May 4, 2006

FSAM50SM60A

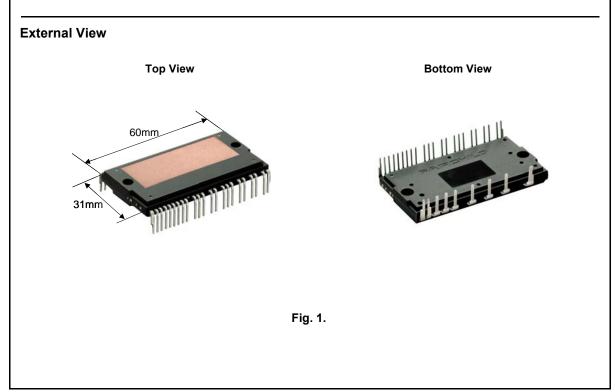
FAIRCHILD

SEMICONDUCTOR®

FSAM50SM60A

SPM[™] (Smart Power Module)

General Description


FSAM50SM60A is an advanced smart power module (SPM) that Fairchild has newly developed and designed to provide very compact and low cost, yet high performance ac motor drives mainly targeting medium speed low-power inverter-driven application like air conditioners. It combines optimized circuit protection and drive matched to low-loss IGBTs. Highly effective short-circuit current detection/ protection is realized through the use of advanced current sensing IGBT chips that allow continuous monitoring of the IGBTs current. System reliability is further enhanced by the built-in over-temperature and integrated under-voltage lock-out protection. The high speed built-in HVIC provides opto-coupler-less IGBT gate driving capability that further reduce the overall size of the inverter system design. In addition the incorporated HVIC facilitates the use of singlesupply drive topology enabling the FSAM50SM60A to be driven by only one drive supply voltage without negative bias. Inverter current sensing application can be achieved due to the devided nagative dc terminals.

Features

- UL Certified No. E209204
- 600V-50A 3-phase IGBT inverter bridge including control ICs for gate driving and protection
- Divided negative dc-link terminals for inverter current sensing applications
- Single-grounded power supply due to built-in HVIC
- Typical switching frequency of 5kHz
- Built-in thermistor for over-temperature monitoring
- Isolation rating of 2500Vrms/min.
- Very low leakage current due to using DBC (Direct Bonded Copper) substrate
- Adjustable current protection level by varying series resistor value with sense-IGBTs

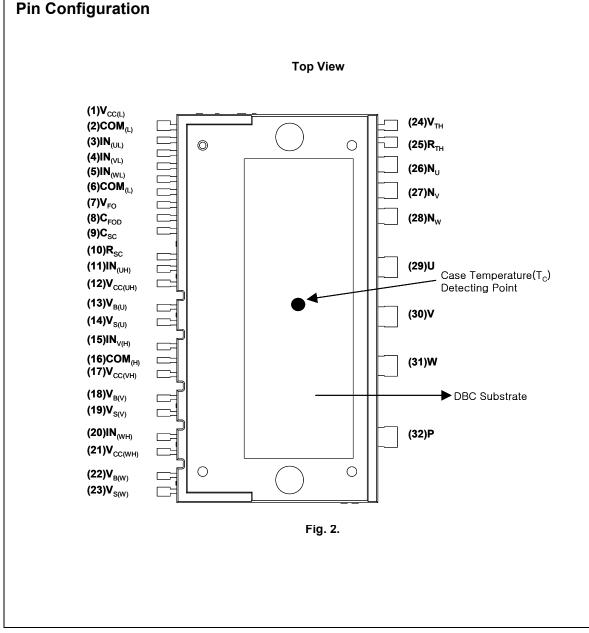
Applications

- AC 100V ~ 253V three-phase inverter drive for small power ac motor drives
- Home appliances applications like air conditioners drive system

