
TEACH YOUR STUDENTS HOW TO CREATE GAMES WITH CODE!
www.kitronik.co.uk

This lesson includes curriculum mapping, practical
exercises and a linked PowerPoint presentation.

LESSON 6:
THE A-MAZING GAME

PICO ZIP96
LESSON GUIDE TO THE

14+

2 Lesson Guide to the Pico ZIP96 - Lesson 6: The A-Mazing Game kitronik.co.uk

LESSON

6

KEYWORDS:
TRANSLATORS, IDES, ERRORS, SEQUENCE, VARIABLES, DATA TYPES, INPUTS, OUTPUTS,
ITERATION, WHILE LOOPS, FOR LOOPS, NESTED STATEMENTS, DESIGN PROGRAMS, SELECTION,
CONTROL STRUCTURES, LOGIC, BOOLEAN, NESTED STATEMENTS, SUBROUTINES, PROCEDURES,
FUNCTIONS, MODULES, LIBRARIES, VARIABLE SCOPE, WELL-DESIGNED PROGRAMS, STRINGS,
LISTS, STRING HANDLING, ARRAYS (1D, 2D), MANIPULATION, ITERATION, COMPUTER SYSTEMS,
CPU, MICROPROCESSORS, FETCH-DECODE-EXECUTE CYCLE, PRIMARY & SECONDARY MEMORY,
INPUT & OUTPUT DEVICES, LOGIC CIRCUITS

INTRODUCTION & SETUP

CLASSROOM SETUP

	 Students will be working in pairs. They will need:

	 Pen & Paper
	 A computer/laptop with a USB port and Internet access
	 Raspberry Pi Pico H
	 Kitronik Pico ZIP96
	 3 x AA batteries
	 A micro USB cable
	 A copy of the Kitronik ZIP96 library (ZIP96Pico.py in Lessons Code folder)
	 A copy of last lesson’s code (ZIP96Pico - A-Mazing Game - Lesson 05.py in

Lessons Code folder)

The teacher will be writing on the board as well as demonstrating code on a projected board
(if available).

This is the sixth lesson in the ‘A-mazing Game’ series for Pico ZIP96. To improve the
running of the game and its responsiveness to user inputs, the main game code and the
Pico ZIP96 input checks will be split into separate threads.

Curriculum mapping
•	 Understanding tools for writing programs. Using sequence, variables, data types, inputs

and outputs.
•	 Describe the role of the CPU, and understand CPU components, the fetch-decode-execute

cycle, and both primary and secondary storage.
•	 Decompose problems into smaller components, and make use of subroutines to build up

well-structured programs.
•	 Learn how to handle strings, and simplify solutions by making use of lists and arrays.
•	 Apply iteration in program designs using loops.
•	 Make decisions in programs, making use of arithmetic, logic and Boolean expressions and

operators. Created nested selection statements.

3 Lesson Guide to the Pico ZIP96 - Lesson 6: The A-Mazing Game kitronik.co.uk

LESSON

6
WHAT IS OUR A-MAZING GAME?

Our A-Mazing Game is a maze-based game where the player runs through a maze collecting
gems. Once you have collected all the gems in the maze then you have won! But it won’t be that
easy, as there are enemies in the maze trying to catch you before you collect all of the gems.
The three enemies each have their own level of difficulty. The first enemy moves randomly.
The second enemy tries to move towards you, without trying to avoid the maze walls. The third
and final enemy is smart and moves around the maze walls finding the best path to you. When
an enemy catches you, you lose a life and everyone in the game is reset back to their starting
positions. You have three lives to collect all the gems, and if you don’t, then you lose.

SETUP

Start by having the student’s setup the ZIP96 Pico by
connecting it to a computer and opening up Thonny.

The Pico device will appear in the bottom right corner
of Thonny.

	 If the device does not load automatically, try
pressing the STOP icon at the top of the screen.

	 If the shell does not load automatically, turn it on by checking View > Shell.

Create a new file by clicking File > New and save this to your Pico as main.py by
clicking File > Save as and selecting Raspberry Pi Pico.

