
TEACH YOUR STUDENTS HOW TO CREATE GAMES WITH CODE!
www.kitronik.co.uk

This lesson includes curriculum mapping, practical
exercises and a linked PowerPoint presentation.

LESSON 8:
THE A-MAZING GAME

PICO ZIP96
LESSON GUIDE TO THE

14+

2 Lesson Guide to the Pico ZIP96 - Lesson 8: The A-Mazing Game kitronik.co.uk

LESSON

8

KEYWORDS:
TRANSLATORS, IDES, ERRORS, SEQUENCE, VARIABLES, DATA TYPES, INPUTS, OUTPUTS,
ITERATION, WHILE LOOPS, FOR LOOPS, NESTED STATEMENTS, DESIGN PROGRAMS, SELECTION,
CONTROL STRUCTURES, LOGIC, BOOLEAN, NESTED STATEMENTS, SUBROUTINES, PROCEDURES,
FUNCTIONS, MODULES, LIBRARIES, VARIABLE SCOPE, WELL-DESIGNED PROGRAMS, STRINGS,
LISTS, STRING HANDLING, ARRAYS (1D, 2D), MANIPULATION, ITERATION

INTRODUCTION & SETUP

CLASSROOM SETUP

	 Students will be working in pairs. They will need:

	 Pen & Paper
	 A computer/laptop with a USB port and Internet access
	 Raspberry Pi Pico H
	 Kitronik Pico ZIP96
	 3 x AA batteries
	 A micro USB cable
	 A copy of the Kitronik ZIP96 library (ZIP96Pico.py in Lessons Code folder)
	 A copy of last lesson’s code (ZIP96Pico - A-Mazing Game - Lesson 07.py in

Lessons Code folder)

The teacher will be writing on the board as well as demonstrating code on a projected board
(if available).

This is the eighth lesson in the ‘A-mazing Game’ series for Pico ZIP96. The previous
lesson added an enemy to the maze, this lesson the code is written to give enemies the
ability to take lives away from the player.

Curriculum mapping
•	 Understanding tools for writing programs. Using sequence, variables, data types, inputs

and outputs.
•	 Decompose problems into smaller components, and make use of subroutines to build up

well-structured programs.
•	 Learn how to handle strings, and simplify solutions by making use of lists and arrays.
•	 Apply iteration in program designs using loops.
•	 Make decisions in programs, making use of arithmetic, logic and Boolean expressions and

operators. Created nested selection statements.

3 Lesson Guide to the Pico ZIP96 - Lesson 8: The A-Mazing Game kitronik.co.uk

LESSON

8
WHAT IS OUR A-MAZING GAME?

Our A-Mazing Game is a maze-based game where the player runs through a maze collecting
gems. Once you have collected all the gems in the maze then you have won! But it won’t be that
easy, as there are enemies in the maze trying to catch you before you collect all of the gems.
The three enemies each have their own level of difficulty. The first enemy moves randomly.
The second enemy tries to move towards you, without trying to avoid the maze walls. The third
and final enemy is smart and moves around the maze walls finding the best path to you. When
an enemy catches you, you lose a life and everyone in the game is reset back to their starting
positions. You have three lives to collect all the gems, and if you don’t, then you lose.

SETUP

Start by having the student’s setup the ZIP96 Pico by
connecting it to a computer and opening up Thonny.

The Pico device will appear in the bottom right corner
of Thonny.

	 If the device does not load automatically, try
pressing the STOP icon at the top of the screen.

	 If the shell does not load automatically, turn it on by checking View > Shell.

Create a new file by clicking File > New and save this to your Pico as main.py by
clicking File > Save as and selecting Raspberry Pi Pico.

1

2

3

4 Lesson Guide to the Pico ZIP96 - Lesson 8: The A-Mazing Game kitronik.co.uk

LESSON

8

4
SETUP CONTINUED

Now we can install the ZIP96Pico library onto our Pico.

	 To do this we need to click Tools > Manage Packages… from the drop down menu.

	 With the Manage packages window open we can now search for Kitronik
in the text box at the top, and click the Search on PyPI button. Thonny will
search the Python Package Index for all the Kitronik packages.

	 Click on KitronikPicoZIP96 from the search results list. This will show us details
about the package and from here we can click the Install button to add the
package to our Pico. Thonny may ask you to confirm that you would like to install
this package and we want to select Yes, we do want to install the package.

5 Lesson Guide to the Pico ZIP96 - Lesson 8: The A-Mazing Game kitronik.co.uk

LESSON

8 MAIN LESSON

CREATE GAME FUNCTION: PLAYER.COLLISION

With the basic functions for our Enemy done we now want the Enemy to remove a life
whenever it catches the player. In the same way we wanted to check when the player moved
onto a Wall object, we want to check when an Enemy moves onto the player. We’ll create
the Player.collision function in the exact same way, accepting an x and y value as inputs and
checking them against the Player coordinates to return if they match.

UPDATE GAME FUNCTION: ENEMY.MOVERANDOM

To check when an Enemy object moves onto the player we need have access to the player
from inside the Enemy class. We can do this again by adding it as a parameter in the Enemy
constructor and saving the player inside the object. We also want an extra variable hitPlayer
that we set to True when an Enemy object collides with the player.

At the top of the Enemy.moveRandom function let’s set hitPlayer to False. We should set
it to False every time the Enemy moves because if we don’t reset it, and we had collided
with the player on the last move, then it would still be True telling us the Enemy has
collided with the player again even when it hasn’t.

Curriculum mapping
Decompose problems into smaller components, and make use of subroutines to build up
well-structured programs.

