LT1962 Series
AßSOLUTE MAXIMUM RATINGS
(Note 1)
IN Pin Voltage $\pm 20 \mathrm{~V}$
OUT Pin Voltage $\pm 20 \mathrm{~V}$
Input to Output Differential Voltage (Note 2) $\pm 20 \mathrm{~V}$
SENSE Pin Voltage $\pm 20 \mathrm{~V}$
ADJ Pin Voltage $\pm 7 \mathrm{~V}$
BYP Pin Voltage $\pm 0.6 \mathrm{~V}$
SHDN Pin Voltage $\pm 20 \mathrm{~V}$
Output Short-Circuit Duration

\qquad
Indefinite
Operating Junction Temperature Range(Note 3)$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)

\qquad
$300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER
	LT1962EMS8 LT1962EMS8-1.5 LT1962EMS8-1.8
Ms8 PACKAGE	LT1962EMS8-2.5
*PIN 2: SENSE FOR LT1962-1.5/LT1962-1.8/ LT1962-2.5/LT1962-3/LT1962-3.3/LT1962-5. ADJ FOR LT1962	LT1962EMS8-3
	LT1962EMS8-3.3
	LT1962EMS8-5
$5^{\circ} \mathrm{C}, \theta_{J A}=$	MS8 PART MARKING
	LTML LTPQ
	LTSZ LTPS
	ITTA LTPR
	LTPT

Consult factory for parts specified with wider operating temperature ranges.

eLECTRICAL CHARACTERISTICS

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 3)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Minimum Operating Voltage	(LT1962)	$\mathrm{I}_{\text {LOAD }}=300 \mathrm{~mA}$ (Notes 4, 12)	\bullet		1.8	2.3	V
Regulated Output Voltage (Notes 4, 5)	LT1962-1.5	$\begin{aligned} & V_{I N}=2 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & 2.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<300 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 1.485 \\ & 1.462 \end{aligned}$	$\begin{aligned} & 1.500 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 1.515 \\ & 1.538 \end{aligned}$	V
	LT1962-1.8	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.3 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & 2.8 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<300 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 1.782 \\ & 1.755 \end{aligned}$	$\begin{aligned} & 1.800 \\ & 1.800 \end{aligned}$	$\begin{aligned} & 1.818 \\ & 1.845 \end{aligned}$	V
	LT1962-2.5	$\begin{aligned} & V_{I N}=3 \mathrm{~V}, I_{\text {LOAD }}=1 \mathrm{~mA} \\ & 3.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<I_{\text {LOAD }}<300 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 2.475 \\ & 2.435 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.500 \\ & 2.500 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.525 \\ & 2.565 \\ & \hline \end{aligned}$	V
	LT1962-3	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & 4 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<20 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<300 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 2.970 \\ & 2.925 \end{aligned}$	$\begin{aligned} & 3.000 \\ & 3.000 \end{aligned}$	$\begin{aligned} & 3.030 \\ & 3.075 \end{aligned}$	V
	LT1962-3.3	$\begin{aligned} & V_{I N}=3.8 \mathrm{~V}, I_{\text {LOAD }}=1 \mathrm{~mA} \\ & 4.3 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<I_{\text {LOAD }}<300 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 3.267 \\ & 3.220 \end{aligned}$	$\begin{aligned} & 3.300 \\ & 3.300 \end{aligned}$	$\begin{aligned} & 3.333 \\ & 3.380 \end{aligned}$	V
	LT1962-5	$\begin{aligned} & V_{I N}=5.5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & 6 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<20 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<300 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 4.950 \\ & 4.875 \end{aligned}$	$\begin{aligned} & 5.000 \\ & 5.000 \end{aligned}$	$\begin{aligned} & 5.050 \\ & 5.125 \end{aligned}$	V
ADJ Pin Voltage (Notes 4, 5)	LT1962	$\begin{aligned} & V_{I N}=2 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & 2.3 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<I_{\text {LOAD }}<300 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 1.208 \\ & 1.190 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.220 \\ & 1.220 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.232 \\ & 1.250 \\ & \hline \end{aligned}$	V
Line Regulation	LT1962-1.5 LT1962-1.8 LT1962-2.5 LT1962-3 LT1962-3.3 LT1962-5 LT1962 (Note 4)	$\begin{aligned} & \Delta \mathrm{V}_{\text {IN }}=2 \mathrm{~V} \text { to } 20 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & \Delta \mathrm{~V}_{\text {IN }}=2.3 \mathrm{~V} \text { to } 20 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & \Delta \mathrm{~V}_{\text {IN }}=3 \mathrm{~V} \text { to } 20 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & \Delta \mathrm{~V}_{\text {IN }}=3.5 \mathrm{~V} \text { to } 20 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & \Delta \mathrm{~V}_{\text {IN }}=3.8 \mathrm{~V} \text { to } 20 \mathrm{I}, I_{\text {LOAD }}=1 \mathrm{~mA} \\ & \Delta \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V} \text { to } 20 \mathrm{~V}, I_{\text {LOAD }}=1 \mathrm{~mA} \\ & \Delta \mathrm{~V}_{\text {IN }} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	mV mV mV mV mV mV mV
Load Regulation	LT1962-1.5	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}, \Delta \mathrm{I}_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 300 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V}, \Delta \mathrm{I}_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 300 \mathrm{~mA} \end{aligned}$	\bullet		3	$\begin{gathered} \hline 8 \\ 15 \end{gathered}$	mV mV
	LT1962-1.8	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.8 \mathrm{~V}, \Delta \mathrm{I}_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 300 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IN }}=2.8 \mathrm{~V}, \Delta \mathrm{~L}_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 300 \mathrm{~mA} \end{aligned}$	\bullet		4	$\begin{gathered} \hline 9 \\ 18 \end{gathered}$	mV mV

