———

Kitronik

Fict IRy
LESSON GUIDE TO THE

LESSON 7:
THE A-MAZING GAME

This lesson includes curriculum mapping, practical

exercises and a linked PowerPoint presentation.
www.kitronik.co.uk

TEACH YOUR STUDENTS HOW TO CREATE GAMES WITH CODE!

@ INTRODUCTION & SETUP

2

This is the seventh lesson in the ‘A-mazing Game’ series for Pico ZIP96. The game is now ‘.ZI

at a point where the player can move around the maze collecting all the gems, but there
is no challenge involved - this lesson will see the first of the enemies introduced!

CLASSROOM SETUP

G Students will be working in pairs. They will need:

Pen & Paper

A computer/laptop with a USB port and Internet access

Raspberry Pi Pico H

Kitronik Pico ZIP96

3 x AA batteries

A micro USB cable

A copy of the Kitronik ZIP9é library (ZIP96Pico.py in Lessons Code folder)
A copy of last lesson’s code (ZIP96Pico - A-Mazing Game - Lesson 06.py in
Lessons Code folder)

The teacher will be writing on the board as well as demonstrating code on a projected board
(if available).

Curriculum mapping

- Understanding tools for writing programs. Using sequence, variables, data types, inputs
and outputs.
Describe the role of the CPU, and understand CPU components, the fetch-decode-execute
cycle, and both primary and secondary storage.
Decompose problems into smaller components, and make use of subroutines to build up
well-structured programs.
Learn how to handle strings, and simplify solutions by making use of lists and arrays.
Apply iteration in program designs using loops.
Make decisions in programs, making use of arithmetic, logic and Boolean expressions and
operators. Created nested selection statements.

KEYWORDS:

TRANSLATORS, IDES, ERRORS, SEQUENCE, VARIABLES, DATA TYPES, INPUTS, OUTPUTS,
ITERATION, WHILE LOOPS, FOR LOOPS, NESTED STATEMENTS, DESIGN PROGRAMS, SELECTION,
CONTROL STRUCTURES, LOGIC, BOOLEAN, NESTED STATEMENTS, SUBROUTINES, PROCEDURES,
FUNCTIONS, MODULES, LIBRARIES, VARIABLE SCOPE, WELL-DESIGNED PROGRAMS, STRINGS,
LISTS, STRING HANDLING, ARRAYS (1D, 2D), MANIPULATION, ITERATION, COMPUTER SYSTEMS,
CPU, MICROPROCESSORS, FETCH-DECODE-EXECUTE CYCLE, PRIMARY & SECONDARY MEMORY,
INPUT & OUTPUT DEVICES, LOGIC CIRCUITS

Lesson Guide to the Pico ZIP96 - Lesson 7: The A-Mazing Game kitronik.co.uk

WHAT IS OUR A-MAZING GAME? i'Z[

Our A-Mazing Game is a maze-based game where the player runs through a maze collecting
gems. Once you have collected all the gems in the maze then you have won! But it won't be that
easy, as there are enemies in the maze trying to catch you before you collect all of the gems.
The three enemies each have their own level of difficulty. The first enemy moves randomly.

The second enemy tries to move towards you, without trying to avoid the maze walls. The third
and final enemy is smart and moves around the maze walls finding the best path to you. When
an enemy catches you, you lose a life and everyone in the game is reset back to their starting
positions. You have three lives to collect all the gems, and if you don't, then you lose.

SETUP

Start by having the student’s setup the ZIP9é6 Pico by
connecting it to a computer and opening up Thonny.

The Pico device will appear in the bottom right corner

of Thonny.
) If the device does not load automatically, try
pressing the STOP icon at the top of the screen.
) If the shell does not load automatically, turn it on by checking View > Shell.

<untitled>

Shell

MicroPython (Raspberry Pi Pico) » COM3T

Create a new file by clicking File > New and save this to your Pico as main.py by ',ZI
clicking File > Save as and selecting Raspberry Pi Pico.

T Where to save to? X

This computer

Raspberry Pi Pico

3 Lesson Guide to the Pico ZIP96 - Lesson 7: The A-Mazing Game kitronik.co.uk

SETUP CONTINUED
e Now we can install the ZIP96Pico library onto our Pico. ir7 |
) To do this we need to click Tools > Manage Packages... from the drop down menu.

T& Thonny - <untitled> @ 1:1
File Edit View Run Tools Help

rsd o TR

'a Open system shell...