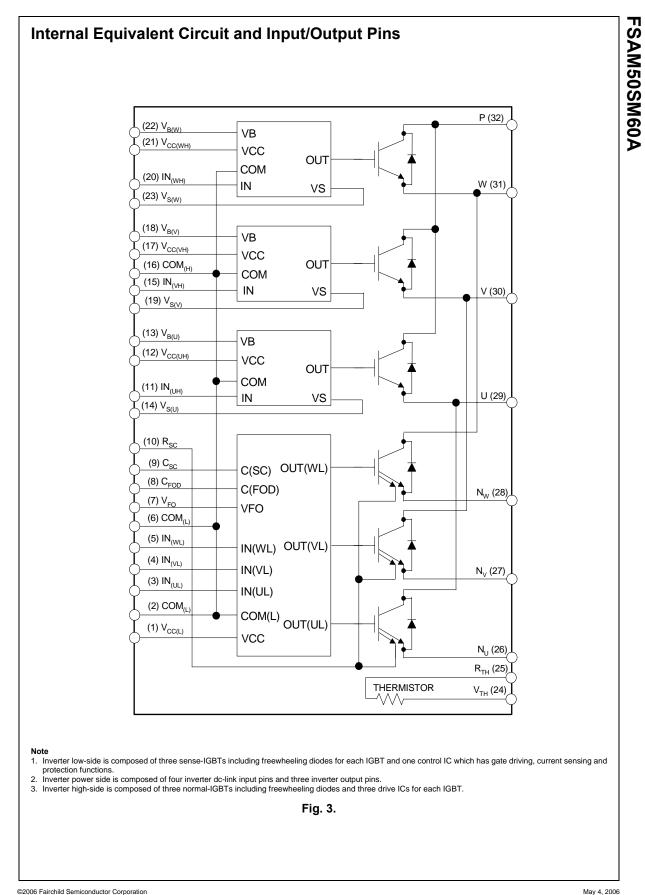
FSAM50SM60A

Integrated Power Functions

• 600V-50A IGBT inverter for three-phase DC/AC power conversion (Please refer to Fig. 3)


Integrated Drive, Protection and System Control Functions

• For inverter high-side IGBTs: Gate drive circuit, High voltage isolated high-speed level shifting


Control circuit under-voltage (UV) protection

Note) Available bootstrap circuit example is given in Figs. 13 and 14.

- For inverter low-side IGBTs: Gate drive circuit, Short circuit protection (SC)
 - Control supply circuit under-voltage (UV) protection
- Temperature Monitoring: System over-temperature monitoring using built-in thermistor
 - Note) Available temperature monitoring circuit is given in Fig. 14.
- Fault signaling: Corresponding to a SC fault (Low-side IGBTs) or a UV fault (Low-side control supply circuit)
- Input interface: 5V CMOS/LSTTL compatible, Schmitt trigger input

in Number	Pin Name	Pin Description
1	V _{CC(L)}	Low-side Common Bias Voltage for IC and IGBTs Driving
2	COM _(L)	Low-side Common Supply Ground
3	IN _(UL)	Signal Input Terminal for Low-side U Phase
4	IN _(VL)	Signal Input Terminal for Low-side V Phase
5	IN _(WL)	Signal Input Terminal for Low-side W Phase
6	COM _(L)	Low-side Common Supply Ground
7	V _{FO}	Fault Output
8	C _{FOD}	Capacitor for Fault Output Duration Time Selection
9	C _{SC}	Capacitor (Low-pass Filter) for Short-Circuit Current Detection Input
10	R _{SC}	Resistor for Short-circuit Current Detection
11	IN _(UH)	Signal Input for High-side U Phase
12	V _{CC(UH)}	High-side Bias Voltage for U Phase IC
13	V _{B(U)}	High-side Bias Voltage for U Phase IGBT Driving
14	V _{S(U)}	High-side Bias Voltage Ground for U Phase IGBT Driving
15	IN _(VH)	Signal Input for High-side V Phase
16	COM _(H)	High-side Common Supply Ground
17	V _{CC(VH)}	High-side Bias Voltage for V Phase IC
18	V _{B(V)}	High-side Bias Voltage for V Phase IGBT Driving
19	V _{S(V)}	High-side Bias Voltage Ground for V Phase IGBT Driving
20	IN _(WH)	Signal Input for High-side W Phase
21	V _{CC(WH)}	High-side Bias Voltage for W Phase IC
22	V _{B(W)}	High-side Bias Voltage for W Phase IGBT Driving
23	V _{S(W)}	High-side Bias Voltage Ground for W Phase IGBT Driving
24	V _{TH}	Thermistor Bias Voltage
25	R _{TH}	Series Resistor for the Use of Thermistor (Temperature Detection)
26	NU	Negative DC–Link Input Terminal for U Phase
27	N _V	Negative DC–Link Input Terminal for V Phase
28	N _W	Negative DC-Link Input Terminal for W Phase
29	U	Output for U Phase
30	V	Output for V Phase
31	W	Output for W Phase
32	Р	Positive DC–Link Input

May 4, 2006

Absolute Maximum Ratings ($T_J = 25^{\circ}C$, Unless Otherwise Specified) **Inverter Part**

ltem	Symbol	Condition	Rating	Unit
Supply Voltage	V _{DC}	Applied to DC - Link	450	V
Supply Voltage (Surge)	V _{PN(Surge)}	Applied between P- N	500	V
Collector-emitter Voltage	V _{CES}		600	V
Each IGBT Collector Current	± I _C	$T_{\rm C} = 25^{\circ}{\rm C}$	50	Α
Each IGBT Collector Current	± I _C	$T_{\rm C} = 100^{\circ}{\rm C}$	25	Α
Each IGBT Collector Current (Peak)	± I _{CP}	$T_{C} = 25^{\circ}C$, Under 1ms pulse width	100	Α
Collector Dissipation	P _C	T _C = 25°C per One Chip	100	W
Operating Junction Temperature	ТJ	(Note 1)	-20 ~ 125	°C

Note 1. It would be recommended that the average junction temperature should be limited to $T_J \le 125^{\circ}C$ (@ $T_C \le 100^{\circ}C$) in order to guarantee safe operation.

