———

Kitronik

Fict IRy
LESSON GUIDE TO THE

LESSON 9:
THE A-MAZING GAME

This lesson includes curriculum mapping, practical

exercises and a linked PowerPoint presentation.
www.kitronik.co.uk

TEACH YOUR STUDENTS HOW TO CREATE GAMES WITH CODE!

6 INTRODUCTION & SETUP

2

This is the ninth lesson in the ‘A-mazing Game’ series for Pico ZIP96. With the first, ‘.ZI

randomly moving enemy now providing some extra challenge for the player, this lesson
adds a second enemy with the ability to move towards the player.

CLASSROOM SETUP

G Students will be working in pairs. They will need:

Pen & Paper

A computer/laptop with a USB port and Internet access

Raspberry Pi Pico H

Kitronik Pico ZIP96

3 x AA batteries

A micro USB cable

A copy of the Kitronik ZIP9é library (ZIP96Pico.py in Lessons Code folder)
A copy of last lesson's code (ZIP96Pico - A-Mazing Game - Lesson 08.py in
Lessons Code folder)

The teacher will be writing on the board as well as demonstrating code on a projected board
(if available).

Curriculum mapping

- Understanding tools for writing programs. Using sequence, variables, data types, inputs
and outputs.
Decompose problems and solve them using algorithms. Explore different searching and
sorting algorithms.
Decompose problems into smaller components, and make use of subroutines to build up
well-structured programs.
Learn how to handle strings, and simplify solutions by making use of lists and arrays.
Apply iteration in program designs using loops.
Make decisions in programs, making use of arithmetic, logic and Boolean expressions and
operators. Created nested selection statements.

KEYWORDS:

TRANSLATORS, IDES, ERRORS, SEQUENCE, VARIABLES, DATA TYPES, INPUTS, OUTPUTS,
ITERATION, WHILE LOOPS, FOR LOOPS, NESTED STATEMENTS, DESIGN PROGRAMS,
SELECTION, CONTROL STRUCTURES, LOGIC, BOOLEAN, NESTED STATEMENTS,
SUBROUTINES, PROCEDURES, FUNCTIONS, MODULES, LIBRARIES, VARIABLE SCOPE,
WELL-DESIGNED PROGRAMS, STRINGS, LISTS, STRING HANDLING, ARRAYS (1D, 2D),
MANIPULATION, ITERATION, ALGORITHMS, DECOMPOSITION, ABSTRACTION, DESIGN
METHODS, TRACE TABLES, SEARCHING AND SORTING ALGORITHMS

Lesson Guide to the Pico ZIP96 - Lesson 9: The A-Mazing Game kitronik.co.uk

WHAT IS OUR A-MAZING GAME? i'Z[

Our A-Mazing Game is a maze-based game where the player runs through a maze collecting
gems. Once you have collected all the gems in the maze then you have won! But it won't be that
easy, as there are enemies in the maze trying to catch you before you collect all of the gems.
The three enemies each have their own level of difficulty. The first enemy moves randomly.

The second enemy tries to move towards you, without trying to avoid the maze walls. The third
and final enemy is smart and moves around the maze walls finding the best path to you. When
an enemy catches you, you lose a life and everyone in the game is reset back to their starting
positions. You have three lives to collect all the gems, and if you don't, then you lose.

SETUP

Start by having the student’s setup the ZIP9é6 Pico by
connecting it to a computer and opening up Thonny.

The Pico device will appear in the bottom right corner of

Thonny.
) If the device does not load automatically, try
pressing the STOP icon at the top of the screen.
) If the shell does not load automatically, turn it on by checking View > Shell.

<untitled>

Shell

MicroPython (Raspberry Pi Pico) » COM3T

Create a new file by clicking File > New and save this to your Pico as main.py by ',ZI
clicking File > Save as and selecting Raspberry Pi Pico.

T Where to save to? X

This computer

Raspberry Pi Pico

3 Lesson Guide to the Pico ZIP96 - Lesson 9: The A-Mazing Game kitronik.co.uk

SETUP CONTINUED
e Now we can install the ZIP96Pico library onto our Pico. ir7 |
) To do this we need to click Tools > Manage Packages... from the drop down menu.

T& Thonny - <untitled> @ 1:1
File Edit View Run Tools Help

rsd o TR

'a Open system shell...

