———

Kitronik

Fict IRy
LESSON GUIDE TO THE

LESSON 8:
THE A-MAZING GAME

This lesson includes curriculum mapping, practical

exercises and a linked PowerPoint presentation.
www.kitronik.co.uk

TEACH YOUR STUDENTS HOW TO CREATE GAMES WITH CODE!



6 INTRODUCTION & SETUP

This is the eighth lesson in the ‘A-mazing Game' series for Pico ZIP96. The previous ‘.ZI

lesson added an enemy to the maze, this lesson the code is written to give enemies the
ability to take lives away from the player.

CLASSROOM SETUP

G Students will be working in pairs. They will need:

Pen & Paper

A computer/laptop with a USB port and Internet access

Raspberry Pi Pico H

Kitronik Pico ZIP96

3 x AA batteries

A micro USB cable

A copy of the Kitronik ZIP9é library (ZIP96Pico.py in Lessons Code folder)
A copy of last lesson’s code (ZIP96Pico - A-Mazing Game - Lesson 07.py in
Lessons Code folder)

The teacher will be writing on the board as well as demonstrating code on a projected board
(if available).

Curriculum mapping

- Understanding tools for writing programs. Using sequence, variables, data types, inputs
and outputs.
Decompose problems into smaller components, and make use of subroutines to build up
well-structured programs.
Learn how to handle strings, and simplify solutions by making use of lists and arrays.

- Apply iteration in program designs using loops.
Make decisions in programs, making use of arithmetic, logic and Boolean expressions and
operators. Created nested selection statements.

KEYWORDS:

TRANSLATORS, IDES, ERRORS, SEQUENCE, VARIABLES, DATA TYPES, INPUTS, OUTPUTS,
ITERATION, WHILE LOOPS, FOR LOOPS, NESTED STATEMENTS, DESIGN PROGRAMS, SELECTION,
CONTROL STRUCTURES, LOGIC, BOOLEAN, NESTED STATEMENTS, SUBROUTINES, PROCEDURES,
FUNCTIONS, MODULES, LIBRARIES, VARIABLE SCOPE, WELL-DESIGNED PROGRAMS, STRINGS,
LISTS, STRING HANDLING, ARRAYS (1D, 2D), MANIPULATION, ITERATION

2 Lesson Guide to the Pico ZIP96 - Lesson 8: The A-Mazing Game kitronik.co.uk



WHAT IS OUR A-MAZING GAME? i'Z[

Our A-Mazing Game is a maze-based game where the player runs through a maze collecting
gems. Once you have collected all the gems in the maze then you have won! But it won't be that
easy, as there are enemies in the maze trying to catch you before you collect all of the gems.
The three enemies each have their own level of difficulty. The first enemy moves randomly.

The second enemy tries to move towards you, without trying to avoid the maze walls. The third
and final enemy is smart and moves around the maze walls finding the best path to you. When
an enemy catches you, you lose a life and everyone in the game is reset back to their starting
positions. You have three lives to collect all the gems, and if you don't, then you lose.

SETUP

Start by having the student’s setup the ZIP9é6 Pico by
connecting it to a computer and opening up Thonny.

The Pico device will appear in the bottom right corner

of Thonny.
) If the device does not load automatically, try
pressing the STOP icon at the top of the screen.
) If the shell does not load automatically, turn it on by checking View > Shell.

<untitled>

Shell

MicroPython (Raspberry Pi Pico) » COM3T

Create a new file by clicking File > New and save this to your Pico as main.py by ',ZI
clicking File > Save as and selecting Raspberry Pi Pico.

T Where to save to? X

This computer

Raspberry Pi Pico

3 Lesson Guide to the Pico ZIP96 - Lesson 8: The A-Mazing Game kitronik.co.uk



SETUP CONTINUED
e Now we can install the ZIP96Pico library onto our Pico. ir7 |
) To do this we need to click Tools > Manage Packages... from the drop down menu.

T& Thonny - <untitled> @ 1:1
File Edit View Run Tools Help

rsd o TR

'a Open system shell...

