———

Kitronik

Fict IRy
LESSON GUIDE TO THE

LESSON 4:
THE A-MAZING GAME

This lesson includes curriculum mapping, practical

exercises and a linked PowerPoint presentation.
www.kitronik.co.uk

TEACH YOUR STUDENTS HOW TO CREATE GAMES WITH CODE!

@ INTRODUCTION & SETUP

This is the third lesson in the ‘A-mazing Game' series for Pico ZIP96. Building on the

movement functionality added before, this lesson will look at taking inputs from the
Pico ZIP96 and using them to control the player.

CLASSROOM SETUP

G Students will be working in pairs. They will need:

Pen & Paper

A computer/laptop with a USB port and Internet access

Raspberry Pi Pico H

Kitronik Pico ZIP96

3 x AA batteries

A micro USB cable

A copy of the Kitronik ZIP96 library added in step 4 of the Thonny setup, or
ZIP96Pico.py in Lessons Code folder

) A copy of last lesson's code (ZIP96Pico - A-Mazing Game - Lesson 03.py in
Lessons Code folder)

The teacher will be writing on the board as well as demonstrating code on a projected board
(if available).

Curriculum mapping

- Understanding tools for writing programs. Using sequence, variables, data types, inputs
and outputs.

- Apply iteration in program designs using loops.
Make decisions in programs, making use of arithmetic, logic and Boolean expressions and
operators. Created nested selection statements.
Decompose problems into smaller components, and make use of subroutines to build up
well-structured programs.

KEYWORDS:

TRANSLATORS, INTEGRATED DEVELOPMENT ENVIRONMENTS (IDES), ERRORS, SEQUENCE,
VARIABLES, DATA TYPES, INPUTS, OUTPUTS, ITERATION, WHILE LOOPS, FOR LOOPS, NESTED
STATEMENTS, DESIGN PROGRAMS, SELECTION, CONTROL STRUCTURES, LOGIC, BOOLEAN,
NESTED STATEMENTS, SUBROUTINES, PROCEDURES, FUNCTIONS, MODULES, LIBRARIES,
VARIABLE SCOPE, WELL-DESIGNED PROGRAMS

2 Lesson Guide to the Pico ZIP96 - Lesson 4: The A-Mazing Game kitronik.co.uk

WHAT IS OUR A-MAZING GAME? i'Z[

Our A-Mazing Game is a maze-based game where the player runs through a maze collecting
gems. Once you have collected all the gems in the maze then you have won! But it won't be that
easy, as there are enemies in the maze trying to catch you before you collect all of the gems.
The three enemies each have their own level of difficulty. The first enemy moves randomly.

The second enemy tries to move towards you, without trying to avoid the maze walls. The third
and final enemy is smart and moves around the maze walls finding the best path to you. When
an enemy catches you, you lose a life and everyone in the game is reset back to their starting
positions. You have three lives to collect all the gems, and if you don't, then you lose.

SETUP

Students will need to work in pairs, having one device per pair.

Start by having the students setup the ZIP96 Pico by
connecting it to a computer and opening up Thonny.

The Pico device will appear in the bottom right corner

of Thonny.
) If the device does not load automatically, try
pressing the STOP icon at the top of the screen.
o If the shell does not load automatically, turn it on by checking View > Shell.

Shell

MicroPython (Raspbery Pi Pico) » COM37

e Create a new file by clicking File > New and save this to your Pico as main.py by '.ZI
clicking File > Save as and selecting Raspberry Pi Pico.

T& Where to save to? X

This computer

Raspberry Pi Pico

3 Lesson Guide to the Pico ZIP96 - Lesson 4: The A-Mazing Game kitronik.co.uk

SETUP CONTINUED
e Now we can install the ZIP96Pico library onto our Pico. ir7 |
) To do this we need to click Tools > Manage Packages... from the drop down menu.

Tk Thonny - <untitled> @ 1:1
File Edit View Run Tools Help

s o T

'a Open system shell...

Files

Open replayer...
This computer P =

C: \ Users \ Design \ Cc Open Thonny program folder...
Open Thonny data folder...

Manage plug-ins...
Options...

) With the Manage packages window open we can now search for Kitronik ',ZI
in the text box at the top, and click the Search on PyPI button. Thonny will
search the Python Package Index for all the Kitronik packages.

T& Manage packages for Raspberry Pi Pico @ COM19 X
'K'rtronilu; -_ [Search on PyPl ‘
stafrom Py 2

If you den't know where to get the package from, then most Iikely you'll want to
search the Python Package Index. Start by entering the name of the package in the
search bex above and pressing ENTER.