LT1962 Series

ELECTRICAL CHARACTGRISTICS

Note 5: Operating conditions are limited by maximum junction temperature. The regulated output voltage specification will not apply for all possible combinations of input voltage and output current. When operating at maximum input voltage, the output current range must be limited. When operating at maximum output current, the input voltage range must be limited.
Note 6: To satisfy requirements for minimum input voltage, the LT1962 (adjustable version) is tested and specified for these conditions with an external resistor divider (two 250k resistors) for an output voltage of 2.44 V . The external resistor divider will add a $5 \mu \mathrm{~A} D \mathrm{D}$ load on the output.

Note 7: Dropout voltage is the minimum input to output voltage differential needed to maintain regulation at a specified output current. In dropout, the output voltage will be equal to: $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {DROPOUT }}$.
Note 8: GND pin current is tested with $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT(NOMINAL) }}$ or $\mathrm{V}_{\text {IN }}=2.3 \mathrm{~V}$ (whichever is greater) and a current source load. This means the device is
tested while operating in its dropout region. This is the worst-case GND pin current. The GND pin current will decrease slightly at higher input voltages.
Note 9: ADJ pin bias current flows into the ADJ pin.
Note 10: $\overline{\mathrm{SHDN}}$ pin current flows into the $\overline{\mathrm{SHDN}}$ pin. This current is included in the specification for GND pin current.
Note 11: Reverse output current is tested with the IN pin grounded and the OUT pin forced to the rated output voltage. This current flows into the OUT pin and out the GND pin.
Note 12: For the LT1962, LT1962-1.5 and LT1962-1.8 dropout voltage will be limited by the minimum input voltage specification under some output voltage/load conditions. See the curve of Minimum Input Voltage in the Typical Performance Characteristics. For other fixed voltage versions of the LT1962, the minimum input voltage is limited by the dropout voltage.

