating the need for special translation circuitry.
Some applications may require other input ranges. The LTC1418 differential inputs and reference circuitry can accommodate other input ranges often with little or no additional circuitry. The following sections describe the reference and input circuitry and how they affect theinput range.

INTERNAL REFERENCE

The LTC1418 has an on-chip, temperature compensated, curvature corrected, bandgap reference which is factory trimmedto 2.500 V . It is internally connectedto areference amplifier and is available at Pin 3 . A8k resistor is in series with the output so that it can be easily overdriven in applications where an external reference is required, $\mathrm{s} e$ Fgure 8. The reference amplifier compensation pin (REOOMP, Pin 4) must be connected to a capacitor to ground. The reference is stable with capacitors of 1μ For greater. For thebest noise performance, a 10μ Fin parallel with a $0.1 \mu \mathrm{~F}$ ceramic is recommended.
The $\mathrm{V}_{\mathrm{R} \oplus}$ pin can be driven with a DAC or other means to provide input span adjustment. The reference should be kept in the range of 2.25 V to 2.75 V for specified linearity.

Figure 8. Using the LT1460 as an External Reference

APPLICATIONS Information

UNIPOLAR/BIPOLAR OPERATION AND ADJUSTMENT

Figure 9a shows the ideal input/output characteristics for theLTC1418. Thecodetransitions occur midway between successive integer LSB values (i.e., 0.5 LSB , 1.5 LSB , 2.5LSB, . . FS-1.5LSB). Theoutput codeis natural binary with $1 \mathrm{LSB}=\mathrm{FS} / 16384=4.096 \mathrm{~V} / 16384=250 \mu \mathrm{~V}$. Fgure9b shows the input/output transfer characteristics for the bipolar mode in two's complement format.

Unipolar Offset and Full-Scale Error Adjustment

In applications where absolute accuracy is important, offset andfull-scaleerrors can beadjusted to zero. Offset error must be adjusted before full-scale error. Fgures 10aand 10bshowtheextracomponents requiredfor full-
scaleerror adjustment. Zero offset is achieved by adjusting the offset applied to the $A_{I_{N}}-$ input. For zero offset error apply $125 \mu \mathrm{~V}$ (i.e., 0.5 LSB) at the input and adjust the offset at the $\mathrm{A}_{\mathrm{IN}}-$ input until the output code flickers between 00000000000000 and 00000000000001 . For full-scale adjustment, an input voltage of 4.095625 V (FS-1.5LSBS) is applied to $\mathrm{A}_{\mathrm{IN}^{+}}+$and R 2 is adjusted until theoutput codeflickersbetween 11111111111110 and 11111111111111.

Bipolar Offset and Full-Scale Error Adjustment

Bipolar offset andfull-scaleerrors areadjusted in asimilar fashion to the unipolar case. Again, bipolar offset error must be adjusted before full-scale error. Bipolar offset

Figure 10a. Offset and Full-Scale Adjust Circuit If -5 V Is Not Available

Figure 10b. Offset and Full-Scale Adjust Circuit If -5 V Is Available

Figure 9b. LTC1418 Bipolar Transfer Characteristics

APPLICATIONS InFORMATION

error adjustment is achieved by adjusting the offset applied to the $A_{1 N}{ }^{-}$input. For zero offset error apply $-125 \mu \mathrm{~V}$ (i.e., -0.5 LSB) at $\mathrm{A}_{\mathrm{IN}}{ }^{+}$and adjust the offset at the $\mathrm{A}_{\mathrm{N}}{ }^{-}$input until the output code flickers between 00000000000000 and 111111111111 11. For full-scale adjustment, an input voltage of 2.047625 V (FS-1.5LSBs) is applied to AlN^{+}and R2 is adjusted until the output code flickers betwen 01111111111110 and 01111111111111.

BOARD LAYOUT AND GROUNDING

Wire wrap boards are not recommended for high resolution or high speed A/D converters. To obtain the best performance from the LTC1418, a printed circuit board with ground planeis required. Theground planeunder the ADC area should be as free of breaks and holes as possible, such that alow impedancepath between all ADC grounds and all ADCdecoupling capacitors is provided. It is critical to prevent digital noisefrombeing coupled to the analog input, reference or analog power supply lines. Layout should ensure that digital and analog signal lines are separated as much as possible. In particular, care should be taken not to run any digital track alongside an analog signal track.