Files

Open replayer...
This computer P =y

C: \ Users \ Design \ Cc Open Thonny program folder...
Open Thonny data folder...

Manage plug-ins...

Options...

) With the Manage packages window open we can now search for Kitronik ~ $°g
in the text box at the top, and click the Search on PyPI button. Thonny will
search the Python Package Index for all the Kitronik packages.

Th Manage packages for Raspberry Pi Pico @ COM19 X
'K'rtronilu; -_ [Search on PyPl ‘
sl rom Py -

If you den't know where to get the package from, then most [ikely you'll want to
search the Python Package Index. Start by entering the name of the package in the
search bex above and pressing ENTER.

Install from requirements file
Click here to locate requirements.txt file and install the packages specified in it.

Install from local file
Click here to locate and install the package file (usually with .whi, .tar.gz er zip
extengion).
Upagrade or uninstall
Start by selecting the package from the left.
Target
fib
Under the hood
This dialog uses "pipkin’, a new command line toel for managing MicroPython and
CircuitPython packages. See https//pypi.ora/project/pipkin/ for more info. ,
Close
° Click on KitronikPicoZIP96 from the search results list. This will show us details

about the package and from here we can click the Install button to add the
package to our Pico. Thonny may ask you to confirm that you would like to install
this package and we want to select Yes, we do want to install the package.

4 Lesson Guide to the Pico ZIP96 - Lesson 7: The A-Mazing Game kitronik.co.uk

Kitronik

ﬁ MAIN LESSON

5

Decompose problems into smaller components, and make use of subroutines to build up
well-structured programs.

Curriculum mapping
i—?l

CREATE GAME CLASS: ENEMY

With the core functionality of our maze game implemented, let's now add the enemies to chase
the player around the maze. The first Enemy will move randomly and for this we'll use randint
from the random library.

import _thread
from random import randint

In the Enemy class we need to define a constructor. The Enemy needs to know:

° 10
its x and y position on the screen, f
the colour used for its LED,
the walls used in the maze,
the gems used in the maze,
the screen object to draw the enemy on the ZIP9%6,
the screenWidth and screenHeight to detect when the enemy moves off the screen.

So let’s take these as input parameters in the Enemy constructor and set them as variables
stored inside the object. We can again add a call to the draw function inside the i,n
constructor for our Enemy class which we will write the code for next.

The draw function is going to work in the same way as the Player.draw function does.

class Enemy():

def __init__ (self, x, y, colour, walls, gems, screen, screenWidth, screenHeight):
self.x = x
self.y =y
self.colour = colour
self.walls = walls
self.gems = gems
self.screen = screen
self.screenWidth = screenWidth
self.screenHeight = screenHeight

self.draw()

def draw(self):
self.screen.setLEDMatrix(self.x, self.y, self.colour)

Lesson Guide to the Pico ZIP96 - Lesson 7: The A-Mazing Game kitronik.co.uk

Curriculum mapping

Apply iteration in program designs using loops.
Make decisions in programs, making use of arithmetic, logic and Boolean expressions and operators.

What needs to be different about how the enemy object interacts with the maze, when
compared with how the player interacts?

Now the start of the drawEmpty function is the same as the Player.drawEmpty function, but '.E
we also need to handle the case where an Enemy object moves away from a Gem object. By f
default the Enemy.drawEmpty function would just remove the Gem object’s LED from the screen.
However, the Enemy objects do not collect the gems. To redraw a Gem object, we can loop through the
gems, check for a collision and then call draw on the gem if we have collided with it. The Gem object will
then only redraw itself to the screen if it hasn't been collected by the player.

def drawEmpty(self):
self.screen.setLEDMatrix(self.x, self.y, self.screen.BLACK)

for gem in self.gems:

if gem.collision(self.x, self.y):

gem.draw()

break
To move the Enemy object around the screen we'll need to add a move function ',E
moveRandom. In this function, let’s first reset the screen at the Enemy object’s current f

position by calling drawEmpty on it. For our random move we can setup three variables x, y

and random with random being set to a random integer between zero and three using the randint
function we imported earlier. Depending on the value of random we'll move the Enemy object up,
down, left or right.

Then update the objects position by adding the random x and y values to the object’s x and y
values before calling draw to update the ZIP96 screen with its new position.