Files

Open replayer...
This computer P =y

C: \ Users \ Design \ Cc Open Thonny program folder...
Open Thonny data folder...

Manage plug-ins...

Options...

) With the Manage packages window open we can now search for Kitronik ~ $°g
in the text box at the top, and click the Search on PyPI button. Thonny will
search the Python Package Index for all the Kitronik packages.

Th Manage packages for Raspberry Pi Pico @ COM19 X
'K'rtronilu; -_ [ Search on PyPl ‘
sl rom Py -

If you den't know where to get the package from, then most [ikely you'll want to
search the Python Package Index. Start by entering the name of the package in the
search bex above and pressing ENTER.

Install from requirements file
Click here to locate requirements.txt file and install the packages specified in it.

Install from local file
Click here to locate and install the package file (usually with .whi, .tar.gz er zip
extengion).
Upagrade or uninstall
Start by selecting the package from the left.
Target
fib
Under the hood
This dialog uses "pipkin’, a new command line toel for managing MicroPython and
CircuitPython packages. See https//pypi.ora/project/pipkin/ for more info. ,
Close
° Click on KitronikPicoZIP96 from the search results list. This will show us details

about the package and from here we can click the Install button to add the
package to our Pico. Thonny may ask you to confirm that you would like to install
this package and we want to select Yes, we do want to install the package.

4 Lesson Guide to the Pico ZIP96 - Lesson 8: The A-Mazing Game kitronik.co.uk



Kitronik

@ MAIN LESSON

Curriculum mapping
' 9 |

Decompose problems into smaller components, and make use of subroutines to build up
well-structured programs.

CREATE GAME FUNCTION: PLAYER.COLLISION

With the basic functions for our Enemy done we now want the Enemy to remove a life
whenever it catches the player. In the same way we wanted to check when the player moved
onto a Wall object, we want to check when an Enemy moves onto the player. We'll create

the Player.collision function in the exact same way, accepting an x and y value as inputs and
checking them against the Player coordinates to return if they match.

def collision(self, x, y):
return self.x == x and self.y ==y

UPDATE GAME FUNCTION: ENEMY.MOVERANDOM °10

To check when an Enemy object moves onto the player we need have access to the player
from inside the Enemy class. We can do this again by adding it as a parameter in the Enemy
constructor and saving the player inside the object. We also want an extra variable hitPlayer
that we set to True when an Enemy object collides with the player.

def __init__ (self, x, y, colour, walls, gems, screen, screenWidth, screenHeight):
self.x = x
self.y =y
self.colour = colour
self.walls = walls
self.gems = gems
self.player = player
self.hitPlayer = False

enemies = [Enemy(6, 2, gamer.Screen.RED, walls, gems, player, screen, screenWidth, screenHeight)]

At the top of the Enemy.moveRandom function let’s set hitPlayer to False. We should set ',E
it to False every time the Enemy moves because if we don'’t reset it, and we had collided

with the player on the last move, then it would still be True telling us the Enemy has

collided with the player again even when it hasn't.

self.drawEmpty()

self.hitPlayer = False

5 Lesson Guide to the Pico ZIP96 - Lesson 8: The A-Mazing Game kitronik.co.uk



Curriculum mapping

Make decisions in programs, making use of arithmetic, logic and Boolean expressions and operators.

As we have done before, to check for a collision between the player and Enemy object we'll call the
collision function. Let's add this at the end of moveRandom just above the call to draw. When there is a
collision we want to then set hitPlayer to be True.

if self.player.collision(self.x, self.y):

self.hitPlayer = True

self.draw()

CREATE GAME FUNCTIONS: PLAYER.RESET AND ENEMY.RESET t12

When we detect that the player has been caught by an Enemy object we are going to reset

their positions to where they started. To do this we can add the same reset function to both the
Player and Enemy classes. The reset function will take an x and y value as input parameters.
Inside the function, first call drawEmpty to clear the screen of their current position. Then set the
position to the x and y input values. Finally, redraw the object in its new position using draw.

def reset(self, x, y):
self.drawEmpty()
self.x = X
self.y =y
self.draw()

def reset(self, x, y):
self.drawEmpty()
self.x = x
self.y =y
self.draw()