An analog ground plane separate from the logic system ground should beestablished under and around the ADC. Pin 5 (AGND) and Pin 14 (DGND) and all other analog grounds should beconnected to this singleanalog ground plane. The RECOMP bypass capacitor and the V_{DD} bypass capacitor should also be connected to this analog ground plane. No other digital grounds should be con-
nected to this analog ground plane. Low impedance analog and digital power supply common returnsareessential to low noise operation of the ADC and the foil width for thesetracks should beas wideas possible. In applications where the ADC data outputs and control signals are connected to acontinuously activemicroprocessor bus, it is possible to get errors in the conversion results. These errors aredueto feedthrough from the microprocessor to the successive approximation comparator. The problem can be eliminated by forcing the microprocessor into a wait state during conversion or by using three-state buffers to isolatethe ADCdatabus. Thetraces connecting the pins and bypass capacitors must bekept short and should be made as wide as possible.

The LTC1418 has differential inputs to minimize noise coupling. Common modenoiseonthe $\mathrm{A}_{I N}{ }^{+}$and $\mathrm{AIN}^{-}{ }^{-}$leads will be rejected by the input CMRR. The AIN ${ }^{-}$input can be usedas aground sensefor the AIN $^{+}$input; theLTC1418 will hold and convert the difference voltage between $\mathrm{A}_{\mathrm{IN}}{ }^{+}$and $\mathrm{A}_{I N}{ }^{-}$. The leads to $\mathrm{A}_{\mathrm{IN}^{+}}$(Pin 1) and $\mathrm{A}_{\mathrm{IN}^{-}}$(Pin 2) should be kept as short as possible. In applications wherethis is not possible, the $\mathrm{A}_{I N^{+}}$and $\mathrm{A}_{I N}$ traces should be run side by side to equalize coupling.

SUPPLY BYPASSING

High quality, low series resistance ceramic, 10 μ Fbypass capacitors should be used at the V_{DD} and REFOMMP pins. Surface mount ceramic capacitors such as Murata GRM235Y5V106Z016 provide excellent bypassing in a small board space. Alternatively 10 μ Ftantalum capacitors in parallel with $0.1 \mu \mathrm{~F}$ ceramic capacitors can be used.

Figure 11. Power Supply Grounding Practice

APPLICATIONS INFORMATION

APPLICATIONS INFORMATION

Figure 12b. Suggested Evaluation Circuit Board— Component Side Top Silkscreen

1418 F12C
Figure 12c. Suggested Evaluation Circuit Board—Top Layer

APPLICATIONS INFORMATION

Figure 12d. Suggested Evaluation Circuit Board—Solder Side Layout

LTC 1418

APPLICATIONS InFORMATION

mode is much slower since the reference circuit must power up and settle to 0.005% for full 14-bit accuracy. Sleep mode wake up time is dependent on the value of the capacitor connected to the REOOMP (Pin 4). The wake-up time is 30 ms with the recommended $10 \mu \mathrm{~F}$ capacitor. Shutdown is controlled by Pin $22(\overline{\mathrm{SHDN}})$; the ADC is in shutdown when it is low. The shutdown mode is selected with Pin 25 (CS); low selects nap (see Figure 13b), high selects sleep.

Figure 13a. $\overline{\text { SHDN }}$ to $\overline{\text { CONVST }}$ Wake-Up Timing

Figure 13b. $\overline{C S}$ to $\overline{\text { SHDN }}$ Timing

Conversion Control

Conversion start is controlled by the CS and CONVST inputs. Afalling edgeof OONVST pin will start aconversion after the ADChas been selected (i.e., $\overline{\mathrm{SS}}$ is low, seeFigure 14). Onceinitiated, it cannot berestarted until the conversion is complete. Converter status is indicated by the $\overline{B U S Y}$ output. $\overline{B U S Y}$ is low during a conversion.