TYPICAL PGRFORMANCG CHARACTGRISTICS

1962 G01

Quiescent Current

Guaranteed Dropout Voltage

1962602

LT1962-1.5 Output Voltage

Dropout Voltage

1962 G03
LT1962-1.8 Output Voltage

TYPICAL PERFORMARCE CHARACTERISTICS

TYPICAL PGRFORMANCG CHARACTERISTICS

TYPICAL PERFORMARCE CHARACTERISTICS

TYPICAL PGRFORMANCE CHARACTERISTICS

1962 G34

1962 G37
Current Limit

962 G35
ADJ Pin Bias Current

1962 G38

Reverse Output Current

SHDN Pin Input Current

1962 G36

Current Limit

1962 G39
Reverse Output Current

TYPICAL PERFORmANCE CHARACTERISTICS

LT1962 Minimum Input Voltage

1962 G46

Output Noise Spectral Density

Input Ripple Rejection

Load Regulation

1962 G47
RMS Output Noise vs Bypass Capacitor

Ripple Rejection

Output Noise Spectral Density

1962 G48
RMS Output Noise
vs Load Current (10 Hz to 100 kHz)

LT1962 Series

TYPICAL PERFORMANCE CHARACTERISTICS

PIn functions

OUT (Pin 1): Output. The output supplies power to the load. A minimum output capacitor of $3.3 \mu \mathrm{~F}$ is required to prevent oscillations. Larger output capacitors will be required for applications with large transient loads to limit peak voltage transients. See the Applications Information section for more information on output capacitance and reverse output characteristics.
SENSE (Pin 2): Sense. For fixed voltage versions of the LT1962 (LT1962-1.5/LT1962-1.8/LT1962-2.5/LT1962-3/ LT1962-3.3/LT1962-5), the SENSE pin is the input to the error amplifier. Optimum regulation will be obtained at the point where the SENSE pin is connected to the OUT pin of the regulator. In critical applications, small voltage drops
are caused by the resistance (R_{P}) of PC traces between the regulator and the load. These may be eliminated by connecting the SENSE pin to the output at the load as shown in Figure 1 (Kelvin Sense Connection). Note that the voltage drop across the external PC traces will add to the dropout voltage of the regulator. The SENSE pin bias current is $10 \mu \mathrm{~A}$ at the nominal rated output voltage. The SENSE pin can be pulled below ground (as in a dual supply system where the regulator load is returned to a negative supply) and still allow the device to start and operate.

ADJ (Pin 2): Adjust. For the adjustable LT1962, this is the input to the error amplifier. This pin is internally clamped to $\pm 7 \mathrm{~V}$. It has a bias current of 30 nA which flows into the

PIn functions

Figure 1. Kelvin Sense Connection
pin. The ADJ pin voltage is 1.22 V referenced to ground and the output voltage range is 1.22 V to 20 V .
BYP (Pin 3): Bypass. The BYP pin is used to bypass the reference of the LT1962 to achieve low noise performance from the regulator. The BYP pin is clamped internally to $\pm 0.6 \mathrm{~V}$ (one V_{BE}). A small capacitor from the output to this pin will bypass the reference to lower the output voltage noise. A maximum value of $0.01 \mu \mathrm{~F}$ can be used for reducing output voltage noise to a typical $20 \mu V_{\text {RMS }}$ over a 10 Hz to 100 kHz bandwidth. If not used, this pin must be left unconnected.

GND (Pin 4): Ground.

$\overline{\text { SHDN }}$ (Pin5): Shutdown. The $\overline{\text { SHDN }}$ pin is used to put the LT1962 regulators into a low power shutdown state. The output will be off when the SHDN pin is pulled low. The
$\overline{\text { SHDN }}$ pin can be driven either by 5 V logic or opencollector logic with a pull-up resistor. The pull-up resistor is required to supply the pull-up current of the opencollector gate, normally several microamperes, and the SHDN pin current, typically 1μ A. If unused, the SHDN pin must be connected to V_{IN}. The device will not function if the SHDN pin is not connected.

NC (Pins 6, 7): No Connect. These pins are not internally connected. For improved power handling capabilities, these pins can be connected to the PC board.
IN (Pin 8): Input. Power is supplied to the device through the IN pin. A bypass capacitor is required on this pin if the device is more than six inches away from the main input filter capacitor. In general, the output impedance of a battery rises with frequency, so it is advisable to include a bypass capacitor in battery-powered circuits. A bypass capacitor in the range of $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ is sufficient. The LT1962 regulators are designed to withstand reverse voltages on the IN pin with respect to ground and the OUT pin. In the case of a reverse input, which can happen if a battery is plugged in backwards, the device will act as if there is a diode in series with its input. There will be no reverse current flow into the regulator and no reverse voltage will appear at the load. The device will protect both itself and the load.