1

2

3

4 Lesson Guide to the Pico ZIP96 - Lesson 6: The A-Mazing Game kitronik.co.uk

LESSON

6

4
SETUP CONTINUED

Now we can install the ZIP96Pico library onto our Pico.

	 To do this we need to click Tools > Manage Packages… from the drop down menu.

	 With the Manage packages window open we can now search for Kitronik
in the text box at the top, and click the Search on PyPI button. Thonny will
search the Python Package Index for all the Kitronik packages.

	 Click on KitronikPicoZIP96 from the search results list. This will show us details
about the package and from here we can click the Install button to add the
package to our Pico. Thonny may ask you to confirm that you would like to install
this package and we want to select Yes, we do want to install the package.

5 Lesson Guide to the Pico ZIP96 - Lesson 6: The A-Mazing Game kitronik.co.uk

LESSON

6 MAIN LESSON

SEPARATE ZIP96 INPUT AND GAME LOOP

Now that we have the player, walls and gems in our maze game we should separate the logic
for our ZIP96 input and our game logic. This will allow our game to run smoother by increasing
how responsive our ZIP96 inputs are, as up to now the buttons were only being checked for
presses twice a second.

To add the ability to use threads in our game let’s import the _thread library underneath the
line where we import sleep.

Next, underneath the line where we setup the moveY variable let’s create a lives variable to
store how many lives the player has before they lose the game.

Curriculum mapping
Using sequence, variables, data types, inputs and outputs.

Curriculum mapping
Decompose problems into smaller components, and make use of subroutines to build up well-
structured programs.

Curriculum mapping
Describe the role of the CPU, and understand CPU components

Students take note
To have our ZIP96 input code running separately from our game loop we need to use threads. A
thread is basically just a process that runs on a computer processor, and because the Raspberry
Pi Pico has a dual-core processor, this means two threads can run together. In our game so far, we
have just been using one thread which has meant that each line of code is executed one after the
other. However, when using two threads we can have different sections of code being executed at
the same time.

from utime import sleep
import _thread

moveY = 0
lives = 3

6 Lesson Guide to the Pico ZIP96 - Lesson 6: The A-Mazing Game kitronik.co.uk

LESSON

6
To run the ZIP96 input in another thread we need to create a new function gamerInput above the
game loop which contains all of our input code. Then we are going to use the ZIP96 gamer, moveX
and moveY so we add them as global variables accessed in our function. Next, to make using the
ZIP96 buzzer and vibration motor easier, let’s create two new variables buzzer and haptic, setting them
to the gamer.Buzzer and gamer.Vibrate.

Inside of the gamerInput function, a loop needs to be used to run the input code.

We need to add a while loop with the condition being that it continues while the player
has more than zero lives. Inside of this loop we can then move the four if statements that
check for when a ZIP96 button is pressed. Inside of each if statement let’s add a noise and
vibration that is played whenever a ZIP96 button is pressed. On the buzzer we can call playTone
and set the frequency of the tone played. On the haptic motor we can call vibrate. At the end of
each if statement then sleep for 100 milliseconds to give the buzzer and haptic motor some time
to play.

Curriculum mapping
Apply iteration in program designs using loops.
Make decisions in programs, making use of arithmetic, logic and Boolean expressions and operators.

What type of loop should be used, and what condition should be checked to keep it running?
(Hint: It should make use of the new ‘lives’ variable.)

Get input from the ZIP96Pico Gamer in a seperate thread
def gamerInput(gamer, lives):
	 global moveX, moveY

	 buzzer = gamer.Buzzer
	 haptic = gamer.Vibrate

Start game loop
while lives > 0:
	 # When up pressed, change player y position by -1
	 if (gamer.Up.pressed()):
	 buzzer.playTone(1000)
	 haptic.vibrate()
	 moveX = 0
	 moveY = -1
	 sleep(0.1)

7 Lesson Guide to the Pico ZIP96 - Lesson 6: The A-Mazing Game kitronik.co.uk

LESSON

6

Finally, after doing the same when the right button is pressed, set the buzzer and haptic to stop making
any noise or vibrating. We can do this on every loop and not just inside the if statements because it
reduces the code, and does not change our games functionality.