Data Output

The data format is controlled by the SER/ $\overline{P A R}$ input pin; logic low selects parallel output format. In parallel mode the 14-bit dataoutput word D0to D13is updated at theend of each conversion on Pins 6 to 13 and Pins 15 to 20. A logic high applied to SER/PAR selects the serial formatted dataoutput and Pins 16 to 20 assumetheir serial function, Pins 6 to 13 and 15 are in the Hi-Z state. In either parallel

Figure 14. $\overline{\text { CS }}$ to $\overline{\text { CONVST }}$ Set-Up Timing
or serial dataformats, outputs will beactive only when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are low. Any other combination of $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ will three-state the output. In unipolar mode $\left(\mathrm{V}_{S S}=0 \mathrm{~V}\right)$ the datawill bein straight binary format (corresponding to the unipolar input range). In bipolar mode ($\mathrm{V}_{S S}=-5 \mathrm{~V}$), the datawill beintwo's complement format (corresponding to the bipolar input range).

Parallel Output Mode

Parallel mode is selected with a logic 0 applied to the S $R / \overline{\text { PAR }}$ pin. Fgures 15 through 19 showdifferent modes of parallel output operation. In modes 1a and 1b (Figures 15 and 16) $\overline{\mathrm{C}}$ and $\overline{\mathrm{RD}}$ are both tied low. The falling edge of CONVST starts the conversion. The data outputs are always enabled and data can be latched with the BUSY rising edge. Mode 1ashows operation with anarrow logic low CONVST pulse. Mode 1b shows a narrow logic high CONVST pulse.

In mode 2 (Fgure 17) $\overline{\mathrm{CS}}$ is tied low. The falling edge of OONVST signal again starts the conversion. Data outputs areinthre-state until read by theMPU with the $\overline{\mathrm{RD}}$ signal. Mode 2 can be used for operation with a shared databus.
In slow memory and ROM modes (Fgures 18 and 19), $\overline{\mathrm{CS}}$ is tied low and CONVSTand RD aretiedtogether. TheMPU starts the conversion and reads the output with the RD signal. Conversions are started by the MPU or DSP (no external sample clock).
Inslowmemorymodetheprocessor takes $\overline{\mathrm{RD}}(=\overline{\mathrm{CONVST}})$ low and starts the conversion. BUSY goes low forcing the processor into await state. Theprevious conversion result appears on the data outputs. When the conversion is complete, the new conversion results appear on the data

APPLICATIONS INFORMATION

Figure 15．Mode 1a．CONVST Starts a Conversion．Data Outputs Always Enabled （CONVST $=$ 乙 〕 〕）

Figure 16．Mode 1b．$\overline{\text { CONVST }}$ Starts a Conversion．Data Outputs Always Enabled
（CONVST $=$ 几 几ـ 几

Figure 17．Mode 2．CONVST Starts a Conversion．Data is Read by RD

LTC 1418

APPLICATIONS INFORMATION

Figure 18. Slow Memory Mode Timing

Figure 19. ROM Mode Timing
outputs; BUSY goes high releasing the processor and the processor takes RD (= CONVST) back high and reads the new conversion data.
In ROM mode, the processor takes $\overline{\mathrm{RD}}(=\overline{\mathrm{OONSST}})$ low, starting aconversion and reading the previous conversion result. Atter theconversion is complete, theprocessor can read the new result and initiate another conversion.

Serial Output Mode

Serial output mode is selected when the SER/PAR input pin is high. In this mode, Pins 16 to 20, D0 (EXT//NT), D1 (Dout), D2 (CLKOU), D3 (SCLK) and D4 (EXTCLKIN) assume their serial functions as shown in Figure 20. (During this discussion these pins will be referred to by their serial function names: EXT/INT, Dor, OLKOT, SCLK and EXTCLKIN.) As in parallel mode, conversions are started by afalling CONVST edge with ©Slow. After a conversion is completed and the output shift register has been updated, BUSY will go high and valid data will be available on Dor (Pin 19). This data can be clocked out
either beforethenext conversion starts or it can beclocked out during the next conversion. To enable the serial data output buffer and shift clock, $\overline{\mathrm{C}}$ and $\overline{\mathrm{RD}}$ must be low.
Fgure 20 shows afunction block diagram of the LTC1418 in serial mode. There are two pieces to this circuitry: the conversion clock selection circuit (EXT/INT, EXTCLKIN and CLKOT) andtheserial port (SCLK, Dor, CSand $\overline{\mathrm{RD}})$.

