———

Kitronik

Fict IRy
LESSON GUIDE TO THE

LESSON 11:
THE A-MAZING GAME

This lesson includes curriculum mapping, practical

exercises and a linked PowerPoint presentation.
www.kitronik.co.uk

TEACH YOUR STUDENTS HOW TO CREATE GAMES WITH CODE!

ﬁ INTRODUCTION & SETUP

2

This is the eleventh lesson in the ‘A-mazing Game’ series for Pico ZIP96. With the first, ‘.ZI

randomly moving enemy now providing some extra challenge for the player, this lesson
adds a second enemy with the ability to move towards the player.

CLASSROOM SETUP

G Students will be working in pairs. They will need:

Pen & Paper

A computer/laptop with a USB port and Internet access

Raspberry Pi Pico H

Kitronik Pico ZIP96

3 x AA batteries

A micro USB cable

A copy of the Kitronik ZIP9é library (ZIP96Pico.py in Lessons Code folder)
A copy of last lesson's code (ZIP96Pico - A-Mazing Game - Lesson 09.py in
Lessons Code folder)

The teacher will be writing on the board as well as demonstrating code on a projected board
(if available).

Curriculum mapping

- Understanding tools for writing programs. Using sequence, variables, data types, inputs
and outputs.
Decompose problems and solve them using algorithms. Explore different searching and
sorting algorithms.
Decompose problems into smaller components, and make use of subroutines to build up
well-structured programs.
Learn how to handle strings, and simplify solutions by making use of lists and arrays.
Apply iteration in program designs using loops.
Make decisions in programs, making use of arithmetic, logic and Boolean expressions and
operators. Created nested selection statements.

KEYWORDS:

TRANSLATORS, IDES, ERRORS, SEQUENCE, VARIABLES, DATA TYPES, INPUTS, OUTPUTS,
ITERATION, WHILE LOOPS, FOR LOOPS, NESTED STATEMENTS, DESIGN PROGRAMS,
SELECTION, CONTROL STRUCTURES, LOGIC, BOOLEAN, NESTED STATEMENTS,
SUBROUTINES, PROCEDURES, FUNCTIONS, MODULES, LIBRARIES, VARIABLE SCOPE,
WELL-DESIGNED PROGRAMS, STRINGS, LISTS, STRING HANDLING, ARRAYS (1D, 2D),
MANIPULATION, ITERATION, ALGORITHMS, DECOMPOSITION, ABSTRACTION, DESIGN
METHODS, TRACE TABLES, SEARCHING AND SORTING ALGORITHMS

Lesson Guide to the Pico ZIP96 - Lesson 11: The A-Mazing Game kitronik.co.uk

WHAT IS OUR A-MAZING GAME? i'Z[

Our A-Mazing Game is a maze-based game where the player runs through a maze collecting
gems. Once you have collected all the gems in the maze then you have won! But it won't be that
easy, as there are enemies in the maze trying to catch you before you collect all of the gems.
The three enemies each have their own level of difficulty. The first enemy moves randomly.

The second enemy tries to move towards you, without trying to avoid the maze walls. The third
and final enemy is smart and moves around the maze walls finding the best path to you. When
an enemy catches you, you lose a life and everyone in the game is reset back to their starting
positions. You have three lives to collect all the gems, and if you don't, then you lose.

SETUP

Start by having the student’s setup the ZIP9é6 Pico by
connecting it to a computer and opening up Thonny.

The Pico device will appear in the bottom right corner

of Thonny.
) If the device does not load automatically, try
pressing the STOP icon at the top of the screen.
) If the shell does not load automatically, turn it on by checking View > Shell.

<untitled>

Shell

MicroPython (Raspberry Pi Pico) » COM3T

Create a new file by clicking File > New and save this to your Pico as main.py by ',ZI
clicking File > Save as and selecting Raspberry Pi Pico.

T Where to save to? X

This computer

Raspberry Pi Pico

3 Lesson Guide to the Pico ZIP96 - Lesson 11: The A-Mazing Game kitronik.co.uk

SETUP CONTINUED
e Now we can install the ZIP96Pico library onto our Pico. ir7 |
) To do this we need to click Tools > Manage Packages... from the drop down menu.

T& Thonny - <untitled> @ 1:1
File Edit View Run Tools Help

rsd o TR

'a Open system shell...

Files

Open replayer...
This computer P =y

C: \ Users \ Design \ Cc Open Thonny program folder...
Open Thonny data folder...

Manage plug-ins...

Options...

) With the Manage packages window open we can now search for Kitronik ~ $°g
in the text box at the top, and click the Search on PyPI button. Thonny will
search the Python Package Index for all the Kitronik packages.

