September 1983 Revised January 2005

MM74HC00 Quad 2-Input NAND Gate

FAIRCHILD

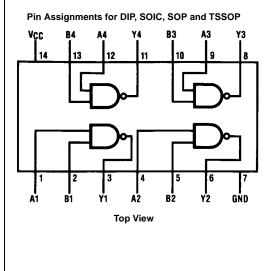
SEMICONDUCTOR

MM74HC00 Quad 2-Input NAND Gate

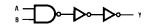
General Description

The MM74HC00 NAND gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits. All gates have buffered outputs. All devices have high noise immunity and the ability to drive 10 LS-TTL loads. The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\mbox{\scriptsize CC}}$ and ground.

Ordering Code


Features

- Typical propagation delay: 8 ns
- Wide power supply range: 2–6V
- Low quiescent current: 20 µA maximum (74HC Series)
- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads


Order Number	Package Number	Package Description				
MM74HC00M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow				
MM74HC00MX_NL	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow				
MM74HC00SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
MM74HC00MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
MM74HC00MTCX_NL	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
MM74HC00N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				
MM74HC00N_NL	N14A	Pb-Free 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

Logic Diagram

Absolute Maximum Ratings(Note 1) (Note 2)

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} +1.5V
DC Output Voltage (V _{OUT})	–0.5 to V_{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units	
Supply Voltage (V _{CC})	2	6	V	
DC Input or Output Voltage	0	V_{CC}	V	
(V _{IN} , V _{OUT})				
Operating Temperature Range (T _A)	-40	+85	°C	
Input Rise or Fall Times				
$(t_r, t_f) V_{CC} = 2V$		1000	ns	
$V_{CC} = 4.5V$		500	ns	
$V_{CC} = 6.0V$		400	ns	

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

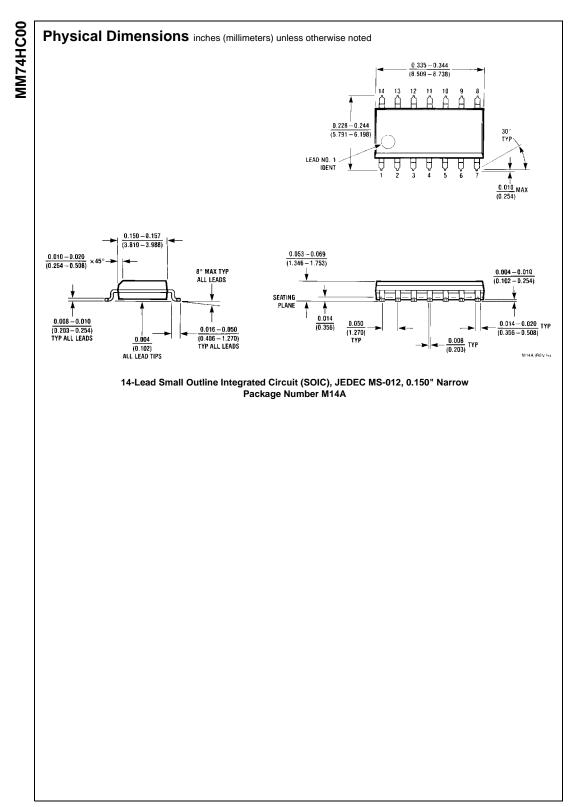
Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

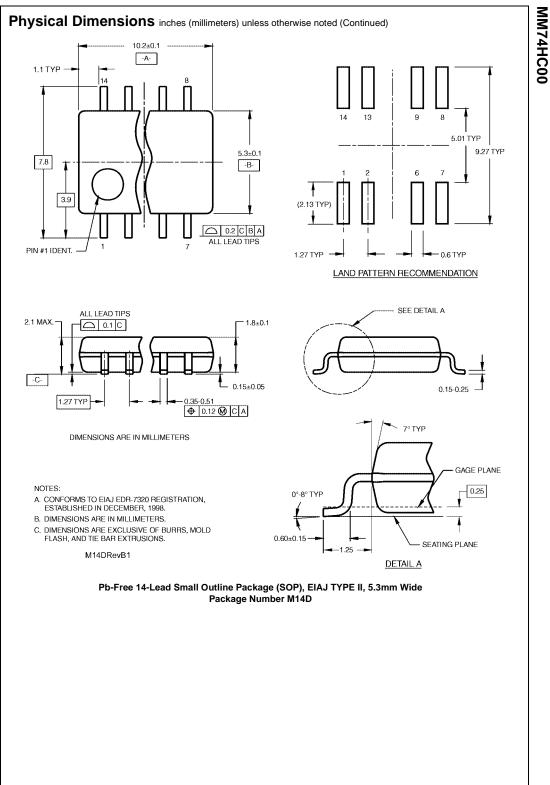
DC Electrical Characteristics (Note 4)