Files

Open replayer...
This computer P =y

C: \ Users \ Design \ Cc Open Thonny program folder...
Open Thonny data folder...

Manage plug-ins...

Options...

) With the Manage packages window open we can now search for Kitronik ~ $°g
in the text box at the top, and click the Search on PyPI button. Thonny will
search the Python Package Index for all the Kitronik packages.

Th Manage packages for Raspberry Pi Pico @ COM19 X
'K'rtronilu; -_ [Search on PyPl ‘
sl rom Py -

If you den't know where to get the package from, then most [ikely you'll want to
search the Python Package Index. Start by entering the name of the package in the
search bex above and pressing ENTER.

Install from requirements file
Click here to locate requirements.txt file and install the packages specified in it.

Install from local file
Click here to locate and install the package file (usually with .whi, .tar.gz er zip
extengion).
Upagrade or uninstall
Start by selecting the package from the left.
Target
fib
Under the hood
This dialog uses "pipkin’, a new command line toel for managing MicroPython and
CircuitPython packages. See https//pypi.ora/project/pipkin/ for more info. ,
Close
° Click on KitronikPicoZIP96 from the search results list. This will show us details

about the package and from here we can click the Install button to add the
package to our Pico. Thonny may ask you to confirm that you would like to install
this package and we want to select Yes, we do want to install the package.

4 Lesson Guide to the Pico ZIP96 - Lesson 9: The A-Mazing Game kitronik.co.uk

Kitronik

6 MAIN LESSON

Curriculum mapping
i,? I

Decompose problems into smaller components, and make use of subroutines to build up
well-structured programs.

Decompose problems and solve them using algorithms. Explore different searching and
sorting algorithms.

CREATE GAME FUNCTION: ENEMY.MOVENORMAL

With our randomly moving Enemy now working, we can create a new move function in the
Enemy class to have the Enemy move towards the player. The start of the moveNormal
function is the same as the moveRandom function. We want to reset the current position on the
screen and set hitPlayer to False.

def moveNormal(self):
self.drawEmpty()

self.hitPlayer = False

Curriculum mapping

Make decisions in programs, making use of arithmetic, logic and Boolean expressions and operators.

Next, we need to figure out where the player is in the maze in comparison to the Enemy 75
object. From this we can determine which direction is best to move in.

Given the x, y coordinates for both the player and the Enemy, what algorithm can you come up

with work out which direction the Enemy should move to head towards the player?

If the player position is less than the Enemy object’s on the x axis then we want to w11
decrease the Enemy x position. Otherwise, we want to increase the Enemy x position.
WEe'll also do the same on the y axis.

if self.player.x < self.x: x = -1
else: x =1
if self.player.y < self.y: y = -1

else: y =1

5 Lesson Guide to the Pico ZIP96 - Lesson 9: The A-Mazing Game kitronik.co.uk

Then let's determine whether there is a bigger gap between the player and Enemy on the xaxis &_12
or the y axis. We can do this by getting the absolute difference between their x positions and y T
positions then comparing them. When the x axis gap is bigger, we'll have the Enemy move along

the x axis by only updating its x position.

changeX = abs(self.player.x - self.x) > abs(self.player.y - self.y)

if changeX: self.x += X
else: self.y +=y

Curriculum mapping
Apply iteration in program designs using loops.

Make decisions in programs, making use of arithmetic, logic and Boolean expressions and operators.
Created nested selection statements.

With the Enemy object’s position updated we need to do the standard check whether they
have moved into one of the Wall objects. The for loop and if statement is the same as usual
but there need to be some differences in what we put inside them. First, we only need to
undo the move on the axis that we changed. Then we'll invert the value of changeX to be used
later. Also, the variable collision which we set to False at the start of the loop, needs to be set to
True if we have a collision, again to be used later.

°.13

collision = False

for wall in self.walls:
if wall.collision(self.x, self.y):

if changeX: self.x -= x
else: self.y -=y

changeX = not changeX
collision = True

break

6 Lesson Guide to the Pico ZIP96 - Lesson 9: The A-Mazing Game kitronik.co.uk

The end of the moveNormal function is again the same as the moveRandom function. We s 14
want to check when the Enemy catches the player and draw the updated position to the T
screen.

if self.player.collision(self.x, self.y):

self.hitPlayer = True

self.draw()

Curriculum mapping

Learn how to handle strings, and simplify solutions by making use of lists and arrays.