Conversion Clock Selection (Serial Mode)

In Figure 20, the conversion clock controls the internal ADC operation. The conversion clock can be either internal or external. By connecting EXT/IN low, the internal clock is selected. This clock generates 16 clock cycles which feed into the SAR for each conversion.
To select an external conversion clock, tie EXT//NT high and apply an external conversion clock to EXTCLKIN (Pin 16). (When an external shift clock (SOLK) is used during a conversion, the SQ_K should be used as the external conversion clock to avoid the noise generated by the

APPLICATIONS INFORMATION

Figure 20. Functional Block Diagram for Serial Mode (SER/PAR $=$ High)
asynchronous clocks. To maintain accuracy the external conversion clock frequency must be between 30 kHz and 4.5 MHz .) The SAR sends an end of conversion signal, EOC, that gates the external conversion clock so that only 16 clock cycles can go into the SAR, even if the external clock, EXTCLKIN, contains more than 16 cycles.
When $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ arelow, these 16 cycles of conversion clock (whether internally or externally generated) will appear on OLKOTT during each conversion and then OLKOT will remain low until the next conversion. If desired, CLKOT can be used as a master clock to drive the serial port. Because CLKOU is running during the conversion, it is important to avoid excessiveloading that can cause large supply transients and create noise. For the best performance, limit Q_KOUT loading to 20 pF .

Serial Port

The serial port in Fgure 20 is made up of a 16-bit shift register and a threestate output buffer that are controlled by threeinputs: SCLK, RD and CS. The serial port has one output, Dor, that provides the serial output data

TheSC_Kis used to clock the shift register. Datamay be clocked out with the internal conversion clock operating as amaster by connecting Q_KOU (Pin 18) to SO_K (Pin 17) or with an external data clock applied to D3 (SCLK). The minimum number of SCLK cycles required to transfer a data word is 14. Normally, SCLK contains 16 clock cycles for aword length of 16 bits; 14 bits withMSB first, followed by two trailing zeros.

Alogic high on $\overline{\mathrm{RD}}$ disables SA_K and three states Dour.

 Incaseof using acontinuous SCLK, $\overline{R D}$ can becontrolled to limit the number of shift clocks to the desired number (i.e., 16 cycles) and to threestate $\mathrm{D}_{\text {or }}$ after the data transfer.Alogic high on $\overline{\mathrm{S}}$ three states the Dour output buffer. It also inhibits conversion when it is tied high. In power shutdown mode (SHDN = low), a high CS selects sleep mode while alow CSselects nap mode. For normal serial port operation, CS can be grounded.
Dorr outputs the serial data; 14 bits, MSB first, on the falling edge of each SC_K (see Fgures 21 and 22). If 16 Sa_Ks are provided, the 14 data bits will be followed by

LTC 1418

APPLICATIONS INFORMATION

two zeros. TheMSB (D13) will be valid on the first rising and the first falling edge of theSCLK. D12 will bevalid on the second rising and the second falling edge as will all the remaining bits. The data may be captured on either edge. The largest hold time margin is achieved if data is captured on the rising edge of SCLK.
$\overline{B U S Y}$ gives the end of conversion indication. When the LTC1418 is configured as a master serial device, BUSY can be used as a framing pulse and to three-state the

Figure 21. SCLK to $\mathrm{D}_{\text {Out }}$ Delay

Figure 22. Internal Conversion Clock Selected. Data Transferred During Conversion Using the ADC Clock Output as a Master Shift Clock (SCLK Driven from CLKOUT)

APPLICATIONS INFORMATION

serial port after transferring the serial output data by tying it to the $\overline{\mathrm{RD}}$ pin.
Figures 22 to 25 show several serial modes of operation, demonstrating the flexibility of the LTC1418 serial port.

Serial Data Output During a Conversion

Using Internal Conversion Clock for Conversion and Data Transfer. Fgure 22 shows data from the previous conversion being clocked out during the conversion with the LTC1418 internal clock providing both the conversion
clock and theSCLK. Theinternal clock has been optimized for the fastest conversion time, consequently this mode can providethebest overall speed performance. To select an internal conversion clock, tieEXT/INT(Pin20) low. The internal clock appears on CLKOUT(Pin 18) which can be tied to SCLK (Pin 17) to supply the SCLK.
Using External Clock for Conversion and Data Transfer. In Figure23, data from the previous conversion is output during the conversion with an external clock providing both the conversion clock and the shift clock. To select an external conversion clock, tie EXT/INT high and apply the

Figure 23. External Conversion Clock Selected. Data Transferred During Conversion Using the External Clock (External Clock Drives Both EXTCLKIN and SCLK)

LTC 1418

APPLICATIONS INFORMATION

clocktoEXTCLKIN. Thesameclockisalsoapplied toSCLK to provide a data shift clock. To maintain accuracy the conversion clock frequency must be between 30 kHz and 4.5 MHz

It is not recommended to clock data with an external clock during a conversion that is running on an internal clock because the asynchronous clocks may create noise.