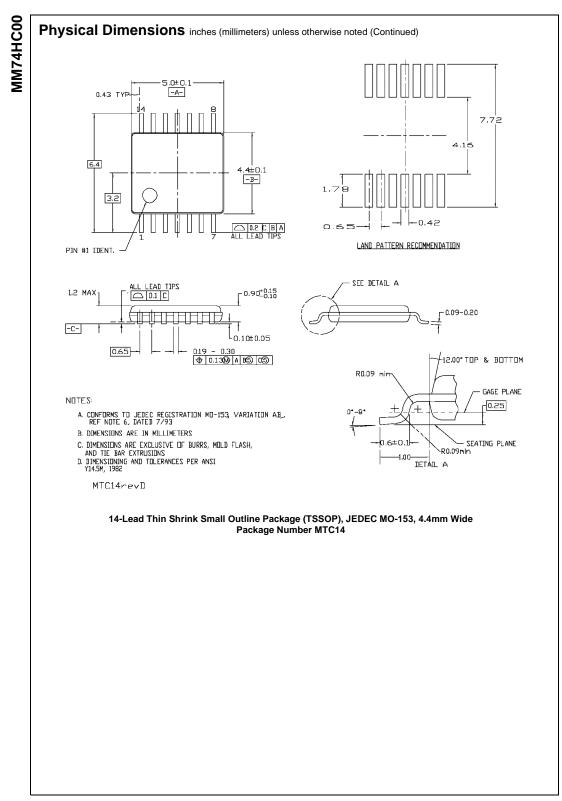
Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		$T_A=-40$ to $85^\circ C$	$T_A=-55$ to $125^\circ C$	Units
Symbol				Тур		Guaranteed L	imits	Units
VIH	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
VIL	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	I _{OUT} ≤ 20 μA	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
		I _{OUT} ≤ 5.2 mA	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	V _{IN} = V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
	Current							
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		2.0	20	40	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$						

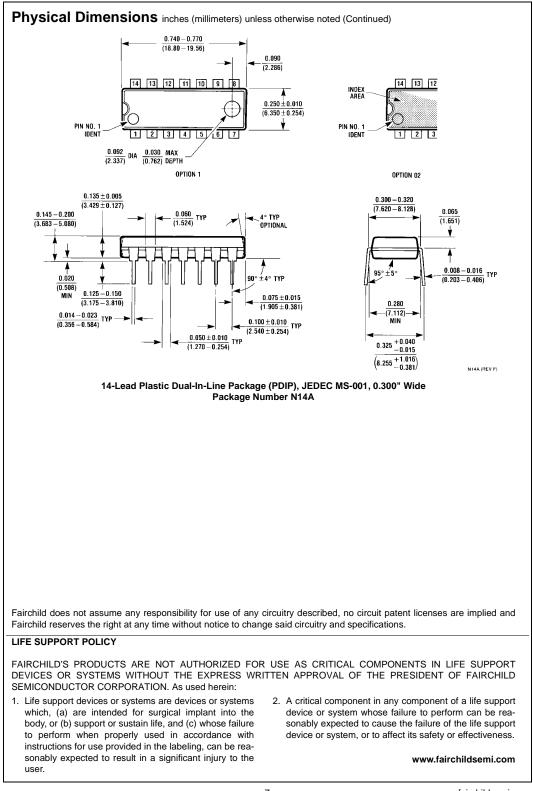
Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Elect	trical Characteristics				
$V_{CC} = 5V, T_A =$	= 25°C, C_L = 15 pF, $t_r = t_f$ = 6 ns				
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
^t PHL ^{, t} PLH	Maximum Propagation Delay		8	15	ns


AC Electrical Characteristics


 V_{CC} = 2.0V to 6.0V, C_L = 50 pF, t_r = t_f = 6 ns (unless otherwise specified)


Symbol	Parameter	Conditions	Vcc	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^{\circ}C$	$T_A{=}{-}55$ to $125^\circ C$	Units
			•00	Typ Guaranteed Limits				- 01113
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	45	90	113	134	ns
	Delay		4.5V	9	18	23	27	ns
			6.0V	8	15	19	23	ns
t _{TLH} , t _{THL}	Maximum Output Rise		2.0V	30	75	95	110	ns
	and Fall Time		4.5V	8	15	19	22	ns
			6.0V	7	13	16	19	ns
C _{PD}	Power Dissipation	(per gate)		20				pF
	Capacitance (Note 5)							
C _{IN}	Maximum Input			5	10	10	10	pF
	Capacitance							


Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

MM74H

MM74HC00 Quad 2-Input NAND Gate