6 Lesson Guide to the Pico ZIP96 - Lesson 8: The A-Mazing Game kitronik.co.uk



CREATE GAME FUNCTION: LIVESUPDATE o 13

For resetting the game when the player is caught, let’s create a new function livesUpdate.
Inside livesUpdate we need some of the global variables used in the maze which we'll add
here. The start of livesUpdate should turn the screen red, using fill, for a few second to show
the player has been caught and lost a life.

def livesUpdate():
global lives, screen, player, enemies, walls, gems

screen.fill(screen.RED)
screen.show()
sleep(5)

Curriculum mapping

Learn how to handle strings, and simplify solutions by making use of lists and arrays.
Apply iteration in program designs using loops.

Then, when the player still has lives left, clear the screen again using fill with the colour 7%
set to black. Next we need to reset the positions of the player and enemies back to where

they started in the maze. Finally, redraw the walls and gems onto the screen and show

the changes on the ZIP96.

if lives > 0:

screen.fill(screen.BLACK)

player.reset(0, 1)

enemies[0].reset(6, 2)

for wall in walls:
wall.draw()

for gem in gems:
gem.draw()

screen.show()

7 Lesson Guide to the Pico ZIP96 - Lesson 8: The A-Mazing Game kitronik.co.uk



TASK: TEST LIVESUPDATE GAME FUNCTION i,15

Inside of the game loop where we move the enemies let's add an if statement to check if

we have caught the player by checking if Enemy.hitPlayer is True. When an Enemy has caught
the player we need to remove one life from the lives variable. Then we can call the livesUpdate
function to reset the maze.

Try testing this function by repeatedly crossing paths with the Enemy object and see if the
game stops when your three lives run out.

if i == 0: enemies[i].moveRandom()

if enemies[i].hitPlayer:

lives -= 1
livesUpdate()
break

8 Lesson Guide to the Pico ZIP96 - Lesson 8: The A-Mazing Game kitronik.co.uk



@ CONCLUSION

LESSON 08 CONCLUSION i‘E

In this lesson, you have:

() Used for loop, if statement and Boolean logic to check for interaction between
Player and Enemy objects
o Updated the user on their progress using the Pico ZIP96 screen

FULL LESSON CODE

The full code for each lesson can be found in the Lessons Code folder.

9 Lesson Guide to the Pico ZIP96 - Lesson 8: The A-Mazing Game kitronik.co.uk



i
THE ZIP96 IS A PROGRAMMABLE RETRO GAMEPAD FOR THE RASPBERRY PI PICO.

It features 96 colour addressable LEDs arranged in a 12 x 8 display, a buzzer for audio feedback, a vibra-
tion motor for haptic feedback, and 6 input buttons. It also breaks out GP1, GP11, ADC1 and ADC2, along

with a set of 3.3V and GND for each, to standard 0.1” footprints. GP18 to 21 are also broken out on a 0.1”

footprint underneath the Pico. The Pico is connected via low profile 20-way pin sockets.

96 RGB ZIP LEDs
Power LED

On/Off Switch

www.kitronik.co.uk

b | o i | it | ik | 1k

EE'JE,'JK,'H'JE'H,'H f ]

.........

d SR ISR ISR TR IR 1

Nk ) i i Y 6 |l | Gl i G i

ey ’-![—3" Fe == 2f=1F=11

v RIGHT ik | | G k6 B |
~(GP1LT- \

Direction Buttons v =N / - Action Buttons

Buzzer

Pico Connector

3x AA Battery Cages

Vibration Motor

T 0115 970 4243 3  kitronik.co.uk/twitter 3 «itronik.co.uk/youtube

W: www.kitronik.co.uk n kitronik.co.uk/facebook kitronik.co.uk/instagram

E: support@kitronik.co.uk NNp== Designed & manufactured UK
zZalnXX in the UK by CKitronio RYHS cA

For more information on RoHs and CE please visit kitronik.co.uk/rohs-ce. Children assembling this product should be supervised
by a competent adult. The product contains small parts so should be kept out of reach of children under 3 years old.