Check if the given x and y are the same as our current position
def collision(self, x, y):
	 return self.x == x and self.y == y

self.drawEmpty()
Reset hitPlayer
self.hitPlayer = False

List to store our Enemy objects
enemies = [Enemy(6, 2, gamer.Screen.RED, walls, gems, player, screen, screenWidth, screenHeight)]

def __init__(self, x, y, colour, walls, gems, screen, screenWidth, screenHeight):
	 self.x = x
	 self.y = y
	 self.colour = colour
	 self.walls = walls
	 self.gems = gems
	 self.player = player
	 self.hitPlayer = False

6 Lesson Guide to the Pico ZIP96 - Lesson 8: The A-Mazing Game kitronik.co.uk

LESSON

8

As we have done before, to check for a collision between the player and Enemy object we’ll call the
collision function. Let’s add this at the end of moveRandom just above the call to draw. When there is a
collision we want to then set hitPlayer to be True.

CREATE GAME FUNCTIONS: PLAYER.RESET AND ENEMY.RESET

When we detect that the player has been caught by an Enemy object we are going to reset
their positions to where they started. To do this we can add the same reset function to both the
Player and Enemy classes. The reset function will take an x and y value as input parameters.
Inside the function, first call drawEmpty to clear the screen of their current position. Then set the
position to the x and y input values. Finally, redraw the object in its new position using draw.

Curriculum mapping
Make decisions in programs, making use of arithmetic, logic and Boolean expressions and operators.

If the Enemy is colliding with the Player
if self.player.collision(self.x, self.y):
	 # Set hitPlayer
	 self.hitPlayer = True

Update the new position on the screen
self.draw()

Reset the Player position and redraw
def reset(self, x, y):
	 self.drawEmpty()
	 self.x = x
	 self.y = y
	 self.draw()

Reset the Enemy position and redraw
def reset(self, x, y):
	 self.drawEmpty()
	 self.x = x
	 self.y = y
	 self.draw()

7 Lesson Guide to the Pico ZIP96 - Lesson 8: The A-Mazing Game kitronik.co.uk

LESSON

8
CREATE GAME FUNCTION: LIVESUPDATE

For resetting the game when the player is caught, let’s create a new function livesUpdate.
Inside livesUpdate we need some of the global variables used in the maze which we’ll add
here. The start of livesUpdate should turn the screen red, using fill, for a few second to show
the player has been caught and lost a life.

Then, when the player still has lives left, clear the screen again using fill with the colour
set to black. Next we need to reset the positions of the player and enemies back to where
they started in the maze. Finally, redraw the walls and gems onto the screen and show
the changes on the ZIP96.

Curriculum mapping
Learn how to handle strings, and simplify solutions by making use of lists and arrays.
Apply iteration in program designs using loops.

Update the user and reset the position
def livesUpdate():
	 global lives, screen, player, enemies, walls, gems

	 screen.fill(screen.RED)
	 screen.show()
	 sleep(5)

If the game isn’t over
if lives > 0:
	 # Reset the screen
	 screen.fill(screen.BLACK)

	 # Reset the Player position
	 player.reset(0, 1)
	 # Reset the Enemy position
	 enemies[0].reset(6, 2)

	 # Redraw the walls
	 for wall in walls:
		 wall.draw()

	 # Redraw the gems
	 for gem in gems:
		 gem.draw()

	 # Show the updates to the screen
	 screen.show()

8 Lesson Guide to the Pico ZIP96 - Lesson 8: The A-Mazing Game kitronik.co.uk

LESSON

8
TASK: TEST LIVESUPDATE GAME FUNCTION

Inside of the game loop where we move the enemies let’s add an if statement to check if
we have caught the player by checking if Enemy.hitPlayer is True. When an Enemy has caught
the player we need to remove one life from the lives variable. Then we can call the livesUpdate
function to reset the maze.

Try testing this function by repeatedly crossing paths with the Enemy object and see if the
game stops when your three lives run out.

if i == 0: enemies[i].moveRandom()
Check if the Enemy has collided with our Player
if enemies[i].hitPlayer:
	 # Remove a life
	 lives -= 1
	 # Update the user and reset the positions
	 livesUpdate()
	 break

9 Lesson Guide to the Pico ZIP96 - Lesson 8: The A-Mazing Game kitronik.co.uk

LESSON

8
LESSON 08 CONCLUSION

In this lesson, you have:

	 Used for loop, if statement and Boolean logic to check for interaction between
Player and Enemy objects

	 Updated the user on their progress using the Pico ZIP96 screen

FULL LESSON CODE

The full code for each lesson can be found in the Lessons Code folder.

CONCLUSION

T: 0115 970 4243

W: www.kitronik.co.uk

E: support@kitronik.co.uk

For more information on RoHs and CE please visit kitronik.co.uk/rohs-ce. Children assembling this product should be supervised
by a competent adult. The product contains small parts so should be kept out of reach of children under 3 years old.

Designed & manufactured
in the UK by

THE ZIP96 IS A PROGRAMMABLE RETRO GAMEPAD FOR THE RASPBERRY PI PICO.

It features 96 colour addressable LEDs arranged in a 12 x 8 display, a buzzer for audio feedback, a vibra-
tion motor for haptic feedback, and 6 input buttons. It also breaks out GP1, GP11, ADC1 and ADC2, along
with a set of 3.3V and GND for each, to standard 0.1” footprints. GP18 to 21 are also broken out on a 0.1”
footprint underneath the Pico. The Pico is connected via low profile 20-way pin sockets.

96 RGB ZIP LEDs On/Off Switch

Action Buttons

3x AA Battery Cages

Pico Connector
Buzzer

Direction Buttons

Vibration Motor

Power LED

