———

Kitronik

Fict IRy
LESSON GUIDE TO THE

LESSON 3:
THE A-MAZING GAME

This lesson includes curriculum mapping, practical

exercises and a linked PowerPoint presentation.
www.kitronik.co.uk

TEACH YOUR STUDENTS HOW TO CREATE GAMES WITH CODE!

@ INTRODUCTION & SETUP

This is the third lesson in the ‘A-mazing Game' series for Pico ZIP96. Building on the

movement functionality added before, this lesson will look at taking inputs from the
Pico ZIP96 and using them to control the player.

CLASSROOM SETUP

G Students will be working in pairs. They will need:

Pen & Paper

A computer/laptop with a USB port and Internet access

Raspberry Pi Pico H

Kitronik Pico ZIP96

3 x AA batteries

A micro USB cable

A copy of the Kitronik ZIP96 library added in step 4 of the Thonny setup, or
ZIP96Pico.py in Lessons Code folder

) A copy of last lesson's code (ZIP96Pico - A-Mazing Game - Lesson 02.py in
Lessons Code folder)

The teacher will be writing on the board as well as demonstrating code on a projected board
(if available).

Curriculum mapping

- Understanding tools for writing programs. Using sequence, variables, data types, inputs
and outputs.

- Apply iteration in program designs using loops.
Make decisions in programs, making use of arithmetic, logic and Boolean expressions and
operators. Created nested selection statements.
Decompose problems into smaller components, and make use of subroutines to build up
well-structured programs.

KEYWORDS:

TRANSLATORS, INTEGRATED DEVELOPMENT ENVIRONMENTS (IDES), ERRORS, SEQUENCE,
VARIABLES, DATA TYPES, INPUTS, OUTPUTS, ITERATION, WHILE LOOPS, FOR LOOPS, NESTED
STATEMENTS, DESIGN PROGRAMS, SELECTION, CONTROL STRUCTURES, LOGIC, BOOLEAN,
NESTED STATEMENTS, SUBROUTINES, PROCEDURES, FUNCTIONS, MODULES, LIBRARIES,
VARIABLE SCOPE, WELL-DESIGNED PROGRAMS

2 Lesson Guide to the Pico ZIP96 - Lesson 3: The A-Mazing Game kitronik.co.uk

WHAT IS OUR A-MAZING GAME? i'Z[

Our A-Mazing Game is a maze-based game where the player runs through a maze collecting
gems. Once you have collected all the gems in the maze then you have won! But it won't be that
easy, as there are enemies in the maze trying to catch you before you collect all of the gems.
The three enemies each have their own level of difficulty. The first enemy moves randomly.

The second enemy tries to move towards you, without trying to avoid the maze walls. The third
and final enemy is smart and moves around the maze walls finding the best path to you. When
an enemy catches you, you lose a life and everyone in the game is reset back to their starting
positions. You have three lives to collect all the gems, and if you don't, then you lose.

SETUP

Students will need to work in pairs, having one device per pair.

Start by having the students setup the ZIP96 Pico by
connecting it to a computer and opening up Thonny.

The Pico device will appear in the bottom right corner

of Thonny.
) If the device does not load automatically, try
pressing the STOP icon at the top of the screen.
o If the shell does not load automatically, turn it on by checking View > Shell.

Shell

MicroPython (Raspbery Pi Pico) » COM37

e Create a new file by clicking File > New and save this to your Pico as main.py by '.ZI
clicking File > Save as and selecting Raspberry Pi Pico.

T& Where to save to? X

This computer

Raspberry Pi Pico

3 Lesson Guide to the Pico ZIP96 - Lesson 3: The A-Mazing Game kitronik.co.uk

SETUP CONTINUED
e Now we can install the ZIP96Pico library onto our Pico. ir7 |
) To do this we need to click Tools > Manage Packages... from the drop down menu.

Tk Thonny - <untitled> @ 1:1
File Edit View Run Tools Help

s o T

'a Open system shell...

Files

Open replayer...
This computer P =

C: \ Users \ Design \ Cc Open Thonny program folder...
Open Thonny data folder...

Manage plug-ins...
Options...

) With the Manage packages window open we can now search for Kitronik ',ZI
in the text box at the top, and click the Search on PyPI button. Thonny will
search the Python Package Index for all the Kitronik packages.

T& Manage packages for Raspberry Pi Pico @ COM19 X
'K'rtronilu; -_ [Search on PyPl ‘
stafrom Py 2

If you den't know where to get the package from, then most Iikely you'll want to
search the Python Package Index. Start by entering the name of the package in the
search bex above and pressing ENTER.

