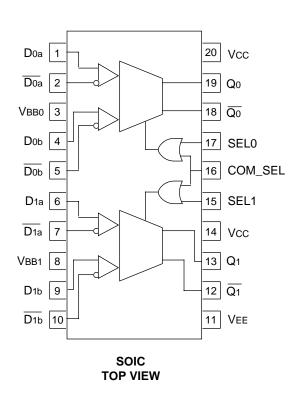


5V/3.3V DUAL DIFFERENTIAL 2:1 MULTIPLEXER

FEATURES

- 3.3V and 5V power supply options
- 440ps propagation delay
- Separate and common select
- High bandwidth output transitions
- Internal 75K Ω input pull-down resistors
- Available in 20-pin SOIC package


DESCRIPTION

The SY100EL56V is a dual, fully differential 2:1 multiplexer. The differential data path makes the device ideal for multiplexing low skew clock or other skew sensitive signals. Multiple V_{BB} pins are provided to ease AC coupling input signals.

The device features both individual and common select inputs to address both data path and random logic applications.

The differential inputs have special circuitry which ensures device stability under open input conditions. When both differential inputs are left open the D input will pull down to $V_{\rm EE}$, the /D input will bias around $V_{\rm CC}/2$ forcing the Q output LOW.

PIN CONFIGURATION/BLOCK DIAGRAM

TRUTH TABLE

SEL	Data
Н	а
L	b

PIN NAMES

Pin	Function
D0a–D1a	Input Data a
D0b-D1b	Input Data b
SEL0-SEL1	Individual Select Input
COM_SEL	Common Select Input
Q0-Q1	True Outputs
/Q0-/Q1	Inverted Outputs

Micrel SY100EL56V

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Value	Unit	
V _{CC}	Power Supply Voltage (V _{EE} = 0)	+6.0 to 0	V	
V _{EE}	Power Supply Voltage (V _{CC} = 0)	-6.0 to 0	V	
V _{IN}	Input Voltage ($V_{CC} = 0V$, V_{IN} not more negative Input Voltage ($V_{EE} = 0V$, V_{IN} not more positive t	-6.0 to 0 +6.0 to 0	V V	
I _{OUT}	Output Current	50 100	mA	
T _A	Operating Temperature Range		-40 to +85	°C
T _{store}	Storage Temperature Range		-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	-Still Air -500lfpm	160 109	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)		39	°C/W
ESD	Mil Std. 883 Human Body Model, All Pins		>1.5k	V

Note 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS(1)

VEE =VEE (Min) to VEE (Max); VCC = GND

		TA = -40°C		$TA = 0^{\circ}C$		TA = +25°C		TA = +85°C						
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
lee	Power Supply Current	_	20	24	_	20	24	_	20	24	_	20	24	mA
Vвв	Output Reference Voltage	-1.38	_	-1.26	-1.38	_	-1.26	-1.38	_	-1.26	-1.38	_	-1.26	V
lін	Input HIGH Current	_	_	150	_	_	150	_	_	150	_	_	150	μΑ
lıL	Input LOW Current Dn Dn	0.5 -600	_	_	0.5 -600	_	_	0.5 -600	_	_	0.5 -600	_	_	μΑ
VPP(DC)	Input Sensitivity ⁽²⁾	50	_	_	50	_	_	50	_	_	50	_	_	mV

Note 1. Parametric values specifed at: 100EL56V Series: (-3.0V to -3.8V) or (-4.2V to -5.5V).

Note 2. Differential input voltage required to obtain a full ECL swing on the outputs.