APPLICATIONS INFORMATION

The LT1962 series are 300mA low dropout regulators with micropower quiescent current and shutdown. The devices are capable of supplying 300 mA at a dropout voltage of 300 mV . Output voltage noise can be lowered to $20 \mu \mathrm{~V}_{\text {RMS }}$ over a 10 Hz to 100 kHz bandwidth with the addition of a $0.01 \mu \mathrm{~F}$ reference bypass capacitor. Additionally, the reference bypass capacitor will improve transient response of the regulator, lowering the settling time for transient load conditions. The low operating quiescent current $(30 \mu \mathrm{~A})$ drops to less than $1 \mu \mathrm{~A}$ in shutdown. In addition to the low quiescent current, the LT1962 regulators incorporate several protection features which make them ideal for use in battery-powered systems. The devices are protected against both reverse input and reverse output voltages. In battery backup applications where the output can be held
up by a backup battery when the input is pulled to ground, the LT1962-X acts like it has a diode in series with its output and prevents reverse current flow. Additionally, in dual supply applications where the regulator load is returned to a negative supply, the output can be pulled below ground by as much as 20 V and still allow the device to start and operate.

Adjustable Operation

The adjustable version of the LT1962 has an output voltage range of 1.22 V to 20 V . The output voltage is set by the ratio of two external resistors as shown in Figure 2. The device servos the output to maintain the ADJ pin voltage at 1.22 V referenced to ground. The current in R1 is then equal to $1.22 \mathrm{~V} / \mathrm{R} 1$ and the current in R2 is the current in R1

APPLICATIONS INFORMATION

Figure 2. Adjustable Operation
plus the ADJ pin bias current. The ADJ pin bias current, 30 nA at $25^{\circ} \mathrm{C}$, flows through R2 into the ADJ pin. The output voltage can be calculated using the formula in Figure 2. The value of R1 should be no greater than 250k to minimize errors in the output voltage caused by the ADJ pin bias current. Note that in shutdown the output is turned off and the divider current will be zero.
The adjustable device is tested and specified with the ADJ pin tied to the OUT pin for an output voltage of 1.22 V . Specifications for output voltages greater than 1.22 V will be proportional to the ratio of the desired output voltage to $1.22 \mathrm{~V}: \mathrm{V}_{\text {OUT }} / 1.22 \mathrm{~V}$. For example, load regulation for an output current change of 1 mA to 300 mA is -2 mV typical at $\mathrm{V}_{\text {OUT }}=1.22 \mathrm{~V}$. At $\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$, load regulation is:

$$
(12 \mathrm{~V} / 1.22 \mathrm{~V})(-2 \mathrm{mV})=-19.7 \mathrm{mV}
$$

Bypass Capacitance and Low Noise Performance

The LT1962 regulators may be used with the addition of a bypass capacitor from $\mathrm{V}_{\text {Out }}$ to the BYP pin to lower output voltage noise. A good quality low leakage capacitor is recommended. This capacitor will bypass the reference of the regulator, providing a low frequency noise pole. The noise pole provided by this bypass capacitor will lower the output voltage noise to as low as $20 \mu \mathrm{~V}_{\text {RMS }}$ with the addition of a $0.01 \mu \mathrm{~F}$ bypass capacitor. Using a bypass capacitor has the added benefit of improving transient response. With no bypass capacitor and a $10 \mu \mathrm{~F}$ output capacitor, a 10 mA to 300 mA load step will settle to within 1% of its final value in less than $100 \mu \mathrm{~s}$. With the addition of a $0.01 \mu \mathrm{~F}$ bypass capacitor, the output will settle to within 1% for a 10 mA to 300 mA load step in less than $10 \mu \mathrm{~s}$, with total output voltage deviation of less than 2%
(see LT1962-5 Transient Response in the Typical Performance Characteristics). However, regulator start-up time is inversely proportional to the size of the bypass capacitor, slowing to 15 ms with a $0.01 \mu \mathrm{~F}$ bypass capacitor and 10 $\mu \mathrm{F}$ output capacitor.

