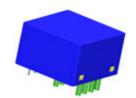


Current Transducer HXS 20-NP/SP30

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).



All Data are given with a $R_1 = 10 \text{ k}\Omega$

$I_{DN} = 5 - 10 - 20 A$

Electrical data

I _{PN}	Primary nominal r.m.s. current	±20	Α
I _P	Primary current measuring range	±60	Α
V _{OUT}	Analog output voltage @ I _P	$V_{REF} \pm (0.62)$	25· I _P / I _{PN}) V
	$I_{P} = 0$	$\mathbf{V}_{\text{REF}} \pm 0.0$	125 V
\mathbf{V}_{REF}	Internal Reference 1) - Output voltage	2.5 ± 0.02	25 V
	V _{REF} Output impedance	typ. 200	Ω
	V _{REF} Load impedance	≥ 200	$k\Omega$
R,	Output load resistance	≥ 2	$k\Omega$
R _{OUT}	Output impedance	< 10	Ω
C,	Max. output capacitive load	< 1	μF
V	Supply voltage (± 5 %)	5	V
I _c	Current consumption @ $V_c = 5 \text{ V}$	22	mA
R _{OUT} C _L V _C	V _{REF} Load impedance Output load resistance Output impedance Max. output capacitive load Supply voltage (± 5 %)	≥ 200 ≥ 2 < 10 < 1 5	ks ks s pF

Accuracy - Dynamic performance data

Accuracy $^{2)}$ @ I_{PN} , $T_{A} = 25^{\circ}C$	≤±1	% of I_{PN}
Linearity 0 I _{PN}	≤±0.5	% of I_{PN}
3 x I _{PN}	≤±1	% of I_{PN}
T Thermal drift of \mathbf{V}{OUT} @ $\mathbf{I}_{P} = 0$	≤±0.4	mV/K
₋ Thermal drift of V _{REF}	≤±0.01	%/K
V_{REF} Thermal drift of $V_{OUT}/V_{REF} @ I_{P} = 0$	≤±0.2	mV/K
Thermal drift of the gain	$\leq \pm 0.07\%$ of	reading/K
Residual voltage @ $I_p = 0$, after an overload of 3 x I_{PNDC}	<±1.2	% of I_{PN}
Reaction time @ 10 % of I _{PN}	< 3	μs
Response time @ 90 % of I _{PN}	< 5	μs
di/dt accurately followed	> 50	A/µs
Output noise (DC10 kHz)	< 15	mVpp
(DC 1 MHz)	< 40	mVpp
Frequency bandwidth (-3 dB) 3)	DC 50	kHz
	Linearity $0 I_{PN}$ $ 3 \times I_{PN}$ $ 3 \times I_{PN}$ Thermal drift of \mathbf{V}_{OUT} @ $\mathbf{I}_P = 0$ Thermal drift of \mathbf{V}_{REF} $/\mathbf{V}_{REF}$ Thermal drift of $\mathbf{V}_{OUT}/\mathbf{V}_{REF}$ @ $\mathbf{I}_P = 0$ Thermal drift of the gain Residual voltage @ $\mathbf{I}_P = 0$, after an overload of $3 \times \mathbf{I}_{PN DC}$ Reaction time @ 10 % of \mathbf{I}_{PN} Response time @ 90 % of \mathbf{I}_{PN} di/dt accurately followed Output noise (DC10 kHz) $(DC 1 \text{ MHz})$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

General data

\mathbf{T}_{A}	Ambient operating temperature	- 40 + 85	°C
T _s	Ambient storage temperature	- 40 + 85	°C
dČp	Creepage distance	> 5.5	mm
dCl	Clearance distance	> 5.5	mm
CTI	Comparative tracking index (Group I)	> 600	V
	UL94 classification	V0	
m	Mass	10	g
	Standards	EN 50178 (97-10-01)	

Features

- Hall effect measuring principle
- Multirange current transducer through PCB pattern lay-out
- Galvanic isolation between primary and secondary circuit
- Isolation test voltage 2500V
- Low power consumption
- Extremely low profile, 10mm
- Single power supply +5V
- Fixed offset & gain

Special Feature

• Designed to avoid heating

Advantages

- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.
- Internal & external reference

Applications

- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

041222/3

Current Transducer HXS 20-NP/SP30

Insulation category V_b 150 Nominal Voltage V r.m.s. with IEC 61010-1 standards and following conditions - Single insulation - Over voltage category III - Pollution degree 2 - Heterogeneous field 300 $V_{\rm b}$ Nominal Voltage V r.m.s. with EN 50178 standards and following conditions - Reinforced insulation - Over voltage category III - Pollution degree 2 - Heterogeneous field R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn kV R.m.s. voltage for partial discharge extinction @ 10pC >1 kV Impulse withstand voltage 1.2/50µs k\/

Notes: 1) It is possible to overdrive **V**_{REF} with an external reference voltage between 2 - 2.8 V providing its ability to sink or source approximately 2.5 mA.

Safety:

Caution, risk of danger

Caution, risk of electrical shock

This transducer shall be used in accordance with manufacturer instruction.

The temperature of the primary conductor shall not exceed 100°C

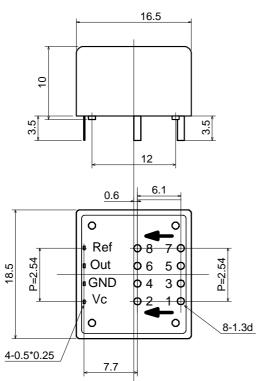
Power supply shall be a low voltage source and shall have an efficient protective system against over current.

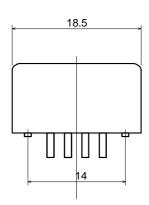
Power supply must incorporate a circuit breaker.

This transducer shall be used in an electric/electronic equipment in respect of standards rules and applicable safety requirements.

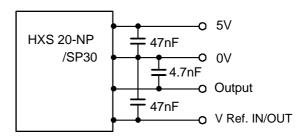
Primary bar and output terminals can provide hazardous voltage.

This transducer is a built in device, of which conducting parts must be inaccessible by installation.

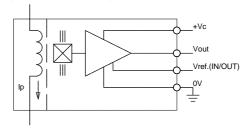

Protective envelope or additional shield must be used.


²⁾Excluding offset and hysteresis.

³⁾ Small signal only to avoid excessive heatings of the magnetic core.



HXS 20-NP/SP30 Dimensions (in mm)



Required Connection Circuit

Operation Principle

Number of	Primary current		Primary	Primary insertion	Recommended	
primary turns	nominal	maximum	resistance	inductance	PCB connections	
	I _{PN} [A]	I _P [A]	R _P [m ohm]	L _P [uF]		
1	20	60	0.05	0.029	IN 1 3 5 7 O-O-O-O O-O-O-O 2 4 6 8 OUT	
2	10	30	0.2	0.12	IN 1 3 5 7 0-0 0-0 0-0 0-0 2 4 6 8 OUT	
4	5	15	1	0.46	IN 1 3 5 7 0 0 0 0 0 0 0 2 4 6 8 OUT	

Mechanical characteristics

- General tolerance
- Fastening & connection of primary jumper Recommended PCB hole
- Fastening & connection of secondary Recommended PCB hole
- ± 0.2 mm
- 8 pins Ø 1.3 mm Ø 1.5 mm
- 4 pins 0.5 x 0.25 Ø 0.7 mm

Remarks

- V_{OUT} is positive when I_p flows from terminals 1, 3, 5, 7 (IN) to terminals 2, 4, 6, 8 (OUT).
- Temperature of the primary conductors should not exceed 100°C.