Serial Data Output After a Conversion

Using Internal Conversion Clock and External Data Clock.
In this mode, data is output after the end of each conversion but before the next conversion is started (Figure24). The internal clock is used as the conversion clock and an external clock is used for theSCLK. This modeis useful in applications where the processor acts as a master serial device. This mode is SPI and MICROWIREcompatible. It

Figure 24. Internal Conversion Clock Selected. Data Transferred After Conversion Using an External SCLK. BUSY \uparrow Indicates End of Conversion

APPLICATIONS InFORMATION

also allowsoperation whentheSCLKfrequency is verylow (less than 30kHz). To select the internal conversion clock tieEXT/INTlow. Theexternal SCLKis applied to SCLK. $\overline{R D}$ can be used to gate the external SCLK, such that data will clock only after RD goes low and to three-state Dour after data transfer. If more than 16 SCLKs are provided, more zeros will be filled in after the data word indefinitely.

Using External Conversion Clock and External Data Clock. In Figure25, data is also output after each conversion is completed and before the next conversion is started. An external clock is used for the conversion clock and either another or the same external clock is used for the SCLK. This mode is identical to Fgure 24 except that an external clock is used for the conversion. This mode

Figure 25. External Conversion Clock Selected. Data Transferred After Conversion
Using an External SCLK. BUSY \uparrow Indicates End of Conversion

LTC 1418

APPLICATIONS INFORMATION

allows the user to synchronize the $\mathrm{A} D$ conversion to an external clock either to haveprecisecontrol of the internal bit test timing or to provide apreciseconversion time. As in Figure 24, this mode works when the SCLK frequency is very low (less than 30 kHz). However, the external conversion clock must be between 30 kHz and 4.5 MHz to maintain
accuracy. If morethan 16 SQLKs areprovided, more zeros will befilled in after the dataword indefinitely. To select the external conversion clock tie EXT/INT high. The external SCLKis appliedtoSCLK. RDcanbeusedtogatetheexternal SCLK such that data will clock only after RD goes low.

PACKAGE DESCRIPTOी Dimensions in inches (millimeters) unless otherwise noted.

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

N Package

28-Lead PDIP (Narrow 0.300)
(LTCDWG\# 05-08-1510)

LTC 1418

TYPICAL APPLICATION

Single 5V Supply, 200kHz, 14-Bit Sampling A/D Converter

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
ADCs		
LTC1274/LTC1277	Low Power, 12-Bit, 100ksps ADCs	10mW Power Dissipation, Paralle/Byte Interface
LTC1412	12-Bit, 3Msps Sampling ADC	Best Dynamic Performance, SINAD = 72dB at Nyquist
$\underline{\text { LTC1415 }}$	Single 5V, 12-Bit, 1.25Msps ADC	55mW Power Dissipation, 72dB SINAD
LTC1416	Low Power, 14-Bit, 400ksps ADC	70mW Power Dissipation, 80.5dB SINAD
LTC1419	Low Power, 14-Bit, 800ksps ADC	True 14-Bit Linearity, 81.5dB SINAD, 150mW Dissipation
LTC1604	16-Bit, 333ksps Sampling ADC	$\pm 2.5 \mathrm{~V}$ Input, SINAD $=90 \mathrm{~dB}, \mathrm{THD}=100 \mathrm{~dB}$
LTC1605	Single 5V, 16-Bit, 100ksps ADC	Low Power, $\pm 10 \mathrm{~V}$ Inputs, Parallel/Byte Interface
DACs		
LTC1595	16-Bit OMOS Multiplying DAC in SO-8	$\pm 1 \mathrm{LSB}$ Max INL/DNL, 1nV • sec Glitch, DAC8043 Upgrade
LTC1596	16-Bit CMOS Multiplying DAC	$\pm 1 \mathrm{SBB}$ Max INL/DNL, DAC8143/AD7543 Upgrade
Reference		
LT1019-2.5	Precision Bandgap Reference	0.05\% Max, $5 \mathrm{ppm} /{ }^{\circ} \mathrm{CMax}$

