———

Kitronik

Fict IRy
LESSON GUIDE TO THE

LESSON 5:
THE A-MAZING GAME

This lesson includes curriculum mapping, practical

exercises and a linked PowerPoint presentation.
www.kitronik.co.uk

TEACH YOUR STUDENTS HOW TO CREATE GAMES WITH CODE!

@ INTRODUCTION & SETUP

This is the fifth lesson in the ‘A-mazing Game’ series for Pico ZIP96. Now that the playercan § 2 I

move around the maze structure, gems are added in the lesson to provide a game objective.

CLASSROOM SETUP

G Students will be working in pairs. They will need:

Pen & Paper

A computer/laptop with a USB port and Internet access

Raspberry Pi Pico H

Kitronik Pico ZIP96

3 x AA batteries

A micro USB cable

A copy of the Kitronik ZIP9é library (ZIP96Pico.py in Lessons Code folder)
A copy of last lesson's code (ZIP96Pico - A-Mazing Game - Lesson 04.py in
Lessons Code folder)

The teacher will be writing on the board as well as demonstrating code on a projected board
(if available).

Curriculum mapping

- Understanding tools for writing programs. Using sequence, variables, data types, inputs
and outputs.
Decompose problems into smaller components, and make use of subroutines to build up
well-structured programs.
Learn how to handle strings, and simplify solutions by making use of lists and arrays.
Apply iteration in program designs using loops.
Make decisions in programs, making use of arithmetic, logic and Boolean expressions and
operators. Created nested selection statements.

KEYWORDS:

TRANSLATORS, IDES, ERRORS, SEQUENCE, VARIABLES, DATA TYPES, INPUTS, OUTPUTS,
ITERATION, WHILE LOOPS, FOR LOOPS, NESTED STATEMENTS, DESIGN PROGRAMS, SELECTION,
CONTROL STRUCTURES, LOGIC, BOOLEAN, NESTED STATEMENTS, SUBROUTINES, PROCEDURES,
FUNCTIONS, MODULES, LIBRARIES, VARIABLE SCOPE, WELL-DESIGNED PROGRAMS, STRINGS,
LISTS, STRING HANDLING, ARRAYS (1D, 2D), MANIPULATION, ITERATION

2 Lesson Guide to the Pico ZIP96 - Lesson 5: The A-Mazing Game kitronik.co.uk

WHAT IS OUR A-MAZING GAME? i'Z[

Our A-Mazing Game is a maze-based game where the player runs through a maze collecting
gems. Once you have collected all the gems in the maze then you have won! But it won't be that
easy, as there are enemies in the maze trying to catch you before you collect all of the gems.
The three enemies each have their own level of difficulty. The first enemy moves randomly.

The second enemy tries to move towards you, without trying to avoid the maze walls. The third
and final enemy is smart and moves around the maze walls finding the best path to you. When
an enemy catches you, you lose a life and everyone in the game is reset back to their starting
positions. You have three lives to collect all the gems, and if you don't, then you lose.

SETUP

Start by having the student’s setup the ZIP9é6 Pico by
connecting it to a computer and opening up Thonny.

The Pico device will appear in the bottom right corner

of Thonny.
) If the device does not load automatically, try
pressing the STOP icon at the top of the screen.
) If the shell does not load automatically, turn it on by checking View > Shell.

<untitled>

Shell

MicroPython (Raspberry Pi Pico) » COM3T

Create a new file by clicking File > New and save this to your Pico as main.py by '.ZI
clicking File > Save as and selecting Raspberry Pi Pico.

T Where to save to? X

This computer

Raspberry Pi Pico

3 Lesson Guide to the Pico ZIP96 - Lesson 5: The A-Mazing Game kitronik.co.uk

SETUP CONTINUED
e Now we can install the ZIP96Pico library onto our Pico. ir7 |
) To do this we need to click Tools > Manage Packages... from the drop down menu.

T& Thonny - <untitled> @ 1:1
File Edit View Run Tools Help

rsd o TR

'a Open system shell...

Files

Open replayer...
This computer P =y

C: \ Users \ Design \ Cc Open Thonny program folder...
Open Thonny data folder...

Manage plug-ins...

Options...

) With the Manage packages window open we can now search for Kitronik ~ $°g
in the text box at the top, and click the Search on PyPI button. Thonny will
search the Python Package Index for all the Kitronik packages.