6 Lesson Guide to the Pico ZIP96 - Lesson 7: The A-Mazing Game kitronik.co.uk

def moveRandom(self):

self.drawEmpty()

X =0

y =0

random = randint(9, 3)
if random == 0: x = 1
elif random == 1: x = -1
elif random == 2: x

else: y = -1

self.x += X
self.y ==y

self.draw()

Curriculum mapping

Learn how to handle strings, and simplify solutions by making use of lists and arrays.

TASK: TEST ENEMY CLASS i'E

Let's now test our Enemy class by creating an array of Enemy objects enemies
underneath where we create the player object. We can set the start position for this Enemy to
be in the middle of the screen where we have an empty space and its colour to red.

enemies = [Enemy(6, 2, gamer.Screen.RED, walls, gems, screen, screenWidth, screenHeight)]

To move the Enemy we need to add a call to moveRandom in our game loop. Let's create
another loop to move the enemies above screen.show in the game loop. Inside this loop if the
index i is equal to zero, call moveRandom on that Enemy object.

for i in range(len(enemies)):

if i == 0: enemies[i].moveRandom()

screen.show()

7 Lesson Guide to the Pico ZIP96 - Lesson 7: The A-Mazing Game kitronik.co.uk

While testing, try to figure out what functionality is missing from the

Enemy.moveRandom function.

UPDATE GAME FUNCTION: ENEMY.MOVERANDOM

As the Enemy moves around the screen, just like the Player, we need to perform
checks on it to stop it moving off the screen or moving onto walls. This is why we included
screenWidth, screenHeight and walls as parameters in the Enemy constructor.

To do this we'll add the exact same code we used in Player.move underneath where we update
the object’s position in Enemy.moveRandom.

self.y +=y

if (self.x < 0): self.x = self.screenWidth - 1
if (self.x >= self.screenWidth): self.x = ©

if (self.y < 0): self.y = self.screenHeight - 1
if (self.y >= self.screenHeight): self.y = 0

for wall in self.walls:
if wall.collision(self.x, self.y):

self.x -= x
self.y -=y

break

TASK: TEST UPDATED ENEMY.MOVERANDOM

With the collision checking added to the Enemy object, let’s test it again to check if the
enemies work without moving onto the walls or off the screen.

i,18

8 Lesson Guide to the Pico ZIP96 - Lesson 7: The A-Mazing Game kitronik.co.uk

@ CONCLUSION

LESSON 07 CONCLUSION

In this lesson, you have:

i,19

o Created Enemy class, constructor and methods

() Used for loop, if statement and Boolean logic to check for interaction between
Enemy and Wall objects

o Used random library to include random behaviours in the maze game

FULL LESSON CODE

The full code for each lesson can be found in the Lessons Code folder.

9 Lesson Guide to the Pico ZIP96 - Lesson 7: The A-Mazing Game kitronik.co.uk

i
THE ZIP96 IS A PROGRAMMABLE RETRO GAMEPAD FOR THE RASPBERRY PI PICO.

It features 96 colour addressable LEDs arranged in a 12 x 8 display, a buzzer for audio feedback, a vibra-
tion motor for haptic feedback, and 6 input buttons. It also breaks out GP1, GP11, ADC1 and ADC2, along

with a set of 3.3V and GND for each, to standard 0.1” footprints. GP18 to 21 are also broken out on a 0.1”

footprint underneath the Pico. The Pico is connected via low profile 20-way pin sockets.

96 RGB ZIP LEDs
Power LED

On/Off Switch

www.kitronik.co.uk

b | o i | it | ik | 1k

EE'JE,'JK,'H'JE'H,'H f]

.........

d SR ISR ISR TR IR 1

Nk) i i Y 6 |l | Gl i G i

ey ’-![—3" Fe == 2f=1F=11

v RIGHT ik | | G k6 B |
~(GP1LT- \

Direction Buttons v =N / - Action Buttons

Buzzer

Pico Connector

3x AA Battery Cages

Vibration Motor

T 0115 970 4243 3 kitronik.co.uk/twitter 3 «itronik.co.uk/youtube

W: www.kitronik.co.uk n kitronik.co.uk/facebook kitronik.co.uk/instagram

E: support@kitronik.co.uk NNp== Designed & manufactured UK
zZalnXX in the UK by CKitronio RYHS cA

For more information on RoHs and CE please visit kitronik.co.uk/rohs-ce. Children assembling this product should be supervised
by a competent adult. The product contains small parts so should be kept out of reach of children under 3 years old.