Control Part

ltem	Symbol	Condition	Rating	Unit
Control Supply Voltage	V _{CC}	Applied between $V_{CC(UH)}$, $V_{CC(VH)}$, $V_{CC(WH)}$ - $COM_{(H)}$, $V_{CC(L)}$ - $COM_{(L)}$	20	V
High-side Control Bias Voltage	V_{BS}	Applied between V _{B(U)} - V _{S(U)} , V _{B(V)} - V _{S(V)} , V _{B(W)} - V _{S(W)}	20	V
Input Signal Voltage	V _{IN}	$ \begin{array}{l} \mbox{Applied between IN}_{(UH)}, \mbox{IN}_{(VH)}, \mbox{IN}_{(WH)} \mbox{-} \mbox{COM}_{(H)} \\ \mbox{IN}_{(UL)}, \mbox{IN}_{(VL)}, \mbox{IN}_{(WL)} \mbox{-} \mbox{COM}_{(L)} \end{array} $	-0.3 ~ V _{CC} +0.3	V
Fault Output Supply Voltage	V _{FO}	Applied between V _{FO} - COM _(L)	-0.3 ~ V _{CC} +0.3	V
Fault Output Current	I _{FO}	Sink Current at V _{FO} Pin	5	mA
Current Sensing Input Voltage	V _{SC}	Applied between C _{SC} - COM _(L)	-0.3 ~ V _{CC} +0.3	V

Total System

Item	Symbol	Condition	Rating	Unit
Self Protection Supply Voltage Limit (Short Circuit Protection Capability)	V _{PN(PROT)}	Applied to DC - Link, $V_{CC} = V_{BS} = 13.5 \sim 16.5V$ $T_J = 125^{\circ}C$, Non-repetitive, less than 5µs	400	V
Module Case Operation Temperature	Т _С	Note Fig. 2	-20 ~ 100	°C
Storage Temperature	T _{STG}		-20 ~ 125	°C
Isolation Voltage	V _{ISO}	60Hz, Sinusoidal, AC 1 minute, Connection Pins to Heat-sink Plate	2500	V _{rms}

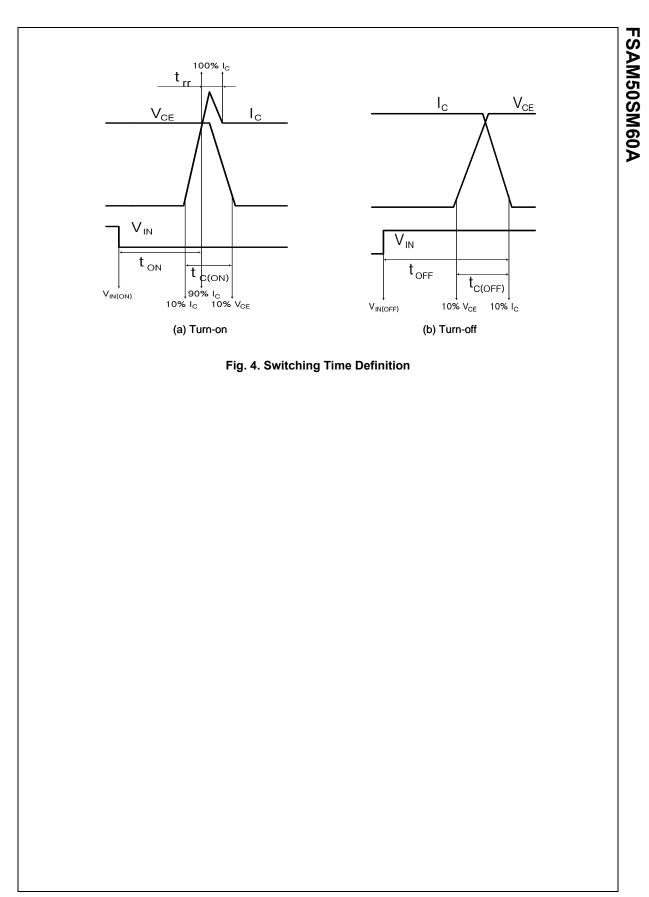
Absolute Maximum Ratings

Thermal Resistance

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Junction to Case Thermal	R _{th(j-c)Q}	Inverter IGBT part (per 1/6 module)	-	-	1.0	°C/W
Resistance	R _{th(j-c)F}	Inverter FWDi part (per 1/6 module)	-	-	1.5	°C/W
Contact Thermal	R _{th(c-f)}	Ceramic Substrate (per 1 Module)	-	-	0.06	°C/W
Resistance	. ,	Thermal Grease Applied (Note 3)				