Th Manage packages for Raspberry Pi Pico @ COM19 X
'K'rtronilu; -_ [Search on PyPl ‘
sl rom Py -

If you den't know where to get the package from, then most [ikely you'll want to
search the Python Package Index. Start by entering the name of the package in the
search bex above and pressing ENTER.

Install from requirements file
Click here to locate requirements.txt file and install the packages specified in it.

Install from local file
Click here to locate and install the package file (usually with .whi, .tar.gz er zip
extengion).
Upagrade or uninstall
Start by selecting the package from the left.
Target
fib
Under the hood
This dialog uses "pipkin’, a new command line toel for managing MicroPython and
CircuitPython packages. See https//pypi.ora/project/pipkin/ for more info. ,
Close
° Click on KitronikPicoZIP96 from the search results list. This will show us details

about the package and from here we can click the Install button to add the
package to our Pico. Thonny may ask you to confirm that you would like to install
this package and we want to select Yes, we do want to install the package.

4 Lesson Guide to the Pico ZIP96 - Lesson 5: The A-Mazing Game kitronik.co.uk

Kitronik

@ MAIN LESSON

Curriculum mapping

Decompose problems into smaller components, and make use of subroutines to build up i‘ZI
well-structured programs.

CREATE GAME CLASS: GEM

Now that we have a working Wall class, let's add some gems to our maze. In the Gem class we
need to define a constructor. The Gem needs to know:

) its x and y position on the screen,
° the colour used for its LED,
) the screen object to draw the player on the ZIP96.

The gems are in the maze to be collected by the player. How will the program know

whether a gem is collected or not? What method could be used, and what difference
should a gem being collected or not make to the game setup?

So let’s take these as input parameters in the Gem constructor and set them as '.E
variables stored inside the object. An additional variable the Gem class will need is T
collected so it knows whether the player has collected the gem, which we can set to

False to start off with. We can again add a call to the draw function inside the constructor for
our Gem class which we will write the code for next.

class Gem():

def __init__ (self, x, y, colour, screen):
self.x = x
self.y =y

colour

self.screen = screen

self.collected = False

self.colour

self.draw()

Curriculum mapping

Make decisions in programs, making use of arithmetic, logic and Boolean expressions and operators.

5 Lesson Guide to the Pico ZIP96 - Lesson 5: The A-Mazing Game kitronik.co.uk

The draw function we are going to write for the Gem class is going to be like a combination of the §712
Player.draw and Player.drawEmpty functions. When our Gem.collected variable is True we want

to make the gem disappear, like in the drawEmpty function. However, when our Gem.collected

variable is False we want to make the gem visible, like in the draw function. Let's use an if statement
inside the Gem.draw function to show the gem’s colour when it hasn't been collected but hide the gem
when it has.

def draw(self):

if self.collected:

self.screen.setLEDMatrix(self.x, self.y, screen.BLACK)
else:

self.screen.setLEDMatrix(self.x, self.y, self.colour)

In the same way we wanted to check when the player moved onto a Wall object, we want to
check when the player moves onto a Gem object. We'll create the Gem.collision function in
the exact same way, accepting an x and y value as inputs and checking them against the Gem
coordinates to return if they match.

def collision(self, x, y):
return self.x == x and self.y ==y

Curriculum mapping

Learn how to handle strings, and simplify solutions by making use of lists and arrays.
Apply iteration in program designs using loops.

6 Lesson Guide to the Pico ZIP96 - Lesson 5: The A-Mazing Game kitronik.co.uk

CREATE GAME GEM OBJECTS

i,13

To setup the gems for our maze we'll copy what we did for the walls. First make an array
of where we want them to go. For the gems we want to use almost all the coordinates that
aren’t used by the walls. The exceptions to this are:

o the gaps in the left and right walls on the edge of the screen where the player
can wrap from one side of the maze to the other,
o the three coordinates where the Enemy objects will start.