Install from requirements file
Click here to locate requirements.txt file and install the packages specified in it.

Install from local file
Click here to locate and install the package file (usually with .whl, .tar.gz or .zip
extengion).
Upagrade or uninstall
Start by selecting the package from the left.
Target
flib
Under the hood
This dialog uses "pipkin’, a new command line toel for managing MicroPython and
CircuitPython packages. See https//pypi.ora/project/pipking for more info. ,
Close
° Click on KitronikPicoZIP96 from the search results list. This will show us details

about the package and from here we can click the Install button to add the
package to our Pico. Thonny may ask you to confirm that you would like to install
this package and we want to select Yes, we do want to install the package.

4 Lesson Guide to the Pico ZIP96 - Lesson 3: The A-Mazing Game kitronik.co.uk

K|tron|k

@ MAIN LESSON

HOW OUR PICO ZIP96 SCREEN WORKS EZI

In this lesson we are going to start moving our player around the screen. To do this it is
important we understand how the screen works on the Pico ZIP96. Below is a diagram to show
the layout of each LED on the Pico ZIP96 screen. The top left corner has an X value of 0 and Y
value of 0. While the bottom right corner has an X value of 11 and Y value of 7.

X Axis - Values of X from 0 to 11
o 1 2 3 4 5 6 7 8 9 10 1

Y Axis -
Values of Y
from 0 to 7

a A O N =~ O

6

7

Using this layout diagram it is easier to see how we can move the player up, down, left, and right.
To move up we want to minus 1 from the Y value. To move down we want to add 1 to the Y value. To
move left we want to minus 1 from the X value. And to move right we want to add 1 to the X value.

o What feature of the Pico ZIP96 can we use to control the player's movement? i'E

CREATE GAME INPUT LOOP

Currently our player leaves a trail on the screen on where it has previously moved and is able
to disappear off the edge of the screen. We will fix these problems later, but first let's get some
input from the Pico ZIP96.

To get input from the buttons we are going to need to create a loop to check when a button is
pressed. Before we do this we need to setup some more game variables to control how the
Pico ZIP96 inputs change the game. We'll add our game variables below where we have setup
our Pico ZIP96 Pico variables.

The first game variable is moveDelay and we'll use it to determine how often the player 1
actually moves, in this case half a second. Then we create the moveX and moveY variables r
which we'll change when one of the buttons is pressed and use them to update which

direction our player is moving. By default, set moveX to 1 and moveY to 0 meaning the player will
move right across the screen.

moveDelay = 0.5
moveX = 1
moveY = 0

5 Lesson Guide to the Pico ZIP96 - Lesson 3: The A-Mazing Game kitronik.co.uk

Curriculum mapping

Apply iteration in program designs using loops.

To move the player around the screen we need to provide some way for the buttons to T
change the position variables that define it. We can do this by increasing and decreasing the
values of x and y when the Up, Down, Left and Right buttons on the Pico ZIP96 are pressed.

We are going to use an infinite loop to do this by creating a while loop with the condition being 1
or True. This loop will run continuously until we interrupt it, which we'll do later. At the start of
the loop let's add a call to the sleep function from the utime library we imported earlier.

while 1:

sleep(moveDelay)

9 Make decisions in programs, making use of arithmetic, logic and Boolean expressions and operators.

To check for when a button is pressed we can access the button object from our gamer §13
and call the pressed function, that returns True when the button has been pressed and T
False when it hasn't.

When the Up button is pressed we want to move the player towards the top of the screen and
so we minus 1 from the value of y. When the Down button is pressed we want to move the
player towards the bottom of the screen and so we plus 1 onto the value of y.

We then add a similar block of code to handle the movement towards the left edge of the
screen when Left is pressed and towards the right edge of the screen when Right is pressed.

if (gamer.Up.pressed()):
moveX = @
moveY = -1

if (gamer.Down.pressed()):
moveX = @
moveY = 1

if (gamer.Left.pressed()):
moveX = -1
moveY = 0

if (gamer.Right.pressed()):
moveX = 1
moveY = 0

6 Lesson Guide to the Pico ZIP96 - Lesson 3: The A-Mazing Game kitronik.co.uk

TASK: TEST PLAYER.MOVE FUNCTION i,u.

To actually move the player we are going to call the move function and supply it our
updated moveX and moveY as its input values. When a button on the Pico ZIP96 is pressed,
these values will be changed and will in turn change the direction the player moves. Next,
remember to call show on the screen after updating the player position.