Th Manage packages for Raspberry Pi Pico @ COM19 X
'K'rtronilu; -_ [Search on PyPl ‘
sl rom Py -

If you den't know where to get the package from, then most [ikely you'll want to
search the Python Package Index. Start by entering the name of the package in the
search bex above and pressing ENTER.

Install from requirements file
Click here to locate requirements.txt file and install the packages specified in it.

Install from local file
Click here to locate and install the package file (usually with .whi, .tar.gz er zip
extengion).
Upagrade or uninstall
Start by selecting the package from the left.
Target
fib
Under the hood
This dialog uses "pipkin’, a new command line toel for managing MicroPython and
CircuitPython packages. See https//pypi.ora/project/pipkin/ for more info. ,
Close
° Click on KitronikPicoZIP96 from the search results list. This will show us details

about the package and from here we can click the Install button to add the
package to our Pico. Thonny may ask you to confirm that you would like to install
this package and we want to select Yes, we do want to install the package.

4 Lesson Guide to the Pico ZIP96 - Lesson 11: The A-Mazing Game kitronik.co.uk

Kitronik

ﬁ MAIN LESSON

Curriculum mapping °
' 9 |

Decompose problems and solve them using algorithms. Explore different searching and
sorting algorithms.

Decompose problems into smaller components, and make use of subroutines to build up well-
structured programs.

CREATE GAME CLASS: POSITION

The last thing we have left to do for our game is to write the code for a smart Enemy that
moves around the maze walls finding the best path to the player. To create this final Enemy we
will use the algorithm we set out in the last lesson. As part of the algorithm we use positions
in the maze that store the x and y location along with a distance travelled from the start. Let's
create a new class Position to store these values.

class Position():

def __init_ (self, x, y, travelled):
self.x = X
self.y =y
self.travelled = travelled

CREATE GAME FUNCTION: ENEMY.MOVESMART °10

With our Position class setup we can create a new move function in the Enemy class to

have the Enemy move along the shortest path towards the player. The start of the moveSmart
function is the same as the moveRandom and moveNormal functions. We want to reset the
current position on the screen and set hitPlayer to False.

def moveSmart(self):
self.drawEmpty()

self.hitPlayer = False

Curriculum mapping

Using sequence, variables, data types, inputs and outputs.
Learn how to handle strings, and simplify solutions by making use of lists and arrays.

5 Lesson Guide to the Pico ZIP96 - Lesson 11: The A-Mazing Game kitronik.co.uk

itronik

Kitronil>

6

Next we setup some variables to use in our search algorithm. The first is current, which §17
we use to store a Position object at the location in the maze of the player object, with a
distance travelled of zero. Then create an array toVisit of Position objects we want to

check. We'll initialise this with the current variable we just created. Finally, we are going to
need a 2 dimensional array visited that is the size of our maze and can contain all the Position
objects we have already checked. The Position objects stored in visited will eventually reveal to
us the shortest path between the player and the smart Enemy object.

To start, we are going to initialise the visited array with the None object for every element. The None
object is used to say there is no value saved. It is helpful to show us the positions we have been to,
when we have a Position object stored there, and positions we haven't been to, when we have a None
object stored there. We initialise the 2-dimensional array using two for loops. We can use for loops to
setup a range of elements in an array. The inner arrays will have a length equal to the ZIP96 screen
width, while the main outer array will have a length equal to the ZIP96 screen height. This means each
inner array will contain 12 None objects and the outer array will contain 8 of the inner arrays.

current = Position(self.player.x, self.player.y, 9)
self.toVisit = [current]

self.visited = [[None for x in range(self.screenWidth)] for y in range(self.screenHeight)]

Curriculum mapping

Apply iteration in program designs using loops.
Make decisions in programs, making use of arithmetic, logic and Boolean expressions and operators.

To perform our search we need to use a while loop with the condition being to continue until
there are no more Position objects in the toVisit array. Inside the loop we first want to get
the Position object with the shortest distance travelled from the toVisit array. We can do this
using the pop function which removes and returns the last element from the array and stores it in
current. Then let's add the current Position object to the visited array using its x and y coordinates.
Next, we'll call collision on the smart Enemy object to check if we have got a path back to its
location. When we are back at the smart Enemy we should break out of the loop to stop the search.

o 12

while self.toVisit:

current = self.toVisit.pop()

self.visited[current.y][current.x] = current

if self.collision(current.x, current.y):
break

Lesson Guide to the Pico ZIP96 - Lesson 11: The A-Mazing Game kitronik.co.uk

As our search makes a path from the player back to our smart Enemy object, we'll need 3
to add the collision function into the Enemy class. This works like before, checking the
given x and y input values against the Enemy coordinates to return if they match.

def collision(self, x, y):
return self.x == x and self.y ==y

CREATE GAME FUNCTION: ENEMY.MOVESMARTUPDATE

We are going to create a new function moveSmartUpdate in the Enemy class to check possible

new positions and add them to the toVisit array if we haven’t seen them before. At the start of the
moveSmartUpdate function we'll do some standard checks we have been performing to tell when a
location in the maze is valid. The difference with these checks is that we should just stop checking
the location when it's not valid, rather than undo the move like we have done previously.