Above where we create our player object, let's create an array gemsXY of the x and y
coordinates for each Gem object in our maze.

gemsXY = [(1, 1), (2, 1), (4, 1), (5, 1), (6, 1), (8, 1), (9, 1),(10, 1),
(2, 2), (4, 2), (7, 2), (8, 2), (10, 2),
(1, 3), (2, 3), (3, 3), (4, 3), (7, 3), (10, 3),
(1, 4), (4, 4), (7, 4), (8, 4), (9, 4),
(1, 5), (3, 5), (4, 5), (7, 5), (9, 5),
(1, 6), (2, 6), (3, 6), (5, 6), (6, 6), (7, 6), (9, 6), (10, 6)]

With the coordinates for the gems setup we can now create an empty array gems to store

o 14
all of the Gem objects. We will fill the gems array by looping through each x and y pair
stored in gemsXY, using the coordinates to create a Gem object and append it to the end of
the gems array.
gems = []
for gemXY in gemsXY:
gems . append(Gem(gemXY[0], gemXY[1], gamer.Screen.WHITE, screen))
UPDATE GAME FUNCTION: PLAYER.MOVE i,' 15|

Next, we again need access to the gems inside the Player class, so let’s add the gems

array as an input parameter in the Player constructor. On top of this the Player class needs
to keep track of how many gems have been collected so we can create a foundGems variable
inside the Player class that stores the number of gems found.

def __init__ (self, x, y, colour, walls, gems, screen, screenWidth, screenHeight):
self.x = x
self.y =y
self.colour = colour
self.walls = walls
self.gems = gems
self.foundGems = ©

7 Lesson Guide to the Pico ZIP96 - Lesson 5: The A-Mazing Game kitronik.co.uk

itronik

Kitronil>

8

To check when we have found one of the gems, we'll add a loop to the Player.move T 16
function about the call to Player.draw, similar to the one we used when checking f
collisions with the walls. We'll use a for each loop to loop through the array of Gem

objects we added to the Player constructor.

Curriculum mapping
Created nested selection statements.

Inside the loop use gem to access the Gem object and check if there is a collision with the gem
from the player object’s new position. When there is a collision we should then check if the
gem has already been collected by the player. If it hasn't been collected we should tell it the
player has now collected it by setting the gem variable to True. Then increase the foundGems
variable to show another Gem object has been found by the player.

for gem in self.gems:
if gem.collision(self.x, self.y):
if not gem.collected:

gem.collected = True
self.foundGems += 1

break

self.draw()

TASK: TEST GEM CLASS

With our Gem class written we can now test our maze with the gems added.

i,17

Note: Don't forget to update the player object’s inputs to include the gems array.

player = Player(9, 1, gamer.Screen.YELLOW, walls, gems, screen, screenWidth, screenHeight)

o What happens when all of the Gem objects have been collected?

Lesson Guide to the Pico ZIP96 - Lesson 5: The A-Mazing Game kitronik.co.uk

@ CONCLUSION

LESSON 05 CONCLUSION i,19

In this lesson, you have:

() Created Gem class, constructor and methods
() Used for loop, if statement and Boolean logic to check for interaction between
Player and Gem objects

FULL LESSON CODE

The full code for each lesson can be found in the Lessons Code folder.

9 Lesson Guide to the Pico ZIP96 - Lesson 5: The A-Mazing Game kitronik.co.uk

i
THE ZIP96 IS A PROGRAMMABLE RETRO GAMEPAD FOR THE RASPBERRY PI PICO.

It features 96 colour addressable LEDs arranged in a 12 x 8 display, a buzzer for audio feedback, a vibra-
tion motor for haptic feedback, and 6 input buttons. It also breaks out GP1, GP11, ADC1 and ADC2, along

with a set of 3.3V and GND for each, to standard 0.1” footprints. GP18 to 21 are also broken out on a 0.1”

footprint underneath the Pico. The Pico is connected via low profile 20-way pin sockets.

96 RGB ZIP LEDs
Power LED

On/Off Switch

www.kitronik.co.uk

b | o i | it | ik | 1k

EE'JE,'JK,'H'JE'H,'H f]

.........

d SR ISR ISR TR IR 1

Nk) i i Y 6 |l | Gl i G i

ey ’-![—3" Fe == 2f=1F=11

v RIGHT ik | | G k6 B |
~(GP1LT- \

Direction Buttons v =N / - Action Buttons

Buzzer

Pico Connector

3x AA Battery Cages

Vibration Motor

T 0115 970 4243 3 kitronik.co.uk/twitter 3 «itronik.co.uk/youtube

W: www.kitronik.co.uk n kitronik.co.uk/facebook kitronik.co.uk/instagram

E: support@kitronik.co.uk NNp== Designed & manufactured UK
zZalnXX in the UK by CKitronio RYHS cA

For more information on RoHs and CE please visit kitronik.co.uk/rohs-ce. Children assembling this product should be supervised
by a competent adult. The product contains small parts so should be kept out of reach of children under 3 years old.

