———

Kitronik

Fict IRy
LESSON GUIDE TO THE

LESSON 2:
THE A-MAZING GAME

This lesson includes curriculum mapping, practical

exercises and a linked PowerPoint presentation.
www.kitronik.co.uk

TEACH YOUR STUDENTS HOW TO CREATE GAMES WITH CODE!

@ INTRODUCTION & SETUP

This is the second lesson in the ‘A-mazing Game’ series for Pico ZIP96. Having looked at ‘.ZI

the overall program design in the first lesson, this lesson starts the actual coding of the
game, creating the Player class and testing the player movement on the screen.

CLASSROOM SETUP

G For this lesson, you will need:

Pen & Paper

A computer/laptop with a USB port and Internet access

Raspberry Pi Pico H

Kitronik Pico ZIP96

3 x AA batteries

A micro USB cable

A copy of the Kitronik ZIP96 library added in step 4 of the Thonny setup, or
ZIP96Pico.py in Lessons Code folder

The teacher will be writing on the board as well as demonstrating code on a projected board
(if available).

Curriculum mapping

- Understanding tools for writing programs. Using sequence, variables, data types, inputs
and outputs.
Decompose problems into smaller components, and make use of subroutines to build up
well-structured programs.

KEYWORDS:

TRANSLATORS, INTEGRATED DEVELOPMENT ENVIRONMENTS (IDES), ERRORS, SEQUENCE,
VARIABLES, DATA TYPES, INPUTS, OUTPUTS, SUBROUTINES, PROCEDURES, FUNCTIONS,
MODULES, LIBRARIES, VARIABLE SCOPE, WELL-DESIGNED PROGRAMS, OBJECT-ORIENTED
PROGRAMMING (OOP), CLASSES

WHAT IS OUR A-MAZING GAME? 3]

Our A-Mazing Game is a maze-based game where the player runs through a maze collecting
gems. Once you have collected all the gems in the maze then you have won! But it won't be that
easy, as there are enemies in the maze trying to catch you before you collect all of the gems.
The three enemies each have their own level of difficulty. The first enemy moves randomly.

The second enemy tries to move towards you, without trying to avoid the maze walls. The third
and final enemy is smart and moves around the maze walls finding the best path to you. When
an enemy catches you, you lose a life and everyone in the game is reset back to their starting
positions. You have three lives to collect all the gems, and if you don't, then you lose.

2 Lesson Guide to the Pico ZIP96 - Lesson 2: The A-Mazing Game kitronik.co.uk

Curriculum mapping

Understanding tools for writing programs.

SETUP
Students will need to work in pairs, having one device per pair.

Start by having the students setup the ZIP96 Pico by
connecting it to a computer and opening up Thonny.

The Pico device will appear in the bottom right corner

of Thonny.
[If the device does not load automatically, try
pressing the STOP icon at the top of the screen.
o If the shell does not load automatically, turn it on by checking View > Shell.

<untitled>

it

Shell

3>
MicroPython (Raspberry Pi Pica) » COM37

Create a new file by clicking File > New and save this to your Pico as main.py by '.II
clicking File > Save as and selecting Raspberry Pi Pico. r

T& Where to save to? X

This computer

Raspberry Pi Pico

3 Lesson Guide to the Pico ZIP96 - Lesson 2: The A-Mazing Game kitronik.co.uk

SETUP CONTINUED
e Now we can install the ZIP96Pico library onto our Pico. ir7 |
) To do this we need to click Tools > Manage Packages... from the drop down menu.

Tk Thonny - <untitled> @ 1:1
File Edit View Run Tools Help

s o T

'a Open system shell...

Files

Open replayer...
This computer P =

C: \ Users \ Design \ Cc Open Thonny program folder...
Open Thonny data folder...

Manage plug-ins...
Options...

) With the Manage packages window open we can now search for Kitronik ',ZI
in the text box at the top, and click the Search on PyPI button. Thonny will
search the Python Package Index for all the Kitronik packages.

T& Manage packages for Raspberry Pi Pico @ COM19 X
'K'rtronilu; -_ [Search on PyPl ‘
stafrom Py 2

If you den't know where to get the package from, then most Iikely you'll want to
search the Python Package Index. Start by entering the name of the package in the
search bex above and pressing ENTER.