 $\begin{array}{l} \textbf{Note} \\ \textbf{2. For the measurement point of case temperature(T_C), please refer to Fig. 2. \\ \textbf{3. The thickness of thermal grease should not be more than 100um.} \end{array}$

Package Marking and Ordering Information


Device Marking	Device	Package	Real Size	Tape Width	Quantity
FSAM50SM60A	FSAM50SM60A	SPM32-CA	-	-	8

Electrical Characteristics

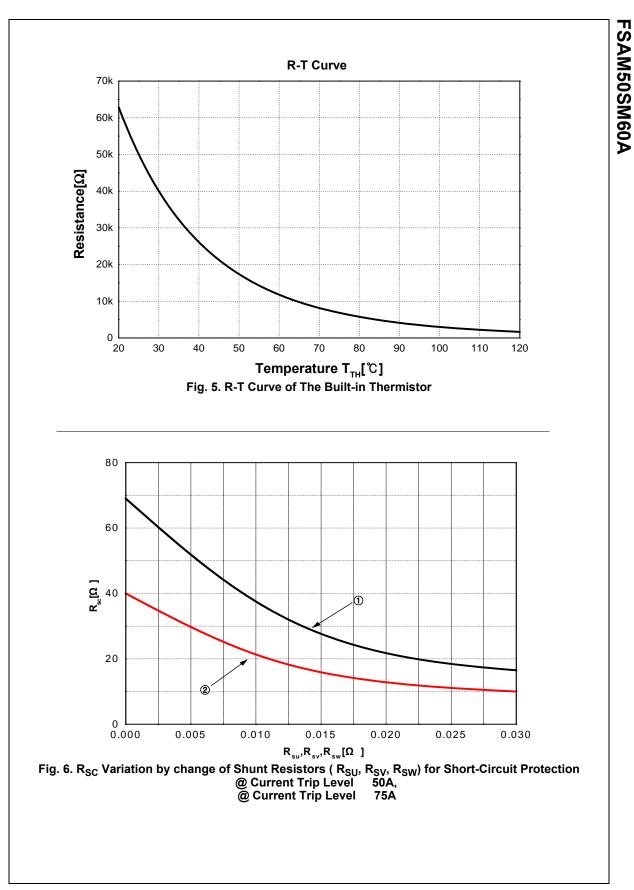
Inverter Part (T_J = 25°C, Unless Otherwise Specified)

ltem	Symbol	Condition	on	Min.	Тур.	Max.	Unit
Collector - emitter Saturation Voltage	V _{CE(SAT)}	$V_{CC} = V_{BS} = 15V$ $V_{IN} = 0V$	$I_{C} = 50A, T_{J} = 25^{\circ}C$	-	-	2.4	V
FWDi Forward Voltage	V _{FM}	V _{IN} = 5V	$I_{C} = 50A, T_{J} = 25^{\circ}C$	-	-	2.1	V
Switching Times	t _{ON}	V _{PN} = 300V, V _{CC} = V _{BS} = 15	V	-	0.69	-	μs
	t _{C(ON)}	$I_{\rm C} = 50$ A, $T_{\rm J} = 25^{\circ}$ C		-	0.32	-	μs
	t _{OFF}	$V_{IN} = 5V \leftrightarrow 0V$, Inductive Lo	ad	-	1.32	-	μs
	t _{C(OFF)}	(High-Low Side)		-	0.46	-	μs
	t _{rr}	(Note 4)		-	0.10	-	μs
Collector - emitter Leakage Current	I _{CES}	$V_{CE} = V_{CES}, T_J = 25^{\circ}C$		-	-	250	μA

Note
4. t_{ON} and t_{OFF} include the propagation delay time of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Fig. 4.