Curriculum mapping
Created nested selection statements.

There are four conditions which need checking, two for the x coordinate and two for the y o 14
coordinate. Rather than using four separate if statements, what can be used to reduce it to two? f

To do this we'll add the if statements that check when a position is off the edge of the screen. & 15
Here we can reduce the number of if statements needed by using the bit wise or operator. f
This returns when the first condition is True or the second condition is True or both of them

are True. Next we'll perform checks on the position to return when it's inside of the walls.

def moveSmartUpdate(self, x, y, travelled):
if (x < @ or x >= self.screenWidth): return

if (y < @ or y »>= self.screenHeight): return

for wall in self.walls:
if wall.collision(x, y):

return

7 Lesson Guide to the Pico ZIP96 - Lesson 11: The A-Mazing Game kitronik.co.uk

itronik

Kitronil>

8

When we know the Position is valid we can check if we have visited it before. If we haven't
seen it then we want to add it as a Position we want to visit by inserting it into the toVisit list.
We want the toVisit list to be ordered with the longest distance travelled at the start, at index
0, and the shortest distance travelled at the end. To do this we are going to essentially use the
insertion sort algorithm.

Insertion sort is an algorithm used to sort an array of elements. Insertion sort works by

splitting the array of elements into two sections. The first section is the sorted part and is at

the start of the array. The second section is the unsorted part and is at the end of the array. Insertion
sort works by looking at the first element in the unsorted section and moving into its correct position

[;:_;’, Students take note i‘E

in the sorted section of the array. This is done by looping through the elements in the sorted array
from the largest value down to the smallest, and comparing the values of the unsorted element to the
sorted elements. When the value of the sorted element is less than the unsorted element, we know
the unsorted element should be placed here in the array. The sorted section now includes an extra
element, and we repeat this process until there are no more elements in the unsorted section.

Our use of insertion sort uses the core principles from the actual algorithm, but instead 'oE
we'll do an on the fly insertion sort. What this means is we'll sort the toVisit array by T
adding an element into their sorted position, rather than having a random array of elements
and having to sort them.

WEe'll do this by looping through the toVisit array from the start where our Position with the
largest distance travelled will be. At each Position we'll check if it is less than the new Position
and when it is less we can break out of the loop. Outside of the loop we can now add the

new Position into the array. We do this outside of the loop so that if our new Position has the
smallest distance travelled then it is added onto the end of the array.

if not self.visited[y][x]:
i=09

for i in range(len(self.tovisit)):

if self.toVisit[i].travelled < travelled: break

self.tovVisit.insert(i, Position(x, y, travelled))

Lesson Guide to the Pico ZIP96 - Lesson 11: The A-Mazing Game kitronik.co.uk

UPDATE GAME FUNCTION: ENEMY.MOVESMART i,w

Back inside of the moveSmart function we are going to call the moveSmartUpdate function

we just created on the positions around the current Position. Doing this allows us to test each of
the different moves this Enemy object can make from the current Position. We want to add these
function calls to the end of the while self.toVisit: loop. Inside these function calls the Position
objects surrounding current will be checked to see if they are valid then added to the toVisit array
when they are. We also want to add one onto the distance travelled of the current object, as any
of its surrounding Position objects will take one extra move to get there for the current Position.

self.moveSmartUpdate(current.x + 1, current.y, current.travelled + 1)
self.moveSmartUpdate(current.x - 1, current.y, current.travelled + 1)
self.moveSmartUpdate(current.x, current.y + 1, current.travelled + 1)
self.moveSmartUpdate(current.x, current.y - 1, current.travelled + 1)

That's all we need to do inside of the while loop, so we can now use the visited array to § 19
determine the best move the smart Enemy object can make from its current Position.

To do that let’s first get the Position object at the Enemy object’s current location from

the visited array. Using current we can also set the distance travelled from the Enemy to the
player to determine when a move has a shorter path to the player.

current = self.visited[self.y][self.x]

self.travelled = current.travelled

To check for the move with the shortest path to the player we should first check whether §55
the surrounding position is off the edge of the maze. This prevents us from accessing a
position outside of the array which would cause an error while our maze game is running.

def moveSmartCheck(self, x, y):

if (x < @ or x >= self.screenWidth): return

if (y < @ or y >= self.screenHeight): return

9 Lesson Guide to the Pico ZIP96 - Lesson 11: The A-Mazing Game kitronik.co.uk

Now we know we aren’t accessing out of bounds elements in our array, let’s get the o 21
Position object we want to check from the visited array and store it in checked. Then we'll T
need to use an if statement to see whether checked stores an object or not. When it does

store a Position object, the if statement will then see whether the distance travelled of checked
is less than the distance travelled by the smart Enemy object’s current Position. When it is we
can update the Enemy object to move into this Position and update its travelled variable in case
we have any more surrounding positions to check.