Install from requirements file
Click here to locate requirements.txt file and install the packages specified in it.

Install from local file
Click here to locate and install the package file (usually with .whl, .tar.gz or .zip
extengion).
Upagrade or uninstall
Start by selecting the package from the left.
Target
flib
Under the hood
This dialog uses "pipkin’, a new command line toel for managing MicroPython and
CircuitPython packages. See https//pypi.ora/project/pipking for more info. ,
Close
° Click on KitronikPicoZIP96 from the search results list. This will show us details

about the package and from here we can click the Install button to add the
package to our Pico. Thonny may ask you to confirm that you would like to install
this package and we want to select Yes, we do want to install the package.

4 Lesson Guide to the Pico ZIP96 - Lesson 2: The A-Mazing Game kitronik.co.uk

K|tron|k

@ MAIN LESSON

5

WHAT IS A PROGRAMMING LIBRARY?

X

A library in programming is a file or group of files that implement in code some specific
functionality. Libraries usually provide functionality that is commonly used in creating
programs and are intended to make software development easier whilst also making code
simpler. To use a library and have access to its functionality you need to include it in your code,
which is done by including or importing the name of the library at the top of the file you are
writing your code in.

Most of the libraries we'll use in our game will be from the standard MicroPython libraries
created for the Raspberry Pi Pico. One extra library will be needed for the Pico ZIP96 and
is available on the Kitronik Website or from the Lessons code folder. You should save the
ZIP96Pico.py file onto your Raspberry Pi Pico so we can use the library later.

GAME SETUP

To start creating the A-Mazing game we first need to include some libraries to make our code
easier to write. We'll import two libraries into our main.py file. The first import includes all of
the functions from the ZIP96Pico library which allows us to communicate with and control the
different bits of hardware on our device. The second import includes the sleep function from
the utime library to allow us to add delays into our game.

import ZIP96Pico

from utime import sleep

Curriculum mapping

Using sequence, variables, data types, inputs and outputs.

Next, let's setup some variables that we can use for our game. We will create some variables
to define our Pico ZIP96. The first two, screenWidth and screenHeight, define the width and
height to be 12 and 8 respectively, as this is the number of pixel columns and rows we have on
our Pico ZIP96. We then initialise our Pico ZIP96 Pico as gamer from the Pico ZIP96 library we
imported earlier. Using the gamer object we can get the screen object to give us easy access to
the LEDs that make up our Pico ZIP96 screen.

screenWidth = 12

screenHeight = 8

gamer = ZIP96Pico.KitronikZIP96()
screen = gamer.Screen

Lesson Guide to the Pico ZIP96 - Lesson 2: The A-Mazing Game kitronik.co.uk

Curriculum mapping
Decompose problems into smaller components, and make use of subroutines to build up
well-structured programs.

CREATE GAME CLASS: PLAYER

To separate out the different sections of variables and functions in our game we are going to
write some classes from which we can create objects to access the functionality. First, we will
write a Player class to store everything related to the player of our game. A standard way to
provide an object with information about itself is to write a constructor in the class.

In Python this is done by defining, using def, an __init__ function to initialise an object with
some values. It is important that for any function we create inside of a class we add the self
keyword to its parameters as it allows us to access the variables and functions stored inside
of the class. (Note that self doesn’t need to be included in the inputs used when calling the
function as it is included automatically by Python).

.10

0 Ask the students to try to identify some of the information the Player class will need to store? “II

The Player will need to know: ‘.E
° its x and y position on the screen, T
() the colour used for the players LED,
° the screen object to draw the player on the Pico ZIP96,
° the screenWidth and screenHeight to detect when the player moves off the screen.