Output Capacitance and Transient Response

The LT1962 regulators are designed to be stable with a wide range of output capacitors. The ESR of the output capacitor affects stability, most notably with small capacitors. A minimum output capacitor of $3.3 \mu \mathrm{~F}$ with an ESR of 3Ω or less is recommended to prevent oscillations. The LT1962-X is a micropower device and output transient response will be a function of output capacitance. Larger values of output capacitance decrease the peak deviations and provide improved transient response for larger load current changes. Bypass capacitors, used to decouple individual components powered by the LT1962, will increase the effective output capacitor value. With larger capacitors used to bypass the reference (for low noise operation), larger values of output capacitance are needed. For 100pF of bypass capacitance, 4.7μ F of output capacitor is recommended. With a 1000pF bypass capacitor or larger, a $6.8 \mu \mathrm{~F}$ output capacitor is recommended.

The shaded region of Figure 3 defines the range over which the LT1962 regulators are stable. The minimum ESR needed is defined by the amount of bypass capacitance used, while the maximum ESR is 3Ω.

Extra consideration must be given to the use of ceramic capacitors. Ceramic capacitors are manufactured with a variety of dielectrics, each with different behavior across

Figure 3. Stability

APPLICATIONS INFORMATION

temperature and applied voltage. The most common dielectrics used are Z5U, Y5V, X5R and X7R. The Z5U and Y5V dielectrics are good for providing high capacitance in a small package, but exhibit strong voltage and temperature coefficients as shown in Figures 4 and 5 . When used with a 5 V regulator, a $10 \mu \mathrm{~F} \mathrm{Y} 5 \mathrm{~V}$ capacitor can exhibit an effective value as low as $1 \mu \mathrm{~F}$ to $2 \mu \mathrm{~F}$ over the operating temperature range. The X5R and X7R dielectrics result in more stable characteristics and are more suitable for use as the output capacitor. The X7R type has better stability across temperature, while the X 5 R is less expensive and is available in higher values.
Voltage and temperature coefficients are not the only sources of problems. Some ceramic capacitors have a piezoelectric response. A piezoelectric device generates voltage across its terminals due to mechanical stress, similar to the way a piezoelectric accelerometer or micro-

Figure 4. Ceramic Capacitor DC Bias Characteristics

Figure 5. Ceramic Capacitor Temperature Characteristics
phone works. For a ceramic capacitor the stress can be induced by vibrations in the system or thermal transients. The resulting voltages produced can cause appreciable amounts of noise, especially when a ceramic capacitor is used for noise bypassing. A ceramic capacitor produced Figure 6's trace in response to light tapping from a pencil. Similar vibration induced behavior can masquerade as increased output voltage noise.

Figure 6. Noise Resulting from Tapping on a Ceramic Capacitor

Thermal Considerations

The power handling capability of the device will be limited by the maximum rated junction temperature $\left(125^{\circ} \mathrm{C}\right)$. The power dissipated by the device will be made up of two components:

1. Output current multiplied by the input/output voltage differential: $\left(l_{\text {OUT }}\right)\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)$, and
2. GND pin current multiplied by the input voltage: (IGND) $\left(\mathrm{V}_{\text {IN }}\right)$.
The GND pin current can be found by examining the GND Pin Current curves in the Typical Performance Characteristics. Power dissipation will be equal to the sum of the two components listed above.
The LT1962 series regulators have internal thermal limiting designed to protect the device during overload conditions. For continuous normal conditions, the maximum junction temperature rating of $125^{\circ} \mathrm{C}$ must not be exceeded. It is important to give careful consideration to all sources of thermal resistance from junction to ambient. Additional heat sources mounted nearby must also be considered.