ltem	Symbol		Condition	Min.	Тур.	Max.	Unit
Quiescent V _{CC} Supply Current	I _{QCCL}	V _{CC} = 15V IN _(UL, VL, WL) = 5V	V _{CC(L)} - COM _(L)	-	-	26	mA
	I _{QCCH}	V _{CC} = 15V IN _(UH, VH, WH) = 5V	$V_{CC(UH)}, V_{CC(VH)}, V_{CC(WH)} - COM_{(H)}$	-	-	130	uA
Quiescent V _{BS} Supply Current	I _{QBS}	V _{BS} = 15V IN _(UH, VH, WH) = 5V	$V_{B(U)} - V_{S(U)}, V_{B(V)} - V_{S(V)}, V_{B(W)} - V_{S(W)}$	-	-	420	uA
Fault Output Voltage	V _{FOH}	V _{SC} = 0V, V _{FO} Circuit	t: 4.7k Ω to 5V Pull-up	4.5	-	-	V
	V _{FOL}	V _{SC} = 1V, V _{FO} Circuit	t: 4.7k Ω to 5V Pull-up	-	-	1.1	V
Short-Circuit Trip Level	V _{SC(ref)}	V _{CC} = 15V (Note 5)		0.45	0.51	0.56	V
Sensing Voltage of IGBT Current	V _{SEN}	$R_{SC} = 40 \Omega, R_{SU} = F$ (Fig. 6)	$R_{SV} = R_{SW} = 0 \ \Omega$ and $I_C = 75A$	0.45	0.51	0.56	V
Supply Circuit Under-	UV _{CCD}	Detection Level		11.5	12	12.5	V
Voltage Protection	UV _{CCR}	Reset Level		12	12.5	13	V
	UV _{BSD}	Detection Level		7.3	9.0	10.8	V
	UV _{BSR}	Reset Level		8.6	10.3	12	V
Fault Output Pulse Width	t _{FOD}	C _{FOD} = 33nF (Note 6		1.4	1.8	2.0	ms
ON Threshold Voltage	V _{IN(ON)}	High-Side	Applied between IN(UH), IN(VH),	-	-	0.8	V
OFF Threshold Voltage	V _{IN(OFF)}		IN _(WH) - COM _(H)	3.0	-	-	V
ON Threshold Voltage	V _{IN(ON)}	Low-Side	Applied between IN(UL), IN(VL),	-	-	0.8	V
OFF Threshold Voltage	V _{IN(OFF)}		IN _(WL) - COM _(L)	3.0	-	-	V
Resistance of Thermistor	R _{TH}	@ T _{TH} = 25°C (Note	Fig. 6) (Note 7)	-	50	-	kΩ
		@ T _{TH} = 100°C (Note	e Fig. 6) (Note 7)	-	3.0	-	kΩ

Electrical Characteristics (T_J = 25°C, Unless Otherwise Specified)

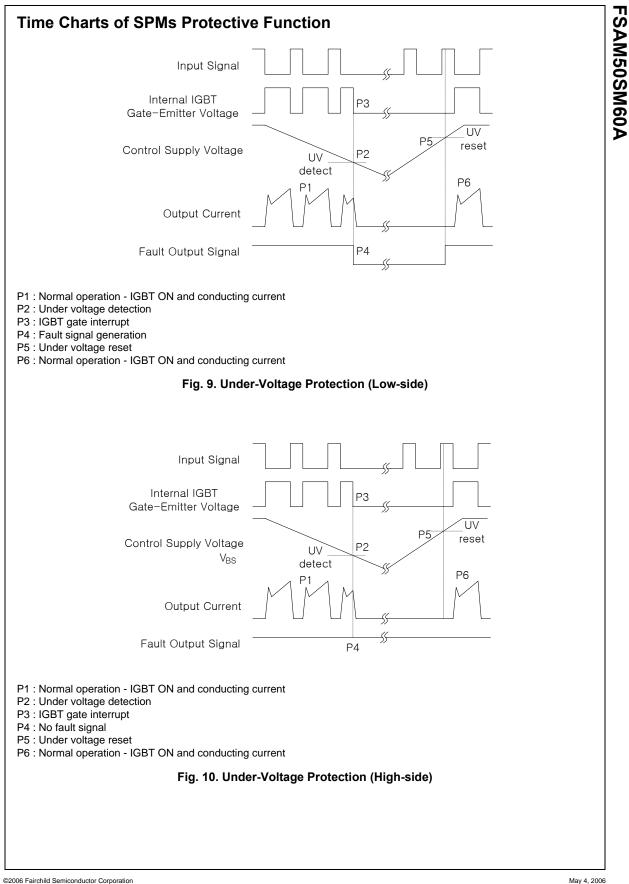

Note: 5. Short-circuit current protection is functioning only at the low-sides. It would be recommended that the value of the external sensing resistor (R_{SC}) should be selected around 40 Ω in order to make the SC trip-level of about 75A at the shunt resistors (R_{SU}, R_{SV}, R_{SW}) of Ω . For the detailed information about the relationship between the external sensing resistor (R_{SC}) and the shunt resistors (R_{SU}, R_{SV}, R_{SW}), please see Fig. 6. 6. The fault-out pulse width t_{FCD} depends on the capacitance value of C_{FOD} according to the following approximate equation : C_{FOD} = 18.3 x 10⁻⁶ x t_{FOD}[F] 7. T_{TH} is the temperature of thermistor itself. To know case temperature (T_{C}), please make the experiment considering your application.