So, we should take these as input parameters in the Player constructor and set them as
variables stored inside the object.

i‘E

class Player():

def __init__(self, x, y, colour, screen, screenWidth, screenHeight):
self.x = x
self.y =y
self.colour = colour
self.screen = screen
self.screenWidth = screenWidth
self.screenHeight = screenHeight

6 Lesson Guide to the Pico ZIP96 - Lesson 2: The A-Mazing Game kitronik.co.uk

CREATE GAME FUNCTION: PLAYER.DRAW

To draw the player on the Pico ZIP96 we need to define a new function, draw, that doesn’t
require any input parameters from outside the class. To draw the player we want to use its x
and y position and the colour used for the player’s LED. We can use the self keyword to access
the variables inside the class and supply these as inputs to the setLEDMatrix function on the
screen which will update the LED colour for a given x and y position.

o 13
def draw(self): "
self.screen.setLEDMatrix(self.x, self.y, self.colour)

We can add a call to the draw function inside the constructor for our Player class underneath
the line where we set the screenHeight value.

self.screenHeight = screenHeight

self.draw()

TASK: TEST PLAYER CONSTRUCTOR i,m

Let's now test our Player class by creating an object player from it. We'll add this code at

the bottom of our main.py file. To use the constructor for a class we use the class name as a
function and supply it with the necessary inputs. After creating the player object we'll need to
show any updates on the ZIP96 screen using the show function to update the LED values.

player = Player(©, 1, gamer.Screen.YELLOW, screen, screenWidth, screenHeight)

screen.show()

We can run the code by clicking the green play button at the top of Thonny. Then try changing
some values we give to the player constructor and see how this changes your LED screen.

7 Lesson Guide to the Pico ZIP96 - Lesson 2: The A-Mazing Game kitronik.co.uk

®. 15

9 Which of the Player class parameters need to be altered to add movement to the player?

CREATE GAME FUNCTION: PLAYER.MOVE 16

To get the player to move around the maze we need to provide some way to change the

x and y values stored in the Player class. Let's define a move function that takes an x and y
value as its inputs. These values will determine how much our player object will move by. To
update the object’s position we need to use the self keyword followed by our variable name,
then the += operator and finally the input value. This will add the input x value to the object’s x
value and store it back into the object’s x value. The same happens with the y value. Next, we
can update the ZIP96 screen with the new position the player has on the screen.

def move(self, x, y):

self.x += x
self.y +=y

self.draw()

TASK: TEST PLAYER.MOVE FUNCTION

Now try using the move function on your player object. Try using several different values
as the input and see if you can figure out what is wrong with our move function. Also try
calling move multiple times, as there is more than one problem we need to solve.

Note: Don't forget to call show on the screen after updating the player position.

8 Lesson Guide to the Pico ZIP96 - Lesson 2: The A-Mazing Game kitronik.co.uk

@ CONCLUSION

LESSON 02 CONCLUSION

In this lesson, you have:

9

Imported libraries

Setup the Pico ZIP96 as the device variable
Setup game variables of types integer, string
Created Player class, constructor and methods

FULL LESSON CODE

The full code for each lesson can be found in the Lessons Code folder.

Lesson Guide to the Pico ZIP96 - Lesson 2: The A-Mazing Game

kitronik.co.uk

i
THE ZIP96 IS A PROGRAMMABLE RETRO GAMEPAD FOR THE RASPBERRY PI PICO.

It features 96 colour addressable LEDs arranged in a 12 x 8 display, a buzzer for audio feedback, a
vibration motor for haptic feedback, and 6 input buttons. It also breaks out GP1, GP11, ADC1 and ADC2,
along with a set of 3.3V and GND for each, to standard 0.1” footprints. GP18 to 21 are also broken out on
a 0.1” footprint underneath the Pico. The Pico is connected via low profile 20-way pin sockets.

96 RGB ZIP LEDs ;
Power LED On/Off Switch

b | G S i ik [ik
|G S kA [G | Al G [[Sl 1
“EIEEIEFEEIEIEI A
“FEE I Y A R T R

N (GPIA)

o) . 29P.°
. (GP12) 96|«
\ =

Direction Buttons Action Buttons

Buzzer

Pico Connector

3x AA Battery Cages

kitronik.co.uk

0 0010

Vibration Motor

T 0115 970 4243 3 kitronik.co.uk/twitter 3 «itronik.co.uk/youtube

W: www.kitronik.co.uk n kitronik.co.uk/facebook kitronik.co.uk/instagram

E: support@kitronik.co.uk NNp== Designed & manufactured UK
zZalnXX in the UK by CKitronio RYHS cA

For more information on RoHs and CE please visit kitronik.co.uk/rohs-ce. Children assembling this product should be supervised
by a competent adult. The product contains small parts so should be kept out of reach of children under 3 years old.