Now try using the move function on your player object by using the Pico ZIP96 buttons. See if
you can get the player to disappear off the screen.

player.move(moveX, moveY)

screen.show()

o How can we fix the issue where the player leaves a trail as they move around the screen?

Curriculum mapping
Decompose problems into smaller components, and make use of subroutines to build up
well-structured programs.

CREATE GAME FUNCTION: PLAYER.DRAWEMPTY i,16

To fix the trail of previous moves left by our player we can define a new function in the

Player class called drawEmpty. This function is mostly the same as the draw function but
instead of setting the LED colour to the colour stored in the object, we are going to update the
LED colour to be black. This will clear the screen of our player object’s current position.

def drawEmpty(self):
self.screen.setLEDMatrix(self.x, self.y, self.screen.BLACK)

Now we need to use the drawEmpty function at the start of the Player.move function before we
update the object’s position values.

def move(self, x, y):

self.drawEmpty()

7 Lesson Guide to the Pico ZIP96 - Lesson 3: The A-Mazing Game kitronik.co.uk

9 What are some possible solutions for stopping the player moving off the edge of the screen? iE

UPDATE GAME FUNCTION: PLAYER.MOVE

To fix the problem where our player can disappear off the edge of the screen we need to add
some checking into our move function after the position on the screen has been updated. In
our maze game we want the player to be able to wrap around the edge of the screen. This
way if they move off the edge on one side of the screen, they will appear back on the other
side of the screen.

Let's add these checks after we update the x and y values. We need to add four if e 18
statements to move, each one checks a different edge on the screen. When the value 1'

of x ory is less than zero the player has moved off the left or top of the screen and we

want to move them to the right or bottom of the screen. We can do this by setting the position
value to screenWidth or screenHeight minus 1. When the value of x or y is more than or

equal to the screenWidth or screenHeight the player has moved off the right or bottom of the
screen and we want to move them to the left or top of the screen. We can do this by setting the
position value to 0.

self.y +=y

if (self.x < 0): self.x = self.screenWidth - 1
if (self.x >= self.screenWidth): self.x = ©

if (self.y < 0): self.y = self.screenHeight - 1
if (self.y >= self.screenHeight): self.y = 0

TASK: TEST PLAYER.MOVE FUNCTION

Now try using the move function on your player object and see if you can still get the player to
disappear off the screen.

8 Lesson Guide to the Pico ZIP96 - Lesson 3: The A-Mazing Game kitronik.co.uk

@ CONCLUSION

9

LESSON 03 CONCLUSION

In this lesson, you have:

Used a while loop to read user inputs from the Pico ZIP96
Used if statements to control the game flow

Responded to user inputs by updating objects on the screen
Called methods on the Player object

Checked position of Player object is within bounds of the maze

FULL LESSON CODE

The full code for each lesson can be found in the Lessons Code folder.

Lesson Guide to the Pico ZIP96 - Lesson 3: The A-Mazing Game

kitronik.co.uk

i
THE ZIP96 IS A PROGRAMMABLE RETRO GAMEPAD FOR THE RASPBERRY PI PICO.

It features 96 colour addressable LEDs arranged in a 12 x 8 display, a buzzer for audio feedback, a
vibration motor for haptic feedback, and 6 input buttons. It also breaks out GP1, GP11, ADC1 and ADC2,
along with a set of 3.3V and GND for each, to standard 0.1” footprints. GP18 to 21 are also broken out on
a 0.1” footprint underneath the Pico. The Pico is connected via low profile 20-way pin sockets.

96 RGB ZIP LEDs ;
Power LED On/Off Switch

b | G S i ik [ik
|G S kA [G | Al G [[Sl 1
“EIEEIEFEEIEIEI A
“FEE I Y A R T R

N (GPIA)

o) . 29P.°
. (GP12) 96|«
\ =

Direction Buttons Action Buttons

Buzzer

Pico Connector

3x AA Battery Cages

kitronik.co.uk

0 0010

Vibration Motor

T 0115 970 4243 3 kitronik.co.uk/twitter 3 «itronik.co.uk/youtube

W: www.kitronik.co.uk n kitronik.co.uk/facebook kitronik.co.uk/instagram

E: support@kitronik.co.uk NNp== Designed & manufactured UK
zZalnXX in the UK by CKitronio RYHS cA

For more information on RoHs and CE please visit kitronik.co.uk/rohs-ce. Children assembling this product should be supervised
by a competent adult. The product contains small parts so should be kept out of reach of children under 3 years old.