Recommended Operating Conditions

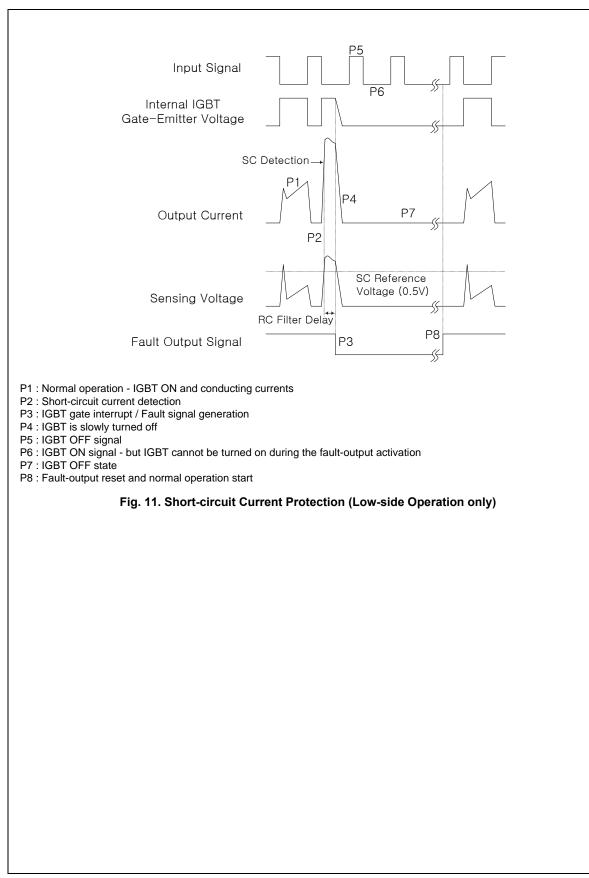
14.0.000	Ourse had	Condition		Values		Unit
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage	V _{PN}	Applied between P - N _U , N _V , N _W	-	300	400	V
Control Supply Voltage	V _{CC}	Applied between $V_{CC(UH)}$, $V_{CC(VH)}$, $V_{CC(WH)}$ - $COM_{(H)}$, $V_{CC(L)}$ - $COM_{(L)}$	13.5	15	16.5	V
High-side Bias Voltage	V _{BS}	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	13.0	15	18.5	V
Blanking Time for Preventing Arm-short	t _{dead}	For Each Input Signal	3.5	-	-	us
PWM Input Signal	f _{PWM}	T _C ≤ 100°C, T _J ≤ 125°C	-	5	-	kHz
Minimum Input Pulse Width	PW _{IN(OFF)}	$\begin{array}{l} 200 \leq V_{PN} \leq 400V, \ 13.5 \leq V_{CC} \leq 16.5V, \\ 13.0 \leq V_{BS} \leq 18.5V, \ 0 \leq I_C \leq 100A, \\ -20 \leq T_J \leq 125^\circ C \\ V_{IN} = 5V \leftrightarrow 0V, \ \text{Inductive Load} \ (\text{Note 8}) \end{array}$	3	-	-	us
Input ON Threshold Voltage	V _{IN(ON)}	$\begin{array}{l} \text{Applied between IN}_{(\text{UH})}, \text{IN}_{(\text{VH})}, \text{IN}_{(\text{WH})} \text{ - } \\ \text{COM}_{(\text{H})}, \text{IN}_{(\text{UL})}, \text{IN}_{(\text{VL})}, \text{IN}_{(\text{WL})} \text{ - } \text{COM}_{(\text{L})} \end{array}$		0 ~ 0.65	5	V
Input OFF Threshold Voltage	V _{IN(OFF)}	$\begin{array}{l} \text{Applied between IN}_{(\text{UH})}, \text{IN}_{(\text{VH})}, \text{IN}_{(\text{WH})} \text{ - } \\ \text{COM}_{(\text{H})}, \text{IN}_{(\text{UL})}, \text{IN}_{(\text{VL})}, \text{IN}_{(\text{WL})} \text{ - } \text{COM}_{(\text{L})} \end{array}$		4 ~ 5.5		V

Note: 8. SPM might not make response if the $PW_{IN(OFF)}$ is less than the recommended minimum value.