TASK: TEST ZIP96 INPUT THREAD

Now we can start the gamerInput function in a new thread just above the start of our
game loop. Try running the updated maze game and check that your new thread is working.

When down pressed, change player y position by 1
if (gamer.Down.pressed()):
 buzzer.playTone(1000)
 haptic.vibrate()
 moveX = 0
 moveY = 1
 sleep(0.1)

When left pressed, change player x position by -1
if (gamer.Left.pressed()):
 buzzer.playTone(1000)
 haptic.vibrate()
 moveX = -1
 moveY = 0
 sleep(0.1)

When right pressed, change player x position by 1
if (gamer.Right.pressed()):
 buzzer.playTone(1000)
 haptic.vibrate()
 moveX = 1
 moveY = 0
 sleep(0.1)

buzzer.stopTone()
haptic.stop()

Start ZIP96Pico Gamer input logic in a seperate thread
_thread.start_new_thread(gamerInput, (gamer, lives))

8 Lesson Guide to the Pico ZIP96 - Lesson 6: The A-Mazing Game kitronik.co.uk

LESSON

6
UPDATE GAME LOOP

With our ZIP96 input handled in a new thread, let’s update the game loop with some new
functionality. First we should add the lives condition to the while loop like we did inside of
gamerInput. We want to keep the moveDelay the same, so that the player isn’t moving around
the maze too fast. The call to Player.move will also stay the same but now with the moveX and
moveY values changed by our gamerInput thread.

Since we added the Gem functionality in the last lesson, let’s check when the player has found
all of the gems. To do this we can compare the value of the Player.foundGems variable to the
length of the gems array. When they are the same, then we know the player has collected
every Gem object. When this happens, we’ll just fill the screen with green LEDs and set lives to
be zero so the game loops end.

TASK: TEST WINNING THE MAZE

With our game loop checking if the player has won the game, try collecting all of the gems
inside the maze to see that you can win game!

Curriculum mapping
Learn how to handle strings, and simplify solutions by making use of lists and arrays.

Start game loop
while lives > 0:

	 # Wait for moveDelay before moving
	 sleep(moveDelay)
	
	 # Update the player position using the move values
	 player.move(moveX, moveY)
	 # Check if the player has found all the gems
	 if player.foundGems == len(gems):
		 # Set the screen to green
		 screen.fill(screen.GREEN)
		 screen.show()
		 # Set lives to zero to end the game loops
		 lives = 0
		 break

	 # Show the updates on the screen
	 screen.show()

9 Lesson Guide to the Pico ZIP96 - Lesson 6: The A-Mazing Game kitronik.co.uk

LESSON

6
LESSON 06 CONCLUSION

In this lesson, you have:

	 Learnt about CPU cores
	 Created a second thread
	 Separated user input and game logic using parallelism
	 Added win conditions to the game

FULL LESSON CODE

The full code for each lesson can be found in the Lessons Code folder.

CONCLUSION

T: 0115 970 4243

W: www.kitronik.co.uk

E: support@kitronik.co.uk

For more information on RoHs and CE please visit kitronik.co.uk/rohs-ce. Children assembling this product should be supervised
by a competent adult. The product contains small parts so should be kept out of reach of children under 3 years old.

Designed & manufactured
in the UK by

THE ZIP96 IS A PROGRAMMABLE RETRO GAMEPAD FOR THE RASPBERRY PI PICO.

It features 96 colour addressable LEDs arranged in a 12 x 8 display, a buzzer for audio feedback, a vibra-
tion motor for haptic feedback, and 6 input buttons. It also breaks out GP1, GP11, ADC1 and ADC2, along
with a set of 3.3V and GND for each, to standard 0.1” footprints. GP18 to 21 are also broken out on a 0.1”
footprint underneath the Pico. The Pico is connected via low profile 20-way pin sockets.

96 RGB ZIP LEDs On/Off Switch

Action Buttons

3x AA Battery Cages

Pico Connector
Buzzer

Direction Buttons

Vibration Motor

Power LED