checked = self.visited[y][x]

if checked and checked.travelled < self.travelled:

self.travelled = checked.travelled

self.x = X
self.y =y
UPDATE GAME FUNCTION: ENEMY.MOVESMART i'—_ﬁl

At the end of our search in moveSmart we then call the moveSmartCheck function we just
created on the positions around the Enemy, as these are the different moves this Enemy object
can make. Inside these function calls the Enemy object’s Position will be updated to be along
the path with the shortest distance to the player.

self.moveSmartCheck(current.x + 1, current.y)
self.moveSmartCheck(current.x - 1, current.y)
self.moveSmartCheck(current.x, current.y + 1)
self.moveSmartCheck(current.x, current.y - 1)

After selecting the move we clean up our arrays by calling clear on both of them to T 23
empty all the elements they have stored. Then we want to check when the Enemy
catches the player and draw the updated position to the screen.

self.toVisit.clear()
self.visited.clear()

if self.player.collision(self.x, self.y):

self.hitPlayer = True

self.draw()

10 Lesson Guide to the Pico ZIP96 - Lesson 11: The A-Mazing Game kitronik.co.uk

11

K

itronik

Kitronil>

TASK: TEST THE ENEMY.MOVESMART GAME FUNCTION i',T_A[

Let's now test our final game function Enemy.moveSmart by adding a new Enemy object
to the enemies array. We can set the start position for this Enemy to be on the left side of the
screen, far away from the player, where we have an empty space and its colour to purple.

enemies = [Enemy(6, 2, gamer.Screen.RED, walls, gems, player, screen, screenWidth, screenHeight)
Enemy(5, 5, gamer.Screen.GREEN, walls, gems, player, screen, screenWidth, screenHeight)
Enemy (10, 4, gamer.Screen.PURPLE, walls, gems, player, screen, screenWidth, screenHeight)]

Again, let's add the new Enemy object into the game loop underneath where we call
moveNormal on the second Enemy. For all the other Enemy objects, we select them by adding
an else statement to the bottom of our if statements in the enemies loop, and we want to call
the new moveSmart function.

elif i == 1: enemies[i].moveNormal()

else: enemies[i].moveSmart()

Don't forget to reset the new Enemy in the livesUpdate function. Try testing the new smart
Enemy and see if you can still win the A-Mazing Game!

enemies[1].reset(5, 5)
enemies[2].reset(10, 4)

CONCLUSION

LESSON 11 CONCLUSION

In this lesson, you have:

Setup an array and 2D array i'E
Implemented a basic 2D search algorithm

Implemented an insertion sort based sorting algorithm

Used for loop, if statement and Boolean logic to check for interaction between
Enemy and other objects

FULL LESSON CODE

The full code for each lesson can be found in the Lessons Code folder.

Lesson Guide to the Pico ZIP96 - Lesson 11: The A-Mazing Game kitronik.co.uk

i
THE ZIP96 IS A PROGRAMMABLE RETRO GAMEPAD FOR THE RASPBERRY PI PICO.

It features 96 colour addressable LEDs arranged in a 12 x 8 display, a buzzer for audio feedback, a vibra-
tion motor for haptic feedback, and 6 input buttons. It also breaks out GP1, GP11, ADC1 and ADC2, along

with a set of 3.3V and GND for each, to standard 0.1” footprints. GP18 to 21 are also broken out on a 0.1”

footprint underneath the Pico. The Pico is connected via low profile 20-way pin sockets.

96 RGB ZIP LEDs
Power LED

On/Off Switch

www.kitronik.co.uk

b | o i | it | ik | 1k

EE'JE,'JK,'H'JE'H,'H f]

.........

d SR ISR ISR TR IR 1

Nk) i i Y 6 |l | Gl i G i

ey ’-![—3" Fe == 2f=1F=11

v RIGHT ik | | G k6 B |
~(GP1LT- \

Direction Buttons v =N / - Action Buttons

Buzzer

Pico Connector

3x AA Battery Cages

Vibration Motor

T 0115 970 4243 3 kitronik.co.uk/twitter 3 «itronik.co.uk/youtube

W: www.kitronik.co.uk n kitronik.co.uk/facebook kitronik.co.uk/instagram

E: support@kitronik.co.uk NNp== Designed & manufactured UK
zZalnXX in the UK by CKitronio RYHS cA

For more information on RoHs and CE please visit kitronik.co.uk/rohs-ce. Children assembling this product should be supervised
by a competent adult. The product contains small parts so should be kept out of reach of children under 3 years old.