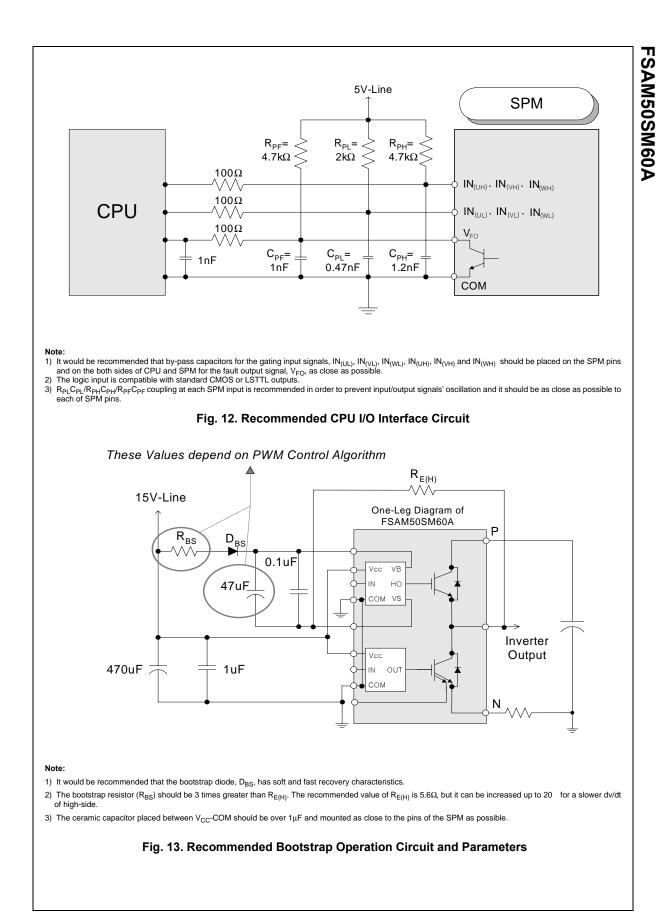
FSAM50SM60A

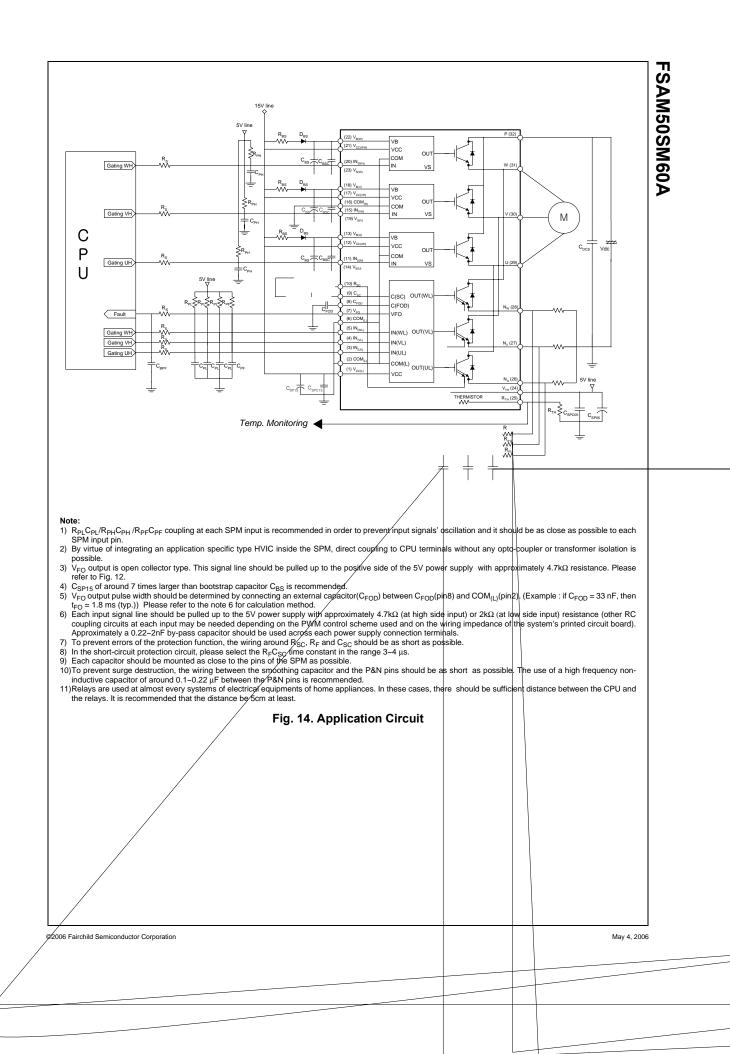

©2006 Fairchild Semiconductor Corporation

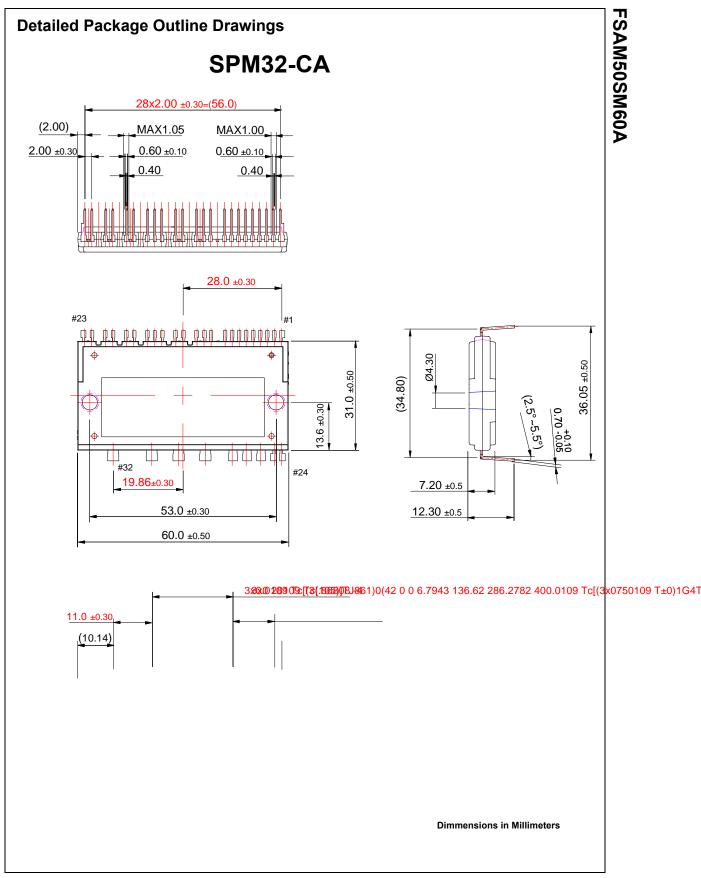
May 4, 2006


Mechanical Characteristics and Ratings Limits Condition Item Units Min. Max. Тур. Mounting Torque Mounting Screw: M4 Recommended 10Kg•cm 8 10 12 Kg•cm (Note 9 and 10) Recommended 0.98N•m 0.78 0.98 1.17 N•m DBC Flatness Note Fig.7 0 +120 μm -Weight 32 -g (+) (+) Fig. 7. Flatness Measurement Position of The DBC Substrate Note: Do not make over torque or mounting screws. Much mounting torque may cause ceramic cracks and bolts and Al heat-fin destruction. Avoid one side tightening stress. Fig.8 shows the recommended torque order for mounting screws. Uneven mounting can cause the SPM ceramic substrate to be damaged. 2 Fig. 8. Mounting Screws Torque Order (1 \rightarrow 2)

©2006 Fairchild Semiconductor Corporation


FSAM50SM60A




May 4, 2006

FSAM50SM60A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FACT Quiet Series™ ActiveArray™ GlobalOptoisolator™ GTO™ Bottomless™ Build it Now™ HiSeC™ CoolFET™ I²C[™] i-Lo™ CROSSVOLT™ DOME™ ImpliedDisconnect™ EcoSPARK™ IntelliMAX™ E²CMOS™ ISOPLANAR™ EnSigna™ LittleFET™ FACT™ MICROCOUPLER™ $\mathsf{FAST}^{\mathbb{R}}$ MicroFET™ FASTr™ MicroPak™ FPS™ MICROWIRE™ FRFET™ MSX™ MSXPro™ Across the board. Around the world.™