APPLICATIONS INFORMATION

For surface mount devices, heat sinking is accomplished by using the heat spreading capabilities of the PC board and its copper traces. Copper board stiffeners and plated through-holes can also be used to spread the heat generated by power devices.
The following table lists thermal resistance for several different board sizes and copper areas. All measurements were taken in still air on $1 / 16^{\prime \prime}$ FR-4 board with one ounce copper.

Table 1. Measured Thermal Resistance

COPPER AREA			$\begin{array}{c}\text { THERMAL RESISTANCE } \\ \text { TOPSIDE }\end{array}$
(JUNCTION-TO-AMBIENT)			

*Device is mounted on topside.

Calculating Junction Temperature

Example: Given an output voltage of 3.3 V , an input voltage range of 4 V to 6 V , an output current range of 0 mA to 100 mA and a maximum ambient temperature of $50^{\circ} \mathrm{C}$, what will the maximum junction temperature be?

The power dissipated by the device will be equal to:

$$
I_{\text {OUT(MAX) }}\left(\mathrm{V}_{\operatorname{IN}(\text { MAX })}-\mathrm{V}_{\text {OUT }}\right)+\mathrm{I}_{\operatorname{GND}}\left(\mathrm{V}_{\text {IN(MAX) }}\right)
$$

where,

$$
\begin{aligned}
& I_{\text {OUT }(M A X)}=100 \mathrm{~mA} \\
& V_{\text {IN(MAX }}=6 \mathrm{~V} \\
& I_{\text {GND }} \text { at }\left(I_{\text {OUT }}=100 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=6 \mathrm{~V}\right)=2 \mathrm{~mA}
\end{aligned}
$$

So,

$$
P=100 \mathrm{~mA}(6 \mathrm{~V}-3.3 \mathrm{~V})+2 \mathrm{~mA}(6 \mathrm{~V})=0.28 \mathrm{~W}
$$

The thermal resistance will be in the range of $110^{\circ} \mathrm{C} / \mathrm{W}$ to $140^{\circ} \mathrm{C} / \mathrm{W}$ depending on the copper area. So the junction temperature rise above ambient will be approximately equal to:

$$
0.28 \mathrm{~W}\left(125^{\circ} \mathrm{C} / \mathrm{W}\right)=35.3^{\circ} \mathrm{C}
$$

The maximum junction temperature will then be equal to the maximum junction temperature rise above ambient plus the maximum ambient temperature or:

$$
\mathrm{T}_{\mathrm{JMAX}}=50^{\circ} \mathrm{C}+35.3^{\circ} \mathrm{C}=85.3^{\circ} \mathrm{C}
$$

Protection Features

The LT1962 regulators incorporate several protection features which make them ideal for use in battery-powered circuits. In addition to the normal protection features associated with monolithic regulators, such as current limiting and thermal limiting, the devices are protected against reverse input voltages, reverse output voltages and reverse voltages from output to input.

Current limit protection and thermal overload protection are intended to protect the device against current overload conditions at the output of the device. For normal operation, the junction temperature should not exceed $125^{\circ} \mathrm{C}$.
The input of the device will withstand reverse voltages of 20V. Current flow into the device will be limited to less than 1 mA (typically less than $100 \mu \mathrm{~A}$) and no negative voltage will appear at the output. The device will protect both itself and the Ioad. This provides protection against batteries which can be plugged in backward.
The output of the LT1962 can be pulled below ground without damaging the device. If the input is left open circuit or grounded, the output can be pulled below ground by 20 V . For fixed voltage versions, the output will act like a large resistor, typically 500k or higher, limiting current flow to less than $40 \mu \mathrm{~A}$. For adjustable versions, the output will act like an open circuit; no current will flow out of the pin. If the input is powered by a voltage source, the output will source the short-circuit current of the device and will protect itself by thermal limiting. In this case, grounding the SHDN pin will turn off the device and stop the output from sourcing the short-circuit current.
The ADJ pin of the adjustable device can be pulled above or below ground by as much as 7 V without damaging the device. If the input is left open circuit or grounded, the ADJ pin will act like an open circuit when pulled below ground and like a large resistor (typically 100k) in series with a diode when pulled above ground.
In situations where the ADJ pin is connected to a resistor divider that would pull the ADJ pin above its 7 V clamp voltage if the output is pulled high, the ADJ pin input current must be limited to less than 5mA. For example, a resistor divider is used to provide a regulated 1.5 V output

