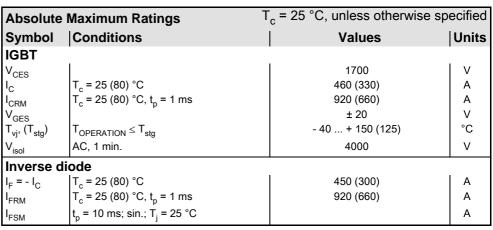
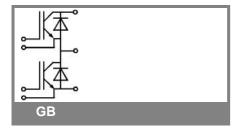
SEMIX 453GB176HD

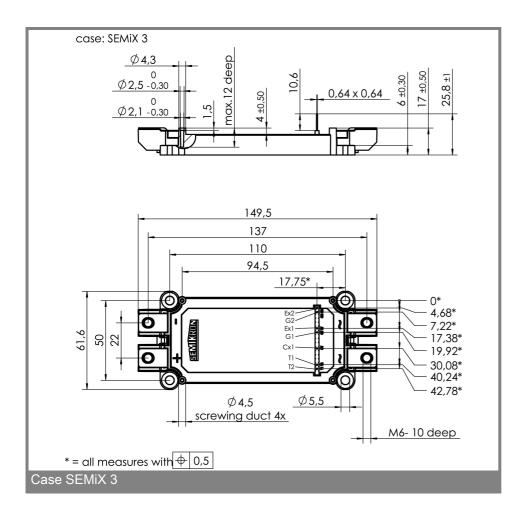
Trench IGBT Modules

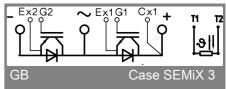
SEMiX 453GB176HD


Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability


Typical Applications


- AC inverter drives
- UPS
- Electronic welders

Characteristics T _c = 25 °C, unless otherwise specifi					
Symbol	Conditions	min.	typ.	max.	Units
IGBT		•			•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 12 \text{ mA}$	5,2	5,8	6,4	V
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$			2,4	mA
$V_{CE(TO)}$	$T_j = 25 (125) ^{\circ}C$		1 (0,9)	1,2 (1,1)	V
r_{CE}	V _{GE} = 0 V, T _j = 25 (125) °C		3,3 (5,2)	4,2 (6)	mΩ
V _{CE(sat)}	I _C = 300 A, V _{GE} = 15 V,		2 (2,45)	2,45 (2,9)	V
	T _j = 25 (125) °C, chip level				
C _{ies}	under following conditions		21,3		nF
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25 \text{ V}$, $f = 1 \text{ MHz}$		1,1		nF
C _{res}			0,9		nF
L _{CE}			20		nH
R _{CC'+EE'}	resistance, terminal-chip, T _c = 25 (125)		0,8 (1,2)		mΩ
	°C				
$t_{d(on)}/t_r$	V _{CC} = 1200 V, I _C = 300 A				ns
$t_{d(off)}/t_{f}$	V _{GE} = ± 15 V				ns
$E_{on} \left(E_{off} \right)$	R_{Gon} = R_{Goff} = 5,6 Ω , T_j = 125 °C		180 (105)		mJ
Inverse d	iode				
$V_F = V_{EC}$	I_F = 300 A; V_{GE} = 0 V; T_j = 25 (125) °C, chip level		1,7 (1,7)	1,9 (1,9)	V
$V_{(TO)}$	T _i = 25 (125) °C		1,1 (0,9)	1,3 (1,1)	V
r _T	$T_{j} = 25 (125) ^{\circ}C$		2 (2,7)	2 (2,7)	mΩ
I _{RRM}	$I_F = 300 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$				Α
Q_{rr}	di/dt = A/μs				μC
E _{rr}	V _{GE} = 0 V				mJ
Thermal of	characteristics				
R _{th(j-c)}	per IGBT			0,07	K/W
R _{th(j-c)D}	per Inverse Diode			0,12	K/W
$R_{th(j-c)FD}$	per FWD				K/W
$R_{th(c-s)}$	per module		0,04		K/W
Temperat	ure sensor				
R ₂₅	$T_c = 25 ^{\circ}C$		5 ±5%		kΩ
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2-1/T_1)]$; T[K];B		3420		K
Mechanic	al data				•
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm
W			289		g
					9

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

2 19-02-2004 SCT © by SEMIKRON