Install from requirements file
Click here to locate requirements.txt file and install the packages specified in it.

Install from local file
Click here to locate and install the package file (usually with .whl, .tar.gz or .zip
extengion).
Upagrade or uninstall
Start by selecting the package from the left.
Target
flib
Under the hood
This dialog uses "pipkin’, a new command line toel for managing MicroPython and
CircuitPython packages. See https//pypi.ora/project/pipking for more info. ,
Close
° Click on KitronikPicoZIP96 from the search results list. This will show us details

about the package and from here we can click the Install button to add the
package to our Pico. Thonny may ask you to confirm that you would like to install
this package and we want to select Yes, we do want to install the package.

4 Lesson Guide to the Pico ZIP96 - Lesson 4: The A-Mazing Game kitronik.co.uk

Kitronik

@ MAIN LESSON

Curriculum mapping
i,?l

Decompose problems into smaller components, and make use of subroutines to build up
well-structured programs.

CREATE GAME CLASS: WALL

Now that we have a working Player class, let's start adding walls to our maze. In the Wall class
we will again need to define a constructor. The Wall will need to know:

) its x and y position on the screen,
° the colour used for its LED,
) the screen object to draw the player on the ZIP96.
So let’s take these as input parameters in the Wall constructor and set them as 1S 10|

variables stored inside the object. Then create a draw function inside the Wall class in T
the same way we did in the Player class. We can again add a call to the draw function
inside the constructor for our Wall class.

class Wall():

def __init__ (self, x, y, colour, screen):

self.x = X
self.y =y
self.colour = colour
self.screen = screen

self.draw()

def draw(self):
self.screen.setLEDMatrix(self.x, self.y, self.colour)

Curriculum mapping

Learn how to handle strings, and simplify solutions by making use of lists and arrays.
Apply iteration in program designs using loops.

5 Lesson Guide to the Pico ZIP96 - Lesson 4: The A-Mazing Game kitronik.co.uk

6

CREATE GAME WALL OBJECTS

To setup the walls for our maze we need to first decide where we want them to go. Above where
we create our player object, let's create an array wallsXY of the x and y coordinates for each Wall object
in our maze. To help understand the layout we can use the diagram below.

A-Mazing Game Walls Layout

3 4 5

6

7

This is how our walls layout will look in our wallsXY array.

List to store the coordinates of

wallsXy = [(©, 0),

(e, 2),
(e, 3),
(e, 4),
(@, 5),

(@, 7),

(1, @), (2, 9),

(1, 2),

(2, 4),
(2, 5),

(1, 7), (2, 7),

our
(3)
(31
(31

walls

0), (4, 0), (5,

1),

2)) (5)
(5,

4)) (5)

(4, 6),
7), (45 7), (5,

9),
2),

3),
4),

7)s

(6,

(6,
(6,
(6,

(6,

0),

3)s
4),
5)s

7),

8

(7,
(7,

(7,

9

0), (8,
1),

(8,
(8,

(8,
7), (8,

Lesson Guide to the Pico ZIP96 - Lesson 4: The A-Mazing Game

10

9),

3),

5)s
6),
7)s

11

(9, 9),

(9, 2),
(9, 3),

(9, 7),

o 11

i‘E

(10, @), (11, @),
(11, 2),
(11, 3),
(11, 4),
(16, 5), (11, 5),

(18, 7), (11, 7)]

kitronik.co.uk

itronik

Kitronil>

7

With the coordinates for the walls stored, we can now create an empty array walls to e 13
store all of the Wall objects. We will fill the walls array by looping through each x and y

pair stored in wallsXY, using these coordinates to create a Wall object for each pair and
append it to the end of the walls array. To do this we'll use a for each loop which in Python

can be setup using the for keyword, followed by a new variable name wallXY, the keyword in
and finally the thing we want to loop through. In our case we are looping through an array of
X, y coordinate pairs in wallsXY and so each time we loop, the wallXY variable will be set to a
different x, y coordinate pair from our wallsXY array.

walls = []
for wallXY in wallsXY:

walls.append(Wall(wallXY[0], wallXY[1], gamer.Screen.BLUE, screen))

Next we are going to need access to the walls inside the Player class, so let's add the 14
walls array as an input parameter in the Player constructor.

def __init__ (self, x, y, colour, walls, screen, screenWidth, screenHeight):
self.x = x
self.y =y
self.colour = colour
self.walls = walls

TASK: TEST WALL CONSTRUCTOR

With our Wall class written we can now test our maze with the walls added.