 OCX^{TM} S $OCXPro^{TM}$ S $OCXPro^{TM}$ S $OPTOLOGIC^{\textcircled{B}}$ S $OPTOPLANAR^{TM}$ S $PACMAN^{TM}$ S POP^{TM} S $Power247^{TM}$ S $PowerEdge^{TM}$ S $PowerSaver^{TM}$ S $PowerSaver^{TM}$ S $PowerSaver^{TM}$ S $QFET^{\textcircled{B}}$ T $QTOptoelectronics^{TM}$ T $Quiet Series^{TM}$ T $RapidConfigure^{TM}$ T $RapidConnect^{TM}$ T $ScalarPump^{TM}$ L

SILENT SWITCHER[®] SMART START[™] SPM[™] Stealth[™] SuperFET[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TCM[™] TinyBoost[™] TinyBoost[™] TinyBuck[™] TinyPWM[™] TinyPWM[™] TinyPWM[™] TinyPower[™] TinyCoptO[™] TINYOPTO[™] TruTranslation[™] UHC[™] UniFET™ UltraFET[®] VCX™ Wire™

PowerTrench [®]	TCM™
QFET [®]	TinyBoost™
QS™	TinyBuck™
QT Optoelectronics™	TinyPWM™
Quiet Series™	TinyPower™
RapidConfigure™	TinyLogic [®]
RapidConnect™	TINYOPTO™
µSerDes™	TruTranslation™
ScalarPump™	UHC™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

The Power Franchise[®] Programmable Active Droop[™]

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

PRODUCT STATUS DEFINITIONS Definition of Terms