APPLICATIONS INFORMATION

from the 1.22 V reference when the output is forced to 20 V . The top resistor of the resistor divider must be chosen to limit the current into the ADJ pin to less than 5mA when the ADJ pin is at 7 V . The 13 V difference between OUT and ADJ pin divided by the 5 mA maximum current into the ADJ pin yields a minimum top resistor value of 2.6 k .
In circuits where a backup battery is required, several different input/output conditions can occur. The output voltage may be held up while the input is either pulled to ground, pulled to some intermediate voltage or is left open circuit. Current flow back into the output will follow the curve shown in Figure 7.
When the IN pin of the LT1962 is forced below the OUT pin or the OUT pin is pulled above the IN pin, input current will typically drop to less than $2 \mu \mathrm{~A}$. This can happen if the input of the device is connected to a discharged (low voltage) battery and the output is held up by either a backup battery
or a second regulator circuit. The state of the $\overline{\text { SHDN }}$ pin will have no effect on the reverse output current when the output is pulled above the input.

Figure 7. Reverse Output Current

Dimensions in inches (millimeters) unless otherwise noted.

TYPICAL APPLICATIONS

Adjustable Current Source

Paralleling of Regulators for Higher Output Current

reLated parts

PART NUMBER	DESCRIPTION	COMMENTS
LT1120	125 mA Low Dropout Regulator with $20 \mu \mathrm{~A} \mathrm{I}_{0}$	Includes 2.5V Reference and Comparator
LT1121	150mA Micropower Low Dropout Regulator	$30 \mu \mathrm{~A} \mathrm{I}_{\mathrm{Q}}$, SOT-223 Package
$\underline{\text { LT1129 }}$	700mA Micropower Low Dropout Regulator	$50 \mu \mathrm{~A}$ Quiescent Current
LT1175	500mA Negative Low Dropout Micropower Regulator	$45 \mu \mathrm{I} \mathrm{I}_{Q}, 0.26 \mathrm{~V}$ Dropout Voltage, SOT-223 Package
LT1521	300mA Low Dropout Micropower Regulator with Shutdown	$15 \mu \mathrm{~A} \mathrm{I}_{\mathrm{Q}}$, Reverse Battery Protection
LT1529	3 Low Dropout Regulator with $50 \mu \mathrm{~A} \mathrm{I}_{Q}$	500 mV Dropout Voltage
LTC1627	High Efficiency Synchronous Step-Down Switching Regulator	Burst Mode ${ }^{\text {TM }}$ Operation, Monolithic, 100\% Duty Cycle
LT1761	100mA, Low Noise, Low Dropout Micropower Regulator in SOT-23	$20 \mu \mathrm{~A}$ Quiescent Current, $20 \mu \mathrm{~V}$ RMS Noise
LT1762	150mA, Low Noise, LDO Micropower Regulator	$25 \mu \mathrm{~A}$ Quiescent Current, $20 \mu \mathrm{~V}$ RMS Noise
LT1763	500mA, Low Noise, LDO Micropower Regulator	$30 \mu \mathrm{~A}$ Quiescent Current, $20 \mu \mathrm{~V}$ RMS Noise
LT1764	3A, Fast Transient Response Low Dropout Regulator	340 mV Dropout Voltage, $40 \mu \mathrm{~V}$ RMS Noise
LT1772	Constant Frequency Current Mode Step-Down DC/DC Controller	Up to 94\% Efficiency, SOT-23 Package, 100\% Duty Cycle
LT1963	1.5A, Fast Transient Response Low Dropout Regulator	S0-8, SOT-223 Packages

[^0]
[^0]: Burst Mode is a trademark of Linear Technology Corporation.