Micrel SY100EL56V

AC ELECTRICAL CHARACTERISTICS

VEE =VEE (Min) to VEE (Max); VCC = GND

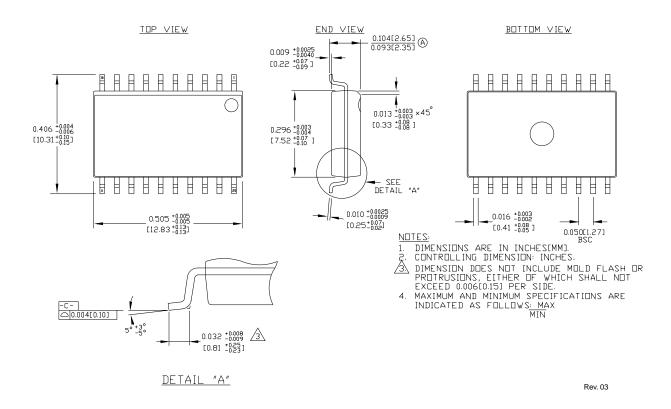
		Т	A = -40	°C	٦	ΓA = 0°(TA	= +25°	С	T,	A = +85	°C	
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
tPLH tPHL	Propagation D (Diff, Delay D (SE) to Output SEL COM_SEL	340 290 430 430	_ _ _ _	540 590 730 730	350 300 440 440		550 600 740 740	360 310 440 440		560 610 740 740	380 330 450 450		580 630 750 750	ps
tskew	Within Device Skew ⁽¹⁾ Duty Cycle Skew ⁽²⁾	_	40 —	80 100	_	40 —	80 100	_	40 —	80 100	_	40 —	80 100	ps ps
VPP(AC)	Minimum Input Swing ⁽³⁾	150	_	1000	150	_	1000	150	_	1000	150	_	1000	mV
VCMR	Common Mode Range VEE = $-3.0V$ to $-3.8V^{(4)}$ VPP < $500mV$ VPP $\geq 500mV$	-2.0 -1.8	_	-0.4 -0.4	-2.1 -1.9	_	-0.4 -0.4	-2.1 -1.9	_	-0.4 -0.4	-2.1 -1.9	_	-0.4 -0.4	V
	VEE = $-4.2V$ to $-5.5V^{(5)}$ VPP < $500mV$ VPP ≥ $500mV$	_	_ _	-0.4 -0.4	-3.3 -3.1	_ _	-0.4 -0.4	-3.3 -3.1	_ _	-0.4 -0.4	-3.3 -3.1	_ _	-0.4 -0.4	
tr tf	Output Rise/Fall Times Q (20% –80%)	200	_	540	200	_	540	200	_	540	200		540	ps

- Note 1. Within device skew is defined as identical transitions on similar paths through a device.
- **Note 2.** Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.
- Note 3. Minimum input swing for which AC parameters are guaranteed.
- Note 4. The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between $V_{pp}(min)$ and 1V. The lower end of the CMR range varies 1:1 with V_{EE} . The numbers in the spec table assume a nominal $V_{EE} = -3.3V$. Note for PECL operation, the V_{CMR} (min) will be fixed at $3.3V |V_{CMR}|$ (min)].
- Note 5. The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between $V_{pp}(min)$ and 1V. The lower end of the CMR range varies 1:1 with V_{EE} . The numbers in the spec table assume a nominal $V_{EE} = -4.5V$. Note for PECL operation, the V_{CMR} (min) will be fixed at $5.0V |V_{CMR}|$ (min)|.

PRODUCT ORDERING CODE

Ordering Code	Package Type	Operating Range	Marking Code	
SY100EL56VZC	Z20-1	Commercial	XEL56V	
SY100EL56VZCTR ⁽¹⁾	Z20-1	Commercial	XEL56V	

Ordering Code	Package Type	Operating Range	Marking Code	
SY100EL56VZI ⁽²⁾	Z20-1	Industrial	XEL56V	
SY100EL56VZITR ^(1, 2)	Z20-1	Industrial	XEL56V	


- Note 1. Tape and Reel.
- Note 2. Recommended for new designs.

PRODUCT/PROCESS INFORMATION

Process:	Bipolar
ESD Rating:	Per Mil Std. 883 Human Body Model, >1.5kV (all pins).

Micrel SY100EL56V

20 LEAD SOIC .300" WIDE (Z20-1)

Package Notes:

Note 1. Package meets Level 1 moisture sensitivity.

MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2003 Micrel, Incorporated.