Note: Don't forget to update the player object’s inputs to include the walls array.

player = Player(@, 1, gamer.Screen.YELLOW, walls, screen, screenWidth, screenHeight)

9 What is the problem with the maze setup at the moment? How can it be fixed? i’ 3

Lesson Guide to the Pico ZIP96 - Lesson 4: The A-Mazing Game kitronik.co.uk

CREATE GAME FUNCTION: WALL.COLLISION i,u,

To stop our player from being able to move onto a Wall object we need to add a function
collision to the Wall class. This function should accept an x and a y value as inputs and check
them against its own coordinates to return if they match, meaning they would being in the
same position. In this function we use Boolean logic which says that only when self.x == x is
True and self.y ==y is True we should return True. In all other cases we should return False.

def collision(self, x, y):
return self.x == x and self.y ==y

We can then add calls to the Wall.collision function inside of our Player.move function to check
if we move onto a Wall object. Let’s do this underneath the line in the move function where we
check if y is off the bottom edge of the screen.

To perform the check we need to look through every Wall object in the walls array that we take
as an input in the Player constructor. For this we'll use another for each loop. We'll use the
variable name wall, and we want to loop through the walls array.

Curriculum mapping

Make decisions in programs, making use of arithmetic, logic and Boolean expressions and operators.

Inside the loop we can use wall to access our Wall object and so we want to call the collision
function with the player object’s new position. When there is a collision with a Wall object
then we need to undo the move made, which we can do using the -= operator on our object’s
position variables. This is similar to how we update the object’s position but instead of adding
the input values x and y we want to minus them to reset the object’s position back to what

it was before. Then when we have collided with a wall we cannot collide with another, so we
don’t need to check the rest of the walls in the list. To skip the rest of the list we'll use the
break command which exits the loop, even when there are more walls to check.

if (self.y >= self.screenHeight): self.y = 0 i’17

for wall in self.walls:

if wall.collision(self.x, self.y):

self.x -= x
self.y -=y

break

TASK: TEST WALL.COLLISION FUNCTION

Now try moving the player object around the maze and see if you can still move onto Wall objects.
To best test our new function, try moving onto a Wall in every direction, up, down, left and right.

8 Lesson Guide to the Pico ZIP96 - Lesson 4: The A-Mazing Game kitronik.co.uk

@ CONCLUSION

LESSON 04 CONCLUSION

In this lesson, you have:

i,18

() Created Wall class, constructor and methods
() Used for loop, if statement and Boolean logic to check for interaction between
Player and Wall objects

FULL LESSON CODE

The full code for each lesson can be found in the Lessons Code folder.

9 Lesson Guide to the Pico ZIP96 - Lesson 4: The A-Mazing Game kitronik.co.uk

i
THE ZIP96 IS A PROGRAMMABLE RETRO GAMEPAD FOR THE RASPBERRY PI PICO.

It features 96 colour addressable LEDs arranged in a 12 x 8 display, a buzzer for audio feedback, a vibra-
tion motor for haptic feedback, and 6 input buttons. It also breaks out GP1, GP11, ADC1 and ADC2, along

with a set of 3.3V and GND for each, to standard 0.1” footprints. GP18 to 21 are also broken out on a 0.1”

footprint underneath the Pico. The Pico is connected via low profile 20-way pin sockets.

96 RGB ZIP LEDs
Power LED

On/Off Switch

www.kitronik.co.uk

b | o i | it | ik | 1k

EE'JE,'JK,'H'JE'H,'H f]

.........

d SR ISR ISR TR IR 1

Nk) i i Y 6 |l | Gl i G i

ey ’-![—3" Fe == 2f=1F=11

v RIGHT ik | | G k6 B |
~(GP1LT- \

Direction Buttons v =N / - Action Buttons

Buzzer

Pico Connector

3x AA Battery Cages

Vibration Motor

T 0115 970 4243 3 kitronik.co.uk/twitter 3 «itronik.co.uk/youtube

W: www.kitronik.co.uk n kitronik.co.uk/facebook kitronik.co.uk/instagram

E: support@kitronik.co.uk NNp== Designed & manufactured UK
zZalnXX in the UK by CKitronio RYHS cA

For more information on RoHs and CE please visit kitronik.co.uk/rohs-ce. Children assembling this product should be supervised
by a competent adult. The product contains small parts so should be kept out of reach of children under 3 years old.