TASK: TEST ENEMY.MOVENORMAL GAME FUNCTION

Learn how to handle strings, and simplify solutions by making use of lists and arrays.

Let's now test our new Enemy.moveNormal function by adding a new Enemy object to the
enemies array. We can set the start position for this Enemy to be in the middle of the screen
where we have an empty space and its colour to green.

enemies = [Enemy(6, 2, gamer.Screen.RED, walls, gems, player, screen, screenWidth, screenHeight)
[Enemy(5, 5, gamer.Screen.GREEN, walls, gems, player, screen, screenWidth, screenHeight)]

Again, let's add the new Enemy object into the game loop underneath where we call
moveRandom on the first Enemy. On the second Enemy, which we select by adding an elif or
else if statement to the enemies loop, we want to call the new moveNormal function.

if i == 0: enemies[i].moveRandom()

elif i == 1: enemies[i].moveNormal()
Don't forget to reset the new Enemy in the livesUpdate function.
enemies[0].reset(6, 2)

enemies[1].reset(5, 5)

Try testing the new Enemy and see if you can figure out what improvements we can make

o 16
using the two variables we setup to use later (change and collision). T

7 Lesson Guide to the Pico ZIP96 - Lesson 9: The A-Mazing Game kitronik.co.uk

UPDATE GAME FUNCTION: ENEMY.MOVENORMAL i,n

Unfortunately, the new Enemy object often can’'t make a valid move as there are walls in

the way. To help solve this we setup collision and changeX earlier. Between the walls loop and
player.collision statement inside moveNormal we are going to add some more code to make a
move on the opposite axis if the first move was invalid.

First check if we even had a Wall collision, as we don't need to redo the move if it is valid.
When the Enemy has collided with one of the walls, we do the move again but this time with
changeX set to the opposite value it was before.

if collision:

if changeX: self.x += x
else: self.y +=y

for wall in self.walls:
if wall.collision(self.x, self.y):

if changeX: self.x -= x
else: self.y -=y

break

TASK: TEST ENEMY.MOVENORMAL GAME FUNCTION i,18

Now that the new Enemy object almost always makes a valid move, try playing the game
to see if you can still collect all of the gems and win the game!

8 Lesson Guide to the Pico ZIP96 - Lesson 9: The A-Mazing Game kitronik.co.uk

@ CONCLUSION

LESSON 09 CONCLUSION

In this lesson, you have:

i,19

o Created an Enemy move function to use logic to move towards the Player
() Used for loop, if statement and Boolean logic to check for interaction between
Enemy and Wall objects

FULL LESSON CODE

The full code for each lesson can be found in the Lessons Code folder.

9 Lesson Guide to the Pico ZIP96 - Lesson 9: The A-Mazing Game kitronik.co.uk

i
THE ZIP96 IS A PROGRAMMABLE RETRO GAMEPAD FOR THE RASPBERRY PI PICO.

It features 96 colour addressable LEDs arranged in a 12 x 8 display, a buzzer for audio feedback, a vibra-
tion motor for haptic feedback, and 6 input buttons. It also breaks out GP1, GP11, ADC1 and ADC2, along

with a set of 3.3V and GND for each, to standard 0.1” footprints. GP18 to 21 are also broken out on a 0.1”

footprint underneath the Pico. The Pico is connected via low profile 20-way pin sockets.

96 RGB ZIP LEDs
Power LED

On/Off Switch

www.kitronik.co.uk

b | o i | it | ik | 1k

EE'JE,'JK,'H'JE'H,'H f]

.........

d SR ISR ISR TR IR 1

Nk) i i Y 6 |l | Gl i G i

ey ’-![—3" Fe == 2f=1F=11

v RIGHT ik | | G k6 B |
~(GP1LT- \

Direction Buttons v =N / - Action Buttons

Buzzer

Pico Connector

3x AA Battery Cages

Vibration Motor

T 0115 970 4243 3 kitronik.co.uk/twitter 3 «itronik.co.uk/youtube

W: www.kitronik.co.uk n kitronik.co.uk/facebook kitronik.co.uk/instagram

E: support@kitronik.co.uk NNp== Designed & manufactured UK
zZalnXX in the UK by CKitronio RYHS cA

For more information on RoHs and CE please visit kitronik.co.uk/rohs-ce. Children assembling this product should be supervised
by a competent adult. The product contains small parts so should be kept out of reach of children under 3 years old.

